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ABSTRACT

ON ARF RINGS

Sefa Feza Arslan
M.S. in Mathematics
Advisor: Asst. Prof. Dr. Sinan Sertoz
September, 1994

In this thesis, we worked with curves which have cusp type singularities.
We described the Arf theory, which solves the problem of understanding and
finding the multiplicity sequence of a curve branch algebraically. We proposed
an algorithm for finding the Arf characters of a given curve branch. We also
faced the problem of Frobenius, and proposed an algorithm for the solution of
problem of Frobenius in the most general case.

Keywords : Curve branch, singularity, blow up, multiplicity sequence, Arf
ring, Arf semigroup, Arf closure, Arf characters, Frobenius.
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OZET
ARF HALKALARI

Sefa Feza Arslan
Matematik Bolumu Yuksek Lisans
Danigsman: Asst. Prof. Dr. Sinan Sertoz
Eylil, 1994

Bu tezde, kdse noktas:1 biciminde tekillikleri olan egrilerle ilgilendik. Bir
egri kolunun ¢okkathlik dizisinin anlagiimas1 ve bulunmasi sorununu cebirsel
olarak ¢ozen Arf kuramimi tanittik. Verilen bir egri kolunun Arf karakterlerini
bulan bir algoritma onerdik. Ayrica, Frobenius problemi ile de karsilagtik ve
en genel durumdaki ¢6ziimi igin bir algoritma onerdik.

Anahtar Kelimeler : Egri kolu, tekillik, tekilligin ¢ozilmesi, gokkathlik
dizisi, Arf halkasi, Arf yanigrubu, Arf kapamisi, Arf karakterleri, Frobenius.
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Chapter 1

INTRODUCTION

The link between algebra and geometry makes it possible to predict alge-
braically the result of a geometric process. In this way, a geometric problem
can be solved by algebraic methods and computations. Also, invariants of
a geometric object can be found algebraically; these are very important for

classification.

We will deal with curves, which have cusp type singularities. Singular
curves can be classified by finding nonsingular curves, which are birationally
equivalent to these singular curves. This can be done by a blow up process.
For cusp type singularities, one blow up may not be sufficient to remove the
singularity. Hence, successive blow ups must be applied to obtain a nonsingular
curve. The multiplicity sequence constructed by taking the multiplicity of the
singularity before each blow up is a fundamental invariant of the singularity.
Arf shows that the completion of the local ring at the singularity of the branch
carries all the information necessary to obtain the multiplicity sequence [2].

Arf passes from geometry to algebra by using the completion of the local
ring. He constructs the canonical closure of this ring, later called the Arf
closure. The orders of the elements of this ring form a sub-semigroup of the
natural numbers. In this way, Arf passes from algebra to arithmetic. From this
semigroup, Arf obtains some numbers by a process to be described later, and
then he determines the multiplicity sequence of the curve branch by applying
the modified Jaccobian algorithm (8, pp. 108-109] to these numbers. These
numbers are called the Arf characters of that curve branch.

The purpose of this thesis is to describe the work of Arf and to propose
a computer algorithm for finding the Arf characters of a given curve branch.
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Because of the the sub-semigroup mentioned above, we face the problem of
finding the largest integer which is not included in this semigroup, if the gen-
erators of this semigroup are relatively prime. This is the famous problem of
Frobenius. We also propose an algorithm for the solution of the problem of

Frobenius in the most general case.

In chapter 2, we give the necessary preliminaries for understanding the Arf
theory. We describe the category in which we will be working, by defining its
objects and morphisms. Then we describe curves, singularities, and resolution

of singularities, and give examples.

In chapter 3, we present a history of the problem of obtaining the multiplic-
ity sequence of a singular curve branch without applying succesive blow ups to
the curve. Then we describe the work of Arf and his solution to this problem.

In chapter 4, we offer a literature review of the problem of Frobenius. This
involves looking for the largest integer that is not included in the semigroup
generated by relatively prime integers. Then we propose an algorithm for the
solution of the problem of in the most general case.

In chapter 5, to find the Arf characters of a curve branch we propose an
algorithm applicable to computer, by depending on the work of Arf. In this al-
gorithm, given a parameterization of a curve branch as input, its Arf characters

are obtained as output.

We use the following notation throughout:

R = Real numbers

N = {0,1,2,...}



Chapter 2

CURVES, SINGULARITIES,
AND RESOLUTION OF
SINGULARITIES

2.1 Background

We will be working in the category of algebraic varieties and birational maps
over an algebraically closed field. Our main construction is a blowing up of an
algebraic variety, which is the main example of a birational map. We recall

some definitions.
Let k be an algebraically closed field.

Definition 2.1.1. An affine n-space over k is defined to be the set of all
n-tuples, components of which are from k. An affine n-space over % is denoted
by A}, and by A" if no confusion about the field arises.

It looks as if A™ and k™ are the same but there is a major difference. &
has an origin and a vector space structure, but A" is just a set of points. In
k™ the origin is a distinguished point, however in A" all points are considered

with equal attention and no point is distinguished.

Let A = k[x1,...,T,] be the polynomial ring in n variables over &. If f is a
polynomial in A and a = (a4, ...,a,) is an element of the affine space A", then
f(a) is defined as f(a,,....a,). The zeros of a polynomial f € A4 is the set of



all a € A" satisfying f(a) = 0.

If S is a collection of polynomials from A, then
Z(S)={a€ A" | f(a) =0 for all f € S},

is the set of all simultaneous solutions of the polynomials in S.

If Iis the ideal generated by S, then one can show that Z(S) = Z(I). It
follows from Hilbert’s basis theorem that A = k[zy,...,z,] is a Noetherian ring.
(See for example [3, p. 81].) Since A is a Noetherian ring, every ideal of it is
finitely generated. Hence, it is possible to express Z(S) as the common zeros

of a finite number of polynomials fi,.... f,.

Also, for any subset X C A", the ideal of X in A can be defined by
IX)={feA]|f(P)=0forall P e X}

Definition 2.1.2. A subset V of A™ is an algebraic set if there is a subset
S C A which satisfies V = Z(5).

By using the algebraic sets, we can define a topology on A™. This is done
by taking closed sets as algebraic sets and open sets as the complements of

these algebraic sets.

Definition 2.1.3. The topology defined on A™ by taking closed sets as
algebraic sets and open sets as the complement of these algebraic sets is called

the Zariski topology on A™.
Let us prove that this is indeed a topology.

We must show that the following three propositions are satisfied. (i) Finite
intersections of open sets are open, (i) arbitrary (finite or infinite) unions of
open sets are open, and (iii) the empty set and whole space are open. In
order to prove (i), it is sufficient to show that the union of two closed sets
is closed. Let X;, X, be two closed sets. Since X; and X; are algebraic,
they can be written as Z(S;) and Z(S;) for some subsets S;,52 of A. Then
X1 U X, = Z(5,5,;), where §;5; is the set of all products of elements of §; by
Sy. In fact, if P € X; U X, then P € Z(S;) or P € Z(5;). Hence, Pis a zero
of every polynomial in $;S; and P € Z(S5;52). This proves that X; U X, C
Z(515,:). Conversely, if P € Z(5;S;) and P is not an element of X, then
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there is f; € Sy such that fi(P) # 0. But for any f2 € Sz, (f1f2)(P) = 0 since
P € Z(5,5,), so fo( P) must be zero. Hence P € X; C X UX,. To show (i), it
is sufficient to prove that arbitrary intersections of algebraic sets are algebraic.
If X, = Z(S,) is any family of algebraic sets and P € NX,, then for every n,
all the polynomials in S, are zero at P. This shows that P € Z(US,). Hence
NX, C Z(US,). Conversely, if P € Z(US,), then for every n, P € Z(S,).
This shows that P € NZ(S,) = NX,. Thus Z(US,) C NX,. This proves
that NX, = Z(US,). Finally to show (iii) note that, since § = Z(1), it is an
algebraic set and its complement A" is open. In the same way, A" = Z(0) is

an algebraic set, and its complement @ is open.

This establishes the Zariski topology on A™. From now on whenever a

topology is referred to, we will mean Zariski topology, unless otherwise stated.

Definition 2.1.4. A nonempty subset X of a topological space T is irre-
ducible if it cannot be expressed as the union of two proper subsets which are
closed in Y. Hence, a set V C A™ is reducible if V = V; U V;, where V4, V; are
closed in V, satisfying Vi # V and V; # V.

Remark 2.1.5. Consider the Zariski topology on A™. Let S C k[zy, ..., T,]
be a collection of polynomials f;. Then Z(S) is a closed set and A™ — Z(S§) is
an open set. Since Z(S) = NZ(fi),

A" — Z(S) = A" — NZ(f;) = U(A™ — Z(£)),

which shows that every open set can be written as the union of (A™ — Z(f;))’s
for some f;. Hence, a base of open sets can be given by these sets. For arbitrary

f,9#0,
(A" — Z(f)) N (A" — Z(g)) = A™ ~ Z(f9)

which is nonempty because f,g # 0, and Z(fg) # A™. This shows that every
intersection of nonempty open sets is nonempty. Thus, Zariski topology is not
Hausdorff.

Proposition 2.1.8. Any nonempty open subset X of an irreducible space

Y is irreducible and dense.

Proof: Assume that an open subset X of Y is not dense. Then its closure
X =Y, is a closed proper subset in Y. Since X isopen, ¥ =Y —~ X is a
closed proper subset in Y. Y can be expressed as the union Y = Y, U}, of
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two proper subsets, each one of which is closed in Y. But this contradicts with
the irreducibility of Y. Hence, our assumption is wrong and any open subset of
an irreducible space is dense. Now, assume that an open subset X of Y is not
irreducible. Then, X can be expressed as the union X = X; UX; of two proper
subsets, each one of which is closed in X. Since X is dense, X=Y=XUX,.
X; #Y and X, # Y, because for example, if X; =Y, then X; = X NX; =X
but this is a contradiction. So Y = X; U X; and X3, X, are proper subsets of
Y. Again, this contradicts with the irreducibility of Y. Hence, any open subset

of an irreducible space is irreducible. ]

Remark 2.1.7. To construct a link between geometry and algebra, we
explore the correspondence between ideals and algebraic sets. This link is
important because it gives us the opportunity to translate any statement about

algebraic sets into a statement about ideals and conversely.

From an algebraic set X C A", we pass to the ideal of polynomials vanishing
at X,

I(X) = {f € k[z1,...,z,] | f(P)=0forall P € X}.

If we pass to the zero set of this ideal Z(I(X)), then X C Z(I(X)) from
the definition of zero set, since every polynomial in the ideal is zero at every
point of X. As X is an algebraic set, it can be written as X = Z(fi,..., fs).
Then the ideal generated by fi, ..., f;, which we show by < fi,..., fs >, is in
I(X). If any polynomial is added to a collection of polynomials, the added
polynomial may not vanish at some point where all the other polynomials are
zero. This makes the zero set of the new collection of polynomials smaller.
Now I(X) contains < fj,.... fs >, but may contain some other polynomials as
well. Hence Z(J(X)) C Z(< fi,..., Js >) = X. This shows that Z(I(X)) = X.

In general, for an ideal a C A, Z(a) is its zero set and I(Z(a)) is the ideal
of the polynomials vanishing at Z(a). I(Z(a)) obviously contains I but it may
have more elements. Hence a C I{Z(a)).

Example 2.1.8. Consider the ideal in k[z;,z;] generated by r? and z3.
Z((x?,22)) is (0,0). But I((0,0)) is the ideal generated by r; and z;, and

(z1,22) D (23,22), but (z1.1;) # (22, 22).

Definition 2.1.9. Let a C k[z,,...,z,] = A be an ideal. The radical of a,
denoted /a, is defined as,



va={f € A| f™ € a for some integer m > 1}.

An ideal @ is a radical ideal if it is equal to its radical.

Theorem 2.1.10. (Hilbert’s Nulistellensatz). Let k be an algebraically
closed field, let a be an ideal in A = k[zy, ..., z,)], and let f € A be a polynomial
which vanishes at all points of Z(a). Then f™ € a for some integer r > 0.

Proof: See [13. p. 374] or [7, pp. 168-173]. D

Now it follows from Hilbert’s Nullstellensatz that I(Z(a)) = +/a for an ideal
a. Thus if a is a radical ideal, then I(Z(a)) = a.

In this way, we found a correspondence between radical ideals and algebraic

sets. This link between algebra and geometry is the main theme.

Irreducibility is not only important geometrically, but it also corresponds
to special ideals in the algebraic category.

Proposition 2.1.11. An algebraic set is irreducible if and only if its ideal

is a prime ideal.

Proof: First, let us show that if X is irreducible then I(X) is a prime ideal.
If fif: € I(X), then Z(f1f2) D Z(I(X)). We showed in Remark 2.1.7 that
Z(I(X)) = X,s0 X C Z(f1f2) = Z(fi) U Z(f2). X can be expressed as the
union of two closed sets such that X = (Z(f;) N X) U (Z(f2) N X). Since X is
irreducible, either X = X N Z(fi) or X = X N Z(f,). Hence, X C Z(f;) or
X C Z(f,), that is f; € I{X) or fo € I(X).

