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ABSTRACT

EXACT AND APPROXIMATE DECOUPLING AND
NONINTERACTING CONTROL PROBLEMS

Nail Akar
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. A. Biilent Ozgiiler
September, 1989

In this thesis, we consider “exact” and “approximate” versions of the disturbance
decoupling problem and the noninteracting control problem for linear, time-invariant
systems. In the exact versions of these problems, we obtain necessary and sufficient
conditions for the existence of an internally stabilizing dynamic output feedback
controller such that prespecified interactions between certain sets of inputs and
certain sets of outputs are annihilated in the closed-loop system. In the approximate
version of these problems we require these interactions to be quenched in the Ho
sense, up to any degree of accuracy. The solvability of the noninteracting control
problems are shown to be equivalent to the existence of a common solution to two
linear matrix equations over a principal ideal domain. A common solution to these
equations exists if and omly if the equations each have a solution and a bilateral
matrix equation is solvable. This yields a system theoretical interpretation for the

solvability of the original noninteracting control problem.

Keywords. Multivariable systems; control system synthesis; decoupling; almost

decoupling; noninteracting control; internal stability; matrix algebra.
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OZET

TAM VE YAKLASIK AYRISTIRMA VE ETKILESIMSIZ DENETIM
PROBLEMLERI

Nail Akar
Elektrik ve Elektronik Mihendisligi Bohimi Yiksek Lisans
Tez Yoneticisi: Dog. Dr. A. Biilent Ozgiiler
Eyluil, 1989

Bu tezde dogrusal, zamanla degigsmeyen bir dizgede, bozucu etkinin sifirlanmas
problemi ile etkilesimsiz denetim probleminin “tam™ ve “yaklagjik” tiirleri ele
alinmigtir. Bu problemlerin “tam” tiirlerinde, i¢-kararhi bir kapali déngii dizge
elde etmenin yamsira, bazi belirli giris ve cikig kiimeleri arasinda Onceden
belirlenmis etkilesimleri yok eden bir dinamik cikig geribeslemesinin varhg igin
gerekli ve yeterli kogullar elde edilmistir. Diger yandan “yaklagik” problemlerde bu
etkilegimlerin Ho, anlaminda istenen dereceye kadar bastirilmasi amaclanmaktadir.
Bakilan etkilesimsiz denetim problemlerinin ¢oziilebilirliginin iki dogrusal matris
denkleminin bazi “esas ideal halkalar1’” (principal ideal domain) iginde ortak
¢oziimlerinin olmasima esdeger oldugu gosterilmistir. Bu ise, denklemlerin kendi
aralarinda ¢ozlilebilirligine ve ayrica iki tarafli ve dogrusal bir matris denkleminin
¢oziilebilirligine denktir. Bu kullamlarak asil etkilesimsiz denetim probleminin

¢Oziilebilirligini dizgeler teorisi agisindan yorumlayabilmemiz saglanmigtir.

Anahtar kelimeler. Cok girigli, ¢ok c¢ikisli dizgeler; denetim dizgesi sentezi;

ayristirma; yaklagik ayristirma; etkilesimsiz denetim; i¢-kararlilik; matris cebiri.
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Chapter 1

INTRODUCTION

This thesis is concerned with the control via dynamic output feedback of linear,
time-invariant, finite dimensional, multivariable systems. The control problems
we consider are in the general category of “decoupling problems”. In particular,
we examine “disturbance decoupling” and “noninteracting control” problems. The
names disturbance decoupling and noninteracting control are motivated by quite
different applications. However, mathematically, both type of problems might be
considered under the same heading since their solutions involve zeroing (or making

arbitrarily small) a predetermined set of of transfer matrices.

The problems are posed on a linear system having two types of inputs (control
inputs and ezogenous inputs) and two types of outputs (measurement outputs and
ezogenous oultputs). The control inputs represent the control actions that one can
employ to influence the behavior of the system. The exogenous inputs represent
either unknown influences acting on the plant or inputs that might be used for
further control purposes. The measurement outputs are those outputs which are
available as inputs to the controller (compensator). Finally, the exogenous outputs
represent the response of the system relevant to the outside world. Naturally, a set

of inputs (outputs) can be included in both groups of inputs (outputs).

We now comment on the distinction between “exact” and “approximate”
decoupling problems. The exact decoupling problems, broadly speaking, consist
of finding a dynamic feedback compensator so that, in the closed-loop system, the

undesired interactions between certain sets of exogenous inputs and certain sets of
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exogenous outputs are annihilated (zeroed). In the approximate or (by the now
popular usage) “almost” version of these problems, the aim is approximate zeroing
of certain transfer matrices instead of exact zeroing. Although there are many
alternative ways of quantifying measures of proximity to zero, we shall choose an
extreme approach and measure closeness to zero of a transfer matrix by its Hoo-
norm. Moreover, rather than trying to determine a solution which makes this norm as
small as possible, we seek conditions under which this norm can be made arbitrarily
small. The former problem is one of “optimization” and has occupied a great deal of
attention in the recent literature (see, e.g., [1],[2]). The almost decoupling problems
we consider, however, turn out to be purely algebraic and has its roots in the works

of Willems ([3],[4]).

A fundamental additional requirement in all the decoupling problems we inves-
tigate is “internal stability” of the overall system obtained by the interconnection of
the plant and the compensator. Internal stability constraint consists of requiring that
none of the internal modes of the overall feedback system grow without bound. As
is well-known, the constraint of internal stability is essential in all feedback control
problems and it forbids any anomaly that might occur when the feedback loop is

closed.

The approach we make use of to tackle these control problems is the stable proper
factorization approach [5]. The central idea of this approach is to represent the
transfer matrix of a given system (not necessarily stable) as the ratio of stable proper
matrices. One advantage of using this approach is the ease with which the set of
internally stabilizing compensators are characterized. Exploiting this, we carry out
the following program in obtaining solutions to all the control problems with internal
stability. We first parameterize the set of all internally stabilizing compensators
in terms of a free parameter and reflect further problem constraints on this free
parameter. Most of the further manipulations are directed towards expressing the
results in linear matrix equations directly in terms of the problem data so that a

system theoretical interpretation becomes transparent.

The following figure will aid the description of the particular decoupling problems

we investigate. The figure consists of the feedback configuration which we employ.

Disturbance decoupling problem with internal stability, DDPIS, defined for N = 2

in Fig.1 consists of finding an internally stabilizing compensator which decouples



CHAPTER 1. INTRODUCTION 3

COMPENSATOR
external _ contrpl measurement
mput+ \ u, input y1 A output
\I
Y2
exogenous — ex0genous
inputs PLANT : Ya outputs
——Y,
Fig. 1

y2 (controlled output) from u; (disturbance). The general noninteracting control
problem can be described as follows. Find an internally stabilizing compensator so
that the off-diagonal blocks of the closed-loop transfer matrix from the exogenous
inputs to the exogenous outputs are annihilated, in other words the closed-loop
transfer matrices from u; to y; ;¢ # 7 ,1 < 4,5 < N are zeroed. We denote
this problem for the case N = 3 by NICPIS , noninteracting control problem with
internal stability. In the almost counterparts of DDPIS and NICPIS, abbreviated
by ADDPIS and ANICPIS, respectively, we consider almost zeroing of the same
transfer matrices. In other words, we seek the conditions under which the Hoo-
norms of these transfer matrices can be made as close to zero as desired by suitable
choices of compensation. It should be mentioned that, the descriptions given for the
noninteracting control problems above are considerably different from those in the
“classical” context of noninteracting control (e.g., [6],[7]). The classical problem
of noninteracting control, roughly speaking, can be described as follows: given
a plant with a control input and a given number of exogenous outputs, design
exogenous input variables, a precompensator having these variables as its inputs,
and a compensator from the measured output to the control input so that the closed-
loop system is block-diagonal. Some other requirements like output controllability
are also imposed on the description of the problems to avoid trivialities. The major

distinction between the two set-ups is on the exogenous inputs: in our set-up, they
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are predetermined and in the classical problem, they are up to the designer’s choice.

In the following paragraphs, for each of the problems DDPIS, ADDPIS, NICPIS,
and ANICPIS, we describe the relevant results in the literature and the main results

of this thesis.

The problem DDPIS has been subject to numerous investigations in the system
theory literature. For a full bibliography on this problem, see e.g., [8]. The results
of Chapter 4 are mainly restatements of some well-known results on DDPIS in the
language of stable proper rational matrices. They are included in this thesis for ease
of reference and for being able to contrast with the results obtained for ADDPIS
and (A)NICPIS.

We consider ADDPIS for continuous-time systems by taking the stability region
as the open left half plane. Different versions of this problem have been solved by
geometric techniques in [9] and by frequency domain techniques in [10] and [11].
The constraint of internal stability is with respect to the closed left half plane in [9]
and [10], and with respect to the open left half plane in [11]. The basic motivation
for our slightly different solution to ADDPIS lies in the fact that, our results are
amenable to an easy extension for obtaining a solution to ANICPIS. A relevant
remark at this point is that ADDPIS can be viewed as an extreme case of the
standard H.-optimization problem. In this optimization problem the purpose is
to determine an optimal solution which achieves the infimum cost. On the other
hand, ADDPIS can be reformulated as seeking conditions under which the infimum
cost is zero. Consequently, a solution to ADDPIS (if it exists) can be obtained
by using Ho-optimization techniques. Our different approach, however, is still
justified since the emphasis here is on determining simple solvability conditions which
have interpretations in terms of zeros and poles of the open-loop plant rather than

obtaining a solution whenever it exists.

The main motivation for NICPIS is that, if NICPIS is solvable, then we can
decompose the overall system into smaller scale subsystems having no interaction
among each other. Once this is done by a primary feedback, then this decomposition
facilitates the design and implementation of a further feedback law which might be
employed for more sophisticated control purposes. The state feedback version of
this problem, when full state observation is possible, has been formulated in [12] and

has been further developed in [13]. In the measurement feedback version (when the
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internal stability constraint is absent), this problem has been reduced to the common

solvability of a paif of linear matrix equations
A1 = BlXC'1 . A2 = B2A'CQ (1.1)

over the ring of proper rational functions, where A;, B;, and C;’s i = 1,2 are transfer
matrices of various subsystems. Our main result on NICPIS is that, using Theorem
6.1, we reduce the solvability of NICPIS to the solvability of (1.1) over the ring of
stable proper rational functions, where A4;, B;, and C;’s i = 1,2 are now system

matrices associated with various subsystems of the system model.

Concerning the almost version ANICPIS, when full state observation is possible,
solvability conditions in geometric terms have been obtained in [13]. In the
measurement feedback case, when internal stability is not required, the problem
(ANICP) has been reduced in [14] to the solvability of (1.1), but this time over the
field of rational functions contrary to the exact version of this problem. In our main
result on NICPIS, we show that the solvability of the problem is again equivalent to

the solvability of equations of the type (1.1) over various relevant rings.

One of the main contributions of this thesis has been the derivation of a set
of necessary and sufficient conditions for the solvability of (1.1). Actually, it is
well-known that the equations of the type (1.1) can easily be analyzed via the use
of Kronecker products and via the theory of the linear vector equation Az = b.
This approach, however, leads to an alteration of the given data (i.e., the matrices
A;, B;,C;) and makes it difficult to have an intuitive system theoretical interpretation

for the solvability for the original problem.

Solvability conditions for these equations, in case all the matrices in (1.1) have
elements in a field ¥ and X is sought over ¥, have been obtained in [15] and [14].
We show in Theorem 8.1 that, the equations (1.1) have a common solution X over
an arbitrary but fixed principal ideal domain R if and only if they are separately

solvable over R and a matrix equation of the type
BX+YC=4 (1.2)

is solvable over R. The first condition, the separate solvability of these equations,
occurs as the solvability condition for DDPIS and the conditions under which an

equation A = BXC has a solution is well-known in the literature. The existence of
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a solution to (1.2) can easily be checked by using the fundamental result of Roth
[16]. Such conditions, on the other hand, occur as the solvability conditions for
various output regulation and/or tracking problems (see e.g., [17],[18]). The result

of Theorem 8.1 constitutes a solution to an open problem posed in [14].

The techniques used in reducing (A)NICPIS to the solvability of a pair of linear
matrix equations extend to the general N-channel case. This is part of the objective
of Chapter 9. We have, however, not yet been able to derive similar solvability
conditions for this general problem to what we have obtained in Theorem 8.1 for the
case N = 3.

