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ABSTRACT

PHYSICALLY-BASED ANIMATION OF
ELASTICALLY DEFORMABLE MODELS

Ugur Gudukbay
Ph.D. in Computer Engineering and Information Science
Supervisor: Prof. Biilent Ozgiic
February 1994

Although kinematic modeling methods are adequate for describing the shapes
of static objects, they are insufficient when it comes to producing realistic an-
imation. Physically-based modeling remedies this problem by including forces,
masses, strain energies, and other physical quantities. The behavior of physically-
based models is governed by the laws of rigid and nonrigid dynamics expressed
through a set of equations of motion. In this thesis, we describe a system for
the animation of deformable models. A spring force formulation for animating
deformable models is also presented. The animation system uses the physically-
based modeling methods and the approaches from elasticity theory for animating
the models. Three different formulations, namely the primal, hybrid, and the
spring force formulations, are implermented so that the user could select the suit-
able one for an animation, considering the advantages and disadvantages of each
formulation. Collision of the models with impenetrable obstacles and constrain-

ing model points to fixed positions in space are implemented.

Keywords: Physically-based modeling, deformable models, animation,
simulation, constraints, collision detection, collision response,

partial differential equations, linear system solver.



OZET

ELASTIK OLARAK DEFORME EDiLEBiLEN MODELLERIN
FiZIGE DAYALI ANIMASYONU

Ugur Giidikbay
Bilgisayar Miithendisligi ve Enformatik Bilimleri Bélimi
Doktora

Tez Yoneticisi: Prof. Dr. Biilent Ozgiic
Subat 1994

Kinematik modelleme yéntemleri nesnelerin gekillerini tanimlamakta yeterli ol-
makla beraber gergege uygun animasyon tretmek sézkonusu oldugunda yetersiz
kalmaktadir. Fizige dayali modelleme yontemleri bu sorunu kuvvet, kiitle, en-
erji, v.b. biiytklikleri kullanarak ¢ézmektedir. Fizige dayali modellerin hareketi
rijit ve rijit olmayan dinamik yasalari ile belirlenmistir. Hareket denklemleri bu
modellerin dinamik hareketini tamimlar. Bu caligmada rijit olmayan (deforme
edilebilen) modellerin animasyonu igin geligtirilmis bir sistem anlatilmaktadur.
Bu sistem, modellerin animasyonu ic¢in fizige ve elastisite kuramina dayanan
yaklagimlan kullanmaktadir. Aymi zamanda, deforme edilebilen nesnelerin ani-
masyonu igin yeni bir yontem (“yay kuvvet yontemi”) geligtirilmigtir. Animasyon
sisteminde “primal”, “hibrid”, ve “yay kuvvet” ydntemleri kullanilarak modeller
hareket ettirilmektedir. Bu yolla kullanici yontemlerin avantaj ve dezavanta-
jlarina gére modele uygun olan yontemi segebilmektedir. Modellerin sabit en-
gellerle carpigmasi ve modeller lizerindeki baz: noktalarin hareketinin kisitlanmas:

gibi segenekler animasyonlarda kullanilabilmektedir.

Anahtar sézciikler: Fizige dayali modelleme, deforme olabilen modeller,
animasyon, benzetim, kisitlamalar, carpisma tespiti,
carpigma sonrasi hareket, kismi tilirevsel denklemler,

dogrusal denklem sistemi ¢ozucust.
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Chapter 1
Introduction

The use of computer graphics and numerical methods for three-dimensional de-
sign and modeling provides an interactive environment in which designers can
formulate and represent shapes of objects. Modeling the shapes as a compo-
sition of geometrically and algebraically defined primitives, simulating scenes
with shading and texture, and producing usable design images are the most im-
portant requirements for application areas such as Computer-Aided Design and
Computer-Aided Manufacturing.

Currently, most of the methods used for modeling are kinematic. This be-
comes a major drawback when we want to create realistic animation since these
methods are passive; they do not interact with each other or with external forces.
The behavior and form of many objects are determined by the objects’ gross
physical properties. For example, how a cloth drapes over objects is determined
by the surface friction, the weave, and the internal stresses and strains generated
by forces from the objects. As another example, a chain suspended between two
poles hangs in an arc determined by the force of gravity and the forces between
adjacent links that keep the links from separating.

To achieve realism in animation a model should be able to follow pre-defined
paths while still moving in an interesting manner and interacting with other
models as real physical objects would do. To build and animate active mod-

els, physically-based techniques should be used. These techniques facilitate the
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creation of models capable of automatically synthesizing complex shapes and re-
alistic motions that are attainable only by skilled animators. Physically-based
modeling achieves this by adding physical properties to the models [23]. Such
properties may be forces, torques, velocities, accelerations, kinetic and potential
energies, and heat. Physical simulation is then used to produce animation based
on these properties. To this end, solution of the initial value problems is required
so that the course of a simulation is determined by objects’ initial positions and
velocities, and by the forces and torques applied to the object along the way.

Physical simulation alone is not enough since the animator also wants to
“control” the motion of objects so that he can specify the goals of motion, the way
motion should be performed, and so on. Physical simulation produces impressive
results, but is difficult to control since an animator cannot easily establish an
intuitive link between the parameters of a simulation and the resulting motion.
Besides, physical simulation is computationally expensive. Due to these reasons,
it is not in wide use. However, researchers continue to present faster and simpler
formulations to build and control the motion of models [3, 12, 45, 47]. Some of
the proposed methods are related to the animation* of models composed of parts
which are connected by joints, namely articulated bodies (such as humans and
robots) [2, 4, 15, 18, 29, 31, 43].

Constraints provide a unified method to build objects and animate them [26].
The models assemble themselves as the elements move to satisfy the constraints.
Geometric constraints, namely attachment constraints, are used to create com-
plex models from primitive bodies. In other words, they model the joints between
the links of a complex model. There are other constraints, such as “point-to-
path” constraints, which can be used to control the motion of the models. Such

constraints are also called “kinematic constraints.”

* A useful bibliography of computer animation can be found in [39].
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1.1 Application Areas for Animation

Animation covers all changes that have a visual effect, which are time-varying po-
sition (motion dynamics), shape, color, transparency, structure, and texture of an
object (update dynamics), and changes in lighting, camera position, orientation,
and focus, and even changes of rendering technique.

The most important application areas of animation are the entertainment
industry, education, industrial applications such as control systems and flight
simulators for aircraft, and scientific research. The animations in scientific visu-
alization (scientific applications of computer graphics) are generated from simu-
lations of scientific phenomena. The results of the simulations may be large data
sets representing 2D or 3D data (e.g., in the case of fluid-flow simulations); these
data are converted into images that then constitute the animation. At the other
extreme, the simulation may generate positions and locations of physical objects,
which must then be rendered in some form to generate animation. This hap-
pens, for example, in chemical simulations where the position and orientation of
the various atoms in a reaction may be generated by simulation, but the anima-
tion may show a ball-and-stick view of each molecule, or may show overlapping
smoothly shaded spheres representing each atom. In some cases, the simulation
program will contain an embedded animation language so that the simulation

and the animation proceed simultaneously.

1.2 Deformable Models

An important aspect in realistic animation is modeling the behavior of deformable
objects. To simulate the behavior of deformable objects, we should approximate
a continuous model by using discretization methods, such as finite difference and
finite element methods. For finite difference discretization, a deformable object
could be approximated by using a grid of control points where the points are
allowed to move in relation to one another. The manner in which the points are

allowed to move determines the properties of the deformable object. Simulating
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the physical properties (such as tension and rigidity), static shapes exhibited
by a wide range of deformable objects (including string, rubber, cloth, paper,
and flexible metals) can be modeled. For example, to obtain the effect of an
elastic surface, the grid points are connected by springs. The physical quantities
cited earlier should be used to simulate the dynamics of these objects. Various
researchers [11, 16, 32, 30, 37, 36, 44] presented discrete models which are based
on elasticity and plasticity theory and use energy fields to define and enforce
constraints for modeling and animating deformable objects.

