376&&

SINGLE MACHINE TOTAL TARDINESS PROBLEM:
EXACT AND HEURISTIC ALGORITHMS BASED ON
B-SEQUENCE AND DECOMPOSITION THEOREMS

A THESIS
SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL
ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCES
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Bahar Kara
September, 1994

g Y

i

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Boknoon O Vpnnt

Assoc. Prof. Barbaros C. Tansel(Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

f_ %@mé)wm &7—;&1

Assist. Prof. Thsan Sabunc%gglu

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Omer Benli \/\«

Approved for the Institute of Engineering and Sciences:

We%/ém

Prof. Mehmet Baray (/
Director of Institute of Engineering and Sciences

ABSTRACT

SINGLE MACHINE TOTAL TARDINESS PROBLEM:
EXACT AND HEURISTIC ALGORITHMS BASED ON
B-SEQUENCE AND DECOMPOSITION THEOREMS

Bahar Kara
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Barbaros C. Tansel
September, 1994

The primary concern of this thesis is to analyze single machine total tardi-
ness problem and to develop both an exact algorithm and a heuristic algorithm.
The analysis of the literature reveals that exact algorithms are limited to 100
jobs. We enlarge this limit considerably by basing our algorithms on the j-
Sequence and decomposition theorems from the recent literature. With our
algorithm, we exactly solve 200 job problems in low CPU time, and we also
solved 120 out of 160 test problems with 500 jobs. In addition we develop a
heuristic based on our exact algorithm which results in optimum solutions in
30% of test problems and stays with 9% of the optimal in all test runs.

Key words: Single Machine Scheduling, Minimizing Total Tardiness, Exact
Algorithms, Heuristics

i1

OZET

TEK MAKINEDE TOPLAM GECIKMEYI EN AZLAMA
PROBLEMI : 3-SIRALAMASI VE AYRISTIRMAYA
DAYANAN KESIN COZUMLU VE SEZGISEL
ALGORITMALAR

Bahar Kara
Endiistri Mihendisligi Bélimi Yiksek Lisans

Tez Yoneticisi: Dog. Dr. Barbaros C. Tansel
Eyliil, 1994

Bu tez calismasinda tek makinede toplam gecikmeyi enazlama problemi igin
kesin ¢ozlimli ve sezgisel algoritmalar onerilmigtir. Literatir incelemesinde, bi-
linen kesin ¢6zimlu algoritmalarin 100 ig sayisi ile sinirli oldugu gorilmektedir.
Bu caligmada yakin zamanda geligtirilmig olan [-siralamasi ve ayrigtirma
yontemleri kullanilarak olugturulan kesin ¢6ztimli algoritmalar ile 200 ig sayili
problemler hizli ¢oziime ulagtinlirken 500 ig sayis1 iceren 160 test probleminin
de 120 si ¢éziime ulagtirilmugtir. Ayrica, bu galigmada kesin ¢6ziimli algorit-
maya dayanan bir de sezgisel yontem geligtirilmistir. Sezgisel yontem eniyi
¢oziime oldukca yakin sonuglar vermektedir ve test problemlerinin %30 unda
eniyi ¢ozlimi vermis, biitin test problemlerinde ise optimalden sapmas1 %9
un icinde kalmigtir.

Anahiar sozcikler: Tek makinede gizelgeleme, Toplam Gecikmeyi
Enazlama, Kesin Cozimli Algoritmalar, Sezgisel Algoritmalar.

iv

ACKNOWLEDGEMENT

I am mostly grateful to Associate Professor Barbaros Tansel for suggesting
a research topic full of enthusiasm, and who has been supervising me with pa-
tience and everlasting interest and being helpful in any way during my graduate

studies.

I am also indebted to Associate Professor Omer Benli and Assist Professor
Ihsan Sabuncuoglu for showing keen interest to the subject matter and accept-
ing to read and review this thesis. Their remarks and recommendations have

been invaluable.

I wish to express my deepest gratitude Dr. Vedat Verter for his invaluable

guidance.

I would like to express my deepest thanks to my family, without whom this
study would not have been possible. To my father, Professor Imdat Kara for
his valuable suggestions and encouragements, to my husband Kadri Yetig for
his love, understanding and moral support and finally to my mother Giinay

Kara, my sister Gonca Kara and my mother-in-law Pinar Yetis for their prays.

I would also like to extend my sincere thanks to my office mates, Muhittin

Hakan Demir and Sibel Salman for their encouragements and moral support.

Contents

1 INTRODUCTION

2 LITERATURE REVIEW
2.1 COMMONLY USED THEOREMS
2.2 OPTIMIZATION ALGORITHMS
2.2.1 Dynamic Programming Based Algorithms
2.2.2 Branch and Bound Algorithms

23 HEURISTICS

3 B-SEQUENCE and DECOMPOSITION THEOREMS
31 Emmons’theorems0 uuiuneon..
32 P-sequencet e e e e e e

3.3 Decompositiontheorems

4 NEW EXACT ALGORITHMS

4.1 Algorithm Beta(TS)

vi

11

15

15

24

27

41

CONTENTS

4.2 The Algorithm Beta(PW)
4.3 Algorithm Beta(TS,PW)

4.4 Computational Results For Beta(TS,PW).

5 A NEW HEURISTIC : Beta
51 PSK Heuristic v ¢ o o i i e e e e e e e e e e e e
5.2 Qur Heunistic: Beta. v o o i i i i e e e e e

5.3 CoOmpariSons v « v v e v st e e e e e e e e

6 CONCLUSIONS and FUTURE RESEARCH

vii

51

53

58

64

64

67

71

75

List of Figures

1.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

4.5

Ilustration of Canonical Schedule 3
Illustration for an interchange 17
The conditionsof cell 7 20
Illustration for a movement 21
Graph for the illustration of enclosing rectangle 24
Figure for the illustration of decomposition theorem 28
Illustration of a forward movement 30
Ilustration of a backward movement 31
Data plot of example 5 40
Flow chart for the algorithm Beta(TS) 43
Data plot forexample6 48
Treestructure o o vt it e e e 50
Flow chart for the algorithm Beta(PW) 52
Flow chart for the algorithm Beta(TS,PW) 54

LIST OF FIGURES

4.6 Graph of the solution times of both of the algorithms

5.1 Figure for illustrationofaswap

ii

List of Tables

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

3.1

5.2

5.3

Table of Dynamic Programming Based Exact Algorithms . .

Table of léranch & Bound Algorithms

Table for the heuristics«

Table for tardiness changes after an interchange
Tardiness changes after an interchange
Table for tardiness changes after a movement.
Tardiness changes after amovement
Tardiness changes resulting from the forward movement

Tardiness changes resulting from the backward movement

Table for comparison of the CPU times

Table for the computational results of Beta(TS, PW)

Tardiness changes caused by swap

Average Deviations of the heuristics from optimum

Average Deviations of the heuristics for cases they differ

i

11

12

18

19

22

22

30

31

59

62

69

72

72

LIST OF TABLES

5.4 Average deviations without the extremecases

5.5 Deviations of the heuristics from optimum

............

iv

Chapter 1

INTRODUCTION

Scheduling may be defined as "the allocation of resources over time to perform
a collection of tasks” (Baker, 1974). In this study we look at scheduling prob-
lems which arise in manufacturing systems. A schedule specifies when and on
which machine each job 7 is to be processed. The aim is to find a schedule
that optimizes some performance measure. Performance measures are mainly
in two categories: regular performance measures and non-regular performance
measures. If a performance measure is non-decreasing in each of the job com-
pletion times it is called a regular performance measure, otherwise it is called
non-regular. In this thesis we select fotal tardiness as the performance mea-
sure and restrict ourselves to a single machine. Total tardiness is a regular
performance measure. In a manufacturing system, each job has a due date at
which time it needs to be ready, and if that job is not ready at its due date,
it is called tardy and it is penalized. The sum of penalties for all jobs yields
the total tardiness. If we also wanted to penalize the jobs which are completed
before their due dates, then we would have a non-regular performance measure.
This time the measure is not non-decreasing in each of job completion times.
It may be better to force the job to wait even if the machine is idle. This is
called "idle time insertion” and does not result in any improvement if a regular
performance measure is used. In problems with regular performance measures,

once we find the order of the processing jobs, which is called a sequence, we also

CHAPTER 1. INTRODUCTION 2

have the schedule since idle time insertion is unnecessary and so the sequence
is the same with the corresponding schedule that has zero idle time between
jobs. This is also the case for our problem. Our feasible set consists of the n!

possible permutations of the jobs.

Let us define the problem. Consider n jobs to be processed without
interruption on a single machine which can handle one job at a time. Let
J = {1,2,..,n} denote the indices of the job set. Each job i is available at
time zero and has an integer processing time denoted by p;. Each job i is to

be completed at a given date d;.

If we denote by T;(S) the tardiness of job ¢ and by Cy(S) the com-

pletion time of job ¢ in a schedule S then
T:(S) = maz{0,Ci(S) — di}.

Defining & to be the set of all permutations of 1,2,...,n the problem is to
i=n
iz 2 ()
If we want to assign different priorities to jobs for being tardy, we have
the Total Weighted Tardiness Problem which is

gr!eigz w;Ti(S)

i=1

where w; is the weight associated with job ¢ .

The weighted tardiness problem is shown to be NP - Hard in the strong
sense by Lenstra, Rinnooy Kan, and Brucker in 1977 [19]. The complexity
status of the unweighted case remained open until 1990. Then Du and Leung
[9] showed that the problem is NP-hard in the ordinary sense. It is instructive
to give the main idea of the proof of Du & Leung.

Du & Leung showed the NP-Hardness of the total tardiness problem
by a reduction from a restricted version of the NP-Complete Even-Odd Parti-
tion problem. The Even-Odd partition problem and the Restricted Even-Odd

partition problem can be stated as follows.

CHAPTER 1. INTRODUCTION 3

Even-0dd partition : Given a set of 2n positive integers B = {b1, by, ..., ban }
such that & > by for1 < i < 2n , is there a partition of B into two
subsets B; and B, such that Y ;¢p, b = Y;c B, b and such that for each
1 <i<n, B (and hence B;) contains exactly one of {bsi_1,b0:}7

Restricted Even-0dd partition : Given a set of 2n positive integers
B = {aj,a,...,a2,} such that a; > a;4y for 1 < ¢ < 2n,a9; > ay;41+6 for
each 1 < j <n and a; > n(4n+1)6+5n(a; —asz,) for each 1 < ¢ < 2n where
6 = 0.55:=7(agi_1 — ay) , is there a partition of A into two subsets A; and
A, such that ;¢ 4, @i = X;ca, @i and such that foreach 1 < ¢ < n ,4
(and hence A,) contains exactly one of {aji_1,a2}?

The additional constraints on A are imposed to facilitate the NP -
Hardness proof of the total tardiness problem. First the authors showed that
the restricted Even-Odd partition problem is NP - Complete.

The authors showed that the total tardiness problem is NP - Hard
by showing the corresponding decision problem to be NP - Complete. The

decision version of the total tardiness problem can be stated as follows.

Given an integer k and a set J = {1,..,n} of n independent jobs, process
times p; € Z% Vi € J and due dates d; € Z Vi € J, is there 2 permutation
S € 8 such that TI7 Ti(S) < k?

The authors first describe a reduction from the Restricted Even-Odd
Partition problem to the total tardiness problem. For that, the authors con-
structed an instance of the total tardiness problem with 3r + 1 jobs labeled
as Vi, Va, .o, Van, Wi, Wa, ..., Wpya. Letting V = {W, V5,...,,V2,} and
W = {W;, Wy, ..., Way1} partition set V in two subsets
{Vi1, Va1y e, Vo } and {Wi2, Va2, ..., Va2}. With these sets, the authors defined
the term Canonical Schedule as a schedule of the type below :

3,1 1 2,1 2 n-1 »,1 n n+41 n,2 n-1,2 1,2

Figure 1.1: Illustration of Canonical Schedule

The schedule can be considered in two parts. The first part is composed of two

CHAPTER 1. INTRODUCTION 4

tuples of jobs, the first element supplied from the first partition of the V set
and the second element supplied from the W set. The second part contains
only the joi)s in the second partition of the V set.

With v;,; denoting the process timeof job V;; for j = 1,2 and Vi € {1,2,...,n},
we have {v;1,vi2} = {asi-1,a2} foreach 1 < ¢ < n. The authors proved
that there is always an optimal schedule which is a canonical one. For this
proof and in the construction of the canonical schedule, they used the theo-
rems of Emmons [11] and some results from Baker [2]. Then they showed that
the total tardiness of a canonical schedule S, denote by T'T(S), satisfies :

TT(S) > k. Moreover, the equality holds if and only if ::’1‘ Vi1 = Zi_;‘ Vig2 -

It follows that the total tardiness problem is NP-Complete O.

In this thesis, we give computationally effective exact and heuristic
algorithms for the single machine total tardiness problem. In chapter 2 we
review the literature on the single machine total tardiness problem. Then
we analyze in chapter 3 some important results from the literature which we
base our research on. These are the [-Sequence of Tansel & Sabuncuoglu
[34] and decomposition theorems of again Tansel & Sabuncuoglu and Potts
& Wassenhove [23]. We also discuss the well known theorems of Emmons
[11]. Then we give the exact algorithms that we have developed. There are
three different algorithms and the most improved one, which we call Beta(TS,
PW), is capable of handling 500 jobs, even though it cannot solve all of the
instances to optimality, whereas the maximum number of jobs in the literature
is limited to 100. These algorithms together with an explanatory example
and computational results are given in chapter 4. We give a new heuristic in
chapter 5 whose observed performance is at least as good as or better than the
heuristic of Panwalkar et al. [22] which is the most successful heuristic in the

literature.The last chapter gives conclusions and outlines future research.

Chapter 2

LITERATURE REVIEW

Before explaining what we have done in this thesis, it will be better to review
the literature first so as to identify some of the deficiencies in the area. The
first section discusses important theorems, the second section is devoted to a
discussion of exact algorithms, and the third section is devoted to heuristics

developed so far.

2.1 COMMONLY USED THEOREMS

This section gives the theoretical background for the single machine total tar-
diness problem. The results that we give in this section have been used by

nearly all researchers in this area.

It will be better to begin this section with the well known lemma of
Elmaghraby given in 1968 [10]. The lemma says that among a subset S of un-
scheduled jobs(each available at time 0), if thereisajob & € S such that d; >
Y ics Pi then there exist an optimal schedule in which k is last among all jobs
in S . This is very intuitive. If job k has such a due date di then it will not

be tardy if we process it last among the ones in hand.
An important study which found many applications is the well known

5

CHAPTER 2. LITERATURE REVIEW 6

paper of Emmons 1969 {11]. In that study, Emmons derived three basic the-
orems that establish precedence relations between job pairs according to their
process times and due dates. Emmons also derived some corollories which

identified any jobs, if possible, being first or last among the unscheduled ones.