The organization of the material is as follows.

In Chapter 2, we briefly cover the algebraic and analytical background necessary
to develop the contents of the subsequent chapters. In Chapter 3, we consider the
problem of internal stability and give a parameterization of internally stabilizing
compensators. Chapters 4, 5, 6, and 7 are addressed to DDPIS, ADDPIS,
NICPIS, and ANICPIS, respectively. The main theme in each chapter is that,
we obtain solvability conditions and give synthesis procedures for the solutions
of the corresponding problems. Chapter 8 is devoted to an investigation of the
equations of the type (1.1). In this chapter, verifiable solvability conditions are stated
preserving the structure of matrices occurring in the equation and a procedure for
the construction of a solution is given. In the last chapter, we examine the general
noninteracting control problem and some special problems relevant to noninteracting
control. Our results in Chapters 3 and 4 follow [19] closely and the main results of
Chapter 5 is an extension of the main result of [10]. The results of Chapter 8, on

the other hand, are in part contained in [20].



Chapter 2

PRELIMINARIES AND
NOTATION

The purpose of this chapter is to fix the notation of the thesis and to give some
definitions and facts that will be used in the subsequent chapters. Section 2.1 is
devoted to algebraic preliminaries concerning matrices over a principal ideal domain
(pid). We give certain terminology and facts on some particular matrix norms

(Euclidean norm and H,-norm) in Section 2.2.

2.1 Algebraic Preliminaries

In this section, we will mainly consider matrices which have elements from a pid R.
We then describe the ring of stable proper rational functions S, which plays a central
role in the synthesis problems we investigate. All the facts below, stated without

proof, can be found in [21] and [5].

Let R be a principal ideal domain. If £ € R has an inverse y € R such that
Ty = yx = 1, then z is called a unit of R. \We say that z divides y if there is an
element z € R such that y = zz which is denoted by z|y. If z and y are elements of
R, not both zero, a greatest common divisor (gcd) of z and y is any element d € R
such that (i) d|z and dly (ii) c|z,cly implies ¢|d. Now let R"*™ constitute the set

of n X m matrices whose elements belong to R. A matrix A € R™*™ is said to
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have rank [ if there is an ! x [ nonzero minor of A and every (I + 1) x (I + 1) minor
of A is zero. K n =1 (m = 1), then A is said to have full row rank (full column
rank). A matrix U € R™*" is called unimodular if there exists U~1 € R"*" such
that UU~! = U-1U = I, or equivalently, U is unimodular if det(U) is a unit in R.
A matrix U € R"*™ is called right unimodular if there is an element U* € R™X"
such that U*U = I. Similarly, U is called left unimodular if there exists Ul € R™X"
satisfying UU = I. A matrix A € R™™ is a left associate of B € R™ ™ if there
is a unimodular matrix U € R"*"™ such that A = UB. It is a right associate of
B if there is a unimodular matrix V € R™*™ such that A = BV. Two matrices
A,B € R™"*™ are called equivalent if there exist unimodular matrices U and V such
that A = UBV.

We now give some facts concerning the standard forms (Hermite and Smith

forms) of a matrix A € R™X™,

FACT 2.1 (Hermite row form) : The matrix A is a left associate of a matrix

of the form
G |. s :
Y ifn>m, Gifn=m , [G’ *]1fn<m,

where the square matrix G can be chosen to be either upper or lower triangular.

The Hermite column form of a matrix can be defined analogously.

FACT 2.2 (Smith form) : If A has rank I, then A is equivalent to a matrix
S4 of the form

Sa= [ 40 ] i A = diag{A1,A2,..., N},
0 0

where A; divides A;pq for ¢ = 1,2,...,1 — 1. Moreover, AjAz---A; is a greatest

common divisor of all ¢ x ¢ minors of A and the A;’s are unique up to a multiplication

by a unit. We call Ay, Xs,...,A; as the invariant factors of A and in particular we

call A; as the largest invariant factor of A. Using the Smith form of A, one can easily

show the existence of unimodular matrices U and V" such that
Aq
7 = S =
UA [0},.41 [Az 0],

where Ay is of full row rank and Ay is of full column rank.
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Next, we extend the definition of gcd to the matrix case. If three matrices over
R are in the relation A = CG, then G is called a right divisor of A and C is called
a left divisor of A. Let A be a full column rank matrix over R. A greatest right
divisor of A is a square nonsingular matrix L over R such that A = UL for a right

unimodular U. A greatest common right divisor (gcrd) of two matrices A and B is
a greatest right divisor of 5| Every pair of matrices A and B with elements in

R have a gcrd G expressible in the form

G=PA+QB,

A
with P and @ over R. If the composite matrix B is of full column rank, the

matrices A and B have a nonsingular gcrd G and every gerd of A and B is of the
form VG where V is unimodular. Two matrices A € R"*™ B € R¥*X™ are called
right coprime if a gerd of A and B is unimodular. Suppose A and B are right coprime

and n + k > m. Also let U be a unimodular matrix such that

LR -

where 4 is the Hermite row form of 2 . It follows that V € R™X™ is a

unimodular gerd of A and B. Exploiting this, one can show the existence of matrices

K1,K2,A,B, Ky, and K, over R of appropriate sizes satisfying
K ¢ K I
1 1\2 A i] - 0 ) ( 9. 2)
B K, 0 1

A B
A greatest left divisor of a matrix, a greatest common left divisor of a pair of

matrices, and left coprimeness can be defined similarly or via matrix transposition.

Let A and B be two matrices over R of sizes p X ¢ and ¢ X 7, respectively.
The ordered pair (A, B) is called skeu-prime if there are matrices X € R9*P and
Y € R™9 such that XA + BY = I. It is shown in [22] that, excluding some
trivial cases, (A, B) is skew-prime iff there exist matrices B and A over R such that
AB = BA with A and B left coprime and B and A right coprime. The following

fact concerns the equations of the type

BX+YC=A. | (2.3)
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The condition (ii) below yields a checkable condition for its solvability {16] and the
condition (iii) expresses the solvability of the equation in terms of skew-primeness of

certain matrices [23].

FACT 2.4: Let A € R™X™, B € RI*?P and C € R3*™, The following statements

are equivalent.

(i) The matrix equation BX + Y C = A is solvable,

(ii) B0 and B4 are equivalent over R,
0 10 C

C
A B 0 . .
R is skew-prime.
c 0 I

Let R(s) denote the set of rational functions with coefficients in R, the field of

(iii) The pair (

real numbers, in the indeterminate s. Also let Z € R(s)?*™. One can express Z in

powers of s7! as

Z = i Ais™", (2.4)

i=—k
for unique matrices A; in R?*™ where A_j # 0. The highest power of s (= k) in
this Laurent series expansion of Z is called the causality degree of Z and is denoted
by deg(Z). The rational matrix Z is called proper if deg(Z) < 0 and strictly proper
if deg(Z) < 0. If for a square rational matrix Z, deg(Z) = 0 and Ap in the expansion

(2.4) is nonsingular, then Z is called biproper.

A stability region (stability set) Q is any conjugate symmetric subset of the set
of complex numbers C. A rational matrix Z is called Q-stable if the denominator
polynomial of every entry of Z has all its roots in the stability region 2. When
the stability region needs to be emphasized, we denote the set of Q-stable rational
functions by R(s¢)q, -stable proper rational functions by R(s).q, and §-stable
strictly proper rational functions by R(s)-q. When the stability region is arbitrary
but fixed, we denote the set of stable proper rational functions by S, the set of proper

rational functions by P, and the set of strictly proper rational functions by SP.

The following fact concerns the existence of a bicoprime factorization over S of

a given transfer matrix Z over P.
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FACT 2.4 : Given any Z over P, there exists a quadruple ¥ = (P,@, R,1)

over S satisfying

(i) det(Q)# 0 and Z = PQ"IR + 1,
(ii) P and @ are right coprime,

(iii) @ and R are left coprime.

If these three conditions are satisfied, the quadruple ¥ = (P,Q,R,11) is called
a bicoprime factorization (representation) of Z over S. Actually, any quadruple
£ = (P,Q, R, W) satisfying (i) (but not necessarily (ii) and (iii)) is called a fractional

representation of Z.

Given a fractional representation £ = (P, @, R, W) associated of a transfer matrix
Z, we can define the decoupling zeros of this representation. Given a stability region
w, a complex number z € C is called an (unstable) input decoupling zero of T if z
lies outside w and given any gcld D of Q and R over S, det D(z) = 0. Similarly,
z € Cis called an (unstable) output decoupling zero of T if z lies outside w and given
any gerd C of P and @ over S, det C(2) = 0. The representation ¥ is bicoprime iff
¥ has no input and output decoupling zeros. We shall call 2; € C as an (unstable)

system zero ifl z; lies outside w and is a zero of the largest invariant factor of

/ 4 ] , (2.5)

-P W

where II is called the system matriz associated with the quadruple (P, @, R,1). We

note that many other definitions of system zeros exist in the literature.

Finally, we give a brief description of the “Kronecker product” of two matrices
based on [24]. The description will be given for matrices over R, but it is valid for

arbitrary rings.

If A € R™*" and B € RPX9, then the right Kronecker product of A and B,
denoted by A ® B, is defined to be the partitioned matrix

apnB  ai12B -+ ay,B
(121B aggB v aan

@m1B ap2B -+ @punB
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For a matrix A € R™*" write A = [ A Ay - Ay } where A; € R™ ; i =
1,2,...,n. The vector
[ 4
Az
=3 An

is said to be the vec-function of A and we denote it by A. It is the vector formed
by stacking the columns of A into one long vector. The fact below demonstrates the

relationship between the Kronecker product and the vec-function.

FACT 2.5 : Let A € R™*",B € R***,X € R"**. Then A := AXB if and
only if
A=(BTgAX.

2.2 Preliminaries on Matrix Norms

Let C4,Cjy, and C_ denote the open right half plane, the jw-axis, and the open
left half plane, respectively. Also let S denote the set of proper rational functions
which are stable with respect to C.., throughout this section. The Ho,-norm of a

matrix 4 € SP*™ is defined by
4lle = sup a{AGS)], (26)
Res>0

where 5(B) denotes the largest singular value of a matrix B (i.e., the square root
of the largest eigenvalue of the symmetric matrix B*B where * stands for conjugate

transpose). Recall that the Euclidean norm of a vector z in C” is defined by
ll2llz = (z"2)"/? .
If B € CPX™ then its Euclidean induced norm is defined by

= su M
HI}H2 - TEC,E_O “‘T“2

and equals 5(B). Thus, the Ho-norm of a matrix A € S#*™ can also be defined by

[l = sup l4()] - (27)
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A significant fact on the H-norm of a matrix A over S is that, the norm of A can
be computed based on the behavior of A(-) on the jw-axis only. This is formally

shown as follows:
lAlleo = sup GTA(s)] = sup F[AGjw)] - (2.)
Res>0 weR

Finally, we consider the inner-outer factorization of a matrix A € S**™, Let G™~(s)
denote G(—s)T, the transpose of G(—s). A matrix G € S"*™ is called inner if
G~(s)G(s) = I and outer if rankG(s) = n, Vs € C4, or equivalently, if G has a

right inverse which is analytic in C,.

FACT 2.6 : Suppose A € S"*™ and has rank min(n,m). Then A has a
factorization A = A;A, where A; is inner and A, is outer. If n > m, then A,

is square, whereas if n < m, then A; is square.

An important property of inner matrices is that left multiplication by an inner
matrix preserves Hoo-norms. That is, given F' € S™*¥ and given an inner matrix
G € S™*X™ there holds

IGFlloo = [|Fllo-



Chapter 3

INTERNAL STABILITY
PROBLEM

In this chapter, we consider the internal stability problem from a fractional viewpoint.
In the first section, we define the internal stability of a feedback loop consisting.of
a plant and a compensator. In the second and the third sections of the chapter, we

obtain a convenient characterization of all internally stabilizing compensators.

3.1 Stability of a Feedback Loop

In this section, we are concerned with the internal stability of a feedback loop
consisting of a plant and a compensator. The plant has the transfer matrix

representation
y= Zn’u ) (31)

where Z;; € SPPX?, and the compensator has the transfer matrix representation
Yo = Zelie (3'2)

where Z, € P9%?, The plant and the compensator are connected in a feedback loop
by the laws

U= U= Yoo U= Uee+ Y (3:3)
where u, and u. are external inputs to the system which may serve as new control

inputs in case of additional control applications. The resulting closed-loop system

14
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[ te ] , (3.4)

Y, i= Z(I 4+ Zn1Z.)?, (3.5)

has the transfer matrix representation

vy | _ 2w - ZuY.Z1n —ZuY:.
Ye Y.Zu Y.

where

which is proper by strict properness of Z;;. We are now ready to define the internal

stability problem as follows.

