g% Litkal

A POLYHEDRAL APPROACH
TO
DELIVERY MAN PROBLEM

A THESIS SUBMITTED TO
THE. DEPARTMENT OF INDUSTRIAL ENGINEERING
AND THE INSTITUTE OF ENGINEERING
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

by
Pinar Keskinocak
1992

e, YOREPROGRETIM RURULD
POTUMANTASYON M7 ET

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

S ,
AssodNProf” Mus@)’a A\IZgiil (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

S

Assoc.Prof. M@nlal Dinger

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc.Prof. E%mam Oguz

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

W CﬂW@,Q

Assoc.Prof. Barbaros Tansel

Approved for the Institute of Engineering and Sciences:

.g
'4) M

Prof. Mehmef Baray

Director of Institute of Engineering and Sciences

ABSTRACT

A POLYHEDRAL APPROACH
TO
DELIVERY MAN PROBLEM

Pinar Keskinocak
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Mustafa Akgiil
1992

In this thesis we discuss some polyhedral approaches to the Delivery Man Prob-
lem(DMP),which is a special case of the Traveling Salesman Problem(TSP). First,
we look at two formulations of the problem and describe a combinatorial solu-
tion procedure for the linear programming relaxation.Then we give some valid
inequalities and discuss a La,grangean Relaxation procedure and a cutting plane
procedure. Finally, we propose heuristics for tree graphs and general graphs and

give computational results.

Keywords : Delivery Man Problem, Polyhedral Approach, Cutting Plane.

OZET

DELIVERY MAN PROBLEMINE POLIHEDRAL
YAKLASIMLAR

Pinar Keskinocak
Endiistri Mihendisligi Bolimu
Yuiksek Lisans
Tez Yoneticisi: Dogent Mustafa Akgil
1992

Bu tezde, Delivery Man Problemi’ne palihedral yaklagimlar tartigilmaktadir. On-
celikle problemin iki degisik formiilasyonu verilmis ve dogrusal programlama
gevsetmesi i¢in kombinatoryal bir ¢dzlim yontemi gelistirilmigtir. Daha sonra
baz1 gegerli esitsizlikler belirtilerek, Lagrangean gevsetmesi ve kesen diizlemler
prosedirleri tartigilmigtir. Son olarak genel graflar ve agaglar icin sezgisel yor-

damlar Snerilmistir.

Analtar kelimeler : Delivery Man Problemi, Polihedral Yaklagimlar, Kesen Duzlemler.

To my family,

ACKNOWLEDGEMENT

I wish to express deep gratitude to my supervisor Assoc.Prof. Mustafa Akgiil for
his supervision, encouragement and patience throughout the development of this
study. I am grateful to Assoc.Prof. Cemal Dinger, Assoc.Prof. Osman Oguz and

Assoc.Prof. Barbaros Tansel for their valuable comments on the thesis.

I wish to thank to my family for providing morale support and encouragement

during the preperation of this thesis.

I also wish to express my appreciation to Dr. Cemal Akyel and Ceyda Oguz for
their comments and helps, and I want to thank to all friends.and to Assist.Prof.

Selim Aktlirk, who provided morale support and encouragement.

Contents

1.1

1.2

3.1

3.2

3.3

INTRODUCTION

Definition of the Delivery Man Problem

Special Cases F.

LITERATURE REVIEW

NEW APPROACHES

Formulation of the Problem

3.1.1 Natural Shortest Path Formulation

3.1.2 Extended Shortest Path Formulation

Combinatorial Solution Procedure for LP Relaxation

Polyhedral Approaches,

3.3.1 Valid Inequalities

vii

13

3.3.2 Lagrangean Relaxation 23

3.3.3 Cutting Plane Procedure 25

34 Heuristics L e 27
3.4.1 Heuristics for General Graphs 27

3.4.2 Heuristics for Tree Graphs 31

3.5 Computational Results 34

4 CONCLUSION 39

viil

Chapter 1

INTRODUCTION

The Traveling Salesman Problem(TSP) is one of the famous combinatorial op-
timization problems. Its importance comes from the fact that it is a typical
example of other combinatorial optimization problems and has a wide area of
applications. Many problems (e.g. job sequencing, computer wiring, cutting
wallpaper, collection and delivery problems, circuit board drilling, order picking
in a warehouse) can be formulated as TSP. If a good algorithm can be found to
solve the TSP, those related problems can also be solved efficiently. So, TSP is a

testing stage for new theory and algorithms in combinatorial optimization.

In TSP we are given a (directed) graph G=(V,E), where V = {1,..,n} is the
node set and E = {(i,j) : there exists an arc from node i to node j} is the arc set.
We may assume that nodes represent cities and arcs represent (one way) roads
between the cities. Let ¢;; denote the cost of the arc (i,j) or the travel time from
city i to city j. The aim is to find a tour starting from a city (say city 1), visit
all other cities exactly once and then return back to city 1, such that the total
length of the tour is minimum. In other words, the problem is to find a minimum

length Hamiltonian tour in the (directed) graph G.

Several different formulations are introduced for the TSP. The classical formu-

lation is given by Dantzig, Fulkerson and Johnson(1954), which consists of the

assignment problem constraints, plus integrality and subtour elimination con-
straints. The number of subtour elimination constraints in the classical formu-
lation is exponential. Miller, Tucker and Zemlin(1960) proposed an extended
formulation based on the assignment model but using a polynomial number of
subtour elimination constraints. Finally, Gavish and Graves(1978) proposed a
formulation using O(n?) binary variables, O(n?) continuous variables and n*+3n
constraints. There are also several single commodity, two-commodity and multi-

commadity flow formulations of TSP.

TSP can be formulated as a ‘decision’ problem by adding a bound B to the
input data. In the ‘decision’ version of TSP the question is :“Is there a Hamilto-
nian tour with length less than or equal to B 7”. There are two major classes of
decision problems : P and NP. The class P consists of those decision problems, for
which apolynomial time algorithm exists, where the number of elementary oper-
ations (addition, multiplication, comparison etc.) is bounded by a polynomial in
the size of the problem. For the decision problems in the class NP, there exists
only nondeterministic polynomial algorithms. A nondeterministic algorithm has
two stages : a guessing stage and a checking stage. There are usually a large
number of guesses, but it can be verified in polynomial time, whether the answer
of the decision: question for a particular guess is YES. TSP is a problem in NP

class. Notice that polynomial verifiability does not imply polynomial solvability.

A problem is said to be NP-complete, if it is in the class NP and if every
problem in NP is polynomially transformable to it. TSP is shown to be NP-
complete, so it is a ‘difficult’ problem. TSP remains NP-complete, even if ¢;; €

{1,2} for all (i,j) € E.

