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ABSTRACT

RIPPLE-FREE DEADBEAT
CONTROL PROBLEM

Erkan Unal Mumcuoglu M.S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. M. Erol Sezer
February, 1990

In this thesis, we consider the ripple-free deadbeat control problem for linear, multivari-
able sampled-data systems represented by state-space models. Existing results concern-
ing the deadbeat/ripple-free deadbeat regulation and tracking problems are based on
controller configurations of either constant state-feedback or discrete dynamic output
feedback. In the thesis, the problem is analyzed for two new sampled-data controllers,
namely, generalized sampled-data hold functions and multirate-output controllers. Some
necessary and sufficient solvability conditions for the problem are stated by theorems in
time-domain and frequency domain in terms of the open-loop system parameters. Sev-

eral special cases are also considered as corollaries.

Key words: Multivariable Systems, Sampled-Data Systems, Ripple-Free Deadbeat
Control, Tracking, Regulation, Generalized Sampled-Data Hold Functions, Multirate-
Output Controllers.
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OZET

DALGACIKSIZ SIFIRA DONUMLU
DENETIM KURALI

Erkan Unal Mumcuoglu
Elektrik ve Elektronik Miihendisligi Bolimii Yiiksek Lisans
Tez Yoneticisi: Profesor Dr. M. Erol Sezer

Mayis, 1990

Bu tezde, durum uzayinda tanimlanmig, dogrusal, ¢ok @egi§kenli orneklenmis sistem-
lerin dalgaciksiz sifira doniimlii denetim problemi a,ra§-;clr11m1§t1r. Sifira dontimli ve
dalgaciksiz sifira doniimlii izleme ve diizenleme amacli denetleyicilere iliskin varolan
sonuglar sadece degigsmez durum geribeslemeli ya da zamanda ayrk dinamik gkigtan
geribeslemeli denetim yapilar i¢in elde edilmigtir. Bu tezde ise problem iki yeni bilgi
ornekleme denetleyici sistemi kullanilarak analiz edilmigtir. Bu yontemler, genellegtirilmig
bilgi 6rnekleme-tutma fonksiyonlan ve farkli siklikta gikig 6rnekleyici denetleyicilerdir.
Teoremlerde verilen gerek ve yeter ¢6ziim kogullari hem zaman hem de frekans tanim
bélgelerinde agik dongil sistem degigmezleri tiiriinden ifade edilmigtir. Ozel durumlar ise

teoremlerin sonuclarinda incelenmigtir.

Anahtar sozciikler: Cok De§i§kenT1/Sistemler, Ornekleme-Tutma, Sistemleri, Dal-
gaciksiz Sifira Dgn'imlﬁ Denetim, Izleme Problemi, Duraganlagtirma problemi, Genelleg-

tirilmig Bilgi Ornekleme-Tutma Fonksiyonlari, Farkli Siklikta Cikig Denetleyicileri.
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Chapter 1

INTRODUCTION

Since World War II, the digital computers have experienced a period of remarkable
growth, because their application to scientific computation provide high accuracy, com-
putational speed as well as flexibility and versatility. As advantages over analog tech-
niques became apparent, it seemed quite natural that control system engineers should
also consider the application of digital techniques in control system design. By the use of
sampling, a continuous-time system can be converted into a discrete-time system upon
which digital control techniques can be applied easily to change both the continuous-

and discrete-time behavior of the system in a desired way.

One of the fundamental problems associated with discrete-time control of linear
(either discrete- or continuous-time) systems is that of driving some signals to zero in
finite time and holding it there for all discrete ( sampling ) times thereafter. This problem

is called the deadbeat control problem, since the signals are beaten to a dead stop.

If it is the system’s state which is to be driven to zero in finite time, then the
problem is deadbeat state regulation [1],[2], and the very definition of controllability can
be applied to solve this problem. The state deadbeat controller is independent of the

system’s initial state and results in a nilpotent state transition matrix.

T' Q.
YikaeléFrotim Ruruln
Dokiimanjasyon Merkezi
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Deadbeat regulation problem arises if it is the system’s output that is to be driven
to zero in finite time. This problem was solved by Leden [3] using state feedback,
who pointed out that the closed-loop sometimes loses stability and the control input
diverges exponentially to keep the output zero. In many applications, such a situation
is not acceptable, therefore, controllers should be designed such that the control input
converges to zero as time goes to infinity. Leden proposed in [3] a procedure for designing

such a controller for a rather restricted class of systems.

Akashi & Imai [4] extended this result to the case of output feedback. They derived
an elegant geometric characterization of the settling time, inspired by the geometric
approach developed by Wonham [5]. Kimura & Tanaka [6] considered the problem with

internal stability constraint in its full generality.

A more difficult problem is deadbeat tracking, when one wishes the output of
the given system to track a reference signal in a deadbeat fashion. Such a deadbeat
controller is a dynamic system which depends on the initial states of both the given
plant and the reference generator. The earlier works of Tuo [7] and Kugera [8] do not
insist on the independence of the controller upon the initial states. The most complete
results were given by Kugcera & Sebek [9], whose approach was in the transfer function
setting, with dynamic output feedback configuration. They also showed that the same
problem is solvable with internal stability constraint if and only if no unstable poles of

the reference generator occur as a zero of the plant.

However, since ordinary deadbeat control requires the deadbeat response only at
sampling times, there may be non-decaying ripples in the steady-state response between
the sampling instants, even if the deadbeat control system is internally stable. The
ripples, in the most general case, appear due to the modes which can not be made un-
observable in the error system. This problem, namely the ripple-free deadbeat control

problem(RFDB) was analyzed recently by Urikura & Nagata [10], who considered the
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constant state feedback approach as a contrel scheme. They stated a geometric solv-
ability condition, which requires plant to include the continuous-time signal model of
the given reference. This is a somewhat obvious solvability condition and the ripples
are not eliminated by the digital control alone unless the plant is precompensated by a
suitable order compensator. The resulting closed-loop system is relatively strong, since
the system is essentially of feedback form and is internally stable, but robustness of the
system is weak as far as the deadbeat property is concerned, since the deadbeat control
is sensitive to the variation of the system parameters. Also assumed in this paper was
that states of both plant and the reference model are directly detectable. However, in
an actual construction of the control system, suitable order estimators are required if

this assumption is not satisfied.