The pair (Z11,Z.) is internally stable if and only if the transfer matriz in (3.4)

is over S, or equivalently, all the four transfer matrices
Ye,YeZ11, ZnYe, Z11 — ZnnYe 211 (3.6)

are matrices over S.

In order to justify the word “internally” in this definition, we need to examine
the implication of this type of stability on the internal modes of the closed-loop
system. This can be done by considering the state-space realizations of Z;; and Z,.
An alternative way, however, is to examine a suitable fractional representation of

the closed-loop system. For this purpose let
Zyy = Qi R 4+ W1, (3.7)
Z.=P.Q'R, (3.8)

be some fractional representations of Z;; and Z, over S. We do not assume at the

outset that the fractional representation of Z;, is bicoprime.

In fact, the cancellations that occur in the right hand side of (3.7) are of primary
importance for the control problems we are going to investigate. We therefore
examine this fractional representation closely, identify the possible cancellations,

and obtain a natural bicoprime representation for Zy; in (3.7). Therefore, let

C1 := gerd(Py, Q) , Dy := geld(Q11, R1)
so that
Q1 = Q1Cy = D1Q2, PA=PCy, Ry =D1Ry (3.9)

for a right coprime pair (P,@;) and a left coprime pair (@2, Rg) of matrices over S.
Further, let
C :=gerd(P1,Q2), D := geld(Qq,R1)
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so that
Py=FC,Q:=0QC,Q1=DQ, Ri=DR (3.10)

for a right coprime pair (P, Qo) and a left coprime pair (@, R) of matrices over S.
By definitions of gerd and geld, it follows that
C1 = COC 9 Dl = DDO

for some matrices Cy and Dg over S. It follows that

QCo = DoQo , (3.11)

where (@, Do) is left coprime and (Qo,Co) is right coprime by left coprimeness of
the pair (Q, R) and right coprimeness of the pair (Fp, Qo). Moreover, both of the

fractional representations in
Z11=PyQz R+ W = PQ'R+ W (3.12)

are bicoprime, where W := Wj;. By (3.11), we have det(Cp) = udet(Dg) where
u is a unit of S and the unstable zeros of det(Cy) will be called the (unstable)
input-output decoupling zeros of (P1,Q11,R1,W). Recall that, the unstable zeros of
det(C1) and det(D;) are, respectively, the output and the input decoupling zeros of

(P1,Q11, R1,W).
Let
PQ™'=Q'R;, Q'R=P.Q;, (3.13)

for some left coprime matrices (Qy, R;) and right coprime matrices (P;,Q;) over S.

Thus, the following two equalities hold.

[k -1L ~m 1 o]
' Q N _ : (3.14)
R, @O -P ﬂfzJ | 0 IJ
and _ - - -
R|[M P I 0
@ = , (3.15)
| -L K || N [0 1

for some matrices K, L, M,N,M;, N;, K, and L, over S. We also have
Zy = (PP +WQ)Q; ' = Q7 (Q:W + RiR) . (3.16)

Moreover, the first representation above is right coprime and the second one is left

coprime since we can write

Qi(M; + PMN, — WNN) + (QiW + RIR)NN; = I, (3.17)
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(Ky+ L, KR - L, LW)Q, + L, L(PP, + WQ,) = I. (3.18)

We shall frequently have to refer to equalities (3.9)-(3.18) in this chapter and in the

subsequent chapters.

The previous definition of the internal stability problem is in terms of the
compensator Z.. We are now prepared to give an equivalent definition in terms

of the triplet (P,,Q., R.), in the following lemma.

LEMMA 3.1: Given (3.12), there exists a compensator Z. such that (Zy1, Z;) is
internally stable if and only if there exists a triplet (P.,Q., R.) with P, € S?%%,Q. €
S*X$ R. € S**? and Q. biproper such that

s.=| 9 RF. (3.19)
-R.P Q.+ RWPF,

is unimodular. Further, if Z. is an internally stabilizing compensator for Zyq, then
the triplet of matrices in any bicoprime fractional representation of Z. = P.Q7 R,
is such that ® is unimodular and , conversely, given any triplet (P;,Q., R.) with Q.
biproper and ® is unimodular, Z. defined by Z. := P.Q; R, is such that (Z11,Z.) is
internally stable.

Proof : Writing Z, = P.Q;'R,, it can easily be shown that

Zy1 — Z11Y: 211 Z11Ye A WP, 31 R 0 it W o
Y.Z1 -Y, 0 -P, RW R, 0 ol
(3.20)

Now let (Z11,Z.) be internally stable so that the left hand side of (3.20) is a matrix
over S. Let P.Q71R. be any bicoprime fractional representation of Z. over S. By
right coprimeness of the pairs (P, Q) and (P, Q.), if follows that the pair

P -WP, Q RP,
0o -P || -R.P Q.+ RWP.

is right coprime. By left coprimeness of the pairs (@, R) and (Q., R.), it follows that

Q RP, R 0
-R.P Q.+RWP, |'| RW R,

is left coprime. Hence, the representation (3.20) is bicoprime yielding that &1 is a

the pair

matrix over S, or equivalently, ® is unimodular. Conversely, let a triplet (P., Q., R.)
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be such that all three matrices are over S and @), is biproper. It follows that Z, =
P.Q7'R, is a matrix over P. In case ® is unimodular, then the right hand side of
(3.20) is over S, that is, all the four transfer matrices Y;, Zy1Y;, Yc Z11, Z11 — Z11Ye 213

areover S. O

3.2 Solutions to the Internal Stability Problem

In this section, we first construct a solution to the internal stability problem and
then we give a characterization of all internally stabilizing compensators, by making

use of the factorizations introduced in Section 3.1.

Let us define
Pyp:=NN;,Qu:=M+ PMN —WNN;, (3.'21)

so that Q. = Q,"l — Z311 N N is biproper by the fact that @, is biproper and Zp; is
strictly proper. Thus, the compensator defined by

Zer 1= PorQZ (3.22)

is proper and is such that

det(®) = det Q RN N —det| @ M , (3.23)
—P M+ PMN, -P M

by using suitable column operations. Noting the unimodularity of the last term of
(3.23), Z,, defined by (3.21) and (3.22) is an internally stabilizing compensator for
Z11. Analogously, it can be shown using (3.15) that the compensator defined by

Zg = Q7' 'Ry, (3.24)

where
Qu=K,+L,KR—-L.,LW ,6 Ry:=L.L (3.25)

is also a stabilizing compensator for Z;;.
The method just described above has the advantage of leading us to a

characterization of all compensators Z, such that the pair (Zy1,Z,.) is internally

stable. We state and prove this result in the following theorem.
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THEOREM 3.1 : The set of all internally stabilizing compensators for Zyy is

given by one of the following sets :

Ze(X) := {(NN1+ Q. X)(M;+ PMN,—WNN; - PP,X —-WQ,X)™ : X € §™*?}

(3.26)
Za(Y):={(K:+ L, KR- L. IW+YRR+YQW) YL, L -YQ;):Y € S™*P} .
(3.27)
Proof : Note by Lemma 3.1 that (Zy1, Z, ) is internally stable if and only if
/)P,

~I ch

is unimodular for any right coprime fractional representation P.,Q;! of Z,. On the

other hand, in (3.26), each Z.,(X) is given in a right coprime fraction since
QiMi+PMN,—WNN—-WQ,X—PP,X)+(QW+RRYNN+Q,X) = I, (3.29)

by (3.13) and (3.17). Unimodularity of ®, can easily be shown by performing
suitable elementary operations on ®,, in case any element of Z(X) is used as
the compensator. Consequently, every element in Z..(X) internally stabilizes Zy;.
Conversely, given any Z. which internally stabilizes Zyq, let Z. = P..Qz! be a right
coprime fraction for Z; and note that &, in (3.28) is unimodular by Lemma 3.1.

Unimodularity of @, implies that
U:=QQc + (QiW + RiR)P,, (3.30)
is also unimodular. Comparing (3.13) and (3.30), we have
QU™ = (M + PMN,—WNN;) = —(PP, + WQ,)X (3.31)

P,U'-NN =@Q.X (3.32)

for some matrix X over S. Now, (3.30) and (3.31) imply that Z, is in Z(X).
The fact that Z4(Y') is an alternative characterization for all internally stabilizing

compensators for Zy; follows by analogous arguments. O



Chapter 4

DISTURBANCE
DECOUPLING PROBLEM

This chapter concerns DDPIS, Disturbance Decoupling Problem with Internal
Stability, which is posed for a 2-channel plant. In Section 4.1, the 2-channel plant
model is given and DDPIS is defined in terms of the closed-loop system obtained
using dynamic compensation by measurement feedback. We state a necessary and
sufficient condition for the solvability of DDPIS in terms of the solvability of a linear
matrix equation of the type A = BXC in Section 4.2 and we examine the solvability

of such matrix equations in Section 4.3.

4.1 System Model and Problem Definition

The basic system model for our two-channel plant is the following input-output

model in terms of its transfer matrix Z,:
VA VA
hn =2, Uy _ 11 12 Uy , (4.1)
Y2 ug Zn Zy Uy
where Z;; € PPX™_ Z15 € PPX? Zy € P9*™ and Zz; € P9*". We assume that

Zy, € SPPX™, (4.2)

which is a standard simplifying assumption used to avoid complications concerning

the well-definedness of the feedback loop when a feedback is applied around the first

2 -
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channel.

This model is widely used for various problems where it is necessary to distinguish
between two types of outputs and inputs: the outputs that can be employed for
dynamic feedback and those whose behavior need to be changed under feedback, the
inputs that can be used for control purposes and those with unwanted influences on
the plant. A particular input or output may be included in both of the channels
depending on the problem requirements. Motivated by applications, the output
vector y; is called the measured output and y, is called the controlled output, the
input vector uy is called the control input and wup is called the disturbance input.
Thus, the first channel of the plant is called the control channel around which the
feedback is applied.

The plant transfer matrix can be represented in matrix fractions over S as
Zn Zi2 Py - Wi Wia
Zp = = 111 [ Ry R ] + 3 (4.3)
Zy Zxn P, Wy W
where P; € SPXT Py € S9%7 (11 € S™ 7", Ry € S™™ Ry € S™** Wy, € SPX™ W, €
SPXn Wy € S7%*™ and Wy, € S79%™ with (11 being nonsingular. We assume that

this representation is bicoprime, i.e.,

([PT PI)T,Qu1) is right coprime,
(@11,[R1  Ry)) is left coprime.

In spite of the fact that the overall representation in (4.3) is bicoprime, the

representation of the control input-to-measured output subplant
Zy = PIQi Ry + Wy

may not be bicoprime. We now use the same factorizations (3.9) and (3.10) to
obtain a bicoprime fractional representation for Z,; as in (3.12). Also suppose that
(3.13)-(3.18) hold.

Now, define the feedback law

Uy = — 4 + U (4.4)

where the compensator Z, € P™*?, We then obtain the closed-loop plant

| | Zu-ZuYeZu Zia— ZuYeZy Ue1 (4.5)
Y2 Zy — ZnY:Zn Zap — ZnYcZyo ug |
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where the matrix
Y. = I+ Z.Z11)" Z. (4.6)
is in P™*P by (4.2). The solvability of the disturbance decoupling problem will

concern the closed-loop transfer matrix
Zye = Za2 ~ ZnY.Z1s (4.7)

between the disturbance input and the controlled output. If the transfer matrix Z,

of the compensator is written in matrix fractions as
Z. = Pch—IRc ’ (48)

where P, € S™** Q. € S*%5, R, € S**P  then we can write a natural matrix
9 ?

fractional representation for the closed-loop transfer matrix Z ¢ of (4.5) as follows:

. -1
P P WP, Qn R, P, Ry R, + W Wi
=P -war. || -R.P. Q.+RWP, RW RWi | | Wa Wi |
(4.9)
where W := W;.

Given the open-loop plant (4.1) in which (4.2) holds, DDPIS is determining an
internally stabilizing compensator Z, defined by (4.4) which decouples the disturbance

input from the controlled output. The second condition is expressed by
Zi =0, (4,10)

where Zg. is the closed-loop transfer matriz from the disturbance input to the

controlled output and is given by (4.7).