This thesis presents a new formulation for the animation of deformable mod-
els, called the spring force formulation. In other formulations based on elasticity
theory (primal and hybrid formulations), the elastic properties of the materials
are stored in the stiffness matrix. However, the formation of the stiffness ma-
trix automatically is very difficult and sometimes it becomes impossible to solve
the differential equations for animating the models because of the numerical ill-
conditioning problems. In this formulation, instead of forming the stiffness matrix
automatically, elastic forces are represented as external spring forces. Although
handling the elasticities using the stiffness matrix approach is elegant and the
most suitable way, our approach is more effective and very fast.

An animation system which is implemented for the animation of nonrigid
(deformable) models is also discussed. The system is built on top of a modeling
system for representing 3D free-form objects, that uses superquadrics [6] and
Bézier surfaces [9] as modeling techniques, and regular deformations [7] and Free-
Form Deformations [34] for deforming these models to obtain irregular, free-form
objects [25, 21]. The static models obtained by these methods can be animated
using the techniques discussed in this thesis. The system is implemented using
the C language [19] on a Unix' workstation (Sun-3 or Sparc). The implementation
uses the facilities provided by Sun View! system such as windows, panels, and
menus [24, 22].

tUnix is a registered trademark of AT&T Bell Laboratories.
iSun View [17] is a registered trademark of Sun Microsystems, Inc.
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1.3 The Organization of the Thesis

In Chapter 2, constraint-based methods for animation are discussed. Different
uses of constraints are also given.

In Chapter 3, the collision detection and response problem is explained. Dif-
ferent algorithms to solve this problem are discussed together with their applica-
bility to rigid, flexible, and articulated bodies.

In Chapter 4, a short description of the methods proposed by Terzopoulos et
al. [37, 36, 38] for elastically deformable models is presented. Then, the imple-
mentation details of these methods in the context of our system, and algorithmic
solution of the problems, such as collision of flexible models with impenetrable
obstacles, are explained. A spring force formulation for animating deformable
models is also presented together with its implementation details. Different for-
mulations are compared to each other in terms of their processing times and their
ability to model elastic properties.

In Chapter 5, some simulation results representing the features of our system

are presented.
Chapter 6 gives conclusions and suggestions for further research.



Chapter 2

Constraint-Based Methods for

Animation

A good deal of research has been done towards the use of constraint methods to
create realistic animation [45, 46, 47, 32]. Many constraint-based modeling sys-
tems have been developed, including constraint-based models for human skeleton
[4] (in which the connectivity of segments and limits of angular motion on joints
are specified), the dynamic constraints {8}, and the energy constraints [44].

Constraints provide a way to specify the behavior of physical objects in ad-
vance without specifying their exact positions, velocities, etc. In other words,
constraints are partial descriptions of the objects’ desired behavior. So given a
constraint, we must determine the forces to meet the constraint and then find
forces to maintain the constraint. For example, consider a bead sliding freely on
a rigid wire (Fig. 2.1). The behavior of the bead can be described by the fact
that it will stay on the wire during its motion no matter what forces act on it. To
keep the bead on wire during its motion, a constraint force f; must be applied.
If f; is the force applied to the bead at any time and f; is the constraint force
then the total force f = f; + f; = ki where £ is the tangent vector to the wire.
In other words, _f; is the force to be added to the applied force to make the bead
accelerate in a manner consistent with the constraint.

Constraint-based modeling systems allow the user to specify a collection of
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-

Figure 2.1: A bead sliding freely on a rigid wire.

constraints that the parts of a model are supposed to satisfy. A model may be
underconstrained, in which case there are additional degrees of freedom that the
modeler can adjust (e.g., the location of the point of contact of a sphere and
a cube), or overconstrained, in which case some of the constraints may not be
satisfied (which could happen if both the top and bottom of the sphere were
constrained to lie on the top face of the cube). In constraint-based modeling, the
constraints must be assigned a priority, to satisfy the most important constraints
first.

In energy-constraint systems, constraints are represented by functions that are
nonnegative everywhere, and are zero exactly when the constraints are satisfied.
(These are functions on the set of all possible states of the objects being modeled.)
These are summed to give a single function E. A solution to the constraint
problem occurs at a state for which E is zero. Since zero is minimum for E (its
component terms are all nonnegative), such states can be located by starting at
any configuration and altering it so as to reduce the value of £. The minimum
is found by way of numerical methods.

The specification of constraints is complex. Certain constraints can be given
by sets of mathematical equalities (e.g., two objects that are constrained to touch
at specific points), or by sets of inequalities (e.g., when one object is constrained
to lie inside another). Other constraints are more difficult to specify. For example,
constraining the motion of an object to be governed by the laws of physics re-
quires the specification of a collection of differential equations. Such constrained

systems, however, lie at the heart of physically-based modeling.
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2.1 The Uses of Constraints

Constraints can be used for different purposes in animation (cf. Fig. 2.2) [8]:

e Point-to-nail constraint: This is used to fix a point on a model to a user-
specified location in space. The body can make a pendulum motion about

the constrained point, but the constrained point may not move.

e Point-to-point (attachment) constraint: This is used to attach two points on
different bodies to create complex models from simpler ones. In other words,
attachment constraints model the joints between bodies. The bodies may

move around freely, as long as the two constrained points stay in contact.

e Point-to-path constraint: This type of constraint requires some points on
a model to follow an arbitrary user-specified path (a trajectory which is
specified as a function of time). Here, the rest of the body is allowed to

move according to the forces and torques acting on the body.

e Orientation constraint: This type of constraint is used to align objects by

rotating them.

e Other constraints, such as point-on-line which restricts a point to move
on a given line, sphere-to-sphere which requires two spheres to touch while

sliding along each other, etc.
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stays nail
fixed

Point-to-nail Point-to-peint
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g ==

Point-tc-path Orientation

Figure 2.2: Examples of constraints.



Chapter 3

Collision Detection and Response

When several objects are involved in a computer animation at once, the prob-
lem of detecting and controlling object interactions is encountered. In such an
animation, we may have more than one object moving around, or we may have
impenetrable obstacles (such as walls) that do not move. When no special atten-
tion is paid to object interactions, the objects will sail through each other; this
is usually not physically reasonable and produces a disconcerting visual effect.
Whenever two objects attempt to interpenetrate each other (i.e., the surface of
one object comes into contact with the surface of a second object), a collision is
said to occur [5, 28].

The general requirement that arises then is an ability to detect collisions. Most
animation systems at present do not provide even minimal collision detection, but
require the animator to visually inspect the scene for object interactions and re-
spond accordingly. This is time consuming and difficult even for keyframe or
parameter systems where the user explicitly defines the motion; it is even worse
for procedural and dynamical animation systems where the motion is generated
by functions and laws defining their behavior. Although automatic collision de-
tection is expensive to code and to run, it is a considerable convenience for an-
imators, particularly when more automated methods of motion control, such as
dynamics or behavioral control, are used.

The other related issue is the response to a collision once it is detected. Even

keyframe systems could benefit from automatic suggestions about the motion

10
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of objects immediately following a collision; animation systems using dynamic
simulation inherently must respond to collisions automatically and realistically.
Linear and angular momentum must be preserved, and surface friction and elas-
ticity must be reasonable. Collision response algorithms can be classified into

two groups:

e Analytical methods, which are limited to rigid and articulated objects, are
typically faster. Analytical algorithms could be used within a kinematic

animation system.

o Penalty, or spring methods, which introduce restoring spring forces when
objects inter-penetrate each other. These methods are more general, work-
ing equally well for flexible, rigid, and articulated bodies. They could not
be used within a kinematic animation system since they assume the ability
to use the dynamics equations of motion to predict the motion immediately

after impact.