Later, in 1975, Rinnooy Kan et al. [28] derived similar relations but

for arbitrary nondecreasing cost functions.

In a recent work, Tansel and Sabuncuoglu [35] interpreted the theo-
rems of Emmons with a geometric viewpoint which makes the theorems easy
to handle and more understandable. Following that study Tansel and Sabun-
cuoglu [34] derived some conditions which identify certain sequences as being

optimal or not.

In 1977, Lawler [16] developed a theorem which is also applicable to the
weighted tardiness case. This theorem is not for finding precedence relations;
instead, it gives a decomposition principle. Decomposing refers to dividing the
problem into two or more sets and solving each set separately. The decomposi-
tion theorem of Lawler assumes that the jobs are in EDD order and then finds
alternative decompositions which result from moving the longest unscheduled
job to different places. In order to find the optimal sequence, all alternative
decompositions must be carried on. The decomposition takes pseudopolyno-
mial time. It is in O(n* * prer) Where ppg: is the maximum process time or

in O(n® * P) where P is the total processing time.

Later, Potts and Wassenhove [23, 26] worked on the decomposition
theory of Lawler and they decreased the number of possible decompositions by

imposing some extra conditions on the decomposition theorem of Lawler.

Then in 1994, Tansel and Sabuncuoglu [34] give a different type of
decomposition theorem. Their decomposition theorem does not assume EDD
ordering and it does not try to decompose the problem according to the pos-
sible places of the longest job. This decomposition theorem finds one exact
decomposition according to the job it applies, but this time there is no guar-

antee that the problem decomposes. That is, the theorem may not apply for

CHAPTER 2. LITERATURE REVIEW 7

any job in hand in which case we will not have any decomposition.

2.2 OPTIMIZATION ALGORITHMS

The algorithms which search for the optimum for single machine total tardiness
problem are mainly in two categories: dynamic programming algorithms and
branch & bound algorithms. Branch & bound algorithms usually suffer from
high running times and dynamic programming algorithms suffer from high core
storage requirements. The best algorithms in the literature can go up to 100

jobs both for branch & bound and dynamic programming,.

2.2.1 Dynamic Programming Based Algorithms

Dynamic programming based algorithms are the earliest available algorithms
for the single machine total tardiness problem [3]. In finding an optimal se-
quence with dynamic programming, the typical approach is to identify a set
of jobs , say S, with S to be scheduled at the last m = |S| places of the
sequence and to find the job in S which will be scheduled first by evaluating
all. This is repeated until all jobs are scheduled.

There are many dynamic programming algorithms. Srinivasan 1972
[33], Lawler 1977 [16], Schrage and Baker in 1978 [4, 29] Potts and Wassenhove
in 1982 and 1987 [23, 25] are the main ones. The table 2.1 summarizes their

results.

The algorithm of Lawler [16] is a pseudopolynomial time algorithm
which evaluates all possible decompositions via dynamic programming. The
author did not give any computational results but later Potts and Wassenhove
[23] made a computational study of this algorithm. The algorithm could not go
further than 50 jobs. Lawler later developed a fully polynomial approximation
scheme for his algorithm [17]. The bound of O(n®P) is transformed to O(n”/e)

with some manipulations

CHAPTER 2. LITERATURE REVIEW

Authors

Any Important

property

Computational resuits

Srinivasan 1972

50 jobs in 0.36 CPU secs at
UNIVAC 1108

Lawler 1977

Decomposition based

Done by Potts & Wassenhove
in 1987. 50 jobs in 8.74 CPU
secs on CDC 7600

Baker & Schrage 1978

Developed for prob-
lems restricted with
precedence relations

Core storage requirements per-
mits up to 30 jobs, solved in 0.2
CPU secs

Schrage & Baker 1978 | Good labeling | 50 jobs

techniques
Potts & Wassenhove | Decomposition based | 100 jobs in 27.07 CPU secs
1982
Potts & Wassenhove | Slight modifications 100 jobs in 27.07 secs case is
1987 chosen at the end

Table 2.1: Table of Dynamic Programming Based Exact Algorithms

In 1978, Baker and Schrage gave two algorithms on this topic. These
algorithms are the best known dynamic programming algorithms and have
been used by many subsequent researchers. The first one [4] is for problems in
which jobs have precedence restrictions. The authors give an approach which
can also be used for problems with no precedence restrictions. The authors

also give importance to labeling of the sets.

The second paper of Schrage and Baker [29] works on better labeling
techniques than the one they proposed in their previous paper. They work out

a good algorithm for labeling.

Both algorithms have low CPU time and the core storage permitted
handling as many as 50 jobs which are solved in less time than any branch and
bound algorithm. The technique given in the second paper is even better than
the one based on the chain structure because of the improved labeling. With
this algorithm it becomes easier to retrieve the sets when they are needed. This
dynamic programming algorithm is used as a subroutine by some subsequent

researchers.

CHAPTER 2. LITERATURE REVIEW < 9

In 1987, Potts and Wassenhove [25] proposed a method which makes
some modifications on the dynamic programming algorithms of Lawler and
then of Schrage & Baker’s. Their decomposition theorem is applied to the
problem in hand until it can be solved by the dynamic programming algorithm
of Schrage & Baker. Then, they made some modifications such as using El-
magraby’s lemma [10] in branching, using a technique which prevented solving
the same problem more than once, and recognizing easily solvable cases like
the ones giving SPT optimum or EDD optimum, before attempting to solve
the entire set. With these kinds of modifications, the authors managed to solve
100 jobs in less time than they did before. The final step they reach in this
study is the best known exact algorithm. It solves 100 jobs in 27.07 seconds
on the average on a CDC 7600 computer. The code is in FORTRAN V.

2.2.2 Branch and Bound Algorithms

Branch and bound algorithms appeared with the development of theorems
that give precedence relations. The first branch and bound algorithm which
is based on precedence relations is developed by Elmagrabhy in 1968 [10] and
by Emmons in 1969 [11]. Then Schwimmer in 1972 [30}, Rinnooy Kan et al.
in 1975 [28], Fisher in 1976 [12], Picard and Queyranne in 1978 [21] , Potts
& Wassenhove in 1985 [24] are the other studies which find an optimum via a
branch & bound algorithm. The table 2.2 summarizes the state of the art on

branch and bound.

In 1976, Fisher [12] developed the best known branch and bound al-
gorithm in terms of the tightness of the lower bound used. He considers the
single machine as posing a constraint on the feasible set of the problem. He
performed a Lagrangean relaxation on that constraint and the solution of the
relaxed problem gave a lower bound for the initial one. The branch and bound
algorithm is based on backwards scheduling with depth first search. Nodes cor-
respond to the set of scheduled jobs up to that time. Begin branching by the
possible set of last jobs (known by the use of Emmons’ theorems) and apply

depth first search by taking into account the precedence relations (resulting

CHAPTER 2. LITERATURE REVIEW 10

from Emmons theorems) until fathoming occurs. The fathoming criteria are:
i)an initial solution for the problem is first calculated with any heuristic. Use
Caroll’s heuristic [5] which is a construction heuristic based on Emmons theo-
rems. At each node the calculated lower bound is compared with the solution
of the heuristic and if the lower bound is greater than the total tardiness of
the solution, then the node is fathomed.

i1)if the Lagrangean resulted in an optimal solution then the node is fathomed.
You have the solution.

iii)if for any two different nodes, the nodes contain the same set of scheduled
jobs but have different costs, then the one with higher cost is fathomed (fathom

with respect to dominance criteria).

This algorithm can solve up to 50 jobs in reasonable time but it
works with small p; only since the solution to the Lagrangean is obtained
in O(n®pgy,) Where pay, is the average processing time. The algorithm can

solve 50 job problems and only if jobs have small process times.

The algorithm of Potts and Wassenhove [24] is the fastest one among
the known branch & bound algorithms. Their algorithm is again based on
backwards scheduling with depth first search. They also calculate a lower
bound for each node. Their lower bound is easy to calculate, is not as good
as Fisher’s, but not bad either. In calculating the lower bound they relax the
problem so that the resulting problem becomes the minimization of the total
completion times. The method is successful up to 50 jobs for the weighted

case,

CHAPTER 2. LITERATURE REVIEW i1

Authors Problem Any Assumption Computational
_ results
Elmaghraby Weighted tardiness | - None reported
1968
Emmons 1969 Total tardiness - None reported
Schwimmer 1972 | Weighted tardiness | small p; 20 jobs in 0.29
secs

Rinnooy Kan et | Any nondecreasing | Alg. tested for | 20 jobs but could

al 1975

cost function.

weighted tardiness

not solve all

Fisher 1976

Total tardiness

Small p;

50 jobs
CPU secs

63.49

Picard et al.
1977

Weighted tardiness

Time dependent
TSP application

20 jobs in 136.6

SECs.

Sen et al. 1983

Total tardiness

The experiments
are not compa-

rable. Solved
5 problems with
100 jobs.
Potts & Wassen- | Weighted tardiness | - 50 jobs in 7.9 secs.
hove 1985
Table 2.2: Table of Branch & Bound Algorithms
2.3 HEURISTICS

The research after 1990, at which time the NP - Completeness is proved, fo-
cused mainly on finding good heuristics. There were studies on heuristics
before that time also, but those were mainly in construction type heuristics
which may help in upper bounding. In construction heuristics, the schedule
is built from scratch by fixing the position of one job at each step. Caroll
1965 [5], Wilkerson and Irwin 1971 [36], Morton and Rachamadugu in 1982
[20], Baker and Bartrand [1] have construction heuristics for the problem. The
Wilkerson & Irwin heuristic is in fact a combination of a construction plus

some improvement heuristic.

Different types of improvement heuristics began to appear after 1990.
Potts and Van Wassenhove in 1991 [26], Lowe et al in 1991 [6] are among those

studies. The table 2.3 summarizes existing heuristics in the literature.

CHAPTER 2. LITERATURE REVIEW 12
Authors Name of | Any Property Complexity,
heuristic
Caroll 1965 COVERT | Construction O(n?)
Morton & | Apparent | Construction O(n?)
Rachamadugu 1982 Urgency
Baker & Bartrand Modified | Construction O(nlogn)
Due Date
Wilkerson & Irwin | WI Construction plus | -
1971 Interchange
Potts & Wassenhove | - Decomposition incorporated | -
1991 with any heuristic
Lowe et al. 1991 - Relaxing Emmons theorems | -
and solving with dynamic
programming of Schrage and
Baker in sets.
Fry et al. 1989 API 9 different interchanges. Bet- | -
ter than WI
Holsenback & Russel | - Construction. Very simple, | O(n?)
1992 even hand calculation is pos-
sible for n < 20 Better than
API
Panwalkar et al. 1993 | PSK Construction. Best known | O(n?)

Table 2.3: Table for the heuristics

Any of the scheduling rules can be accompanied with interchange
heuristics. That is, the resultant schedule of any of the above heuristics can be
put into local search heuristics. In 1990, Chang et al. [7] analyzed many types
of local search heuristics and derived the worst case behavior for them. They
analyzed four main local search heuristics:

ADJ : Adjacent Interchange - Only interchanging a pair of two adjacent jobs
K - INT : K - Interchange, Interchanging any pair of jobs at most k times
successively

B - S : Backwards Shift, Moving one of the jobs backwards.

G - S : General Shift, Moving one of the jobs forwards or backwards.

They defined a local search heuristic to be any method that starts
with an initial sequence and searches for another permutation of the jobs which

results in less tardiness.

CHAPTER 2. LITERATURE REVIEW 13

The authors found out that for n > 4 , in the worst case, the first two
interchange based heuristics, ADJ and K - INT can have arbitrarily large (may
be o0) relative error (the relative error is defined as the ratio of the worst local
optimum value to the global optimum). The authors also showed that shift

based heuristics, B - S and G - S, have finite relative error in the worst case.

Another heuristic is developed by Fry et al. [14] in 1989 which is based
on adjacent pairwise interchanges (API). Since adjacent pairwise interchanges
can only result in a local optimum, the authors tried to evaluate different
solutions and select the best at the end. The initial sequence in starting the
local search effects the solution, so the authors tried three different initial
sequences, namely, SPT, EDD, and SLK (Smallest Slack Rule) which schedules
jobs in nondecreasing order of C; — d; where C; denotes the completion time
of job ¢. The interchange strategy will also affect the result. The authors
matched the three initial sequences with three different interchange strategies
so there were nine different solutions for each problem. At the end they select

the best of these nine solutions as the result of the API heuristic.

Most recently, in 1992, Holsenback and Russel [15] developed another
heuristic. In their review of the literature the authors say that the API heuris-
tic of Fry et al. (explained before) was the best of the existing heuristics in
terms of solution guality where solution quality is defined as the mean per-
centage deviation of the heuristic from the optimum. The authors claim that
they developed a better one, both in solution quality and running time. The
heuristic starts with an EDD schedule and tries to improve the sequence. The
reducible tardiness criterion is used in the improvement. Any job which has
tardiness greater than its processing time {(Ty > p; where T} is the tardiness
of job k) is said to have reducible tardiness. In the algorithm, inspecting jobs
from the last to first, the first job having reducible tardiness, say job £, is
identified. Given k, the predecessors of job k (in the current sequence) are
inspected in the order k—1,k—2,.. until the first job is found whose movement
to position k + 1 (i.e. right after &) improves the total tardiness. With this
movement the tail end of the sequence from positions £+ 1 up to n is fixed.

For the remaining jobs (i.e. jobs 1,...,k) the same procedure is applied. The

CHAPTER 2. LITERATURE REVIEW 14

algorithm continues until no job with reducible tardiness can be found. The
complexity of the algorithm is O(n?). The important property of this heuristic

is its easiness. Even hand calculation is possible with this heuristic for n < 20.

In 1993, a better heuristic is developed by Panwalkar et al. [22]. This
heuristic is the best known one for the single machine total tardiness problem,
both in solution time and in solution quality. The authors compared their
heuristic with that of Wilkerson and Irwin, Holsenback and Russel and the
API method of Fry et al. and showed, by making many experiments, that
their heuristic is better than all of the others. The algorithm makes n passes
from left to right and at the & pass it picks one job and schedules it to the
k* position. Each pass starts with the smallest job in hand, calls it the active

job, and tries to fix this job by considering some inequalities or changes the

active job.

Chapter 3

B-SEQUENCE and
DECOMPOSITION
THEOREMS

In this chapter we analyze the earlier results from the literature which we use
in our algorithms. The first section gives Emmons theorems [11]. The second
section is on the B-Sequence of Tansel & Sabuncuoglu [34] and the third section
gives the decomposition theorems of Lawler [16], Potts & Wassenhove [23], and
Tansel & Sabuncuoglu [34]

3.1 Emmons’ theorems

The theorems of Emmons are the basic building blocks in the scheduling theory
of total tardiness. Nearly all subsequent researchers used these theorems in

their studies.