If an internally stabilizing compensator for Z1; is applied, then the closed-loop
plant Z; in (4.9) can be expressed as a function of the free parameter X. Employing
the right coprime fraction in (3.26) for Z.(X), the closed-loop transfer matrix
between the disturbance input and the controlled output can be written in terms of
the free parameter X as

+Wao

-1
Ri(NN; +Q.X R
Zge = [Pz _11721(]\71\’1'*"01')&’) ] Qll 1( 1 Q ) } 2

—~P, M;+PMN, - PP, X Wia
(4.11)

Note by (3.9) and (3.10) that

Qu=DQC,, Ri=DR, P,=PC;. (4.12)
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By the fact that the representation (4.3) is bicoprime, it follows that (P, Cy) is right

coprime and (D, R;) is left coprime. Let us write
PC'=C{T, D™'R, = §D71, (4.13)
for left coprime (Cy,T) and right coprime (.S, D) over S. Using (3.14) and (3.15), it

is easy to verify the following alternative expression for Zg.:
Zge = CT7H (T 012+ 0215 — 051Q012 + C1Wor D — Q51 X0y2) D7, (4.14)

where
012 =KS$ - LIV]QD 9 021 =TM— C’1W21N (4.15)

and
Q2= RS+ QiWi2D, Qg1 :=TPF, + CiWxQ, . (4.16)

The technique of obtaining solutions to DDPIS will be based on reflecting the

disturbance decoupling constraint to the free parameter X.

PROPOSITION 4.1 : DDPIS is solvable if and only if there exists X € S™*?P
satisfying
21X Q32 = TO12+ 0215 — 021Q012 + C1 WD, (4.17)

where O12, 021,21 and Q13 are as defined by (4.15) and (4.16).

Proof : If Z, is a solution to DDPIS, then (Z11,Z.) is internally stable, in
particular. Thus, by Theorem 3.1, there exists X € S™X? such that Z, = Z..(X).
Now, Z4.(X) is given by (4.11) and by the decoupling property (4.10) of Z., X
satisfies (4.17). Conversely, given any X satisfying (4.17), let Z, := Z..(X) and
note, by Theorem 3.1, that (23, Z.) is internally stable. On the other hand, (4.10)
immediately follows from (4.14) and (4.17). Therefore, Z. = Z.(X) solves DDPIS.
O

Although this solvability condition is good enough for all practical purposes, it
does not give an idea about the pole-zero structure of the open-loop plant since it is
not directly in terms of the problem data. Below we obtain an alternative condition
which is devoid of this drawback.

Consider the following system matrices

_ Q S _ Q R _ Q S
IIp := _ | ,Igy = - ,lIpg = _ _
-P WyD -T CyWy -T CyWyD

(4.18)
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associated with the fractional representations of transfer matrices Z12D,C1Z,;, and
C1Z53D, respectively. By (3.14), (3.15), (4.15), and (4.16), we have

B -Lig, |1 %] (4.19)
R, @ 0 Qi

M -p I 0

H21 A B = . (420)
N Q. -0 Q9

Note from these that the nontrivial invariant factors of II;, are the same as those of
Q12 and the nontrivial invariant factors of II;; are the same as those of Q5;. We can

now prove the main result of this section.

THEOREM 4.1 : DDPIS is solvable if and only if there ezists X € S(r+m)x(r+p)
satisfying
M XMz =1y, . (4.21)

Proof : [Only If] Let DDPIS have a solution so that, by Proposition 4.1, there
exists X € S™*? satisfying (4.17). Define

) —P. K+M-MQK MQL-L
:: '2
b [QT]X[RI Q,]+[ Y R ] (4.22)

where M, N, K, L satisfy (3.14) and (3.15). Note that X € S(+m)x(r+7), Moreover,

_ [ -p _ 0 0
185} X R Q (M= ) (4.23)
[ Q- } [ ] 0 QX
by (4.19) and (4.20), and
_ [ K+M-MOQK MQL-1L]. Q S
M2y . M, = - . . ,
N - ]VQIS ]\TQL -T C]VVng - QQI.X 912
(4.24)

by (4.17), (4.19), and (4.20). It follows from (4.22), (4.23), and (4.24) that (4.21)
holds.

[If] Suppose that (4.21) has a solution X. Let

X := [ ~-L, K, ].x [Z’I } , (4.25)
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where the matrices L,, K, N;, M) satisfy (3.14) and (3.15). Employing the equalities

NQi2=85—-Q013, Mz =Wyi2D + POy, (4.26)
0L, =T —-021Q, K, = C1Wa + O R, (4.27)
we obtain
= ~ 5 —-Q0;2
0,1 XQ = (0] -T 1w, OxR | X -
21X Q12 [ 210Q 1Wa1 4+ 021 ] [W]zD+P912 }
- a= -0
= [ Oy I ]Hzlxnlz [ 12 J
I
= TO12+ 0215~ 021Q012 + C1WaD . (4.28)

Therefore, (4.17) is satisfied by our choice of X in (4.25) implying that DDPIS is-
solvable, by Lemma 4.1. O

4.2 Two-sided Matrix Equation and Its Solution

‘We have shown in Section 4.1 that the central solvability condition for DDPIS is the

solvability over S of a linear matrix equation of the type
A=BXC. (4.29)

Since no special property of the ring § is required for the development, the following

analysis below will be carried out for an arbitrary pid R.

Let A € RPX9, B € RPX" and C € R**9. Alsolet M € RPXP and N € R7%9 be

unimodular matrices such that
B .
MB:[ } ,CN=[¢ 0]
0

with B of full row rank in R¥*" and € of full column rank in R**!, where k :=
rank(B) and | := rank(C). Set
R i;; A
A= MAN = [“}” 2 } :

Ay Az
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partitioned so that Ayq is in R¥*!. Further, let L be a greatest left divisor of B and
let R be a greatest right divisor of €' so that

B=LU , C=VR
for a left unimodular U and a right unimodular V.
THEOREM 4.2 : The equation
A=BXC

has a solution X over R™** if and only if

(i) A412=0, Ay =0, A =0,

(11) L—IAHR—I € REXT

Proof : Let X be in R™* satisfying A = BXC. It {ollows that
. | A A4 B \
A= | An A e [ & o ]
A A2 0
which implies (i). Note that Ay; = BXC which yields UXV = L~1A;; R™?, where
the left hand side is over R. Thus, (ii) holds. Conversely, let U¥ € R"** and

Vi e RIXs be such that
vt =1,V =1,

On setting
X =V ARV

and by using (i) and (ii), A = BXC holds with X € R™*s. O



Chapter 5

ALMOST DISTURBANCE
DECOUPLING PROBLEM

In this section, we will be concerned with ADDPIS, Almost Disturbance Decoupling
Problem with Internal Stability, which is a slightly different version of DDPIS
examined in Chapter 4. The results of this chapter pertain to continuous-time
systems contrary to the results of Chapter 4 where the stability region is arbitrarily
chosen. Consequently, we define the particular stability regions w and Q as
w:= C_UC;, and @ := C_ where Q is the usual stability set for continuous-

time systems.

Given the bicoprime fractional representation (4.3) of Z, defined in (4.1) over
R(s)on, ADDPIS can be described as follows : Determine the conditions under which
Jor every real number ¢ > 0, there exists a compensator Z.(¢) which internally Q-
stabilizes the plant and for which ||Zc(€)||co < €. Further, give a synthesis procedure

Jor such a compensator Z.(¢) for a given € > 0, when the problem is solvable.

To avoid too much technicality, we will have the assumption that C; and D
defined through (4.13) are unimodular over R(s),q which means that the fractional
representation of Z;; is free of input and output decoupling zeros. Under this

assumption, we immediately have the following proposition.

PROPOSITION 5.1 : ADDPIS is solvable if and only if for any given £ > 0,

27
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there exists X(£) € RGP satisfying
[[92:X(e)12 = TO13 ~ 0215 + 0219032 ~ Wiflow < €, (5.1)

where O12, 051,012, and Q21 are as defined by (4.15) and (4.16).

Proof : Noting that C; and D can be taken as identity matrices of suitable sizes,

the proof of the proposition is an immediate consequence of the problem definition.

Instead of using this post-introduced data in Proposition 5.1 in the synthesis of
ADDPIS, we can rather deal with system matrices as in DDPIS. This will be carried

out by the following lemma.

LEMMA 5.1 : ADDPIS is solvable if and only if for any given € > 0, there
ezists X € R(s)\5T ™) such that

(M1 X (e)M12 — Mol < €. (5.2)

Proof : [Only If] Let ¢ > 0 be given and also let ADDPIS have a solution so that,
by Proposition 5.1, there exists X (¢) € R(s))? satisfying (5.1). Set

N K+M-MQE MQL-1L
X(s).—[Qr]X(s)[Rz Q,]+[ o No ]

where all the above matrices are defined as in Chapter 3 over R(s),q. Note that,

X(e) is Q-stable proper. Moreover,

.- _ 0 0
M X (e)Ilyp ~ o2 = )
0 QuX(e)Q2+ 0210012 — 0S5 —TO1; — Way

by (4.8), (4.10), and (4.11). (5.2) immediately follows from here.
[If] Let £ > 0 be given. Also let
€

o 1[5

By (5.2), there exists X (&) € R(s)g;m)x(r"’p) such that

£ =

oo

T2 X (8)MT12 — Maz2fjeo < €.
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Define
X()=|-L K |X@ [Z’ } :

l

where the matrices L,, K,, N;, and M; satisfy (3.10) and (3.11). Using (4.17) and
(4.18) we obtain

| Q21X (e)2 -~ TO12 — OnS + 0210012 + Wazl|oo

I

[ On I ](ﬁle(f)ﬁu —1I2;) [ O J

oo

< €.

This completes the proof of Lemma 5.1.
The lemma below easily follows from Lemma 5.1 and the unimodularity of C; and

D.

LEMMA 5.2 : ADDPIS is solvable if and only if for any given ¢ > 0, there
ezists X () € Rggm) X(r+P) sqtisfying

[T21 X ()12 — Maafjos < € - (5.3)
Before giving solvability conditions for ADDPIS, let us introduce the notation
T(o0) := SILI& T(s),

for any proper rational matrix T. Also, let jwy, jws,...,jwas be distinct and finite
zeros of the largest invariant factor of either IIy; or II;; on the nonnegative jw-axis.

The following theorem is the main result of this section.

THEOREM 5.1 : ADDPIS is solvable if and only if the following three
conditions hold.
(C1) There exists a matriz Xo € RU+mIx(r+8) gatisfying

3100 ) Xoll12(0c) = Map(00) , (5.4)
(C2) For each w;, i = 1,2,...,M there ezists a matriz X, € C+m)x(r+p)

satisfying
a1 (Jwi) X Maa2(wi) = Ha2(Jwi) , (5.5)
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(C3) There ezists X € R(s){H™X0+) sych that

My Xy = Mas . (5.6)
Proof : [Only ] Let ADDPIS be solvable and let £ > 0 be given. By (5.3), there
exists a )-stable proper matrix X(¢) such that

[[TM21 X ()My2 — M22fleo < €,
which yields
M2 (jw)X (e)M12(Jw) — Ma2(jw)llz < e ,Yw € R .
Therefore, in particular
[|T21(00) X (g, 00)MM12(00) — Hzz(0)ll2 < €
where X (¢,00) := lims_,00 X (€).
Let M., and N, be real nonsingular matrices with unity || - ||2 norms so that

iz (00)

0 } y M12(00)No = [ 1;2(c0) 0 ] ) (5.7)

Moollzl(oo) = [

with 51 (oc) of full row rank and 11;2(00) of full column rank. Set

i .

