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ABSTRACT
FREE-FORM SOLID MODELING USING DEFORMATIONS

Ugur Gudikbay

M.S. in Computer Engineering and
Information Sciences
Supervisor: Prof. Dr. Biilent OZGUC
June 1989

One of the most important problems of available solid modeling systems
is that the range of shapes generated is limited. It is not easy to model ob-
jects with free-form surfaces in a conventional solid modeling system. Such
objects can be defined arbitrarily but then operations on them are not trans-
parent and complications occur. A method for achieving free-form effect is
to define regular objects or surfaces, then deform them. This keeps various
properties of the model intact while achieving the required visual appear-
ance. This thesis explains a number of geometric modeling techniques with
deformations applied to them in attempts to combine various approaches de-
veloped so far. Regular deformations, which include twisting, bending, and
tapering, and free-form deformation technique are combined as a new defor-
mation method. This eliminates some of the disadvantages peculiar to each
method and utilizes the advantages of both.

Keywords: Deformations, geometric modeling of solids, free-form surfaces,
user interface design, shading, hidden surface elimination, computer graphics.
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OZET

DEFORMASYON TEKNIKLERI KULLANILARAK
DUZENSIZ NESNELERIN MODELLENMES]

Ugur Gudiikbay
Bilgisayar Miihendisligi ve Enformatik Bilimleri Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Balent OZGUC
Haziran 1989

Bugiine kadar yapilmig olan kat: modelleme sistemlerinin en 6nemli sorun-
larindan birisi de tiretilebilen gekillerin kisith olmasidir. Ahgilagelmis bir kata
modelleme sisteminde diizensiz yiiéeyleri olan nesnelerin modellenmesi kolay
degildir. Boyle nesneler, lizerindeki her nokta verilerek tamimlanabilir, fakat
bu yéntem kullamildifinda bu nesneler tizerindeki iglemler belirgin olmamakta
ve baz1 zorluklar ortaya ¢ikmaktadir. Bu nesnelerin modellenmesinde etkili
bir yontem de diizenli sekilleri olusturduktan sonra onlar {izerinde defor-
masyon tekniklerini uygulamaktir. Bu yolla gerekli nesneler elde edilirken
ortaya gikan zorluklar da énlenmekte ve islemlerde agiklik saglanmaktadir.
Bu aragtirma bazi modelleme yontemlerine deformasyon tekniklerinin uygu-
lanmasi ve deformasyon tekniklerinde bugiine kadar kullanilan degisik yakla-
simlarmn birlestirilmesi konulari ile ilgilidir. Kivirma, biikme ve inceltme gibi
diizenli deformasyonlar serbest deformasyon teknigi ile birlegtirilerek yeni
bir deformasyon yontemi elde edilmigtir. Boylece bu yontemlere 6zgii baz
kisitlamalar yokedilmis ve her iki yontemin yeteneklerinden daha etkin bir
gekilde yararlanilmigtir.

Anahtar Kelimeler: Deformasyon, katilarin geometrik modellenmesi, dii-
zensiz nesneler, kullanic: arabirimleri, tarama, gorinmeyen ylizeyleri yoketme,
bilgisayar grafigi.
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1. INTRODUCTION

A system for deforming three dimensional models to obtain objects with free-
form surfaces is explained in this thesis. The system is implemented using C
language [15] on a Unix ! workstation environment. In the implementation of
the system, care has been taken to include user interface facilities to simplify
the usage [14].

In advanced CAD/CAM applications, designers need to model solid ob-
jects with complex surfaces [16]. Objects whose surfaces are free-form defy
description in terms of analytical surfaces such as planes, cones, spheres, or
toroids [8]. There are various approaches to model objects with free-form
surfaces in a solid modeling system.

One approach uses Boolean operations on arbitrary free-form surfaces.
To implement Boolean operations, the computation of intersecting curves
between two different free-form surfaces is required. This takes a long com-
putation time since intersection algorithms compute points iteratively and
perform some type of curve fitting that yields an approximate intersection
curve. Because of this, the interpolating curve will never lie exactly on both
surfaces. Consequently, intersection algorithms are unreliable.

The second approach involves generating free-form surfaces from a poly-
hedron. This approach uses rounding operations on polyhedral objects for
integrating solid modeling and free-form surface modeling [9]. Since complex
calculations are not needed, computation time and reliability are not prob-
lems. However, there are several restrictions in the range of shapes generated.

Another approach to model free-form surfaces is based on parametric
polynomial functions [10]. This is a unified approach and geometric opera-
tions can be performed with equal facility on simple primitives and complex

1Unix is a trademark of AT&T Laboratories.
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sculptured geometries by using it. This approach combines a number of para-
metric polynomial geometry representations, such as Bézier, Coons, B-spline
into a unified modeling system that is capable of interchanging between these
representations through mathematical transformations.

A new approach, deformations, is similar to the second approach in the
sense that both provide methods of changing the existing models to create
irregular classes of objects. Deformations, first introduced by Alan Barr [4],
are highly intuitive and easily visualized set of operations. Deformations al-
low the user to treat a solid as if it were constructed from a special type of
topological putty or clay, which may be bent, twisted, tapered, compressed,
expanded and otherwise transformed into a final shape. Deformations can be
incorporated into traditional CAD/CAM solid modeling and surface patch
methods, reducing the data storage requirements for simulating flexible ge-
ometric objects, such as objects made of metal, fabric or rubber. Without
deformations, to simulate an irregular object, one has to save every point
on the object. However, one can create a regular object and then apply
deformations to it to create an irregular object with much less data.

Our system currently uses superquadric objects and Bézier surfaces to
model regular classes of objects. There are two main approaches used to
deform solid geometric models:

e Regular deformations [4].

o Free-form deformation (FFD) technique [21].

Our system combines these two approaches for deforming regular classes
of objects to create objects with free-form surfaces. Both deformation tech-
niques can be applied hierarchically and interchangeably in our system. The
combination seeks to offer benefits of both regular deformations and FFD
technique.

The remaining parts of this thesis are organized as follows. Chapter 2
surveys the concepts related to geometric modeling by explaining the history
of geometric modeling and shows how objects are modeled in our implemen-
tation. Mathematical details of superquadrics and Bézier surfaces are also
explained in this part.

Chapter 3 describes different deformation techniques and compares them
by giving the advantages and disadvantages of them. It also gives the rea-
sons why these techniques are combined to obtain a different deformation
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technique and explains how deformations are implemented in our system by
giving examples.

Chapter 4 gives a detailed explanation about the display facilities provided
by the system (shading and hidden surface elimination) and describes the
methods used for these purposes together with the reasons why they are
used.

Chapter 5 contains information about the user interface issues of the im-
plementation. The user interface facilities for creating the objects that the
user desires and manipulating them through the set of operations provided
by the system are explained in detail.

Appendix A presents a user’s manual for those who wish to use the system.



2. MODELING

2.1 History of Modeling

The application of computers to drafting and design started with Sketchpad,
which is a remarkable program devised by Ivan Sutherland at MIT in the
early 60’s. First, the techniques of Sketchpad were applied to circuit design
where the connectivity or topological properties of the data, represented as
a graph of nodes and links, are important [6].