In this thesis we examined the Delivery Man Problem(DMP), which is a vari-
ant of TSP. We first give the definition of the DMP and look at some special
cases. In section 2, we look at the previous work done about DMP and examine
Minieka’s algorithm(1989) in more detail. In section 3.1 we give two shortest path
formulations of the DMP : the natural shortest path formulation and the extended
shortest path formulation. In section 3.2 we describe some valid inequalities for
the DMP, which are based on a relaxation of the natural formulation. In section

3.3 we discuss a Lagrangean Relaxation approach, which again uses a relaxation

2

of the shortest path formulation, but was not found to be very effective in our
limited experiment. Section 3.4 consists of a cutting plane approach based on the
valid inequalities discussed in section 3.2. In section 3.5 we discuss some heuris-
tics for general graphs and for tree graphs. Finally we give some computational

results about our cutting plane procedure.

1.1 Definition of the Delivery Man Problem

There is a wide range of problems, which are generalizations of TSP or relaxations
of it. The assignment problem, the quadratic assignment problem, the longest
path and shortest path problems, the minimum spanning tree problem, the 2-

matching problem are some of the relaxations of TSP.

The Time Dependent Traveling Salesman Problem(TDTSP) is a more general
~ case of the TSP. The feasible solutions of TSP and TDTSP are the same, the
difference is in their objective functions. In TDTSP, the cost of the arc (i,j)
depends not only on the corresponding nodes i and j, but also on the position of
that arc in the tour. In TDTSP costs are represented by cf;, which is the cost of
going from city i to city j at t-th position (i.e. city i is the (t-1)-s¢ visited city and
j is the t-th visited city during the tour). In that respect, TSP is a special case of
TDTSP, where costs do not change with the position of the arc on the tour. In
TSP, the starting point of the tour does not change the optimum solution, but in
TDTSP it does. In TDTSP, the starting point of the tour or the ‘root’ must be
specified at the beginning, since the arc cots are sequence dependent. Usually,
node 1 is chosen as the root and TDTSP is called a ‘rooted’ problem. A typical
application of the TDTSP is the job sequencing on a single machine, where the

setup times (or costs) vary with the processing sequence of the jobs.

The Delivery Man Problem(DMP) is a special case of the TDTSP. The aim
is again to find a Hamiltonian tour in the graph, but the objective is to minimize
the sum of the arrival times at the nodes. DMP is also a ‘rooted’ problem, since

the arrival times are sequence dependent. Let c;; denote the cost or the travel

time of the arc (i,j) as in TSP. Let A; be the arrival time at vertex j. If we go
from city i to city j at t-th position, its contribution to the objective function is
ci;» where

ci; = Ai + ¢
Let 29,1, ..., %5, 241, ---; ¢n be a Hamiltonian tour on the graph, where i =1, = 1

and i; is the j* vertex on the tour. Then

Ail = Cipiy

A, = Aiy + cigiy
Aij = AiJ‘_1 + C'ij_‘ij

Ain = A’in—l + Cipo1in
which implies

=yl -
A,’J. = Zk:o Cirikgs o+ J = 1, wn—1

n—2
Al = Ci,11 + Z ciki;H.l
k=0

and the object‘ive function of the DMP is

Zz = min i A
=1

DMP can also be perceived as a sequencing problem. Usually, the processing
times of the jobs are constant, i.e. do not depend on the preceding or following
jobs. But the setup times may be sequence dependent. Let us define the operating
time of a job as the sum of the setup and processing times. Then operating times
will also be sequence dependent. We can interpret the nodes on the graph as the
jobs and the arc cost as the operating times. Cost of (i,j) may be different than
cost of (k,j), which means that, we must take c;; as the operating time of job j,
if we process it after job i, and we must take c;, if we process it after job k. If
the jobs are processed on a single machine, then the objective of the DMP is to

minimize the sum of the completion times of all the jobs.

1.2 Special Cases

In this section we look at some easily solved cases of TSP and DMP. Due to
the differences between the objective functions of TSP and DMP, ‘easy’ cases for

TSP are not always ‘easy’ for DMP.

Tree Graphs :

If the graph under consideration is a tree, the TSP is solved by a depth first
route, that is any route, in which the salesman arriving at a vertex arbitrarily
travels along any edge that he has not yet traversed. If no such edge is available,
he traverses again the unique edge in the direction of vertex 1, which is the root
of the tree. Every depth first route gives an optimal solution to the TSP. But if
we consider the DMP on a tree, there are different total times for differentldepth
first routes, and besides this, a depth first route in a tree may not be optimal for
the DMP.

EXAMPLE

There are two depth first routes in this example :

[:1-2-3-4-5-1 : z=1+ 8+ 20+ 21 4 26 =76
I1: 1-4-5-2-3-1 : z=4 454+ 11 + 18 4+ 26 = 64

But the route, which minimizes z is neither route I nor route II. It is
1-2-4-5-3-1:2=1+64 7+ 20 + 28 = 62
So, the TDTSP is not easy to solve even on tree graphs.

Two cases, where the DMP can easily be solved are the star graph and the

5

1

graph with unit edge weights.
Graphs With Unit Edge Weights :

In this case any route is optimal for the DMP. If the graph under consideration

is a tree, then any depth first route is optimal.
Star Graphs :

Let 25,19, ..., 1, be any permutation of the indices 1,2,...,n, where 7,, = 1, since

the salesman comes back to node 1 after visiting all other nodes.

The arrival time of the first visited vertex will be

Ail = cl‘il

and the arrival time of the k" visited vertex will be

A{k = 2C1,’1 —+ 2011‘2 + ...+ Cligs kb=2

Then the sum of the arrival times is equal to

IS
[

Aiy + Xk Asy
= Aix + Zz=2 QCl‘il + 2C1,‘2 +.t Crig

1If we expand the double summation, we obtain

k=1 Ai1 = Cyq
k=2 Aiz = ?‘cl‘il + Cii,

k=n—2 Ai,_,=2c + 2, + ...+ 2C1,_5 + Crip,
k =n-—-]- Ai,,_.l = 2C1'f1 + 2011'9 + sar + 2c1iu-—2 + cliu—l
k=n Ain =A = Ain_1 + Cing1

z =2necy, +2(n — Deg + ... + 2¢1in-1
In order to minimize z, we should choose
a1 < iz £ .o S crin—a

That means, the vertices should be visited in increasing order of their prox-

imity to the root, in order to minimize the sum of the arrival times.

Chapter 2

LITERATURE REVIEW

The first use of the term ‘traveling salesman problem’ goes back to 1930’s, but
the first paper about the TSP is published in 1954 by Dantzig, Fulkerson and
Johnson, where they gave a formulation of the problem and proposed for the first

time a ‘cutting plane’ approach for TSP.

The earliest formulation of the TDTSP is due to Fox(1973). Fox gives five
linear integer programming formulations and one flow-with-gains formulation for
the TDTSP. He reports that his branch and bound algorithm was unable to solve
a 10-job problem in 12 minutes and Picard and Queyranne(1978) reported that

none of the formulations of I'ox were found to lead to a tractable solution scheme.