MooTl2a(00)Neo = | 1(e0) {12(00) . (5.8)
I3(00) 14(00)

Using (5.7) and (5.8), one can show that

1 (00) — 121 (00) X (€,00)TT12(00)  T5(00)
ﬁ3(oo) fI4(°°)

2
Since the above statement is valid for all £ > 0 and II,(o0), I3(00), and I14(o0) are

independent of €, it is clear that
Mi(c0) =0 i=2,3,4. (5.9)

On referring to the solvability condition (i) of Theorem 4.2, (5.8) directly implies
(C1). Note that, the solvability condition (ii) of Theorem 4.2 is automatically
satisfied since R is a field rather than a principal ideal domain. The necessity of

(C2) can be shown similarly, by following the same steps.
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In order to show (C3), let M and N be unimodular matrices over R(s),q with

unity || - ||o norms such that
My, = [?] ,IpN=[cC 0], (5.10)
with B of full row rank and C of full column rank. Write
MIIN = [ 2 ii J , (5.11)

partitioned so that A; has as many rows as B and has as many columns as C. Using
(5.10) and (5.11), it is clear that

A1 - BX(E)C Aq
As Aq

o]

Since this is valid for all € > 0 and Aj, A3, and A, are independent of ¢,
A;=0;:=2,3,4. (5.12)
Further, consider the inner-outer factorization of B so that we can write
B = B;B,, B; inner, B, outer. (5.13)
Similarly, inner-outer factorization of C’ yields
C = C,C;, Ci inner, C, outer. (5.14)
Using (5.12), (5.13), and (5.14), we have
sup IT1(jw) — To(jw)llz L €, (5.15)

where

Ty := BY A,CF , Ty == B, X(€)C, . (5.16)

We will now show that 77 may not have any C, pole. In order to show this, let the
least common multiple of all the denominators of 77 have C4 zeros 1,03,...,0N

with multiplicities my, mo,...,mpy, respectively. Define

. H{Jil(s — o)™ 7
g(s) = Hﬁ1(3+ 0',‘)"’“ ’ (5°l )

Noting that T3 is Q-stable rational, g(s)[T1(s) — T2(s)] is analytic in the closed right
half plane. Moreover, for any ¢ € {1,2,..., N} there holds

9(&)T1(8) ls=i# 0
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g(S)Tg(S) Is:a,:'—‘ 0.

Thus, g(s)[T1(s) — T2(s)] |s=+; is nonzero and independent of £. By the maximum

modulus principle it follows that

sup [|[T1(jw) — T2(jw)llz = sup |lg(jw)[T1(jw) — To(Jw)l|2
weR weR
> |lg(8)Ta(s)llz2 ls=o; -

This contradicts (5.15), therefore T} is free of C, poles which implies that T3 is
w-stable rational. Recalling the left unimodularity of outer matrices over R(s),, we
have

B,Bi=1,CiC,=1, (5.18)

where B! and C! are w-stable matrices. On letting X := BT C! which is w-stable
rational and using (5.12), II3; X132 = II3; holds. This implies (C3) and thus the

necessity part of Theorem 5.1 is established.

[If] Before giving a synthesis procedure for the solution of ADDPIS, we need the

following lemma.

LEMMA 5.3 : Let A € RPJ(s),B € RP37(s), and C € R:Z(s). Also let
7 = ||A|loo. If there ezists X € RIX*(s) such that ||A — BXC||eo < €, then there
exists X' € R7X%(s) with deg(X') = deg(X) — 1 such that

|A = BX'Clloo < 2¢ .

Proof : Since A is strictly proper, there exists a positive real number R such
that

sup d[A(Jw)] <e.
|w|>R

_ P
Now, let A be a real number satisfying 0 < A < —-—L—Rm and define

f(e):= 1+1/\3 ’

Note that, || fllcc = 1. Setting X’ := fX which is w-stable with deg(X”) = deg(X) —

1, it is clear that

A-BX'C=f(A-BXC)+(1-f)A
and

l4 = BX'Clles < [|[A = BXClleo + [I(1 = f)Alloo - - (5.19)
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Since (1 — f)A is an w-stable strictly proper matrix, its Heo-norm exists and is

determined as follows:
1= NAlle = ilé%ll—f(jw)lc’f[fl(jw)],
= ma"(SUPIwISR\/ﬁ%’? s SWPLs R \/ TFubgE )
= max({n, 1),

= €.
Consequently, using (5.19), }]JA — BX'Cllec £2¢.0

Now, given £ > 0, the first objective is to construct a w-stable proper rational
matrix X(¢) such that

M1 X (€)1 — Maglleo < €1 =€/2. (5.20)

Suppose that (C1) and (C3) hold. Let 7 := deg(X). If 7 < 0, then X is w-stable
proper, set X(¢) := X and we are done. Therefore, assume 7 > 0. By (C1), the
matrix W defined by

W = Hgp — 151 Xo1142 (5.21)

is Q-stable and strictly proper. Let  := ||[Wlleo- If 7 < &1, then set X(¢) := Xo
satisfying (5.20). Therefore, assume 5 > £ and define X:i=X-Xo,€:=2"¢1. It
is then clear that |W — H21XH12||°° = 0 < é. Then, applying Lemma 5.3 7 times,
we show the existence of X'(¢) € R(s)F™*+7) gych that |

[IW — 51 X'(e)I12]c0 = [[T22 — H2a(Xo + X'(e)) 120 < 27¢ = €7 .

By defining X(¢) := Xo + X(€), which is clearly proper and w-stable, (5.20) is
satisfied. Now, given that (5.20) holds, our aim is to construct a Q-stable proper
rational matrix X (e) such that

M2 X ()12 — Maoflee < €. (5.22)

Since X (&) defined above may have jw-axis poles, let us define the polynomial n as

the least common multiple of all the denominators of X(¢) and factorize it as
NI NNy , (5.23)

where n;,, is monic and has zeros on the jw-axis and n, has zeros on the open left or

right half plane. Without loss of generality, we can assume that nj,, is in the form

njw = (87 + i) (s? + w32 .- (82 + wi )M (5.24)
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because, if X (&) has a pole different from any zero of the largest invariant factor of
II2; or II;,, then we can still find a w-stable X'(¢) satisfying (5.20) with corresponding
n’, in the form (5.24). Also, choose a monic polynomial ns whose zeros are in C_
and which converge to those of nj,, as § — 0. Finally, let
— v
fs:= g (5.25)

We now need the following lemma in the construction of X'(¢) satisfying (5.22).

LEMMA 5.4 : Given a real number wg > 0 and a complez number p :=
Re??, 6 € [0,2r), there exists an Q-stable proper rational function ¢(s) such that

g(jwo) =p . (5.26)

Proof : The proof is by construction. Choose g as follows:

R if0=0
2 _ 1—cosb,,2 .
g(s) := R;*-_g » @ 1+22:9w0 ifo<f<w
—R if=rx
—R&2, o? = [Heelyl ifr<f< 27

It is immediate to see that g(s) is Q-stable proper rational and satisfies (5.26). In
case wg = 0 and p is real, simply choose g(s) := p. The matrix generalization of this
result is that, given a real number wg > 0 and a matrix R € C™X", there exists a

Q-stable proper rational matrix @ such that Q(jwe) = R

Using Lemma 5.4, it is easy to show that there exist ()-stable proper rational
matrices Q;, ¢ =1,2,...,M such that

Qi(jwi) = Xui(jw; + 121 (5.27)
Now, define
' s? + w? 59
J#t
and note that Q' is -stable proper rational and satisfies
Q'(Jwi) = Xuy » Q'(—jwi) = X5, i=1,..., M (5.29)

where X . denotes the complex conjugate of X,,; without transposition. Now, we
are ready to define X(¢) explicitly so that (5.22) holds. Set

X@gp:ﬁX@yu1—ﬁmx (5.30)
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which is clearly Q-stable and proper. Observe that
H22 - H21.X(6,6)H12 = fg(ng - Hgl.iy(é‘)nn) + (1 - f5)(H22 - Hle’l—Ilg) . (531)
Also note that there exist K7 > 0, K2 > 0, and §; > 0 such that

11— fs(jw)| < K1, ||Ma2(jw) — M1 (Gw)Q'(w)12(fw)|l2 £ K2,

Vw € R and 0 < § < §;. Moreover, for each zero wy of nj,, there exists an open

neighborhood €2} around wy, on the jw-axis such that within this neighborhood

[M22(jw) — M1 (jw)@Q' (Fw)Mi2(Jw)|2 < €1 /K7 -

This is clear by (C3) and (5.29). Now, let © be the union of all the sets Qj and
Q¢ = R — Q. Since Q¢ is compact and does not contain any zeros of fs, |1 — fs(jw)|

converges to zero uniformly in Q°. Hence, there exists §2 > 0 such that
11— fs(jw) < e1/K2, Yw €N and 0 < 6 < 6, .

On letting 6y := min(éy,82) and choosing X (¢) := X(¢,60) in the definition (5.30),
we obtain
”H22 —_ H21X(E)H12“°° < &1 + &1 =¢,

by employing (5.20) and (5.31). This completes the proof of the sufficiency part of
Theorem 5.1. O



Chapter 6

NONINTERACTING
CONTROL PROBLEM

We now consider what might be considered as the core problem of noninteracting
control ; the simplest case of a problem which can be posed for N-channel plants.
In this part, we will, particularly be dealing with three channel systems which have
two exogenous inputs and two exogenous outputs in addition to a control input and
a control output. If a system of this kind is controlled by a dynamic feedback
compensator which processes the measurement output, we obtain a closed loop
system with two exogenous inputs and two exogenous outputs. The Noninteracting
Control Problem with Internal Stability (NICPIS) can be described as follows : Find
an internally stabilizing compensator such that the off-diagonal blocks of the transfer
matriz of the closed loop system from the exogenous inputs to the exogenous outputs

are identically equal to zero.

There are many different versions of noninteracting control problems in the
literature. It is more or less agreed that, such problems are among the more difficult
algebraic control problems in the sense that the solvability conditions are rarely
obtained in compact form and even when they are obtained, their implications on
the open loop plant structure are not usually clear. However, in the three channel
case considered here, the solvability conditions we obtain are conceptually simple

yielding intuitive system theoretical interpretations.

36
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In this chapter exact problem definition of NICPIS will be stated and the
solvability of NICPIS will be reduced to the simultaneous solvability of a pair of
linear matrix equations of the type A1 = B1XC1, A3 = B, XC; over S.

The basic system model for our three channel plant is the following input-output

model in terms of its transfer matrix Z, :

3 Uy Zu Zi12 Zy3 Uy
V2 |=2Zp| v | =| Za1 Zap Zos uy | (6.1)
Y3 Uz Z31 Zzp Zss u3

where 711 € Pqul,Z12 € PriXxe 7.4 € PP X937Z21 € Pr2Xat 7o € PthI'z,Z23 €
Pr2X9: 7., € PP3X01, Za, € PP3%X%2 and Zs3 € PP3X%, We also assume Zj; to be
strictly proper to avoid complications concerning the well-definedness of the feedback
loop when a feedback is applied around the first channel. The output vector y; is
called the measured output and y; and y3 are called the exogenous outputs. The
input vector u is called the control input and u, and u3 are called the exogenous

inputs.
Let Z. € P1*P1 and consider the feedback law
U1 = —Zch (6.2)

resulting in the closed loop plant

[ ¥2 } _ [ Zy In ] [ Uz ] _ [ Zy—ZnYeZyy  Zz— ZnY.Zas uz

Y3 Z3y Zaa u3 Z3g — Z1YcZvgy  Zaz— ZmYcZh3 u3
(6.3)
where the matrix
Yei=(I4Z.211) " Ze = Z(I + Z11Z.) 7} (6.4)

is in P %P1 _because Zy; is strictly proper. We now give the following definition for

NICPIS.

NICPIS is solvable if and only if there exists an internally stabilizing compensator
Z. € PuXp1 gych that
(i) Zyz=0, (6.5)

(ii) Z3; =0. (6.6)
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Let the plant transfer matrix be represented in matrix fractions over S as

P Wy Wi Wis
Zy=| P, | Qf [ Ry Ry, Rs ] + | Way Wiy Was |,
Ps Wiy Way Was

with Q11 € S™*". We assume that the representation is bicoprime, i.e.,
(PEf PF PI)T, Qq)is right coprime,
(Q11, [R1 Rz Raz])isleft coprime.

