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SHORT-TERM SOLAR IRRADIANCE FORECASTING WITH DEEP NEURAL

NETWORKS

ABSTRACT

Usage of solar energy has increased through the last decades, and they are being in-

tegrated into main grid systems since the recent years. In order to fully benefit from

solar panels, predicting irradiance is essential. By knowing 15-minute ahead values

of solar irradiance, resistance of the cells inside the solar panels can be measured to

analyze production output. This study focuses on 15-minute ahead forecasting of

irradiance by using sliding windows method on the feature set. ANN, K-NN, SVM

and RF models are optimized in this study. As the result of the study, around 6%

MAPE is achieved.

Keywords: Solar Irradiance Forecasting, Artificial Neural Networks, Ran-

dom Forest, K-Nearest Neighbor, Short Term Forecasting

i



DERİN SİNİR AĞLARI KULLANIMIYLA KISA SÜRELİ GÜNEŞ IŞIMASI

TAHMİNLEMESİ

ÖZET

Güneş enerjisinin kullanımı son 10 yıl içerisinde artş göstermektedir. Ek olarak

bu kullanım, son yıllarda, şebeke sistemleri ile entegre edilmeye başlanmştır. Güneş

panellerinden tamamıyla yararlanabilmek için, ışımayı tahmin edebilmek çok önemlidir.

15 dakika sonrasındaki güneş ışıması değerlerini bilerek, güneş paneli içerisindeki

direnci tahmin edebilir ve üretimi analiz edebiliriz. Bu çalışma sürgülü pencere

yöntemini kullanarak 15 dakika sonrasındaki ışıma tahminlemesine odaklanmıştır.

Yapay sinir ağları, k-en yakın komşu ve rassal orman modelleri bu çalışmada opti-

mize edilmiştir. Bu çalışmanın sonucunda, yaklaşık olarak 6% mutlak yüzde hataya

ulaşılmıştır

Anahtar Sözcükler: Güneş Işıma Tahminlemesi, Yapay Sinir Ağları, Ras-

sal Orman, K-En Yakın Komşu, Kısa Dönemli Tahminleme
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1. INTRODUCTION

By the increase in the usage of renewable energies, these systems became more

integrated into the grid systems. Solar energy is the most abundant renewable energy

exists in the world (Szuromi et al, 2007). There are two ways to convert solar energy

into electricity. Solar Thermal Power Plants (STPP) convert the direct normal solar

irradiance to electricity by using the heat of beams whereas Photovoltaic plants

directly convert energy into the electricity (Lara-Fanego et al. 2012). Worldwide

photovoltaic production increases continuously and it is estimated by International

Energy Agency (IEA) that 2% of the electricity demand of the world would be

satisfied by solar production by 2030 (IEA, 2006a). Thus it became a necessity

predict output of these systems as they became integrated into the large scale power

systems (Espinar et al, 2010). As energy production from other conventional sources

can easily be calculated, due to the high variability in the weather conditions, it is

difficult to predict precisely. It is necessary to predict output for following days and

hours in order to accomplish a successful integration into the power systems.

Due to the increase in the integration and application of solar energy, requirement for

solar data has increased dramatically in the recent years (Mellit Pavan, 2010). Solar

irradiance is forecasted within the usage of different approaches; including machine

learning models, meta-heuristic algorithms and empirical relations. Nevertheless,

three factors are taken into the account during the selection of optimal model for

irradiance prediction.

Firstly, data resolution and forecasting horizon play a vital role in the model se-

lection. Data resolution refers to time intervals between the successive data points

which are used in the model. Depending on the data resolution, forecasting horizon

1



is determined accordingly. There are mainly three forecasting horizons which can

be used for solar irradiance prediction. Long-term forecasts are used mainly for the

deciding the installations of the solar plants. By measuring the solar radiation over

the long term, it is possible to increase utilization of solar plants by deciding the

best location. Long term forecasts cover the predictions that are 1-year ahead or

more. Data resolution belonging to the long-term forecasts have monthly or yearly

intervals in general. Medium-term forecasts are used mainly for arranging the deals

between energy companies, institutions and customers. By determining the approx-

imate output gained from the solar plants, electricity retailing companies can decide

the amount and price in the electricity supply and demand prices within free con-

sumers and solar plant owners. Data resolution belonging to the medium- term

forecasts have weekly or monthly intervals in general. Short-term forecasts are used

mainly for supporting decision making processes during the planning of electricity

production. By determining the amount of electricity gained from the solar plants

and other renewable energy sources, production amount from fossil fuels (natural

gas, coal, oil) can be adjusted. This will help within the over and underproduc-

tion situations. Overproduction of electricity may result in the waste of resources

whereas underproduction of electricity may potentially cause city or countrywide

electricity blackouts. Alternatively, very short- term forecasts can be used for mo-

mentarily adjustments in the solar panels. Angle of the solar panel and resistance

of solar panels can be determined using the very short-term forecast data. Data

resolution belonging to short-term forecasts include 1-minute, 15-minute, 45-minute

and 1-hour.

Secondly, availability of atmospheric variables plays a vital role in the determination

of optimal model for solar radiance forecasting. Basically, Global Horizontal Irradi-

ance (GHI) amount determines the output of solar plants (Remund, Perez Lorenz,

2008). GHI is the total amount of radiation which is obtained from above through

to the surface that is horizontal to the ground. GHI is determined based on the

equation 1 below. Diffuse Horizontal Irradiance (DHI) in the formula refers to the

amount of radiation that is received from a surface that arrives through the scat-
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tered molecules and particles in the atmosphere, rather than the directly arriving

radiation from the sun. In other words, it is the radiation which arrives from the

blue sky and clouds. Direct Normal Irradiance (DNI) in the equation refers for the

quantity of solar radiation that received from surface by an angle. Maximum solar

radiation is achieved when the surface is perpendicular to the incoming radiation.

Since the sun is continuously shifting during the day and solar beams refract when

they enter into the atmosphere, determining the angle of solar panels is another

possible adjustment to fully utilize the solar panels. In that case, cosine of the angle

between the surface and beams are used in the equation in order to calculate the

amount of DHI.

GHI = DHI +DNI ∗ cos(z) (1.1)

There are various factors that affect the DHI. Solar elevation, which is the distance

between the sun and horizon directly affects the amount of DHI (Reno, Hansen

Stein, 2012). Maximum irradiance potentially occurs when the sun is at the most

perpendicular position. Cloudiness is another factor that greatly affects the amount

DHI because of the fact that clouds may partially block sun beams from reaching

to the surface of earth. Weather condition on wind on the other hand, affect the

power output of the solar panels. Because of the fact that utilization of the solar

panels is directly affected from heat, wind and rain factors are included in the solar

radiation forecast models. They are also indicators of the cloudiness in one sense.

Alternatively, there are several other factors that are considered in order to choose

the optimal model for solar radiance forecasting. Climate of the forecasting region

plays a vital factor because of the fact that the significance of the atmospheric

variables may change depending on the region. Also, additional variables are taken

into the account in specific climates. For instance, sand variable is used in the

forecasting models which are built for desert regions.

Thirdly, accuracy of the models plays a vital role in the selection of solar radiation

3



forecasting. Generally speaking, the frequently used factors are Root Mean Square

Error (RMSE), Mean Bias Error (MBE), Mean Absolute Error (MAE) and Mean

Absolute Percentage Error (MAPE). The used accuracy metric affects the applica-

bility of the models. The solar radiance amounts during the day start from low,

increase in the following hours and decrease afternoon in general. For that reason,

difference of amount of the solar radiation between different hours of the day may be

large. Selection of RMSE as the accuracy metric in the optimization models would

cause in the avoidance of high forecasting errors in where radiation is an extreme

outlier within the day. Selection of MAE would cause in treating all of the data

points equally, which generates an approximate forecasting error for any interval.

Selection of MAPE aims for percentage error, which results in giving importance

primarily for the intervals where the interval is lowest. Nevertheless, selection of

MAPE causes MAE for the interval where the solar radiation is highest. For that

reason, models should be optimized and compared in terms of different metrics in

order to gain a better insight. For most of the cases, MAE is the most frequently

used metric for the comparison. However, when models which are built for different

regions are compared, accuracy metrics may lead into the faulty decisions, as the

amount of solar radiation differs between different regions and climates. Addition-

ally, seasons have a drastic effect on the models. In literature, there are generally

specific models which focus on seasonal forecasts, such as summer and winter. As

irradiance duration during the winter months are shorter and beam angles are lower,

the amount of solar radiation is lower.

In the literature, Artificial Neural Network (ANN), K-Nearest Neighbor (K-NN)

Support Vector Machines (SVM) and Random Forest (RF) models are frequently

used for solar radiation forecasting tasks because of several reasons. Especially in

short-term forecasting tasks, thousands of data tuples which include GHI amount

and features exist and simple models are not capable of handling this data. There

is also no linear relation between the features and the output, and determining

the nonlinear relations require advanced models. Hence, Deep Neural Networks

(DNN) are frequently used for this purpose. In DNN cases, there are different
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factors that are taken into the account. Universal approximation theorem states that

neural networks with a single hidden layer and a nonlinear activation function can

approximate any continuous function with zero error; meaning that any optimization

problem can be solved within the neural networks. However, there are several factors

which must be taken into the account in ANN models. First of all, settings of hyper

parameters directly affect the performance of the model; both in terms of accuracy

and algorithm efficiency. Loss function type, number of hidden layers and nodes,

optimization function and batch size are the hyper parameters that are included

in the neural networks. In SVM and RF models, there are less types of hyper

parameters which make it easier for these models to find the best accuracy.