Later, drafting systems progressed in two ways; firstly, in the amount of
structure captured and in the variety of graphics entities represented, and
secondly, by moving from two to three dimensions. Wireframe models have
emerged as a result of these developments where perspective views and re-
moval of hidden lines have gained importance.

Wireframe models can be defined as a collection of curve segments which
represents an object’s edges. Wireframe models have some serious deficien-
cies. These deficiencies can be listed as follows [19]:

e The wireframe may be ambiguous; it may represent more than one
object.

o Nonsense objects such as a wireframe with one of the edges missing
cannot be detected by the system.

e Representation of lines to depict viewpoint-dependent artifacts in the
wireframe creates problems.

o Lots of low level data is stored to represent even trivial objects.



The first two deficiencies limit various automatic processes that can be
done by a system using wireframe modeling. For example, calculating vol-
umes of objects represented by a wireframe and automatic sectioning of them
are almost impossible to implement automatically.

A further step in the progress of drafting systems was to allow 3-D wire-
frame models to be surfaced. The surfaces are represented by embedding of
the graph formed by edges and vertices of a wireframe model. This embedded
graph represents the boundary model of the solid.

The systems addressing the problem of designing classes of parts comes
after drafting systems. These systems are dedicated to a family of special
products, such as pumps. They calculate design properties of pumps, gen-
erate pictures of them, etc. These systems cover three stages of product
definition, namely, design, analysis, and manufacture. Consequently, they
reduce the chance of error from stage to stage. Their drawback is that they
are expensive to write and develop, and they can act as a barrier to progress
since they embody certain design rules which new knowledge may make ob-
solete.

Later, solid modelers have emerged as a new development in drafting
systems. The term solid modeling encompasses a body of theory, techniques,
and systems focused on informationally complete representation of solids —
representations that permit (at least in principle) any well-defined geometric
property of any represented solid to be calculated automatically [19].

Solid modeling is a powerful and promising concept for computerized
product definition [16]. Systems used in the design of products cover not
only design but also analysis and manufacture. This means that the same
data are repeatedly used at design, analysis and manufacturing steps. For
this reason, if the information were captured in a suitable, general form at
the design time, it could be used again for analysis and for manufacture. In
this way, mistakes could be avoided, and time and money saved. This re-
quires to decide on a product representation that is suitable for all types of
computations. The representation must be accurate, must contain enough
information for all subsequent inquiries to be made, and should be concise.
To achieve this goal, solid modelers have been developed.



2.1.1 Classification and Properties of Solid Modelers

Solid modelers can be classified into two broad categories: regional (descrip-
tive) modelers, and boundary modelers. Regional modelers can be further
classified as subdivisional modelers and cellular modelers.

One type of descriptive modeler is based on Constructive Solid Geometry
(CSG). It uses trees (CSG trees) of building block primitives, such as par-
allelepipeds, spheres, cylinders, etc. combined by geometric transformations

and Boolean set operations as a representation of three-dimensional solid
objects [20].

Another type of descriptive modeler represents solid objects using half
spaces, each described by an equation of the form f(z,y,z) > 0. Some of the
CSG models also decompose primitive solids into subtrees whose leaves are
halfspaces so that they combine both pure CSG and halfspaces [20].

Modelers using octree methods are in the group of cellular modelers. They
represent solid objects by a binary tree defining recursive subdivision of space
and recording which parts are empty and which parts are solid. The trees
used to represent two dimensional objects are called octrees and the ones
used to represent solid objects are called quadtrees [7].

Subdivisional modelers are similar to cellular modelers, but the subdivi-
sion of space into smaller parts is not necessarily regular, as in the case of
cellular modelers.

Boundary (or surface-based) representation techniques describe solid vol-
umes in terms of their enclosing surfaces. Such models can be called solid
models when they completely describe the form and the extent of the indi-
vidual surfaces of the objects. They must also contain enough information
to determine how the surfaces are joined together to form completely closed
and connected volumes [11].

Boundary representation (B-rep) techniques use some low-level operators,
called Euler operators, as a convenient and consistent way of creating and
modifying the topological data of the solid model. Most common Euler op-
erators are [6]:

1. Create shell (a shell of an object S is defined as a maximal connected
set of faces of S), face (face’s can be defined as contiguous surface areas
of the volume enclosed by face boundaries), and vertex.
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2. Add edge and vertex.

3. Add edge, face and loop (a loop on a face f is defined as a closed chain
of edges bounding f).

4. Add genus and loop, remove face and loop.

5. Add loop, remove shell, face and loop.

Boolean operations are not included in the representation of a B-rep
model, but they often are employed as one of the means of creating and
manipulating the model. Since B-rep systems require an explicit representa-
tion of the boundary of the solid, they must evaluate the new boundary that
is the result of the Boolean operation applied [8].

Other methods for creating and manipulating geometry in B-rep systems
include sweeping, which defines the bounding surfaces of the solid by moving
a cross-section along a path in space, and tweaking, which performs local
operations on the geometry, but leaves the topology of the model unchanged.
Tapering is an example to tweaking. Some other operations which introduce
strain, shear, and torsion into models are bending, which changes the topology
of a model in a well-defined way, blending, which rounds off and chamfer sharp
edges, and streiching, which occurs in physical bending,.

2.1.2 Modeling Free-Form Surfaces

Although there are a number of solid modeling systems that can be used as
a basis for product modeling, solid modeling capabilities have not been fully
utilized. There are several technical problems remaining, such as dimension-
ing and tolerancing, user interface, and speed and reliability of processing [16].
Treatment of solid objects with free-form surfaces is another major problem
of current solid modeling systems. Objects with free-form surfaces cannot be
described in terms of analytical functions. Some examples of objects with
free-form surfaces are the fender of a sports car, the transition between the
wing and fuselage of an aircraft, the hull of a destroyer, the handle of a hand-
held mixer, etec. [8]. Free-form surface design capability should be integrated
into solid modeling systems in order to model objects with complex surfaces.
The approaches for free-form surface design (explained in Chapter 1) can be
used in solid modeling systems for this purpose. .



2.2 Modeling in Our System

Since our system uses regular objects to create objects with free-form sur-
faces, we have to provide methods to mode] these regular objects. In the
implemenfation of the system, two different surface modeling methods based
on parametric polynomial functions, namely superquadrics and Bézier sur-
faces, are used to model regular classes of objects. They are explained in
detail with some examples in the following sections.

2.2.1 Superquadrics

One long-term goal of computer graphics and numerical methods for three-
dimensional design is a unified mathematical formalism. Such a unified math-
ematical formalism for geometric representation and computation provides a
natural base for a geometric modeler of considerable versatility and robust-
ness [10]. Superquadric objects show potential to achieve this goal [3]. Su-
perquadric objects are a new collection of smooth parametric objects produc-
ing a new spectrum of flexible forms. The chief advantage of superquadrics
is that they allow complex solids and surfaces to be constructed and altered
easily by changing a few interactive parameters. The superquadrics family
mainly consists of superquadric ellipsoids, toroids, hyperboloids of one piece,
and hyperboloids of two pieces. These shapes differ from the corresponding
quadrics in the exponent of their terms. The exponent of their terms, two for
the quadric shapes, is replaced by an arbitrary positive number. By changing
the exponent of the terms, the shapes can be rounded, pinchéd, and can have
different properties in different sections.