If the transfer matrix Z, of the compensator is written in matrix fractions over S as
Z. = P.Q;1R., the closed loop transfer matrix Z from the exogenous inputs to the

exogenous outputs is written in matrix fractions as

-1
Py, ~WxP, On R, P, R, R3 + Woz Wi
Py —Wa P, -R.Py Q.+ RWn P R W2 RWi3 Waz Wi
(6.7)

The off-diagonal blocks Z53 and Zs; concerning the noninteracting control problem

~

can be written by using (6.7) as

Y Rs
Zyz=| Py —WyP. |®! + Was , (6.8)
| -] | RWhs |
Zag = [ P; -Wsy P, ]‘I’—l - R - + Was, (6.9)
BALY
where

" | ~R.Pi Q.+ RWuP, |
Since the internal stability of the pair (Z1;,Z;) is the fundamental requirement in
NICPIS, we should rather deal with internally stabilizing compensators for Zi,
not with arbitrary compensators. Note that, the set of all internally stabilizing
compensators is given by either one of the sets Z,,(X) or Zy(Y ) in (3.26) and (3.27),

respectively. Using the characterization of all internally stabilizing compensators as
Zeo(X)= (NN 4+ Q. X)(M;+ PMN,—WNN, - PP.X + WQ,X)!,

the closed loop transfer matrices Zo3 and Z3; can be written in terms of the free

parameter X as follows :

+11,237

-1
A RyNN +Q.X R
Zyz= | P, ~-Wau(NNi+Q,X) | Qi B(NN+Q,X) J °

-P, M+ PMN; - PP.X Wis
(6.11)
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Qu  Ri(NNi+@Q:X) Ry
—P, M;+PMN,- PP,X Wi
(6.12)

701)

[;j:lCI_l:él-lI:;:jl’D_l[Rz R3]=[52 SS]D-I, (6.13)

Zo =[Py ~Wa(NN+Q.X) |

Note by (3.9) and (3.10) that
Qu = DQCy, R = DR, P, = PCh.

P
By the fact that the representation (6.7) is bicoprime, it follows that ( [ 2

Ps
is right coprime and (D,[R2 Rg]) is left coprime. Let us write

= T _

for left coprime | (4, T2 and right coprime ([S2 S3), D) over S. Employing
3

(3.14), (3.15), and (5.13) , it is possible to come up with the alternative expression

below for 223 g
223 = C_'i_l(T2913 + 02153 - 0;00;:3 + 01W23D - QnXle)D_l (6.14)

where
013 := K83 — LWy3D , Oy := oM — CyWy N - (6.15)

and
D3 := RiS3+ QiWhsD , Qa1 :i= ToPr + C1WnQ,. (6.16)

Similarly, one can show that
Z32 = C7Y(T3012 4 03152 — 031Q013 + C1Wae D — 03:XQ42) D1, (6.17)
where
012 = I(SQ - LlV]QD ) 031 = T3]‘1 - C—'l"VmN (6.18)

and
Q2 := RS2 + QiWi2D , Qgy := T3P, + C1W31Q,. (6.19)

We can now state a first set of solvability conditions for NICPIS. These are in terms

of the existence of a common solution to a pair of linear matrix equations of the type
A; = B;XC;,i=1,2over S.

+Wa,.
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LEMMA 6.1 : NICPIS is solvable if and only if there exists X € ST%XP1 guch
that the following two equalities hold:

Q21 X Q3 = 12013 + 02153 — 021Q0;3 + C1WasD,

Q3 X Q1 = T3012 + 03152 — 03,0012 + C1Wa D. (6.20)

Proof : If Z, is a solution to NICPIS, then in particular, the pair (Z;1,Z.) is
internally stable. Thus, by Theorem 3.1, there exists X over S such that Z = Z..(X).
Now, Z53(X) and Z32(X) are given as in (6.14) and (6.17) and by definition of
NICPIS, X satisfies (6.20). Conversely, given any X satisfying (6.20), let Z. :=
Z(X) and note that Z. internally stabilizes the system. On the other hand, Z23=0
and Zs; = 0 immediately follows from (6.14) and (6.17). Therefore, the choice of
Z; = Z(X) solves NICPIS.O

In order to eliminate the subsidiary matrices employed in (6.20), we introduce
system matrices associated with particular transfer matrices, similar to what we have

done while solving DDPIS. Thus, consider the system matrices

— Q R = Q S3 = Q 53
Iy = - ;i3 = _ | Iz = ~ _
-, CiWx —P WysD -T5, CiWyD

(6.21)
and
_ R _ S _ S.
IIz = ¢ L e = @ 2| Mg = @ e
-T3 CiWsy —P Wy,D —T3 CiWosD
(6.22)

associated with the suitable fractional representations of the transfer matrices
Ci1221, Z13D, C1Z23D and CyZay, Z12D, CyZ33 D, respectively. We also have

K -L |-
i =]’ 92}, (6.23)
Ry Qi 0 M3

Mg Mo-F = ! 0 s (6.24)
N Q. -0y Qn
K =L )_ I
i M = Orz , (6.25)
R 0 Q

and

(6.26)

|
ree——
|

O ~
@

P o
e}

_ [ m -p
3 =
N O
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It follows that the nontrivial invariant factors of IIy3, Ilgy, Ily2, and 13y are the

same as those of Q13, Qo1, Q12, and Qa; respectively.
We are now ready to prove the main result of this section.

THEOREM 6.1 : NICPIS is solvable if and only if there erists X €
S(r+a)x(r+p1) gych that -

I XMMs = Mas , T3 X, = Map. (6.27)

Proof : Using (6.23), (6.24),(6.25), and (6.26), it is now a matter of
straightforward calculation, to show that if X satisfies (6.20), then the matrix

. | -P K+M-MQK MQL-L |
%= [ 0. }X[Rl O ]+[ N NOK o J (6.28)

satisfies (6.27), and conversely, if X satisfies (6.27), then

X := [ -IL, K, ]X { Z’I } (6.29)

satisfies (6.20). O



Chapter 7

ALMOST
NONINTERACTING
CONTROL PROBLEM

We now consider the almost version of NICPIS. This problem is called ANICPIS,
Almost Noninteracting Control with Internal Stability. For the synthesis of this
problem, we will concentrate on the three-channel plant (6.1) and its corresponding
matrix fractional representation over R(s)oq, where € := C_. The stability region
w 1= C_UC;,, employed in the synthesis of ADDPIS, will also be used in determining
solvability conditions for ANICPIS.

The basic assumption of Chapter 5 that C; = I and D = I is still valid
throughout this chapter. The details of some of the proofs in this section will be

omitted since their contents are more or less the same as in the previous sections.

We define ANICPIS as follows: Determine the conditions under which for every
real number € > 0, there exists a compensator Z () which internally Q-stabilizes
the plant and for which || Z53(¢)|leo < € , || Z32(€)]|oc < €, where Zy3 and Zs; are as

defined in (6.8) and (6.9), respectively. Further give a synthesis procedure for such a

compensator Z.(¢) for a given € > 0, when the problem is solvable.

We now consider (6.14) and (6.17) involving the expressions of Zy3 and Za, in

terms of the free parameter X. These expressions constitute the set of all transfer

42
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matrices obtained when an internally stabilizing compensator is employed. We now

have the following proposition which we state without proof.

PROPOSITION 7.1 : ANICPIS is solvable if and only if for any givene > 0,
there ezists X(e) € R(s)%,?* such that the following hold.

[[Q21X ()3 — T2013 — 02153 + 021Q0O13 — Waslleo < €, (7.1)
101X ()12 — T3012 — O3152 + 0310012 — Waslleo L €, (7.2)

where all the matrices above are defined in (6.13)-(6.19) over R(s)oq.

The proof of the proposition is omitted since it is just the same as the proof
of Lemma 6.1. We make use of the manipulations in the proofs of Lemma 5.1 and

Theorem 6.1 so that the following proposition follows.

PROPOSITION 7.2 : ANICPIS is solvable if and only if for any given ¢ > 0,
there exists X (&) over R(s)on such that both of the following hold.

lIT21 X (6)1Ty3 — Mas|loo < €, [|Ma1 X ()12 — Mazfloo < € (7.3)

where oy, 113, 23,131,115, and I3, are the system matrices associated with the

transfer matrices Zo1, 213, Z23, Z31, Z12, and Zsa, respectively.

Before giving our main result on ANICPIS, we introduce some preliminary

information which we will require in giving solvability conditions for this problem.

Let Sy := {jwy,jws,...,jwm1} be the set of all distinct and finite zeros of the
largest invariant factor of either IIz; or II;3, on the nonnegative jw-axis. Also, let
S2 1= {jo1,§02,...,50m2} be the set of all such zeros of either II3; or II;; on the
same interval. We define § := $; N S, and we assume that S = {jwy, jw,,...,jwn}

where m < min(m1,m2). We are now ready to state the main result of this section.

THEOREM 7.1 : ANICPIS is solvable if and only if the following three

conditions hold.

(C1) There ezists a matriz Xo € R(r+a)x(r+p1) satisfying
Hgl(OO)Xonlg,(oo) = Hza(oo) N H31(00)X0H12(00) = H32(OO), (7.4)

where [-](00) 1= im0 [].
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(C2) For each w; i = 1,2,...,m there ezists a mairiz X,,, € Cr+a)x(r+p1) sych
that

Mo (§wi) Xw, Iha(jwi) = Maa(jwi) , Mar(Gwi) X Miz(Gwi) = Ma2(jwi), (7.5)
(C3) There ezists X € R(s)Fa)X(r+21) gych that
51 XMz = a3 , M5 X1lyp = Il3z . (7.6)
Proof : [Only If] Let ANICPIS be solvable and let £ > 0 be given so that there
exists a (-stable rational matrix X(¢) such that (7.3) holds.

Let A ® B denote the right Kronecker product of the matrices A and B, and A
denote the vec-function of the matrix A. Note that if A € R(s)75¢" with ||Al|e < €,
then [|A||cc < mne. It then follows that

(T, ® Ma1) X (e) — Tzalleo < (T + P2)(r + a3) , (1.7)
(I, ® May X (e) — Haalleo < &(r+p3)(r+ ¢2) - (7.8)

Using the triangle inequality in matrix norms, it is clear that

[H%@HZI ]X’(e)— {1323 ]
II

<el, (7.9)
T, @ Iy, 32

©0
where L = 2[(r + p2)(r + ¢3) + (r + p3)(r + ¢2)]. Since this is true for all € > 0, we
can apply our result on ADDPIS in Theorem 5.1 to have the existence of a w-stable

rational matrix X; such that

T ~
13 ® Iz X, = 1323 ) (7.10)
17, @ I3 32

It is clear that (7.10) implies (C3) on choosing X € R(s)I 9471 quch that X =

X1. The necessity of (C1) and (C2) can be shown by following the the same steps.

It is in fact true that, a condition of the type (C1) and (C2) is to be satisfied for all

points on the jw-axis, but in order to make the solvability conditions checkable, we

reduce them to a finite number of points as in (C1) and (C2).

[If] Before giving a synthesis procedure for the construction of a solution for
ANICPIS, we first need the following lemma.
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LEMMA 7.1 : Let 4; € R(s)P3", 42 € R(s)PJ%, B, € R(s)tL", B, €
R(s)?2*",C1 € R(s):57, and Cp € R(s):n%. Also let 7; := ||4i]loo i = 1,2. If there
exists X € R(s)[**® such that [|[4; — B1XCi|| < € and ||A; — B2 XCs|loo < €, then
there exists w-stable rational X’ with deg(X') = deg(X) — 1 such that

l41 = BiX'Cilloo < 2¢ , || A2 — B2 X"Calloo < 2¢ . (7.11)

Proof : Since A; and A; are strictly proper matrices, there exist positive real
numbers p; and p; such that
sup &[Ai(jw)] <e, sup d[A(jw)]<e.
[wi>p1 lw|>p2
On letting p := max(p1,p2) and 5 := max(n,72), the choice of X’ expressed in
terms of X,7,p, and € in Lemma 5.3 will satisfy (7.11). Since this verification is

quite similar to that of Lemma 5.3, it will be omitted.

Now let £ > 0 be given and suppose that (C1), (C2), and (C3) hold. Our primary

aim is to construct a w-stable matrix X(¢) such that

“H21X(5)H13 — H23“oo <&, ”H31X(€)H12 - Haz”oo Le. (7.12)

where €1 := /2. Let 7 := deg(X), where X satisfies (C3). If 7 < 0, then X is
w-stable proper, set X(¢) := X which will clearly yield (7.12). In case T > 0, the
matrices defined by

Wy i= 1oz — 21 Xollha , Wo := T3y — I3y Xoll;2

are §)-stable and strictly proper. Let #; := [[Wi|loo = 1,2. If % := max(m,72) < €1,
then set X(¢) := Xp satisfying (7.12). Therefore assume 5 > £, and define Y :=
X — Xg, € :=2""¢;. It follows that

[|W1 — O Yizlleo = [[W2 — Ia1Y 2]l = 0 < €.