There are theoretically infinite number of settings that can be applied in order

to reach the best results. Nevertheless, it is not achievable in practice (Yager

Kreinovich, 2003). For that purpose, hyper parameter optimization techniques are

used in order to reach the best model. Grid search, random search and meta-

heuristic algorithms are frequently used for hyper parameter tuning. Grid search

method is basically a brute force approach which tries all the possible settings in a

grid of hyper parameters and finds the best model according to the defined accu-

racy metric. Although it guarantees finding the best model in the given parameter

choices, it is computationally inefficient and also it limits user between a discrete

set of hyper parameters. Random search on the other hand, is a faster version

of grid search which only considers the random combination of given parameters

in the defined iterations. It generally results in a worse models compared to the

grid search. Nevertheless, it is computationally more efficient than the grid search

method. Alternatively, metaheuristic algorithms (Bat Algorithm, Firefly Algorithm,

Particle Swarm Optimization) can be used in order to optimize the hyper param-

eters. Metaheuristic algorithms can find a superior point compared to the initial

point in a given subspace, without providing the optimal solution. Nevertheless,

hyper parameter optimization is still a challenge to overcome in ANN models.

Purpose of this thesis is to develop and compare the forecasting models for GHI.

5



Mainly, machine learning models will be used for this purpose. Dataset belonging

to the Oak Ridge National Lab, belonging to the May, June, July and August

months of 2016, 2017, 2018 and 2019 will be used in this study. As for machine

learning models, DNN, K-NN, SVM and RF will be used for that purpose. There

are two main contributions which will be provided within this methodology. First

contribution is the forecasting horizon from the given data resolution. Belonging

data to the Oak Ridge National Lab has 1-minute data intervals and from this data

resolution, predictions for 15 minutes ahead will be made, without knowing any of

the data for the next 15 minutes. Second contribution is about the features that will

be used in this study. Wind direction is integrated into the feature set and sliding

windows method is applied in all of the features.
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2. MACHINE LEARNING METHODS

2.1 Artificial Neural Networks

Artificial neural network is a methodology that is developed by inspiring from bi-

ological neural networks which human brains have. The reason of this inspiration

is because brain is an incredible information processor. People focused on brains

learning or processing structure in order to develop similar structures or algorithms

for computers. Solely, human brains are very different from computers. Man (1982)

discussed three levels of understanding an information processing; computational

theory, representation and algorithm and hardware implementation. According to

Gnen and Alpaydn (2011), people are at level of algorithm and representation level

in understanding the brain and neural networks. There are many applications of

neural networks such as picture and speech recognition, signature verification, and

forecasting.

Briefly, the aim of the methodology is to work many machine learning algorithms

together with data inputs to produce outputs. To understand how neural network

is processing the data, some of the basic elements need to be defined such as per-

ceptron, multilayer perceptrons, back propagation algorithm, and gradient descent

algorithm.

2.1.1 Perceptron

In 1950s, Rosenblatt developed perceptrons. A perceptron may have inputs and its

outputs may be inputs for other perceptrons. Basically, a perceptron takes inputs

and produces outputs. For each connection, a weight w is defined which is called
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connection weight. The z is defined as weighted summation of the inputs. The

output y is defined as the function value of z, where [w = [w0, w1, w2, ...wn]T vector

of weights and X = [1, x1, x2...xn] vector of inputs.

z = W TX (2.1)

For each node, an activation function G(z) is defined. The output of the function

will give activation value (a) of that node.

G(z) = a (2.2)

2.1.2 Multilayer perceptron

A single perceptron cannot be used for nonlinear functions of inputs. As a result 

of that, multilayer perceptron methodology is applied in such cases. This method 

includes hidden layer(s) between input and output layers. For each node, activa-

tion value and activation function is defined similar equations defined above. Xi is 

taken to input layer and weighted summation (z) is calculated. Later the activation 

function to weighted summation is calculated in order to find the activation value 

a. For output layer, the activation value ”a” is equal to y, output.

2.1.3 Back propagation algorithm

Back propagation algorithm was developed in 1970s but its importance became 

noticeable in 1986 by Rumelhart et al. It was an important development in terms 

of learning in neural networks. Basically, the aim of this algorithm is to see which 

weights are more significant on the error and assign new values to those weights 

using gradient descent algorithm. Thus, the error can be decreased.

σE/σWhj = (σE/σYi) ∗ (σYi/σZh) ∗ (σZh/σWhj) (2.3)

If a nonlinear function with a single output is taken into account, Output y is

8



calculated as:

Y t =
∑
h

Vh ∗ Zt
h + V0 (2.4)

The error function is as follows:

E(W, v|X) = 1/2
∑
t

(rt − yt)2 (2.5)

In the given equation, rt stands for real values. The error function depends on the

problem type. If the analysis is regression, the least-squared is used. If the analysis

is classification, then the cost function of logistic regression is valid. In order to

update hidden layer weights, least-squared rule is used.

∇Vh = n
∑
t

(rt − yt) ∗ Zt
h (2.6)

The terms (rt − yt) play the role of error for , the hidden unit. The error in the 

output is (rt − yt). Additionally, Zt
h ∗ (1 − Zt

h) is the the derivative of activation 

function in the equation. Xj
t is the derivative of Zh. In order to obtain ∇Whj Vh , 

we need to use . At the beginning of the algorithm, the weights are given as random. 

Later, using this algorithm the weights effect is calculated. Then, using gradient 

descent the new weights will be assigned.

2.1.4 Gradient descent

Gradient descent is an iterative algorithm to minimize a function by moving in a 

direction that is negative of the gradient. This algorithm is used in machine learning 

to adjust parameters. α is learning rate and Wi is a neighbor point on function.

W(i+ 1) = Wi − a ∗ ∇F (Wi) (2.7)
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If F(x) is convex, the convergence to global maximum is guaranteed. For artificial

neural networks, given a learning rate of alpha, W+
i stands for new value of weight

w Wi stands for existing weight∇W i stands for the effect of Wi on cost function. 

Thus, the weights can be assigned and cost function can be improved.

2.1.5 Neural network hyper parameters

Optimizers shape and mold neural networks into its most accurate possible form 

by updating the model in response to the output of the loss function. The type 

of optimizers used that are generally used in researches are Stochastic Gradient 

Descent, RMSprop, Adam and Adadelta.

Adam is an adaptive learning rate method which means, it computes individual 

learning rates for different parameters. Adam optimizer uses estimation of first and 

second moments of gradient to adapt the learning rate for each weight of the neural 

network. The method is computationally efficient. It has little memory requirements 

and is well suited for problems that are large in terms of data and parameters.

Adadelta is an optimization method that uses the magnitude of recent gradient and 

steps to obtain an adaptive step rate. An exponential moving average over the 

gradients and steps is kept; a scale of the learning rate is then obtained.

RMSprop uses a moving average of squared gradients to normalized the gradient 

itself. It balances the step size. It decreases the step for large gradient to avoid 

exploding and increase the step for small gradient to avoid vanishing.

In the working process of neural networks, each layer feeds the next one with its 

outputs and those outputs become next layers inputs. What makes an input into 

output in a node is the activation function on that node. Basically, when a signal 

comes to a node it has its X value. This X value gets into the activation function and 

takes an output value. If activation functions were not in use in a neural network, 

inputs still vary when they get multiplied with weights. Yet the problem in this
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situation is that the model would be linear. Neural networks are capable of handling

complex models because with the activation functions they can achieve non-linear

properties in the model. Non- linearity is important because it achieves better fitting

in big complex datasets. One can create his/her own activation function yet there

are some famous ones that can achieve the most out of the models. They are linear,

ReLu, SeLu and ELu.

Linear activation function is a simple function that is simply . It is a line function

where activation is proportional to input with c. Since c is constant, in back prop-

agation the changes are constant. This way, changes are not dependent to . Linear

activation function is not considered good in general.

Relu is the shortened version of rectified linear unit. It is the most used most general

activation function in deep learning. Function of Relu is stated below.

R(x) = max(0, x) (2.8)

Relu captures interactions and non-linearities very well. When more than one signal

comes to the node with ReLu activation function, the activation of node is dependent

to all coming signals, their inputs and weights. Also having non-constant slope,

ReLu achieves non- linearity. Having ReLu in more than one layer, capturing non-

linear fit gets better. ReLu avoids vanishing gradient.

Elu is exponential linear unit (Shat et al., 2016), it is so similar to ReLu. Elu also

avoids vanishing gradient. The difference of ReLu and elu is that elu has negative

values. Negative values push mean activations closer to zero. Zero means makes

learning faster and it works like a regularization method. They bring gradient closer

to natural gradient and prevent overfitting.

There are various pros and cons of each of these activation functions. Linear activa-

tion function reflects the range of activations, and linear relations can be represented
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better this way. However, it is not capable of handling non-linear relations. Ad-

ditionally, derivative of linear activation function is constant, which implies that

there is no relation between the gradient and the values. Relu is capable of handling

vanishing gradient problem and it is computationally efficient. Nevertheless, it can

only be used inside the hidden layers rather than output layer. Additionally, since

the range is between 0 and infinity, exploding gradient may possibly occur within

this activation. Elu shares the similar properties with Relu. Additionally, negative

values are also included in Elu.

A loss function is an objective function that machine learning models try to max or

min through its learning steps. The output of a loss function measures the accuracy

of models. There are several loss function options for the neural networks. Mean

squared error is the sum of squared distances of data points to the regression line.