Conversely, for a prime ideal p, assume that Z(p) = X; U X,. Then,
I(Z(p)) = I(X,1U X;). Since p is a prime ideal and since every prime ideal is a
radical ideal, J(Z(p)) = p. The polynomials that vanish at every point of both
X; and X; form the intersection of the set of polynomials vanishing on X; and
X,. Thus we can write p = I(X;) N I(X:2). Then we have either p = I(X;) or
p = I(X;). Assume this is not true, that is p is a proper subset of J(.X;) and
I{X2). Then there are polynomials satisfying f € I(X3), f € I(X3), g € I(X2),
and g € I(X;). In particular this implies that f ¢ p and g € p. Now, fg is
an element of both I(.X;) and I(X;). So fg € p and since p is a prime ideal,
either for g must be an element of p. But this is a contradiction, since neither
f nor g is in p. So our assumption is false, and hence, p = I{X;) or p = JI(X3),
which shows that Z(p) = Z(J(X,) = X; or Z(p) = Z(I(X;) = X,. So Z(p) is

7



irreducible. ]

Since every maximal ideal is prime, it is clear that a maximal ideal m of
A = k[zy,...,z,] corresponds to a minimal irreducible closed subset of A™,
which is a2 point. Then every maximal ideal of A can be expressed as m =

(z1 — a1, ...,Z, — ay), for some ay,...,a, € k.
The objects of our category can now be defined as follows.

Definition 2.1.12. An affine variety is an irreducible closed subset of
A". An open subset of an affine variety is called a quasi-affine variety. If X
is a quasi-afline variety, an irreducible locally closed subset of X is called a

subvariety of X.

Example 2.1.13. We have seen above that any point of P of A" is a
minimal irreducible closed subset. Hence, any point P is an example of an
affine variety. For any irreducible polynomial f € k[zy,...,z4], the zero set
Z(f) is also an example of affine variety. In A? with coordinates z;, and z,,
Z(z% — z2) describes the cuspidal cubic curve. Similarly in A® with coordinates
1,23, and 3, the zero set Z(zz — 22, 23 — z3) is another affine variety known

as the twisted cubic curve.

Before we define the morphisms of our category, we define some fundamental

concepts.

Definition 2.1.14. The affine coordinate ring A(X) of a variety X C A"
is defined to be A/I(X), that is k[z,...,z,]/I(X). The elements of the affine
coordinate ring are the polynomial functions on our variety. Two polynomials
that are equal at each point of the variety are the same function on this variety,
and polynomials which are zero at every point of the variety correspond to the

zero function on our variety.

A maximal ideal mp of A(X) for a point P € X is the set of polynomials
vanishing at P, viz. mp = {f € A(X) | f(P) = 0}.

The polynomials of k[z4,...,z,] can be considered as functions on A™. We
allow other functions that can be written as the quotient of two polynomials
locally, where the denominator polynomial is not zero.

Definition 2.1.15. A function is regular at a point of a variety X, if it can
be expressed as the quotient of two polynomials on an open neighborhood of



the point, where the polynomial in the denominator does not vanish on this

neighborhood.

Namely, for a variety X, a function f : X — k is regular at a point r € X
if there is an open neighborhood U with z € U C X, and polynomials f;, f, €
klzy, ..., za), satisfying f = f1/f2 on Uand f; is nowhere zero on U {10, p. 15].

If fis regular at every point of X, then f is regular on X.

Proposition 2.1.16. Functions that are regular at every point of a variety
are polynomials. Hence, the ring of functions that are regular at every point
of a variety X, denoted by O(X), will be isomorphic to the affine coordinate

ring A(X) of X.

Proof: See [10. p. 17). O

We have defined the ring of all regular functions on a variety X. Let us now
define the local ring of P on X, where P € X.

Definition 2.1.17. The germ of a regular function on Y near P is a pair
< U,f > where U is an open subset of X containing P, and fis a regular
function on U. Two pairs < U, f > and < V,g > are equivalent if f = g on
UNV. The local ring of P on X, Opx is the ring of these germs. This is a
local ring and its maximal ideal is the set of germs of regular functions which

vanish at P.

Proposition 2.1.18. Op x is isomorphic to the localization of the affine

coordinate ring at its maximal ideal mp corresponding to P.

Proof: See [10. p. 17]. o

Definition 2.1.19. The function field K(X) of X consists of the elements
< U, f > where U is a nonempty open subset of X, and fis a regular function
on U. < U, f>isequivalent to < V,g > if f=gon UNYV. It is obvious that
K(Y) is isomorphic to the quotient field of A(Y). The elements of the function

field are called rational functions.
Finally we can define the morphisms of our category.

We define a morphism between two varieties in such a way that information

about regular functions are transferred from one variety to the other, in a

9



manner made precise in the following definition.

Definition 2.1.20. For two varieties X and Y, a morphismp: X — Y is
defined to be a continuous map such that for every open set V C Y, and for
every regular function f : V — k, the function fo ¢ : o~1(V) — £k is regular.
In particular, if f is regular on Y, f o ¢ is regular on X.

Definition 2.1.21. A biregular morphism p : X — Y of two varieties is
a morphism which admits an inverse morphism ¥ : Y — X with ) o ¢ = idy
and @ o1 = idy. The biregular morphism is the isomorphism in this category.

This completes the definition of the category of varieties and morphisms.
This category is known as the category for the biregular theory. The main
theme in this category is that two objects (varieties) are considered the same
if their coordinate rings are isomorphic. However, experience shows that we
have to ‘enlarge’ our category, if we focus our attention on the function fields

instead of coordinate rings.

Definition 2.1.22. For two varieties X and Y, a rational mapp: X — Y
is an equivalence class of pairs < U,y > where U is a nonempty open subset
of X, py is a morphism from U to Y, and < U,py > and < V,py > are
equivalent if oy = v on UNV. For some < U, ¢y >, if the image ¢y is dense
in Y, then ¢ is called dominant.

Definition 2.1.23. A birational map is a rational map that has an inverse,
i.e., there exits a rational map ¢ : Y — X satisfying Yo p = idx and po ¢ =
idy.

Birational isomorphism is satisfactory and in fact useful because of the

following fact.

Proposition 2.1.24. Two varieties are birationally equivalent, if and only

if their function fields are isomorphic.

Proof: See [10, p. 26]. O

We will see in section 2.4 that since blowing up is a rational map, a variety
X and its blowing up is birationally equivalent, and their function fields are

isomorphic.

The last concept we will mention briefly in this section is the projective

space.

10
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Figure 2.1: P}

Definition 2.1.25. Projective space may be considered as a space whose
points are the lines through the origin of some vector space. Hence, formally
the projective space P* is the quotient of the set £**! — {(0,...,0)} under the

equivalence relation given by (ao, ..., as) ~ (aao, ..., aa,) for all a € k,a # 0.

Namely, points lying on the same line through the origin all denote the same
point in the projective space. The equivalence class of the point (aq,...,a,) in
k™*! is denoted by [ao : ... : @,) in P".

As an example, consider ]P’IIR, the set of all lines in R? with axes zo and z;.
All the lines through the origin except the line z; = 0 can be parameterized
by taking their intersections with the line z; = 1. With this parameterization,
the line z; = 0 will denote the point at infinity. As a set,

Pk = {(z,1) | = e R}U {(1,0)},

where (1,0) is referred as “the point at infinity”, see figure 2.1.

In P} (the set of all lines through the origin in k™! with axes xo,...,Z,),
consider the n-space given by z, = 1. It parameterizes all lines through the
origin in k™*! except those that lie in z, = 0. The lines in z, = 0 are the
points of P*~!. Hence. P* = A"UP*"L

We expect P" to be locally like A™ even at infinity, and our expectation is
y

fulfilled when we prove the following.
Proposition 2.1.26. P” is a union of A™’s.
Proof: Some special subsets U; of P* are defined as

Uy = {[ro:...: 1o} € P* | x; # 0}

11



Hence, if p = [z¢: ... : 2,] € U;. then we can write p = f‘l ol f’:] We

can define a function ¢; : U; — k" as

oi([zo, ... za]) = (£2...., 25t 2L fa),

.oy z, ) I, v 5

It is clear that ; is onto and one to one. It has an inverse
e a1, man) =lay: o taiy i liaigg e, €U

(Note that ¢; and ;! are acceptable morphisms in our category.)

Thus, U; is isomorphic to A", and P” is a union of A™’s. Hence, locally P*
looks like A™. 0O

Polynomials are not well defined on P*. However, if f is a homogeneous
polynomial and is zero for some (zo, ....z,) € £**! — {(0, ...,0)}, then fis zero
at all points on the line (Azo,...,Az,). Hence, if P = [zo : ... : z,], then we
can say that f(P) = 0 or f(P) # 0. Now, we can talk about the zero sets of
homogeneous polynomials and define them as algebraic sets. We can define a
topology on P by taking the algebraic sets as closed sets. A projective variety
is then defined to be an irreducible algebraic set in P".

Proposition 2.1.27. A projective variety X is covered by the open sets
X N Ui, which will be homeomorphic to affine varieties by the mapping ¢;.

Proof: See [9, p. 5]. O

Example 2.1.28. Consider the projective variety X, which is the zero set
of the homogeneous polynomial zoz2 — z¥. zo can be taken to be 1 on the
intersection of X with the open set Us. Then the intersection will be the zero

set of the cuspidal cubic curve r? = 23.

2.2 Curves

Curves are special varieties. Let us define dimension first in order to define a
curve. A chain of an ideal [is a sequence of ideals satisfying [o C ... C I, = [
and the length of this chainis k. In a ring R, the height of a prime ideal pis the

12



maximum n such that there exists a chain pp C p1 C ... C p, = p of distinct
prime ideals.

Definition 2.2.1. The Krull dimension of the ring R is defined as the
maximum of the heights of all prime ideals, i.e., the maximum length of chains

of prime ideals in R.

Definition 2.2.2. A variety is called a curve, if the Krull dimension of its

affine coordinate ring is 1.

If X is an affine variety, then the dimension of X is equal to the dimension
of its affine coordinate ring A(X). A variety X in A" has dimension n — 1 if
and only if it is the zero set of a single nonconstant irreducible polynomial, see
(10, p. 7]. A plane curve is then the set of all points whose coordinates satisfy
an equation f(z,y) = 0, where fis a polynomial with certain coefficients from
the ground field.

Example 2.2.3. The cuspidal cubic which is defined by z2 — 23 =0 is an

example of a plane curve in A%

Example 2.2.4 The nodal cubic which is defined by z2 — 27 — 23 = 0 is

another example of a plane curve in A%}

18 v~ ——
1 [
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o o
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Figure 2.2: The cuspidal cubic curve and the nodal cubic curve

Example 2.2.5. Four-leaved rose which is defined by (z7+23)%—4z2z2 = 0
is another plane curve (7, p. 146].

!The cuspidal cubic curve and nodal cubic curve were known by Greeks as the “cissoid
of Diocles” and “conchoid of Nicomedes” and used for solving the problem of doubling the
cube and trisecting the angle. Diocles showed that ¥/2 can be constructed by using ruler,
compass and cissoid. These were the classical problems of antiquity. Later, it was proved
by Galois theory that they can not be solved by only ruler and compass construction. For
inore information, see {6. pp. 9-16].
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Figure 2.3: Four-leaved rose
Example 2.2.6. The twisted cubic which is defined by z; — 2z = 0 and
z3 — 23 = 0 is a space curve in A>.

We will deal with the branch of a curve at a point. Before giving its defini-
tion, we prefer to give an example to be familiar with the notion.

Example 2.2.7. The nodal cubic curve z3 — 3 — z? = 0 has locally two
components around (0,0). To see this rewrite the equation of the curve as,

z2 = z2(1 + z,), and observe that,
(14 z)? = £(1 + 321 — Lai + ).

This leads to the equations z; = 71 + 122 — 1z} + ... and 22 = —(z1 + 1x? —
2z$ + ...). They are called the branches of the curve at (0,0).

We will give a precise definition of a dranch by using parameterization.

Let k[[t]] be the formal power series ring. An element ¢ of k[[t]] is of the
form, ¢ = ag 4 a1t + ... + a,t™ + ... where a; € k. Order of ¢ is the degree of
the smallest degree term present. Namely, smallest ¢ satisfying a; # 0.

Proposition 2.2.8. A variety C of A" has a parameterization at any one

of its points (ay, ..., a,) in the form;

z1 = pi(t)

Ty = ‘Pn(t)

where ;(t), ..., Pa(t) are power series in ¢ and (p3(0), ..., 9(0)) = (a1, ..., as),
if and only if Cis a curve.

Proof: For the part of the proof beginning with “if C is a curve”, see
(1, pp. 62-63].

14



Conversely, let « : k[z1, ..., z,] — k[p1(t), ..., pa(t)] C &[[t]] be the map such
that a(z;) = @i(t). It is obvious that that the kernel of this map is /(X). Hence,
k[z1,...,za]/I(X) = klp1(t), ..., n(t)]. Since k[pi(t), ..., pa(t)] has dimension
1, k[z1, ..., zo]/I(X) has dimension 1, too. Hence, X is a curve. o

This parameterization 7 = ¢;(t),...,22 = @,(t) of a curve C at a point
(a1,...,a,) corresponds to a branch of C at this point. A parameterization
1 = @3(t), ..., Tn = @5 (t) is redundant, if it can be obtained from some other
parameterization by substituting for ¢ some power series in ¢ of order > 1. A
parameterization is called irredundant if it is not redundant.