We can apply Lemma 8.1 7 times to show the existence of a w-stable proper rational
matrix X(¢) such that (7.12) holds. Now, given that.(7.12) holds, our objective is

to construct a §)-stable proper rational matrix X{(¢) satisfying

IIH21X(€)H13 - H23”oo e N ”H31X(6)H12 - H32”°° <e. (7.13)

Considering the construction of X(£) out of X, we note that the jw-axis poles of

X (¢) are precisely those of X. We can also assume without loss of generality that
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the jw-axis poles of X are contained in the set § which has been defined prior to
Theorem 7.1. Otherwise, we can still find an w-stable rational matrix X’ satisfying
(7.6) and having all its jw-axis poles in the set S. Therefore, let the polynomial p

denote the least common multiple of all the denominators of X (¢) and factorize p as

D = PjuwPo

where p;,, is monic and has all of its zeros in the set § and pg has zeros on the open
left or the open right half plane. Also choose a monic polynomial ps whose zeros are

in C_ and which convérge to those of p;y, as § — 0.

Using Lemma 5.4, it is easy to show that there exist (2-stable proper rational

matrices M;, i =1,2,...,m such that
M;(jw;) = Xyi(jwi + 1)%m1 (7.14)

Now, define M’ in a similar way to the definition of @’ in (5.28) as follows:

1 m m 32+w3

M:i=— =Y M ] -5 7.15
(s + 1)2(m-1) Z; g w} — w? (7.15)
F#e

and note that M’ is Q-stable proper rational and satisfies
MGw) =Xy, , M'(—jw))=X5;,i=1,...,m (7.16)
where X*. denotes the complex conjugate of X,,; without transposition.
We now claim that the choice of
X(e, 6) == B2 %) + (1 - B2ym
Ps DPs
will satisfy (7.13), provided 6 is chosen small enough so that

| - Z2)ar(w)

<&, VweR.
2

The verification part of this proof will be omitted, since the technical details are the

same as those in the sufficiency part of Theorem 5.1.0



Chapter 8

A COMMON SOLUTION TO
TWO MATRIX EQUATIONS
OVER A PID

In Chapters 6-7, we have encountered the solvability of a pair of linear matrix

equations
A; = BiXCy, A; = BoXCs (8.1)

over S for the NICPIS case and over the ring of w-stable rational functions for the
ANICPIS case where the stability set w = C_ U Cj,. Actually, one can use the
Kronecker products for reducing the equations (8.1) into one linear matrix equation
of the form Az = b whose solvability is well-known in the literature. However,
this approach alters the form of the given matrices in (8.1) causing difficulties in
giving system theoretical interpretations for the original control problem. Therefore,
we give an alternative solvability condition in order to avoid this difficulty. Note
that the main rings of interest of Chapters 6-7 are all principal ideal domains. We
therefore focus our attention to the solvability of (8.1) over an arbitrary pid which

we denote by R.

Let Ay € RPiXa1, A, € RP2X92 By € RPIXT By € RPXT (7 € R**%4, and
Cy € R*%92, Also let My € R1XP1 M, € RP2XP2 N; € R#X% and N, € R%2%%2 be

47
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unimodular matrices such that

S

M;B; = [}‘;‘ ] ,MyBy = [122 } ON=[é 0],aN=[é o], 82

where B; € RF1X7, B, € R¥2*" are of full row rank and &; € R**11, &, € R**!2 are

of full column rank. Now set
- [ fili /112 Ay Az

Al = ﬁllAlNl = i A
23 124

} , Ay i= MyAsN, = [ ] , (8.3)

Az Ay

partitioned so that Ay € R\xh and Ay, € R*2Xl2, Further, let Ly, Ly be greatest
left divisors of By, B, and Ry, R, be greatest right divisors of C;,Cy, respectively,
such that

By =Ly, By=LUy, C; =ViRy, C; = VaR, (8.4)

for some left unimodular Uy, U; and right unimodular V;,V,. Define
Wy = LTYA Ry, Wa o= L3 AR5 . (8.5)
Now, we are ready to state the main result of this chapter.
THEOREM 8.1 : The linear matriz equations
A1 = B XC1, Ay = B, XC,

have a common solution X over R if and only if the following conditions hold.

(C1) Ai=0, A3=0, Adyy=0;i=1,2
(C2) W; € Rkxki ; §=1,2.

(C3) There exist X; € R*h X, e R™*k.Y; € Rk andY; € RF*2Xs gych that

[g:}[’n X2]+[2}[V1 V2]=[‘? _?%}- (8.6)

Proof: [Only if] Suppose X € R™** is such that (8.1) holds. By Theorem 4.2, this
immediately implies (C1) and (C2). It is easy to check with

X1:=XV;,X3:=0,Y1:=0, Yy:=~UX
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equality (8.6) also holds.

(If] Suppose (C1), (C2), and (C3) hold. Employing Theorem 4.2 (C1) and (C2)
immediately imply that there exist Z; and Z; over R such that

W2V =Wy, UpZoVo =Wy (8.7)

Let M € R™*" and N € R*** be unimodular matrices such that

U |00 |7
I R P

-~

where U, € RF1*t [, € RF2Xt V; € REXh V, € Rixlz, { l_{l } is of full column rank-

U,
and [ i ] is of full row rank. It is clear that, Uy, U, are left unimodular and

171,17'2 are right unimodular. Now let

M-ZN1 = Zu Zr2 M-1Z,N-1 = Zy Za
Z13 Zl4 ’ Z23 Z24 ’

partitioned so that Z;; € R!*4 and Z,; € Rt*4. By (8.7), they satisfy
U1:2uVh =Wy, U220 Vo =W, . (8.9)

Defining

t %] [w]e, [ ?
M1[X, X, |= XX [Ny 0B (8.10)
X3 X4 Y2 Y2 Y4
partitioned so that X; € Rt X, € R™*2 ¥, € RF\*d and ¥, € R*k2%4, (8.6) and
(8.10) yield the equality

[Z:][XH X’J-&[é][fﬁ f’z]':[‘? —:)Vz}' (8.11)

Note that, if we can find a common solution X, € R!*4 to
XV =Wy, DX,V =W,

by using (8.9) and (8.11), then the matrix M );’ g N will be a common solution

to the equations (8.1). This is clear by (8.2), (8.3), (8.4), (8.5), and (C1).
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Let G be a greatest common right divisor of J/; and U, so that
U, =0,G, U, = 0,G, (8.12)

for some right coprime ©; and ©; over R. Since, U; and U, are left unimodular,
there exist U} € R!*% and U} € R!**2 such that b

0,08 =1, 0,0)=1 (8.13)
Setting e! = G’f]f and G)”2 =G ﬁg will immediately yield
0,00 =1,0,0%=1 (8.14)

It is clear by (8.8) that k4 + k2 > t. In case strict inequality holds, since ©,
and O, are right coprime there exist matrices K3 € R™**1 K, € R** K, €
Rk;xk1+k2—t’j;’2 € 'ngxk1+k2—t,él € RE1+ka—txk and'(:j2 € Rk1itk2—txk2 guch that

the following identity holds
fox)fou k] _[1o] 619
0; O O K, 0 I

Similarly, let F' be a greatest common left divisor of V; and V, so that

f/];F\I’l,f/z—‘_’—F‘I’z, (816)

for some left coprime ¥, and ¥, over R. Since V; and V; are left unimodular, there
exist V! € Ri1xd and V} € R%2%4 such that

Vi =1,ViV,=1. (8.17)
Setting ¥ := V}F and ¥} := V}!F , we obtain
vie, =71, Wie,=1. (8.18)

Note that by (8.8), I; + 2 > d. If strict inequality holds, then since ¥y and ¥,
are left coprime there exist matrices L; € R"*4, L, € R22*4, [, € Rh+k—dxh I, €
Rhtla—dxlz §, ¢ Rhixh+h~d 3nd §, ¢ Ri2Xh+2—d guch that the following identity

holds ;
AR N ECER LN P L (8.19)
Ly L, L, ¥, 0 I

The problem can be investigated in two cases as follows :
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Case 1: h+lLb>d, ki +ky>1

For this case, we define the following matrices which we will soon make use of :

X=X + XoL,, (8.20)
Y= K1V + KoY, (8.21)
X = X9, + X9, , (8.22)
Y= 0,%; +6,Y;, (8.23)
Z:=Z11—2n. . (8.24)
On premultiplying equality (8.11) by I: gl Iéfz ] , postmultiplying it by
1 2
f;l gl and using (8.20), (8.21), (8.22), (8.23), and (8.24) we obtain the
follozvingzequalities :
GX +YF = K10,GZ1 F¥, Ly — K,0;GZ F¥,1L, , (8.25)
GX = K10:GZ 1 FU, ¥, — K20,GZ5, F¥,¥, , (8.26)
YF =0,0,GZ1FU I, — 0,0,GZ F¥,1L,, (8.27)
0= 0,0,GZFV,¥; = ,0,GZFV,¥, . (8.28)

We now show that the matrix

X:=M X, 0 N
0 0
extended so that X € R"*% and where
X, = Zu+ (ZuF\I'lﬁ’l - X)(I:z - ilwt{q’g){/}
+UY K, - 0,01 K1)(6,0,GZ1; - V)
+(080y ~ I)(X = 21 PO L) - 9,900,V

+0£0,(080, — I)(Y + K20,GZ1;)(I - ViV (8.29)

is a common solution to the equations (8.1). We first claim that, X, is a common

solution to the following equations

U, X,V =Wy, (8.30)
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U X, Vo = Wy . (8.31)
In order for (8.30) to be satisfied, the last four terms of X, when premultiplied
by Uy and postmultiplied by V;, should vanish. By (8.12) and (8.16), U; X,V; =
0,GX,F¥,. Note that

0:G(Z:F¥,19;, - X) = 0:K,0,GZF¥, ¥, ,
= j\"lézngZF@g\iz’,
= 0.

by (8.26), (8.15), and (8.28) respectively. Also

(6:0,GZy - Y)F¥: = 6,0:GZF¥;L,¥,,
= éi@lGZF‘I’lﬁ’;z},
= 0.

by (8.27), (8.19), and (8.28) respectively.

Finally, 0, (00, — I) = 0 by (8.13) and (I — %, V})% = 0 by (8.17) implying
that Uy X, Vi = U3 Z1:V) = Wy by (8.9). Therefore, X, defined as in (8.29) satisfies
(8.30).

Now, consider (8.31). Note that, in order for (8.31) to be satisfied, by referring
to (8.9) and (8.24), the last four terms when premultiplied by U; and postmultiplied
by V&, should be equal to —U;ZV;. By (8.12) and (8.16), U2 X,V; = ©,GX,F¥,.
Also note that

U221 FU 8y - X)(Iy— LV O, = 03(K20,GZFU,¥,) (1, - I,¥w,),
= 0y(~K;0;GZF¥,L; — K.0,GZF¥, ¥}
+K20,GZFU, LY, ¥4 ¥,

by (8.12), (8.17), (8.26), and (8.19) respectively. Moreover

U, 08K, — 0,0 K1)(0,0:GZ1 - Y)W, = (K- 0,04K,)(6,0,G2;; - Y)F¥,
= (K2 — 0,0YK,)(0,0,GZF¥,L,)¥, ,
= 0(-K160,GZF¥,L, - 00,GZFV, L,
+640,K10,GZF¥,L,)¥,
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by (8.13), (8.16), (8.27), and (8.15). Further

Uo(0f0y - INX = Zu FUL L) - T, 80,757,
+0,080,(040; — (Y + K20,GZ11)(I - ViVHV,
= 0:{(040, - N[G(X - Z11FU; L) + (¥ + K20,GZ)F)(I - ¥:¥4)}¥,
= 02[(040; — I)(K20:GZF U, Ly)(I — ¥, 94)]¥,
by (8.13), (8.14), (8.17), (8.18), (8.25), (8.15), and (8.19) respectively. Finally, by

employing (8.15),(8.19), and (8.28) several times, we obtain UsX,Vp = Up(Z1; —
Z)Wy = Uy Z91 V3 which also equals W5 by (8.9). Therefore, (8.31) is also satisfied.

Considering the matrix equalities in (8.8), it is clear that, X is a common solution

to the following matrix equations
DXy =Wy, UpXVa=Wo. (8.32)

By using (8.2), (8.3), (8.4), and (8.5) together with (C1), (8.32) immediately implies

that X is a common solution to the equations (8.1). O
Case 2: (i) 1+l =dandfor (ii) ks + ko =1t

In this case, the same X defined as in (8.29) works, provided that in the definition
of X, second term is dropped if (i) holds, third term is dropped if (ii) holds and
both the second and the third terms are dropped if (i) and (ii) together hold. The
verification in these cases are even simpler than Case 1 and the details of the proof

are omitted.