Sahni and Gonzalez(1976) have shown that the TDTSP is an NP-complete

problem.

Picard and Queyranne(1978) proposed an exact algorithm to solve the TDTSP.
They state it as a scheduling problem, in which n jobs have to be processed at
minimum cost on a single machine. In their approach, the setup costs associated
with each job depend both on its position in the sequence and on the job, which
precedes it. They propose a branch and bound algorithm, where the branch and

bound enumeration is applied after finding shortest paths and doing subgradient

optimization. They give computational results for the weighted tardiness problem
for 15 and 20 jobs.

Lucena(1989) proposes a branch and bound algorithm based on a special lower
bounding scheme. This scheme involves splitting lower bounds into a number of
components and optimizing each of these components. Lucena reports compu-
tational results for graphs up to 30 nodes, where the graphs are assumed to be
on the Euclidean plane and the coordinates of the nodes were drawn from the

uniform distribution in the range [0,100] and [0,1000].

Simchi-Levi and Berman(1991) interpret the TDTSP as a sequencing problem.
They try to minimize the total flow time of jobs where flow times are the length
of time jobs spend in the system. They propose a branch and bound algorithm to
find the optimal job sequence on a single machine, where the jobs have sequence
dependent setup times. In addition to finding the optimal sequence, they show
how to find the optimal home location for the server.They feport that their

algorithm can handle efficiently problems with up to 20 nodes.

Minieka(1989) has proposed a pseudo polynomial time solution for the TDTSP,
where the graph under consideration is a tree. He suggests to construct a new
network, in which each vertex will represent a partial route on the tree. In the

following section we want to look at Minieka’s algorithm in more detail.
Minieka’s Algorithm

Let E be the edge set of the tree. Then, the vertices of the tree can be
numbered as 1,2,...,n, such that if (i,j) € E and i is closer to vertex 1 (root) than
j, then ¢ < 5. Let n denote the number of vertices in T. A vertex is called ‘leaf’,
if there is only one arc incident to that vertex in the tree. Let py, ..., ps denote
the leaf vertices in T. Partition the vertices into sets V4, V3, ..., V} as foliows : let
Vi consist of all vertices on the unique path from vertex 1 (root) to p;. For i =
2,...k let V; be the set of all vertices on the unique path from root to p; that are

not included in Vi through V;_;.

Consider a'(k+1)-tuple INDEX, in which the first component can take any
integer value from 1 to n. This component denotes the subscript of the vertex,
that is the current position of the salesman. The (i+1)-st component denotes
how far the salesman has penetrated into set Vi, with zero indicating that he has
not reached any vertex in V.. The salesman can travel only from one position

to another with the same or higher values in all components of INDEX, except

possibly the first.

Vi = {v1,v2,v3,v4}

‘/2 = {'U.S)'UG}
Vs = {vr}
% = {vS)UQ}

(p1) (p2) (p3)

Minieka suggests that the TDTSP can be reformulated as a shortest path
problem from the source to the sink in a directed acyclic network, in which the
vertices correspond to the (k+1)-tuple INDEXes and the arc costs equal the
sum of the realized delivery times during the corresponding journey through the
tree. The source corresponds to the (1,1,0,0,...) and the sink corresponds to the
(k+1)-tuple 1, f(p1), f(p2), -+, f(pk)), where f(p;) indicates the number assigned

to vertex p;.
But there are two drawbacks of this formulation :

i) INDEX does not represent the route history of the delivery man, i.e. there

may be more than one route which should be represented by the same INDEX.

ii) The arc costs of the new created graph are dynamic, in the sense that each

arc cost depends on the previously traversed arc. In this case, any shortest path

10

algorithm may end up with suboptimal results.

EXAMPLE

Let us partition the nodes into sets a follows :
V1={1,2,3} s V2={4,5} A V3={6,7} and V4={8}

Consider the paths 1-2-4-6 and 1-4-2-6. The INDEX corresponding to both
of these paths is [6,2,4,6,0]. The first component of the INDEX is 6, since the
current position of the delivery man is node 6. The second component of the
index correspond to set V; and its value is 2, since node 2 is the 1a$t visited
vertex in set Vi. The third and fourth components of the INDEX are defined
similarly. The last component of the INDEX is zero, since the delivery man has
not visited any vertex in V4 yet.But this index does not really tell us which route

the delivery man has taken, and this is an example for the first drawback of the

algorithm.

(56) A [5,3,5,6,0
31
[7,3,5,7,0] C

27

(62) B [6,3,5,6,0

11

It is easy to see that two parents of node [7,3,5,7,0] are [5,3,5,6,0] and [6,3,5,6,0].

If we choose path A-C, i.e. path 1-6-2-3-4-5-7, sum of the arrival times at node
C will be 24+64+9+194+204+31=87. If we choose path B-C, i.e. path 1-2-3-4-5-6-7,
sum of the arrival times at node C will be 245+4+15+4+164-24+27=89. Therefore
path A-C is chosen. But this is actually not the optimum path. The choice of
path A-C caused the arrival time at vertex 7 to be 31, whereas it would be only
27, if we had chosen path B-C. Since the arrival time of a vertex is dependent
on the arrival times of the previous vertices, the arrival times of vertices 1 and
8 are also higher by path A-C than by path B-C. At the end, choosing the path
A-C results in a z value of 175, whereas choosing B-C would give a z value of
169. This example shows that because of the dynamic nature of the arc costs,

the algorithm may end up with suboptimal results.

Chapter 3

NEW APPROACHES

3.1 Formulation of the Problem

We considered two formulations for the DMP, which are based on the shortest
path problem. We decided to use the relaxation of the natural shortest path
formulation for our cutting plane procedure and its extended version to find the

optimal solution.

3.1.1 Natural Shortest Path Formulation

Without loss of generality we may assume that the graph under consideration
is a complete directed graph G. We split node 1 into two nodes, 1 and n+1, to
obtain a new graph (. All arcs of the form (1,j), j=2,...,n in the original graph
are represented in the same form in the new graph. The arcs (J,l), j=2,...,nin the
original graph are represented as (j,n+1), j=2,...,n in the new graph G'. Matrix
A (m by n) represents the node arc incidence matrix, where each row corresponds
to a node and each column correspohds to an arc. Let a;; denote the element in

the i** row and k** column of A. Then

13

-1 , if node i is the tail of the arc k
a;; =4 +1 , if nodeiis the head of the arc k

0 , otherwise

z;; = amount of flow from node i to node]
E = arc set

A = node-arc incidence matrix

min E CiiTi 5

(i.3)eB

(1.1)

Do Tii= (n+l) (1.2)

(L)eE 2
x defines a Hamiltonian path (1.3)
z;; >0 V(i,j€eE (1.4)
X integer (1.5)

Constraints (1.1) pravide that the solution is a spanning tree, i.e. connected.
Due to constraint (1.2), total flow in the solution must be equal to the total flow
on a Hamiltonian path. But constraints (1.1) and (1.2) alone do not prevent the
subtours. The solution of the problem subject to (1.1) and (1.2) will most likely
be a tree with one cycle only, where (1.2) is satisfied by passing enough amount
of flow (usually not integral) along the cycle. Therefore, to obtain a Hamiltonian
path as a solution, we need also constraints (1.3) and (1.4), so that the support

of the solution will be cycle [ree.