In the design of controllers based on the state-space methc’)d, observers are often
used to estimate inaccessible elements of the state vector. The advantage of using an
observer exists in the fact that the observer design is separated from the controller
design, and therefore the whole design procedure is simplified. Nonetheless, we can
point out two clear disadvantages which accompany the introduction of an observer,
namely increase in the order of the system and the possibility of producing an unstable
controller. Therefore, we desire to apply a new type of sampled-data output feedback
controller which internally stabilizes the closed-loop system, and at the same time, is
capable of satisfying deadbeat and ripple-free deadbeat response, independent of the

initial states.

Among the sampled-data controllers that exist in the literature, we can think of
three different control structures. Chammas & Leondes [11],[12] proposed to use a certain
type of periodically time-varying gain controllers, namely multirate-input controllers
(MRIC) which detects all the plant outputs once in a frame period Tp and change the

i-th plant input N; times in Tp with uniform sampling periods. Hagiwara & Araki [13]
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proposed another kind of sampled-data controllers which detect the i-th plant output
N; times during a frame period Ty and change the plant inputs once during Ty, i.e.
multirate-output controliers (MROC). They have shown, in particular, that an arbitrary
state feedback can be realized by such a controller, with arbitrary degree of controller
stability. The most general form of sampled-data controllers is the generalized sampled-
data hold functions (GSHF) considered by Kabamba [14]. The idea of GSHF is to
periodically sample the outputs of the system, and let the control be a linear periodic
time-varying weighting of the output sequence. The freedom inherent to this method

allows the system designer to achieve simultaneous objectives.

With these new sampled-data controllers at hand, we analyze in this thesis dead-
beat and ripple-free deadbeat control problems deeply, considering the stability criterion

as well.

In Chapter 2, the ripple-free deadbeat control problem is considered using general-
ized sampled-data hold functions. Initially, we investigate the deadbeat control problem.
Together with the main theorems regarding the algebraic and geometric solvability con-
ditions, a ﬁecessary condition relating the state space orders of the reference model and
the plant is provided. It is also shown in the corollaries that the above necessary con-
dition is, at the same time, a sufficient condition for the single output case and for the
nonsingular output matrix case of the reference model. Furthermore, we present some
computational methods for realization of generalized sampled-data hold functions by
continuous and piecewise constant functions of time. In the second part of the chapter,
algebraic solvability conditions of the ripple-free deadbeat problem are given in time
domain. In addition to that, a frequency domain solvability ::ondjtion is presented by a
corollary. Finally, the special case of zero reference input, namely deadbeat regulation
and ripple-free deadbeat regulation problems are investigated. We show that they are

equivalent problems and are always solvable. We note throughout the analysis that the
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internal stability property holds within the closed-loop structure.

In Chapter 3, we deal with the ripple-free deadbeat control problem with MROC,
which is the dual form of MRIC. We formulate the problem and provide a solvability
condition, which internally stabilize, and at the same time, strongly stabilize the closed-
loop structure. The motivation behind this method is by Araki & Nagata [10] and [13],
who have shown that an arbitrary state-feedback can be realized by MROC. In the final
subsection, the deadbeat and ripple-free deadbeat regulation problems are discussed and

a method for the solution is provided by a theorem.

Finally, Chapter 4 contains conclusions and comments on further research of the

problem.

1.1 Notation

Throughout the thesis, matrices and vectors are denoted by upper and lower case italic
letters, abstract objects such as a subspace, a system etc. by script letters. A bar over
a symbol indicates that this symbol is related with a continuous-time system, while a
symbol without a bar indicates that this symbol is related with a discrete -time system.
A hat over a symbol indicates that the symbol is related with the closed-loop system.
Subscripts p,r and e indicate the plant, reference and error systems respectively. A super
superscript d indicates that symbols are related with sampled-data systems in small-time

intervals.



Chapter 2

RIPPLE-FREE DEADBEAT CONTROL
USING GENERALIZED SAMPLED-DATA
HOLD FUNCTIONS

In this chapter, we consider the ripple-free deadbeat control problem using output feed-
back and generalized sampled-data hold functions. In the first section, we introduce the
control configuration, and state the problem. In Section 2, we investigate the deadbeat
control problem in detail, and present some necessary and/or sufficient solvability con-
ditions. The last section is devoted to ripple-free deadbeat control problem, where some

partial results are reported.
2.1 Formulation of the Problem

Consider a linear time-invariant plant S, described by continuous-time state equations

s . Z(t) = ApEy(f) + Bpu(t)
% gpgt; = Cp"_’pgtg’ & 1)

where Z,(t) eR"», 4(t)eR™, and F,(t) ¢ R! are the state, input, and output of S, re-

spectively.
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Su,rwose that a reference input to S, Is generated by a reference model S,

#.(1)
g (1)

where Z,.(¢) e R™, and 7,(t) eR! are the state and output of §,. #,(f) describes the

Z.(t)

= A
S, T
CrZ, (1),

o

(2.2)

desired output of the plant. To avoid trivialities, we assume that rank C, = rank C, = 1.

The augmented system & consisting of the plant S, and the reference system S,

is described by

s. #(t) = Az(t)+ Ba(?)
S: :E( - 2.3
i) = Ca), 23
T
where &(8) = | 21(t) 27(2) |  €R", n=ny+n,, and
A‘[o A,.]’B‘[o}’c‘[o Cr}' (24)
Similarly, we define the error system S, as
= . #(t) = Az(t)+ Ba(z)
Sei Ft) = Dal), (2:5)
where &(t) e R is the error defined by the difference between 7. (t) and 7,(t), and
.D - [ _Cp Cr ]. (2.6)

We assume that the plant &, is controllable and observable, and the system S, is
observable. Thus the augmented system S is observable. Note, however, that the error

system S, may be unobservable.

The control structure for the error system S, is defined as
a(t) = Fp(O)yp(k) + Fo(®)ye(k), kT <t < (k+ 1T, (2.7)

where T is the sampling period; y,(k) and y,(k) are discrete-time signals obtained by
sampling %p(t) and 7-(¢), i.e., y;(k) = #%(kT), ke Z, i = p,r; and F,(t) and F,(2) are
T-periodic generalized sampled-data hold functions (GSHF); i.e.,

F(t+T)=F(t), i = pr, teR. (2.8)
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Figure 2.1. Control Scheme with GSHF Controlier

The closed-loop sampled-data system has the configuration shown in Fig. 2.1,
where S and S, are also indicated. To obtain a discrete-time description of the sampled-

data system in Fig. 2.1, let us define

z;(k) = z;kT), i=p,m1,
u(k) = a(kT), .
a(k) = [<f(k) =I(k) ]T,
(k) = [gF(R) T (k) ], .
8 = AT, i=np,r (2.9)

1
& = AT = diag{8,, 8.},
T .. .
T, = [ e%TBar,
0,

I = /Te“I(T"’)BdT = [rpT o]T.
0

Then, the discrete-time augmented system & and the error system S. are described

respectively as

z(k+1) = ®z(k)+Tulk

s: ™ y(kg = ngk%f () (2.10)
2{k+1) = Oz(k)+ Tulk

Se : ( e(k% = Dz((k)) © (2.11)
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We assume that the sampling process does not introduce any unobservable modes

into S, and S, i.e., (8,,Cp) and (®,,C,) are observable pairs.