Definition 2.2.9. A branch at a point is an equivalence class of irredundant
parameterizations at that point; two parameterizations are equivalent, if one
can be obtained from the other by substituting a power series of order 1, see
[1, pp. 63-64].

Example 2.2.10. For the nodal cubic curve, by using the equations
Ty = 1 + 322 — izt + ... and 73 = —(zy + 12} — 12} 4 ) obtained in
Example 2.2.7, we will have two parameterizations of the curve at (0,0). The

first parameterization at (0,0) is
zy=t, zp=t+ 32— 134 .,
and the second one is
Ty =1t, 2o = —(t + -;-t2 — %tg‘ +...).

From the definition, these are the two branches of the curve at (0,0).

At (—1,0), the same curve has parameterizations,
zy=1t2—1, 2o =t(t*— 1) and 73 = t* — 1, 2 = —t(t? - 1).

They correspond to the same branch, because the second parameterization can
be obtained from the first one by substituting —t which has order 1. Hence at

(—1,0), there is only one branch of the curve.

The cuspidal cubic curve has one branch at (0,0). It has the parameteriza-

tion

15



Ty = t2, Iy = t3

The twisted cubic curve has also one branch at (0,0) and it has the param-

eterization
Ilzt, :r2=t2, 173=t3

We shall deal with curves which have polynomial parameterizations. These
curves can be defined by z; = ¢1(1),..., 7, = @.(2) where p1(?), ..., on(2) are
polynomials in t. Not every curve does have a polynomial parameterization.
But for every curve that has a polynomial parameterization, it is possible
to find the defining equations, i.e., an implicit representation. (There are
algorithms for doing this by using Groebner bases. For more information, see

[7, pp. 126-132].)

2.3 Singularity

In general, singularity within a totality may be defined as a place of unique-
ness, of specialty, of degeneration, of indeterminacy or infinity, [6, p. 82].
Smoothness means no sudden and unexpected changes. Singularity may also

be defined as the place where smoothness is violated.

For varieties, singularity can be defined both geometrically and alge-
braically. The geometric definition, which is historically the first, depends
on the formal derivatives of the generators defining the ideal of that variety.

Definition 2.3.1. For a variety X of dimension r in A", let fi,..., fx be
the generators defining its ideal. X is nonsingular at e point P € X if the rank
of the matrix J = (8f;/0x;(P)) is n — r. This matrix is called the Jacobian

matriz at P.

From this definition, we can deduce that singular points of a curve C are
those at which the curve has more than one tangent (counting multiplicity).
In other words, a point of a curve is said to be singular if every line through
this point has intersection multiplicity greater than 1 with the curve there.
Multiplicity of a curve at a point Pis d, if every line through P has intersection

multiplicity at least d with the curve there.

Hence, for a plane curve C of degree n, if the lines through P meet C



outside P in at most n — d points, then multiplicity of P at Cis d. By using
the Jacobian, a singular point of a plane curve defined by f(z1,z;) = 0 is a
point (a,b) with f(a,b) =0, fz,(a,b) =0, fz,(a,b) = 0.

Example 2.3.2. Both the cuspidal cubic curve and the nodal cubic curve
defined above has singularity at (0,0). These two examples are highly illus-
trative for understanding the types of singularities. The cuspidal cubic curve
which is defined by z2 — z§ = 0 has cusp type of singularity at (0,0), i.e., it
has the same tangent with multiplicity greater than 1. The nodal cubic curve
which is defined by z2 — 22 — 23 = 0 has a node at (0,0), where it has two
distinct tangents.

All singular curves have either one of these two types of singularities or

combinations of them.

Example 2.3.3. The four leaved rose defined by (z2 + z2)® - 42222 =0 is
an example having both types of singularities.

By using algebraic concepts, an equivalent definition for singularity can be

found.

Definition 2.3.4. A local ring 4 with maximal ideal m is a regular local

ring if dim m/m? = dim A.
We now give an algebraic definition for singularity;

Definition 2.3.5. Let X be a variety and P € X be a point. X is singular
at Pif and only if the local ring Op x is not a regular local ring.

Proposition 2.3.6. The geometric and algebraic definitions are equivalent.
That is, for a variety X of A™ and P € X, the local ring Op,x is a regular local
ring if and only if the rank of the Jacobian matrix at P for the generators of

the ideal X is n — r where r is the dimension of X.

Proof. Let P € X be (ay,...,a,). Considering P as a point of A", the
corresponding maximal ideal is ap = (21 — a1,...,Z, — @,). A linear map «
from A = k[zi,...,z,] to k* is defined by

o(f) = (ZL(P), ., 75 (P))

Since a(z; — a;) = (0, ..., 1, ...,0), these form a basis for k*. Hence, the map

a :ap — k™ is surjective. Since a((z; — a;)(z; — a;)) = (0, ...,0), it is obvious
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that a(a}) = 0. Then, it follows immediately that o : apfadb — k" is an
isomorphism. Let J(X) be the ideal of X such that I{X) = (f;, .., fm). From
the definition of Jacobian matrix and &, maximum number of the independent
vectors af f;) for i from 1 to m is the rank of the Jacobian matrix. Hence,
a(I(X)) as a subspace of k™ has a dimension equal to the rank of the Jaco-
bian matrix. o/ ((I(X) + a})/a}) is equal to o’(I(X)), so (J(X) + a})/a} as a
subspace of ap/a} has a dimension equal to the rank of the Jacobian matrix,
too. Let mp be the maximal ideal of Op x. Then mp/mb = ap/(1(X) + a}).
Since ap D I(X) + a2 D a3, (ap/at)/((ap + I(X))/a%) is isomorphic to
ap/(I(X) + a}), see [13, p. 83]. Hence, dim ap/(I(X) + a}) + dim
(I(X) + a%)/a% = dim ap/a} = n, and dim mp/m% + rank J = n. If dim
X =r, then the local ring Op x has dimension r, too. Hence, Op,x is regular if
and only if dim mp/m% = r, which is the same thing as saying that the rank
of the Jacobian matrix is n — r. This shows the equivalence of the algebraic

and geometric definitions. a

2.4 Resolution of Singularities

We can classify the singular curves by finding nonsingular curves which are
birationally equivalent to these singular curves. This can be done by the reso-
lution of singularities. For curves, the construction of the blow up of the curve

at a point is the main tool in the resolution of singularities of this curve.

The construction consists of simply removing the singular point and replac-
ing it by a projective line, the points of which will correspond to the tangent
directions at that point. Now, let us construct the blowing up of A? at the
point O = (0,0). The product A? x P' is considered with z;,z, affine coordi-
nates of A? and y;,y, homogeneous coordinates of P'. The closed subsets of
A% x P! are defined by the polynomials in x;, s, 31, 2 which are homogeneous
with respect to y;,y;. Now, blowing up of A? at the point O is defined to be
the closed subset X of A? x P! defined by the equation £y, = T3y;.

We have a projection map 7 : X — A%,

7~1(0) consists of all points of the form (0,0) x [y, y2] with [y1,y2] € P
Hence, 7=1(0) is isomorphic to P'. If we draw a picture of this blow up, it

looks like a spiral staircase (Figure 2.4).
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Figure 2.4: The blow up X of A?

We can generalize this and construct the blowing up of A" at the point
0=(0,...,0). Now, the product A™ x P*"! is considered with z,,...,z, affine
coordinates of A™ and g, ..., ¥, homogeneous coordinates of P*~!. The blowing
up of A" at the point Ois defined to be the closed subset X of A" x P*~! defined
by the equations {z;y; = z;¥: | ¢, = 1,...,n}. Again, we have 7, the projection
map from X to A". #7Y(O) consists of all points (0, ...,0) x [v1, ..., ¥n] where
[41,-.-, Y] € P*". In order to find the blow up at any point, we use change of
linear coordinates which sends this arbitrary point to O = (0, ...,0).

If Cis a curve of A" passing through O, then blowing up of C at the point
O is defined to be the closure C of 7=1(C — O) in A™ x P*! with respect to
Zariski topology where 7 : X — A" is the blowing up of A™ at the point O.
The map 7 : C — C is a birational morphism.

We will give illustrative examples of blow up.

Example 2.4.1. Let us find the blowing up of the nodal cubic curve
Ch: 22 = z3 4 22 at O. The blow up X of A? at Ois a closed subset of A x P!
satisfying the equation z1y; = z2y,, where y;, y2 are homogeneous coordinates.
The inverse image of C; in X will be obtained by considering this equation with
the curve equation z2 = 23+ z3. If the open set of P! with y; # 0 is considered,
11 can be set to be 1. Then, £2 = z3(z; + 1) and z; = z;y,. By substituting,
we have z2y2 = 2?(x, + 1), from which we obtain two irreducible components,

first of which is z; = 0,7, = 0 and y, arbitrary. This is the exceptional curve
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of the blow up. The other is y2 = z; + 1 and z; = z,3,, which is the closure
of #=1(C; — O) and meets the exceptional curve at y, = %1, which correspond
to the slopes of the two branches of C; at 0. On the other open set, y, # 0,
y2 may be considered to be 1. Then, z2 = z%(z; + 1) and z; = z,y:. By
substituting, we have 22 = z3y? + z2y?, from which we obtain two irreducible
components, first of which is z; = 0,z = 0 and y; arbitrary. The other is
¥+ 3z, = 1 and 1; = 72y, which meets the exceptional curve at 1. In this
way, we obtained a nonsingular curve. We observe that the effect of blowing
up is to separate out branches of curves passing through the singular point
according to their slopes. Hence, it is clear that node type of singularities can
be resolved by only one blowing up but for cusp type of singularities, this is
not always the case as the following arguments show.

Example 2.4.2. Consider the cuspidal cubic curve C; : z3 = 22 at O. X,
which is the blow up of A% at O, is a closed subset of A% x P! satisfying the
equation z1y; = ray1, where y;,y2 are homogeneous coordinates. The inverse
image of C, in X will be obtained by considering this equation with the curve
equation z2 = z}. Again if we consider the open set of P! with y; # 0,1
can be set to be 1. Then, 22 = z3 and z; = z;y,. Substitution will give
(z1y2)? = 23 from which we can obtain two irreducible components first of
which is z; = 0,z = 0 and y; arbitrary. Second one, which is defined by
y2 = z, and 7, = z,y; is the closure of #71(C, — O). If the other open set
is considered y; may be set to 1. Then z; = z,y;. By substituting, we have
z2 = z3y?. We obtain again two irreducible components. z; = 0,z, = 0 and
y; arbitrary. The second one is 2232 = 1 and z; = z,y;. We again obtained a

nonsingular curve.

Example 2.4.3. The last example is again a curve which has a cusp type
of singularity. It is the curve C3 : 22 = z}. If the same procedure is followed
considering the open set y; # 0 of P?, then the closure of #7}(Cs — O) will be
defined by the equations y2 = z3 and yz; = ;. It is obvious that the curve
obtained has cusp type of singularity toc. Hence, for cusp type of singularities,
one blowing up may not be enough to remove the singularity. (In this example
another blow up will resolve the singularity.)

It will be useful to write the equations defining the blow up in local coor-
dinates. Recalling that the blow up of X of A™ at (0,...,0) is,

{((z1. oy xn), [y1 1 oo 1 9a)) | iy — iz; = O}

Consider U; = {y, # 0} C X. From the defining equations of the blow up we
20



ave, Ty = Bz, .z, = Lz, ¥ — %  Yn _ Zn
have, z, DLy ey Tn = P2TY For z; #O,yl 2 k=T Define a one

to one and onto map ¢, : Uy — A" as,

@1((Z15 s Ta) X [y1 2 ot ya]) = (21, 2,0, B) = (X, 0, X))
with inverse 7! : A" — U as,

O M ( Xy oo Xn) = (X1, X1 X2y oo, Xn X)) x [1: Xz 000 XG).

Hence, the blown up space will be considered as having local coordinates,
X1 =z, X3 = g,...,Xn = ’;f If (Xy,.... %) =(0,...,0) then, 2y =y = ... =
yn = 0, and this corresponds to the point ((0,...,0),[1:0:...:0]) in the blown up

space.
This can be done for every open set U;.

Now, by changing to Euclidean coordinates, let us show what happens to
the defining equations of the curves after the blow up in the above examples.

Example 2.4.4. Consider the nodal cubic curve defined by z2 = z3 + 22.
On the open set U, where local coordinates are X; = 21, Xz = £, the blown

up curve has the equation X; + 1 = X2.

Example 2.4.5. For the twisted cubic curve defined by z2 = z%, on the
open set U;, where local coordinates are X; = ;,X; = ff, the blown up curve

has the equation X; = X7.

Example 2.4.6. For the last curve defined by z2 = 23, on the open set
U1, where local coordinates are X; = 71, X, = =, the blown up curve has the

equation X3 = X2. From this equation, the blown up curve is still singular.
Hence, if we have the parameterization of a curve C as
z1 = @1(t), -, Tn = palt),
then the its blow up on U; will have parameterization in local coordinates as

Xi=pi(t), X2 = £2(t) X, = Z" t)'

()

In Proposition 2.2.8, we have shown that

6)1

&



k[.’l?], T2y0ey mn]/I(C) = k[SOI(t)a 992(t)3 sery (pn(t)]‘

Then the local ring of the curve C at (0,0,...,0) is

(k[l], Ty een Iﬂ]/l(c))(l‘],xm---,tn) = k[‘:ﬁ(t)? ‘PZ(Q? cevy (pn(t)](t)'

Recall that the completion of a local ring A4, denoted by A, can be defined
as the inverse limit lim A/m" where m is the maximal ideal of 4 (see (3, pp.
100-103]). Then the completion of the local ring of the curve at (0,0,...,0) is

k(la(t), @2(2), -, on()]].