Squaring has two goals, one to remove negativity and another is to increase the

impact of distance. Mean absolute error is the average of sum of distances of data

points to regression line. Mean absolute percentage error is the most used loss

function in regression problems. It measures the prediction accuracy of forecasting

methods.

2.2 K-Nearest Neighborhood Algorithm

The aim of the nearest neighbor algorithms is to determine the point in a dataset

which is closest to a given query point (Beyer et al., 1999). It is mostly used in

Geographical Information Systems as in these systems, points are associated with

several geographical location and the closest city to a given point can be found

by nearest neighbor algorithms. These algorithms request no preprocessing of the

labeled sample set prior to their use. The crisp nearest-neighbor classification rule

assigns an input sample vector, which is of unknown classification, to the class of

its nearest neighbor.

By extending this idea, K-nearest neighbor algorithm can be constructed where
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the aim is to find the class for vector by finding the most common class in K

neighbors. Nevertheless, in a classification problem, there may be a tie if the number

K is an even number. For binary classification problems, it can be prevented by

choosing K as an odd number. The figure below shows the simple representation

of K-NN algorithm. K-NN isnt a parametric method, which does not make any

assumptions about the distribution of data. By choosing different distance metrics

(Supremum, Manhattan, Euclidean, Minkowski), different results can be concluded.

By considering xi as the x coordinate of the th point and as the y coordinate of

the th point, Manhattan distance is found by the equation Distance = |x1 − x2| +

|y1−y2|. Euclidean distance can be found by the equation
√

(x1 − x2)2 + (y1 − y2)2.

Minkowski distance is the general name of these distance metrics and by changing

the order of square root terms, different metrics can be found.

2.3 Decision Tree

The Decision Tree classifier is one of the possible approaches in multistage decision

making, which involves breaking a complex decision into smaller and simple decisions

to arrive at a final solution (Safavian Landgrebe, 1991). A decision tree includes a

root node which is formed from all of the data, a set of splits which are generated

by smaller problems, and leaf nodes which represent the classes. The class of a new

example can be identified by following the splits starting from the root and reaching

to a leaf node. Figure below shows the scheme of a decision tree. Compared to the

other supervised classification methods in the literature, decision tree has several

benefits as it can handle both numeric and categorical inputs, allow missing values

and handle nonlinear relations between features and classes. Additionally, decision

trees significant intuitive appeal as the built classification framework is explicit and

can be interpreted easily.

Decision trees are built within the consideration of entropy and information gain.

Entropy controls the splitting scheme of the data, and effects the boundaries of

a decision tree. Information gain must be calculated for each attribute in order
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to execute splitting process in a decision tree. In a problem with classes of the

target attribute, information gain for each attribute can be calculated by the formula

E(s) =
∑

i−pilog2pi. Pi refers to the number of occurrences of class I divided by

the total number of instances.

There are several algorithms that are used in the decision tree method. ID3 al-

gorithm, developed by Quinlan (1986) uses a top-down approach and deploys a

greed search through the space of possible branches in the decision tree without the

property of backtracking. Entropy and Information Gain are used in ID3 algorithm

to build a decision tree. CART (Classification and Regression Trees) is another

method to build decision trees. Decision trees built with CART are binary trees.

Additionally, CART uses Gini Index metric instead of entropy and information gain

for building decision tree. Equation Gini=1 −
∑

i p
2
i shows the formula for Gini

Index. In TT the perfect classification case, Gini Index is equal to zero.

Additionally, C4.5 is a popular decision tree algorithm which is an improved version

of ID3 algorithm. Differently from ID3, it can also handle numerical values, missing

values and it is suitable for error based pruning operation.

2.4 Ensemble Methods

An ensemble of classifiers is a set of classifiers whose individual decisions are com-

bined in some way (such as weighted or unweighted average) in order to classify

the new coming examples. Building good ensemble methods is an active research

area in machine learning field, and empirical researches support the argument that

ensembles are often more accurate when they are compared to individual classifiers

which are part of the ensemble models.

In order to increase the accuracy of an ensemble model, the individual models which

make the ensemble must be accurate and diverse, meaning that their structure

should represent individual errors. The most famous ensemble methods are bagging,

boosting, and random forest. Bagging (Bootstrap Aggregating) aims for generating

14



subsets from the original dataset randomly, training them and taking the average of 

their outputs. Boosting refers to the method which combines weak predictors with 

rules of thumb and forms a strong predictor. Lastly, random forest is a popular 

ensemble method which combines multiple decision tree models and finds the output 

(Breiman, 2001).

2.5 Feature Selection and Extraction Methods

2.5.1 Principal component analysis

Principal Component Analysis (PCA) is among the oldest and the most widely 

dimensionality reduction methods. Basically, model aims for finding variables that 

reduce the dimensionality while keeping the explained variance as high as possible. 

Let us consider that we have a dataset with p features and n samples. Let Xj = 

X1, X2, ...Xn be the feature vector of the sample j. Finding a linear combination 

of the features that provide the maximum variance in data is aimed. These linear

combinations are denoted as
∑

i(ajxj = Xai) , where a is considered as the vector of

constants aj = a1, a2, ...an). This linear combinations variance can be found by the

equation var(Xa) = a′Sa, as S is the sample covariance matrix and the transpose

is denoted by . This problem is bounded by working on the unit vectors, and the

limitation is provided by the equation a′a = 1. This problem is also the same

problem as maximizing a′Sa − λ(a′a − 1) , and λ is considered to be the Lagrange

multiplier in this equation. By taking derivative subject to a and equation to the

null vector, we obtain the equation Sa− λa = 0 ⇐⇒ Sa = λa. We are interested

in largest λ values because of the fact that eigenvalues are identify the variances

of linear combinations. Returning to the original equation,Xai are the principal

components we aimed to find.
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2.5.2 Factor analysis

Factor analysis is a method of reducing the dataset into a smaller size, while finding 

hidden patterns in the dataset while showing whether they overlap or not (Harman, 

1960). Briefly, we can identify a factor as a set of observed variables which have the 

similar response patterns. The variables in these sets are bounded to each other by 

unknown noise variables.

Generally, two types of factor analysis are used; respectively exploratory and confir-

matory factor analysis. Confirmatory Factor Analysis (CFA) aims for figuring the 

relationship between the set of observer variables and underlying the construction 

beneath them. On the other hand, Exploratory Factor Analysis (EFA) aims for 

underlying structure of large set of variables to a smaller set of summary variables 

(Brown, 2014).

2.5.3 Backward elimination

Backward elimination is a common sub feature set selection method in the machine 

learning. Consider that there are p features in a dataset. While deploying the 

backward elimination method, we begin by considering all p features in the time, 

and we eliminate one variable at a time according to the selection criterion, which∑
can be found by the equation PRESS = (yi − ŷi)T (yi − ŷi). In the given equation

i

ŷi, refers to the predicted values from the equation ŷi = Xmbm ; where Xm is the 

calibration / training set with the ith sample removed whereas m refers to the set

¯

of regression parameters, and finally ŷi is the true value of the removed sample from 
the set. In the backward elimination method, according to the given significance 
level and adjusted R2 value, features are continuously eliminated until a subset of 
relevant features are reached.
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2.6 Response Surface Methodology

In most of the cases, Grid Search and Random Search algorithms are the frequently

used hyper parameter tuning techniques. Although metaheuristic methods such

as Particle Swarm Optimization and Artificial Bee Colony Optimization are im-

plemented into the machine learning in order to detect the optimal levels of the

parameters, further developments are required within this field.

One method that can be used in Neural Networks in order to tune the hyper param-

eters is Response Surface Methodology. In ML perspective, there are examples of

its usage on Random Forest models (Lujan-Moreno, Howard, Rojas Montgomery,

2018), application of response surface methodology in ANN is not done in the lit-

erature. By adopting this methodology into the ANN models, performance and

efficiency of the model could be further improved.

Response Surface Methodology (RSM) uses the variables obtained from the experi-

ments, and tries to find the optimum point in a topological space (Khuri Mukhopad-

hyay, 2010). Designing the experiment is the most important step in the application

of RSM. Number of variables and interval of the variables directly affect the model

output in RSM method. Additionally, degree and the curvature of the experimen-

tal results affect the outputs gained from an RSM model. If the response in an

RSM model can be shown within a linear function of the independent variables, the

approximating function in the RSM is called first-order model.

Additionally, if curvature exists in the RSM model and interactions between the

variables of the RSM model affect the output, a polynomial of higher degree is used

to show the response in the model, such as second-order model. In most of the

RSM optimization cases, one or several approximating polynomials are tried to be

utilized. Nevertheless, there is not a strict guarantee that obtained polynomial will

be a reasonable approximation of the existing relation between the variables and

their outputs in the entire space of the independent variables.
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RSM can be identified as a sequential procedure (Bezerra et al., 2008). In the first

step of the RSM methodology, initial operating conditions are identified as the start-

ing point. A first order model is deployed in the beginning of experiments to move

towards the optimality direction faster. However, after a certain threshold, a second

order model is deployed after that threshold in order to increase the performance

of the model as much as possible. RSM method can be identified as a problem of

climbing hill, and only convergence to the local optimum can be guaranteed in an

RSM model.