In the following, collision detection and response algorithms are explained in

detail.

3.1 Collision Detection Algorithms

Collision detection involves determining when objects penetrate each other. It is
clearly an expensive operation, particularly when large numbers of objects with
complex shapes are involved. Another issue is the ability to detect simultane-
ous collisions (multiple contacts at the same time). Furthermore, two objects
may collide in such a way that a region, rather than a set of isolated points,
may contact. Collision detection has been extensively pursued in the fields of
CAD/CAM and robotics [1]. Some of the proposed algorithms solve the problem
in more generality (and at higher cost), and some others do not easily produce
the collision points and the normal directions necessary if collision response is
to be calculated. Finally, many collision detection algorithms are quite intricate

and must deal with assorted special cases.
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3.1.1 Collision Detection for Flexible Surfaces

Flexible surfaces are generally modeled as a grid of points which are connected
to form quadrilaterals or triangles. Collisions between surfaces are detected by
testing for penetration of each vertex point through the planes of any triangle,
or quadrilateral, not including that vertex (thus, self-intersection of surfaces is
detected). Initially, the surfaces should be assumed disjoint. For each time step of
animation, the positions of points at the beginning and at the end of the time step
must be compared to see if any point went through a triangle, or quadrilateral,
during that time step. If so, a collision has occurred. Consequently, the time
complexity of such an algorithm is O(nm) for n triangles, or quadrilaterals, and
m points. A correct test must consider edges and triangles, as polyhedral objects
can collide edge-on without any vertices being directly involved. However, in

many cases merely testing points versus triangles produces acceptable results.

3.1.2 Collision Detection for Convex Polyhedra

The detection of collisions between solids (or closed surfaces) that have a distin-
guishable inside and outside could be treated somewhat differently. The objects’
implicit (inside-outside) functions can be used for detecting collisions. We have
used this approach in our animation system to detect the collisions of deformable
models with impenetrable obstacles.

A very important problem with collision detection algorithms is that they
may fail to detect a collision if one object moved entirely through another during
a single time step. To minimize the frequency of occurrence of such a failure,

time steps should be reduced; this is the case in dynamic animations.

3.2 Collision Response Algorithms

After detecting collisions between two objects, the objects should move in a
physically correct manner. Collision response algorithms are developed to achieve

this goal.
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3.2.1 Amnalytical Collision Response Algorithms

An analytical solution for the collision of two arbitrary objects depends on the
conservation of momentum during a collision, and results in a new angular and
linear velocity for each body [5]. Thus, such a solution bypasses the question
of collision forces and can be used independent of dynamic simulation, assuming
information concerning the body’s mass and mass distribution is provided. Ana-
lytical solutions are typically faster for strong collisions, because the solution need
only be found once. However, for gentle collisions, such as a body resting quietly
on top of another, spring solutions may be desirable. An important deficiency of

analytical methods is that they are not suitable for flexible bodies.

3.2.2 Penalty (Spring) Methods for Collision Response

Penalty methods introduce restoring forces when objects inter-penetrate each
other [37, 44]. These methods do not generate any contact surface between in-
teracting objects but instead use the amount of local interpenetration to find
a force that pushes the objects apart. They are computationally expensive for
rigid bodies, give only approximate results, and may require different simulation
conditions. These undesirable behaviors arise from the attempt to model infinite
quantities (such as rigidity) with finite values. In particular, the differential equa-
tions that arise using penalty methods may be “stiff” and require an excessive
number of time-steps during simulation to obtain accurate results. The advan-
tages of penalty methods are that they are easy to implement, and are easily
extensible to non-rigid bodies. We have used this approach in our animation

system.



Chapter 4

Nonrigid Models

To animate nonrigid objects in a simulated physical environment, we should use
the methods of elasticity theory. Elasticity theory provides methods to construct
the differential equations that model the behavior of nonrigid curves, surfaces,
and solids as a function of time. Real materials exhibit both elastic and inelastic
behavior. Some materials undergo perfectly elastic deformations so that when
the forces acting on the materials are removed, objects restore themselves to their
natural shapes completely. However, there are other materials, such as cloth and
paper, that restore themselves to their initial shapes slowly (or partially) upon
removal of the forces that cause deformations.

To model elastic materials, physical properties such as tension and rigidity
should be simulated. In this way, static shapes of a wide range of deformable ob-
jects, including string, rubber, cloth, paper, and flexible metals, can be modeled.
Dynamics of these materials can be simulated by including physical properties,
such as mass and damping. The simulation involves numerical solution of the
partial differential equations that govern the evolving shape of the deformable

object and its motion through space.

14
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4.1 Formulation of Deformable Models

To simulate the dynamics of elastically deformable models, we use two existing

formulations: the primal formulation [37) and the hybrid formulation [38].

4.1.1 Primal Formulation

Here, a deformable model is formulated by using the material coordinates of
points in the body (denoted by Q). For a solid body u = (uy, us,us) (for a sur-
face u = (u1,u) and for a curve u = (u;)) denotes the material coordinates.
The Euclidean 3-space positions of points in the body are given by time-varying
vector-valued function x(u,t) = [z1(u,t), z2(u,t), 3(u,t)]. The body in its nat-
ural rest state is given by x°(u) = [29(u), z9(u), z3(u)] (Fig. 4.1). The equations
of motion for a deformable model can be written in Lagrange’s form as follows
(this should hold for all u in the material domain ():

J, ox Ox | be(x)

where p(u) is the mass density of the body at u, y(u) is the damping density of

the body at u, f(x,t) is the net externally applied force, and £(x) is the energy
functional which measures the net instantaneous potential energy of the elastic
deformation of the body.

The shape of a body is determined by the Euclidean distances between nearby
points. As the body deforms, these distances change. Let u and u + du denote
the material coordinates of two nearby points in the body. The distance between
these points in the deformed body is given by
dl = z ngd’u,gd’uj', (4.2)

4,
where the symmetric matrix

0
Gij(x(u)) = 5;)2‘ . g% (43)

is the metric tensor, which is a measure of deformations. (The dot indicates the

scalar product of two vectors.)
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deforming body

0 undeformed body

Z

Figure 4.1: Geometric representation of a deformable body for primal formula-
tion.

Two 3D solids have the same shape (differ only by a rigid body motion) if
their 3 x 3 metric tensors are identical forms of u = [uy, uz, us}, for all u in the
material domain ). Two surfaces have the same shape if their metric tensors G
as well as their curvature tensors B are identical forms of u = [u, us], for all u
in the material domain 1. The components of the curvature tensor are

0%x

B;;(x(u)) =n- i,

(4.4)

where n = [n;,ng2,ns] is the unit surface normal. Two space curves have the

same shape if their arc length s(x(u)), curvature «(x(u)), and torsion 7(x(u))
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are identical forms of u = [u]. (See [13] for a detailed discussion of these formu-
lations.)

Using the above differential quantities, potential energies of deformation for
use in Lagrange equations can be defined as the norm of the difference between
the fundamental forms of the deformed body and those of the undeformed body.
This norm measures the amount of deformation away from the natural shape
so that the potential energy is zero when the body is in its natural shape and
increases as the model gets increasingly deformed away from its natural shape.