To state the theorems assume jobs are indexed according to the nonde-
creasing processing times by breaking ties with nondecreasing due dates. That

is j < k implies p; < py or p; = pr and d; < di. This indexing will

15

CHAPTER 3. [-SEQUENCE AND DECOMPOSITION THEOREMS 16

be referred to as the SPT (Shortest Processing Time) indexing. Throughout

the thesis, we use SPT indexing unless otherwise mentioned and we denote

P* = Yiel Di-

We define a subset B; of J to be a before-set of j if there exists an
optimal sequence in which every job in B; precedes job j. Similarly, a subset
A; of J is defined to be an after-set of job j if there is an optimal sequence
in which every job in A; succeeds job j. We also define Ar = {i : i ¢ A.}

Theorem 1 For j < kif By is a before set of job k and

di <maz { > pi+pr ,dx}
i€B;

then By U {j} is also a before set of job & (i.e there exist an optimal sequence

in which every job in By as well as job j precede job k).

Theorem 2 For j < k if Br and Aj are before and after sets of job k,

respectively, and 2) d; > maz{Yicp, pi + pr,di}
1) dj +pi > Tie 4, Pi
then A U {j} is also an after set of job k.

Theorem 3 For j < kif A; is an after set of job j and

> > pi

i€ A
then A; U {k} is also an after set of job j.

We use the notation j « k to mean there exist an optimal sequence

in which job j precedes job &.

The first theorem gives the conditions for a smaller job being a pre-
decessor of a larger one whereas the second theorem is for a larger job being
a predecessor of a smaller one. Repeated use of the theorems will give many
relations and those relations will form succesively expanding before-sets and

after-sets of each job. That is once we find j is before & we insert job j in

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 17

the most recent before set of job k and insert job k in the most recent after

set of 7.

The proofs of the theorems are based on either interchanging two jobs
or moving one job to a later position. While making these movements or
interchanges, say for proving j « k, the author assumes the opposite (that
is, job k is placed before job j in a sequence) and shows that the tardiness of
the sequence will not get worse by interchanging jobs j and k& or by moving
job j right after job k. The following discussion give the main ideas that lead

to Emmons‘ theorems.

Let j < k and suppose we have a sequence S in hand with job &
placed before job j. Jobs j and k may or may not be adjacent. Now we study
the changes in the tardiness function when we interchange jobs j and & and

we derive conditions under which the interchange decreases the total tardiness.

Let the sequence after interchanging job j and job k be S.

g)

I k middle set i

s |~] middle set k

Figure 3.1: Illustration for an interchange

Let W be the waiting time of job kin S and C be the completion
time of job j in S. So only the jobs whose completion times are between W
and C are affected from this movement. We call these jobs as the middle set
and denote the tardiness of these jobs in sequence S by T(middle set). If
we define T(S) to be the tardiness of sequence S and T(S) to be tardiness

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS - 18

of S, we have
T(S) = maz{0, W + p; — di} + maz{0,C — d;} + T(middle set) + K
T(S) = maz{0,W + p; — d;} + maz{0,C — di} + T(middle set) + K

where K is the total tardiness of the unaffected jobs.

Since j < k implies p; < pi the tardiness of the middle set can not

get worse. The change in tardiness is
AL T(8)-T(5)
> maz {0, W+pr—di} +maz{0,C—d;}—maz{0, W+p;—d;}—maz{0,C—d;}

where the inequality follows from T'(middle set)—T'(middle set) > 0. Define
the right hand side of the inequality to be A.

We consider 16 cases corresponding to two possibilities for each max-

imand. The following table identifies the 16 possibilities.

Aft. Move — | j=Tardy j=Tardy j=NotTardy | j=NotTardy
Bef Move | k=Tardy k=NotTardy k=Tardy k=NotTardy
j=Tardy 1 X- (a) 2 X- (a)
k=Tardy

j=Tardy 3 4 5 6
k=NotTardy

j=NotTardy | X- (b) X - (a)(b) 7 X- (a)
k=Tardy

j=NotTardy | X - (b) X- (b 8 0
k=NotTardy

Table 3.1: Table for tardiness changes after an interchange

In the table, we marked some of the cells by X to indicate that the
cell will not arise. For example, for X(a) , the condition of the cells mean
job k is tardy in S and it becomes not tardy in S which is impossible. Also
for X(b), the condition of the cells show job j is not tardy in S whereas it

becomes tardy in S which is impossible.

Now let us see the change in the tardiness for each of the cell in the
table above. We look at A.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 19

Celll A=(WHp—de +C~dj)—(WHp;—dij+C —di)=pr—p; 20
since j <k

Cell2 A=(Wap—di +C~dj)— (C—di) =W + pr — d;

Cell3 A=(C—d;)—(WHpi—dj+C—dp)=d,~W—p; 2 d —W—p > 0
since k is not tardy in S in this cell so that dx > W + py.

Cell4d A=(C—dj)—(W4+pj—dj)=C—-W—p; >2p >0

Cell5 A =(C—d;)—(C—di)=dr—d;

Cell6 A=(C—4d;j)>0

Cell7 A=(W+pk—di)—(C—dx)=W+pt—C < 0since C>W+pe+p;
Cell8 A=—(C—di)<0

Let us summarize the results of A in the next table

Aft. Move — | j=Tardy j=Tardy j=NotTardy | j=NotTardy
Bef Move | k=Tardy k=NotTardy k=Tardy k=NotTardy
j=Tardy 1y =0 X (2) X

k=Tardy W + pr — d;

=Tardy [@) =0 @) =0 G) di-d; (6 =0
k=NotTardy

j=NotTardy [X X (m <o X

k=Tardy

j=NotTardy |X X 8) <o 0
k=NotTardy

Table 3.2: Tardiness changes after an interchange

In order for the interchange to improve tardiness we want A > 0 for
all of the cells. Since there are some cells with A < 0 and others where A
can be negative, zero or positive we need to impose conditions to avoid them.
We only need to look at the cells 2, 5, 7 and 8. Since we have d; —d; in one

of the cells , let us first impose the condition dy > d;.

Cell 2 W + px — d; =7 Since we use di 2> d;

WHpe—d; >W+pp—di > 0since kistardyin Sand W >0

Cell 5 di —d; > 0 by the imposed condition.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 20

For the cells 7 and 8 we need conditions for avoiding them. Let us see if di > d;
works here or not

Cell 7 In this cell job j is not tardy in both sequences and job k is tardy in
both of them.

n
[
o

Figure 3.2: The conditions of cell 7

So if dj > d; this case will not arise.

Cell 8 is similar to cell 7 and the condition dy > d; avoids this cell also.

Soif p; < pr and d; < dj then the sequence S has no more tardiness
than S and so we can say that in some optimal sequence job j will be
scheduled before job k(otherwise, interchanging those jobs will not increase

the tardiness).

If we define P(Bj) as the total process times of the jobs in the before-
set of job k, with similar arguments, A > 0 condition can also be satisfied
with P(B:)+ pr 2> d; condition.

So for p; < pi either d; < di or d; < P(By) + px is needed to have
an improvable interchange. Hence, if p; < pr and d; < maz{di, P(B:) + pi}
then job j is before job % in some optimal sequence. This is the first theorem

of Emmons.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 21

Now suppose we know that the above inequality is not satisfied for jobs
7 and k. Since we cannot say that j is before k in some optimal sequence, let
us see if we can say that k is before j in some optimal sequence. This time
put j before k in a sequence S and form the second sequence S by moving

job j to the position right after job k. The figure below will be helpful.

4)

s |] middle set kK e

s |- middle Set k j

Figure 3.3: Illustration for a movement

Again, the total tardiness for S and S are
T(S) = maz{0,W + p; — d;} + maz{0,C — di} + T(middle set) + K

T(5) = maz{0,C — d;} + maz{0,C — p; — di} + T(middle set) + K

We assume that the first theorem is violated; that is, assume
pi < px ,d; > maz{dy, P(By) + pi}

Since p; < px ,the tardiness of jobs in the middle set cannot increase.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 22

The table below illustrates the cases to consider. Since, now we are

moving job j right after job k the table has a slightly different form.

Aft. Move — | j=Tardy j=Tardy j=NotTardy | j=NotTardy
Bef Move | k=Tardy k=NotTardy k=Tardy k=NotTardy
j=Tardy 1 2X (o) X (a) X (a)
k=Tardy

j=Tardy X (b) 3X (¢) X (a)(b) X (a)
k=NotTardy

j=NotTardy |4 5 6 7

k=Tardy

j=NotTardy | X (b) 8X (¢) X (b) 0
k=NotTardy

Table 3.3: Table for tardiness changes after a movement

The X’s are again denoting the cases which cannot arise. X (a) cannot

occur because if job j is tardy before, it will continue to be tardy; X (b)

cannot occur because if job k was not tardy before, then it will continue

to be not tardy, and finally X (¢) cannot occur due to the condition d; >

maz{dx, P(Bx)

+ pi} > di.

The table below summarizes the results found for the remaining cases.

Aft. Move — | j=Tardy j=Tardy j=NotTardy |j=NotTardy
Bef Move | k=Tardy k=NotTardy k=Tardy k=NotTardy
j=Tardy (1) X X X

k=Tardy W+2p; —C

j=Tardy X X X X
k=NotTardy

j=NotTardy | (4) 5) >0 (6) >0 (1) =0
k=Tardy p;i+d;—C

j=NotTardy | X X X 0
k=NotTardy

Table 3.4: Tardiness changes after a movement

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 23

We again want to have A > 0 for all cells so we need to analyze cases
1 and 4. Let Aj be the after set of job k and let Ay = J — A;. Then we can
say that C < P(Ay) and P(Ay) > W + p; + pr. Suppose d; + p; > P(Ay)
then d; +p; > P(Ax) > W +p;+prandso d; > W +p, > W +pj. Then j

was not tardy before which eliminates cell 1.

For cell 4, since we assume p; + d; > P(A;) and since P(A4;) > C
this cell is satisfied by the condition imposed.

So for p; < pi if d; > maz{dy, P(By) + px} and p; +d; > P(/ik)
then job k is before job j in some optimal sequence, and this is the second

theorem of Emmons.

In 1976, Fisher [12] relaxed these theorems, by first removing 5 < k
condition from the third theorem and removing one of the maximands from

part (¢) of the second theorem. That is (¢) can be taken as d; > d.

Here it will be better to give the geometric view of Tansel & Sabun-
cuoglu [34]. With their point of view theorems of Emmons become really
easy to handle. Especially their look at theorem 1 is worth mentioning. De-

fine Ex = Yiep,Pi + P to be the earliest completion time of job : and

Li = Y ica, pi be the latest completion time of it. Recall that By and A
are the before and after sets of job k and Ax = J — A . Plot the data on a
graph with each data point being represented by (px, maz{dy,FEx}) Yk € J.

Initially, no relation is known, and Ej = px. Ej becomes larger when we
find relations. Each job k& has an enclosing rectangle which is defined by the

following points as the corners :
(0? 0)1 (Pk, 0)7 (Oa maz{dk’ Ek})’ (Pk, mam{dh Ek})

A point (p;j, max{Ej;,d;}) is said to be in the enclosing rectangle of job
k if the point is in the interior or on the boundary of the enclosing rectangle of
job k. An equivalent statement of Theorem 1 of Emmons is as follows : With
SPT indexing, if the point corresponding to job j is in the enclosing rectangle
of k then job j is before job k in some optimal sequence. The figure 3.4

illustrates the idea.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 24

Due date

Second expansion

215 : — : —
1854 - - - - .o T S L. e First expansion

186 . — ——% 10

1554 - - - - - oo e RRIIR IR o . Enclosing rectangle
1354 .. .4 : . Do of job 10

1M7L . L e . .
100l . . .

10 29 43 44 5763 66 73 T7 82 Process time

Figure 3.4: Graph for the illustration of enclosing rectangle

For example in Figure 3.4, initially Bjo = 0§ and FE;o = 82. Since jobs
1, 5, 7 are in the enclosing rectangle of job 10, B¢ now expands to {1,5,7}
and FEjo becomes 82+ 104 57 + 66 = 215. The enclosing rectangle of job 10
expands vertically indicated by the arrow in the figure and now job 8 is also in
the rectangle. Now Bje = {1,5,7,8} and Ejp = 215+ 73 = 288 and jobs 2, 3,
4 fall in the enclosing rectangle of job 10. With these rectangular movements,

the relations become very easy to handle.

3.2 [(-sequence

With the repeated use of Emmons’ theorems, a new sequence, called the
B-Sequence, is developed by Tansel & Sabuncuoglu. The S-Sequence happens

to be an optimal sequence under certain conditions. Let us give some definitions

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 25

first.

For any job j four different sets are constructed. These are referred
to as right-down, left-down, right-up, and left-up sets of job j, denoted by
RD;,LD;, RU;, LU;, respectively. Let o; = maz(p;,d;) V.

The sets are defined as
RD; ={i:i € J,i >j, and o; < q;}
LD;={i:i€ J;i<j, and o; < 0;}
RU;={i:i€ J;i>}j, and oy > q;}

LU; = {i:i€ J,i<j, and o; > o}

For example, for job 7 in Figure 3.4 we have

LD; = {115}3 RD; =0, LU; = {27314)6} , RUr = {8a97 10}
In fact LD; is the set of jobs in the enclosing rectangle of job j.

The J-Sequence is generated by using the earliest completion times
of the jobs resulting from the before-sets. While forming the before-sets the
left-down and right-down sets are used. The usage of the left-down set corre-
sponds to the use of Theorem 1 of Emmons in finding the before-sets. That
is, for ¢ € LD;, the relation ¢ « j is available from Tansel & Sabuncuoglu’s
interpretation of Theorem 1. The use of right-down set corresponds to the use
of Theorem 2 of Emmons. For ¢ € RD; , a job being in RD; means that
pj < p; and maz{d;, E;} > d; which are the first two requirements of theorem
2 of Emmons. So for any ¢ € RD;, if p; +d; > L; then ¢ « j can be

concluded.

We form the earliest completion time FE; of job j in two steps after
initialisation:
Initial: Assign B; = maz(p;,d;)Vj and form LD;, RD; with respect to point
(pi» B;) V.
Step 1 - For each newly included k in the most recent LD;, we increment Ej;

by pr while decreasing Li by p;, assign B; = maz{d;, E;} and redefine LD;

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 26

with respect to point (pj, ;).

Step 2 - For each newly included k in the most recent RD;, if p;+8; > L then
we increment E; by pj while decreasing L; by p;, assign 8; = maz{d;, E;}
and redefine RD); with respect to point (p;, ;).

These steps are repeated as many times as possible. Termination occurs when

no more incrementation can be done.

The [-Sequence is the sequence of the jobs when we order them in
nondecreasing order of their final § values with ties broken by nondecreasing
order of process times. Let D;(f) denote the jobs sequenced before job j in
the B-sequence and RD;(8) be the most recent right down set of job j at

termination of steps 1 and 2.

The B-Theorem of Tansel & Sabuncuoglu is :
Theorem If §; > P(D;(8)) Vj with RD;(f) # 0 then the B-Sequence is

optimal for the original problem.