We have seen above that on {; the blown up branch curve has parameter-

= £ Now if

. . . . 3
ization in local coordinates as X3 = ¢1(t), Xy = %,..., "=
the singularity is translated to (0,0, ...,0), we have in local coordinates

X{ = p,(t)—c;,Xﬁ = % —'023"'1X:L = %%3 ~Cn

where ¢;, ¢, ..., ¢, are the constant terms of X;, Xy, ..., X,,. The local ring at
(0,0,...,0) is now

k[‘r”l(t) — &, %%(L?)' — €y, 7%3 - C-n.](t)~
The completion of this local ring is

k[[‘pi(t) - €1 %%g — C2y .0y gfg‘)z - C'n]]
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Chapter 3

ARF CHARACTERS OF
SINGULAR BRANCHES

In section 2.4, we have seen that for curves which have cusp type singularities,
one blow up may not be enough to remove the singularity. Hence, successive
resolution processes must be applied. The sequence constructed by taking the
multiplicity of the singular point before each successive resolution process is
called the multiplicity sequence. The problem is to obtain the multiplicity
sequence from the local ring of the curve at the singularity, without applying
successive blow ups to the curve. In other words, the problem is to predict

algebraically the result of a geometric process.

3.1 Historical Development

The multiplicity sequence of a singular plane curve branch can be found by
using Euclidean algorithm, which is the process of finding the greatest common
divisor of two numbers. The branch is characterized by a number of pairs of
numbers p;, ¥ (¢ = 1...., k) such that for i = 2, .., k v; is the greatest common
divisor of p;_y and v;_q, and g; is not divisible by »; for ¢ = 1, ..., k. Euclidean
algorithm is applied to these pairs characterizing the branch. The divisors are
the multiplicities of the points of the branch and the corresponding quotients
are the number of consecutive points of such multiplicity given by the divisor
(8, pp. 107-108].

These pairs can be determined from the below parameterization of the plane
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curve C, known as Puiseur ezpansion [6, pp. 512-518],
Ty =1%, T3 = ... by 07 F o b 87 o b £ A by 87 L

In z3, m; is the smallest exponent not divisible by u whose coefficient b, is
nonzero, m; is the smallest exponent not divisible by greatest common divisor
of u and m; whose coefficient b,, is nonzero, mg is the smallest exponent
not divisible by greatest common divisor of u, mi, m; whose coefficient b,,, is
nonzero, ..., and m; is the smallest integer for which greatest common divisor of
u, My, My, ..., my is 1 whose coefficient b,,, is nonzero [1, p. 166]. These terms
b, t™, by t™2, ..., by, t™* are the characteristic terms of the expansion. Now,
we can determine pairs y;,¥; from the degrees of these characteristic terms,
and degree of z;, which is u. First g; = m; and vy = u. Then for : = 2,..., k,
p; = m; — m;_; and y; = greatest common divisor of p;_; and v;_;.

Example 3.1.1. Consider the branch given by,

Iy = t“}o

Ty = t250+t375+t410+t4]7

in which only characteristic terms appear. By using the method given above,
this branch is characterized by the pairs (250,100), (125,50), (35,25) and (7,5).
Applying the Euclidean algorithm to these pairs,

250 = 2 x100+4 50

100 = 2 x50
125 = 2x50+425
50 = 2x25

35 = 1x25+10
25 = 2x10+45
10 = 2x5
ix8
2x2+41
= 2x1

The numbers in boldface are the multiplicities, and the numbers multiplied
by them in the table denote the number of times each multiplicity is repeated
in the sequence. Then the multiplicity sequence of the curve branch is:

(100,100 50.50,50,50 25,25,25 10.10 5,5.5 2,2 1,1).
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As expected, for a general curve in n-space, this method does not work.
In fact the theory of algebraic curve branches in plane was complete even in
1938, when Semple wrote “Singularities of Space Algebraic Curves”, see [17].
In his paper, Semple analyzed the geometry of successive resolution processes
on a singular curve branch in 3-space. Semple defined prozimity in order to
determine a relation between the successive blow ups. A plane eﬁl) is obtained
when a point E; of a space curve branch is resolved. Any point E; of egl) is
defined to be proximate to E;. By resolving E, again, a plane e?’
Also, a surface ef") represents £y — E,. These two, e?’ and e&”, meet in a line.
Then from the point of view of linear equivalence, E; = e?’ + egz). if E5is
chosen freely in e?’, it will be proximate only to its immediate ancestor F,
but if it is chosen in the intersection line, then it will be proximate to both E,;
and E,. Suppose, F3 is chosen from the intersection line and resolved. Then,
a plane e:(f) representing F3, a surface egs) representing F; — E3, and a surface
eg"’) representing K3 — E, — E3. These intersect in curves, which are concurrent
in a point. F4 can be chosen freely in e;(,s) proximate only to E3, or in the
intersection of egs) and e§3’, proximate to Fy and FEs, or in the intersection of

eg"’) and e?’, proximate to F; and Fj, or as the point where the curves are

1s obtained.

concurrent, proximate to Ey, F,, and F;.
We can summarize these by explaining the set up after every blow up:
(0) We have a point Ey (which is to be resolved).

1) A plane egl) is obtained. A point E, of e{!) is chosen. We have now E;
1
and eV — E; = E, — E,. (E; is to be resolved.
1

(2) We obtain a plane e&z) representing E,, and a surface e?) representing

Ey — E,. These intersect in a line. E; is chosen on the line. Now, we have E;,
e) — By = Ey — B3 and ¥ — E3 = E, — E; — E5. (E; is to be resolved.)

(3) We obtain a plane eg’)

3 . . .
E;, and a surface eg ) representing F; — E; — E;. These intersect in curves

representing Es, a surface egs) representing £, —

’

concurrent in a point.

By generalizing this, Semple defined a point £; as proximate to E;, if E;
is chosen from the resolution of E; or if F; is any point of any diminished
neighborhood of E;, which is obtained by subtracting from it a set of points of
itself. As above, Ky — F; — E5 is a diminished neighborhood of F;. Hence,
E4 which is chosen from this neighborhood is proximate to E;. E; — F3 is
a diminished neighborhood of E;, and E; chosen from this neighborhood is

proximate to £3.
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From this definition, Du Val in 1942 deduced the following three results for
the n-space [8, p. 109].

(1) If a point is proximate to two others, then one of these is proximate to
the other.

(2) In n dimensions, no point can be proximate to more than n others.

(3) The multiplicity of a curve in any point is the sum of its multiplicities

in points proximate to that.

Du Val defined the restriction of a point to be the number of its predecessors
to which it is proximate. This led to the definition of a leading point of the
branch as one whose restriction is less than that of its successor. The sum of the
multiplicities of the first n-points is called the multiplicity sum corresponding to
the n-th point. Du Val called the multiplicity sum corresponding to a leading
point as a character of the branch. His main contribution to the problem
of finding the multiplicity sequence of an arbitrary curve branch is that, if
the characters of the branch are known, then the multiplicity sequence of the
branch can be found by applying the modified Jacobian algorithm to these

characters.
The modified Jacobian algorithm [8, p. 108-109] is as follows:

We begin with the characters of an algebraic branch. They form the first
row. The least of these is chosen as the divisor. The least of the remaining
ones is chosen and divided by the divisor. The product (quotient x divisor
for this least element) is subtracted from all the numbers except the divisor
itself. This algorithm differs from the Jacobian algorithm by the fact that in
Jacobian algorithm all the numbers in the row except the divisor are divided
by the divisor so that all the remainders are less than the divisor. In modified
Jacobian algorithm the remainders may be greater than the divisor. The divisor
and the remainders obtained form the second row. If any remainder is zero,
it is omitted. The algorithm stops, when we reach a row consisting of only
one element. The divisors are the muitiplicities of the points of the branch,
and the quotient corresponding to each divisor is the number of points of the

corresponding multiplicity.

Example 3.1.2. We will apply the modified Jacobian algorithm to two
algebraic curve branches. The first one has the characters 100, 250, 423, 485,
512. The second one is an example of Du Val which has the characters 2087,
4610, 6068, 6384.
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100 250 425 485 512
200 200 200 200

2 || 2087 4610 6068 6384
I 4174 4174 4174

I I
200 | I
100 50 225 285 312 | 2 || 2087 436 1894 2210 | 4
100 100 100 100 | || 1744 1744 1744 |
50 125 185 212 | 2 || 343 436 150 466 | 2
100 100 100 | [l 300 300 300 |
50 25 85 112 | 2 || 43 136 150 166 | 3
50 50 50 | |l 129 129 129 |
25 35 62 |1 ]| 43 7 21 37 | 3
2 25| || 2 21 21 |
25 10 371 | 2| 22 7 16 | 2
20 20 I 14 14 |
5 10 17| 2 (] 8 7 2 | 3
0 1] | 6 6 I
5 701 | 2 1 | 2
I | N 2 |
5 2 | 2 | 1 |
4 [ |
1 22| I
2| |
| I

The multiplicity sequence of the curve branch, which has the characters
100, 250, 425, 485, 512 is:

(100,100 50,50,50,50 25,25,25 10,10 5,5,5 2,2 1,1).

The multiplicity sequence of the curve branch, which has the characters
92087, 4610, 6068, 6384 is:

(2087,2087 436,436,436,436 150,150 43,43,43 7,7,7,7,7 2,2,2 1,1)

Every time a column enters the algorithm, a leading point is passed so
restriction rises by unity. Every time a column becomes zero, restriction falls
by unity. We can observe from the table that, for the first curve branch, the
restriction can not be greater than 2. Thus, the branch is capable of existing
in two dimensions. This is the expected result because the example given
previously as a plane algebraic curve has the same multiplicity sequence. For
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the second curve, the restriction rises to 3. Hence, the branch is capable of

existing in three dimensions, but not in a plane.

This method is valid for any algebraic curve branch with known characters.
More than this, it gives us the opportunity to know the minimum dimension
in which the branch is capable of existing. What Du Val asked was, how we
should obtain the characters of the curve branch. The relation between these
and the expansion of branch in power series was unsolved, until Arf wrote his
paper in 1949 [2].

3.2 Arf Rings, Closure and Characters

Arf’s work depends on the observation that there is an algebra behind these
geometric arguments. He shows that the multiplicity sequence of an algebraic
branch can be defined by purely algebraic notions. He constructs the link
between geometry and algebra by showing that the completion of the local ring
at the singularity of the branch carries all the information necessary to obtain

the multiplicity sequence.

For a curve branch having the parameterization z; = ¢1(t), ..., Tn = @n(t),
the completion of the local ring is k[[e1(2), ..., wn(2)]], i-e., the ring formed by
all formal series of the form,

. . i1 in
E a‘)v--y‘n‘Pl ""Pﬂ

114eerin 20

where a;,,...;, € k.

Arf passes from geometry to algebra by using the completion of the local
ring. He constructs the canonical closure of this ring, later called the Arf
closure. The orders of the elements of the constructed ring form a semigroup.
This is passing from algebra to arithmetic. Now from this semigroup, Arf
obtains some numbers by a process to be described below, and then applies
the modified Jacobian algorithm to these numbers to obtain the multiplicity

sequence.

In this way, he provides an answer to the question of finding the relation
that must exist between Du Val’s results and the series representation of the

branch.
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Before we define Arf ring, Arf semigroup, Arf closure, and Arf characters,
we give necessary definitions and theorems. For the proofs of theorems, see

[2].

In the formal power series ring k[[t]], where kis any field, consider a subring
H. Let

W(H) = {30 =0, z‘1-13-21 "'7ir1ir+la }

be the orders of the elements of H in increasing order. The integers
20,215 ++ey tr,... form a semi-group of nonnegative integers. If arbitrary
S0, Siys Sz, ... elements of orders tg,11,1%2,... respectively are chosen from H,

‘then every element of H can be written in the form

ZQ(S.‘,, (01 € k)
=0

H is assumed to contain all the power series of this form. The subset of H
consisting of all the elements whose orders are greater than or equal to A will
be denoted by Ij:

Iy ={f € H|ord(f) 2 k}.

I, is an ideal of A and its elements are of the form

Y Sy, (o€ k).

u>h

Theorem 3.2.1. [2, Aux. Thm. 1, p. 257] If v is the greatest common
divisor of the elements of W{H ), then for sufficiently large r,

if+1 = i,- + v, i,-+2 = i,- + 21/, ceey ir—l»k = i,- + kl‘/,...

and there exists a power series of order 1,

'In his paper, Arf uses the names canonical ring for Arf ring, canonical semigroup for Arf
semigroup, and canonical closure for Arf closure. We use “Arf{” rather than “canonical”.