If the fundamental forms associated with the natural shape are denoted by

the superscript 0, then the strain energy for a curve can be defined as
g(x) = /{; w(s — 5% + w?(k — £°)? + w?(r — 7°)%du, (4.5)

where w!, w?, and w?® are the coefficients for the curve, showing the amount of
resistance to stretching, bending, and twisting, respectively. The strain energy

for a surface can be defined in a similar way:
e(x) = [ G = Gl +I|B — B oadurdus, (46)

where the weighted matrix norms ||-[|w: and ||-||w2 involve the weighting functions

w};(uq, uz) and wi;(u1,us). Analogously, a strain energy for a deformable solid is
e(x) = j{) G — GO|[2,1 duy dusdus (4.7)

where the weighted matrix norm [|-||w involves the weighting function wj;(u1, us,
Us).

These energies denote the amount of energy to restore the deformed objects
to their natural shapes. The net external force in Lagrange’s equations is the
sum of various types of external forces, such as gravitational force, spring forces,
viscous forces, etc.

The weighting functions in the above energies (w};(u1, u2) and w(uy, ug) for
an elastic surface) determine the properties of the simulated deformable mate-
rial. The weighting function wj;(u;, u) determines surface tensions and sheer

strengths which minimize the deviation of the surface’s actual metric coefficients
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Gi; from its natural coefficients Gf;. As w}; is increased, the material becomes
more resistant to length deformation, with wi; and w}, determining this resis-
tance along uy and u,, and w!, = wl; determining the resistance to shear defor-
mation. The functions w;(u;,uz) control surface rigidities which act to minimize
the deviation of the surface’s actual curvature coefficients B;; from its natural
coefficients Bf;. As w}; is increased, the material becomes more resistant to bend-
ing deformation, with w?, and w3, determining this resistance along u; and u,,
and w}, = w}, determining the resistance to twist deformation. To simulate a
strechy rubber sheet, for example, we make w}; relatively small and set w? = 0.
To simulate relatively stretch-resistant cloth, we increase the value of w};. To
simulate paper, we make w;; relatively large and we introduce a modest value for
w;. Springy metal can be simulated by increasing the value of w?; [37].

To create animation with deformable models, the differential equations of mo-
tion should be discretized and the system of linked ordinary differential equations
obtained from the discretization process should be solved. For the discretization
process, there are two basic ways. One way is to choose a finite number of points
for a continuous model, and to replace derivatives by differences; this is called the
finite difference method. The other way is to choose a finite number of functions,
and to approximate the exact solution by a combination of those trial functions.
If the functions are piecewise polynomials, then the pieces can be chosen to fit
the geometry of the problem and a program can generate the polynomials. This
method is called the finite element method. It allows a program to assemble
the discrete problem and solve it. In our implementation, the finite difference
method is chosen for discretization process since difference equations are easier

to program and faster to run than a full finite element code.

4.1.2 Hybrid Formulation

In this formulation, a deformable body is represented as the sum of a reference
component r(u, t) and a deformation component e(u, t) (Fig. 4.2). The positions

of mass elements in the body relative to a body frame ¢ (whose origin coincides
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Z

Figure 4.2: Geometric representation of deformable models for hybrid formula-
tion.

with the body’s center of mass and which should be evolved over time according
to the rigid body dynamics to have a rigid body motion besides its elastic motion)

are given by
q(u,t) = r(u,t) + e(u, ). (4.8)

In this formulation, deformations are measured with respect to the reference
shape r. Elastic deformations are represented by an energy e(e) that depends

on the position of the reference (body) frame ¢. The potential energy functional
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for the hybrid formulation can be written by using simple, linear restoring forces

resulting from controlled continuity spline energies [35] as follows:

cle) =1 [ T | e P, (4.9)

m=0|jjmm 11+ - Jd!

where § = (j1,...,j4) 18 a multi-index with | 7 |= 71 +--- + j4, and

am
O = — 4.
J ou ... oul (4.10)

(d =1 for curves, d = 2 for surfaces, and d = 3 for solids). The energy density
under the integral is a weighted sum of the magnitude of the deformation e and
its partial derivatives with respect to material coordinates. The order p of the
highest partial derivative included in the sum determines the order of smoothness
of the deformation.

The weighting functions w;(u) in 4.9 control the properties of the deformable
model over the body coordinates as in the primal formulation. In the case of sur-
faces (d = 2), the function wge penalizes the total magnitude of the deformation;
wyo and wp; penalize the magnitude of its first partial derivatives; wqg, wy; and

wp, penalize the magnitude of its second partial derivatives [38].

4.2 Implementation of the Primal Formulation

To simulate the dynamics of a deformable surface, we should discretize the foliow-
ing expression for the elastic force, which is the approximation of the variational

derivative of the expression in 4.6.

Ox 0? 0%*x
«(z) = E Bu; (a” 8u,) + Ouiu; (ﬂij Buguj) ’ (4.11)

2,5=1

where the functions o;;{u, x) and §;;(u, x) determine the elastic properties of the

material. The expressions for a;;(u,x) and G;;(u,x) are as follows:
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a;(u, ) = wi;(u)(Gi; — GY) (4.12)
Bij(u,x) = wii(u)(Bi; — BY)) (4.13)

The discretization is achieved by applying finite difference approximation
method.

Since the body coordinates of the models are in the unit square domain,
Q=0 < uj,uy <1, we discretize this domain as a regular (M + 1) x (N + 1)
discrete grid of nodes. Here, the inter-node spacings are h; = 1/M and hy = 1/N
in the uy and uy directions, respectively. The nodes on the discrete model are
indexed by integers [m,n] where 0 < m < M and 0 <n < N. Thus, if x (which
is a continuous vector function x(u,t)) is the 3D coordinates of the positions of
points, then we discretize it by arrays of continuous time vector-valued nodal
variables x;[m,n] = x(mhq, nhs, t).

Since the elastic force requires the approximations to the first and second
derivatives of the nodal variables, we should first define them for the vector-
valued position function x.

The forward difference operators
Dix[m,n] = (x[m + 1,n] — x[m,n])/h (4.14)
D xlm,n] = (xm, .+ 1] — xlm, ) /b (4.15)
and the backward difference operators
Dix[m,n] = (x[m,n] —x[m — 1,n])/h (4.16)
D5 x[m,n} = (x[m,n] — x[m,n — 1])/hs (4.17)
can be used to define the forward and backward cross difference operators

Df,x[m,n] = D§ix[m,n] = Df D x[m,n] =

(4.18)
(x[m +1,n + 1] = x[m + 1,n] — x[m,n + 1] + x[m, n])/h1h,

Dppx[m,n] = Dyx[m,n] = Dy Dy x[m,n] = wio)
(x[m,n] = x[m,n — 1] —x[m — 1,n] + x[m — 1,n — 1])/h1hy
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and the central difference operators

Dux[m,n] = D7 Df x[m,n] = (x[m + 1,n] — 2x[m,n] + x[m — 1, n])/A?  (4.20)
Dayyx[m,n] = D7 Df x[m,n] = (x[m,n + 1] — 2x[m, n] + x[m,n — 1])/k  (4.21)

Now, using the grid functions x[m, n], w};[m, n],w}[m,n] to represent their con-

tinuous counterparts, we can discretize 4.12 and 4.13 as follows:

aij[m, n] = wi;[m, n](Df x[m,n] - D} x[m, n] — Gf;[m, n]) (4.22)
bij[m, n] = wij[m, n](n[m, n] - Dx[m, n] — Bjj[m,n]), (4.23)
where the superscript (+) indicates that the forward cross difference operator is
used when 7 # j, and

Dfx[m,n] x Dfx[m,n]
| Df x[m,n] x DF x[m,n] |

n[m,n] = (4.24)

is the surface normal grid function. The elastic force in 4.11 can be approximated

as

elm,n] = i —D; (a:;D} x[m, n]) + D;(bi; Df;x[m, n]). (4.25)
ij=1
To introduce free boundary conditions on the free edges of a surface, where the
inner difference operators in 4.25 attempt to access nodal variables outside the
discrete domain, we set the value of the inner difference operators to zero.
Expressing the grid functions x[m,n] and €¢[m,n] as x and ¢ in grid vector
notation, which denote the 3D positions of model points and elastic force for
each model point stored in (M + 1) x (N + 1) vector for an (M + 1) x (N + 1)
discrete grid of a deformable model, elastic force can be written in vector form

e=K(x).x, (4.26)

where K is an (M +1)(N +1) x (M +1)(N +1) matrix. K is a sparse and banded

matrix. This becomes a major advantage when we solve the simultaneous system
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Figure 4.3: The band structure of the stiffness matrix K.

of second-order ordinary differential equations. The band structure of K is shown
in Fig. 4.3.