14

3.1.2 Extended Shortest Path Formulation

z;; = amount of flow from node i to node j

1, if Ti; > t
Yij = .
0 , otherwise

E = arc set
A = node-arc incidence matrix
min Z Ci i %45

(3,5)EE

(2.1)

> m= (nH) (2.2)

zij Snyi; V(@) EE (2.3)

Zyi,j =1 t=1,...,n (2.4)
J

D ovii=1 i=1,.,n (2.47)

zij 20 V(E,j)e E (2.5)

T j integer (2.6)

Yij € {0, 1} (2.7)

15

3.2 Combinatorial Solution Procedure for LP

Relaxation

Let us consider a linear programming relaxation(LPR) of the DMP, which is

obtained using the shortest path formulation in section 3.1.1.

z;; = amount of flow from node i to node j

E = arc set

min Y ¢ ;%i;
(i.)eE

(LPR) st. Ax=b = { (3.1)

> iy = (y 4) (3-2)

(1,7)€E

;20 Y (ij) € E (3.3)

This formulation can give two types of solutions. One of them is a Hamiltonian
path from node 1 to node n+1, which is the optimal solution of the original
problem. This is the fortunate case but its occurence is quite unlikely. Most of
the time,a second type of solution occurs, which is a tree with one cycle only. The
cycle comes from the last constraint. If we disregard that constraint, we obtain

a shortest path tree.

The number of variables in the LPR is (n — 1)? and the number of constraints

is n+2, where n is the number for nodes in G.

Here we propose a combinatorial procedure to solve LPR. The procedure uses

the idea of Dual Simplex method. We start with an initial solution, which is

16

most probably infeasible due to the flow constraint (3.2). At each step, we try
to decrease the infeasibility by entering a new arc and increasing total flow,and
at the same time we try to keep the increase in the objective function value at a

minimum level.

Let 7 be the vector of dual variables. Let ¢ be the vector of reduced costs,

where Cj =Cy — T+ 75— A

STEP 0: Find the shortest path tree on graph G’, call it T, Set i=0, o = =,
A=0.

1 .
STEP 1: If £ jyep 2ij < (";L) then go to STEP 2, else STOP.

STEP 2: Let C:Jf be the number of arcs in the cycle created by adding arc (i,])
to the tree 75, which have the same direction as the arc (i,j). Let CF; be the
number of arcs in the cycle, which have reverse direction as the arc (i,j).
Find =%~ = min = —, where Cjf — C5 > 0. Let (k) be the

Ca—Cy Ci = Cj '
entering arc.

STEP3 : Set A\ = =gkl

Cii — Cu

STEP 4 : Update #’s in the following way : Find the levels of the nodes in tree
T;, such that the level of the root is 1, the level of a node adjacent to the
root is 2, etc. Keep m; constant.Set n; = 7; + AA(level(7) — level(l)).

STEP 5 : Set Cij = Cij — T + 7 — A Set A =X+ AN Set i=i+1.

STEP 6 : Add the arc (k,l) to the tree T;_; and delete the arc (j,l) to obtain

the new tree T.

STEP 7 : Update flows and go to STEP 1.

Updating the reduced costs can be done without explicitly updating the dual
variables. We can simply set &; = ¢; + AX(level(j) — level(i) — 1)

17

EXAMPLE

COST MATRIX :

o 1521 18] 8 |26
12 (oo | 7 |10 | 23] 20
1517 | oo | 9 |13] 21
15| 8 |19 o0 | 11] 25
22| 4 [12]23 | oo | 25
302729 5 |25 |

We start the procedure with the shortest path tree 7.

+1
S wi,j<(";):21

(5,7)eA

To

5]

18

ITERATION 1: 3~ zi; =11 <21
(ij)eA

. Cij €4 —
min — = — =2 AA=2,A=2
Cg—(/ij CH — Cia

ENTER (2,4) , (1,4) LEAVES

T1 e 5

ITERATION 2: Z z;; =13 <21
(i7)eA

Cij Cag
__ _ Ad=1,)1=3
C:;_C"J C-;;;'—G'ZG

min
ENTER (2,6) , (1,6) LEAVES

b

11

@ 6

ITERATION 3: Z zi; =15 < 21
(i7)eA

'—j — 534 — 3

CH—€5 Cf—Cxy

min

ENTER (3,4) , (2,4) LEAVES

T3

12]

ITERATION 4: >~ 2y =16 < 21

(i)eA

Cij C45

— = — = 1.75
Ci-;? - Cz'j 04-% - C45

min

AX=3,1=6

AN = 1.75,) = 7.75

ENTER (4,5) , THIS IS A CYCLE !, AUGMENT (21-16)/4=1.25 ALONG
THE CYCLE

T,

10.25

3.3 Polyhedral Approaches

The set of feasible solutions of a linear programming problem {minecz|Az > b}
forms a polyhedron, Le. the feasible rogion is the intersection of finitely many
halfspaces. To apply the linear programming techniques, polyhedra have to be
given in the form {z|Az < b,z € R"}. An inequality af < b; is called valid with
respect to aset S € R*,if S C {z € R*|afz < &;}. In combinatorial optimization,
polyhedra is given in the form P; = conv{z|z is a feasible integral solution}, i.e.
as the convex hull of finitely many integer points. So, it is a major problem to

find the valid inequalities defining such a polyhedron.

A subset F of a polyhedron P is called a face of P if there exists a valid
inequality afz < b;, such that F={z € Plafz = b;}. It is said that the inequality
aFz < b; defines F. Facet defining inequalities are the strongest valid inequalities,
so they are of particular importance, since one wants to find inequality systems
with as few inequalities as possible. But it is difficult to identify and enumerate
all facets and for most of the integer programming problems (for example for

TSP), we do not have a characterization of all facets.

If we know all facets of Py, then we have a minimal inequality system describ-
ing P; and the integer programming problem reduces to a linear programming
problem. But for most of the combinatorial optimization problems, even this
minimal system contains a very large number of inequalities, which makes it
practically impossible to list all of them. Due to these considerations, the idea of
‘cutting plane’ s arose. In cutting plane procedures, one starts with a polyhedron
containing the feasible region, i.e. with a relaxation of the original problem. The
aim is to find facets, which are close to the optimum point. Addition of these
facets to the relaxed formulation narrows the feasible region of the relaxed prob-
lem by ‘cutting’ it and hopefully brings us to the neighborhood of the optimum
point. This is a finite procedure, because there is only a finite number of facets.
But one usually builds in a stopping criterion, for example stops adding the cuts,
when the increase in the objective function gets smaller than a specified percent-
age. If the current optimum value is not feasible for the original problem, it can

still be used as a lower bound for a branch and bound procedure.