Superquadrics can be defined by either nonparametric or parametric equa-
tions. The parametric form is used for calculation, since surface points and
normal vectors can be generated more easily with this method than with the
implicit form, but the sampled points are sometimes very unevenly spaced.
The nonparametric form, which is developed using computational geometry
techniques, uses explicit equations or series approximations for generating
points on the curve. Advantages of the nonparametric form are [2]:

¢ It naturally produces equally spaced points.
o It requires much less CPU time for each point.

¢ It can produce surfaces of great generality.
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Our implementation uses parametric equations to generate superquadrics
since generation of surface points is easier with this method. Also, we need
normal vectors for shading and hidden surface elimination. Calculation of
normal vectors at each surface point is much easier using parametric equa-
tions. To speed up the generation of points, the values that will be needed to
produce the points are calculated once and they are stored in look-up tables
so that they will be retrieved when they are needed.

The mathematics used to define superquadrics can be summarized as

follows [3].

Given are two two-dimensional curves

m(n) = [ Z:Eg } ;Mo < <M.

The spherical product z = m ® h of the two curves is a surface defined as

mi(n)hi(w) <o <
2(n,w) = | mi(m)ha(w) |, - ;n‘
ma(n) -

Geometrically, h(w) is a horizontal curve vertically modulated by m(n);
ma(n) changes the relative scale of h, while my(n) raises and lowers it. 7 is
a north-south parameter, like latitude, whereas w is an east-west parameter,
like longitude. Spherical product surfaces can be rescaled by a separate vector
a = [ay, az,a3]7 where T denotes the transpose.

Types of superquadric shapes and the formulation of them are explained
in the following sections.



Superellipsoids

Position vector of surface:

a,CaCe
(7, ) IC’Z S:’ -2<n<3
x W) = a 1 2
777 2 n w 3 _WSwSﬂ'
(135.:’1

Normal vector:
A 2—€3 12—¢2
a3 C'T C‘”
— | Lp2-ac2-
n(n,w) = | LCaste

1 Q2—¢
a3 S’l

€, is the squareness parameter in the north-south direction and ¢; is the
squareness parameter in the east-west direction. Cuboids are produced when
both €; and €; are < 1. Pillow shapes are produced when ¢; = 1 and ¢; < 1.
Pinched shapes are produced when either €; or €; > 2. Flat-beveled shapes
are produced when either €; or e; = 2.

Wireframe examples of superquadric ellipsoids with different exponents
are shown in Figure 2.1.

Superhyperboloids of one piece

Position vector of surface:

a; secinCe
z(n,w) = | aysecnSe —3<n<3
S b i 9
v —r<w<T
aztan‘in

Normal vector:
1 —ey 2—€3
oo sec~nC
n(n,w) = | Lsect-ansz-o

1 2—¢;
p tan*"% 7y

Wireframe examples of superquadric hyperboloids of one piece with dif-
ferent exponents are shown in Figure 2.2.
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Figure 2.1: Superquadric ellipsoids with different exponents.
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Figure 2.2: Superquadric hyperboloids of one piece with different exponents.
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Superhyperboloids of two pieces

Position vector of surface;

a; secinseczw —2<n<3
z(n,w) = | axsecintanw |, —Z <w<Z (piece 1)
astan®y T <w< ¥ (piece 2)

Normal vector:
A 2~€1 2—€2
2 sec’ T Insec ™ w

n(n,w) = f;sec"’"‘l ntan? 2w

A 2—¢;
" tan“~“n

Wireframe examples of superquadric hyperboloids of two pieces with dif-
ferent exponents are shown in Figure 2.3.

Supertoroids

Position vector of surface:

a;(as + C2)C2
J— <S 77 =~
e(mw)=| axlas +C3)SF |, T
a;;S'f,‘ N -

Normal vector:
A 2—-¢;MN2—€2
a3 C’T C“’
— | 1 v —
ﬂ(n’ w) - ‘6—203 @ Sz, €2
1 Q2—-a
257

where a4 = T’Lg—)’ and @ is the radius of the torus.

Wireframe examples of superquadric toroids with different exponents are
shown in Figure 2.4.

2.2.2 Bézier Surfaces

For an arbitrary curve, it may be difficult to devise a single set of parametric
equations that completely defines the shape of the curve. However, any curve
can be approximated by different sets of parametric functions over different
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Figure 2.3: Superquadric hyperboloids of two pieces with different exponents.



Figure 2.4: Superquadric toroids with different exponents.
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parts of the curve. Since finite degree polynomials are, in many respects,
ideal forms for representing and approximating functions, they are used to
form these approximations. The smoothness of a curve from one section to
another can be described in terms of curve continuity between sections [5].

Parametric equations for surfaces are formulated with two parameters
u and v. A coordinate position on a surface is then represented by the
parametric vector function P(u,v) = (z(u, v), y(u,v), 2(u,v)). The equations
for coordinates z, y, and z are often arranged so that parameters u and v are
defined within the range 0 to 1.

To define a curve or surface in design applications, a set of control points
indicating the shape of the curve or surface is interactively specified. Bézier
formulated a method for displaying curves specified with control points using
the Berstein polynomial basis. A useful feature of Berstein basis is its convex-
hull property, which means that any curve defined using it smoothly follows
the control points without erratic oscillations.

Formulation of Bézier curves can be summarized as follows [5].

Suppose n + 1 control points are input and designated as the vectors
Pk = (Tks Yk, 2%),0 < k < n. From these coordinate points, we calculate
an approximating Bézier vector function P(u) which represents the three
parametric equations for the curve that fits the input control points p;. It
can be calculated as

P(u) = )" piBin(u) ™

k=0

Each By ,(u) is a polynomial function defined as
By (u) = C(n, k)uF(1 — u)*F,

where C(n, k) represents the binomial coefficients

n!

Con k) = Tim =y

Equation (*) can be written as a set of parametric equations:
n
z(u) =) xxBia(u)
k=0
n
y(u) =) yBia(u)

k=0

16



z(u) = Zn: szk,n(u)

k=0

Two sets of Bézier curves can be used to represent surfaces of objects

specified by input control points. The parametric function for a Bézier surface -~

is formed as the cartesian product of Bézier blending functions:

P(u,v) = i ‘Z: PikBjm(u)Bi,n(v)

7=0k=0

with p; i specifying the location of (m + 1) by (n 4+ 1) control points.

Figure 2.5 shows four Bézier surfaces generated by our system.