Experiments can be designed in several different ways. Factorial Designs, Composite

Designs and Latin Hypercube Designs can be classified as several experiment designs

in that sense. In the factorial design experiments, all combination of a number of

parameters and their values in the domain are used (Montgomery, 1995). In that

case, m factors with n possible values for each factor makes mn entries in a factorial

design model. As the complexity of the model is exponential, Fractional Factorial

Designs are used in order to overcome this increasing complexity. Fractional designs

take some of the variables as the result of other variables, which decreases the

number of factors used in a model. In general, although factorial designs usually

provide better results, they are costly in terms of algorithm time.

Central Composite Designs on the other hand aim for placing the fractional or

embedded factorial designs into the center points that is augmented with a group of

star points which provide ease of estimation of the curvature (Ahmadi et al., 2005).

Whenever the distance between a factorial point and the center of the design space

is 1 for each factor, the distance between a star point and the center of the design

space is a > 1, whereas the value of depends on the desired certain properties in

the experiment and the number of the involved factors. In the central composite

designs, number of the star points are always twice the number of factors.

Additionally, Latin Hypercube Design is another type of experiment which takes

randomized combinations of the factor values and collects them in an experiment
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(Wang, 2003). In that sense, they can be related to the Monte Carlo simulations.

Nevertheless, Latin hypercube designs dont take completely random combinations

as Monte Carlo simulations do. Instead of this approach, feature space is divided

into sub sample spaces and samples are drawn from these grids in the equal amounts.

Instead of a square grid, samples are located in a hypercube. In order to sample from

an experiment of N variables within M probable intervals in each of the variables, a

uniform cube is formed.

The method of Steepest Ascent is used in RSM. Usually, initial operating conditions

in a system are chosen to be farm from optimum. In these cases, primary task to

accomplish is to move towards to the direction of optimum rapidly (Hill Hunter,

1966). The method of steepest ascent is defined as the procedure of the sequential

movements towards the path of the steepest ascent, which is the direction of the

highest increase in the response. In a minimization case on the other hand, this

method is called as the method of steepest descent.

Application of the steepest descent / ascent method involves several sequential steps.

After the experiment is designed and initial operating conditions are determined, a

first-order linear model which includes no quadratic terms or interactions between

the factors is fitted into the data. According to the fitted first order model, the

direction which provides the highest improvement is determined and tests are run

on the path of steepest ascent until the response of the model improves no more.

At that step, curvature of the response surface is examined. If the response surface

does not have much curvature, first step is repeated and new experiment is built.

However, in the case of a high curvature, a second order model which includes

curvature or quadratic terms is deployed. According to the second order model,

the path of the steepest ascend / descent is followed until the response no longer

improves.
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3. LITERATURE SURVEY

There are many examples of load forecasting models implemented by scientists.

Azedah (2008) applied the fuzzy method that determines the type of ARMA models

in load forecasting. Wang (2008) combined autoregressive models and moving aver-

age with exogenous variables (such as weather conditions) in electricity forecasting

problem. Amjady (2007) employed a hybrid model that com- bines the multilayer

perceptron (MLP) neural network and the forecast-aided state estimator (FASE) to

indicate load of power systems. Additionally, many of these authors estimated the

load by separating the days in 24-hour periods or days of week (Khadem, 1993).

Machine learning algorithms are commonly used for predicting the Photovoltaic en-

ergy prediction. In supervised learning algorithms, models try to find a mapping

from given inputs to outputs (Inman, Pedro Coimbra, 2013). On contrary, unsu-

pervised learning models seeks to find hidden structure between the input values

without the introduction of output variables (Barlow, 1989). In that sense, it is

similar to finding the distribution of the inputs. In addition to supervised and un-

supervised methods, it is also efficient to combine several successful models in order

to increase the overall model performance, and it is called ensemble learning (Gala,

Fernandez, Diaz Dorronsoro, 2016).

Support Vector Machine (SVM) is a supervised learning method introduced by Vap-

nik in order to solve classification and regression problems (Vapnik, 2013). SVM

aims to find the best hyperplane that separates the data into different categories in

the most accurate way. Support Vectors are the name of data points have the clos-

est distance to the defined hyperplane. Sharma, Sharma, Irwin and Shenoy (2011)

applied machine learning models and compared the results within the forecasts of
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National Weather Service (NWS). In their study, weather data between January

2010 and December 2010 was used. Weather metrics used in the data are temper-

ature, dew point, wind speed, sky cover, probability of precipitation and relative

humidity. Moreover, days and hours are implemented into the data. Training data

was chosen between January and August, and as methods, Linear Regression and

SVM with Radial Basis Function (RBF) kernel are used. By applying Principal

Component Analysis, redundant information in data was eliminated, and as the

result of the study, SVM with RBF kernel was found to be more successful within

a lower RMS error. Shi et al. (2012) conducted a study in China to predict the

photovoltaic production between January 2010 and October 2010. The data interval

used in the study is fifteen minutes, and production values are normalized in order

to increase the accuracy in the preprocessing phase. Before building the model,

according to the weather conditions, data was separated into four categories: sunny,

foggy, rainy and cloudy day. RBF kernel was selected for this purpose as stated in

the study, it is the most frequently used kernel in these studies. In the result of the

study, 12.42% error was obtained in cloudy days, 8.16% error was obtained in foggy

days, 9.12% error was obtained in rainy days and 4.85% error was obtained in sunny

days.

Random Forest (RF) is an ensemble method which is used for regression and clas-

sification tasks (Breiman, 2001). It essentially combines K number of decision trees

and obtains an output. Study of Huertas Tato and Centeno Brito (2019) focuses

on predicting the photovoltaic production of six solar panels at Faro (Portugal).

In the study, data contains temperature, meteorological variables and radiation as

attributes. Three years of data within the minute intervals were used. Number

of trees is the most important hyper parameter in RF method, and it is tuned to

500 by brute force approach. In conclusion, it is stated that module type of so-

lar plant affects the performance of RF method, and it is possible to improve the

performance by conducting complex trend analysis, more relevant data and wider

prediction intervals.
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Nearest Neighborhood algorithms are instance-based supervised learning algorithms

which aims to find an output by performing local approximations and identifying the

closest data. By assigning weights to the determined number of closest neighbors,

output is computed. Voyant, Paol, Muselli and Nivet (2013) conducted a study to

assess the performance of forecasting methods for predicting photovoltaic production

for different horizon. K-NN is used in the study as it is essential to use naive models

to verify the relevance of complex models. In the result of the study, it is discovered

that on daily basis, k-NN is a viable option for forecasting. However, k-NN is not

the optimal model for hourly forecast according to the result of the study.

Furthermore, Panapakidis and Athanasios (2016) focuses on day-ahead electricity

price forecasting within the usage of Artificial Neural Network (ANN) approach.

The used data in the study belongs to South Italy Electricity Market, and seven

different ANN models within their specific attributes. Attributes mainly includes

day and hour labels, predicted loads, and sliding windows on electricity price. Logis-

tic sigmoid, hyperbolic tangent sigmoid and linear activation functions are used in

the neurons, the neural network includes single hidden layer with a varying number

of nodes from 2 to 30 within the step size of 2, and epoch number is determined

as 500. As results, lowest Mean Absolute Percentage Error (MAPE) was obtained

from model which used the electricity price of other countries as an input variable,

and the model which used a cas- caded structure in order to ensemble 2 models.

In the cascaded structure, first model calculates the hourly price of the days, and

the second model uses the output of the first model in addition to previously used

parameters in order to smooth the initial prediction made by the first model. Lowest

MAPE obtained in the study is around 18% by these models.

Tibshirani (1996) developed a new regression method which minimizes sum of squares

within the consideration of sum of absolute values of coefficients being less than a

determined constant. It gives a sparse solution with most of the coefficients being

zero. This regression uses L1 norm in the algebra, and also called as LASSO (Least

Absolute Shrinkage Selector Operator). Model is used on a prostate cancer data,
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and in three different scenarios. First scenario is consisted of a data where a small

number attributes contribute a large effect. The second scenario is consisted of a

data where small to moderate number of attributes contribute moderate effect, and

the third scenario is consisted of a data where large number of attributes contribute

small effect. 3 methods are compared in these scenarios, namely LASSO, Ridge

Regression (L2 Regression) and Subset Selection. In the first scenario, Subset Se-

lection performs the best whereas other two models perform poorly. In the second

scenario, LASSO performs the best, and in the third model, ridge regression and

lasso perform the best. It can be concluded that in problems that are like the second

case, LASSO regression is a viable option.

Luo, Hong and Fang (2018) present three new regression models in order to solve

the data integrity problems existing in the proposed models in the literature. Data

integrity problems are mostly caused by the under-forecasts, as they can possibly

cause blackouts. Main motivation of the study was to solve sudden anomalies in

electricity load data rather than solving Features in presented models include trend,

time variables and temperature. Two of the models were Iteratively Reweighted

Least Squares (IRLS) models, where the observations with the larger residuals were

considered as anomalies, and forecasting these anomalies contributes to objective

function less while accuracy on normal data points had a greater reward. First

IRLS method assigns relatively small weights to the residuals with a large value

whereas second IRLS method deletes the residuals above a threshold. Third model

is an L1 regression model, and in the results, all models gave accurate results and

especially L1 model was successful even when the 30% of data included anomalies,

with an accuracy around 10%, as L1 model was less sensitive to outliers.