Next, we obtain descriptions of the closed-loop sampled-data and the correspond-

ing discrete-time systems as follows. First, we rewrite (2.7) as
a(t) = P(t)y(k), kT <t < (k+ 1)T, (2.12)
where y(k) is defined in (2.9), and
Fity=[Fe) F | S
Substituting (2.12) in the expression
i KT+6 _
BT +6) = M5(kT) + /k AGT+6-7) Ba(r)dr, 0 <6< T (2.14)
T

which describes the evolution of the state of S, we obtain

. kT 46 .
F(T +68) = eM3(kT)+ /k AT BR(ryy(k)dr

§
= (&4 [ ACBR()CAr | 5(RT) (2.15)
A o
= ®(8§)Z(kT),
where 5
3(8) = e’“+/ AT BR(r)Cdr, 0<6<T
4,80 (2.16)
_ [ P+ Gp(8)Cy G,@c,]
- 0 eAr®
with
5
Gi(6)=[) e B Fy(r)dr, i=p,r. (2.17)

Thus the closed-loop sampled-data error system is described by

s . (AT +6) = B(8)F(kT
Se ﬁ%w i 53 _ D(E(),:’ff, +)5), 0<6<T. (2.18)

The description of the closed-loop discrete-time error system is obtained from

(2.18) with 6 = T as

s . z(k+1)

dz(k)
)

Dz(k)

i

(2.19)
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where
& =81 = [ & + GpCp  GoCh (2.20)
0 3,
with
T i o
G: = Gi(T) = /0 A (T-1) B Fy(r)dr, = p,r. (2.21)

Having obtained the descriptions for §e and 8., we now formulate the deadbeat

and ripple-free deadbeat control problems as follows..

Deadbeat Control Problem :Find T-periodic generalized sampled-data hold
functions F,(t) and F,(¢) such that for all Z(0)eR™

e(k) =0, forall k> N (2.22)
for some N e Z,.

Ripple-Free Deadbeat Control Problem :Find T-periodic generalized sampled-
data hold functions F,(t) and F,(¢) such that for all Z(0)e R™

&t) =0, forall t>NT (2.23)

for some NeZ,.

2.2 Deadbeat Control Problem

In this section, the deadbeat control problem is investigated in detail. In the first
subsection, the main theorem is stated. The second subsection is devoted to some
implications of the main theorem. In the third subsection, the realization of generalized
sampled-data hold functions is considered. In the final subsection, geometric solvability

conditions are given.
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2.2.1 General Solvability Condition

The output of the closed-loop discrete-time error system S, in (2.19) is given by
e(k) = D&%z, zo = 2(0) = 3(0). (2.24)
Thus deadbeat control problem is equivalent to finding F,(¢) and F,(t) such that
Im & c Ker D, forall k> N, for some NeZ,. (2.25)
Noting that Im & C Im &V, for all k > N, (2.25) is equivalent to

Im &Y C Ker D. (2.26)

The following theorem provides a necessary and sufficient condition for solvability of the

deadbeat control problem.

Theorem 2.1 Deadbeat control problem is solvable if and only if there exists X ¢ R7»*"r

and Y e R™X} such that the following equalities are satisfied simultaneously:
(2, +YCp)X = X&,, (2.27)

CoX = C,. (2.28)

Proof: [Necessity] Using (2.6) and (2.20), (2.26) can be rewritten as

N
[ -C, G ] { ®, +0Gpcp Géf’r } = 0. (2.29)

Defining,
9 = ‘?p + GpCyp .
QN = @;v—lGrCr + QQ’-ZGrCrQT + s + GTCTQTN—I,

(2.29) becomes

(2.30)

[-c, ¢ ] [Qf gf}{,J =0, (2.31)

r
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which in turn implies

C,&Y =0, (2.32)
and
Cofdy = C, 9, N, (2.33)
From (2.32), we obtain
Cp
:C”(I)” &Y =g, =, (2.34)
Cpdpt

where ), is the observability matrix of the pair (Cp,®,). Since (Cp,®,) is observable
by assumption, so is (Cp, ®,) [15], so that @, has full column rank. Then, (2.34) implies

that
$Y = 0. (2.35)

Noting that @, is nonsingular, we now define
X =0n®, N, Y=0G,+G,. (2.36)

Then, (2.33) implies (2.28). On the other hand, using (2.35) we obtain

(B, +YC)X = (8 +GpCp)X +GrCpX
= @?QNQ?N +“G,-C',-
= (8YG.C, + 8V-1G,C. 8, + ... + $,G.C,8,N1)8,~N
+G,C, : (2.37)
= fé\;ll%c" +...+8,G.C,8,N% 4 G,C,8N-1) p1-N
= N r_
= X9&,,

i.e., (2.27) is also satisfied.
[Sufficiency] Since (Cp, ;) is observable, G, can be chosen to make &, = &, + G,C,
nilpotent; i.e.

V=0 (2.38)

for some N. Let

G, =Y - G,. (2.39)
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Then, (2.27) and (2.28) imply that
I -x\|8% Gcc. | _[& o I -x |
prllvar]-[s el 7] e
and, therefore
I -x\[% e 1% _[8Y o 1[I -x
- 14 rr = P - y
Ok B b A3 v B

Hence, from (2.38), we obtain

) rx)[r -x1[%, ac
N - P rCp
DeN = | -G, C’][o I] 0 I 0 @r}
3 BN 0 I -X (2.42)
= [-G O][é’ ey ||o I

Thus when (2.27) and (2.28) are satisfied, G, and G, can be constructed to satisfy the
deadbeat condition (2.26). It remains to show that given G, and G,, F,(t) and F,(¢)

can be solved from (2.21). This is done in section 2.2.3.
2.2.2 Implications of the Main Theorem

Following the necessity part of the Theorem 2.1, (2.35) implies that the closed-loop
system is internally stable. Hence, the deadbeat control problem inherently includes the

internal stability constraint.