Figure 2.5: Four Bézier surfaces.
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3. DEFORMATIONS

Since the primary goal of our system is to create the free-form objects and
scenes that the user desires, we have to supply the user with the operations
that can be used to achieve this goal. We have implemented deformations
for this purpose. Two deformation techniques are used in the implemen-
tation. Regular deformations [4] simulate twisting, bending, tapering, or
similar transformations of geometric objects. Free-form deformation (FFD)
technique [21] is mainly developed to define solid geometric model of an ob-
ject - bounded by free-form surfaces, and further sculpturing it with flexibility
and freedom. Both of these techniques have advantages and disadvantages.

Although results of FFD can be guessed according to the movement of
control points, desired objects can be obtained by trial and error. However,
regular deformations are well-defined and their results are straightforward.
On the other hand, using FFD as a free-form modeling technique is better
than using regular deformations due to the generality of FFD.

A very important disadvantage of FFD is the speed of the deformations
since operations on trivariate Berstein polynomials are very costly. It can be
made faster by converting trivariate Berstein polynomials to standard power
basis polynomials. However, this operation also takes a fair amount of time.

The speed of deforming an object with FFD technique also depends on the
number of control points. A deformation defined by larger number of control
points can cause the deformed shape to follow the control points more closely
than for lower degree deformations [22]. This produces better results at the
expense of slowing down the operations. Regular deformations are very fast
compared to FFD technique.

These two approaches have some common properties:

e Both approaches can be applied hierarchically to create complex objects
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from simpler ones.
¢ Both approaches can be applied to any solid modeling scheme.

o Both approaches compute the new z, y, 2z coordinates of a point as
polynomial functions of the original z, y, z coordinates of that point.

Due to the reasons stated above, our system combines the two approaches
to alleviate the problems of them and to offer the benefits to the user. When
regular deformations are suitable for modeling an object, the user may use
them to gain in speed. When they are not sufficient for modeling an ob-
ject, either FFD technique can be used or both of the techniques can be
applied hierarchically and interchangeably. The two deformation techniques
are explained in detail with some examples in the following sections.

3.1 Regular Deformations

A globally specified deformation of a three dimensional solid is a mathemat-
ical function F which explicitly modifies the global coordinates of points in
space. Mathematically, it can be represented by the equation X = F(z)
where z represents the point in the undeformed solid, and X represents the
points in the deformed solid.

A locally specified deformation modifies the tangent space of the solid. It
is used to manipulate the tangent vectors which is used for delineating and
constructing the local geometry. In other words, it is used to obtain more
general shapes.

Tangent and normal vectors on the undeformed surface may be trans-
formed into the tangent and normal vectors on the deformed surface; the
algebraic manipulations for the transformation rules involve a single multi-
plication by the Jacobian matrix J of the transformation function F.

The Jacobian matrix J for the transformation function X = F(z) is a
function of g, and is calculated by taking the partial derivatives of F with
respect to the coordinates x, 3, z3:

OF(z)
lt(l) o 6x,-

In other words, the ' column of J is obtained by taking the partial derivative
of F(z) with respect to z;.
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New tangent vectors of the deformed surface are calculated by multiplying
the tangent vectors of the undeformed surface by the Jacobian J, and new
normal vectors of the deformed surface are calculated by multiplying the
normal vectors of the undeformed surface by the inverse transpose of the
Jacobian matrix.

Each of the regular deformations are explained in detail in the following
sections.

3.1.1 Scaling

One of the simplest deformations is a change in the length of the three global
components parallel to the coordinate axes. This produces an orthogonal
scaling operation which is represented by the following equations:

X =a2
Y = azy
Z=a3z

The components of the Jacobian matrix are given by
0X;

Jij 4 6:c,- ’

sO
a; 0 0

_l_'—‘- 0a20
00&3

The volume change of a region scaled by this transformation is obtained
from the Jacobian determinant, which is a;aa3. The normal transformation
matrix is given by:

aszas 0 0
det JI7VT = 0 aa O
0 0 ajas

After converting a point [z;, 79, z3]7 lying on a roughly spherical surface cen-
tered at the origin, with normal vector [n;,ng, n3)¥, the transformed surface
point on the resulting ellipsoidal shape is [a;21,a272,a3z3]7 and the trans-
formed normal vector is parallel to [2, 22 22]T  The volume ratio between

aj’az?’ag
the shapes is ajaza3.
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3.1.2 Tapering

TaperingA is making an object become gradually narrower towards one end
of it. Mathematically, it differentially changes the length of the two global
components without changing the length of the third.

To do a tapering operation along the z-axis, one should choose a tapering
function depending on the z-coordinates of the points. When the tapering
function f(z) = 1, the portion of the deformed object is unchanged; the
object increases in size as a function of z when f/(z) > 0 and decreases in
size when f'(z) < 0. The object passes through a singularity at f(z) = 0 and
becomes everted when f(z) < 0. Global tapering along the z-axis is given by
the following equations:

r = f(2)
X=rz
Y=ry
Z =z

Tangent vector transformation matrix is given by

r 0 f2)z
=10 r fl(z2)y
00 1

Normal vector transformation matrix is given by
r 0 0
r"g"lT = 0 r 0
—rf'(z)z —rf(z)y r’
Examples of tapering are shown in Figure 3.1 where a superellipse is

tapered using different tapering functions. The first object is obtained using
the tapering function f(z) = zj%; and the second one is obtained using

f(2) = cos(z5;)-

3.1.3 Twisting

A twist operation can be approximated as a differential rotation, just as
tapering is a differential scaling of the global basis vectors. We rotate one
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Figure 3.1: Tapered superquadric ellipsoids.

pair of global basis vectors as a function of height, without altering the third
global basis vector. An example to twisting operation is the twisting of a
deck of cards, by which, each card is rotated somewhat more than the card

beneath it. Twisting operation preserves the volume of the original solid.

To do a twisting operation along the z-axis, twisting angle 8 should be
a function of the z-coordinate of the point to be deformed. Global twisting
along the z-axis is given by the following equations:

0= 1(z)
Cy = cos(8)
Sy = sin(0)

X =2C—ySe
Y =x5; +yCy
Z =z

The twist proceeds along the z axis at a rate of f’(z) radians per unit
length in the z direction.
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Figure 3.2: Twisted superquadric ellipsoids.

Tangent vector transformation matrix is given by

Cy —S —xSof'(z) = yCaf'(Z)
I=1| 8o Cs 2Cof'(z)—ySef'(2)
0 0 1

Normal vector transformation matrix is given by

Cy —Ss 0
_s_l_—lT = Sg Co 0

yf'(z) —=zf(z) 1

Examples of twisting are shown in Figure 3.2 where a superellipse is
twisted using different twisting functions. The first object is obtained using

the twisting function § = 275; and the second one is obtained using § =
sin(z155)-



3.1.4 Bending

Bending simulates an important manufacturing process for fabricating ob-
jects. An example to this operation is the bending of a bar stock or sheet
metal. '

To make a bending along the y-axis, one has to specify a bent region
along the y-axis. The range of the bending deformation is controlled by
Yminy, aNd Ymaz, With the bent region corresponding to values of y such that
Ymin < Y < Ymaz- The axis of the bend is located along [s, yo, %]T, where s
is the parameter of the line. The center of the bend occurs at y = y,. The
radius of curvature of the bend is ;. The bending angle  is constant outside
the bent region, changes linearly in the central region. In the bent region,
bending rate k, measured in radians per unit length, is constant. Qutside the
bent region, the deformation consists of a rigid body rotation and translation.
The length of the centerline passing through the object along the y-axis does
not change during the bending process.