21

In this section we describe some valid inequalities of the DMP and look at

some procedures, which use those valid inequalities.

3.3.1 Valid Inequalities

In section 3.2 we obtained a relaxation of the DMP. Starting from that relaxed
solution we tried to find some valid inequalities to narrow the feasible region and

to improve the corresponding lower bound.

As we mentioned earlier, the relaxed shortest path formulation gives a so-
lution, which is a tree with one cycle only. If we look at this relaxed solution
and compare it with a feasible solution of the original problem, we see that the
relaxed solution violates the feasible one in two ways. First , in the feasible so-
lution, the incoming flow to a node set is limited, and the outgoing flow from
each node set W (except node n+1) is greater than or equal to [W|(|W|+ 1)/2.

Second, in the feasible solution, the total flow in a set W, is less than or equal to
w.
(|W]-1)(incoming flow to the set W)—I—(| 0 |) , where WeV

L,n+1}..

So, the two types of valid inequalities are :

n

Z zy < Z k W e V\{l,n+1} (1.a)

ieviiew k=n—|[W|+1
| ;iji > M[_(ﬂgl_ﬂ W e V\{l,n+1} (1.b)
€Vyg€

W e V\{1,n+1} (2)

We do not need to write inequalities (1.a) and (1.b) for j=1, because they are

22

automatically satisfied after splitting node 1. Similarly we do not need to write
the inequa,litieé (1.a) and (1.b) for j=n+1, because (1.a) is already satisfied and
(1.b) is not valid for j=n-+1.

3.3.2 Lagrangean Relaxation

Consider the following problem :

7 = I ¢x

s.t. Ax > Db (complicating constraints)
Bx > d (easy constraints)
x > 0 and integer

If we drop the complicating constraints Ax > b we obtain a relaxation, which

is easier to solve than the original problem.
Now let us consider the problem LR(A), for A > 0 :

z(A) = mincx + A(b-Ax)

LR(A) s.t. Bx > d
x > 0 and integer

Az 0

The problem LR(A) is called the Lagrangean Relaxation of the original prob-
lem with respect to Ax > b. In LR()), the complicating constraints are included
in the objective function with a penalty coefficient A. Since A is positive, viola-
tion of the complicating constraints will increase the objective function. In other

words, for A > 0 and x feasible,

23

r§1>a,gc{z(/\)]Bx 2 d,x > 0,x integer} <
h min{cx|Ax > b,Bx 2 d,x > 0,x integer} (4.1)

The Lagrangean or Dual problem is to maximize z(}), i.e.

maxz(A)

A> 0 (4.2)

(LD)

The solution x(A) of the relaxed problem LR(A) is optimal for the original
problem, if the following three conditions (global optimality conditions) are sat-
isfied:

(1) 2(A) = ex(A) + A(b-Ax(N))
(2) A(b-Ax) =0
(3) Ax>b

In the shortest path formulation of the DMP, constraints (1.1) and (1.4) can
be thought of as ‘casy constraints’, because they define the ‘Shortest Path Tree
Problem’; which can be solved in polynomial time. We do not need (1.5) in
the set of ‘easy constraints’, because any feasible solution for (1.1) and (1.4) is
integral. Then the valid incqualities described in the previous section are the

‘complicating constraints’.

To apply the idea of Lagrangean Relaxation, we must find an appropriate A

for each complicating constraint and solve the corresponding LR(}).

Balas and Cristofides(1979) described an algorithm for the asymmetric TSP,
where they used a ‘restricted’ Lagrangean Relaxation approach based on the
assignment problém (AP). The choice of the Lagrangean multipliers guarantees
the continued optimality of the initial AP solution, thus eliminates the need for
repeatedly solving AP in the process of computing multipliers. In our Lagrangean

Relaxation approach, we used a similar rule as Balas and Cristofides for the choice

24

of .

Let a*z > b; be one of the complicating constraints and let W € E be the set

of arcs which violate that constraint. To obtain dual feasibility we have chosen

A, such that
Ai = min{g; : (¢,7) € W}

But if we choose A in this way, after a few steps some reduced costs turn out
to be zero and we cannot choose a positive A. This prevents further improvement
on the value of the objective function of LR()), which is a lower bound for the

original problem.

On the other hand, we started the Lagrangean Relaxation procedure with
the shortest path tree solution, which is a very weak lower bound compared
to the LP relaxation solution. Since we did not include constraint (1.2) of the
natural shortest path formulation in section 3.1., the valid inequalities (1.a) and
(2) are automatically satisfied by the relaxed solution and the set of complicating
constraints consists of valid inequalities (1.b) only. Therefore in our limited
experiment, the Lagrangean Relaxation solution turned out to be smaller than

the LP relaxation solution in almost all cases.

3.3.3 Cutting Plane Procedure

The exact number of the facets of the TSP is still not known, but the number
of ‘known’ different facets of the TSP polytopes are calculated by Grotschel and
Padberg(1979) for <120, where n denotes the number of cities. For n=>50, the
number of subtour elimination constraints is 0.5x10'® and the number of comb
constraints is 10%°. If n=120 these numbers turn out to be 0.6x103¢ and 2x10'"®
respectively. Since 1979, other classes of facet defining inequalities are identified.
Due to the huge number of constraints, it is not possible to list all of them
and solve the TSP as a linear programming problem. So, we must find a set

of ‘suitable’ constraints to solve the TSP. The idea of finding the suitable set of

constraints gave rise to the ‘cutting plane’ approach.

Here we propose a cutting plane procedure which uses the valid inequalities
described in section 3.1.1. The procedure starts with the LP relaxation of the
shortest path formulation and at each step one valid inequality is added to im-

prove the lower bound on the objective function of the DMP.

STEP 0 : Let Py be the the LP relaxation of the DMP. Solve Py. Set i=0.

STEP 1 : Compute the incoming and outgoing flows for each node. Sort the
incoming flows in decreasing order and the outgoing flows in increasing

order.

STEP 2 : Check whether there is a violated valid inequality (1.a) or (1.b) in
P;. If there is, add this inequality to P; and call the new problem P;y;.
Set i=i+1, solve the new problem and go to STEP 1. If there is no such
inequality go to STEP 3.

STEP 3 : Check whether there is a violated valid inequality (2) in P;. If there
is, add this inequality to P; and call the new problem P;y;. Set i=i+1,

solve the new problem and go to STEP 1. If there is no such inequality, go

to STEP 4.

STEP 4 : Apply a branch and bound procedure using the current lower bound.