Then, we should calculate the total external force for each point of the model.
In order to achieve this, we should add the forces effecting a point, which are
gravitational, viscous, collision, and constraint forces. The constraint forces are
taken into account in the following way. When a constrained point tends to
move, an opposite force for bringing it back to its original position is calculated
and added to the total external force for that point. Each constrained point has
an effect on the total external force for all points in the model depending on
the difference between the body coordinates of the points. This coupling effect is
taken into account automatically according to the elastic properties of the models.
This method for calculating constraint forces gives good results for small time
steps. For larger time steps, the model points make small oscillations since this
approach corresponds to a corrective action.

The constrained points are specified by the user interactively. The system
displays a grid specifying the body coordinates of each point existing in the
model to be animated and the user selects the points to be constrained during
the animation (that is, the points that will not move during the animation)
using mouse buttons (Fig. 4.3). In other words, any point on a model could
be constrained to a fixed location in space so that when the model is animated,
the constrained points remain in their initial positions. The constraint force that

connects a material point ug on a deformable model to a point pg in space by a



CHAPTER 4. NONRIGID MODELS 24

Curve Paints ml : 20 : Resolution (1-360) : 36
£ DEPTH_SORT 3 GOURAUD_SHADE_OFF
_Ho. planes in s _______ Mo planes in z direction

(PRIWAL WERD)  (TWBRID VD) NG T
CVIND OFF ally
Delta t: 1.8 £ DON‘T SAVE MOVI

Less doformable jelly hyvie
Stretchy rubber sheet S
Cloth kehavier

HModerataly slastic object

Uther (Spocify spring constont)

1

Select constrained peints using middie-button

Figure 4.4: Screen dump during the specification of the parameters for an ani-
mation.

spring is
fs(u,t) = k(po — x(uo, t))6(u — ug), (4.27)

where k is the spring constant and é is the unit delta function.

The forces due to the collision of deformable models with impenetrable ob-
stacles are calculated using the obstacle’s implicit (inside-outside) function. The
obstacle exerts a repulsive force on the deformable model which can be calculated
as a function of the obstacle’s implicit function such that the force grows quickly
if the model attempts to penetrate the obstacle. This is achieved by creating

a potential energy function ¢ exp(f(x)/¢) around each obstacle, where f is the
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obstacle’s implicit function, and ¢ and £ are constants determining the properties
of the obstacle. In our system, the user can select different obstacles to exist in
an animation sequence by the help of a menu. Ellipsoids, toroids, hyperboloids
are possible choices for an obstacle. The repulsive force due to an impenetrable

obstacle (expressed using the gradient V of the potential energy function) is

fo(u,t) = —c ((Vf(x)/£) exp(—f(x)/¢) - n) m, (4.28)

where n(u,t) is the unit surface normal vector of the deformable body’s surface.
The implicit functions for different obstacles are given in Appendix A.
The mass density u(u1,us) and the damping density y(u1,uq) are discretized
as grid functions p[m,n] and y[m,n]. Let M be the mass matriz, an (M +
1)(N+1) x (M +1)(N +1) diagonal matrix with the u[m, n] variables as diagonal
elements, and C be the damping matriz constructed similarly from v[m, n].
Then the Lagrange equations can be expressed in grid vector form by the

simultaneous system of second-order ordinary differential equations

M% + C-‘% + K(x)x = {(x), (4.29)
where the net external force on the surface f(u1,u2) has been discretized into the
grid vector £ which represents the grid function f{m, n].

We integrate this system through time using a step-by-step procedure. Eval-

uating K(x) at time ¢ + At and f at ¢, and substituting the discrete time approx-

imations

d*x

=7~ (Kerar = 2%+ Xeal) /A, (4.30)
dx

— ~ (Kepar — Xear) /208 (4.31)
dt

into 4.29, we obtain the semi-implicit integration procedure

AtKH-At =8 (4.32)

where the (M + 1)(N + 1) x (M + 1)(N + 1) matrix

Aux,) = K(x) + (—&%M + 2*270) (4.33)
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and the effective force vector

1 1 1 1 .
B =L+ (2pM+ 550) =+ (M- 50) % (4:34)
with
%0 = (% — Xe_ae) /AL, (4.35)

Applying the above semi-implicit procedure, we can obtain the dynamic solu-
tion from given initial conditions x, and X, at ¢ = 0. During each time step, we
solve the sparse linear algebraic system in 4.32 for the instantaneous configuration
X, a: using the preceding solution x, and x, [37].

Implementation of the hybrid formulation follows the same steps described
for the primal formulation. The elastic force for the hybrid formulation can be

written as the variational derivative of the expression in 4.9 as follows:

_ 0 (08 _ 8 (,, o€, o ( e
€(e) = wooe — Bur (wlo 3u1) Buz (wOl 8142) + 2 (w% auf) +

(4.36)

52 aﬁe) _Qz_( a2e)
2505 (w118u18u2 +3ug Wo2gez ) -

Here, u = (u1, uz) are the surface’s material coordinates.

The only difference between the primal formulation and the hybrid formula-
tion is that the sparse, banded stiffness matrix K is constant in hybrid formula-
tion. The equations of motion can be expressed in semidiscrete form by a system
of coupled ordinary differential equations. The system contains two ordinary dif-
ferential equations for the translational and rotational motion of the model as
if all of its mass is concentrated at its center of mass, and a system of ordinary
differential equations whose size is proportional to the size of the discrete model.
These equations are solved in tandem for each time step with respect to the initial

conditions given [38].
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Figure 4.5: Numbering of the grid.

4.3 Spring Force Formulation for Deformable
Models

In the previous sections, the primal and the hybrid formulations were presented
and their implementation details were given. However, the formation of the stiff-
ness matrix automatically is very difficult and sometimes it becomes impossible
to solve the differential equations for animating the models because of the nu-
merical ill-conditioning problems. In this section, a new formulation is presented.
In this formulation, instead of forming the stiffness matrix automatically, elastic
properties are represented as external spring forces. Although handling the elas-
ticities using the stiffness matrix approach is elegant and the most suitable way,
our approach is more effective and very fast.

The inter-node spacings on the grid are hy = Ly/N, hy = L,/M in the
horizontal and vertical directions, respectively. Initially, we take hy = hy = b,

for simplicity.
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We can apply external forces to many of the grid points at the same time.
One type of such external force can be the gravitational force. These external
forces are known. Besides, if some of the grid points are constrained to the fixed
positions in space, then there will be some unknown spring (constraint) forces at
these points.

The line segments in the grid (Fig. 4.5) will correspond to the spring elements.
According to the initial positions of the grid points, there will be some spring
forces on the model.

The equations of motion for a deformable model (this should hold for all grid
points) are
M¥dix+ C—d—x-l-K(x)x = f(x) (4.37)

dt? dt
We can take the elastic force expression as an external force fx = K(x)x , and
take fx to the right hand side of the equation (4.37). This new form of the
equation will simplify the formulation procedure.