We now elaborate on conditions (2.27) and (2.28) of Theorem 2.1. They together

imply that

Co(®, +YCp)'X =C,8%, i=0,1,.... (2.43)
In particular, we have

Cp Cr

Cp(®,+YC C,®

. P( Y4 P) X = . T : (2'44)

Cp(®p + Y Cp)1 C, 8,
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where 7 = maz {ny, n,}. Since the pair (®,,Cp) is observable, then so is [($, +
Y C,),Cypl, so that the coefflcient matrix on the left-hand side of (2.44) has rank n,.
Similarly, the matrix on the right-hand side has rank n,. This observation leads to the

following corollary of Theorem 2.1.

Corollary 2.1 A necessary condition for the solvability of the deadbeat control problem

is that ny > n,.

We now turn our attention to the special case of single-output system and reference

plant, i.e., when I = 1.

Without loss of generality let us assume that the pair (&,,Cp) is in observable

canonical form, that is

S
s,= |1 |, (2.45)
e 0 ¢
! 1 ¢ |
Co=[0 ...01 . (2.46)

Also, assume without loss of generality that @, is in jordan form with

&, = diag. {J1, Jos.e.n. Jq}, (2.47)
Ao 1
J; = € RMXmi 2.48
’ Ao 1 ( )
Ai
where 37 n; = n,, and A; # A; for i # j. Let C, be partitioned conformably as

C.=[C G ... G (2.49)

where

ci:[cil Cio ... c;m],i=1,2,...,q. (2.50)

Note that since (®,,C,) is observable, we have ¢;; #0, 1= 1,2,...,¢.
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Finally, let
Gpny Grny
Gy = : , Gr=
9p2 gr2
9p1 9r1

We are now ready to prove the following.

15

(2.51)

Corollary 2.2 For the single-output case, the deadbeat control problem is solvable if and

only if ny, 2 n,.

Proof : [Necessity] The necessity of the condition n, > n, has already been stated in

Corollary 1.1. Below we provide an alternative proof.

Consider (2.35), which has been shown to be a necessary condition. From the

structure of &,, C, and Gy, it follows that (2.35) is satisfied if and only if N > n, and

i+ ¢ =0, 7=1,2,...,m,

that is

&, =
00
10
Substituting Cyp, Cr, <i>p, ®, and G, in (2.29), we get

-0 0 grnpcl g"‘anq W
1 : :
0 0| g2C gr2Cq
[ 0 0 -1 I Cy Cq ] 1 0( gnCr ... grlcq
Ji
L. Jq =

Carrying out multiplications, we obtain the following equivalent equations

Ci(JP? = grnd® ™ = = g D) P = 0, i=1,2,...,q.

(2.52)

(2.53)

(2.54)

(2.55)
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Since J;’s are nonsingular, (2.55) is equivalent to

Cr(®7P — g @71 — . — grnpI) = 0. (2.56)
Now, (2.56) implies
Qr (07 — g1 @71 — ... — g, I) = 0, (2.57)
where
Cr
Cr@rnr~1

is the observability matrix of the pair (®,,C;). Since (®,,C,) is observable, (2.57) is
satisfied only if
o — grlé;'-zp_l Tees T grn,,I = 0. (2.58)

Finally, from the structure of &,, it follows that degree of the minimal polynomial of &,
is n,, so that a necessary condition for (2.58) to be satisfied by some g,,, 1 =1,2,...,n,

is obtained as n, > n,.

[Sufficiency] Assuming that n, > n,, let us choose the elements of G, to satisfy
(2.52), and those of G, to satisfy (2.56). Then &, is of the form given in (2.53) , and

(2.54) is satisfied for any N > n,. This completes the proof.

Another special case that deserves attention is when C. is square, i.e., when [ = n,.

Corollary 2.3 For the case | = n,, the deadbeat control problem is solvable if and only

if np 2 n,.

Proof : Necessity follows from Corollary 2.1. To prove sufficiency, first note that since

rank C, = [ = n,, C, is invertible . Now , choose

X = Cy'C,, (2.59)
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and

Y = X8,0,"! — 8,XC,"?, (2.60)
where C,! is any right inverse of C, satisfying C’,,C'ph = I;. Then,
CpX = CpCpiCr = Cr, (2.61)
and

(B, +YC)X = &,X+YC,

8,X + X&, — 8,X = X8&, (2.62)

so that both (2.27) and (2.28) are satisfied.
2.2.3 Realizations of Generalized Sampled-Data Hold Functions

To complete the proof of Theorem 2.1 we need to show the existence of GSHF’s Fi(t),
t = p,r, which satisfy
T - =
/0 A (T=) B Fi(r)dr = G; (2.63)

for any given G;. This is the well-known controllability problem [16]. Since the pair

(A,, B,) is controllable, the controllability grammian
W)= | " eA5(T-7) B, BT AE(T-") gy (2.64)
is nonsingular [16]. It is then a trivial matter to show that
Fi(t) = BXeAT-0W (Ty G, (2.65)
satisfies (2.63).

In the rest of this subsection, we review a method by Araki and Hagiwara[17] to
construct piecewise constant GSHF’s F;(t) which satisfy (2.63). For this, we first recall

the following definition.[17]
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Definition 2.1 Let (4,, B,) be a controllable pair, where A,e R™*™ and
By =[by...by € R, A set of integers {Ny,Na,..., Ny} with Ny >0 and 5 Ny =

nyp is said to be the locally minimum controllability indices (LMCI) if

rank [by... A 718y . by ..  AD™T1D,, ] = ny. (2.66)

Let {N1,Na,...,Np} be a set of LMCI for (/ip,Bp). Define,
N = l.c.m.{N1,N2,...,Nm}, (2.67)

To=T/N, Tx =T/Ng, k=1,2,...,m. (2.68)

Let B(t) = [ fi;(®) |, k=1,2,...,m; § = 1,2,...,1, where
i@ =¥, pTe <t < (u+ 1T p=0,1,...,Nx— 1, (2.69)

with f¥/ being real constants. Then, from (2.63), the j%* column of G; is expressed as

m Ng—1 (IL+1)T B . ‘
g o= >, / * A(T-7) 3, K dr
k=1 u=0 wTy
m Np—1 _ T, '
= Z Z eAr(Ni—n=1)Ti (/ eAr(Ti=) by dr )flfj (2.70)
k=1 p=0 0
m Nig~1 ‘
= 303 eNeE YT be(Th) £, 5 =1,2,...,1
k=1 p=0
where,
B,(T) = e T (2.71)
and
T T .
be(Tk) = / "elp(Tk—*r) by dr =/ keApT by, dr. (2.72)
Y 0