To find a set which violates inequalities (1.a) and (1.b) in STEP 2 we do not
need to check all subsets of the node set. We compute the incoming flow and
outgoing flow for each node and sort these flows in decreasing and increasing order
respectively. Then we look at the k largest incoming flows and k smallest outgoing
flows by starting with k=1=|W| and increasing k until a violated inequality is
found. To decrease computation time, we first check the inequalities (1.5) and

(1.b) and then look for a violated inequality (2).

For the time being, we could not develop a rule or heuristic, which prevents
us from checking all subsets of the node set to find a violated inequality (2) or

to show that there is no such violated inequality. To increase computational

26

efficiency, we look at the subsets in a special order. We first check the subsets of
size 2 and n-2, then 3 and n-3 etc. In this way, our computation time decreased

about 50 percent.

3.4 Heuristics

3.4.1 Heuristics for General Graphs

By adding the valid inequalities to the relaxed formulation, we obtain a lower
bound for the optimum solution. Before entering branch and bound, we need

some good upper bounds to make the branch and bound procedure more efficient.

We looked at three different heuristics. Heuristic 1 uses the idea of the combi-
natorial solution procedure for LP relaxation which is discussed in section 3.2.1.
The main idea of heuristic 2 comes from a TSP heuristic, but the entering arc
choice is made by considering the different structure of the objective function of

the DMP. Finally heuristic 3 uses the idea of shortest processing time(SPT) rule.
Heuristic 1 :

This heuristic is very similar to the combinatorial solution procedure for LP
Relaxation discussed in section 3.2, , the only difference is in STEP 2. In the
combinatorial solution procedure, we allow an arc to enter, even if it creates
a directed cycle, whereas in this heuristic we do not allow an arc to enter, if it
creates a directed cycle. This way of choosing the entering arc guarantees that the
solution will be a Hamiltonian path, whereas in combinatorial solution procedure

we may end up with a tree with one cycle only.

STEP 0: Find the shortest path tree on graph G, call it T;. Let 7 be the vector

of dual variables. Set i=0, mo = 7, A = 0.

27

n+1

STEP 1: If Z(z‘,j)e/i zi; < () then go to STEP 2, else STOP.

STEP 2: Consider only the nonbasic arcs, such that addition of them to the
tree T; does not create a directed cycle, i.e. there must be a leaving arc.
Let C{; be the number of arcs in the cycle (not directed) created by adding
arc (1,)) to the tree 7;, which have the same direction as the arc (i,j). Let

C; be the number of arcs in the cycle, which have reverse direction as the

arc (1,j). Find —_;_—5-5“‘——_ = min—q_——cii——:, where Cit — C > 0. Let (k,1)
Cit — Ci Ci; — Ci; ‘

be the entering arc.

STEPS3 : Set A\ = Fgﬂ—c‘—'
kl — “ki

STEP 4 : Update n’s in the following way : Find the levels of the nodes in tree
T;, such that the level of the root is 1, the level of a node adjacent to the
root is 2, etc. Keep m; constant.Setm; = 7er + AX(level(y) — level(l)).

STEP 5 : Set &; =c¢ij —mi +7; — A Set A = A+ AX. Set i=i+1.

STEP 6 : Add the arc (k,]) to the tree T;_; and delete the arc (j,l) to obtain

the new tree T;.

STEP 7 : Update flows and go to STEP 1.

Heuristic 2:

STEP 0 : Start with the path Py : 1-(n+1). Set i=0.

STEP 1 : Find anode k* not present in path P; and an arc (i*,j*) of the present
path, such that
Cingr (Xisje+1) + (Cheje-Cinje)Xinjr + yir = min cip(Xi5+1) + (chj-cij)Xij + ¥i
where y; represents the length of the path from node i to node j.

STEP 2 : Entering arcs are (i*,k*) and (k*,j*). Leaving arc is (i*,j*). Update
the path P; to obtain the new path P;y;. Compute y;’s for each node j in

the new path P;y;. If the new path does not contain all nodes in the node
set, set i=i+1 and go to STEP 1.

28

In STEP 2, we try to choose the entering arcs in such a way that the additional
cost is minimal. At each iteration, the length of the path is increased by 1 and

finally we obtain a Hamiltonian path.

Heuristic 3:
STEP 0 : Set k=0. Set ir=1. Set LENGTH=0. Set Pr={1}.

STEP 1 : If LENGTH is less than |V|-1, choose a node j* # n+1, such that

Cipj*r = min ¢;; ,] ¢ Py. Set ippy =%, Pry1 = Pr + {ik+1}.
Set LENGTH=LENGTH+1 and k= k+1.

STEP 3 : If LENGTH=|V|-1, add the arc (iz,n+1) to the path P, and STOP.

Another version of this heuristic is to begin with node n+41 and look at the
incoming arcs. At each step we should choose the incoming arc with minimum
cost. But in almost all problems this version gave worse solutions. This result
was expected, because flows are decreasing when we go from node 1 to node n+1
on the Hamiltonian path, i.e. the choice of the first arc of the path affects the

objective function much more than the choice of the last arc.

Heuristic 4:

STEP 0 : Apply the cutting plane procedure to the original problem and let
LPg be the problem after the addition of the cutting planes. Set ip=1, j=0
and PATH={1}. Let x be the solution of LPs. Let n be the number of

nodes in the original graph.

STEP 1: Choose iji1, such that x; ., is maximumfor i;41=2,...,n,i;41 ZPATH
and ij41 #n 41 if j<n.

STEP 2 : Set x;,

these variables and call the new problem LP;4;.

i =0-j. Set xp;;,, =0 for k#i; and x;;,=0 for k#ij41, le. fix

STEP 3 : Set PATH=PATH+{i;11}, j=j+1. If PATH#{1,...,n4+1} then solve
LP; to obtain the new solution x and go to STEP 1, else STOP.

29

This is again a greedy heuristic like heuristic 3, but this time, at each step
we choose the arc, which has the maximum flow among other possible arcs in the
solution obtained after the cutting plane procedure. We fix the flow on this arc
to the maximum possible value, set the flow on the other possible arcs to zero

and resolve the current LP after fixing the flow on these arcs.

In order to improve the heuristic solutions, we applied another heuristic. This
heuristic takes the paths found by other heuristics as input and tries to improve
the solution by changing the positions of the nodes on the path. The basic idea

is similar to the k-opt procedure of Lin and Kernighan(1973).

STEP 0 : Let Py be the path, which is obtained as a heuristic solution. Let
Co be the cost of Po. Set MINCOST = Co and MINPATH = P,

STEP 1 : Choose a pair of nodes (1,j), i#j, 1,j = 2,...,n. Replace the positions of
these nodes on MINPATH to obtain a new path P. Calculate the cost C of P.
If C<MINCOST, set MINCOST=C, MINPATH = P and FLAG=TRUE.
Repeat this procedure for all pairs (i,j). Go to STEP 2.