Remark 8.1 : We note by Theorem 7.1 that the solvability conditions of
ANICPIS also consist of the solvability of the equations (8.1) over various fields.
We can immediately show that (C1) and (C3) in Theorem 8.1 are necessary and
sufficient for the solvability of (8.1) over a field F, where the unknown matrices in

(8.6) are sought over F.

Remark 8.2 : Considering the result of Woude [14] for the case R is a field, it
may be natural to expect (for pid case) that (C3) may be replaced by (C4) below.

(C4) There ezist X1, X5,Y; and Y, over R such that

i m e[ R]le al- [ 4]
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Evidently, (C3) implies (C4), which together with (C1) and (C2) is necessary for
the solvability of the problem. To show that (C1), (C2) and (C4) are not in general
sufficient for the solvability of the problem, let R = R|[z], the ring of polynomials

in the indeterminate z. Let Ay := z |, Ay 1= 2 , By = [1 z] , B2 =

[0.5 0] , C1:= [;] and C; := [;] Note that, with

1 2
Zy = 0 and Z; = 0
0 0 0 0

A; = B1Z,Cy and Ay = B3Z5C;. Therefore, (C1) and (C2) are satisfied. Also, by

1euingxl:=[2zl] ,X2:=[g ,Yi:=[0 0] and ¥;:= [ -1 0 [, (C4)

is also satisfied. Now, suppose that there exists a common solution X € R[z]%*? to

the matrix equations (8.1), in the form
X X
X = n A |
X1 X2
By simple manipulations, the unique X2; is found to be =! which is, indeed not a

polynomial in z. This contradicts X € R[2]?*2. O

Remark 8.3 : One of the special cases that would eliminate the complexity of
the common solution X stated in (8.29) is the unimodularity of G and F over R. In
particular, take G = I and F = I. We claim that the matrix

X=M X 0 N
0 0

extended so that X € R™** and where
Xs =211~ 2%21, — Ix’z@ngl'lLl‘Ilg‘I'g + Ix"101Z\I!2L2\III\II"1
is a common solution to the equations (8.1). To show this
0:X,¥; = W;—-0,2V,L,¥, 4+ 0;:K,60,ZY,L,Y,,

= W, - OII\’QOQZ‘I,QLQWI .
= Wi,
by (8.9), (8.15), (8.17), (8.19), and (8.28). Similarly, it is not difficult to find out that

0;X,¥,; = W,. It follows trivially using the above equalities that, X is a common

solution to the equations (8.1).



Chapter 9

SPECIAL CASES AND
EXTENSIONS

In this chapter, we examine certain special cases of NICPIS and the general
noninteracting control problem. In Chapters 6-8, we have considered the case N = 3
and we have been able to state solvability conditions on the problem data for NICPIS
and for its almost version ANICPIS. As a special case, we can define NICPIS for
a 2-channel plant. This problem is going to be our main concern in Section 9.1.
Moreover, it is easy to see that most of the results of Chapter 6 can be generalized

to the case N > 3. In Section 9.2, we briefly discuss this general problem.

9.1 Noninteracting Control for a Two Channel Plant

Let our system model for the 2-channel plant be in terms of its transfer matrix Z,,
defined in (4.1). Also, assume that (3.9)-(3.18) hold. Employing the feedback law
(4.4), we can write a matrix fractional representation for the two-by-two closed-loop
transfer matrix Z; in (4.9), in terms of the parameters of the compensator. NICPIS
is the problem of determining a compensator Z, such that the two off-diagonal block
matrices are identically equal to zero with the additional requirement of internal
stability. Using the same kind of manipulations as we made in synthesizing NICPIS

in Chapter 6, it is not difficult to prove the following proposition.

55
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PROPOSITION 9.1 : NICPIS is solvable if and only if there exists X €
S(r+a)x(r+m) sych that

Mg = M3 XTho , Ty = My XThyy (9.1)

where

_ ' S _ R R
I = ? _ |, = Q - i = @ )
—P WD -T CWan P Wiy

and S,T,Cy, and D are defined through the factorizations (4.13). Note that, in
Theorem 6.1, we have encountered similar type of equations. However, in (9.1), the
two equations are coupled via II;; and the two sides of each equation are dependent
on each other. This difference allows us to obtain simpler solvability conditions for
this problem in the sense that separate solvability of the two equations will be enou.‘gh

to determine a common solution. This is established in the following theorem.

THEOREM 9.1 : NICPIS is solvable if and only if there exist matrices Y1,Y

over S such that
My = M Y410y, , (9-2)

My = 15 Y10y - (9.3)

Proof : The necessity part of the proof is obvious.

[If] Assume that (9.2) and (9.3) hold. On premultiplying the equality (9.2) by
1151Y,, we have
My (Y2 — Y1), = 0. o (94)

At this stage, we need the following lemma.

LEMMA 9.1 : Let A € S™**Y € S"X" B € §™X*. If AYB = 0, then there

exist matrices Ax, By, Zy and Z; over S such that
Y =AwZy+ Z2B; , - (9.5)
where AAr = 0 and BB = 0.

Proof : Let U be a unimodular matrix over S such that

e [4].
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where A is of full row rank. Furthermore, let L be a greatest left divisor of A such
that A = LA, with A being left unimodular. Therefore, let A! denote the right

inverse of A such that
N AAt=1T.

It is clear that, if AY B = 0, then AY B = 0. It follows that, there exist matrices Zp
and By satisfying
AY = ZoBy

with By B = 0, which yields A(Y — A'ZyBy) = 0. Therefore, there exist matrices Z;
and Aj such that
Y = ArZy + A*Z4 By

with AA; = 0. On choosing Z; := A'Zy and noting that AA; = 0, (9.5) directly
follows. O

Using (9.4) and Lemma 9.1, Y2 — Y; can be expressed as
Y2 - Y1 = lgneZr + Zollaok (9.6)
for some matrices 11k, 12, Z1 and Z; where
O1Tlg1x = 0, My, = 0.

Now, we define
X =Yy — 21121 = Y1 + ZoM12k 9.7

so that (9.1) holds. O

9.2 The General Noninteracting Control Problem

In this section, we consider the general noninteracting control problem with
internal stability for N-channel plants with N > 3. Let the bicoprime fractional

representation of the open-loop plant Z, over S be as follows:

n uy

Y2 Uz
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and
P Wi Wi - Win
P, Wo Wiy -0 Won
Zpy=| . T [ B1 R, --- Rn ] + . . ) , (9.8)

Py Wni Wz --- Wan
where P; € SP*" { =1,...,N, Q11 € S™*", R; € S™ ¢,  { = 1,...,N, Wi €
SPiX4, 4,5 =1,...,N. Also assume that (3.9)-(3.18) hold. Now, if the feedback law
(4.4) is applied to the system, then we obtain a natural matrix fractional description

of the closed-loop transfer matrix Z; in terms of P, Q., and R, as follows:

P, -WuP. Wa Wy
7= P —Wa P 51 [ R, Rs -+ Ry ] Wa1  Wap
: : RWy; RWz --- RWin : :
Pn -Wni P, Wi Wae
(9.9)
where

5 = [ @n R1 P, } .
-RPA Q.+ RWn F,
Under this set-up, NICPIS can be defined as follows: Determine the solvability
conditions under which there erists an internally stabilizing compensator Z, =
P.Q7'R, such that the off-diagonal blocks of Z; defined in (9.9) are identically equal

to zero.

For this purpose, let us define

P2 T2
P; . T3

. Cr l= 1 ! . ’
Py Tn

D[R, Ry --- RN]:[S2 S3 - Sy |D7T.

Also let us define

[ R
M = Q ] , 1=2,3,...,N.

| -T; CiWa
= [ @ s .
II;; = . =2,3,...,N.
1; _P ‘VljD y J ’ s

Wan
Win

WnN
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and

=

=] @ U5 | ij=23,...N
~T; CiW;;D

We are now ready to state the main result of this section.

THEOREM 9.2 : NICPIS is solvable if and only if there ezists X €
S(r+a)x(r+m1) satisfying

ﬁ,’j:ﬁ,‘lXI_Ilj, ,7=23,...,N, i#7j. (9.10)

Proof : We do not go into the details of the proof, but, instead we give the
outline. Since internal stability is the fundamental constraint, first replace P, by
P (X), Qc by Qo (X), and R, by I, where Zo(X) = Per(X)Qcr(X) 7! is the set
of all internally stabilizing compensators and is defined via (3.26). Then, as an
intermediate step, obtain N? — 3N 4 2 equations similar to what we have obtained
in (6.20). Here, the necessary manipulations would be exactly the same as we did
in proving Lemma 6.1. The final step is to use the same transformations (6.28) and
(6.29) to conclude that the solvability of (9.10) is equivalent to the solvability of
NICPIS in the general N-channel case. O

Another interesting problem is NICPISDP, Noninteracting Control Problem with
Internal Stability and Diagonal Preservation [14]. In this problem, we not only
require the diagonal blocks of the open-loop plant Z, to be preserved after closing
the loop, but also we require that NICPIS is solvable. This matching problem can
be stated in terms of a matrix equation of the type A = BXC. We present this fact
by the following proposition which we state without proof.

PROPOSITION 9.2 : NICPISDP is solvable if and only if there exists X €
S(rta)x(r+p1) sych that

109 g Mps .-+ Ilon
169} _ _ My Mz -+ Man

X [ II2 - I3 i~ ] = ) .. . (9.11)
Ny lnys TMins --- Tnw

The significance of this result is that, the solvability of NICPISDP is reduced to the
solvability of an equation of the type A = BXC for which we have given verifiable

and easily interpretable solvability conditions in Theorem 4.2.
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CONCLUSIONS

The main contributions of this thesis are Theorems 5.1, 6.1, 7.1, and 8.1. Theorems
5.1, 6.1, and 7.1 yield new results on the problems ADDPIS, NICPIS, and ANICPIS,
respectively. The conditions are in terms of the solvability of linear matrix equations
involving system matrices associated with certain natural subplants of the original
plant. The conditions of Theorem 5.1 can be restated in the language of geometric
(state-épace) theory (see [25],[26]). This condition amounts to a “ zero-cancellation”
condition in the frequency domain terminology and to an “invariant space inclusion”

condition in geometric terminology.

Theorem 8.1 is crucial for obtaining a geometric counterpart to the conditions
of Theorems 6.1 and 7.1 which are essentially the common solvability of two
linear matrix equations of the type encountered in Theorems 4.2 or 5.1. By the
result of Theorem 8.1, a common solution to these equations exists if and only
if they are separately solvable (zero-cancellation occurs) and a bilateral matrix
equation is solvable. A geometric counterpart for the solvability of this bilateral
matrix equation can also be obtained using the results of [27] and the geometric
interpretation of skew-primeness equations. Thus, the condition (C3) of Theorem 8.1
amounts to a “decomposition condition for certain invariant subspaces,” a condition |
encountered in [28] for the solvability of the regulator problem. In frequency domain,
the condition (C3) amounts to a disjointness condition among appropriate zeros
associated with certain matrices. Therefore, when reflected to Theorems 6.1 and

7.1, the condition (C3) will yield a disjointness condition among the system zeros

60 i .
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of suitable subsystems, or equivalently, it is expected to yield a “decomposition
condition” [28, Corollary 7.3] for certain invariant subspaces of the state-space of

the original system.

It is clear that, there is work to be done towards explicitly obtaining the geometric
counterparts of the solvability conditions we have given in Theorems 6.1 and 7.1.
This will in principle be easily accomplished via a geometric counterpart of the
condition (C3) of Theorem 8.1 for which a readily available result is Theorem 5.12
of [27]. This line of research has been deliberately avoided in this thesis since its

development requires a rather different algebraic background.

A problem which is left open in this thesis is stating an analogue of Theorem
8.1 for the common solvability of N linear matrix equations when N > 3. As far
as checking the solvability and obtaining a solution (when it exists) of the general
NICP, Theorem 9.2 serves well since it may be restated in terms of an equation
of the type Az = b over a principal ideal domain. However, exactly what type of
constraints this imposes on the structure of the open-loop plant is not clear at this

stage.
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