The bending angle 8 is given by:

6 = k(§ — vo)
Cy = cos(6)
Se = sin(8)

where
Ymins, Y S Ymin

g = v, Ymin < ) < Ymaz
Ymazs Y 2 Ymaz

The formula for bending along the y axis centerline is given by the following
equations:

X=z
_Sﬂ(z - %) + Yo, Ymin < Yy < Ymax
Y =4 =Se(2— 1)+ % + Co(y — Ymin), ¥ < Ymin
—59(2' - '11;) + % + Ca(y - ymaz)a Y > Ymax

Co(z - %) + '11;’ Ymin < Yy < Ymaz
Z= Ce(z - 71;) + % + Sa(y - ymin)’ Y < Ymin
Co(z — '}E) + % + S6(Y ~ Ymaz)s Y > Ymaz



Tangent vector transformation matrix is given by

1 0 0
I=|0 C1-kz) -8, .
0 Si(1—Fkz) Cy

where

&5
I
e N,
S
<2
Il

y
Y.

L
D
*

Normal vector transformation matrix is given by

1-kz 0 0
(1-Fk2)IT = 0 Cp —Ss(1-—kz)

0 Sy Co(l—1k2)

Examples to bending operation are shown in Figure 3.3. In these exam-
ples, bent region includes the whole object. In the first figure, an ellipse is
bent 90°, and in the second one an ellipse is bent 360°.

The transformations explained above can be combined with rotation
around some axes so that these operations can be performed around other
axes than the ones explained above.

Results obtained by applying regular deformations hierarchically are
shown in Figure 3.4.

3.2 Free-Form Deformations (FFD)

Free-form deformations can be thought of as a method for sculpturing solid
models in a free-form manner. FFD can sculpt solids bounded by any analyt-
ical surface; planes, quadrics, parametric surface patches, or implicit surfaces.
Its application is not restricted to solid models, but it can also sculpt surfaces
or polygonal data.

In our system, two kinds of parametric surface patches, namely Bézier
surfaces and superquadrics, are deformed in a free-form manner using FFD
techniques. In fact, the objects are approximated using small polygons. Thus,

the deformed data are actually polygonal data. §
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Figure 3.3: Bent superquadric ellipsoids.
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Figure 3.4: A twisted, tapered superquadric ellipsoid, and a tapered, bent
superquadric ellipsoid.



3.2.1 Formulation of FFD’s

The free-form deformation is initiated by defining a three dimensional grid of
control points about the region to be deformed. The objects to be deformed
are embedded in the grid of control points that can be interactively deformed
as if it is made out of a flexible material. The objects themselves can also be
regarded as if they are made out of a flexible material, so that when the whole
grid is deformed, the objects inside them are also deformed respectively.

The control points form a regular lattice which is defined within a paral-
lelepiped generated by three non-coplanar vectors S, T, and U, and a point
Xo. Any point has (s,?,u) coordinates in this system such that

X=Xg+sS+tT+2U.

In our system, X will typically be a polygon vertex expressed in (z,y, 2)
coordinates, and S, T, and U are analogous to the unit vectors in X, Y, and
Z direction. The (s,t,u) coordinates of X can be found as follows:

. _TxU:(X-Xo)
- TxU-S

_ SxU-(X—Xo)

t SxU-T

u_SXT~(X-——Xo)
- SxT-U

In our system, the above calculation is not necessary since z, y, and 2
coordinates of the points are calculated automatically. It can be used when
the coordinates of a point are given in vector form.

For any point interior to the parallelepiped, 0 < s <1, 0 <t < 1, and
0 <u < 1. The grid of control points P;;; imposed on the parallelepiped
forms [ + 1 planes in the S direction, m + 1 planes in the T direction,
and n + 1 planes in the U direction. So the number of control points is
(I+1)(m 4+ 1)(n + 1) and their undisplaced locations are defined as

Pijk=xo+;s+iT+!iU
m~  n
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The deformation function is defined by a trivariate tensor product
Berstein polynomial. The deformation is specified by moving the P;j; from
their undisplaced, latticial positions. A point X is transformed to its free-
form deformation position Xy;4 by first computing its (s, t,u) coordinates of
X and then evaluating the Berstein polynomial '

=0

Xjsa= i ( : ) (1—s)*s*
x > ( " ) (1 - tym=iti
j

x| Zni ( : ) (1 — )" ufPyji ] ]

k=0

The control points P;j; are actually the coefficients of the Berstein poly-
nomial. For a polygonal model, each node is passed through the deformation
function, and the connectivity is unchanged.

Since it is very time consuming to evaluate a trivariate Berstein poly-
nomial for lots of polygon vertices that are to be transformed, it is wise to
convert the Berstein polynomial to standard power polynomial basis which
can then be evaluated using Horner’s method.

Our system uses the algorithms in [22] to convert a Berstein basis poly-

nomial to a standard basis polynomial and to evaluate the power basis poly-
nomial.

Examples to FFD technique are shown in Figure 3.5 where an ellipsoid
is deformed using different FFDs.
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Figure 3.5: An ellipsoid deformed using different FFDs.



3.3 Combination of Regular Deformations and FFD

Technique

Since FFD is a method for deforming three-dimensional objects in a free-form
manner, regular deformations can also be performed using it. However, using
FFD to make twisting, bending, and tapering operations brings some unde-
sired effects. For example, when an object is bent using FFD technique, the
result will not be as predictable as when the same object is bent using regular
deformations. This is also true for other regular deformations. Another rea-
son why using FFD to deform an object is more difficult than using regular
deformations is that the user should perform trial and error until the desired
object is obtained. FFD technique is slower since using it involves operations
with trivariate tensor product Berstein polynomials. Regular deformations
are faster since the whole operation is just a single matrix multiplication.
Consequently, when regular deformations can perform the desired operation,
it is better to use them. ’

In addition to twisting, tapering, and bending, Barr [4] explains some
operations for deforming objects locally when the Jacobian of the deformation
function is known. This is another way of obtaining more general shapes.
However, the implementation of local deformations is very difficult. FFD
technique can be used to achieve the results that can be obtained by using
the local operations described by Barr, since it can either be applied locally
or globally.