STEP 2 : Choose two pairs (i,j) and (k,l), j#k, such that j follows i on MIN-
PATH and 1 follows k. Replace the positions of these pairs on the path MIN-
PATH to obtain the new path P. Calculate the cost C of P. If C< MINCOST,
set MINCOST=C, MINPATH = P and FLAG=TRUE. Repeat this proce-
dure for all pairs (i,j) . Go to STEP 3.

STEP 38 : Choose two triples (i,j,k) and (I,m,n), k#1, such that k follows j, j
follows i and n follows m, m follows | on MINPATH. Replace the positions of
these triples on MINPATH to obtain the new path P. Calculate the cost C of
P. If C<MINCOST, set MINCOST=C, MINPATH=P and FLAG=TRUE.
Repeat this procedure for all triples (i,j,k). Go to STEP 4.

STEP 4 : Choose a node j on the path MINPATH,such that 1#j#n+1. Let
i be the node following node 1 in MINPATH and k be the node following
node j. Let 1 be the node prior to node n+1 on the path MINPATH. Replace

the positions of the subpaths from i to j and from k to 1 to obtain the new

path P. Calculate the cost C of P. If C<MINCOST, set MINCOST=C,

30

MINPATH=P and FLAG=TRUE. Repeat this procedure for all j. Go to
STEP 5.

STEP 5 : If FLAG=FALSE, STOP. If FLAG=TRUE, set FLAG=FALSE and
go to STEP 1.

This heuristic improved the other heuristic solutions in almost all examples.

3.4.2 Heuristics for Tree Graphs

Here we propose two heuristics for the solution of the DMP on tree graphs. The
second heuristic is more general than the first one and gives better results in most

of the cases.

Heuristic 1 : No Backtracking Case

This heuristic is developed by generalizing the results related to star graphs.

In this case, backtracking on the tree is not allowed.

STEP 1 : By starting from the vertices at the lowest level of the tree, calculate
the weight wy, for each vertex except the root, where wy is defined as the
sum of the arc costs in the subtree with root v; plus the travel time from

vt to its parent.

STEP 2 : Calculate the average weight for each v; by dividing the weight by

the number of vertices in the subtree with root vg.

STEP 3 : If the current position of the delivery man is v, choose the vertex
with smallest average weight for the next visit among the vertices, whose
parent is vg and which are not visited yet. If no such vertex exists, traverse

the unique edge in the direction of the root and repeat STEP 3.

STEP 4 : Continue this procedure until all vertices are visited.

31

Suppose there are m subtrees connected to the root r, where subtree i has root
r;. Choosing vertex 7} for the next visit after r will imply to traverse all edges
in subtree k before visiting any other vertex in the remaining subtrees, since no

backtracking is allowed.

That means, the arrival times of all vertices in the remaining subtrees will
icrease by two times wg. Il the number of vertices in subtree 1 is n;, in order to
minimize the sum of the arrival times, subtree k should be visited before subtree
i, if wgn; < wyng. Since there are m main subtrees, subtree k should be visited

before the others, if

wgny Swing & we/ng Swi/ny

wpng Sweny & wi/ng S wyfny

Wilm L Wynke & wie/ng < Wi /Ny

where w;/n; is the average weight of r;. This means that the vertex with

the smallest average weight should be visited next and continuing this procedure

builds up heuristic 1.

Heuristic 2 : Backtracking Case

We showed that even if we choose the optimum depth first route, it may not
minimize the sum of the arrival times. Sometimes it is possible to reach better
results by backtracking. The second heuristic, which we developed, is to solve

the TDTSP, when backtracking on the tree is allowed.

STEP 1 : Find the weights (wi) and the average weights (ax) of all vertices as
described by the first heuristic.

STEP 2 : If the current position of the delivery man is at vertex j, let O; be

the set of vertices, which can be visited after vertex j.

STEP 3 : Let ¢* be the index of the vertex with minimum average weight among

the vertices in set O;.
STEP 4 : Let Q; = 0; — 4"

STEP 5 : Check whether there are vertices vy in set @, such that ¢jx < w;» /(L—
1), where L is the number of vertices, which are not visited yet. If there

are such vertices then let £* be the index of the vertex with minimum c;ji .

STEP 6 : If a k* is found in STEP 5, choose that vertex for the next visit and

set M = k*, else choose * and set M = 7*.

STEP 7 : Move from the current position to M, calculate the arrival time of M
by adding the travel time from vertex j to M, to the arrival time of vertex

J. Update z by adding the arrival time of M.

STEP 8 : If there are unvisited vertices, go to STEP 2.

There are two criterion taken into account by selecting the next vertex to visit.
One of them is the average weights of the possible vertices for the next visit. This
criteria is based on the fact that a depth first route may be taken on the subtree

connected to the next visited vertex.

33

Second criteria is to consider the travel time from the current vertex to all
possible vertices for the next visit. Even if the average weight of a vertex is high,
the travel time to this vertex and back to the current vertex may be low, which
allows economical backtracking. Suppose we have chosen 2*, which is the vertex
with minimum average weight among the vertices in set O;. By doing this, the
arrival times of all vertices in set @; will increase by two times the weight of ¢*,
if we take a depth first route in the subtree with root *. If we visit any vertex
with index k before visiting 7*, the arrival times of all unvisited vertices (except
vertex k) will increase by the amount 2c¢jx, which is the cost of backtracking. In
this case total increase in the value of the objective function will be 2(1 — 1)c;jx.
That is the reason why we check whether there is a vertex with ¢;x < (I — 1)w;.

which may allow economical backtracking.

3.5 Computational Results

To see the performance of the heuristics and the cutting plane procedure we
did a computational study on complete graphs, where the costs are generated

randomly.

For the cutting plane procedure, we have written a program in C-language,

which uses the nser subroutines of CPLEX interactively.

Table 1a and Table 1b show the results for complete graphs with 20 nodes,
where cost ranges are 1-100 and 1-1000 respectively. We called the valid inequal-
ities (1a) and (1b) as Type 1 cuts and the valid inequalities (2) as type 2 cuts.
The results for graphs with 30 nodes can be seen in Table 2a and Table 2b.

The number of valid inequalities (2) is exponential and we could not develop
a heuristic for choosing only a reasonable part of them. For the problems with 20
nodes addition of type 2 cuts could be done efficiently, but for the problems with
30 nodes much more time was needed. We also observed that after the addition

of type 1 cuts, type 2 cuts did not increase the lower bound considerably. So, in

34

problems with 30 nodes we added type 1 cuts only.

It can be seen that there is a large difference between the tree solutions and
the cutting plane solutions. Even the difference between LP-relaxation solutions
and the cutting plane solutions is quite large. In some problems, the cutting plane
solution is about four times the tree solution and two times the LP-relaxation
solution (e.g. problems 2a20, 2b20, 7b20, 5&30).