Equations (2.70) can be written in compact form as

Gi=EF (2.73)
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where
E=[b(n) ... SN T)bu(Th) ... bu(Tm) .. SN (T Yom(Tim) | (2.74)

and F = [ka ],k: 1,2,...,m;j= 1,2,”.,l’ with

[

= |- (2.75)
ki
0

From (2.73), a necessary and sufficient condition for the existence of a solution F
for any given G; is obtained as

rank E = n,. (2.76)

However, as shown in [17], (2.66) implies (2.76) for almost all T.
2.2.4 Geometric Solvability Conditions

In this subsection, we provide a geometric interpretation(in the sense of Wonham [5]) of
the necessary and sufficient conditions (2.27) and (2.28) for solvability of the deadbeat

control problem . Let us define the controllability subspace by
B=ImB=<®|I>. (2.77)

Assuming that sampling does not introduce any uncontrollable modes into the system,

we obtain

B= [Inr ], (2.78)

Onr X Np

and state the following.

Lemma 2.1 Conditions (2.27) and (2.28) are simultaneously satisfied by a pair (X,Y)

if and only if there exists a matriz U e R"*¥ and a subspace V C R™ such that

(8+ BUC)Y C V (2.79)
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YV C KerD (2.80)

VeB = R (2.81)

Proof : [Necessity] If (2.27) and (2.28) are satisfied by some pair (X,Y), let
V=[-X ],U:[Y 0]. (2.82)
Then, (2.27) and (2.28) imply
(2+BUC)YV =V, (2.83)

and

DV

fl
g

(2.84)

Letting V = I'm V, the proof follows.

[Sufficiency] Let

V.

be a basis for V, where V,, e R"»X"r and V, e R"*"r; and let U be partitioned as

Vz[WJ (2.85)

v=1[0, U |, | (2.86)

where U,, U,e R™*!. (2.81) implies that V, is nonsingular. Let X = V,V,;~! and
Y = U, + U,. Then, it is a simple matter to show that (2.79) and (2.80) imply (2.27)
and (2.28).

It has been shown [18] that a subspace V C R™ satisfies (2.79) for some matrix U
if and only if it is both ®(mod B)- and ®|Ker(C)- invariant; i.e., there exists Uy e R™»*!
and U; e R™*™ such that

(2+BUL)Y CV (2.87)

and

(@ + U,C)V C V. (2.88)
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Using this result and Lemma 2.1, we reach the following.

Theorem 2.2 The deadbeat control problem is solvable if and only if there ezists a

subspace V C R™ such that

V is ®|Ker (C) — invariant (2.89)
V C KerD (2.90)
Ve <&|T>=R" (2.91)

Proof : [Necessity] (2.79) implies (2.88), which is equivalent to (2.89). The proof
then follows from Lemma 2.1.

[Sufficiency] Let V in (2.85) be a basis for V with V. nonsingular. Then,

[q”” @} [H = [Ej}(w—lmn [g]@m—m—lmx (292)

that is
®Y C V+B. (2.93)

(2.93) is equivalent to (2.87), and therefore, together with (2.89) implies (2.79). Lemma

2.1 completes the proof.

The geometric conditions of Theorem 2.2 may be useful in developing an algorithm
to construct V if it exists, from which X and Y can easily be generated as in Lemma
2.1. Our attempts so far have failed to come up with such an algorithm. However, it
is interesting to compare the above conditions with the solvability conditions of output
regulation problem stated by Theorem 8.1 of Wonham(5]. (2.90) and (2.91) are exactly
the same in both cases. The only difference is in (2.89), which is replaced by (®,T)-
invariance of V. Remembering that ®|Ker (C)-invariance and (®|T')-invariance concepts
are dual, it might be useful to apply the methods and results of geometric approach of
“Wonham.



CHAPTER 2. RIPPLE-FREE DEADBEAT CONTROL USING GSHF’S 22

2.3 Ripple-Free Deadbeat Control Problem

In this section, we investigate the ripple-free deadbeat control problem using output
feedback and generalized sampled-data hold functions. In the first subsection, we provide
a general solvability result and alternative necessity and/or sufficiency theorems. Some
examples verifying the results are also given. A special case is the subject of the second

subsection.
2.3.1 General Solvability Conditions

From (2.18) and (2.19), the output of the closed-loop sampled-data error system is

obtained as

(kT + 6) = DO(6)&*zo, 0 <6< T. (2.94)
Hence, the ripple-free deadbeat control problem is equivalent to satisfying
D&N =0 | (2.95)

and

D3(5)&N =0, 6¢(0,T) (2.96)
for some integer N, where 6(6) and &V are defined in (2.16) and (2.31).
Let us define
6 - =
Y@):/'Jﬂﬁﬂ&Jxﬂw;aqu] (2.97)
0

for some GSHF F(t)e R™*!. The following theorem provides necessary and sufficient

conditions for solvability of the ripple-free deadbeat control problem.

Theorem 2.3 Ripple-free deadbeat control problem is solvable if and only if there exists

X eR™Xnr and o GSHF F,(.)e R™*! such that

C,X = C, (2.98)



CHAPTER 2. RIPPLE-FREE DEADBEAT CONTROL USING GSHF’S 23

(8, + Y(T)C, )X = X8, (2.99)

Gyl ¥ L P(6)C, 1X = CreA®), §¢(0,T). (2.100)

Proof [Necessity]: Following the proof of the necessity part of Theorem 2.1, (2.95)
implies (2.33) and (2.35), which in turn, reduces (2.96) to

Cp(e®®) 4 /0 ' AN B [ F)(7) + Fr(7)]Cpdr )OS, N = Ce®).  (2.101)
Letting X = Qn®,~N, Fy(t) = Fp(t) + F.(t), and noting that
Y(T) = Gp + G-, (2.105)
the proof follows from Theorem 2.1.

[Sufficiency]: Choose G, to make &, = &, + G,C, nilpotent, compute Fy,(t)
from G, using the procedure of Section 2.2.3, and let F.(¥) = Fy(t) — Fp(¢). Then,
G, = Y(T) — G,, and (2.98) and (2.99) imply (2.41) and (2.42), which is the same as
(2.95). Finally, using (2.41), left-hand side of (2.96) can be evaluated as

O Dé(a)[g 2 ] [é = }éN

5N - (2.103)
- o[ a8 T

= ’

where * denotes some matrix, which is irrelevant to the result. This completes the proof.