Ishik et al. (2015) implemented a feed-forward neural network for case study of

short-term electricity load forecasting in Turkey. In this study, the authors focused

on short term electricity demand forecasting. Ishik et al. trained a feed- forward

neural network by using Levenberg- Marquardt algorithm to predict the next day

load in the electricity market of Turkey. Their data file contains hour, day of week,
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month, year, temperature of cities and the electricity load. There are six units of

for input variable, and output variable of the study is hourly electricity load. The

data samples of 2012 weekdays are randomly divided with 70% training set, 15%

validation set and 15% test set. The authors separated the network for seasons of

the year in Turkey and trained SVM to compare with their network. The results

of their study show that final accuracy of the neural network is similar with SVM

and the neural network gives better results for winter and spring data while Support

Vector Machine predictions are better for summer and fall. MAPE for each season

are between 2.0 3.7.

Moreover, adjusting the hyper parameters of the built models is another challenge

in machine learning approaches. In ANN case the number of nodes, hidden lay-

ers, activation functions, optimizers, batch size and epoch numbers have in- finitely

many combinations, thus trying all settings is computationally impossible. For that

purpose, there are various approaches for hyper parameter tuning in the literature.

Most common approach for optimizing the hyper parameters is using Grid Search

method, which iteratively tries all of the possible combinations thus takes vast com-

putational time. Bergstra and Bengio (2012) proposed a new methodology named

Random Search which tries the random settings in the determined amount of it-

erations in order to find the optimal set of parameters, and it is demonstrated in

this study that grid search is inferior to this methodology. Hinton (2012) shares the

ideal values for several parameters such as batch size, learning rate, momentum and

number of hidden units. Lujan-Moreno et al. (2018) propose a methodology which

uses Response Sur- face Methodology and Design of Experiments methods in order

to optimize number of trees, features, node sizes and number of maximum number

of nodes in RF methodology.

Gala et al. (2016) conducted a study in Spain and applied SVR, Gradient Boosted

Regression, Random Forest and a hybrid method which combines them in order

to predict day-ahead and 3-hourly solar irradiance. The radiation data used in the

study included hourly data for every day between October 2009 and July 2011. Their
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main contribution to the literature is to develop a new method for downscaling solar

irradiance, and decompose three-hour aggregated radiation into hourly values using

the concept of a local empirical CS radiation curve. MAE (Mean Absolute Error)

is used as the metric in the study, and built forecast models are compared with

ECMWF (European Center for Medium Weather Forecast). Average irradiance

value in the used data is 1370 W/m2. They evaluated values for several stations,

but in general, SVR per- formed better on both 3-hour and daily models. Second

best performing model in the study is the hybrid model, which is a combination of

GBR, SVR and RF. Persson et al. conducted (2017) deployed Gradient Boosted

Regression Tree (GBRT) method in their study. Data used in the study had a

range between April 2014 and 2015. On hourly basis, weather forecasts and power

observations exists in the used data. First 75% of the data is used training data and

5-fold cross validation is applied in order to optimize hyper parameters of the model.

Power data includes hourly averages of 42 photovoltaic production plants in Nagoya

Bay, Japan. Night hours are discarded from data as they mainly included zero

production. In the result section, GBRT is compared within benchmark models,

which are Persistence, Climatology and Recursive AR (Autoregressive). GBRT

outperformed all other models, and additionally, it is noted that normalizing the

data didnt contribute major benefits to the results.

Massidda and Marrocu (2017) deployed Multilinear Adaptive Regression Splines

(MARS) method in order to predict photovoltaic production. MARS is a frequently

used approach in data mining, and it doesnt take any assumption about the rela-

tionship between the features. A relationship between basis functions and a set of

coefficients is constructed in MARS method, and divide and conquer approach is

taken, which refers to splitting the input space into the regions and applying regres-

sion equations separately onto these regions. First phase of MARS method involves

the calculation of intercept of the regression model and the deployment of the basis

functions repeatedly. Second phase involves elimination of basis functions which

provide the minimal increments in the accuracy of fit until the best sub model is

found. Study is conducted in Borkum, a German island and the data which was
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used included 15-minute interval data. 3-hourly forecasts are done. As benchmark

model, Persistence is used. MARS method performed better in this study, and it is

also observed that resolution of the data affects the performance of MARS method.

Bouzgou and Gueymard (2017) proposes a new methodology which combines Ex-

treme Learning Machine (ELM) and mutual information measures, in order to pre-

dict global solar irradiation. The ensemble method in the study includes two steps;

in the first steps dimensionality of the problem is reduced and in the second step,

ELM is used in order to forecast. The method is tested in different time horizons,

and it is observed that best possible dimensionality reduction strategy for the first

step is Minimum Redundancy Maximum Relevance (MRMR) method. Addition-

ally, it is noted that accuracy of the ELM decreases inversely proportional within

the cloud frequency.

Shakya et al. (2017) conducted a study by deploying a novel method, Markov

Switching Model (MSM) for irradiance forecasting problem. Proposed method uses

locally available data in order to forecast the solar irradiance amount for the next

day. MSM was tested on data of 5 years, and the best model reached 31.8% MAPE.

Marzo et al. (2017) deployed ANN models in order to predict the solar ir- radiation

in desert areas. Features of the model are meters above sea level, daily angle,

solar declination, zenith angle cosine, sunrise hourly angle, maximum temperature,

minimum temperature and extraterrestrial solar radiation. Inputs and outputs are

normalized in the study, and hidden nodes between 2 and 30 are tested. As the

result of the study, 13% Root Mean Square Deviation (RRMSD) is reached.

Leva et al. (2017) deployed ANN model with 9 neurons in the first layer, 7 neurons

in the second layer and 3000 iterations per trial. Forecasts in the study are done in

hourly basis for next 30 days. As the result of the study, built model performed good

in sunny days and slightly worse in cloudy and partially cloudy days. Torres-Barr an,

Alonso and Dorronsoro (2019) applied Random Forest, Gradient Boosted Regression

and Extreme Gradient Boosting in their study. Their study included forecasts with
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daily horizon for 1 year, and for benchmarking, Multilayer Perceptron and Support

Vector Regression are used. As the result of the study, lowest MAE is obtained from

Gradient Boosted Regression and Extreme Gradient Boosting Regression models.

Pierro et al. (2017) conducted a study to measure the efficiency of deterministic

and stochastic techniques in order to predict photovoltaic production. Weather and

power data between January 2011 and December 2014, belonging to Airport Bolzano

Dolomiti, Italy is used. Persistence model is used for benchmarking in this study.

Data resolutions in the study were 15 minutes 1 hour. Daily forecast for a year is

done in the study for testing the models. Stochastic models in the study performed

remarkably better compared to deterministic models. Ibrahim and Khatib (2017)

developed a novel-hybrid model for predicting hourly global solar radiation. Hourly

prediction model uses three stages. In the first stage, RF method is trained by

Bagger Algorithm, feature importances are measured, cluster analysis is executed

and outliers are removed from the sample. In the second stage, after new variables

are modified in dataset, number of trees and leaves in the RF model are optimized,

Bagger algorithm for training is used and final evaluations are done. Number of

trees and leaves are optimized by Firefly algorithm, and used metric in this process

is chosen as RMSE. For benchmarking, conventional and optimized neural networks

are used. Results of the study indicate that new hybrid model is superior to neural

network models within 6.38% estimated MAPE and model execution speed.

Alfadda, Rahman and Pipattanasomporn (2018) conducted a study on Saudi Arabia

and developed a model for photovoltaic production prediction in desert areas by

including sand as a feature. MLP, KNN, SVR and DT models are developed in the

study. It is determined in the study that MLP models are more suitable for desert

areas, as it had achieved Mean Square Average Error of under 4%.
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4. METHODOLOGY

For this thesis, models for solar radiance forecasting are built within the usage of

Python language. Python is mainly used for data preprocessing phase and for the

development of the machine learning models.

Main aim of the data prprocessing is to transform the features in the original dataset

in order to use it mathematically. There are several steps which are required to fol-

low in order to complete a KDD (Knowledge Discovery Process). Data cleaning is

the initial step to be completed in a KDD process (Fayyad et al., 1996). Attribute

values may include flaws in itself. Incomplete data refers to the blank cells in a

column, and it causes neural networks to give not applicable results. Incomplete

data can be fixed by replacing the values within the median, mean or mode of the

values in the range. Alternatively, copying the values of the nearest neighbors is an

alternative approach. Inconsistent and intentional errors may also occur in the data,

and they may require manual handling. Alternatively, ignoring the tuples where er-

rors occur can be applied to the data. Nevertheless, it results in fewer tuples in the

data, which affects the model performance. Data integration is the next step in a

KDD process, coming after the data cleaning. Clearing the redundancies and incon-

sistencies in a dataset covers the data integration process. Data redundancy refers

to the unnecessary columns in a dataset. If a variable can be found as a function of

other variables, it is referred a redundancy. In redundant datasets, multicollinearity

occurs. Multicollinearity refers to the situation where affecting features in a model

can be represented by different settings of parameters, which makes it difficult to

determine the importance of the features. Additionally, correlation analysis helps

to identify the relations between the variables and determine the related features.

Both correlation analysis and redundancy clearing helps lowering the complexity of
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the model.

Data reduction is the third step in the KDD process. It aims for achieving the same

results in a model within a lower number of features and a smaller sample size.

Dimensionality reduction is done by using feature selection and feature extraction

methods which are mentioned in the chapter two. Smaller sample size is achieved

by special sampling strategies. There are four frequently used sampling strategies:

simple random sampling, sampling without replacement, sampling with replacement

and stratified sampling. Simple random sampling is basically randomly selecting

tuples within equal probability. Sampling without replacement is applicable for the

datasets where identical tuples exist; and once a tuple is selected, its duplicates are

removed from the population. In sampling without replacement, duplicates are not

removed from the population. In stratified sampling, dataset is partitioned into the

clusters, and sampling is done equally from each of these clusters.