If (¢) RD;(B) =0 or (i¢) RD;(B8) # 0 and B; > P(D;(B)), then we
say job j passes the B-test, otherwise we say job j fails the B-test. Note
that failure occurs if and only if RD;(B) # 0 and B; < P(D;(B)). If all jobs
pass then the 3-Sequence is optimal. Otherwise nothing can be said about the

optimum sequence. That is, a failed §-Sequence may or may not be optimal.
Let me give an example here to illustrate the idea.

Ex 1 Suppose we have 7 jobs to schedule. The process time and
due dates are shown in the table below. Applying Emmons’ theorem to find
precedence relations between job pairs we find earliest completion times for the

jobs. The resultant early completion times of those 7 jobs are below:

CHAPTER 3. [B-SEQUENCE AND DECOMPOSITION THEOREMS 27

Job No | Process time | DueDate | Final E;’s | Final B;’s
1 19 246 19 246
2 26 250 105 250
3 60 246 79 246
4 63 275 168 275
5 64 309 319 319
6 7 328 396 396
7 87 280 255 280

The beta sequenceis 1324756

For job 1 down set total is zero (passes).

For job 3 down set total is p; = 19 and if f; = 246 > p; = 19 (passes)
For job 2 Bz = 250 > 19 + 60 = 79 (passes)

For job 4 275 > 79 + p, = 105 (passes)

For job 7 280 > 105 + ps = 168 (passes)

For job 5 319 > 168 + p; = 255 (passes)

For job 6 396 > 255 + ps = 319 (passes)

So the A-Sequence is optimal.

3.3 Decomposition theorems

The decomposition idea, first developed by Lawler [16], is the next tool that
we use in our algorithms. Decomposing means handling each part alone, inde-
pendent of the other. So the number of jobs in hand at a time decreases. The
problem is that the decomposition theorem of Lawler results in many possi-
ble alternative decompositions and there is no @ priori information on which

particular decomposition(s) yields an optimal sequence.

The decomposition theorem of Lawler is also applicable to weighted
tardiness problem. For the decomposition principle to apply, jobs are assumed

to be agreeably weighted; that is, if p; < p; then w; > w;. For the total

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 28

tardiness problem since all w; = 1 this condition passes immediately. Begin
with reindexing the jobs in EDD order, i.e di < d; < d; < < d, and
break ties by nondecreasing process times. Let job k be the largest indexed
job with the largest processing time. The decomposition theorem states that
there exists an integer 6§, 0 < § <n—k ,such that there is an optimal
sequence in which k is preceded by all jobs j:j < k + 6§ and followed by all
jobs j :j > k+ 6. So using this principle the problem can be decomposed
into subproblems without losing from optimality. That is, there is an optimum
sequence which is in the following order according to é:
i)1,2,3,. k= 1,k +1,... k+6
i) k
w)k+6+1,k+6+2,..,n

In fact, this theorem can be seen from theorem 1 of Emmons if we
look at it from the view of Tansel & Sabuncuoglu. Since k is taken to be the

largest job, there will be no point in the right side of job k in the graph. The

figure below will be helpful in the explanations.

Figure 3.5: Figure for the illustration of decomposition theorem

CHAPTER 3. (B-SEQUENCE AND DECOMPOSITION THEOREMS 29

The jobs in the enclosing rectangle of job k will be sequenced before
job k and for the ones above the rectangle, nothing can be said in terms of
theorem 1. The decomposition theorem of Lawler uses this idea. The jobs in
the enclosing rectangle of job k are the ones which have less due date than
that of job k. Since we are using the EDD indexing, then those jobs will be
the ones from 1 to k - 1. So in some optimal sequence, job k will be sequenced
after the jobs which have less due date than itself, regardless of how the jobs
in the enclosing rectangle are sequenced. The jobs which have d; < di will
be surely before job k. The rest of the jobs should be checked in both before
k and after k. So there are many possible decompositions, in terms of this

decomposition theorem.

Then Potts and Wassenhove [23] worked on the theorem and decreased
the search space. In order to understand what is going on let us drive the
conditions from scratch. We are trying to find places k + é to which moving
job k is not profitable. That is, we assume job k is at place k + 6 and then
derive conditions for which moving job % forwards or backwards decreases the
tardiness . Then we conclude that with those conditions, the place k + 6 will

not be an alternative for job k.
We know that pr > p; V¢ and

di <dpt1 <drpa <. <dpgso1 S diys <. S

Let us first look at the case of forward movement from place k + 6.
Job k is at place k + 8 and we derive the conditions under which moving k
from k + & will be profitable. The figure 3.6 shows the sequences, S before

the movement and the sequence S after the movement.

CHAPTER 3. [-SEQUENCE AND DECOMPOSITION THEOREMS 30

s| 1 k-1 | k+1{ - - k+ 6 k k+ 641 - - n
g k+ 6+1 k n
w
Figure 3.6: Illustration of a forward movement
The table below illustrates the idea. Let A = T(S) — T(S) and
let j=k+6+1.
After Move — | k=Tardy k=Tardy k=NTardy k=NTardy
Bef Move | j=Tardy j=NTardy j=Tardy j=NTardy
k=Tardy (1) (2) WHp—d; | X X '
j=Tardy pe—pi 20
k=Tardy X (3) <0 X X
j=NTardy
k=NTardy X (6) di —d; <0 | X X
j=Tardy
k=NTardy X 8) <0 X 0
j=NTardy

Table 3.5: Tardiness changes resulting from the forward movement

We are trying to find conditions for which moving job k is profitable,

so we want A > 0. So we need to eliminate cases 3, 5 and 8 while trying to
make cell 2 > 0. If we impose W + pi — diys43 = 0 then diyspn < W +pi
and so job k+ &+ 1 is tardy in the sequence S which eliminates cases 3 and

8 immediately.

For case 5: Since dips41 < W + pr < di where the last inequality

follows from job k ’s being not tardy in S and since dy < diis41 this case is

also eliminated.

CHAPTER 3. [-SEQUENCE AND DECOMPOSITION THEOREMS 31

So if

i=k48 k6
diysy1 SWHp < E Di— Dk t+pr= Z p; ford<n—k

=1 =1

then job k will not stay at place k46 .

Now, let us derive a similar relation from the backwards movement of
the job k assumed to stay at place %k + 6. The figure below will show the

sequence before the move, S, and after the move S.

s 1 k_l k+1 k+6 k k+6+1 n

g k k+6

Figure 3.7: Illustration of a backward movement

The table below shows the resultant A = T'(S) — T(S)

After Move — | k=Tardy k=Tardy k=NTardy |k=NTardy
Bef Move | k+ é6=Tardy | k+ é=NTardy k4 é=Tardy | k+ 6=NTardy
k=Tardy (1) X (2) X X

k+ é=Tardy Pr+s — P <0

k=Tardy 3) (4) >0 (5) (6) >0

k+ 5=NTa.rdy diys — W —p; dk+6 —dy >0

k=NTardy X X X X

k+ 6=Tardy

k=NTardy X X X 0

k+ é=NTardy

Table 3.6: Tardiness changes resulting from the backward movement

Since we want the cells to be > 0 we want to eliminate cell 1 and want
cell 3 to have A > 0. Try the condition of cell 3 which is diys > W + py.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 32

Since
drys 2 W 4 pe 2 W+ prys

then job k-4 is not tardy in sequence S which eliminates cell 1 while causing
cell 3 to be > 0. But this time we need to pay attention to the equality
case since we moved the larger job backwards. Suppose diys = W + px. The
corollary 2.3 of Emmons states that

if jobs j and k with j < k are to occur consecutively after a waiting time W

then they should be sequenced according to the rule

j « kif and only if d; < maz{W + p,di}.

We will see if diys = W + pi is feasible for our aim or not by checking
this corollory. For our case k+ 6 < k. If diys < maz{W + pi,di} then
k + 6 « k will be concluded which contradict with our aim.

Incell3 kistardyin S and S and so di < W + p;. Then the maximand in

the inequality becomes W + pj and since
dirs = W + pr. = maz{W + px, di }

then we conclude that &+ § « k.

So, the condition needed here is to have

i=k+6
diys > W pr = E p; for 6 > 0.

i=1

If this is so, then job k& will not stay at place k6.

Finally, if
t=k46—1
dk+6 > E Pi for 6§ >0 (1)
§=1
or i=k44
dieysy1 < E piforé<n—k (2)

$==1

then job k will not go to place k+ 6.

So, if

i=k+6-1
divs < Z pi < dpys-1 —Prys for0<bé<n-—k

=1

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 33

then place k + 6 will be an alternative for job k.

The inequality (2) is not valid for § =n — k case sinceat é =n—k
the place k+ 6+ 1 = n + 1 will be meaningless. So for § = n — k only the
condition (1) will be valid, that is, the job will go to place n if d, < 2=V p;.
For condition (1) , é = 0 is meaningless since we are trying to move job &
at place k + 6 backward, with 6 = 0 the movement will be meaningless. So
for § =0, only the condition(2) will be used, that is, the job will stay at its
original place if dip1 > Y02 p;

Now let us state the decomposition theorem of Potts & Wassenhove in
the formal form . First reindex in EDD. For any k,! € J a problem is said to
decompose with job k in position lif there exist an optimal sequence in which
jobs 1,...,k—1,k+1,...,1 are sequenced before job k and jobs {+1,...,n are

sequenced after job k .

Theorem(Potts & Wassenhove (1982)) The problem decomposes

with job k in position [for some [satisfying one of the below conditions:

1=l

(Z) I=k and Zpg < dH-l

=1

i=l-1
(@) l=k+1,.... ,n—1and d < Zpg<di+1—p1
=1
-1
(#t)l=n and) _p: > d
i=1
The theorem says that by moving job k to the I** position we decom-
pose the problem into two sets. The ones in the first [—1 positions forming the
before set and the rest forming the after set. Both can be solved independent

of the other by taking the ready times for the after set into consideration.

It would be better to show the decomposition theorem on an example

here.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 34

Ex 2 Suppose we have 16 jobs to be scheduled. The processing times

and the due dates are below:

Job No | Proc. time | DueDate
B 85 241
2 15 246
3 77 292
4 23 325
5 15 385
6 41 390
7 43 417
8 35 418
9 14 432
10 66 432
11 42 440
12 1 456
13 49 475
14 15 490
15 59 506
16 26 519

Since the theorem is based on an EDD schedule we need to have EDD
indexed jobs. Qur current data satisfies it. The job with the largest process

time is job 1. So places between 1 to n will be searched.

1=1if Y= p, = 85 < d; =246 — PASS

|=2ifd; <Y=1p =85 - FAIL

[=3ifds =292 < T=2p; = 100 — FAIL

[=4ifdy =325 <T=3p; =177 — FAIL

[=5ifds =385 < "i=ip; =200 —» FAIL

1=6,7,8,9,10 and 11 also FAIL

=12 if dip = 417 < =M = 456 and 456 < dis — p12 = 475 — 1 — PASS
I =13 if dis = 475 < L2} pi = 457 — FAIL

| =14 if dys = 490 < TI=1® = 506 and 506 < dj5 — p1s = 506 —49 — FAIL

=1

CHAPTER 3. (S-SEQUENCE AND DECOMPOSITION THEOREMS 35

1 =15if dis = 506 < Ti=M = 521 and 521 < dig — p1s = 519 — 59 — FAIL
[=16 if Y51 p; = 580 > die = 519 — PASS

So, the available places for job 1 are place 1, place 12, and place 16.
This means there are three possible decompositions for this problem. The first
one fixing job 1 to the first place and scheduling the rest, 15 jobs with ready
time of 85. The other one is fixing job 1 to the last place and schedule the
rest. This time no ready time is needed(i.e ready time is zero). These two
decompositions only decrease the number of unscheduled jobs by one. Placing
job 1 to place 12 decomposes the problem into two sets. jobs 2 to 12 in the
before set and the rest in the after set. The after set, the one with jobs 13, 14,
15, and 16 will have ready times as the total process time of the before set.

That is, this time we have two independent sets to schedule, as shown:

{2,3,4,5,6,7,8,9,10, 11, 12}1{13, 14, 15, 16}

A careful analysis of the decomposition theorem shows that the con-
ditions in the theorem turned to be essentially the pass, fail conditions of the

B3-Sequence.

Recall that the conditions in the decomposition theorem of Potts and
Wassenhove were in terms of summation of process times and the due dates of
the jobs. We can obtain an equivalent problem by changing the due dates to
B values (due to Equivalence Theorem of Tansel & Sabuncuoglu [34]) for each
job. With k being the index of the job with the maximum process time, the

conditions of the theorem can be stated in the following equivalent form:

I
(Z) =k and zp; < ﬂ1+1
=1
I-1
(@)l e{k+L,k+2,..,n—1} and B <) pi < B —p
=1
-1
(i) I=n and Zp; > 6

=1

These conditions are similar to the pass / fail conditions of the B-test.

The first condition says that if the § value of the largest process timed job

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 36

is greater than its down set total, the position it stays in the f-Sequence is
a candidate for decomposition which is the same as the [-test pass condition
with strict inequality for that job in the B-Sequence. The same logic also
applies to the job in the last position. If the last job in the [-Sequence fails
to pass the [B-test then the job with the largest process time can go to the
last place. Condition (iz) needs some more attention. The left inequality (
B < Tiz1p;) is the same as the A-test either failing (A < YiZip:) or
passing in the form of equality (A = =1 ;). Similarly, the right inequality
(!, pi < Bis1) is the same as f-test passing with strict inequality.

It follows that an equivalent statement of Potts & Wassenhove decom-

position theorem is as follows :

Decomposition Theorem(Potts & Wassenhove(1982)) Assume
SPT indexing and also assume job = is in position k in the S-Sequence. The
problem decomposes with job n in position [for some ! satisfying one of the
below conditions:
(¢) I = k and (k + 1) job in the B-Sequence passes with strict inequality
(1) I € {k+1,...,n— 1} and (I)* job either fails the B-test or passes with
equality while the (! + 1) passes with strict inequality

(433) 1 = n and (n)** job either fails or passes with equality

Let us look at the same example (ex.2) to illustrate the decomposition

theorem.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 37

Ex 3 The data with the g values are in the following table :

Job No | Proc. time | DueDate | Early comp time | 8 value
1 85 241 | 85 241
2 15 246 15 246
3 7 292 92 292
4 23 325 38 325
5 15 385 53 385
6 41 390 94 390
7 43 417 137 417
8 35 418 172 418
9 14 432 186 432
10 66 432 252 432
11 42 440 228 440
12 1 456 229 456
13 49 475 278 475
14 15 490 244 490
15 59 506 352 506
16 26 519 270 519

The [-Sequence happens to be the same as the EDD sequence. The

pass / fail checks are below

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ppPPPPPPPP P E P F F F

where P denotes a pass with strict inequality, F denotes a fail and E denotes

a pass with equality.