The position vector x for the model points is as follows (T denotes the trans-

pose of a matrix):
xT = [xI xT ... x%] (4.38)

where Xx; represents all the position vectors of the grid points on the i-th row,

and

= [y, oo iy (439
where x;; is the position vector of the grid point (¢,5) (¢ = 0,1,---,M;j =
0,1,---,N).

In 4.37, M is the mass matriz, an (M + 1)(V +1) x (M +1)(N + 1) diagonal
matrix which contains masses of the grid points as diagonal elements, and C is
the damping matriz, an (M +1)(N +1) x (M + 1)(N + 1) diagonal matrix which
contains dampers of the grid points as diagonal elements.

Note that 4.37 can be rewritten as

d? d
MEﬁx + CEEX = f(x) — fx(x) (4.40)
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In this way, there will be no need for calculating the entries of the stiffness matrix.
Instead of this, it is necessary to find the expressions for the column matrix fT
(external spring forces representing elasticities). The spring force vector can also

be partitioned as
fix =[5 £ - fif] (4.41)

where the entries in the vector £ = [fI, ff, --- ffy] correspond to the spring
forces acting at the grid points.

Using the discussion in [41] (pp. 359-362), the terminal equation of a two-
terminal spring component of free length £ in three-dimensional space is given
as
X1 — Xz

frr = & X — Xg) — § —— =
K G = xa) = E ]

(4.42)

where x; and X, are the position vectors of its terminal points. Note that calcu-
lation of the vector (x; — X2) is essential; it also appears in the second term of
this expression. Equation 4.42 can be used to obtain expressions for the entries
of fx in 4.41.

For the grid points not on the boundaries, the elastic force is calculated by
adding the spring forces applied to the grid point by its four neighbors.
fi=12--,M—-1and j=1,2,---,N —1 then (see Fig. 4.6)

3

_ e ) p FEiiKige ]
fg’j —_ k [(Xta.? x"s]—l) z”xi,]‘—xs’,]‘_z,“:

_ e Kij—XKi-1,4

+ k [(xi,j - Xi—l,j) 1,5 — %~ 511 . L

e x ) — f iR
+ k [(Xw Xij+1) — £ lixs,5~%i, 54211 |

+ k [(Xi,j - Xz‘+1,j) — { T J

l1%i,5 —Xig1,5]] |

(4.43)

For the grid points on the boundaries, three neighbors have an effect on the
elastic force (Fig. 4.7). For the grid points on the corners, only two neighbors
have an effect on the elastic force (Fig. 4.8). The elastic force expressions for the

grid points on the boundaries and corners are given in Appendix B.
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Figure 4.6: Interactions (couplings) between grid points (general case).

4.3.1 Implementation of the Spring Force Formulation

e Since the initial position vectors of the grid points are known, the vector

fx can be calculated from the external spring force equations.

e Then by solving the differential equation in 4.40 at the first step, next values

of the position vectors of the grid points are determined.

e The next value of the vector fx is calculated and the process is repeated.

As initial positions, we have & # { in general. Therefore fx # 0. In other
words, there will be some internal stresses in the system. If A = /, then fx = G.
On the other hand, if hy # hg, then fx # O initially (assuming that all the
springs have the same lengths). We may select the lengths of the horizontal
springs as £; = hy and the lengths of the vertical springs as £, = h, . In this case,
fx = O initially, and some of the £ factors will change to {; and the remaining
ones to #5 in the external spring force equations. Other modifications are also

possible; e.g., on the spring coefficients (k).
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Figure 4.7: Interactions (couplings) between grid points (boundaries).
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Figure 4.8: Interactions (couplings) between grid points (corner points).
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|

Primal Formulation

|

~ Number of | Preprocessing | Processing Time

Model Points Time of One Frame
(millisec.) (millisec.)

3 x3 0 67

5%x5 1017 83

10 x 10 2400 283

15 x 15 3950 600

20 x 20 6250 1183

25 x 25 9500 2000

30 x 30 14216 3883

35 x 35 21749 26182

Table 4.1: Preprocessing and processing times using the primal formulation.

4.4 Comparison of the Formulations

We have compared the processing times for generating an animation frame us-

ing different formulations. To compute processing times, simple Bézier surfaces,

having similar elastic properties, are animated using different formulations. Ta-

bles 4.1, 4.2, and 4.3 give the processing times of the animations of the Bézier

surfaces of different sizes, for the primal, hybrid, and spring force formulations,

respectively. The processing times for each frame given in the tables include

e the time for calculating the external forces for each model point,

e the time for calculating the entries of the stiffness matrix*,

e the time for calculating the 3D positions of model points, and

¢ wireframe rendering time of the calculated frame.

The same information in the tables is also plotted as two graphs (Figs. 4.9,

and 4.10) to compare the formulations in terms of the preprocessing times and

*This is for the primal formulation; for the hybrid formulation it is included in the prepro-
cessing time. For the spring force formulation stiffness matrix is not formed; external spring
forces between model points are calculated for each frame.
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[ Hybrid Formulation

Number of | Preprocessing | Processing Time
Model Points Time of One Frame
(millisec.) (millisec.)
3 x3 1483 67
5x5 2483 83
10 x 10 3700 233
15 x 15 5500 400
20 x 20 8200 650
25 x 25 12233 1050
30 x 30 18749 2017
35 x 35 31932 20166

Table 4.2: Preprocessing and processing times using the hybrid formulation.

| Spring Force Formulation
Number of Preprocéssing Processing Time
Model Points Time of One Frame
(millisec.) (millisec.)
3 x3 0 67
5 %5 950 83
10 x 10 2067 200
15 x 15 3500 433
20 x 20 5533 817
25 x 25 8383 1417
30 x 30 12350 2317
35 x 35 17766 3867

Table 4.3: Preprocessing and processing times using the spring force formulation.
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processing times. Although it seems from the graphs that the hybrid formula-
tion is superior to the primal formulation, they are complementing each other
for different elasticity properties. The nonquadric energy functional in primal
formulation causes a nonlinear elastic force associated with the deformable body
to appear in the partial differential equations of motion. Nonlinearity results
because the elastic force attempts to restore the shape of the deformed body to a
rest shape. The advantage of nonlinear elasticity is that it is in principle the most
accurate way to characterize the behavior of certain elastic phenomena. How-
ever, it can lead to serious practical difficulties in the numerical implementation
of deformable models for animation. The hybrid formulation offers a practical ad-
vantage for fairly rigid models, whereas primal formulation becomes unpractical
due to the nonquadric energy functional with increasing rigidity and complexity
of the models.

The spring force formulation generates animation frames faster than the pri-
mal formulation. The hybrid formulation is superior to the spring force formu-
lation for models having small size (less than 1000 model points). For larger
models, spring force formulation is faster. The primal formulation is the most
suitable formulation for highly rigid models. However, it is very difficult to form
the stiffness matrix automatically. Spring force formulation bypasses this problem
by modeling elasticities using external spring forces between model points.

An important advantage of the primal formulation over other formulations
is that it is easier to establish an intuitive link between the weighting functions
of the deformable models and the resulting elastic behavior. This is due to the

nature of the weighting functions as explained in section 4.1.

4.5 Other Methods for the Animation of Non-
rigid Models

The formulations that we have used employ continuous elasticity theory to model

the shapes and motions of deformable models. There are other approaches to



CHAPTER 4. NONRIGID MODELS 38

model and animate deformable models. In this section, some of these approaches
are explained.