29



T= t(l + Eﬁgtl) (61 & k)
I=1

such that every element of H is of the form 332, a7,

From the theorem, it follows that if the greatest common divisor of the
elements of W(H) is 1, then H contains power series of all orders after some r.
Note that in this case, i.e., when v = 1, finding the largest integer not contained
in W(H) is known as the problem of Frobenius, which we will discuss in chapter
4.

Theorem 3.2.2. [2, Aux. Thm. 3, p. 259] If the set of quotients of
elements of I, by Sy (an element of order k in H) is denoted by I,/ Sk, and the
ring generated in k{[t]] by I»/Sk is denoted by [I5/S:], then the ring [I1/Sh]
does not depend on the choice of S),.

Thus, we will denote [I1/Sh] by [74).

Example 3.2.3. [2, p. 260] This illustrative example of Arf shows that
the semigroup W([I;,]) contains the semigroup generated by the integers

ih —_ ih = 0, ih+1 = ih, ih+2 23 ihy

which are the orders of the elements of I;, /S;,. But W([I;,]) is not necessarily
equal to this semigroup. Consider the ring H formed by all the series of the

form

> e XY (ay; € F),

i,720
where X = %, Y = !9+ ¢15. W(H) contains the integers
0,4,8,10,12,14,16,18,20,22,24,25,26,28.29,30,32,33,34,35,36,37,38,...
Hence, the orders of the elements of I;/X are

0,4,6.8,10,12.14,16,18,20,21,22,24.25.26,28,29,30,31,32,33,34,...
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which generated the semigroup
0,4,6,8,10,12,14,16,18,20,21,22,24,25,26,27,28,29,30,31,32,33,34,...
but [I,] contains the element (¥/X)? — X3 = 2t'7 +{?? whose order is 17, which

is not an element of this set.

Definition 3.2.4. [2, p. 260] A ring is called an Arf ringif [I] = I/S,
for every h € W(H).

Remark 3.2.5. [2, p. 260] If His an Arf ring, then the integers
th—1th =0, th41 —th, thi2 — in
form a semigroup for every h. A semigroup of nonnegative integers
0=0, %, 3 .. i
is called an Arf semigroup if the sequence of integers
= =0, thy1—h, thyz —n,

is a semigroup for every h.
From the definition, k[[t]] is an Arf ring, and N is an Arf semigroup.

Theorem 3.2.6. [2, Aux. Thm. 4, p. 261] (i) Intersection of Arf rings is

an Arf ring.
(ii) Intersection of Arf semigroups is an Arf semigroup.
Remark 3.2.7. [2, p. 261] If H is an Arf ring, then so is [I;,].

Definition 3.2.8. [2, p. 263] Given a ring H, the intersection of all Arf
rings containing H is an Arf ring *H, which is called the Arf closure of H.
Similarly for a semigroup G, the intersection of all semigroups containing G is
an Arf semigroup "G, called the Arf closure of G.

Theorem 3.2.9. {2, Thm. 1, p. 264] The intersection of ail the semigroups
g such that *g =* G is a semigroup g, such that *g, =* G.
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Definition 3.2.10. [2, p. 265] The sub-semigroup g, defined in the above
theorem is called the characteristic sub-semigroup of all g such that *g =* G.

If g is a semigroup, then there is a minimal set of generators, x1, x2, .., xa
such that

g = {a1x1 + ... + anxn | @1, ..., ax nonnegative integers}.

They are defined in the following way: x; is the smallest nonzero integer in g.
X2 is the smallest of the integers of g which is not of the form a;x1, where o
is a nonnegative integer. Y3 is the smallest of the integers of g which are not
of the form a;x; + @22, Where a3, @, are nonnegative integers. X1, X2, -+, Xn
being defined, xn+1 is the smallest integer in g which is not of the form

ax1 taxa + ...+ apxa

where ay, ay, ..., @, are nonnegative integers, i.e., X1, ..., X» 1S 2 minimal set of

generators of g over N.

Definition 3.2.11. [2, p. 265] g, being the characteristic sub-semigroup
of g, the minimal set of generators x1, X2, ..., Xa of g, defined in this way are

the characters of g.

Theorem 3.2.12. [2, Thm. 2, p. 2653] 11 < 72 < ... < 7 being the
generators of a semigroup g, the set of the characters of g is contained in the

set {717729 (R 71}

Theorem 3.2.13. [2, Thm. 3, p. 266] g being the semigroup generated
by 0 < 11 < 72 < ... < v over natural numbers, the integers

V1,V2, ..y UN_1, ¥

such that

‘g = {0, V1, 1 + V2.0, ¥y + 1%} + ...+ Yy _g + le}

are obtained from 0 < 73 < 2 < ... < 7 by the modified Jacobian algorithm
of Du Val. There the integers v, v,,...,un—1, v appear as divisors, while the
quotients represent the number of times each divisor is repeated in the sequence
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Vi, Va, ..., Un-1,v. Conversely, if the numbers v, v,,...,vny_1,v are obtained
from 41,72, ---, 7t by the modified Jacobian algorithm, the quotients being the
number of times each divisor appears in the sequence vy, vy, ...,vy_1,v, then
the Arf closure of g is,

g ={0, i, +va, ...,y + 2+ ... + vy_1 + Nv}.
This theorem gives us an algorithm for finding the Arf closure of a semigroup
g generated by v1,72,...,7 ¢

(1) Apply the modified Jacobian algorithm to ¥,%2,..., 7.

(2) Obtain vy, vs,...,vN-1,v which are the divisors, where the quotients
represent the number of times each divisor is repeated in the sequence

VM, V2,..., VN1, V.
(3)*g={0, i, 1 +v2,.c, i + 12+ ... + vy + Nv}.

In chapter 5, given 13 < 72 < ... < 7, the generators of a semigroup g, we
will present an algorithm for finding the characters of g.

Let us consider now a subring H of k[[t]], and its Arf closure *H. If the ring
is of the form,

H=k+EkS;, +kS;, +...+K[[T]]S:,, (T =7 as explained above.)

then its Arf closure can be constructed in the following way [2, p. 267].
Let H; denote the ring

S

Il = Sh(E2)2(52)°(2224) ™ + KITI(E2),

where the summation is taken over exponent systems of nonnegative integers
a2, 03, ..., a1 such that az(iz — 4;) + az(iz —t1) + ... + ar-1(th—1 — 71) is less
than ¢, —2;. This is not a necessary condition, but only the power series, whose
orders are less than ¢; — ¢; can be generated, when this restriction is obeyed.

Hence, it prevents overlapping.

The Arf closure *H of H clearly contains k + H,S;,, which in turn contains
H. Hence, *H = k +* H;S;, from the definition of Arf closure. The ring
H;4 is derived from H; in the same manner H; is derived from H. Then for
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sufficiently large N, Hy is k[[T]]. Let Tiy1 be an element of least positive order
in H;, and T; be an element of least positive order in H. Then, we have,
*H = k+EkTi+ "H, 1T,
= k+kTy + k)24 “H;T\ T T3

..............

= k+kTy + kN + ...+ kT2 1. Tv o + K[[T)) W T... Tn-1TN

Recalling that for a curve branch having the parameterization z; =
©1(t), .., Tn, = @n(t), the completion of the local ring is H = k[[p1(2), ..., @a(t)]].
Namely, H is a subring of the formal power series k[[t]], which consists of series

of the form

ay a
Z aal ;--'ran‘pl "'Soﬂn

81 4000,8 20

where aq,, . 4, € k. Let order of ¢y = 1y, order of @3 = 1, ..., order of ¢, = i,,
and let #; be the smallest of the integers 21,23, ..., 2,. After the first blow up, as

we have explained in section 2.4, we have X; = ¢(t), Xz = ——%, v Xn %;‘—((;)l
in local coordinates. By translation, the singular point of the blown up branch
is brought to the origin such that we now have parameterization polynomials,
X =@i(t) — e, X3 = %ﬁ% X = %;‘—((g ¢, where ¢y, 03, ..., ¢ are the
constant terms of X1, Xz, ..., X,,. Here, we make an important observation,

Hl = [Ig,] = k[[X{,Xé, ,X,’.J],

where H, = [I;,] is the ring defined above and 1, is the order of ¢;. H; can be
defined in the same way from H;. By this observation, it is easier to construct

*H.

In the following examples, we will construct Arf closures of two curve

branches in both ways.

Example 3.2.14. Let H be a subring of the formal power series k[[t]],
which consists of the series of the form T aX'Y?Z*, such that X = t4,Y =
9, Z = t1% and « is an element of the field k and i.j, k are natural numbers.’
Then, W(H) = {0,4,8,9,12,13,15 + N}. Hence, # can be given as,

H =k + kt* + kt® 4 k1® + k2 + k'3 + E[[¢]]15,

and
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tll

Hy = [I] = S k()2 (5)7 (5 ) (50)7 + k[[1(50).

Hence, H; can be given as
Hy =k + kt* + kt® + K[[t]).
In fact by using the observation we mentioned above, we immediately have
Hy = [[t4, %, &1 = [[e%, 2% ")),
Now, we apply the same procedure to H;, and obtain H,.
= T k() + H{H](6) = kIt =
Also, we can have it from H; = [[t4,¢%,t1]], as
Hy = k[t4, &, &1] = K[[¢]].
Hence, Arf closure of H can be written as,
*H = k + ki* + k[[¢]]:3

Example 3.2.15. Now, we will calculate the Arf closure of the subring
of k[[t]), which consists of the series of the form 3> aX'Y7Z*, such that X =
18 Y =841, Z =t and o is an element of the field k and i, j, k are natural
numbers. By direct calculation, we can see that W(H) will contain 17 and 27,
because XY — Z = 17 and X4 — Y3 = 3t%7 + 3i%° + 3. Hence, it will be seen
that W(H)={0,6,8,10,12,14,16,17,18,20,22+N}, and H and H; can be given as

H = k+E®+ k(8 + 1) + kt'? 4 k" + k(6 + 28"° + ¢2%)+
kY + ki 4 ke + E[[t]}(¢%% + t%°)
Hl — [16] — Zk(tﬂ 4 11 )Q2(t‘2 )03( ‘H )aﬁ( {16 Iula 4 t22 )05

()= )""(‘“ )+ k[[f]](—iﬁ)

This ring will have the element (t2 4 3)% — & = 3t° + 3t'% + 1% so by direct
calculation, we see that it will have all the power series of order greater than
and equal to 8. Hence, it can be given as
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Hy =k 4 k(82 + %) + k(1% + 267 + %) + ke + k[[t]]e®

Now, we apply the same procedure to ;.

H2 = E k( t‘t?i;tw )az(gﬁfgs )aa + k[T](;?..t{TE;)
Hy = k(84 85)22 (1% — 47 4 410 4 .)® + E[[t]](¢8 — t® + 412+ ..)
Hence, it is possible to write H, as

Hy=k+E+ )+ k(@ — "+ 04 )+ Kt]](e8— O+ 12+ ...)

From this we obtain

Hy = Y k(E=ftiitegm 4 pl)(S=itite)

= k4 k2 +5)+ (@ +.)H R[N+ )
Continuing the procedure in the same manner:

Hy = kE+k(®+85)+k@E+..)+E[]IE+..)
Hs = K[[t]).

This shows that *Hs = k[[t]]. Hence,

*H = k+ kt®+ kOt + ¢°) + kt(t% + t3)2ke®(¢2 + )%+
E[[E])(°(2% + £°)%))

Now, by using the observation mentioned above, let us construct the Arf
closure of the same ring, H = k[[t®, % + t11,¢"4]].

H = kE4+kC®+ B84+ 1) + kt'? + bt™ + k(27 + 26" + ¢22)+
ki'7 4 kt1® 4+ k20 4 E[[t]](2%2 + t%°).

We start by finding [Is] = H;.
Hy = R[[e6, 2285 L) = &[[t°,¢% + ¢5,1%]).

Among the elements of H;, t2 + t° has the smallest order. We divide ¢° and ¢
by t2 + 5. Now, we have 2 4+ 5, (¢4 — 7 + 10 — ¢ + 416 — 19 4 ) (6 —¢° +
£12 _ 415 4 418 _ 420 4} which yield
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Hy =k + 65, =7+ 80— B 8-+ 12 -5 4 ]

We took the terms having degree less than 22 — 6 = 16, because we know that
H contains power series of all orders greater than or equal to 22, and H; = [I¢].
Hence, H; contains power series of all orders after 16. In Hj, t? + 5 has the

smallest order. Thus,

_ 2 S g7 410 100 BB ygi2_ iS4
H3 - k[[t +t [} .*g‘Z.H& + ] -l;2+ts e ]]

= K[+ 5,02 — 205+ 3¢ —4e" 4 00 - 207 43410 — 4 4 ).

Again, t? 4+ t° has the least order, and we divide the other two generators by
t2+t5. We have then (1—3t>+6t% —10t°+ ...) and (12 — 3t> + 6¢% — 1041 +...).
We subtract the constant term from the first polynomial, and construct H, as

Hy=k[[i2+t°,¢2 -3+ .., 13- 2t° + . ]].

It is clear that Hs = k[[t]]. Hence, we have
*H = k+kt®+kto(t? + t5) + ktS(¢2 4 ¢°3)2kt5(¢? + £°)°+
E[[EN)(2%(2 + 1°)%)).