So from here we find the same places for job 1. Since the first check in
the B-test is a pass, the first place is an alternative for job 1. The last check in
the B-test is a fail, so the last place is another alternative for job 1. A change
from E to P occurs at place 12, so place 12 is also an alternative for job 1. We
find the same places as in the original type of decomposition, but you see that

this way is much easier.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 38

The problem of the existing decomposition theorems is that they may
(and usually do) find many possible places for the job in consideration, which
calls for branching out on each possibility to arrive at an optimal solution. If a
more powerful decomposition can be found, it would help a lot in solving large
problems. Then comes the decomposition theorem of Tansel & Sabuncuoglu
[34]. Their decomposition theorem finds an exact place and applies to any
job (not to the largest job only), but this time it is not guaranteed that the
problem decomposes all the time. That is, the theorem may not apply for some

cases, but it gives exact positions for the cases that it applies.

This decomposition theorem is mainly based on the left-down, right-
down, left-up and right-up sets defined before. Recall that L; denotes the latest
completion time of job ¢ and L; < p*— P(RU;) Vi since job ¢ precedes all
the jobs in RU; as it is in the enclosing rectangle of the jobs in RU;. L;’s are

formed during the computation of the # values.

According to the definitions of the four sets, the decomposition theo-

rem of Tansel & Sabuncuoglu is :
Letq € J.
if 1) either RD, =0orp,+ B, > L; Vi € RD,

and 2) either LU, =Qorp; +6; > L, Vj € LU,

then there is an optimal sequence such that all jobs in the down set of job ¢
precede ¢ , and all jobs in the up set of job ¢ succeed job ¢ with job ¢
’s position fixed at place |Dg|+ 1. That is the problem decomposes in the
form (Dg,q,U,;) where D, is the union of LD(q) and RD(q) and U, is the
union of LU(q) and RU(q). The subproblem consisting of jobs in D, can be
solved independent of the one consisting of jobs in U;. Only the U, will have
a positive ready time, which is equal to total processing times of the jobs in

the down set and the job q.

An example will be helpful in understanding the decomposition theo-

rem.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 39

Ex 4 Consider the data given in figure 3.4. For ¢ = 7 right-down set
is empty as seen from the graph. So the first condition is satisfied. For this job,
the left-up set is not empty. So we need to check the second condition for all the
jobs in the left-up set. The left-up set is {2, 3, 4, 6}. The condition to check is
if pi+pB; > LrVi € LU;. And we also now that L7 < p* — P(RU,) The right
up set is composed of the jobs {8, 9, 10} so the process times for the right up
set total is 232. So it will be okay if p; + f; > 544 — 232 = 312V: € LU, then

the problem will decompose with job 7.
pi+d; > 544 —232 =312 V; € LU;
J =2 pa+d, =29+ 284 =313 > 312 PASS
7=3 p3+ds =43+271 =314 > 312 PASS

J=4 ps+dy=44+4272 =316 > 312 PASS
j =6 ps+de =63 +336 =399 > 312 PASS

So the problem decomposes with job 7 at position 3 since there are

two jobs in the down set. The optimal sequence will be in the form
{1, 5}7{2, 3, 4, 6, 8, 9, 10}
The above theorem decomposes the problem by giving exact places for

the cases it works. Of course there may be many cases for which the theorem

does not apply. The example below shows such an instance.

CHAPTER 3. B-SEQUENCE AND DECOMPOSITION THEOREMS 40

Ex 5 Let us look at the same example again. If we add one more job
to the data with
p11 = 94 and d;; = 101 the graph will be

Due date

336-_ 2] 9
322—-r ,9

10 29 43 44 57 63 66 73 77 82 94 Process time

Figure 3.8: Data plot of example 5

It can be seen that no job satisfies p;+8; > L;1, so we need to consider
only the jobs with right-down set empty. Only job 11 satisfies that condition.
That is, only the new job has its right down-set empty for the decomposition
condition. Since the left-up set for that job is not empty we should check if
for all the jobs in the left-up set p; + B; > Li; is satisfied. But it is not true

for any of the jobs. So, the problem does not decompose for any of the jobs.

Adding only one job changed everything about the problem structure.

But still the decomposition theorem is powerful since once it applies,

it finds an exact decomposition.

Chapter 4

NEW EXACT ALGORITHMS

As I have mentioned before, existing optimizing algorithms for the single ma-
chine total tardiness problem is restricted to 100 jobs. We wanted to enlarge the
size to more than 100 by using the concept of A-Sequence and the TS(Tansel
and Sabuncuoglu) decomposition theorem of [34] . We designed 3 different
algorithms, each one being built on the previous. The first section describes
our first algorithm which is based on the usage of [-Sequence and the TS-
decomposition. In the second section, we give an algorithm which is based
on the PW(Potts & Wassenhove) decomposition. Finally, we have a hybrid
algorithm which we give in the third section. These are followed by some

computational results in the last section.

4.1 Algorithm Beta(TS)

The first algorithm that we developed uses the B-Sequence together with the
TS-decomposition in a branch and bound algorithm. We need the branching
part since both the decomposition and J-test may fail for a given instance
in which case we need some other method to continue. We first apply the
B-test and if it fails then we try to decompose the problem. If we can, then we

handle each part separately, but if the decomposition fails we need to branch

41

CHAPTER 4. NEW EXACT ALGORITHMS 42

according to some criterion. This algorithm is called Beta(TS). The flow chart

of the algorithm is in figure 4.1.
Let me explain each step in detail.

- Start : At the beginning we first preprocess the data, where possible,
to decrease the number of jobs under consideration. That is, we try to select
a job for which we can say that there exists an optimal schedule in which that
job is first or last among the ones in hand. If we can find such jobs the problem

size will decrease. For the prepocessing we have two basic approaches.

The first one is named Upsearch. Here we try to select jobs which
will be last in some optimal schedule. Once we find one we take it out (i.e
assign it to the last position) and solve the problem for the remaining jobs.
This preprocess is in fact, based on the use of Emmons’ theorems but in a
different manner. We identify the largest due dated job, say job &, (so that
its up-set is empty). Recall that we define p* = =" p;. If job k satisfies
pr + di. > p* , then there exists an optimal schedule in which job k is last.
To see why, let di = max d;

- For k < j, we lock at the second theorem of Emmons.

Since
mam(Ek,dk) >dp > d; then max(Ek, dk) >d;
and
pr+dp >p" > L;
then j « k.

-For j < k , the first theorem of Emmons works. Since
maz(Ex,dr) > di > d;, job j is in the enclosing rectangle of job k. This

implies j « k.

So, if the largest due dated job satisfies pj; + dr > p* then that job is

scheduled for the last position in hand without loss of optimality.

If the largest due dated job also has the largest process time then again

there exist an optimal schedule in which that job is last.

CHAPTER 4. NEW EXACT ALGORITHMS

(Start ’

Beta test

Yes
Pass?\

No
Look for

Decomposition

Done

Yes

Decomposed? Fix that job

Form Up & Down

sets

Find possible
last jobs

Start with Up Set

Branch for each

Start with Down Set

Done

Figure 4.1: Flow chart for the algorithm Beta(TS)

CHAPTER 4. NEW EXACT ALGORITHMS 44

The second approach for preprocessing is called the Downsearch.
This time we try to identify a job which will be the first in some optimal
sequence. This approach is based on the application of theorem 1 of Emmons.
If the smallest due dated job also has the smallest processing time it will be
the first one in some optimal schedule. So schedule that job to the first place
and take its process time to be the ready time for the rest of the jobs. This
positive ready time can be transformed to a ready time of zero by decreasing
the due dates of the rest of the jobs by the ready time. Applying this method
repeatedly with the remaining set each time, the problem size is decreased as

much as possible.

After the preprocessing, the problem size is possibly reduced but we
now have a set of unscheduled jobs and we cannot fix any of them to the first
or last locations at the first sight. Then the algorithm begins with these jobs.
In fact it is a recursive algorithm. That is, for each resulting subset of jobs

during the algorithm, the whole algorithm is called for that set.

B-test : The first thing is to search if the optimal sequence of the
jobs in hand can be found by the [B-Sequence. If the B-Sequence passes the
B-test, then the optimum is found for this subset of jobs. Otherwise, we could
not find the optimal sequence of the set in hand immediately, then we look for

a job for which TS-decomposition works.

TS-Decomposition : For all of the jobs in hand the decomposition
theorem of Tansel and Sabuncuoglu is checked. If a decomposition can be found
then form the before and after sets according to the decomposition and now the
whole recursive algorithm will be applied independently for the smaller sets,
both for the after-set and the before-set, with the after-set having a positive
ready time which is equal to the total process time of the jobs in the before-set
plus the process time of the decomposing job. To incorporate the ready time,
we have to initialize the [-Test accordingly. That is, the earliest possible
completion time of each job is initialized to the ready time plus the process
time of that job. Alternately, we may decrease the due dates of the jobs in the

after set by the common ready time and then take the ready time to be zero.

CHAPTER 4. NEW EXACT ALGORITHMS 45

If the decomposition also fails then we need to go by branching for the
set in our hand. After some branches the [-test or decomposition may apply

but they will be conditional on the branch of this stage.

Branch : Since both of the tools failed, we need to branch for the
set in hand . Now some kind of a branching criterion is needed. During the
B-test, earliest and latest completion times of each job are found. Branching
will be done according to these times. The branching criterion is also impor-
tant. We first defined the branching rule as that of branching from the last
position. That is, the possible last jobs are identified and one branching oc-
cured with each possible last job. Those jobs are the ones whose after sets are
found to be null. One reason for that type of branching is that many branch
and bound algorithms existing in the literature are based on the same idea
(backwards scheduling). Later, we also analyzed other type of branching cri-
teria like forward branching. For each branch the recursive algorithm begins

from the beginning with the new set of unscheduled jobs, conditioning on one

of the jobs being last.

The algorithm continues until all branches are evaluated. A detailed

example may be helpful in here.

CHAPTER 4. NEW EXACT ALGORITHMS 46

Ex 6 Suppose we have 12 jobs to schedule with the below data :

Job No | Proc. time | Due date
1 10 145
2 29 294
3 43 281
4 44 282
5 57 127
6 63 346
7 66 165
8 73 205
9 77 332
10 82 196
11 10 101
12 90 350

In the preprocess part, since the job with the largest process time,
job 12, also has the largest due date, job 12 will come last in some optimal

schedule. So we just take it away from the unscheduled set and we fix it to the

last position.

Again in the preprocess part, since the job with the smallest process
time, job 11, also has the smallest due date, job 11 comes first in some optimal
schedule. So that job is taken away and scheduled to the first position. Since
it is fixed to the first position we need to take this into account for the rest
of the jobs. We can either take it as a ready time or we can decrease the due
dates of the rest of the jobs by the process time of job 1. For this problem we
decreased the due dates.

So we have 10 jobs left and the due dates are decreased by p;; = 10 units.
With the 10 jobs in hand we check if the J-test gives optimum, but it fails.
Let us observe the earliest completion times and 3 values of each job in a table

below. Recall that 8; = maz(d;, E;) Vi

CHAPTER 4. NEW EXACT ALGORITHMS 47

Job No | Early pos. comp. time | Due date | B value
1 67 135 135
2 205 284 284
3 176 271 271
4 220 272 272
5 57 117 117
6 385 336 385
7 133 155 155
8 206 195 206
9 462 322 462
10 544 186 544

The P-Sequenceis 5,1,7,8,3,4,2,6,9, 10

Jobs 5 and 1 automatically pass the B-test since their right-down sets
are empty. Jobs 7, 8, 3, and 4 also pass the [-test. Job 2 fails. Since we find

at least one job failing, [-Sequence may or may not be optimum.

Then we look at the decomposition and try to decompose if possible.
This problem is the same as the example given for decomposition, ex 3. So we
know that the problem decomposes with job 7 in position 3. Then we have
two subproblems now. One problem has only two jobs {1, 5} and the other
problem has 7 jobs {2, 3, 4, 6, 8, 9, 10} For the two job case we can easily
find the optimum. And it happens to be: (5, 1). For the second problem we
apply the algorithm once more. We again try the B-test first. The resultant
early times and # values are in the table below. Remember that since we are
in the after set now, we need to account for the process times of the jobs in
the before set, either by taking their total process time as a ready time or by
decreasing the due dates by the total process time. Here we decrease the due

dates by 133 which is the total process time of the jobs in the before set.

CHAPTER 4. NEW EXACT ALGORITHMS
Job No | Early comp. time | Due date | 3 value
2 12 151 | 151
3 43 138 138
4 87 139 139
6 252 203 252
8 73 62 73
9 329 189 329
10 411 53 411

The [B-Sequenceis(8,3,4,2,6,9,10). Jobs 8, 3, and 4 passes
the B-test but job 2 fails. So we try decomposition again. Since graphs help

in detecting decomposition let us draw it with respect to the g values.

320 . . . 2

952l . . a

11:] 1 I . 4
. S e e e e e
13u 138___) P 3@&

73 L . EEEEQ

H | % i I L

99 43 44 63 73 77 82

Process time

Figure 4.2: Data plot for example 6

From the graph it is seen that the right-down and left-up set of job
9 is empty. So the problem decomposes with job 9 at position 5, with job 10

CHAPTER 4. NEW EXACT ALGORITHMS 49

in the after set and the others in the before set. After the decomposition at
job 9, the before set will be solved. Now the p* decreases to 252 so the job
set {2,3,4, 6,8} also decomposes with job 6 in the last position (because
its left up set is empty and ps + ds = p* > L;Vi). So the problem is now

517{23,4,8}6 9 10

Now, we are left with 4 jobs to schedule. But for these jobs both the [-Test
and decomposition fail. So we need to branch now. According to the earliest

and latest completion times given in the table below the branches are formed.

Job no | Early comp time | Latest comp time
2 72 189
3 43 116
4 87 189
8 73 189

It is seen that jobs 2, 4, and 8 are available for the last place because
their latest possible completion times are equal to p* of this set which means
no job is found to follow those jobs. So we have to continue in three branches
with each branch corresponding to fixing exactly one of {2, 4, 8} to the forth
position. In each branch, the problem with the remaining three jobs is solved.
Finally, we select the solution which gives the minimum tardiness for these 4
jobs. The selected sequence will be the optimum schedule for job population
{2, 3,4, 8}.

In Beta(TS) we had two different approaches for handling the problem,
so we expected to solve larger problems. But the results were not as good as
we expected. For some problem instances, the pB-Sequence gave the optimum
at the very beginning, but for many of the problems, at least a core set is left
for which the B-test and decomposition both failed. Then branching is needed
which blows up the time of solving. In fact, that is the reason why the literature
has at most 100 jobs solved. We first tried to improve the branching criterion.
As I mentioned before, we were applying backwards branching which is fixing a
job to the last place and continuing with the restricted problem. For a second

approach we tried forward branching. That is, we tried to select possible first

CHAPTER 4. NEW EXACT ALGORITHMS 50

jobs among the ones in hand. Those jobs are the ones whose before sets are
empty. This type of branching also did not help. In fact it was not clear if one
is an improvement over the other. As a final branching criterion we tried both
backwards and forwards scheduling at the same time. That is we select the
possible last and possible first jobs and then we branch with the one which has
less number of alternatives. At the first sight this idea seemed to be promising
but it was not. In fact if the problem has some core part, no matter what the
branching criterion is, it would take a large amount of time to solve it due to
many branches that occur. The solution time of the algorithm depends heavily

on the number of branches required to solve it.