We have applied the two deformation techniques hierarchically to regular
classes of objects in our system. Results are shown in Figure 3.6. The first
object is obtained by initially tapering a superquadric hyperboloid of one
piece and then applying an FFD to the tapered object. The second object is
also obtained in the same way , but the initial object is an ellipse. The third
object is obtained by applying an FFD to a superquadric toroid to compress
it and bending the compressed object, and the last object is obtained by
tapering a superquadric toroid and applying FFD to the tapered object. |
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Figure 3.6: Results of applying combination of regular deformations and

FFDs.
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3.4 An Example of Generating a Composite Shape

In this section, the use of the system is described by an example. In the
following example, the system is used to generate a telephone handset from
a rounded bar. Steps of the process are as follows :

1. First, it is necessary to generate a rounded bar. This is accomplished
by creating a superquadric ellipsoid similar to a rectangular prism. The
superquadric ellipsoid in Figure 3.7 is generated by setting the “Resolu-
tion” to 72, and giving €; and €; as 0.52 and 0.52 respectively. Scaling
factors are arranged interactively by the user as described in Figure
A.2. The superquadric ellipsoid is seen from the top when it is gen-
erated. To obtain the shape in the figure, the initial shape is rotated
around z axis.

2. FFD technique is hierarchically applied to the rounded bar to obtain
the shape in Figure 3.8. The shape is obtained by performing FFD
three times. The number of planes in x, y, and z directions of the
lattice of control points are (8, 8, 2) in the first and second FFD, and
(4, 4, 2) in the third FFD. The way how the coordinates of the control
points in the lattice are changed interactively is described in A.9.

3. The shape in Figure 3.8 is applied a bending operation to impart
a slight curvature to make it similar to a real handset. To perform
bending, the shape should first be positioned in an appropriate way. It
is rotated around y axis for this purpose. Then, a 90° bending operation
is applied. The way how bending operation is accomplished is described
in Figure A.5. The shape is rotated back to its original position to
obtain the shape in Figure 3.9.

4. Finally, the hidden surfaces are removed and shading is applied
(Figures 3.10, 3.11).

This example also shows how regular deformations and free-form defor-
mation technique can be combined in an appropriate way to utilize the ad-
vantages of them.



y.

Figure 3.7: The rounded bar initi

Figure 3.8: The rounded bar after applying FFD three times.
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Figure 3.9: Telephone handset generated.

Figure 3.10: Telephone handset (hidden surfaces eliminated).
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Figure 3.11: Telephone handset (shading applied).
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4. DISPLAY FACILITIES PROVIDED BY
THE SYSTEM

Realistic display of objects are obtained by generatiﬁg perspective projections
with hidden surfaces removed and then applying shading and color patterns
to the visible surfaces [1].

In our system, curved surfaces, which are superquadric objects and Bézier
surfaces, are approximated by small polygons. This helps us to solve hidden
surface problem easily. However, it brings some other problems; e.g. to shade
an object, we have to use a smooth shading technique, such as Gouraud shad-
ing [13], to prevent intensity discontinuities between adjacent polygons of the
object. This takes much more time than shading each polygon with a con-
stant intensity value. However, the resolution of objects produced by the
system is specified by the user. In other words, the size of the polygons that
are used to approximate the objects can be made smaller or larger depend-
ing on the quality desired. Consequently, making the polygons smaller and
smaller, and applying constant shading on these polygons produces pictures
nearly as good as the ones obtained by applying Gouraud shading.

4.1 Hidden Surface Elimination

Since our system’s primary goal is the generation of realistic scenes of three-
dimensional objects, the identification and removal of the parts of the picture
definition that are not visible from a chosen viewing position becomes an
important issue. There are many approaches that can be taken to solve this
problem. Since the objects are approximated using lots of small polygons,
hidden line elimination requires lots of intersection calculations. So we chose
to implement hidden surface elimination.
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Hidden surface and hidden line algorithms are often classified according to
whether they deal with object definitions directly or with their projected im-
ages. These two approaches are called object-space and image-space methods,
respectively. An object-space method compares objects and parts of objects
to each other to determine which surfaces and lines, as a whole, should be
labeled as invisible. In an image-space algorithm, visibility is decided point
by point at each pixel position on the projection plane [1].

The depth-sorting method, which we chose to solve hidden surface elim-
ination problem is a combination of these two approaches. It performs the
following basic operations to eliminate hidden parts:

1. Surfaces, which are small polygons in our system, are sorted in the
order of increasing depth.

2. Surfaces are scan-converted in order, starting with the surface of great-
est depth.

Sorting operations are carried out in object space, and the scan conver-
sion of the polygon surfaces is performed in image space. Surfaces are sorted
according to their distance from the view plane. The intensity values for the
farthest surface are then entered into the refresh buffer. Taking each succeed-
ing surface in turn (in decreasing depth order), we paint the surface intensities
onto the frame buffer over the intensities of the previously processed surfaces.

Steps of painting polygon surfaces onto the frame buffer according to
depth can be summarized as follows: )

1. Surfaces are ordered according to the largest z value on each surface.

2. The surface with the greatest depth (call it S) is then compared to the
other surfaces in the list to determine whether there are any overlaps
in the depth. If no depth overlaps occur, S is scan converted.

3. Steps (1) and (2) are repeated for the next surface in the list until all
of the surfaces are scan converted (provided that no overlaps occur).

If S overlaps with other surfaces, following tests should be done to de-
termine whether reordering is necessary or not. (The tests are performed in
order of increasing difficulty.)
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1. The bounding rectangles in the zy-plane for the two surfaces do not
overlap.

2. Surface S is on the outside of the overlapping surface, relative to the
view plane.

3. The overlapping surface is on the inside of surface S, relative to the
view plane. &

4. The projections of the two surfaces onto the view plane do not overlap.

As soon as one test is found to be true for an overlapping surface, we
know that the surface is not behind S. Then the same process is repeated for
the next surface that overlaps S. If all the surfaces pass at least one of these
tests, no reordering is necessary and S can be scan converted. If all of the
tests fail with a particular overlapping surface S°, S and S’ are interchanged
in the sorted list.

4.2 Shading

An intensity model can be applied to surface shading in various ways, depend-
ing on the type of surface and the requirements of a particular application

[1].

Approximation of curved surfaces using a large number of small polygons
causes Mach band distortion [18] when each polygon is shaded with a constant
intensity value in which each small polygon is distinctly visible. However, in
the case where a surface is exposed only to the light from a point source,
and the planes subdividing the surface are made small enough Mach band

" distortion will be very little. It also depends on the surface curvature, the
position of the light source, and view position. The curvature of the objects
created by the system changes gradually which helps in decreasing the Mach
band distortion.

To shade an object approximated by small polygons using constant shad-
ing technique, we have to calculate an intensity for each polygon. For su-
perquadric objects, the normals calculated for each surface point are used to
calculate the intensity for each polygon. Also, applying regular deformations
on these objects does not bring any problem since new surface normals can
be calculated using normal vector transformation rules described in previous
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Figure 4.1: Shaded Bézier surfaces.

sections. However, for Bézier Surfaces and for the objects obtained by apply-
ing Free-Form Deformations, the system uses analytical methods to find the

normals for each polygon.