Witkin et al. formulate a model for nonrigid dynamics based on global defor-
mations with relatively few degrees of freedom [45]. This model is restricted to
simple linear deformations that can be formulated by affine transformations. The
use of deformations that are linear in the state of the system causes the constraint
matrices in equations of motion to be constant. So, pre-inverting these matrices
yields an enormous benefit in performance. In [30], Pentland and Williams de-
scribe the use of modal analysis to create simplified dynamic models of nonrigid
objects. This approach breaks nonrigid dynamics down into the sum of indepen-
dent vibration modes. This allows Pentland and Williams to achieve a level of
control not possible with the massed equations normally used in dynamic simu-
lation. This approach reduces the dimensionality and stiffness of the models by
discarding high-frequency modes. High-frequency modes have no effect on lin-
ear deformations and rigid body dynamics. Both of these methods achieve large
computational savings at the expense of limited deformations.

Another method, based on physics and optimization theory, uses mathemati-
cal constraint methods to create realistic animation of flexible models [32]. This
method of Platt and Barr uses reaction constraints for fast computation of colli-
sions of flexible models with polygonal models, and augmented Lagrangian con-
straints for creating animation effects, such as volume preserving squashing, and
the molding of taffy-like substances. To model the flexible objects, the finite
element method is used in Platt and Barr’s work.

Thingvold and Cohen [40] define a model of elastic and plastic B-spline sur-
faces which supports both animation and design operations. They develope “re-
finement” operations for spring and hinge B-spline models which are compatible
with the physics and the mathematics of B-spline models. Their model can be
viewed as a continuous physical representation of a physical model rather than
the more standard discretized geometry point mass models. The motion of their
models is controlled by assigning different physical properties and kinematic con-

straints on various portions of the surface.
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In [44], an approach to imposing and solving geometric constraints on parame-
terized models is given. This approach is applicable to animation as well as model
construction. Constraints are expressed as energy functions, and constraint sat-
isfaction is achieved by solving energy minimization problems. Although this
approach is not as realistic as the above three approaches because of the lack of
physics, it is simple and general.

Metaxas and Terzopoulos [27] propose an approach for creating dynamic solid
models capable of realistic physical behaviors starting from common solid prim-
itives such as spheres, cylinders, cones, and superquadrics. Such primitives can
“deform” kinematically in simple ways. For example, a cylinder deforms as its
radius (or height) is changed. To gain additional modeling power they allow the
primitives to undergo parameterized global deformations (bends, tapers, twists,
shears, etc.). Even though their models’ kinematic behavior is stylized by the
particular solid primitives used, the models behave in a physically correct way
with prescribed mass distributions and elasticities. Metaxas and Terzopoulos
also proposed efficient constraint methods for connecting the dynamic primitives
together to make articulated models.

Breen et al. [10] propose a physically-based model and a simulation method-
ology, which when used together are able to reproduce many of the attributes
of the characteristic behavior of cloth. Their model utilizes a microscopic par-
ticle representation that directly treats the mechanical constraints between the
threads in a woven material rather than a macroscopic continuum approximation.
Their simulation technique is hybrid, employing force methods for gross move-
ment of the cloth and energy methods to enforce constraints within the material.
Although limited only to cloth object behavior in scope, their approach is very
realistic since a microscopic particle representation is utilized.

There are other physically-based models of flexible objects which are con-
cerned only with the static shape. Weil [42] propose a geometric approach for
interpolating surfaces to produce draped “cloth” effects. The cloths synthesized
with his model contain folds and appear very realistic. The cloth is assumed

to be rectangular, and is represented as a grid of three-dimensional coordinates.
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He uses the catenary curves to define the positioning of the points along a given
thread.

Feynman [14] described a technique for modeling the appearance of cloth.
His computational framework minimizes energy functions defined over a grid of
points. Feynman derives his functions from the theory of elasticity and from the

assumption that cloth is a flexible shell.



Chapter 5
Simulation Examples

This chapter gives some simulation examples produced by our animation system.

The examples show the salient features that are present in the animation system.

5.1 Simulation Examples Using Primal and Hy-

brid Formulations

We have implemented both primal and hybrid formulation in our system so that
the user can interactively select between them. In this way, the primal formulation
can be employed for highly nonrigid models, and the hybrid formulation can be
employed for highly rigid models.

In Fig. 5.1, we have used the primal formulation. The material properties
are adjusted to simulate a membrane not resistant to elongation or contraction,
and not resistant to bending. In this example, a discrete model of size 30 x 30 is
constrained from its four corners and falls by the effect of the gravitational force.

In Fig. 5.2, a flat surface which has the same material properties as the
surface in Fig. 5.1 and constrained from its center of mass falls by the effect of
the gravitational force.

In Fig. 5.3, we have used the hybrid formulation and set the material prop-

erties to simulate a paper. The model is constrained from three corners and a

41



CHAPTER 5. SIMULATION EXAMPLES 42

downward force is exerted on it.

In Fig. 5.4, an elastic model not resistant to elongation or contraction and
not resistant to bending falls on an impenetrable obstacle which is an ellipsoid.
The deformable model takes the shape of the obstacle when it collides with it.
To get better results in collision simulations, we should either take a very small
time step or use adaptive time stepping. Otherwise, we may detect collisions very
late, namely after the model points penetrate the obstacle.

In Fig. 5.5, a flat surface not resistant to elongation or contraction and not
resistant to bending falls on an impenetrable obstacle which is a toroid. The
surface takes the shape of the toroid when it collides with it.

Shaded versions of these simulation are given in Figs. 5.6, ..., 5.10.

5.2 Simulation Examples Using Spring Force

Formulation

In the spring force formulation, by setting the stiffness constants to different
values it is possible to obtain different elastic properties. In Figs. 5.11, 5.12,
and 5.13, a surface is assigned different elastic properties and constrained from
different points. Each part of the figures shows the form of the surface after a
specific number of animation frames. Initially, all the surfaces are flat.

In Fig. 5.14, a strechy sheet constrained from its three corners falls with the
effect of gravity. In Fig. 5.15, a strechy sheet constrained from its four corners
falls. In Fig. 5.16, a strechy sheet constrained from its center of mass falls. In
Fig. 5.17, a piece of cloth collides with an impenetrable obstacle, which is an
ellipsoid. In Fig. 5.18, a strechy sheet drops over a toroid. In Fig. 5.19, an
elastic surface drops over a toroid with a very small hole. In Fig. 5.20, an elastic

surface passes through a toroid.
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Figure 5.1: A highly nonrigid surface, constrained from its four corners, falls.
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Figure 5.2: A highly nourigid surface, constrained from its center of mass, falls.
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Figure 5.3: A piece of paper, constrained from three corners, applied a downward
force.
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Figure 5.4: A highly nonrigid surface collides with an ellipsoid.
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Figure 5.6: Shaded version of the simulation in Fig. 5.1.
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Figure 5.7: Shaded version of the simulation in Fig. 5.2.
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igure 5.8: Shaded version of the simulation in Fig. 5.3.
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Figure 5.9: Shaded version of the simulation in Fig. 5.4.
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Figure 5.10: Shaded version of the simulation in Fig. 5.5.
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Figure 5.11: Different elastic surfaces, constrained from three corners, fall.



CHAPTER 5. SIMULATION EXAMPLES 54

(a) k=1 (b) k=5

(c) k=10 (d) k=20

(e) k=30

Figure 5.12: Different elastic surfaces, constrained from four corners, fall.
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Figure 5.13: Different elastic surfaces, constrained from the center of mass, fall.
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Figure 5.14: A strechy sheet, constrained from its three corners, falls.
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5: A strechy sheet, constrained from its four corners, falls.
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Figure 5.16: A strechy sheet, constrained from its center of mass, falls.
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Figure 5.17: A piece a cloth collides with an impenetrable ellipsoid.
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Figure 5.18: A strechy sheet drops over a toroid.
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Chapter 6

Conclusions and Further

Research Areas

In creating good computer animation, the focus is not on the problem of complet-
ing a given motion task, but more importantly on how this task is to be performed
by the animated character. All the elements involved in an animated character
must cooperate in synchronized harmony. Most of the animation systems built so
far leave the burden of generating realistic animation to the animator. To rem-
edy this problem, fundamental principles of traditional animation, such as squash
and stretch, exaggeration, follow through, and overlapping action [20], should be
formalized as high level constructs.