Last step of the KDD process is the data transformation and discretization. Initially,

type of each attribute must be determined in a dataset for this step. Attributes in a

dataset can take values in four different types; which are Nominal, Binary, Ordinal

and Numeric. Nominal values refer to the values which are simply labels and dont

represent any mathematical values. Days of the weeks, uniform numbers of the sport

players, marital status, occupation and zip codes are nominal valued attributes.

Binary values refer to the values that take 0 and 1. Binary values can be symmetric

and asymmetric. Symmetric values have equal importance; such as gender and coin

sides. On the other hand, asymmetric values have different importance; such as

medical test results. Ordinal values refer to the values which imply the rank of an

attribute. Ranking and grades are examples for the ordinal values. Numeric values

can be interval-scaled and ratio-scaled. Interval-scaled values are measured on a

scale with equal intervals, such as calendar dates and temperature. Ratio-scaled

values include a zero point and provides us the ability to establish a mathematical

relation. Length, Kelvin temperature and counts are examples for the ratio-scaled

values.
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In order to process nominal values, a number for each element in the range is replaced

within the original values. Because of the fact that there is no mathematical relation

between the nominal values, encoding scheme is established on the values. One-Hot

Encoding (OHE) and Binary Encoding (BE) are the most frequently used encoding

methods. OHE generates columns for each of the specific values of an attribute. In

other words, if there are different values for an attribute, columns are generated.

Sum of all the values in these column for each of the tuples is equal to 1, referring that

a vector cant take a value different than zero in the encoded columns. Differently

from OHE, BE aims to generate encoded columns that are less in numbers compared

to OHE. By using columns, up to different values can be represented by BE. Both of

these methods have pros and cons. BE is less complex in terms of vector space, but

feature selection and extraction methods dont work properly on variables that are

encoded with BE. Although OHE overcomes this disadvantage, it is computationally

inefficient and may lead to inaccurate results as it has mostly zeroes in its columns.

Ordinal values can also be encoded these methods. Nevertheless, binary variables

dont require encoding by nature.

Numeric values can be processed by using scaling methods. There are mainly two

methods for the feature scaling. Normalization is done by finding the minimum and

maximum values in the range of an attribute, and using the formula 4.1 below. In

the equation, x refers to the numerical value of the attribute, and x’ refers to the

new value of the attribute. Essentially, normalization causes an attribute to take

values between 0 and 1. Nevertheless, this interval can be arranged in any range for

specific problems.

x′ =
x−min(x)

max(x)−min(x)
(4.1)

Standardization is another frequently used method for feature scaling. Aim of stan-

dardization is to replace the values with new values according to the distribution of

the variable. Standard deviation and mean of the attribute is required in order to
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complete standardization process on a variable. It is done according to the formula

4.2 below.

x′ =
x− x
σ

(4.2)

In the formula, x’ refers to the replaced value, x refers to the mean of the values of

the attributes and σ refers to the standard deviation of the attribute. Selection of the

scaling method affects the outputs of the ML models. As nature, standardization

allows negative values to be in range, whereas the length of the range cant be

foreseen. On the other hand, although normalization takes the values in a predefined

range, it is extremely sensitive to outliers because of the fact that it only considers

minimum and maximum values in a range.

In order to choose the optimal scaling strategy, distribution of the data must be ana-

lyzed. Central tendency and dispersion of the data can be analyzed within the usage

of several indicators. Indicators for the central tendency are mean, weighted arith-

metic mean, trimmed mean, median, mode and midrange. Mean of the attribute

can be determined by dividing the sum of the variables in a range by the number of

the elements. Weighted arithmetic mean is determined by assigning weights to the

individual data points. Trimmed mean is determined by excluding the outliers in an

attribute range. Median refers to the middle value in the variable range. Mode refers

to the most occurring value in an attribute range. Lastly, midrange is determined

by taking the average of the highest and lowest value in a domain. Especially, mean

and median can be used to determine the skewness of a distribution. In symmetric

distributions, mean, mode and median are equal to each other. In positively skewed

data, the mode is lower than the median and the median is lower than the mean.

In negatively skewed data, the mean is lower than the median and the median is

lower than the mean. Apart from the central tendency, dispersion of the data is also

essential. Variance and quantiles are important indicators for data dispersion.
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Proposed dataset includes approximately 350,000 rows which includes information

about GHI for the June, July, August months of 2016, 2017, 2018 and May, June,

July of 2019. Existing features in the dataset are listed below:

• Air Temperature

• Relative Humidity

• Wind Speed

• Peak Wind Speed

• Wind Direction

• Estimated Pressure

• Precipitation

• Accumulated Precipitation

In the raw dataset, test and training sets are generated in the first step. Initially,

data belonging to 2016, 2017 and 2018 are used as training set whereas 2019 data

are used as test set. In the next step, random sampling is applied to both test and

training data independently. As a result, 25000 tuples for training and 5000 tuples

for test set are chosen. Preprocessing steps are applied as a whole on the dataset.

Air temperature is taken from Kelvin type and it is normalized between 0 and

1. Additionally, 5 sliding windows are integrated into the data. These windows

represent the temperature values up to 5 minutes prior to the data tuple. Relative

humidity exists in dataset as percentage value. In a similar manner, it is normalized

between 0 and 1, then 5 sliding windows are integrated into the dataset. Wind

speed is given as feet/second in the original dataset. It is standardized differently

from the previous features because of the fact that extreme outliers exist within the

column. 5 sliding windows are integrated into the wind speed feature. Peak wind

speed is processed in the same methodology. Wind direction is given in the original

dataset as a direction between 0 and 360. Directions are classified according to 4

basic directions, and two feature columns are generated in order to represent wind

direction in the dataset. Main reason of using two columns is to decrease redundancy
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in the dataset. For instance, if north feature of a column takes 1, south feature of the

column takes 0; hence it becomes possible to predict the value of a feature by using

another feature; which eventually causes multicollinearity. Estimated pressure and

precipitation features are normalized between 0 and 1, then sliding windows of 5 are

integrated. CR800 temperature and RSR Battery features are related to the solar

panel and dont affect the GHI amount, thus they are not included in the dataset.

After the sampling and preprocessing steps are completed, feature processing and

extraction methods are applied on the dataset. Within the usage of Sci-kit learn

library of the Python; PCA and Factor Analysis are applied as feature extraction

methods and Extra Trees Regressor is applied as feature selection method. Addi-

tionally, a separate code is written in order to implement Backward Elimination as

a feature selection method. Assessment criteria for these dimensionality reduction

methods are unique. Factor analysis determines the selection variables. PCA aims

for representing dataset with principal components, and each principal component

possesses an explained variance ratio. Backward elimination determines the signifi-

cant variables under given significance level, which is represented by α. Extra trees

regressor ranks the features from the most important to the least important, within

their contributions to the output. Among these dimensionality reduction methods,

the ones which gave more relevant features are chosen.

After the data preprocessing and dimensionality reduction techniques are applied,

next step is to build ML models. Essentially, 4 different methods are used; which

are SVM, RF, ANN and K-NN. Hyper parameter settings for each of these methods

are unique.

SVM hyper parameters are error term, kernel, degree, gamma, zero coefficient,

shrinking, probability and tolerance of stopping criterion. Error term, which is

denoted by represents the penalty parameter of the error term. Kernel determines

the type of the kernel to be used. Mainly, three types of kernels are used in SVM;

which are radial basis function (rbf), polynomial and linear. Linear kernels aim
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for separating the data points using a linear perceptron. Polynomial kernels aim

for separating the data points by using a polynomial kernel of a specified degree.

Rbf kernels use a radial basis function, which covers the area in a vector space and

separate the data points. In general, there are trade-offs between these kernel types.

Linear kernels are computationally less complex and they are better in generalization

of the models. Polynomial kernels can be adjusted according to the degree hyper

parameter in SVM. Kernels of lower degrees can generalize better whereas higher

degrees may represent the data with higher accuracy. In general, the risk of under-

fitting is highest in linear kernels and lowest in rbf kernels. Nevertheless, the risk of

overfitting is highest in rbf kernels and lowest in linear kernels. Gamma coefficient

determines the influence of a single training example on a model. Intuitively, giving

a high value to the gamma coefficient makes this influence high, and a low value

makes this influence low. Default value for the gamma coefficient is 0,22. Shrinking

parameter in an SVM is about using the shrinking heuristics. Probability parame-

ter in SVM is about using the probability estimates in the built model. Tolerance

of stopping criterion about determining the distance to the support vectors. In an

ideal case, support vectors have a distance of 0 to the kernel. Nevertheless, it may

be unreachable in many models, thus tolerance parameter determines this distance.

RF hyper parameters are number of estimators, maximum number of features, maxi-

mum depth of decision trees, minimum number of data points for splitting, minimum

number of data points allowed in a leaf node and bootstrap. Number of estimators

determines the used decision trees in an RF ensemble. Low number of decision trees

may result in underfitting whereas high number of decision trees may result in over-

fitting. Maximum depth of a decision tree determines the total splitting operations

done in each of the decision trees. Maximum number of features determines the

amount of different features to be used in order to execute a splitting operation

in nodes. Minimum number of data points for splitting determines the minimum

amount of training samples for each node. Bootstrap parameter determines the

sampling method used in decision trees (sampling with or without replacement).
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K-NN hyper parameters are basically number of neighbors and used distance metric.