We now look at the ripple-free deadbeat control problem from another perspective.
Let
_ _ _ T
Z8)=[ ZF ) ZF() |, (2.104)

where

Z,(8) = O X + V(6)C,, §>0 (2.105)
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for some X e R™*%, and

Z,.(6) = A ® §> 0. (2.106)
Note that
Zo(8) = A,2,(8) + B,F,(8)Cr, Z,(0)=X (2.107)
and
7.(8) = 4, Z,(8), Z,(0)=I,, (2108)
so that
2(5) = AZ(6) + BF,(8)Cr, 2(0)= [ XT I] . (2.109)

The following result is obvious from Theorem 2.3.

Corollary 2.4 Ripple-free deadbeat control problem is solvable if and only if there exists
X eR™*" and a GSHF F,(.) such that the solution of (2.109) satisfies

DZ(§) = 0, §€0,T),

ImZ(T) C Im Z(0). (2.110)

Let V = Im Z(0). Then the solution space of (2.109) is exactly the space of solu-
tions of the closed-loop sampled-data system & starting in V. referring to the geometric
conditions of Section 2.2.4., it follows that V is exactly the space of states which results
in a deadbeat response. Once the state of the overall system is driven into V, then

(2.110) guarantees a ripple-free deadbeat response from then on.

Corollary 2.5 Ripple-free deadbeat conirol problem is solvable if there exists X ¢ R7»X7r

and Fy(s) e R(s)™" with a bounded inverse laplace transform such that
CpX =C, (2.111)

(s = &)™ [ T+ ByF(s)Cp | X = X (s = &)™ (2.112)
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Proof : Follows immediately from Theorem 2.3 by taking inverse laplace transform of

(2.112).

Example 2.1 To illustrate the result of Theorem 2.8 and Corollary 2.5, consider a
scalar plant whose reference input is generated also by a scalar system; that is S, =
(@p,bp, ), S, = (ar,c.). Condition (2.111) gives = ¢./cp, and substituting into

(2.112), we obtain

= ar — a 1
fs(8) = Lbz—p.s o (2.113)
»Cp r
Thus
Fot) = L% eart yel0,T). (2.114)
byep
Now, the deadbeat condition requires
T -
9 = / e?T=")p, f(T)dr = -l@p = LewT, (2.115)
0 Cp Cp

and after choosing f,(t) to satisfy (2.115), f,(t) is computed as f,(t) = fs(t) — fo(2).

Example 2.2 Consider a single-output plant with

w32 e1]

(2.116)
Cp = [ 1 0 ] )
and a single-output reference system with
T 01
4 = [ 00 ]
(2.117)
c, = [ 10 ] .
(2.98) requires that
10
X = [a 8 } , a,BeR. (2.118)
_ T
With X as above and Y (6) = [ 71(8) F2(6) ] ; (2.100) becomes

[10][1;2?‘1556) 1;_(;—5Hi g}:[lo][é ” (2.119)
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which is never satisfied. Hence, the ripple-free deadbeat control is not possible.

However, it is easy to check that the deadbeat conditions (2.27) and (2.28) are
satisfied with

o=-1, ﬂ:I-_—Te_—T, Y=01-eN[1 -1 ]T. (2.120)

Example 2.3 In this ezample, we show the existence of a system for which the set
of sufficient conditions in corollary 2.5 are not satisfied, while the ripple-free deadbeat

control problem is solvable. Consider a second order single output plant represented by
T m 0 = 11
o [5 8] oe[i]

G =[1 1] m#o

and a scalar reference system with

(2.121)

A, =2m, C.=1 (2.122)

Checking (2.111) and (2.112), we see that sufficient conditions are not satisfied. Next,
- T
we can easily show that the GSHF f,(t) and X = [ z; l1—=zy ] satisfies (2.98), (2.99)

and (2.100), where
Rty = [mOg=liemt _ (m2ye2mt, ¢ [0,T]
(2.123)
z1 = [(2+3mT)e3™T — 2]/[18((e™T — ¥T) 4 6(™T — 1)),

and T is the solution of
(2 + 3mT)e®™T — 2][50(e?*™T — €3mT) 4 10[(e5™T — 1)] =

[18((emT — e2mT) + 6(63mT - 1)][50(e2mT — e3mT) +(4+ 5mT)65mT — 4]
(2.124)

which is approzimately (=2241) for negative m, and (%524) for positive m values.
2.3.2 Ripple-Free Deadbeat Regulation

In this subsection, we consider the deadbeat and ripple-free deadbeat control problems

for the special case of zero reference input.
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In the absence of a reference input, the ripple-free deadbeat conditions (2.95) and

(2.98) reduce to

Cp®Y =0 (2.125)
and
Cpd,(6)Y =0, 6¢(0,T) (2.126)
respectively, where
3,(6) = €8 + G,(6)C,. (2.127)

Solvability conditions are provided by the following theorem.

Theorem 2.4 Deadbeat and ripple-free deadbeat regulation problems with internal sta-

bility are equivalent, and are always solvable.

Proof: Following the same argument as in the proof of Theorem 2.1, it follows that the

deadbeat condition (2.125) is equivalent to
&N =0, (2.128)

which also satisfies the ripple-free deadbeat regulation condition (2.126). (2.128), how-
ever, implies internal stability, and can always be satisfied by a suitable G, which can

be realized using a GSHF F),(¢) as discussed in Section 2.2.3.



Chapter 3

RIPPLE-FREE DEADBEAT CONTROL
USING MULTIRATE-OUTPUT
CONTROLLERS

In this chapter, we investigate the ripple-fréee deadbeat control problem using dynamic
feedback from multirate-sampled output values. The first section is devoted to problem
formulation. In the second section, a solvability condition is presented, and several
examples verifying the results are provided. A special case is a subject of the third

section.

3.1 Formulation of the Problem

Consider the error system S, of (2.5), which consists of the plant S, of (2.1) and the
reference model of S, of (2.2). For the purpose of ripple-free deadbeat control of 5,, we
consider a MROC operating on sampled values of the plant output and the reference

signal as shown in Fig. 3.1.