Then we looked at another feature to make the algorithm work faster.
Since the bottleneck part is the branching, while analyzing the branches, we
saw that many problem instances may come into sight more than one time.
This occurred when the same jobs happen to be available for the same places in
different branches. Suppose we try to schedule 5 jobs and we need to branch for
these five jobs. Let us say that jobs 2, 3, 4 are available for the last place. As
one alternative take the first available, job 2 , put it to last place and continue.
Say we need to branch again. That is both f-Test and decomposition failed
again. Suppose the available jobs for the last place are now 3 and 4. The

available jobs for the last place when 3 is put to last position are {2, 5}. The

‘ |

tree below illustrates the idea:

2 to last place 3 to last place 4 to last place
3 to next to 4 to next to 2 to next to 5 to next to
last place last place last place last place

Figure 4.3: Tree structure

CHAPTER 4. NEW EXACT ALGORITHMS 51

So the jobs left to schedule for the first branch, the one fixing 2 to the
last place and 3 to the one before last, is the same as the ones for the third
branch, which is the one fixing job 3 to the last place and 2 to the one before
last. This means we waste time by solving the same problem from scratch each
time we encounter it. So we identify those sets and avoid solving them more
than once. That is, when we enter the recursive part, before going any further,
we first search if the set in hand was solved before or not. The ready time for
the set is also important. If we find the same set, the ready time should also be
checked to match with that of the one that has already been solved. Otherwise
the problems will not be identical. This idea really helped a lot. This way, the
solution time of the algorithm Beta(TS) decreased substantially. But it was
still not possible to go further than 100 jobs and even those 100-job cases were

solved in higher time than the algorithm of Potts and Wassenhove.

4.2 The Algorithm Beta(PW)

Then we have another algorithm which combines the 3-Sequence approach
with the decomposition idea of Potts and Wassenhove, and we call it Beta(PW).
That is the problem is decomposed using the decomposition theorem of Potts
& Wassenhove until the J-test passed for the subproblems in hand. This
algorithm is again a branch and bound one since the decomposition used here

is of a branching type. The flow chart is given on the next page.
The main steps of the algorithm are explained next.

We again have a Preprocess part which is completely the same as that

of Beta(TS); try to decrease the number of jobs to schedule, where possible.

The J-test is also the same except that this time the needed strict
passes (P), equality passes (E) and fails (F) are also formed during the B-test.
This allows an easy identification of positions to which the largest job can be

assigned.

CHAPTER 4. NEW EXACT ALGORITHMS

‘ Start)

Beta test

Yes

Pass?

Done

No

Apply decomp.
to largest job

Yes

Processed?

Done

Fix the job to

this alternative

Form Up & Down
sets

Start with Up Set

Start with Down Set

Figure 4.4: Flow chart for the algorithm Beta(PW)

52

CHAPTER 4. NEW EXACT ALGORITHMS 53

If the p-Sequence is optimal, that is, if it passed the J-test, then
for the subset in hand we know the optimal solution and so we continue with
the father branch. Otherwise, if we do not know the optimal solution for the

subset in hand, we apply the decomposition of Potts & Wassenhove.

PW-Decomposition: The B-Sequence is not optimum. But we have
the markers P, E, F for identifying the possible decompositions according to
the equivalent statement of Potts & Wassenhove’s decomposition given at the
end of section 3.3. For the largest processing timed job in hand each poséible
place defines a branch. Then we go back, for each of the branches, to solve
the subproblems (corresponding to before and after sets) resulting from the

particular alternative place of the longest job.

This algorithm is completely different from that of Potts and Wassen-
hove. The only similar part is the decomposition theorem but we modified
that theorem (find the alternatives from J-test). With this way of handling,
we began to solve the problems faster and we began to handle more than 100

jobs, but the time to solve was not good enough for us.

4.3 Algorithm Beta(TS, PW)

We then decided to merge these two algorithms. That is the branching criterion
of the first algorithm is completely changed. When both f-test and TS-
decomposition fail, instead of normally branching backwards or forwards, the
branching is applied with decomposition of Potts & Wassenhove . Since PW-
decomposition surely finds places for the largest job in hand, the algorithm

continues. The flow chart is on the next page.

CHAPTER 4.

Apply PW
Decomposition

Processed?

Done

No

NEW EXACT ALGORITHMS

‘ Start ’

Beta test

Yes

Pass?

No

Look for TS

Decomposition

Decomposed?

Fix the job to

this alternative

54

Done

Yes

Form Up & Down
sets

Start with Up Set

Start with Down Set

Fix that job

Form Up & Down
sets

Start with Up Set

Start with Down Sel

Figure 4.5: Flow chart for the algorithm Beta(TS, PW)

Done

CHAPTER 4. NEW EXACT ALGORITHMS 55

Let me give the basic steps of the merged algorithm.

The first steps are the same as that of Beta(T$S). The only change is in
the last steps which is the branching case in the first algorithm. This time, in-
stead of branching, we apply the equivalent version of Potts and Wassenhove’s
decomposition theorem . If for the subset of unscheduled jobs in hand, both S-
test and TS-decomposition fail, then we apply the PW-decomposition. There,
the job with the largest processing time among the ones in hand is selected
and the possible places for that job is found from the B-Sequence and the
corresponding strict passes, equality passes and fails. With each of these pos-
sible places, the problem decomposes into different subproblems. Then, with
branching we analyze all possible decompositions and select the one giving the

minimum tardiness at the end.

Merging those two algorithms really helped a lot. This time the pro-

gram became capable of solving larger problem sizes and in less time.

When we compare these two algorithms, Beta(TS, PW) and Beta(PW),
we saw that Beta(TS, PW) solved on the average, three times faster than
Beta(PW) and Beta(PW) is better than the original algorithm of Potts &
Wassenhove [23] both in computation time and in the maximum number of

jobs that can be handled.

When we were making experiments for the 100 and 200-job cases,
we saw that the number of branches is still large and the computation time
depends heavily on the number of branches required to solve the problem. So
we decided to incorporate a lower bound idea. With that way we may be able
to decrease the number of branches. Upto this point the only fathom criterion
was to find optimum from the [-test. So we were searching all the branches
to the lowest level. Observe that we may rewrite the tardiness problem in the

following equivalent form:

CHAPTER 4. NEW EXACT ALGORITHMS 56

glelg Yiea Ti(S)
s.t.
T(S) 2 Ci(S)—d; Vi € J
T(S)=20 Vie J
If we relax the last constraint, the problem turns out to be
min3; Ti(S)
s.t.
T(S)>2Ci(S)—d; Vield

which is in fact
lé[lelg Xi:(C’,‘(S) - d,') — ;Isnelgzz: Ci(S) - gd;.

Since due dates are constant, this turned out to be the minimization of the
completion times which is solved by SPT sequence. Because of the relaxation,
the value of the objective function is the lateness of the SPT schedule. Let
5* be the optimizing sequence of the original tardiness problem and let L(S)
denote the lateness of sequence S whereas T'(S) denote the tardiness of it.

Then we can say that :
L(SPT) < L(5") < T(S")

where the first inequality follows from the fact that SPT is optimum for the
lateness problem. The second inequality is just the lateness being no greater
than the tardiness. So the lateness of SPT schedule will give a lower bound
for our problem. At any branch we calculate the lateness value of the SPT
schedule for the jobs in hand and add it to the calculated tardiness of that
branch up to that time. That value will give the lower bound for the branch in
hand. If that lower bound is greater than the incumbent solution we fathom
that branch and go back to its father to continue. This way, we added another

fathom criterion.

For another lower bound we used the S-Sequence approach. Suppose,
at some instance we need to branch. We first check the lower bound before

going any further and if the bound is smaller than the best known value we

CHAPTER 4. NEW EXACT ALGORITHMS 57

will continue. We have the J-Sequence in hand so a lower bound from here
will not cause much time per branch. For the #-Sequence if we increased the
due dates of the failed jobs till their completion times in the B-Sequence(i.e.
assign d7” = maz{f;, P(D;(B))} for all j for which RD;(8) # 0 and assign
d}*¥ = f3; for all remaining j) then the [-Sequence in hand will pass the 3-
test for the new due dates. Since the B-test passes, the [-Sequence is optimal
for the perturbed problem. Let S* be an optimal sequence for the original
problem and let T(S) be the tardiness of the sequence S. We have

T(PB-Sequence with new d;) = T'(S* with new d;) < T(S* with old d;).

The équality is from the fact that B-Sequence and S* are both optimal for
the problem with new due dates. The inequality follows form the fact that the
new due dates are greater than or equal to the old due dates. So the tardiness
of the B-Sequence with new due dates becomes a lower bound for the original
problem. The value is easily determined. It is the total tardiness of the jobs

which passed the [-test for the original due dates.

So we have two different ways for lower bounding. The bound coming
from the B-Sequence happens to be larger than that of the SPT schedule most
of the time. We use the larger of these in our algorithm. That is, we calculate
both and select the larger one as the lower bound. Then at any branch, the
value of the lower bound calculated for that node with the tardiness incurred
up to that node makes up the total lower bound for that node, and if that

lower bound is greater than the incumbent solution, we fathom that node.

With the help of the lower bound we decreased the time to solve the
problems. So we got the final algorithm, which we still call Beta(TS, PW).
And with Beta(TS, PW), we manage to handle problems with 500 jobs, even
though we cannot solve their hardest cases. We will give the computational
results of Beta(TS, PW) in the next section.

CHAPTER 4. NEW EXACT ALGORITHMS 58

4.4 Computational Results For Beta(TS, PW)

For the computational study, we wanted to use the traditional approach pro-
posed by Fisher [12] which tests an algorithm with different types of instances,
corresponding to hard or easy cases. Instances of varying degrees of difficulty
are generated by means of two factors : the tardiness factor and range of due
dates. For each problem, first the process times are generated from uniform
density with parameters (1, 100). Once the process times for the problem have
been generated, then p* = "7, p; is computed. The due dates are computed
from a uniform distribution which depends on p* and two parameters; R (due
date range) and T (tardiness factor). The due date distribution is uniform

Over

[p*(1 =T — R/2),p*(1 — T + R/2)].

Both the tardiness factor T and the range of due dates R is selected from the
set {0.2,0.4,0.6,0.8}. So they give 4 %4 = 16 combinations for each problem
size. We took 10 different runs for each set giving a total of 160 instances for
each choice of n. n is taken to be 100, 200, 300, 400 and 500.

The best known exact algorithm in the literature is the algorithm
of Potts & Wassenhove [23, 25]. That algorithm solves 100-job problems on
the average in 27.07 CPU secs and does not handle problems of size more
than 100. The algorithm is based on their decomposition theorem and the
dynamic programming algorithm of Schrage & Baker [29]. For the subproblems
resulting from the decomposition, the authors use the Schrage & Baker dynamic
programming approach which can only solve the problem in consideration if the
total sum of labels needed is less than 48000. (The authors give an algorithm
for uniquely labeling each job according to the precedence relations. These
labels are used in identifying the subsets to be evaluated during the dynamic
programming). The algorithm of Potts & Wassenhove first decomposes the
problem, if the number of jobs to be solved in the subproblems is less than
30 (this time number of labels will be less than 48000) then they apply the
dynamic programming algorithm of Schrage & Baker and solve the subproblem.
If the number of jobs is greater than 30, the authors reapply the labeling

CHAPTER 4. NEW EXACT ALGORITHMS 59

algorithm after once applying precedence relations giving theorems for the
subset in hand. If the sum of labels is less than the desired number they apply
dynamic programming method, otherwise they decompose the problem again.

This procedure is repeated until the full set is solved.

In this algorithm, the fathoming criterion that the authors used is
only the criterion of dynamic programming. That is, they decompose the
problem (they open branches for each decomposition) until it can be solved with
the dynamic programming method. In contrast, in our algorithm, Beta(TS,
PW), we have the [-Sequence which fathoms some of the branches even at
the beginning, and we also have the TS-decomposition which decomposes the

problem without any branches.

In order to compare the behavior of the solution times for both of the
algorithms (of course we can make this comparison for n < 100 since the
algorithm of Potts & Wassenhove cannot handle more than 100 jobs) it would
be better if we had the code of their algorithm. But the code was not available
and the algorithm given in the paper is not clear enough. But they give the
solution times of their algorithm for n = 50,n = 60,n = 70,n = 80,n = 90 and
n = 100 in their paper [25]. Trying to attain the same experimental conditions
(using the same R, T pairs, having the same number of replications for each
n) we also make experiments for those n values with our algorithm. The table

below gives the average CPU times in seconds for each of the algorithms.

| |[n=50[n=60|n=70|n=280{n=290]n=100]
Alg. f P& W | 0.760 1.50 2.88 | 7.200 | 12.750 | 27.070
Beta(TS, PW) | 0.095 0.32 0.57 | 1.224| 1.971 4.028

Table 4.1: Table for comparison of the CPU times

The solution times of both of the algorithms are seen from the table
above. But a graph will give more insight here. The plot of the solution times

versus number of jobs is given in figure 4.6 .

CHAPTER 4. NEW EXACT ALGORITHMS 60

& CPUTime
2707 1 (secy)

— T T PWalg /

Cur Alg. /

12.75 4- 1

72 4 /ﬁ

4.02 4
i /

288 } _»
1.97
15

0.58 0.75:
0.32 ———]

200 e s uer
®

0.095

3.1
8
8

Figure 4.6: Graph of the solution times of both of the algorithms

CHAPTER 4. NEW EXACT ALGORITHMS 61

As can be seen from the graph, the algorithm of Potts & Wassenhove
becomes steeper after n = 70 and for n = 100 the slope makes a sharp
increase. For our algorithm we do not see sharp increases for those values of
n . Of course the graph will become steeper after n = 100 but the other

algorithms cannot even handle problems with n > 100.

The algorithm of Potts & Wassenhove is coded in FORTRAN IV and
CDC7600 machine is used. With our algorithm, Beta(TS, PW), the average
time to solve 100-job problems is 4.028 secs and the time for 200-job problems
is 4.329 minutes. The algorithm is coded in C language and Sun4 workstations
are used. With this algorithm, we can handle 500-job problems, even though

we cannot solve all of the instances to optimality.

Our aim was to increase the limits on solvability of this NP-Hard
problem significantly. Handling 500-job problems with the existing algorithms
in the literature seems to be out of question. Dynamic programming ones
cannot solve because of the core storage requirements. Among the branch and
bound algorithms best of the reported times is 7.9 sec for 50-job problems, so
it will not be possible to solve 500-jobs with those algorithms in reasonable
computation times. We managed to handle many 500-job problems, but we
could not solve all of them to optimality because of time limitations. Table 4.2

will provide the details.