In almost all examples, Heuristic 2 shows the worst performance. Compared
to Heuristic 2 and Heuristic 3, Heuristic 1 and Heuristic 4 performed better.
In some problems, the difference between the solution of Heuristic 4 and the

solutions of other heuristics is very large(e.g. problems 1a20, 5a20).

We tried to find the optimal solutions of these problems, but neither LINDO

nor CPLEX could solve them in reasonable time.

35

Chapter 4

CONCLUSION

In polyhedral approaches to the combinatorial optimization problems the main
idea is to define the feasible region of the problem, which is usually given as the

convex hull of finitely many integer points, with a linear inequality system.

In cutting plane procedures, the first step is to choose a suitable integer pro-
gramming formulation of the problem and to obtain a lower bound by solving
a relaxation of the problem. The next step is to find valid inequalities or ‘cut-
ting planes’, which are preferably facets. Addition of these cuts to the relaxed

problem will increase the lower bound by narrowing the relaxed feasible region.

Due to the difficult structure of the combinatorial optimization problems, it is
usually very difficult to apply exact algorithms to large-scale problems.. But most
of the real life problems are large and it is important to find close-to-optimal and
feasible solutions in a reasonable time. In such cases, heuristic or approximate

methods are used.

Most of the combinatorial optimization problems are solved by using branch
and bound methods. In branch and bound, subproblems are created by fixing the
values of some variables and the optimal solution of the original problem is found

by enumerating the points in the subproblem’s feasible region. This enumeration

39

is done according to certain branching rules, which depend on the structure of
the problem. In branch and cut methods, the valid inequalities are added to the
subproblems and if a valid inequality is found at one branch, it can be added to

the other branches, since it is ‘valid’ everywhere in the feasible region.

If we have a good lower bound and a good upper bound, the branch and
bound or branch and cut methods can be applied more efficiently. The addition
of the cutting planes narrow the search area and using the heuristic bounds we
can 'prune’ some of the branches. Cutting planes and heuristics together decrease
the number of feasible solutions which should be checked and bring us closer to

the region of the optimal solution.

In this thesis we proposed some polyhedral approaches to the Delivery Man
Problem. Maiﬁ idea was to find a lower bound for the problem using a cutting
plane procedure and to find a good upper bound by trying different heuristics,
so that a branch and bound or branch and cut procedure can be applied more

effectively.

We gave two types of valid inequalities and proposed a cutting plane procedure
and a Lagrangean Relaxation procedure based on these inequalities. We also

proposed four heuristics for general graphs and two heuristics for tree graphs.

In our limited experiment, we have seen that the addition of type 1 cuts can
be done in a reasonable time and it increases the lower bound considerably. Since
we could not develop a rule for the addition of type 2 cuts, the addition of them
takes a very long time compared to type 1 cuts. On the other hand, the addition
of type 2 cuts increases the lower bound, which is obtained by adding all possible
type 1 cuts, only by a small amount. Due to these observations, it seems more
meaningful to enter a branch and bound procedure without adding type 2 cuts,

unless a rule is developed for adding them in a reasonable time.
As a further research, a branching strategy can be found and new heuristics

can be developed to improve the upper bound. The idea in Heuristic 4 can

be enlarged and may be the starting point of a branching strategy. Also, new

40

valid inequalities can be found to increase the lower bound. In this thesis we
worked with the natural formulation of the problem. Extended formulation can
be studied in more detail and cutting planes for TSP can be translated to this

problem using the extended formulation.

41

Bibliography

Balas E., Christofides N. (1979) A Restricted Lagrangean Approach To the Trav-
eling Salesman Problem. Carnegic Mcllon University Management Sciences Re-
search Report, No. 439.

Dantzig G.B, Fulkerson D.R., Johnson S.M. (1954) Solutions of Large Scale Trav-
eling Salesman Problem. Operations Research, No.2, pp.393—41f).

Fox K.R. (1973) Production Scheduling on Parallel Lines with Dependencies.

Ph.D. Dissertation, The Johns Hopkins University, Baltimore.

Fox K.R., Gavish B., Graves S.C (1980) A n-constraint Formulation of the (time-
dependent) Traveling Salesman Problem. Operations Research, vol.28, No.4,
pp.1018-1022.

Garey M.R., Johnson D.S. (1979) Computers and Intractability, A Guide to the
Theory of NP-Completeness,Bell Telephone Laboratories.

Gavish B., Graves 5.C (1978) The Traveling Salesman Problem and Related
Problems, Working Paper GR-078-78, Operetions Research Center, Massachusets
Institute of Technology.

Grotschel M. (1982) Approaches to Hard Combinatorial Problems. Modern

Applied Mathematics, Optimization and Operations Research, North-Holland,
pp-437-515.

42

Grotschel M., Padberg M.W. (1985) Polyhedral Theory, in the The Traveling
Salesman Problem, Wiley, pp.251-306.

Hoffman A.J., Wolfe P. (1985) History, in the The Traveling Salesman Problem,
Wiley, pp.1-16.

Johnson D.S., Papadimitriou C.H. (1985) Computational Complexity, in the The
Traveling Salesman Problem, Wiley, pp.37-86.

Langevin A., Soumis F., Desrosiers J. (1990) Classification of Traveling Salesman

Problem Formulations. Operations Research Letters, vol.9 ,No.2 , pp.127-132.

Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G., Shmoys D.B.,editors, The Trav-
eling Salesman Problem, Wiley, 1985.

Lin S., Kernighan B.W.(1973) An Effective Heuristic Algorithm For the Traveling
Salesman Problem. Operations Research, vol.21, No.2, pp.498-516.

Lucena A. (1990) Time-Dependent Traveling Salesman Problem-The Delivery-
man Case. NETWORKS, vol.20, pp.753-763.

Miller C.E., Tucker A.W., Zemlin R.A. (1960) Integer Programming Formulation
of Traveling Salesman Problems. J. ACM 7, pp.326-329.

Minieka E. (1989) The Delivery Man Problem on a Tree Network. Annals of
Operations Research, Vol.18, pp.261-266.

Nemhauser G.L., Wolsey L.A. (1988) Integer and Combinatorial Optimization,
Wiley.

Evans J.R., Minieka E. (1992) Optimization Algorithms for Networks and Graphs,

Marcel Dekker Inc.

43

Padberg M.W., Grotschel M. (1985) Polyhedral Computations, in the The Trav-
eling Salesman Problem,Wiley, pp.307-360.

Picard J.C., Queyranne M. (1978) The Time-Dependent Traveling Salesman
Problem and Its Application to the Tardiness Problem in One-Machine Schedul-
ing. Operations Research, vol.26, No.1, pp.86-110.

Schrijver A. (1986) Theory of Linear and Integer Programming, Wiley.

Simchi-Levi D., Berman O. (1991) Minimizing the Total Flow Time of n Jobs on
a Network. [IE Transactions, vol.23, No.3, pp.236-244.

44