Theorem 3.2.16. [2, Thm. 7, p. 285] Consider the curve branch hav-
ing the parameterization, 1 = ¢1(t),z2 = @2(t)s..,zn = @a(t). If H =
E[[#1(t), 2(t), ..., oa(t)]] and W(*H) = {1, 1 + v2, ..o i + 12+ ... + vy_1 + N},
then the multiplicity sequence of the curve branch is

Vi,Va,...,un-1,1,1, ...

We now summarize how we can obtain the multiplicity sequence of a curve

branch, having the parameterization z; = ©1(t), ..., 70 = @, (t):

(1) We start with H = k[[¢1(t), ..., a(£)]] which is the completion of the
local ring at the singularity.

(2) We construct the Arf closure *H in k[[¢]].
(3) We obtain W(*H), which has the orders of the elements of *H.
(4) We construct the characteristic sub-semigroup of g, (W (*H)) of W (" H).

(5) We find the minimal set of generators xj,.... X of this characteristic

semigroup
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Definition 3.2.17. xi,..., x» are the Arf characters of H.

(6) We apply the modified Jacobian algorithm to the Arf characters to

obtain the multiplicity sequence of the curve branch.

If a curve branch has a parameterization in the form as in Example 3.2.14:
T =t%, z,=1t%, .. ,z,=1°%,

then W(*H) of the ring H = a;,.‘,;nxi’x;’”.xi" is the Arf closure of the semi-
group generated by the integers ay, as, ..., @,. In this case step (1) is easy. But
if only one of the parameterization polynomials has more than one term, that
is if it has higher degree terms, then step (1) involves many calculations, as
can be seen from the second example above. Even constructing the ring H is
difficult in this case, because the effects of higher degree terms must be con-
sidered carefully. In the second example above, X = 5Y = & 4- 11, Z = 14,
Thus, the elements XY — Z = ¢'7 and X% —Y?3 = 3t +3t3 4¢3 are in H, but
their orders 17 and 27 can not be generated by the orders of X, Y, and Z. In
chapter 5, we propose an algorithm for constructing the ring H. We will work
with rings which contain power series of all orders after some r. Determining

7 is also very important in order to write # as:
H=Fk+kSy +EkS;, + ...+ k[[t]] Si,

where i, = r. While passing from H to Hy, S;, ’s (k > 1) are divided by S;,,
and power series are formed. The terms of these power series, which are of
degree higher than i, — ?; are unnecessary, because H; contains power series

of all orders after ), — ;.

We have seen from the Examples 3.2.14 and 3.2.15 that constructing H;’s
by using the observation mentioned is easier, because instead of constructing

H;’s, we determine their generators.
In chapter 5, we will also propose algorithms for steps (4) and (5).

For a ring H, we can now define a base of *H. \We choose X; € H, such
that order of X; is minimal. Then, we choose X; €* H such that, order
of X3 is not in the set W(k[[X;, X;]]), and is minimal. (k[[X:, X,]] denotes
the Arf closure of k[{X1, X]].) If Xi,..., Xi_; are chosen in this way, then we
choose X; €* H such that, order of X is not in the set W(k[[X;, Xa, ..., Xi-1]])
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and it is minimal. This process stops after finitely many steps. Such a set
{X1, Xs, ..., X} is called a base of *H.

Theorem 3.2.18. [2, Thm. 4, p. 272] If { X4, X2, ..., X} is a base of *H,
then the integers, order of X, order of X3, ..., order of X,,, depend only on
*H, and form a subset of the Arf characters of *H.

We call order of X}, order of X,, ..., order of X,,, the base characters of *H.
This number m is called the projection dimension of *H. If H is the completion
of the local ring of a curve branch, then the number m of the base characters of
*H shows the minimum dimension in which the branch is capable of existing.



Chapter 4

THE PROBLEM OF
FROBENIUS AND AN
ALGORITHM FOR ITS
SOLUTION

4.1 The Problem of Frobenius

We have seen that, the semigroup W(*H) of the completion of local ring at
the singularity is used in order to produce the Arf characters of the curve.
If the generators of the semigroup are relatively prime, then the semigroup
contains all the integers after some n. Looking for the largest integer which
is not included in a semigroup is a famous problem known as the problem of
Frobenius. Formally, given relatively prime positive integers ay, ..., ay all greater
than 1, a2 number a is said to be generated by a;.....ax over N, if there exist

nonnegative integers z,, ..., Ty such that,
a= a1y +ax2 + ... + a1
The problem of Frobenius is to determine the largest integer

glay, ..., ax)

40



that can not be generated by a, ..., az.!

The problem of Frobenius has a solution in closed form for k = 2,
g(ay,az) = a1a; — a; — as.

For n > 2, there are no known solutions in closed form.

This problem has a vast literature but there are only a few algorithms for
the most general case. Brauer and Shockley gave an algorithm for the solution
of problem of Frobenius in three variables [5]. Heap and Lynn, who gave
a graph theoretic algorithm were the first to give a general algorithm [11].
Selmer gave a bound for g(a, ..., ax) and illustrated his general results in some
cases where explicit relations for g(ay, ..., ax) are easily obtained [16]. Rodseth
considered the problem of Frobenius in three variables and found a formulae for
finding g(a1, a2, a3). He also gave a note on the general case [15]. Sertéz and
Ozliik considered the problem as the investigation of the lattice points of the
region {(Z1,...,%s) € R* | 21,...,z, > 0} [18]. After showing that g(as,...,a,)
is the largest element of a finite set S constructed using an infinite set, they

proposed an algorithm.

Lewin proposed an algorithm for the most general case [14]. He uses a
representation of positive integers by binomial coefficients. First, he shows that
for every positive integer » and b, there are nonnegative integers a,,as, ..., @
such that a; > 0 implies a; > a;41, a; = 0 implies a;4; = 0, and they satisfy

13 a;
”“§(b_i+1)'

ay,...,ap is called an a-sequence of length b corresponding to the integer n,
and is referred to as the ag)-sequence of n. An algorithm for constructing a-
sequences is outlined in Lewin {14, p. 69]. According to this, the a(4)-sequence

8 6
of n = 100 is a(4(100) = 8, 6, 5, 0. Infact100=(4)+(3)+(z),

Two distinct positive integers have distinct representations [14, p. 69].
Hence, there is a one to one correspondence between the set of positive integers

'In fact, this problem has an interesting interpretation as follows. Given sufficient supply
of coins of denominations ay, ..., ax, determine the largest amount which can not be formed
by means of these coins.
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and the set of a-sequences of length b. z* is defined to be max(z,0) and ag))(n)
denotes the i-th element of the a(;) sequence of n. Now another sequence called
the cy)-sequence of n is defined as follows. c&))(n) = (ag))(n) +i1—b)t,i =
1,...,b. This is a monotonically decreasing sequence. Since there is a one to
one correspondence between the a-sequences and the c-sequences of the same
length, there is also a correspondence between the set of positive integers and
the set of c-sequences of length b. For example, the c-sequence of 100 of length
4 is C(4)(100) =5,4,4,0.

Let a;, @s, ..., a; be relatively prime positive integers all greater than 1 and
a; < az < ... < ag. Define d) = aj43 — ai4y for 1 <1< k—2. Lewin constructs
the table T = {a;;}, where a;;’s are defined in the following way by considering

the c-sequences of length k — 2:

= . . kE—2+:
a;; = ta3 + Ec&’_z)(])dz, 0<y3< ( k2 )
=1 F

where 683_2)( 7) is the Ith element of ¢;_2) sequence of j. From the above
equation, a;;'s are in fact the elements generated by as,...,ax. This can be
seen if the equation is written term by term. That is,

a; = iag+cy) (i)(as — az) + e 5 ()@ — as) + - + g (7)(ar — ar-1)
) . 1 3 2 d
= (i~ iy (1))az + (c{t.4) i) — iik’_z)m)as + .o
k—3), . k-2, . -2),.
(e (3) = (Gn@ar + i3 (s
Since c-sequences are monotonically decreasing, the coefficients of ag, ..., a; are

nonnegative integers. The coeflicient of a, (¢ —cgilz)( 7)) is nonnegative because
: k—2+1
j< .

k—2

k—-2+41i,
The 7,,-th row consists of ( te

) elements satisfying 1a; < a;,,; <

iak.
Then Lewin uses the following lemma of Brauer and Shockley [5].

Lemma 4.1.1. Let a;,as,...,a; be relatively prime positive integers all
greater than 1. Let L be a complete system of residues ! # 0 (mod a,). For
each ! € L, there is a smallest positive integer ¢; = ! (mod a;) which is generated
by ay, ..., ax, that is t; = 3%, ¢;z; where z;’s are nonnegative integers. Then,
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g(ah "*,ak) = maX{tz = 11'--yal} — aj.

Proof: Let a be a positive integer. If a = 0 (mod @), then a is a multiple
of a;, so it is generated by a;. If ¢ = { £ 0 (mod a;), by the definition of
t;, it follows that ¢; — a; is the largest integer = { (mod a;) which can not be
generated by ay, ..., ax, and also the largest integer = { (mod a,) which can not
be generated by a1, a3, ...,ax. Hence, max {t;:{ =1,...,a1} — a; is the largest
integer that can not be generated by a;,.... a. a

Since the table constructed by Lewin consists of the elements generated by
as, ..., ax, the t;’s defined above correspond to certain a;;’s in the table. Let

@i, j, be the maximum of these a;;’s. Then
g(al,az, ...,ak) = Qiyg — A1-

The table being infinite, finding #;’s is a problem. Recall that t; is the
smallest positive integer generated by ag, ..., ak, which is equivalent to [ (mod
a1). The table is not constructed in such a way that the integers are generated
in ascending order, so when you generate an a;; that is equivalent to [ {mod
a;), there is no guarantee that, a smaller integer equivalent to ! (mod a,) will
not be generated later in the table. Hence, Lewin finds an upper bound for
ip of a;,;,. All the elements in the table up to this row are calculated by the
formula and since £;’s are among these, they can be found. This makes Lewin’s
algorithm slow, because it has to do unnecessary calculations. On the other
hand, the algorithm works fast for certain sequences called almost arithmetic

sequences [14].

4.2 An Algorithm for the Solution of the

Problem of Frobenius

We will give an algorithm for the solution of the problem of Frobenius which
uses Lemma 4.1.1. The main problem we have, while using this lemma to find
the solution of the problem of Frobenius, is how to obtain the ¢s. Recall that
t; is the smallest positive integer generated by a3,...,ax and t; = [ (mod a,).
If we have the elements generated by a,,...,a; in ascending order, the first
representative of a residue class | will be ;. In this way, we will stop when
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we have representatives of all residue classes and the last of them will be the
maximum one, that is the maximum of ¢;’s. What is more, there is no need to
deal with ¢;’s. It is sufficient to have representatives of all residue classes and
the last representative of a residue class we find is the maximum of #’s, just
because the list is in ascending order. Qur algorithm depends on these ideas.

Given relatively prime integers a; < a; < ... < aj all greater than 1, we
aim to find g(ay,...,ar). We begin by constructing a set L consisting of all
residues | # 0 (mod @;). We will refer to a set that is sorted in ascending
order as a list. G will be a list, which contains elements that are generated
by ay,...,ax. The initial value of G will be G = [0,a;]. We begin by finding
the elements between a; and 2a,, generated by a,, ..., ai. Hence, we want the
elements generated to be less than C = 2q;. We add C = 2¢, at the end of
the list. Now, G = [0,a2,2a;]. We sum up the generator a; with the first
element in the list G. During the algorithm it will be determined by a counter
3, with which element in the list will ag be summed up. At the beginning
c3 = 1, so a3 is summed up with the first element in the list, which is 0. (The
other generators ay, ..., ax have counters ¢y, ..., ¢ for the same purpose.) If the
element generated by summing up a3 with the first element in the list is less
than C = 2a,, then we add it in the list G and sort G in ascending order, and
increment the counter ¢3. Then we sum up a3 with the second element in the
list, since ¢3 = 2. If the element generated is less than C' = 2a;, we add it
to the list and sort the list in ascending order, and increment ¢; again. We
continue summing up az with the elements in the list. and applying the same

procedure until we generate an element greater than or equal to C = 2aq,.

Then we take the generators ay,...,a; one at a time and apply the same
procedure. At the end of this, we have all the elements between a3 and 2a,, that
belong to the semigroup generated by a,,...,ax. Then we find which residue
classes have representatives among these elements, and remove them from the
set L. If L is not empty after this procedure (i.e., all of the residue classes
do not have representatives among these elements of G), then we look for the
elements between 2a; and 3a;, generated by a,, ..., ax, by following the above
procedure. In this case, we want the elements generated by as,...,ax to be
less than or equal to C = 3a,. We begin by summing up a3 with the c3-th
element in the list. (We know that the elements generated by summing up as
with the previous elements have already been added to the list. Hence, these
counters prevent generating the same elements several times.) If the element
thus generated is less than or equal to C = 3a,, then we add it to the list
and order the list, and we increment c¢;. We continue in the same manner,
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until we generate an element that is greater than C = 3a;. Then we take the
generator a4 and begin by summing up a4 with the cy-th element in the list.
We apply the same procedure defined above. When we finish doing this for
the remaining generators, we find the elements between 2a,; and 3a,, generated
by as, ..., ar. Again we find which other residue classes have representatives in
this ordered interval, and subtract these residue classes from the set L. After
finitely many steps, L becomes empty, signaling the end of the algorithm. The
integer, which is the representative of the last residue class is the maximum
of #;’s defined in the Lemma 4.1.1. Hence, we subtract a; from this integer to

obtain g(a1, as, ..., ax).