Physically-based modeling has emerged as a means of creating realistic anima-
tion. It proposes methods to create active models which react to applied forces,
constraints, ambient media, or impenetrable obstacles, as one would expect from
real physical objects. In this way, computer animators are unconcerned with the
kinematic details of animations, knowing that physics will take care the low-level
motions.

Physically-based modeling adds new levels of representation to object descrip-
tion in addition to geometry. Forces, torques, velocities, kinetic and potential
energies, heat, and other physical quantities are used to control the creation and

evolution of models. To construct the differential equations of the motion of the
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models, different techniques (such as Lagrange equations, constraint-based meth-
ods) could be used. Constraint-based methods, which are highly suitable for this
purpose, unify the creation of complex models with the control of the motion
of the models. After constructing the equations of motion for the models, the
equations should be solved using fast numerical methods.

In this thesis, we introduced a system for animating deformable models. Also
a new formulation for animating deformable models, called the spring force for-
mulation, was presented. The animation system uses three different formulations,
namely the primal, hybrid, and spring force formulations, for animating the mod-
els so that the user could decide which one to use in an animation after considering

the advantages and disadvantages of each formulation.

6.1 Contributions of the Thesis

The salient contributions of the thesis can be summarized as follows:

e In the spring force formulation that is presented, the elastic properties of
the materials are represented as external spring forces, instead of using
the stiffness matrix approach. In this way, the problem of automatically

constructing the stiffness matrix is avoided.

¢ Since the stiffness matrix is not formed, models could be animated faster
than the other approaches. The linear system of equations that should
be solved to compute animation frames contains only mass and damping
values which are the diagonal entries. This allows us to use simple linear

system solving methods.

e The elastic properties of the materials could be given by setting the spring

constants to proper values.

e Since the formulation models a deformable object using a finite number
of grid points, it is possible to give different elastic properties to different

parts of a model.
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6.2 Future Research Directions

Future extensions to the research in this thesis could be summarized as follows:

e The equations of motion proposed for deformable models could be modified
in such a way that new types of constraints will be taken into account
by using external forces. This approach allows modeling and animating
articulated bodies consisting of rigid and nonrigid parts by creating complex
models from simpler primitives using point-to-point constraint. Also, other
constraints, such as point-to-path and orientation, could be used to control

the motion of the models.

e The animation system presented could be improved in rendering aspects.
Animated frames could be rendered using sophisticated ray tracers, and

texture mapping could be applied on deformable models.

¢ Aliasing artifacts (jaggies) noticeable in the animated frames could be elim-

inated by high-level visual processing.
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Appendix A

The Implicit Functions for
the Obstacles

Ellipsoid:

The implicit function for an ellipsoid is

flz,y,2) = (z/a1)* + (y/a2)* + (2/as)", (A1)

where aq, as, and a3 are the scaling factors.
Hyperboloid of one piece:

The implicit function for an hyperboloid of one piece is

f(e,y,2) = (z/a1)’ + (y/a2)” — (2/a5)’, (A.2)

where a1, ag, and a3 are the scaling factors.
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Toroid:

The implicit function for a toroid is

fz,y,2) = (((z/a1)” + (y/82)*))*° — a0)® + (2/a5)?, (A.3)

where a1, ag, and a3 are the scaling factors, and a4 = a/ \/Eaf + a2). Here, a is

the torus radius.

f(zo,Y0,20) =1, (o,Y0,20) is on the surface.
if f(zo,y0,20) > 1, (z0,Y0,20) lies outside the surface. (A.4)

f(zo,¥0,20) <1, (zo,Y0,20) lies inside the surface.

These inside-outside functions are given for the surfaces in standard positions
and orientations (e.g., centered at origin). To describe obstacles in desired con-
figurations, it is necessary to translate and rotate these objects. The rigid body
transformations are invertible; thus, the original inside-outside function can be
used after a function inversion. If the original surface is denoted by z, and trans-

lated and rotated surface is denoted by Z then the new surface is given by,

=Mz +b, (A.5)

&

where M is a rotation matrix, and b is a displacement vector.
The new inside-outside function is calculated by inverting the transformation

and substituting into the old inside-outside function; i.e.,

F(&,9,%2) = flz,9,2), (A.6)
where
z z— b1
y | =M | §—b (A7)
z z—bs

Note that M~! = MT since the rotation matrices are orthogonal.



Appendix B

The External Spring Force

Expressions

In this part, the external spring force expressions for the grid points that are on

the boundaries and corners are given.

B.1 The External Spring Force Expressions for
the Boundaries

If:=0andj =1,2,---,N — 1, then (see Fig. 4.7 (a))

Xo,; —Xo0,;-1
e we . ) _ p Xoji~Xo -1
[ (%o 4§~ %oj-1) — ¢ l1x0,; —%0,;1 | ]

k (%0 — Xo41) — € pani=ioats, (B.1)

fI%0,; —%o,5+1 1|

o, =

Z Xo,;~%X1,4

+
+ k [(Xo,j — X1,5) — 10,5 —x1 5]
M a

If ¢ = nd j = 1,2,--- ,N — 1, then (see Fig. 4.7 (b))
fu; = k [(XMJ Xm,5-1) = £ I:ﬁjzzz,:u]
R —Xngp1
+ k[ Gy~ %) ~ an,—xﬁmu] (B.2)
Xpi =XM1y
+ k [(XM'j - XM_I’j) HXMJ'—X:; i:“]
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If i =1,2,---,M—1and jy = 0, then (see Fig. 4.7 (¢))

Xi,0—Xi—1,0
4 0 — . — _—,—_L.__’ =
[ Xi0 Xi-1,) fIxi0—Xi—1,0ll ]

k|(
k[ (ki — Xipr) — € b, | (B.3)
k| (

h
©
I

-+

J[%i,0~%Xig1.0]

L . Xio—X;1
{ xZ,O xzyl) é ”x; O_Xl 1 “ ]

+-

Ifi=1,2---,M—1and j = N, then (see Fig. 4.7 (d))

.y X N—Xi—1,N

fz’,N — [(Xz N — X1, N [, v ~%i—1, v |
KN =Xip 1N
+ [(x2 N—Xipin) — 4 (1%, N —Xig1,wv [[ (B-4)
+ [(XzN XiN-1) — { ettt

%, v =%, 31 ]
B.2 The External Spring Force Expressions for
the Corners

If 7 = 0andj = 0, then (see Fig. 4.8 (a))

fo.0 = k [(Xo,o — Xo,1) — £ uiﬁ,ﬁiiﬁ,iu ] } (B.5)
Xoo0—X
+ k {(Xo,o —X1,0) — ¢ |]xg,z—x1,§ll ]

If : = 0 and ;j = N, then (see Fig. 4.8 (b))

fon = Kk [(Xon —Xon-1) — £ paaiont, | } (B.6)
X -X )
+ k [(XO,N—XI,N)_KII_X%?%-_X%,%I_I

If ¢ = M and j = 0, then (see Fig. 4.8 (c))
fro = K [(omo— Xmorg) — € pei=te } B7)

X —-X
+ k[ (o — xma) —fﬁ*ﬁﬁ]

If : = M and j = N, then (see Fig. 4.8 (d))

Y] XM N—XpM—1.N

far v = k [(XM,N — XM-1,N) — [i%n, v =X 011 N“] } (B.8)

XM N—Xn,N—1 ]
—— — =T LA SRS T St
+ k [ (XM’N Xp.n-1) — £ [ ns, v =X 5z, N1 |
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