Number of neighbors are usually selected from the set of odd numbers in classifica-

tion models, because of the fact that majority of votes are counted in K-NN classi-

fiers. Nevertheless, this limitation does not hold for regression problems as weighted

average of the neighbors are taken into the account. Low number of neighbors may

cause biased results whereas high number of neighbors may result in low variance.

Used distance metric determines the type of Minkowski distance in the formula .

N determines the order of the Minkowski distance, and results vary according to

the distance metric. Giving the value of 1 results in having Manhattan distance, 2

results in Euclidean distance and results in Supremum distance.

In ANN case, the types of hyper parameters vary significantly. Number of lay-

ers, number of nodes, activation functions, number of epochs, optimizer type, loss

function and batch size are hyper parameters to be optimized. Number of layers

dramatically affect the performance of the model. Increased number of hidden lay-

ers reduce the overfitting in neural networks. Nevertheless, there is a computational

trade-off because of the fact that it takes more time to fit neural networks with a

high number of layers. In general, between 3 and 10 hidden layers are used generally

in the literature. Number of nodes on the other hand, are directly related within

the hidden layers. For each layer, different number of nodes can be specified. There

is not a general number of nodes to be chosen. Nevertheless, in the most of the

studies in the literature, number of nodes per layer is chosen as to be half of the

input dimension as a rule of thumb. In the last layer, number of nodes is chosen to

be 1 in regression models. For classification models, multiple nodes can be used in

the output layer especially in multi-class classification problems. Activation func-

tions in each layer dramatically affect the output in neural networks. In general, for

hyperbolic tangent (tanh) and sigmoid functions are used in classification problems.

For regression problems; linear, elu, selu and relu are used as activation functions.

Although linear activation function is used in the output layer in general in regres-

sion problems, tanh and sigmoid functions can also be used in the output layer by

scaling the output of the training set. Tanh and sigmoid functions significantly suffer
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from the saturation effect in gradient descent algorithm, which is about the reduced

effect of these activation functions when the value is between the boundaries. It

can be solved by executing the scaling operation between a limited range, such as

between 0,4 and 0,7. Relu is the most frequently used function in regression models.

Additionally, usage of linear activation function in all of the layers does not make a

difference in the outputs of the model. An epoch on the other hand, number of times

that a neural network passes on the defined training sets. A whole iteration of back-

propagation on these examples are called an epoch. Increasing the epoch number in

a neural causes training set accuracy to be high. Nevertheless, it causes overfitting in

the model because of the fact that the model becomes more dependent to the train-

ing set. There is not an absolute rule in the selection of number of epochs. However,

early stopping method can be used in order to adjust number of epochs. In the early

stopping method, accuracy on the validation set is monitored, and epoch numbers

are increased until the accuracy on validation set no longer increases. A tolerance

limit is defined in the early stopping method and stopping criteria is set based on this

tolerance limit. For instance, if tolerance limit is set to , model stops after epochs if

validation set accuracy doesnt increase. Optimizer type on the other hand are vital

for running the neural networks. There are several frequently used optimizer types

for neural network models in the literature. ADAM, Adagrad, Stochastic Gradient

Descent (SGD), Nesterov Momentum are among these frequently used optimizers.

Each of these optimizers have their distinct parameter types. A common parameter

in these optimizers is learning rate hyper parameter. Learning rate is directly used

in gradient descent formula and decides how fast the weights will change in each

epoch. A high learning rate causes model to miss optimum level of weights, whereas

a slow learning rate causes model to shift weights slowly. Thus, there is an explicit

trade-off between accuracy and computation. Generally, 0,4 is taken as the default

value for the learning rate. Related within the optimizers, adjusting batch size is

essential for neural networks. Batch size refers for number of training examples to

be selected in gradient descent algorithm. If there are number of tuples in a batch,

gradient descent algorithm passes of these tuples and updates the weights according

to that. Generally, there are three types of selecting the batch size. First approach
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is taking all of the training examples as a batch. Second approach is selecting a

single random tuple to use in gradient descent algorithm, which is also referred as

Stochastic Gradient Descent. It generally produces more robust outputs compared

to taking all of the examples inside a batch. Third approach is using a mini-batch

for a gradient descent algorithm. As a rule of thumb, size of the mini-batch is cho-

sen to be a power of 2; such as 16, 32, 64, 128 and 256. Lastly, selection of the

loss function affects the performance of the models dramatically. Generally, MAPE,

MAE and MSE are frequently used as loss functions; although it is possible to use

a custom loss function. It is computationally easier to use a loss function which can

be derivable, as gradient descent algorithm takes the derivative of the loss function.

In addition to the computational complexity, outputs are directly influenced from

the selection of loss function, as mentioned in chapter 2 of this thesis.

Main aim of this thesis is to improve the performance of neural networks through the

novel feature usage and hyper parameter optimization, thus other mentioned models

will be used for benchmarking. In order to make the calculations computationally

efficient and reach a reasonable solution, several assumptions are made in the model

settings. For SVM, only kernel types are adjusted and other hyper parameters are

taken as default values. For RF, only number of estimators are adjusted. For K-

NN, distance metric is chosen as Euclidean distance and number of neighbors are

adjusted. Nevertheless, for neural network models, more type of hyper parameters is

tuned. As optimizer type, ADAM is chosen and parameters of the ADAM are taken

as default values. Models that are built include layers between 1 and 4. Number of

epochs are chosen to be 100, 200, 300 and 400 initially, and after the optimization

process is completed; number of epochs are adjusted through the usage of early

stopping method. For activation functions, only Relu and Elu will be used and in

all of the layers, activation function will be used as the same in order to reduce

computational complexity. For 1-layer models however, linear activation function

will also be used. Number of nodes and batch size will be optimized using hyper

parameter tuning methods. As loss function, MAPE will be used.
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For hyper parameter tuning, essentially two approaches will be taken; which are

Random Search, Grid Search. In grid search method, a parameter grid is defined

for the method and a k-fold cross validation is applied on training set in order to

determine the best setting of hyper parameters. In k-fold cross validation, training

set is divided into parts and by using parts, last part is predicted in training set. This

process is done times and average score is taken as the accuracy. Grid search method

tries all the combinations which are defined in a grid. Random search on the other

hand, tries the random settings in the defined number of iterations. Although they

are widely used for hyper parameter tuning process, they are incapable in reaching

the optimum level, in addition to their computational inefficiency. RSM method on

the other hand, although is not used for hyper parameter tuning in neural network

models, it offers less computational complexity and a wider of hyper parameter grid.

In adaptation of RSM method into the neural networks, an experimental design will

be generated based on the outputs of the generated neural network models. There

are essentially five types of experimental designs that can be used in RSM. Full

factorial designs aim for using all of the possible combinations of the input features.

Fractional factorial designs include the selection of a subset of all combinations,

and Latin hypercube designs include selection of random features for each of the

possible experimental objects. Central composite designs are used in RSM models

for building a quadratic model for the response feature without the requirement of

a complete three-level factorial design. Linear regression is used iteratively to reach

a conclusion. Lastly, Box-Behnken design is a type of response surface design which

does not include the embedded fractional or factorial designs. Instead, they possess

treatment combinations which can be classified as the midpoints of the vertices

of experimental space and must include at least three surface variables which are

continuous. First and second-order coefficients can be estimated using the Box-

Behnken designs. Additionally, since they include fewer design points, they are

computationally less expensive compared to central composite designs which have

the same number of factors. Nevertheless, due to the fact that they do not have an

embedded factorial design, they are not suitable for sequential experiments.
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Table below indicated the results of PCA applied on the dataset. Principal com-

ponents are taken up to 15 because of the fact that their impact decreases after 15

components.As seen in the table, first two principal components explain more than

the half of the variance in the data. Nevertheless, significance is reduced after the

4th component and after the 9th component, impact is dramatically reduced.
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Table 4.1 PCA Results

P.Comp. Sing. Val. Exp. Var. Exp. Var. R

1 175,28 1,54 0.322

2 150,4 1,13 0.238

3 120,54 0,73 0.153

4 65,18 0,21 0.045

5 54,03 0.146 0,03

6 50,68 0.128 0.027

7 47,54 0.113 0.024

8 44,7 0,01 0.021

9 42,51 0,09 0.019

10 40,53 0.082 0.017

11 38,75 0.075 0.016

12 38,5 0.074 0.016

13 36,67 0.067 0.014

14 34,54 0,06 0.013

15 33,12 0.054 0.012
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5. RESULTS

Grid search is run on the neural networks and other machine learning models in

order to determine the optimum set of hyperparameters. Table 5.1, 5.2, 5.3 and 5.4

indicate the grid search results for 1-4 layer networks. Results of table 5.1 indicate

that although a MAPE score of 0,23 is reached at the best, R2 value - which indicated

the explained variance in the regression model - is not significant. Generally, Elu

is the best activation function to use in single layer networks. Ideal batch size is

determined as 64, though 32 and 16 batch sizes give acceptable results on single

layer.