In the control configuration of Fig. 3.1, the samplers at the outputs of S, and &,

operate at rates T, and T, respectively, where
N,T,=N,T, =T, (3.1)

28
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¥ (k+1)
P
Fp Stack |« 'F;
* {
v (k) u (k) (L) Vot
+ —= C ZOH— % T (& = P
1 . Sp(Ap,Bp,Cp)
+
- Y (t)
Sr(AivCr)
¥ (k#1) [
F. r Stack |«— |
r

Figure 3.1. Control Scheme with Multirate-Output Controller

for some integers IV, and N,, and T is the basic sampling period. We define doubly-

indexed discrete sequences z(k, j) and y#(k, ) as

zd(k,5)
yi(k, )

forkeZ,j=0,1,...,N;— 1,i=p,r; and let

z,(kT + 5T;)
Gi(kT + JT3) (3.2)

Il

:I),(k) = xd(k’,O)
j 3.3
w(k) = yik0). (33)
For convenience, we also let
¥k, N;) = z¢(k+1,0) = =zi(k+1) (3.4)
y;'i(kaNi) = y;i(k"l‘ 1’0) = yi(k+1)'

The output samples y#(k, j) are stacked into a vector §;(k+ 1) over each basic sampling
period, that is,
y¥(k,0)
ik +1) = : , ke Z, i=p,r. (3.5)
y:i(k’ N; — 1)
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The discrete controller C which operates at a rate compatible with the basic sampling

period T is defined as

C: u(k+1)= Hu(k)+ v(k), (3.6)
where
v(k) = Fpgp(k +1)+ F,-:i],-(k +1). (3°7)

The control input @(t) to the plant S, is generated by holding the outputs of C over each

basic sampling period, i.e.,

a(t) = u(k), kT <t < (k+1)T. (3.8)

To obtain a description of the closed-loop sampled-data system, we first note that

the discrete-time models for S, and S, at their own sampling rates are described as
B xg(k,j +1) = @gzg(k,j) + I‘gu(k), keZ, j=0,1,...,N, -1
S (3.9)
yg(k’J 2 1) = szg(k,j%

and
wd(k,j+1) = ®%d(k,5), keZ, j=0,1,...,N,—1
8¢ (3.10)
vi(k,j+1) = Crai(k,5),
where
Q:i = eﬁiTi7 i=p,T, (311)
and
d TP A =
Té = /0 o7 By dr. (3.12)
From (3.9), it follows that
, j=1 )
ap(k,5) = (25) 25(k, 0) + 3 (85) Tpu(k), (3.13)
=0
and similarly from (3.10)
2d(k,5) = (8 z2(k, 0). (3.14)

Hence, the stacked samples are obtained as

3p(k +1) = Qpay(k) + Bgu(k), (3.15)
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G-k + 1) = Q2z,(k), (3.16)
of)
C'i@;-i
Qf=1|. , i=p,m, (3.17)
ci(@g)y™ !
and
"o .
C,I'd
Ri=|: . (3.18)
Np—2 i
Cp Y (9 (T9)
L =0 .

On the other hand, again from (3.9) and (3.10), the discrete models over the basic

sampling period are obtained as

zp(k + 1) ©pzy(k) + Lpu(k)

S, : - 3.19
F Yo(k) = Cpzp(k), ( )
z(k+1) = &,2.(k)
» 3.20
e yr(k) = Cr“’r(k)a ( )
where
N; . .
;= (@f) = ez'T, i=p,7, (3.21)
and
Np-1
1
Ip = Z (‘I’g) (Fg)- (3.22)
=0

Here, we assume that the sampling process does not introduce any unobservable
and uncontrollable modes into S, and S, i.e., (®,,Cp) and (&®,,C,) are observable pairs

and (®,,T,) is a controllable pair.

Now, combining (3.6), (3.7), (3.15), (3.16), (3.19) and (3.20), a discrete-time de-
scription of the closed-loop error system over the basic sampling period T is obtained

zo(k + 1)
e(k)

D, z,(k)

Sa Daza(k),

(3.23)

i
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where T
z(k) = [2E(k) oF(k) wT(k) |,

( 3, 0 T,

3, = 0o 3, 0 ,

| BQ; FQf H+F,R]

D, = [-C, ¢ 0].

32

(3.24)

Finally, to obtain an expression for the continuous-time error signal &(t), we note

that
i} KT+6 _
BT +8) = eMz(kT)+ !k AT Bukyar

= eAog(k) 4+ / A Bu(k)dr
0

fl

z(k) + /05 eA0) [ Az(k) + Bu(k)ldr, 0< 6 < T,

(3.25)

where A, B and z(k) are as defined in (2.4) and (2.9), and the last equality follows from

the fact that
5 I
A6 4 / ADdr = T, + / A Adr.
o] 0

Noting that
a(k)=[ I 0 ]za(k),

and

Az(k)+ Bu(k)= [ A B |za(k),
(3.25) can be rewritten as
BT +8)=([ L 0]+ /osez(f) [A B ]dr)eak).

Substituting z,(k) = ®,%2,(0) into (3.29) and using &(¢) = Dz(t), we obtain

&kT +6) = D(][ L, 0]+/osez(r)[ 1 B |dr)®. 2,(0), 0<6<T.

We now formulate the ripple-free deadbeat control problem as follows:

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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Ripple-Free Deadbeat Control Problem: Choose the integers N, and N,,

and the matrices F)p, F, and H such that for all 2,(0)e R**+™
&t) =0, forall t> NT, (3.31)

for some N e Z,.
3.2 A Solvability Condition

From (3.30), necessary and sufficient conditions for ripple-free deadbeat response are

obtained as

DL, o]a.> =0, (3.32)

and

D(/O'seﬁ(f)dr) [4 B8N =0, 6¢(0,7),

or equivalently,

Q.[4 B e =, (3.33)
where
D
_ DA
Qe=| . (3.34)
_DE""_I

is the observability matrix of S,. We note that (3.32) is alone the deadbeat condition.

Since the conditions (3.32) and (3.33) involve the controller parameters H, F,, and
I}, they are not practical to use in design. The following theorem provides a sufficient

. condition in terms of the open-loop system parameters.

Theorem 3.5 Ripple-free deadbeat control problem is solvable in N steps if there exists
G € R™*™ such that
D(&+TG)N-1 =0y, (3.35)
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O.(A+BG)(&+TG)YN ' =0y,

T
where T = [ T o ] , with T)y as in (3.22).

Proof: For G = [ G, G- ],
(8+TG)V1 = [ V-1 Qn_4 ],
where &, = @, + I',G, and
On_1 = &) 1,G, + &) °T,G, &, + ... + T,G, 8V 2.

Thus (3.35) and (3.36) are equivalent to

We now choose F;, ¢ = p,r, such that
G; = EQ?Qi—l’ i=p,T,

and let
H = F,(Q%%;,7'T, — RY).