Problem hardness is defined by the R, T factors. In the table, the first
column is the R,T factors and so defines the problem type. The following
columns show the computational results for corresponding n values. The
number in each cell is the average of the solution times in CPU seconds of the
10 problems corresponding to that R,T pair. The last row gives the overall
average. For n = 500, as can be seen from the table, we could not solve 4 of
the 16 cases to optimality since the time needed to solve these cases were more
than 72 hours. For n = 400 case we first do not put that time bound and
so some of the cases are solved in more than 72 hrs. One set of the problem
instances, which is the hardest one, cannot be solved in 90 hrs and so we stayed

with the premature solutions for that case also, like the 4 cases of n = 500.

CHAPTER 4. NEW EXACT ALGORITHMS 62

[R= T | n=100] n=200] n=300] n=400] n=500]

0.2 0.2 0.384 5.750 35.638 193.410 535.520
62 04 11.300 623.460 | 7845.690 34.4 hrs -
0.2 06 21.690 1703.350 | 20.961 hrs - -
0.2 0.8 5.926 895.790 | 11016.820 | 75.61 hrs -
04 0.2 0.000 0.000 0.000 0.000 0.000
04 04 2.400 95.870 385.100 | 3866.239 | 23137.400
04 06 11.190 698.011 | 13901.150 | 23.84 hrs -
04 08 0.323 3.531 47.310 93.585 300.900
0.6 02 0.000 0.000 0.000 0.000 0.000
06 04 0.888 5.060 33.062 120.490 312.480
06 0.6 7.985 200.580 | 1788.850 | 15104.138 | 35.82 hrs
06 038 0.175 0.414 1.896 2.119 5.612
0.8 0.2 0.000 0.000 0.000 0.000 0.000
08 04 0.079 0.133 0.211 0.328 0.571
0.8 06 1.981 5.800 35.840 104.390 562.880
0.8 0.8 0.078 0.433 0.884 1.975 4.0780
Avg. Comp. | 4.0280 sec. | 4.3290 min 1.9 hrs | 11.01 hrs] -
for 15 sets

Table 4.2: Table for the computational results of Beta(TS, PW)

Our algorithm handles problems of size 200 quite succesfully with an
average of about 4.5 minutes. The results of size 300 indicate that those
problems will be solved in the average of 1.9 hours. When we analyze the
individual CPU times, we saw that the maximum time for 200-job problems is
58 minutes. So within time limit of 1 hour, we expect to solve any instance of
200-job problems to optimality, whereas this limit is only 1 minute for 100-job

problems.

The analysis of the table above shows that for three cases of R, T pair
we can find the optimum solution immediately. Those are the cases for T =
0.2 with R = 0.4,0.6 and 0.8 respectively. For these problems the optimum is
found during our preprocessing or the B-Sequence happens to be the optimal
one. So, if the problem is in those types the optimum solution can be found

very easily for any n.

The hardest case happened to be the one for R = 0.2,T = 0.6.

CHAPTER 4. NEW EXACT ALGORITHMS 63

In this case, the data is in a bad shape which causes A-Sequence and TS-
decomposition to fail. Since both of them failed, we need to continue by
branching and this causes the time to solve the problem to increase. For
example for that R, T pair the number of branches is 585533 for n = 300 and
the CPU time for that -problem is about 17 hours, whereas for another problem
with n =300 from R = 0.4,T = 0.8 pair, the number of branches is 3468 and
the solution time is about 0.5 minutes. This comparison is an example for the

CPU time dependence on the number of branches.

It is seen from the results in the table that the problem is harder for
the cases with small range of due dates. The three of the unsolved four cases
of n = 500 are from R = 0.2 combination. It seems that, with that value
of R it is difficult to find precedence relations and so one seldom gets the
optimum from the [-Sequence or the application of the TS-decomposition.
The T = 0.6 case is the one having the largest CPU time for each value of R.
This is intuitive since increasing the tardiness factor increases the number of
tardy jobs but when it increases too much, like for the case of T = 0.8, then
most of the jobs become tardy and then it becomes relatively easy to find the

optimum.

As a result, with our algorithm, Beta(TS, PW), we can handle 500-job
cases, even though we were able to solve only %75 of the test problems of this
size. We solved 200-job problems in 4.329 minutes in the average while we

solved 100-job problems within a matter of few seconds in most instances.

Chapter 5

A NEW HEURISTIC : Beta

Since we had problems in solving large problems we wanted to find a good
heuristic. This chapter will be for the heuristic that we developed. We will
give the new heuristic and compare our heuristic with the best known heuristic
of the literature which is the PSK of Panwalkar et al. [22]. So in the first section
we give the details of their heuristic. The second section explains our heuristic.

We give the comparisons in the third section.

5.1 PSK Heuristic

PSK is the best heuristic in the literature both in terms of solution quality
(percent deviation from optimality) and of running time. Since we compared

our heuristic with this one, it will be better to give the details of that heuristic.

The PSK heuristic starts with the SPT sequence and makes n passes
to fix the jobs. Each pass starts with the smallest unscheduled job, which is
called the active job, and according to some criterion, either fixes the active
job or changes the active job in hand. The logic for the heuristic is not very
well defined. What I understand from their heuristic is that if the smallest

unscheduled job will be tardy in any sequence, schedule it to the first available

64

CHAPTER 5. A NEW HEURISTIC : BETA 65

place. But this argument is not given in the paper.
Let me give the steps of the heuristic here.

Consider a set of jobs labeled in the SPT order. All unscheduled jobs
are in the set U so the leftmost job in the set U is the smallest unscheduled
job. Set S contains the scheduled jobs up to that time in the found order. Let
C be the sum of the processing times of the jobs in set S. Initially C = 0,
S = 0 and set U is the whole set.

Step 1 If U contains only one job, schedule it in the last position in S and

terminate, else label the leftmost job in U as the active job.

Step 2 If C + p; > d; then schedule job ¢ to the current place in set S ,

remove the job from the set U, add p; to C and return to step 1.
Step 3 Select the next job in U as job j

Step 4 If C + p; > d; then schedule job : to the current place in set S,
remove the job from the set U, add p; to C and return to step 1.

Step 5 if d; < d; then return to step 3

Step 6 Now job j becomes the active job. If this is the last job, just schedule
it else go to step 2

It will be better to give an example here to clarify the algorithm.

Suppose we have 5 jobs with the following data.

Job No | Processing time | Due Date

2 8
17

vl [GO
L B S A7 O O

CHAPTER 5. A NEW HEURISTIC : BETA 66

Start with U = {1,2,3,4,5}

Step 1
Step 2
Step 3
Step 4
Step 5
Step 3
Step 4
Step 5
Step 6
Step 2
Step 3
Step 4
Step 5
Step 6
Step 2
Step 3
Step 4

i=1

C+pi<d;

j =2

C+pi<d;

d; =8 < d; = 17 so return back to step 3
J=3

C+p;<d

d;=8>d;=6

J = 3 becomes the active job
1=3 C+p<d;

j=4

C+pi=5<d;=6

d; > d;

j = 4 becomes the active job

i:4C+p,-=4<d,-
j=3
C+p; =72 d; =35 so schedule job 1 to the current place in set S

Now U = {1,2,3,5},C = 4,5 = {4} and continue.

With this algorithm Panwalkar et al. get good results both in solution

time and solution quality.

CHAPTER 5. A NEW HEURISTIC : BETA 67

5.2 OQOur Heuristic: Beta

During developing our heuristic, we used our algorithm Beta(TS, PW). The
only part that can be played with is the branching part of the algorithm which
is in fact based on the decomposition of Potts & Wassenhove. We decided to
decrease the number of branches, and for that we first tried to take the first
and last places for branching. That is, we ignored the rest of the alternatives
that are developed and we just used the first and last places as alternatives and
continue branching. We call this heuristic Two-Branch. What we found out
from Two-Branch is that, the resultant sequence is really very good in solution
quality, (much better than that of PSK and in fact, the resultant sequencé was
very similar to or, in most of the cases, the same with the optimum one) but
the solution time was very high when compared with that of PSK. In fact, this
is expected since the order of Two-Branch is O(2") which is not good for being

a heuristic.

Then we decided to decrease the number of branches to one in the
Two-Branch, according to a criterion. That is, we select one of the alternatives
according to some criterion that we developed. Then the resultant sequence

should come up quickly since we do not branch any more.

In finding the criterion for evaluating the branches we use the in-
terchange idea. Recall that the decomposition of Potts & Wassenhove is to
decompose the problem with respect to the longest job in hand, say &, and so
the branching is for the place of job k. Our aim is to find a condition which
will avoid job k ’s staying at its original position, or a condition to avoid job
k’s being in last position, so that we will select one of the two as the position
of job k. Since we have the [(-Sequence in hand, it will be more meaningful
to derive a condition which will avoid job k ’s staying at its original position.
That is, we assumed that job k is in its original place and we wanted to find a
favorable interchange with this job and the ones following it in the [-Sequence.
If we can find a favorable interchange then job & will not stay at its original

place.

CHAPTER 5. A NEW HEURISTIC : BETA 68

The figure 5.1 will be used in the tardiness calculations.

[)

s |- k middle set il

s |" j middle set k

Figure 5.1: Figure for illustration of a swap

Since px > p; the tardiness in the middle set will decrease. So we
can only try to show that the tardiness after interchange will be less than or
equal to tardiness of the sequence before interchange. Then we will only need

to consider the tardiness of jobs k and j . We have
T(S) = maz{W + px — di,0} + maz{C — d;,0} + T'(middleset) + K

T(5) = maz{C — di,0} + maz{W + p; — d;,0} + T(middleset) + K

We know that p; > p; so if di > d; then the relation j « k will be found
which contradicts with the generation of the A-Sequence. So we also know

that di < dj.

CHAPTER 5. A NEW HEURISTIC : BETA 69
The table 5.1 illustrates A = T(S) — T(S)

Aft. Move — | k=Tardy k=Tardy k=NotTardy | k=NotTardy
Bef Move | j=Tardy j=NotTardy j=Tardy j=NotTardy
k=Tardy (1) (2 WH+p—4d; | X ' X ’
j=Tardy pr—p; 20

k=Tardy X (3) X X
j=NotTardy WH+p—-C<0

k=NotTardy | (4) X (5) dr—dj <0 | (6) X (M X
j=Tardy

k=NotTardy | X 8 <0 X 0
j=NotTardy

Table 5.1: Tardiness changes caused by swap

Since we are trying to cause the movement to yield a nonnegative A
we eliminate the ones for which A < 0. We need to define conditions to
avoid cells 3, 5, & 8 and cause A > 0 for cell 2. Let us try the condition
W +pr —d; > 0. Then we have W +px > d; > dip ,s0 kistardy in S
which eliminates cells 5 and 8. And since d; < W + pr < C then j is also
tardy in S which eliminates cell 3. So if W + px — d; > 0 then interchange
of jobs j and k& will not increase the total tardiness. So if the inequality is

satisfied, then we can say that job k need not stay at its original position.

In our algorithm, for the time being, instead of searching for any j
between k and n we just look at the condition for the last job in hand, say
job n. That is if W + px > d, we select the last place for job k.

The above criterion is the one that we use in our heuristic. That is,
when we encounter the branching case we apply the above inequality and if it
is satisfied then we set the decomposition by assigning the largest job to the
last place otherwise decompose with job k at its current position. We call this

heuristic as Beta.

In fact, if W 4+ p < d; < d,, the first place is an alternative to
decompose in which case our heuristic, Beta, continues with decomposing at

the first place.

Let us give an example here to clarify the heuristic.

CHAPTER 5. A NEW HEURISTIC : BETA 70

Ex 7 Suppose we have a problem of 10 jobs. The process times and

due dates are given below.

Job | Process time | DueDate | NewDueDate
1 1 271 229
2 36 239 197
3 42 246 204
4 49 198 156
5 47 231 189 Job 8 is fixed to the
6 43 257 215
7 31 235 193
8 42 150 150
9 42 270 228
10 8 255 213

first place during the preprocess. So the problem is reduced to n =9 jol:')s and
the due dates of these should be decreased by ps = 42. Those due dates are
given in the third column. When we apply Beta for this problem:
First see if the B-Sequence is optimal or not. The B-Sequence is
4 5723 10 6 9 1and we found that it does not pass the S-test.

Then we try to decompose the problem by using the TS-decomposition , but

the instance is such that the decomposition also fails.

So we would use the PW-decomposition now. The job with the largest process

timeis job 4. For this sequence W = 0 and we check if W+p, =49 < d; = 229
and it fails, so we select the place that job 4 occupies as the alternative and
continue with that assumption. (i.e. we fixed job 4 to the second place of the
final sequence). So now we have 8 jobs, with ready times 49. We apply the
same procedure again. That is we construct the BetaSequence which happen
tobe 5 7 23 10 6 9 1, but the f-test fails again. We try to decompose
the problem, but it also fails to apply. So we decide on the place of the largest
job in hand by our criterion again. The largest job is 5 and W = 49. We
need to check if W + ps = 96 < d; = 229 and it fails. So we fix job 5 to the
third place and continue with the rest of the jobs. So we are left with 7 jobs

and they have a ready time of 96. When we construct the B-Sequence and

CHAPTER 5. A NEW HEURISTIC : BETA 71

apply the [-test we see that the B-Sequence is optimal for this set of jobs.
So we have the final sequence which is

845723 10 1 9 6 which happens to be the optimal sequence also.

5.3 Comparisons

In order to compare Beta with PSK we should give the same conditions for
both of the heuristics. To be fair, we add our preprocess part to PSK heuristic
also, eventhough PSK does not have such a preprocesses before starting. So we
mean preprocess followed by the original PSK when we say PSK only. We used
the same sets of data that we have generated for the computational studies of
our exact algorithms. So we have 16 sets of 10 problems for each = , and we
tock n = 100,n = 200 and n = 500 as before. But since we do not know
the exact solutions of the 4 sets for n = 500 we omitted those cases. Also we
do not need to make comparisons for 3 sets for all n cases, since in those cases
the optimal is found during the preprocess. So we are left with 13 x 10 = 130
problem instances yielding 13 deviations from optimum averages for n = 100
and n = 200 and we have 13 — 4 = 9 x 10 = 90 different problem instances
for n = 500.