Figures 4.1, 4.2, and 4.3 show Bézier surfaces, superquadric objects,
and objects obtained through deformations with shading applied on them,

respectively.
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5. THE USER INTERFACE

It is very important to pay careful attention to the design of interactive user
interfaces. Bad user interfaces are not only difficult to learn but they also
make a system inefficient to operate even in the hands of an experienced user.
In extreme cases an entire system may be invalidated by poor user interface
design, that is, it may prove impossible to train users to operate the system,
or the user interface may be so inefficient and unreliable that the cost of using
the system cannot be justified [17].

Since our system is an interactive one, we have to provide the user some
facilities for defining parameters in creating objects and for defining defor-
mation parameters so that the user can use it in an efficient manner. The
facilities provided by the system are explained in detail in the following sec-
tions.

5.1 Facilities for Creating Bézier Surfaces and Super-

quadrics

In our system, the user can create the desired objects with the help of a menu.
He can either select Bézier surfaces or one of the superquadrics to create a
three-dimensional object.

To create Bézier surfaces, number of control points and number of curve
points on each curve of the surface can be specified by the user, and control
points for a Bézier surface can be interactively entered with the help of a
mouse.

To create superquadrics, scaling factors and exponents are interactively
input from the user and the user is presented with a rough sketch, namely
the bounding box, for the object that will be created. Then he may want
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Figure 5.1: The layout of the screen while parameters of superquadrics are
given.

the system to create the object specified by the parameters or discard it and
specify different values for the parameters. The layout of the screen while
parameters of superquadrics are being specified is shown in Figure 5.1. The
items in the panel subwindow are explained in detail in Appendix A. The
rectangular prism gives an idea to the user about the size of the object.
Resolution of the superquadric objects can also be specified. In order to
obtain very good polygonal approximations of superquadric objects, a high
resolution may be specified. However, using a high resolution will produce
better results at the expense of slowing down the operations.

5.2 Facilities for Deforming Objects

The implementation also provides facilities for deforming the created objects.
Different twisting and tapering functions can be selected using menus. The
user may select currently available twisting and tapering functions for these
operations or select the option for specifying a new twisting or tapering func-
tion. If he selects this option, a new window appears on the screen in which
he can enter the function for twisting or tapering operation in infix notation
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Figure 5.2: A lattice of control points created and deformed by our system.

using keyboard. Also, bending region and center of bend can be specified
interactively for bending operation.

To do an FFD, the user is presented with a regular lattice of control
points. The number of planes in x, y, and z directions can be specified
interactively. In this way, the user may sclect between high quality and
speed of the operations. If the number of control points in each direction is
high, the deformation specified will be better, but operations will be slower.
On the other hand, if the number of control points in each direction is low,
operations will be faster, but deformations will not be high quality.

The user may take each plane parallel to the zy-plane and change the
coordinates of points interactively with the help of a mouse. He may see the
lattice of control points any time during that process. After deforming lattice
of control points, he can get the deformed object according to the specified
lattice. Figure 5.2 shows a lattice of control points generated by our system.

The implementation uses the facilities provided by Sun View! system such
as windows, panels, and menus [23].

1Sun View is a registered trademark of Sun Microsystems.
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6. CONCLUSIONS

A system has been developed to create the objects and scenes that the user
desires through the use of a set of primitive objects and a set of operations
to deform these primitives. Parametric surface modeling methods, namely
superquadrics and Bézier surfaces, are used to model undeformed surfaces.
Two different deformation techniques, which are regular deformations includ-
ing twisting, tapering and bending, and free-form deformation technique, are
used to deform these objects.

Since both deformation techniques have advantages and disadvantages,
we have combined them. FFD technique has two major disadvantages: re-
sults are obtained by trial and error and deformations are slow because of
operations on trivariate Berstein polynomials. However, FFD is a very good
modeling technique because of its generality. Regular deformations are re-
stricted, but their results are straightforward and they are very fast. By
combining the two approaches some of the problems peculiar to each method
disappear and the advantages of both approaches are utilized.

Our system can be used to model objects with free-form surfaces or to
sculpt objects. Both of the deformation techniques can be applied hierarchi-
cally and interchangeably through a set of user interface facilities provided
by the implementation.

The user interface of the system is designed to increase the quality of
interaction with the system according to the combination of some criteria
such as the time any user must spend accomplishing a particular project
which the system is intended to support, the accuracy with which the user
can accomplish the project, and the pleasure the user derives from the process
[12]. Future efforts can be directed towards improving the system in these
three aspects.
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A. THE USER’S MANUAL

Since the system is implemented using Sun View as described before, it can
only be used in this environment. Thus, it is necessary to run suntools
program to provide the necessary environment. Once the user enters Sun
View environment, the system can be initiated by typing surface at the Unix
prompt. After running the system, the main window will appear on the
screen. It mainly consists of a panel subwindow and a canvas. The panel
subwindow contains the panel items which are used to handle the user in-
put, and the canvas is used to display the created objects and scenes. In the
following sections, the items used to take user input and the help facilities
provided are explained in detail.

A.1 Description of the Panel Items

The panel items are mainly used to take text input from the user. The
function keys are used for some special operations. All of the panel items
and the function keys are listed and described below.

e Control Points ni: 3 n2: 3: These text items are used to take
the number of control points for a Bézier surface. The number of control
points is (n1 4+ 1) by (n2 4 1). The default values of n1 and n2 are 3.

e Curve Points mi: 3 m2: 3: These text items are used to take
the number of curve points on a Bézier surface. The number of curve
points on a Bézier surface is (m1 + 1) by (m2 + 1). The default values
of m1 and m2 are 15. ‘

¢ Resolution (1-360): 36: This panel item is used to change the size
of the polygons that are used to approximate; superquadric objects. It

49



represents the increment in the parameters used to generate the surface
points in the following way. For example, when “Resolution” is 36, the
increment in the parameters will be ;. When it is high, the polygons
will be smaller and better approximations are obtained. When it is low,
the polygons will be larger and rough approximations are obtained. The
default value of this panel item is 36.

No. planes in x direction: 3

No. planes in y direction: 3

No. planes in z direction: 3:

These three panel items are used to take the number of control points
of a control lattice which is used for deforming an object using FFD
technique. The default values of these panel items are 3.

Epsilon 1: 1.0 Epsilon 2: 1.0: These panel items are used to
take exponents for superquadric objects. The default values for these
items are 1; this produces the quadric objects.

Torus radius: 200.0: This panel item determines the radius of su-
perquadric toroids created by the system. The default value of this
item is 200.

Scaling factor in z: [50]: This is a slider bar and the values are
entered by clicking the left mouse button anywhere in the slider. The
values entered are shown in square brackets. This panel item is used to
take the z coordinates of points.

Filename: dump: This item is used to take the name of the file that
will be used to save a created image.

HSE_OFF / HSE_ON: This is a panel cycle to determine whether hidden
surface elimination will be performed or not when an object is displayed.
Its purpose is to perform hidden surface elimination only when it is
needed since it is a time consuming operation. The default value for
this item is HSE_OFF.

DEPTH_SORTH / BACK_FACE_REMOVAL: This panel cycle determines the
type of hidden surface elimination method that will be used. Since
“Back face removal” algorithm works for convex shapes, it can be used
for such shapes to gain in speed. For other shapes, “Depth Sorting”
method should be used. The default value of this item is DEPTH_SORT.