34

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.41) requires that Q;-’ have full column rank, which is true provided N; > n;, i = p, 7,

where 7; are the observability indices of (&g, C,) and (8¢, C,) respectively. With

I, 0 0
Ta = 0 I Ty 0 )
Gp 0 In

it follows from (3.41) and (3.42) that

(3.43)
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Comnsequently, (3.32) and (3.33) can be rewritten as

DL 0|8y =0 (3.44)
Q.[4 B8 =0, (3.45)
where
s |4, o
A= [ C i }, (3.46)

with Zp as defined in (3.40). Due to the special structure of &,, N can easily be
constructed as . .
3 o Qn 19, @I,
=10 9~ 0 : (3.47)
0 G987 0

It is then a simple job of substitution to show that (3.39) and (3.40) imply (3.44) and

(3.45) respectively. This completes the proof.

We note as a side-remark that since (24 I'G)) has only n,-free eigenvalues and other

eigenvalues are not zero, it is unnecessary to check for existence of G for N > n,, + 1.

It is interesting to compare the solvability conditions of Theorem 3.5 with the
necessary and sufficient conditions of Urikura & Nagata [10], who considered ripple-free

deadbeat control using constant state feedback under the assumptions that m = [ and

&, —ul T,
[ a0 ] (3.48)

is nonsingular for all eigenvalues p of ®,. Urikura & Nagata [10] showed that, under the

stated assumptions, there exists unique matrices X e R"»X% and Y e R™mX7r guch that

%, T, X |_| X,
EXIIHEe o
Defining

V= [IX ] Y=ImV, (3.50)
Ny
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they proved that ripple-free deadbeat control with constant state feedback is possible if
and only if
AV C Im B + Ker §.. (3.51)

In the proof of the sufficiency part of the result they constructed a state feedback matrix
G which satisfies (3.35) and (3.36).

On the other hand, with H and G chosen as in the proof of Theorem 3.5 we have
from (3.6), (3.7), (3.15), (3.16), (3.41), (3.42), (3.19) and (3.20)

u(k+1) Hu(k) + Fpp(k + 1) + Frge(k +1)

(H + FpRﬁ)u(k) + FpQg“’p(k) + FrQfz. (k)

Gp [ ®pzp(k) + Tpu(k) ] + G, B,z (k) (3.52)
Gpzp(k+ 1)+ Grz,.(k+1)

Gz(k + 1),

(Il

i

il

so that dynamic feedback from multirate sampled outputs is equivalent to constant state

feedback after the first basic sampling period.

In conclusion, under the assumptions of Urikura & Nagata[10] and H restricted to
the form in (3.42), solvability conditions (3.35) and (3.36) are equivalent to the condition
(3.51) of Urikura & Nagata. However, while (3.51) is also necessary for state feedback
control, (3.35) and (3.36) are not for dynamic multirate output feedback control. Obvi-

ously, the reason is the freedom in the choice of H.

As a final remark, we are going to show that MROC can also strongly stabilize

the closed-loop structure under some mild assumptions. For that purpose, let us define

- [A4A B i
A,,:[OP Op],sz[C,, 0]. (3.53)

Corollary 3.8 Assuming that
4, B,
[ c d } (3.54)
is full-column rank and N, > 7,, where 7, is the observability index of the augmented

system (Zp, C'p), the RFDB control problem is solvable with strong stability property.
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Proof:By (3.41) and (8.42), H and F, satisfy
B Qie;t | By- Q0 |=[G, | -H|. (3.55)

Noting that the appropriate matrices for the augmented system are

s _ [o T
e, = [ 0 I
(3.56)
g = [t B2,
we have
Q38" = [ @291 | Ry - Q2%;T, |. (3.57)
Two assumptions above imply that (3.57) is full-column rank , and hence, (8.55) has a

solution for F,, given any stable H. The proof is complete by Theorem 3.5.
3.3 Ripple-Free Deadbeat Regulation

In this section, deadbeat and ripple-free deadbeat regulation problems are considered

for the special case of zero reference input.

In the absence of a reference input and together with the choice of
H = F, ( Qi®,7'T, — R¢ ), the sufficient conditions (3.35) and (3.36) of the ripple-

free deadbeat control problem reduce to
Co(®p + I‘pGp)N_l =0, (3.58)
and ’
(Ap + BpGp)(8p + TpGp)N = 0. (3.59)

where (3.58) alone is the deadbeat condition. Solvability conditions are provided by the

following theorem:.

Theorem 3.6 Deadbeat and ripple-free deadbeat regulation problems are always solvable

with internal stability constraint.
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Proof: Sufficient conditions (3.58) and (3.58) can be satisfied by choosing G, so as to
make

(8, + I,Gp)V =0, (3.60)

which is always possible since (®,,T,) is a controllable pair, where G, can be realized
by F, as
G, = F,Q28,7", (3.61)

provided N, > n, + 1. Internal stability follows from (3.60).



Chapter 4

CONCLUSIONS

In this thesis, the ripple-free deadbeat regulation and tracking problems are considered
for linear, time-invariant systems. The problem is formulated in state-space setting,
and is analyzed with two new sampled-data controllers, namely generalized sampled-
data hold functions and multirate-output controllers. The methods provide simplicity
in implementation since they are in output feedback form. The necessary and sufficient

solvability conditions are stated by theorems in terms of open-loop system parameters.

The main contributions of this thesis are Theorems 2.1, 2.3 and 3.5. Partial results
related with the regulation problem alrcady exist in the literature. Theorems 2.4 and
3.6 provide complete results. The solvability conditions are in terms of simultaneous
linear/nonlinear matrix equations involving system transition, input, and output matri-
ces of the reference model and the plant. The solvability conditions of Theorem 2.1 are
restated in the geometric setting by Theorem 2.2. In other theorems and corollaries,
various special cases of the reference model are considered, which help deeply in under-
standing the solvability conditions. Internal stability and strong stability properties are

also investigated.

It is clear that, there is work to be done towards obtaining system theoretic inter-

pretations and geometric counterparts of the solvability conditions. This line of research

39
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was deliberavely avoided in this thesis since its development requires a different algebraic
;

background.

A problem which is left open in this thesis is the minimum-time constraint. Our
approach is not aimed for obtaining the ripple-free deadbeat response in minimum-time,

but rather expressing the solvability conditions in its simplest form.

Another open question is the robustness analysis of the deadbeat and ripple-free
deadbeat controllers, which are believed to be quite weak since the controller is highly

sensitive to the variations of system parameters.

As a final remark, we note that the almost/approximate ripple-free deadbeat con-
trol problems are challenging concepts for further research since their results would be

very helpful in industrial applications.
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