The results were interesting since we encounter the same solution of
PSK from Beta most of the time. That is, for n = 100 in 10 of the 130
problems the resultant tardiness of Beta is strictly better than that of PSK,
and the solution values are equal for the remaining 120 instances. For n = 200
our heuristic gives better tardiness in 12 problem instances and the results
were equal in the other 118 problems. For n = 500 the number of times
we get better solution decreased to 3 among 90 and we still get the same
solution for the remaining 87 problems. The deviations from the optimum
varies with n. Since it was hard to understand the logic behind the PSK
heuristic, this result was interesting. It will be better to tabulate the deviations
from the optimum and their averages. The table given in the last page of
this section illustrates the average deviations from optimum for both of the

algorithms. The number in each cell is the average of 10 ratios of the form

CHAPTER 5. A NEW HEURISTIC : BETA 72

(T (Heuristic) — T(Optimum))/T(Optimum).
The table below gives the average deviations of both of the heuristics

from optimum.

| n [Avg. Deviation of PSK | Avg. deviation Beta |

100 0.02410 0.02250
200 0.03170 0.02540
500 0.02348 0.01460

Table 5.2: Average Deviations of the heuristics from optimum

As, can be seen from the table 5.2 the average deviations for PSK
and Beta are very close to each other. But there are some cases in which the
deviations differ. But, since we are taking averages, the affect of the values
for the instances having different tardiness diminish. So it is better to iden-
tify the cases where the tardiness differ (i.e. the 10 instances of n = 100,
12 instances of n = 200 and 3 instances of n = 500). The table below gives

the average deviations of those cases.

| n | Avg. Deviation of PSK | Avg. deviation of Beta |

100 0.02826 0.021100
200 0.09123 0.023870
500 0.24340 0.004943

Table 5.3: Average Deviations of the heuristics for cases they differ

As can be seen from the table 5.3, the deviation differs by a consider-
able amount for n = 200 and especially n = 500. In fact, for those cases there
are some problem instances in which PSK resulted in a bad solution whereas
Beta gives really good solutions(i.e. the tardiness of the resultant sequence of
our algorithm is very near to the optimal value whereas that of PSK is really
far.) For example, for n = 200 there are 2 such instances. One has tardiness
of 1683 at optimum, PSK resulted in 2629 (has a deviation of 0.5621) and Beta
gives 1747 (the deviation is only 0.038). The other one has tardiness of 1162
at optimum, PSK found a sequence with tardiness 1483 and our heuristic gives
1170 (which is very close to the optimum). Another extreme case occurs for
n = 500. The optimum tardiness is 2581, PSK gives a tardiness of 4430 (the

CHAPTER 5. A NEW HEURISTIC : BETA 73

deviation is 0.7164) whereas Beta found a sequence with tardiness 2587, which
is very close to the optimum one. When we do not consider such extreme cases

the average deviation table becomes :

[n | Avg. Deviation of PSK | Avg. deviation of OUR Alg. |

100 0.028260 0.02110
200 0.025640 0.02416
500 0.006877 0.00625

Table 5.4: Average deviations without the extreme cases

This time, the differences are small. This leads us to think more about
the cases in which there was a tremendous change. Loosely speaking, we feel
that the resultant optimal sequence for those cases might be similar to the
EDD sequence and so the PSK failed since it starts with the SPT sequence.
When we explored the extreme cases, in fact those cases were for R = 0.8 and
T = 0.4 for both n = 200 and n = 500. We found such extreme results for
n = 200 case (2 out of 10 runs), but we got the same results for n = 500 (both
of the algorithms resulted in the same solution for this case). These results

need some more study and this part is still ongoing.

We need to compare the solution times also, but the CPU times are
not comparable yet, since our code of the heuristic is in a premature form. We
will make some important changes and the solution times will change then.
However we can say that, in this premature form, the solution time of our

algorithm is less than 0.011 secs in the average for n = 100 case.

We can conclude that, for most of the cases, Beta and PSK give similar
results, but for some instances, especially for the ones which have the optimum
sequence similar to the EDD sequence our heuristic results in much better

solutions.

CHAPTER 5. A NEW HEURISTIC : BETA

[ﬁn I R,& T | Avg. Deviation of PSK [Avg. deviation Beta |

100 [0.2 0.2 0.049100 0.049100
0204 0.049610 0.049610
0.2 0.6 0.054150 0.054150
0.20.8 0.039530 *0.039230
0.4 0.4 0.027550 *0.027500
0.4 0.6 0.027330 0.027330
0.4 0.8 0.001252 *0.001246
0.6 0.4 0.021880 0.021830
0.6 0.6 0.020910 *0.019500
0.6 0.8 0.000699 0.000699
0804 0.001270 0.001270
0.8 0.6 0.018990 *0.001371
0.80.8 0.000500 0.000500

200] 0.2 0.2 0.063400 0.063400
0204 0.062990 *0.062970
0.20.6 0.063750 0.063750
02038 0.030860 *0.030830
0.4 0.4 0.025096 *0.025094
0.4 0.6 0.000954 0.000954
0.4 0.8 0.020890 0.020890
0.6 0.4 0.020442 % 0.019870
0.6 0.6 0.017310 *0.017170
0.6 0.8 0.000163 0.000163
0.8 0.4 0.099100 *0.019020
0.8 0.6 0.004130 0.004130
0.80.8 0.002896 *0.002870

500 | 0.2 0.2 0.051660 0.051660
0.4 0.4 0.022630 0.022630
0.4 0.8 0.000958 0.000958
0.6 0.4 0.035960 0.035960
0.6 0.6 0.012900 0.012900
0.6 0.8 0.000105 0.000105
0.8 0.4 0.083480 *0.003720
0.8 0.6 0.003457 *0.003340
0.80.8 0.000062 0.000062

Table 5.5: Deviations of the heuristics from optimum

Chapter 6

CONCLUSIONS and FUTURE
RESEARCH

In this thesis, we developed an exact algorithm which solves problems with 100
and 200 jobs in really low times and can handle 500 jobs whereas the literature
is limited to 100 jobs only. The algorithm is based on the #-Sequence of Tansel
& Sabuncuoglu [34] and decomposition theorems of Tansel & Sabuncuoglu and
Potts & Wassenhove [23]

The B-Sequence is very good for easy problems, since it gives the op-
timum immediately. Decomposition of Tansel & Sabuncuoglu is also a helpful
tool in solving large problems, since it exactly decomposes the problem for the
cases it applies. The problem is that for ” hard instances” described in Tansel
& Sabuncuoglu [34, 35] both A-test and TS-decomposition fail and we have
to branch in order to solve the problem. With the normal branching criteria
(i.e backwards or forwards branching) the time to solve the problem was really
high. It is not possible to solve large problems with that type of branching.
Then we used the decomposition theorem of Potts & Wassenhove. That theo-
rem gives alternative decomposition which causes branches. And, since while
branching, we also decompose the problem, the time to solve the problems

decreased, and we became capable of handling 500-job cases.

In fact our aimn was to solve all 500 jobs to optimality, but time re-

quired for some instances is very high and we had to terminate with premature

75

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 76

solutions for those cases. But with our algorithm n = 100, and n = 200 cases
are solved to optimality and in really low times. It is 4.028 sec. for n = 100
and 4.329 min. for n = 200. The algorithm is coded in C language and Sun4
we compare with the best known exact algorithm which can only solve prob-

lems of size at most 100 and in 27.07 secs (in CDC7600 with FORTRAN IV
coding).

We also developed a heuristic basing on our exact algorithm. The best
known heuristic is the one developed by Panwalkar et al. [22]. That heuristic
results in near optimal solution, and since it is a construction type heuristic, its
running time is really low. But the logic behind the heuristic is not very clear.
It seems to be the result of many experimental studies. For our heuristic, we
used our exact algorithm, Beta(TS, PW) , but with relaxed branch evaluation
criterion. That is , when we face the branching case, according to our criterion,
we select one of the alternatives. The interesting result is that, in most of our
experiments, our heuristic and the one of Panwalkar et al. result in the same
sequence. But there are some cases in which our heuristic gives markedly better
solutions (nearer to the optimum). We feel that those cases are the ones whose
optimal solution is similar to EDD sequence, and so the heuristic of Panwalkar

et al. fails.

For future research we first want to improve our heuristic. The form
of the heuristic seems to be open for improvements and we will try to develop
some different criterion, for evaluating branches, which will result in better

solutions.

We also want to analyze the failure of the [-Sequence. The g§-
Sequence used in this thesis is slightly different than the original version and
with this S-Sequence we may also know which pair of jobs causes the B-test to
fail. This information might be useful for generating heuristics, or it might be
a way for finding the exact solution from the [-Sequence. What we observe
is that, the B-Sequence can be transformed to the optimal one with some
movements and/or swaps. But, of course, a guidance for those movements are

needed, and we also need some criteria which will indicate when we are at the

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 17

optimum. Otherwise we will only satisfy local optimality.

As a next step, we will analyze the (-Sequence based movements and
swaps in comparison with different seed sequences like SPT, EDD. We expect
to find the seed taken as [-Sequence will result nearer to optimal solutions—

and in less time than the others.

Bibliography

[1] K.R. BAKER, J. BERTRAND (1982) "A dynamic priority rule for
scheduling against due dates” Journal of Operations Management 3, 37 -
42

[2] K. R. BAKER(1974)Introduction to Sequencing and Scheduling, John Wi-
ley, NewYork.

[3] K.R.BAKER, J.B. MARTIN (1974) ” An experimental comparison of solu-
tion algorithms for the single machine tardiness problem” Naval Research
Logistics Quarterly 21, 187 - 199

[4] K.R. BAKER, L. SCHRAGE (1978) "Finding an optimal sequence by
dynamic programming : An extension to precedence - related tasks” Op-
erations Research 26, 111 - 120

[5] D.C. CARROLL (1965) "Heuristic sequencing of single and multiple com-
ponents” Ph.D Dissertation, Massachusetts Institute of Technology.

[6] R.J. CHAMBERS, R.L. CORRAWAY, T.J. LOWE, T.L. NORIN (1991)
"Dominance and decomposition heuristics for single machine scheduling”
Operations Research 39, 639 - 647

[7] S. CHANG, H. MATSUG, G. TANG (1990) "Worst Case Analysis of
local search heuristics for the one machine total tardiness problem” Nawval
Research Logistics 37, 111 - 121

[8] C. CHU (1992) ” A branch & bound algorithm to minimize total tardiness
with different release dates” Naval Research Logistics 38, 265 - 283

78

BIBLIOGRAPHY 79

[9] J. DU, T. LEUNG (1990) *Minimizing total tardiness on one machine is
NP hard” Operations Research 15, 483 - 495

(10] S. ELMAGHRABY (1968) "The one machine sequencing problem with
delay costs” The journal of Industrial Engineering 19, 105 - 108

[11] HLEMMONS (1969) ”One machine sequencing to minimize certain func-
tions of job tardiness”™ Operations Research 17,701 - 715

[12] M.L.FISHER (1976) "A Dual Algorithm for the one machine scheduling
problem” Mathematical Programming 11, 229 - 251

[13] M.L. FISHER, A.M. KRIEGER (1984) ” Analysis of a linearization heuris-
tic for single machine scheduling to maximize profit” Mathematical Pro-
gramming 28, 218 - 225

(14] T.D. FRY, L.VICENS, K. MACLEOD, S. FERNANDEZ (1989) "A

heuristic solution procedure to minimize T-bar on a single machine” Jour-
nal of operations Research Society 40, 293 - 297

(15] J.E.HOLSENBACK, R.M. RUSSELL (1992) ”A heuristic algorithm for
sequencing on one machine to minimize total tardiness” Journal of Oper-

ations Research Society 43, 53 - 62

[16] E.L. LAWLER (1977) "A ’pseudopolynomial’ algorithm for sequencing
jobs to minimize total tardiness” Annals of Discrete Math 1,331 - 342

[17] E.L LAWLER (1982) ”A fully polynomial approximation scheme for the
total tardiness problem” Operations Research Letters 1 207 - 208

[18] J.K. LENSTRA, A.H.G. RINNOOY KAN (1984) "New directions in
scheduling theory” Operations Research Letters 2, 255 - 259

[19] J.K. LENSTRA, A.H.G. RINNOOY KAN, P. BRUCKER (1977) ”Com-
plexity of machine scheduling problems” Annals of Discrete Math 1 343 -
362

BIBLIOGRAPHY 80

[20] T.E. MORTON, R.M. RACHAMADUGU (1982) "Myopic heuristics for
the single machine weighted tardiness problem”, Working paper, Carnegie

Mellon University

[21] J.C. PICARD, M. QUEYRANNE (1978) "The time dependent travelling
salesman problem and its application to the tardiness problem in one

machine scheduling” Operations Research 26, 86 - 110

[22] S.S. PANWALKAR, M.L. SMITH, C.P. KOULAMAS (1993) ” A Heuristic
for the Single Machine Tardiness Problem” Furopean journal of Operations
Research 70, 304 - 310

[23] C.N. POTTS, L.N VAN WASSENHOVE (1982) ”"A decomposition algo-
rithm for the single machine total tardiness problem” Operations Research
Letters 11, 177 - 181

[24] C.N. POTTS, L.N. VAN WASSENHOVE (1985) ”A branch and bound
algorithm for the total weighted tardiness problem” Operations Research
33, 363 - 377

[25] C.N. POTTS, L.N. VAN WASSENHOVE (1987) ”Dynamic programming
and decomposition approaches for the single machine total tardiness prob-

lem” Furopean journal of Operations Research 32, 405 - 414

[26] C.N. POTTS, L.N. VAN WASSENHOVE (1991) ”Single machine tardi-
ness sequencing heuristics” IIE Transactions 23, 346 - 354

[27] R.M.VRACHAMADUGU (1987) ” A note on the weighted tardiness prob-
lem” Operations Research 35, 450 - 452

[28] A.H.G. RINNOOY KAN, B.J. LAGEWEG, J.K. LENSTRA (1975) "Min-

imizing total costs in one machine scheduling” Operations Research 23,
908 - 927

[29] L. SCHRAGE, K.R BAKER (1978) "Dynamic Programming solution of
sequencing problems with precedence constraints” Operations Research
26, 444 - 449

BIBLIOGRAPHY 81

[30] J. SCHWIMER (1972) "On the n job one machine sequence independent
scheduling with tardiness penalties : A Branch & Bound solution” Man-
agement Science 18, 301 - 313

[31] T.T. SEN, L.M. AUSTIN, P.GHANDFOROUSH (1983) "An algorithm
for the single machine sequencing problem to minimize total tardiness”
IIE Transactions 15,363 - 366

[32] T.T. SEN, B.N. BORAH (1991) "On the single machine scheduling prob-

lem with tardiness penalties” Journal of Operations Research Society 42,
695 - 702

[33] V. SRINIVASAN (1971) "A hybrid algorithm for the one machine se-

quencing problem to minimize total tardiness” Naval Research Logistics
Quarterly 18, 317 - 327

[34] B. TANSEL, I. SABUNCUOGLU (1994) "Geometry Based Analysis of
Single Machine Tardiness Problem and Implications on Solvability” Re-
search Report IEOR-9405

[35] B. TANSEL, I. SABUNCUOGLU (1993) " An Analysis of Single Machine
Tardiness Problem and New Insights” Research Report

[36] J.I. WILKERSON, J.D IRWIN (1971) ”An improved method for schedul-
ing independent tasks” AIIE Transactions 3, 239 - 245

DoKUMANTAST O MESEEéZE