-~
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e SHADE_OFF / SHADE_ON: This panel cycle is used to determine whether
shading operation will be performed or not. The default value of this
item is SHADE_OFF.

e The operations performed using function keys are as follows:

— R1: When this function key is pressed, the system gives help mes-
sages related to the operation performed.

— R2: This function key is used to display the current object. Its
main purpose is to make hidden surface elimination and shading
on a created object.

— R3: This function key is used to save a created image into a file.

— R4: This function key is used while the user is changing the coor-
dinates of the lattice of control points for an FFD operation. It
copies the x and y coordinates of the plane whose coordinates are
previously modified to the plane on which the user is currently
working on.

— R5: This function key displays the lattice of control points during
an FFD operation.

A.2 Help Facilities Provided by the System

The system has help facilities to make it easily usable by a naive user. Almost
all of the operations are performed using mouse buttons unless a text item
is required from the user. This means that the mouse buttons have different
functions for different operations implemented in the system. Due to this,
the user may get confused about which mouse buttons are necessary for an
operation that he wants to perform at a particular time.

At each step of a session, user may wish the system to give help that can
be achieved by pressing a function key. The system displays appropriate help
messages for the operation that the user is currently involved with. The user
may either move the help window to a place that he can observe during the
operation, or he may destroy it after reading the directions. Help windows
provided by the system are reproduced in the following figures.
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QUIT

FREE_FORM SURFACE' MODELER

dThis 18 a system for creating regular classes of shjects
and then applying deformations on these objects to ereate
@ objects with free-form surfaces. Now, by pressing the
4t r1ght mouse button you can get the menu which is necessary {ff |
fd for choosing the objects that is to be created. Created (#
g objects can be displayed either without Hidden Surface jj

t8 E1imination and Shading or these operations can be applied
A on them to obtain reatistic display of objects. The way

how objects are displayed are specified by setting
8 necessary panel items. User 1{s advised to make HSE and
& shading on the final objects; not on intermediate steps.

Figure A.1: The help window giving a general idea about the system.

SUPERQUADRICS

40

You choose one of the Superquadric objects as a regular
object that is to be created. You can give the exponent
of the terms of Superquadrics, namely "epsiloni® and
“epsilon2" by setting the necessary pansl {tems. Panel
items are selected with left mouse botton and new values
are entered from the keyboard. To give scaling factors
in %, y, 2z direction, follow the steps explained :

Pressing the middle mouse button gives a coordinate system
on which you can specify an ¥,y scaling factor by pressing
middle mouse button again. Z scaling factor is specified
from the slider bar in panel by left mouse button.

‘A bounding box for the object appears on the screen when
scaling factors ars specified. ¥hen the bounding box for

the object 1s suitable, object 1s created by pressing the
right mouse button.

40

Figure A.2: The help window explaining how scaling factors of superquadrics
are entered.



BEZIER SURFACES

ou choose Bezier Surfaces as regular objects that 1is to
2be created. You can specify the number of control points
7 by chancing the panel items for ni and n2, and the number
iof curve points by changing the panel items for mi and m2.

5By pressing the middle mouse bution, you can get a coor -
inate system to give %, y coordinates of control points;
coordinate of the point {s epecified from the slider bar
n panel by pressing the left mouse button. ¥hen a point
s specified, press right mouse button to give the next
ontrol point. ¥hen the epecified number of control points
s entered by the user, Bezier Surface which approximates

4 the control points created automatically by the system.

Figure A.3: The help window explaining the entry of control points of Bézier
Surfaces.

]
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OPERATIONS

After creating a regular object, you may apply some
transformations, or deformations on 1t hierarchically
to create a free-form object. Now, by pressing the right
mouse button, you casn get the menu which 18 necessary
for choosing the necessary operations for this purpose.

<>

Figure A.4: The help window giving a general idea for the operations that
can be done by the system.
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BENDING

To bend an object, it is necessary to give a bending region
and the tenter of bend, and an angle showing how much the
object wiil be bent, The default bending region is 508,-500
which gensrally covers the whole object. The center of bend
is B which is generally the center of the object (if it is
{not translated). User can specify these items by selecting

dnecessary items from the bending menu (with right mouse
button) and giving the specified item using middle mouse
button. For giving angle,after pressing middle mouse bution
a window appears on the screen. After specifying angle,

iselect "OKEY" button with left mouse. User may change some
or all of these items; if he doesn’t specify an item
defaults wil) be used. To start the bending, wuser should
press the left mouse button.

4

Figure A.5: The help window explaining how parameters are entered for the
bending operation.

|
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TYISTING & TAPERING

Different twisting and tapering functions can be specified
% from the menus sppearing on the scresn by right mouse
button. If he selects the option for specifying & new
twisting or tapering function, he may enter . the function
in infix notation using the keyboard. He may enter any
functien that he wants. The 1{ndependent variable in the
function 1s "z" since the operations are performed along
the z-axis. If the user wants to enter a function in which
exponentiation 1s needed, user should use """ symbol.

iid

Figure A.6: The help window explaining how different twisting and tapering
functions can be entered for these operations.
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ROTATION

To rotate an object around an arbitrary axis, user should
specify a vector whose end coordinates are (8, 8, 8) and
(n1, n2, n3). ni, n2, n3 are specified by x, y, and 2z
coordinate in the "Attributes” window. To do the rotation

press the "OKEY" button with left mouse.

Figure A.7: The help window explaining how rotation parameters are entered.

SCALING

f%To scale an object, scaling factors in %, y, and z directionij
gshould be specified in "Attributes® window. To do scaling
4operation press the “"OKEY" button.

Figure A.8: The help window explaining how scaling parameters are entered.

55 ¢



|

s FREE-FORM DEFORMATIONS
o make Free-Form Deformations (FFD), a regular lattice of |
control points is given to user which can be deformed using
mouge buttons . The lattice can be displayed by specifying
| the necessary panel item and the number of planes in x, y,
and z directions in the lattice of control points can be
given by specifying the corresponding panel {tems. After
spacifying the number of planes in each direction, user
should press right mouse button to initiate the operation.

To change the coordinates of points in the lattice,
planes parallel to x-y plane can be displayed one-by-ons.
To go to higher z-value plane, user should press the left
mouse button, and to go to a lower z-value plane he should
press the left mouse button with shift key.
Deformation is started when user presses left mouse button
while the highest z-value plane is being displayed. To
change the coordinates of points in the lattice, select the
point by middle mouse button, specify a z-value from the
slider if you went to change the z-value and specify an n-y
coordinate for the point using right mouse button.

g

Figure A.9: The help window explaining how the lattice of control points are
created and modified for performing an FFD.

TRANSLATION

ﬁ'To translate an object, translation amounts in x, y, and
2{z directions should be specfied in the "Attiributes™ window
% To do the translation operation, press the "OKEY" button.

b

Figure A.10: The help window explaining how translation parameters are
entered. ‘6. C.
yoxsekogrefim Kurwo
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