See figure 4.1 for the flow chart of this algorithm.
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L=(i12..a71},
c= 1c= ],...ck=1,
i=2, n=2, F=true,
G=[ol a2]

8(a,a,a,...3 )=Gln}-a;

add Cto G
sort G in ascending order
j=3
2dd ayto the ¢'fiy
Cemcotad | X=2,+Glc] G5+
list G)
add X to G j=j+t
- j X<C sort G in ascending order
Em
j<k
S F=true & n<number of
elements in the list G
yes
(Substract the residu
casofaueleme | L=L-(GIn] (mod 3)) [False]
in the list from the set L)
L=(}
n=n+1

Figure 4.1: Flow chart of the Algorithm for the problem of Frobenius
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Chapter 5

AN ALGORITHM FOR
FINDING THE ARF
CHARACTERS OF A
BRANCH

In this chapter, we propose an algorithm for finding the Arf characters of a given
curve branch. Our algorithm follows the program given at the end of chapter
3, where we have also explained which stages of the program are difficult.

In order to be able to apply the algorithm, we work with polynomials. As

an input, we have a parameterization of a branch curve,

1 = pi(l)

Tn = oa(t)
where ¢1(t), ..., px(t) are polynomials in ¢.

The first step of the algorithm is to generate H = k[[p1(2),..., 9a(t)]], the
completion of the local ring. We want H to contain power series of all orders
after some r. (Recall that order of ¢ is the degree of the smallest degree term
present in an element ¢ of k[[t]]. We will denote order of ¢ by ord(yp).) We
restrict the input of our algorithm to branch curves. which have polynomial
parameterizations, and the completion of the local ring of which contain power
series of all orders after some r.
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Suppose, on the other hand, that a curve branch is parameterized as
above where ¢y(t),...,pn(t) are formal power series such that the ring H =
k[[@1(t), ..., oa(t)]] contains power series of order r or higher. Suppose that we
can guess an upper bound for r, i.e., we guess that H will contain all power
series of order R or higher, where B > r. Let ¢, r(t) be the part of p;(¢)
consisting of elements of order less than or equal to R. For example, if

e1(t) = ait™ + axt™t + .|
where a; # 0, then
e1,r(t) = a1t™ + axt™! + .. + apgmith.
It then follows that

klle1() --» n(®)]] = Fllp1,a(2), -, 2n R (E)]]-

For this reason restricting our attention to only polynomial parameterization

is not a significant restriction.

As input we have a set of polynomials ¢;(t), ..., ¢.(t), which must be the
parameterization of a curve branch passing through (0, ...,0). From the defini-
tion of branch given in section 2.2, the completion of the local ring of a branch
of a curve at (0, ...,0) contains power series of all orders after some r. For a
given parameterization £; = @1(t), ..., o = @a(t), if ord(pi(t)), ..., ord(pn(t))
are relatively prime, this is a sufficient but not necessary condition for that
parameterization to correspond to a branch. Hence, it is also sufficient for the

termination of the algorithm in finite steps.
Step (1) The first step of the algorithm is to construct the ring H in the
form
H=k+kS; +EkS;, + ...+ k[[t]]S;,,
where S;,, Si;, ..., Si, are arbitrary elements of order iy,1,,...,15, respectively,
chosen from H, and H contains power series of all orders after iy.

To do this, we adapt the algorithm used to solve the problem of Frobenius.
In section 4.2, we have proposed a method to find the integers between ia,
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and (¢ + 1)a,, generated by ay, ..., ax. The procedure here will be similar. We
will generate polynomials instead of integers, and we will compare the orders
of polynomials, instead of comparing the integers. In fact, if each parameteri-
zation polynomial has only one term, that is

Ty =1t zy=1%2, ., x,=1,

then constructing H is equivalent to constructing the semigroup generated by
ajy, ..., a,. In that case, the method given in the algorithm to solve the prob-
lem of Frobenius for generating the elements of the semigroup generated by
as, ..., ag, is sufficient to generate H. When the parameterization polynomials
have higher order terms, then constructing H involves more work, because the
difference of two polynomials having the same order is a nonzero element of H,

and all these differences must be considered.

We begin by dividing each input polynomial by an appropriate coefficient
so that the coefficients of the smallest degree terms of all input polynomials
become 1. Then, we construct a generator set G consisting of these polynomi-
als. We sort G according to the orders of the polynomials such that, order of
the i-th element in G is less than or equal to the order of the ¢ 4+ 1-th element
in G. Note that we are working with the orders and not the degrees of the

polynomials.

If the orders are equal, then the degree of the second term of the i-th element
is less than or equal to the degree of the second term of the i + 1-th element.
If the first fterms of the i-th and the ¢ 4 1-th elements in G have the same
degrees, then degree of the j + 1-th term of the i-th element in G is less than
the degree of the 7 + 1-th term of the 7 + 1-th element in G. We denote this
sorted set as G = [G[1], G[2], ..., G[n]], and its i-th element as G[i].

We have another set S sorted in ascending order which contains the orders
of the polynomials generated by the polynomials G[1]. ..., G[n], as the algorithm
continues. The initial value of S is [0,4;], where ¢; = ord(G[1]). We denote the
i-th element of this list as S[i].

We refer to the ordered sets § and G as lists.

We have polynomial sets corresponding to the elements of the list S. If «
is an element of S, the polynomial set corresponding to a will be the set of
polynomials in H of order a. We denote this set by poly(a). As the algorithm
continues, when a polynomial of order « is generated. it will be added to the
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set poly(a). Since S = [0,1%,] initially, we have poly(0) = {1}, and poly(i;) =
{G[1]} as the initial polynomial sets. We need such a construction in order to
be able to consider differences of all the different polynomials having the same

order.

(1.1) We begin with finding the polynomials in H that have orders be-
tween ord(G[1]) = ¢, and ord(G[1]?) = 2i;. Hence, we want the polynomials
generated to be of order less than or equal to C = ord(G[1]?) = 2i;. We add
C at the end of the list S. There must now be a polynomial set corresponding
to C. Hence, we will have poly(C) = {G[1]*}.

Now, at the beginning of this part, we have S = [0, 1, 27,], and the corre-

sponding polynomial sets poly(0), poly(:,), and poly(2t,).

(1.1.1) In this step of the algorithm, we will find the polynomials in H,
generated by the first and the second elements G[1] and G[2] in the list G, and
having orders less than or equal to C' = 2¢;.

We take G[2], the second element in generator list G. Since zero is the
first element of the list S, it is the possible least order. Hence, we begin by
multiplying G[2] with the elements of the set poly(0). When the polynomial
G[2] is multiplied with a polynomial of order 0, its order does not change.
Hence, we first control if ord(G[2]) is less than or equal to C = 2i;, because
at this step we want to generate polynomials of order less than or equal to
C = 2i;. If ord(G[2]) is less than or equal to C, then we will multiply G[2]
with polynomials of 0 order, which are the elements of the set poly(0). The
polynomial set poly(0) has one element, which is 1. We multiply G[2] with 1,
and obtain f = G[2]. Now, there are two possibilities: ord(f) is in the list .S,
and ord(f) is not in the list S.

If ord(f) is in the list S, then there is already a polynomial set consisting
of a polynomial or polynomials of the same order. That means poly(ord(f)) is
nonempty. We subtract f from the elements of this set poly(ord(f)). In this
way, the differences of f and the polynomials having the same order with f
are considered. The nonzero difference polynomials obtained are divided by
appropriate coefficients so that the coeflicients of their smallest degree terms
become 1. Then the obtained polynomials are added to the list G as new
generators, and G is sorted according to orders of its elements as defined above.
For every new generator added to the list G, n is incremented. After these, we
add f to the polynomial set poly(ord(f)). By this construction, all the effects
of the higher degree terms of the polynomials can be considered.
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If ord(f) is not in the list, then we add ord(f) to the list S, and sort S
in ascending order. There must be a polynomial set corresponding to every
element of the list S, so we now have poly(ord(f)) = {f}.

There is only one polynomial of order 0, because poly(0) = {1}. Thus, we
have now finished multiplying G[2] with polynomials of order 0.

We now turn back to the beginning of (1.1.1). We have multiplied G[2]
with polynomials of the least order 0, which was the first element of the list S.
The second element of the list is ;. We will multiply G[2] with polynomials
of order i;, that is, with the elements of the polynomial set poly(i;). (As the
algorithm continues, a counter ¢; is used to determine the set of polynomials,
whose elements will be multiplied with G[2]. In the beginning of (1.1.1), ¢,
was 1. S[cy] = S[1] = 0 so we used the set poly(0). After the procedure was
completed, before turning back to the beginning of (1.1.1), ¢; was incremented.
Thus, ¢ = 2 now. Since S[c;] = S[2] = ¢;, we will multiply the elements
of poly(i;) with G[2]. Hence, at any step we will multiply the elements of
poly(S[es]) with G[2). All the other generators G[3], ..., G[n], have counters
c3, ..., ¢, for the same purpose. Initially, all the counters ¢y, ..., ¢, are 1. When
a new generator is added to the list G, a counter which is equal to 1 is assigned

to this new generator.)

When the polynomial G[2] is multiplied with a polynomial of order iy, a
polynomial of order ord(G|[2]) + #1 is obtained.

If ord(G[2]) + ¢ is less than or equal to C' = 2¢;, we multiply the first
polynomial of the polynomial set poly(i;) with G[2], and obtain f. We apply
to f what we have done above. Then we multiply the second polynomial of
the polynomial set poly(i;) with G[2] and obtain f. We again apply to f the
same procedure. We repeat this for all the polynomials in the set poly(z;). We
increment ¢y, and turn back the beginning of (1.1.1).

If ord(G[2)) + 11 is greater than C = 2i;, then this signals the end of the
step (1.1.1). The polynomials generated by G[1], G[2], which are of orders less
than C = 21, are found.

Then the stopping condition of this step is ord(G[2]) + S[c;] > C = 2¢;.

(1.1.2) In this step of the algorithm, we will find the polynomials generated
by the first, second, and third elements G[1], G[2], and G[3] in the list G, and
having orders less than or equal to C' = 2i;. We take the third generator G[3]
in G, which has counter c3 = 1 at the beginning. We compare the addition of
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ord(G[3]) and c;-th element in the list S, with C = 2¢;. If ord(G[3]) + S|cs] is
greater than C = 2¢;, this is the end of step (1.1.2). If ord(G[3]) + S[cs] is less
than or equal to C, then we take the polynomial set corresponding to the c;-th
element in the list S, which is poly(S|[e;]). We take the first element of the set
poly(S|cs]), and multiply it with G[3] to obtain f. We apply the same procedure
explained above. For all the elements in the polynomial set poly(S]cs]), we
repeat this procedure. We increment c3, and turn back to the beginning of
(1.1.2). We continue in the same manner, until ord(G[3]) + Sles] > C =
241, signaling the end of step (1.1.2). At this point, we have the polynomials
generated by the first, second, and third elements G[1], G[2], and G[3] in the
list G, and having orders less than or equal to C = 2i,.

We repeat this process for the remaining generators of G. At the end of
this, we have polynomials of orders less than or equal to C = 2i;, generated
by G[1}, G[2], ..., G[n]. Also, new generators coming out from the differences of
polynomials of the same orders were added to the generator list.

Step (1.1) is completed by counting the number of polynomials of consec-
utive orders, last of which is 2i;. We can do this by using the list S, because
it contains all the orders of the generated polynomials. The list S has C as its
last element. By a counter m;, we count the number of consecutive integers in
the list S, last of which is C. This is the end of step (1.1).

If my; > ord(G[1]) = 41, then this signals the end of the algorithm. Because
if we have #; polynomials of consecutive orders, we can have polynomials of all
the remaining orders by multiplying these with G[1] consecutively. If m; is less
than i;, we start step (1.2).

(1.2) In this step, we find the polynomials in H that have orders between
ord(G[1)?) = 2i; and ord(G[1]®) = 3¢;. Hence, we want the polynomials gen-
erated to be of order less than C' = ord(G[1]®) = 3i;. We add C at the end of
the list S. There must now be a polynomial set corresponding to C. Hence, we
will have poly(C) = {G[1]°}

(1.2.1) We take G[2]. In the end of step (1.1.1), for c; we had ord(G[2]) +
S[ea] > 24;. In this step, we first control if ord(G[2]) + S[c,] < C = 3i5.

If ord(G[2]) + S[cs] is less than or equal to C = 3¢y, we multiply the first
polynomial of the polynomial set poly(S[c,]) with G[2], and obtain f. We apply
to f what we have done above. Then we multiply the second polynomial of the
polynomial set poly(S[c;]) with G[2] and obtain f. We again apply to f the
same procedure. We repeat this for all the polynomials in the set poly(S|c,)).
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We increment ¢, and turn back the beginning of (1.2.1).

If ord(G[2]) + S|cz] is greater than C = 3i;, then this signals the end of the
step (1.2.1).

Again, the stopping condition of this step is ord(G[2]) + S[c;) > C = 2i,.

The steps (1.2.2), ...,(1.2.n — 1} repeat the same procedure for all the ele-
ments of the list G. At the end of this, we have polynomials in H that have
orders less than or equal to C = 3i;.

Step (1.2) is completed by counting the number of polynomials of consec-

utive orders, last of which is 3z;.

(1.k) In this step, we find the polynomials in H that have orders between
ord(G[1]¥) = ki, and ord(G[1]**!) = (k + 1)i1. At the end of step (1.k), we
have polynomials in H of orders less than or equal to C = (k + 1)i;. The
algorithm stops at the end of this step, where we have m; > i;, showing that
there are at least 7; polynomials of consecutive orders. If we have this condition
satisfied, we can find the integer ¢, after which power series of all orders exist
in H. Since C is the last one of the m; consecutive integers, ¢, = C — m; + 1.
Recall that our conditions on the input polynomials assure that the algorithm

stops in finite steps.

Now, to construct H, we can choose one polynomial from every polynomial
set corresponding to the elements of the list S, which are less than or equal to
in. At the end, we have S = [0, 11,13, ..., 24, ..., C]. We can choose 1 € poly(0),
S;, € poly(iy), Si, € poly(ia), ..., Si, € poly(in) to construct [2]

H=k+ kS.;l + kS,‘z + ...+ k[[i]]S{h.

See figure 5.1 for the flow chart of this algorithm.

Step (2) The second step is constructing the Arf closure *H in k[[t]]. When
the above algorithm is applied to input polynomials i1,..., ¢,, we obtain the
polynomials S;,, S;,, ..., S;, of the ring H, and we have [2]

H=Fk+kS; +kS;, + ... + K[[t]} Si,.-

We will use the method given in section 3.2 to construct the Arf closure *H
of H. Recall that H; denotes the ring
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54

l =i+l ]

n=n+1, ¢l

add g 1o the list Gand sont G
according to orders of its elements

1

divide g by the coefficient of the
smallest degree termof g

=

sddftothe |
set poly prd (f)

.I< number of elements
in the set poly(ord (f)



Hy = (1) = Sh(52)™(52)00.. (=)= + K[[E))(52),

b‘l

and *H = k+"H;S;,. The ring H;y, is derived from H; in the same man-
ner, H; is derived from H. Then for sufficiently large N, Hy = K[[t]].
Let T;41 be an element of least positive order in H;, then we have [2]
"H = k+kN+ "H,L'T, (T;=3S;)

= k+kT\ + kT'Ty+ *HsT)T,T5

..............

= k+kTy+ kN + ...+ kT Ty + k[[t)) .. . T I
Here, we give an algorithm to determine T}’s.

(2.1) We begin with S;,, Si;,..., Si, of H. At the end of this step, we will
have H; defined above. T1 = §;, from the definition. We divide S;,, S;,, ..., S;,
by Si,. The results of these divisions may be power series of infinite terms,
but the terms of these power series which have degrees greater than i, — 4;
are unnecessary, because H; contains power series of all orders after i; — ;.
For this reason in each power series g—f- we truncate terms of orders higher
than i) — 11, and denote the resulting polynormal still by the same notation
s,, Hence, from the divisions §—‘:~ . ':1 , we have polynomials, which have no
terms having degrees greater than :5 —2;. These polynomials obtained from the
divisions are generators for the elements of H; of orders less than ¢ —%;. The
algorithm we proposed to construct Hin step (1) is applied to these polynomials
with slight modification. In constructing H, we do not know an r such that
H contains power series of all orders after r. In this case, we know that the
ring H; contains power series of all orders after i, — ;. This gives us stopping
condition, since it is not necessary to generate polynomials of orders greater
than i; — ;. This can be done by comparing i; —#; with C at every step (1.k)
of step (1). If at step (1.k), we have C > i), — i3, we equate C = 15 — 1; to
generate polynomials of orders less than or equal to 2; —¢;, and we stop at the
end of this step (1.k). Also, recall that in the algorithm proposed in step (1).
new generators come from the differences of two polynomials having the same
order. If a new generator obtained in this way has order greater than 5, — 1,
it does not have any effect on constructing H;. Thus, we do not need to add
new generators of orders greater than i, — ¢; in the generator set G. And for
the same reason whenever a new generator of order < i, — ¢; is obtained, we
truncate its elements of order > ¢, — 7, before we add it to the generator set
G. With these modifications, we apply the algorithm proposed in step (1) to

construct H;. We have
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H =k+ kS;, + ij, + ...+ k[[t]]Sj,.

(2.2) T; is an element of least positive order in H;. We choose T} as j;.
We apply the same procedure defined in (2.1) to construct H,.

We continue in the same manner, until at the end of the step (2.N — 1) we

have
Hy_ 1 =k + kSa, + kSa, + £[[t]]Sas,

where a3 — oy = 1, signaling the end of step (2) of the algorithm. Since
a; — oy = 1, we have Hy = k[[t]], and so *Hy = k][[t]]. From the definition,
Tn = Sa,- We have now all T}’s necessary to construct *H:

‘H = k + kT] + ]CT]TZ + ... -+ kT]Tz...TN—I + k[[t]]Tsz...TN_lTN

Step (3) The third step of the algorithm is constructing W(*H). We can

easily write from the above equation

W(H) = {0,0rd(Ty),ord(Th) + ord(T3),ord(T) + ord(T3) + ord(T3), ...,
ord(Ty) + ord(T2) + ... + ord(Tw) + N}.

Step (4) The fourth step is the construction of the characteristic sub-
semigroup of g, (W(*H)) of W(*H), and finding a minimal set of generators
X1, ---» X1 of this characteristic semigroup. These are Arf characters of H. Now,
we propose an algorithm to find Arf characters of H from W{(*H). We have

W(rH) = {0,rni,i1n+ve,...yi+ 2+ ...+ vy + N}

Here, we give a notation. Let S(ay,...,ax) = {a1a1 + ... + ara; | a1,...,0x €
N}. Hence, S(ai,...,ar) denotes the semigroup generated by aj,...,a;. We
also recall here that to construct the Arf closure of S(ay,...,ax), we use the
method given using the Theorem 3.2.13; we apply modified Jacobian algorithm
to ay, ..., ax. We obtain from this d;, dy, ..., dm—1, d which are the divisors, where
the quotients represent the number of times each divisor is repeated in the
sequence dy,dy, ...,dm_1,d, and d is the greatest common divisor of dy, ..., d,,_;.
Then,

‘S(al,...,an) = {O,dl,dl + dg,...,dl + dz + ...+ dm_g + Nd}
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Since there can not be any element less than vy in the characteristic sub-
semigroup, x1 = v;. We construct the set W("H)-"5(x1). Let x2 be the
smallest element in this set. Using this, let y3 be the smallest integer in
W(*H)—"S(x1, x2). We continue in the same manner. Let x;4; be the smallest
integer W(*H)~"S(x1, X2+ ---» Xs)- This procedure stops at finitely many steps.
As a result, we have the Arf characters of H, which are x1,..., X1

Using an observation of Arf mentioned in section 3.2, we can describe an
alternate method for step (2). By using the input parameterization polynomials
@1(t), .-, pnl(t), we constructed the ring H in step (1). We have,

H=k+kS;, +kSi, + ... + k[[1]]S:,.

(2.1) We take T7 = ¢1(t), which has the least order (z;) among the input

polynomials @1(2), ..., on(t). We divide @2(t), ..., n(t) by ¢1(t). In each power

series ff—(@t))- (for i = 2, ...,n), we truncate terms of orders higher than #; —7;, and
denote the resulting polynomial still by the same notation fﬁ%. Now, we have
X) = pi(t), Xz = %f%,..., . 55'1‘—(%1. We remove the constant terms of these
polynomials, so that we have X; — ¢;, X3 — €2, ..., Xs — ¢, Where ¢, 03, ..., ¢,

are the constant terms of X, X,, ..., X,

(2.2) We take T; = X, — ¢, which has the least order among X; —¢;, X3 —
¢z,...Xn — ¢,. Then we apply the same procedure in step (2.1) to the polyno-
mials X; — ¢1, X3 — ¢, ..., Xp — ¢, and obtain another n polynomials.

(2.N) We stop, when we have a polynomial of order 1 among these n

polynomials, showing that Hy = k[[t]].

At the end we have

“H = k+ kTy + kT3 + ... + kTyTa... Ty + MEJT o Ty -1 T
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Chapter 6

CONCLUSION

Arf theory [2] totally solves the problem of obtaining the multiplicity sequence
from the local ring of the curve at the singular point without applying successive
blow ups to the curve. The completion of the local ring at the singularity
of the branch carries all the information necessary to obtain the multiplicity
sequence, and Arf theory describes all the processes necessary to obtain the
multiplicity sequence from this ring. In this way, resolution process of cusp
type singularities of curves is understood thoroughly.

By depending on Arf theory, we proposed an algorithm which finds the
Arf characters of a curve branch which has a parameterization in polynomials.
The algorithm does not work fast. This is generally observed in the algorithms
dealing with polynomials. In our algorithm, it is not possible to use effective
short-cuts, which makes algorithm faster. Even only the first part of the algo-
rithm, constructing the completion of the local ring at the singularity of the
branch takes a long time, because all differences of the polynomials of the same
order must be considered. The new polynomials coming from the differences
must be interpreted as generators. This process is necessary to consider all the
effects of the higher order terms of the parameterization polynomials. Doing
so many calculations makes the algorithm slow. This kind of work generally

does not have short-cuts.

We also proposed an algorithm for the solution of the problem of Frobenius
in the most general case. In literature, there are only a few algorithms in the
most general case. Some of these work fast in special cases, but they work
very slowly for other cases. Compared with the ones applied, our algorithm
works faster in most cases, since by counters we refrain from doing the same
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calculations several times.

Since resolution process of cusp type singularities of algebraic curves is
totally solved, there is now the problem of whether the Arf theory can be
adapted to surface singularities. For a curve branch having the parameteri-
zation, z; = 1(t), ..., ¢n(t), its blow up on U; has parameterization in local
coordinates, X; = ﬁ:—g}l, ey Xi = 0i(t)y ooy Xy = -ﬁl“%. These divisions lead to
power series which are the elements of k[[t]]. Surface singularities have param-
eterization in two variables. Hence, the divisions are not as in the one variable

case.

The existence of a smooth variety birationally equivalent to a given singular
variety is shown by Hironaka for characteristic zero [12]. He uses successive
blow ups and measures the change in the singularity by certain invariants
coming from the local ring. Later Bennett has shown that Hilbert-Samuel
polynomials can be used to measure the change in the singularity [4]. However,
Arf theory seems to apply to any characteristic and there is hope that the
idea of keeping track of the “gaps” in the local ring can lead to a further
understanding of the resolution of singularities in higher dimensions.

Computers are generally ignored in the mathematical community. The
main reason for this is a major misunderstanding of computers, as well as
mathematics! Computers do not only crunch numbers, which practically no
mathematician is interested in, but faithfully execute a given set of rules, and
do this at a remarkable speed. The trick is to find those “set of rules” which
will produce output to enhance our understanding of mathematics. In our case,
for example, it is not important what the Arf characters of a certain branch
is, but it is of paramount importance how and why those invariants come out.
After all what is mathematics? Let us quote W. Thurston from a recent article

[19, p. 11]:

“There is a real joy in doing mathematics, in learning ways of think-
ing that ezplain and organize and simplify. One can feel this joy
discovering new mathematics, rediscovering old mathematics, learn-
ing a way of thinking from a person or text, or finding ¢ new way

to explain or to view an old mathematical structure.”

We experienced this joy while analyzing Arf theory for programming, and
we sincerely hope that we succeeded in conveying some of it to the reader.
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Chapter 7

APPENDIX

In this appendix, we give the outputs of executions of the programs of the

proposed algorithms in chapters 4 and 5.

In Example A.1 and Example A.2, the execution of the program “Frobe-
nius” written for Maple V can be seen. In Example A.1, the largest integer
that does not exist in the semigroup generated by 137, 251, 256 is found. In
Example A.2, the largest integer that does not exist in the semigroup generated
by 137, 251, 256, 385 is found.

Example A.1.

> Frobenius();

Please, enter relatively prime integers as input

(separated by commas, ending with a semicolon):

137,251,256;
The largest integer that does not exist in the semigroup generated

by these integers is:

4948
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Example A.2.

> Frobenius();
Please, enter relatively prime integers as input

(separated by commas, ending with a semicolon):

137,251,256,385;
bytes used=1000336, alloc=786288, time=3.02
bytes used=2000664, alloc=982860, time=7.22
bytes used=3001808, alloc=1179432, time=11.50
The largest integer that does not exist in the semigroup generated

by these integers is:

3282

In Example A.3 and Example A.4, the execution of the program “Arf”
written for Maple V can be seen. In Example A.3, Arf characters of the curve
branch given in Example 3.2.14 is found. (X = .Y = *,Z = ¢'%) In
Example A.4, Arf characters of the curve branch given in Example 3.2.15 is
found. (X =#8,Y =8 +111,Z =14

Example A.3.
> Arf();
Please, input parameterization polynomials in ©
(separated by commas, ending with a semicolon):

£74,t79,t715;
The Arf characters are:

[4 9 9]
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Example A.4.

> Arf();
Please, input parameterization polynomials in t
(separated by commas, ending with a semicolon):
£°6,t°8+t"11,t"14;

The Arf characters are:

(6, 8, 15]
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