Furthermore, table 5.2 indicates the grid search results on 2-layer networks. There

is a significant increase in the MAPE compared to the single layer networks, and R2

value increases up to 0,3 from 0,23. Thus, it can be interpreted that accuracy of the

model increases within the explained variance in the model. Similar to single layer

network, Elu is the most fitting activation function in the hidden layers. Although

different batch sizes give reasonable results, best results are obtained from the batch

size of 64. Table 5.3 indicates the grid search results on 3-layer networks. Lowest

MAPE acquired from these networks are 0,09 and it is a significant drop compared

to 2-layer networks. Additionally, explained variance of the model increases dra-

matically compared to the previous models. As previous networks, Elu is the most

fitting function. Batch sizes of 32 and 64 give the best results. Lastly, table 5.4

shows the results for 4-layer networks. Although best MAPE and R2 value is close

to the ones obtained in 3-layer networks, these networks are still improved version

of 3-layer networks. Relu activation functions perform better in the models.

In addition to the original dataset, optimum set of hyper parameters are also deter-
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Table 5.1 Single-Layer Grid Search Results

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 122 12246 0,35 0,27

100 Elu Whole 149 20936 0,43 0,33

100 Relu 16 157 22566 0,45 0,35

100 Elu 16 103 7619 0,29 0,23

100 Relu 32 120 12031 0,34 0,27

100 Elu 32 118 11334 0,34 0,26

100 Relu 64 148 19299 0,42 0,33

100 Elu 64 80 4980 0,23 0,18

100 Relu 128 144 20040 0,41 0,32

100 Elu 128 108 10785 0,31 0,24

200 Relu Whole 105 9961 0,30 0,23

200 Elu Whole 110 11621 0,31 0,24

200 Relu 16 120 12774 0,34 0,27

200 Elu 16 158 23723 0,45 0,35

200 Relu 32 139 18421 0,40 0,31

200 Elu 32 101 9269 0,29 0,22

200 Relu 64 89 5234 0,25 0,20

200 Elu 64 82 4072 0,23 0,18

200 Relu 128 148 19139 0,42 0,33

200 Elu 128 136 16718 0,39 0,30

300 Relu Whole 131 14723 0,37 0,29

300 Elu Whole 153 22456 0,44 0,34

300 Relu 16 168 27294 0,48 0,37

300 Elu 16 104 10216 0,30 0,23

300 Relu 32 125 13312 0,36 0,28

300 Elu 32 139 17804 0,40 0,31

300 Relu 64 101 9645 0,29 0,22

300 Elu 64 125 13896 0,36 0,28

300 Relu 128 128 13393 0,37 0,28

300 Elu 128 121 11742 0,35 0,27
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Table 5.2 2-Layer Grid Search Results

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 125 15250 0,36 0,50

100 Elu Whole 89 6808 0,25 0,36

100 Relu 16 99 8226 0,28 0,40

100 Elu 16 50 1669 0,14 0,20

100 Relu 32 133 16129 0,38 0,53

100 Elu 32 89 7556 0,25 0,36

100 Relu 64 131 14920 0,37 0,52

100 Elu 64 74 5062 0,21 0,30

100 Relu 128 96 7096 0,27 0,38

100 Elu 128 121 14210 0,35 0,48

200 Relu Whole 66 3752 0,19 0,26

200 Elu Whole 88 5332 0,25 0,35

200 Relu 16 137 17840 0,39 0,55

200 Elu 16 82 5930 0,23 0,33

200 Relu 32 95 8668 0,27 0,38

200 Elu 32 63 2815 0,18 0,25

200 Relu 64 68 4184 0,19 0,27

200 Elu 64 107 10999 0,31 0,43

200 Relu 128 81 6101 0,23 0,32

200 Elu 128 84 5712 0,24 0,34

300 Relu Whole 79 5600 0,23 0,32

300 Elu Whole 80 5461 0,23 0,32

300 Relu 16 132 15212 0,38 0,53

300 Elu 16 137 16277 0,39 0,55

300 Relu 32 56 1143 0,16 0,22

300 Elu 32 91 5898 0,26 0,36

300 Relu 64 84 4802 0,24 0,34

300 Elu 64 52 2852 0,15 0,21

300 Relu 128 87 6949 0,25 0,35

300 Elu 128 81 4227 0,23 0,32
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Table 5.3 3-Layer Greed Search Results

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 118 13021 0,34 0,31

100 Elu Whole 56 2008 0,16 0,62

100 Relu 16 105 10319 0,30 0,38

100 Elu 16 111 11994 0,32 0,35

100 Relu 32 108 11174 0,31 0,36

100 Elu 32 99 9470 0,28 0,41

100 Relu 64 91 7227 0,26 0,45

100 Elu 64 36 7169 0,10 0,72

100 Relu 128 85 6026 0,24 0,48

100 Elu 128 62 2375 0,18 0,59

200 Relu Whole 30 1208 0,09 0,75

200 Elu Whole 99 9626 0,28 0,41

200 Relu 16 64 2937 0,18 0,58

200 Elu 16 103 10518 0,29 0,39

200 Relu 32 99 8487 0,28 0,41

200 Elu 32 72 3757 0,21 0,54

200 Relu 64 75 5439 0,21 0,53

200 Elu 64 75 4176 0,21 0,53

200 Relu 128 63 3553 0,18 0,59

200 Elu 128 91 7867 0,26 0,45

300 Relu Whole 54 2549 0,15 0,63

300 Elu Whole 35 1422 0,10 0,73

300 Relu 16 110 11168 0,31 0,35

300 Elu 16 118 13031 0,34 0,31

300 Relu 32 56 1861 0,16 0,62

300 Elu 32 57 2870 0,16 0,62

300 Relu 64 83 5525 0,24 0,49

300 Elu 64 32 1087 0,09 0,74

300 Relu 12 8 100 9532 0,29 0,40

300 Elu 128 101 9474 0,29 0,40
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Table 5.4 4-Layer Grid Search Results

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 28 675 0,08 0,76

100 Elu Whole 55 2847 0,16 0,63

100 Relu 16 30 724 0,09 0,75

100 Elu 16 30 508 0,09 0,75

100 Relu 32 76 4960 0,22 0,52

100 Elu 32 36 707 0,10 0,72

100 Relu 64 60 3024 0,17 0,60

100 Elu 64 26 712 0,07 0,77

100 Relu 128 89 7288 0,25 0,46

100 Elu 128 83 6007 0,24 0,49

200 Relu Whole 63 2940 0,18 0,59

200 Elu Whole 63 2847 0,18 0,59

200 Relu 16 61 2940 0,17 0,60

200 Elu 16 77 4729 0,22 0,52

200 Relu 32 57 2598 0,16 0,62

200 Elu 32 86 6828 0,25 0,47

200 Relu 64 25 652 0,07 0,78

200 Elu 64 82 6500 0,23 0,49

200 Relu 128 99 8795 0,28 0,41

200 Relu 128 99 8795 0,28 0,41

300 Relu Whole 90 7695 0,26 0,45

300 Elu Whole 49 2186 0,14 0,66

300 Relu 16 33 619 0,09 0,74

300 Elu 16 77 4918 0,22 0,52

300 Relu 32 69 3820 0,20 0,56

300 Elu 32 26 452 0,07 0,77

300 Relu 64 52 2101 0,15 0,64

300 Elu 64 67 4078 0,19 0,57

300 Relu 128 33 931 0,09 0,74

300 Elu 128 95 7978 0,27 0,43
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mined for the PCA dataset. Table 5.5, 5.6, 5.7 and 5.8 show the grid search results

obtained from the PCA dataset. It is noticed from the results that lower bound

for achieved MAPE has decreased, whereas upper bound for achieved MAPE has

increased.

Table 5.5 shows the grid search applied on single layer network. Differently from

the original dataset, achieved MAPE is significantly high in single layer networks.

MAPE of 0,19 is reached. Nevertheless, R2 values are still lower in single layer

networks. Elu is the best performing activation function. Optimal batch sizes for

single layer networks are 32 and 64. Table 5.6 shows the grid search results for

2-layer networks. The lowest MAPE achieved is 0.13, which is an improvement

compared to single layer networks. Differently from the single layer networks, Relu

is the best activation function for these networks. The best batch sizes are whole,

16 and 64. Table 5.7 shows the grid search results for 3-layer networks. It is noticed

that MAPE reaches as low as 0.07 in these models, while R2 value is as high as

0.77. It is an improvement compared to 2-layer PCA networks and 3-layer original

dataset networks. Relu is the best performing activation function in these models,

and ideal batch size is 32.

Lastly, table 5.8 indicates the grid search results for 4-layer networks. The lowest

MAPE in all networks are achieved in the 4-layer PCA datasets with 0.06 as well as

the highest R2 value with 0,8. 4-layer PCA networks are suitable in terms of both

the accuracy and the explained variance. Relu is the best activation function to be

used in 4-layer networks and ideal batch size is 64.

By using extra trees regressor method, also a feature selection dataset is generated.

Table 5.9, 5.10, 5.11 and 5.12 indicate the results of grid search algorithm run on

this dataset in order to determine the best operating conditions for the neural net-

works. It is noticed from these results that although the lower bound for MAPE has

increased, the upper bound is decreased, which is a behavior in contrast within the

PCA dataset. Table 5.9 shows the grid search results for single layer networks. The
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Table 5.5 Single Layer Grid Search Results on PCA Dataset

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 211 43145 0,60 0,47

100 Elu Whole 192 35762 0,55 0,43

100 Relu 16 136 15711 0,39 0,30

100 Elu 16 98 9043 0,28 0,22

100 Relu 32 65 3598 0,19 0,14

100 Elu 32 81 5155 0,23 0,18

100 Relu 64 67 3923 0,19 0,15

100 Elu 64 82 5115 0,23 0,18

100 Relu 128 115 12408 0,33 0,26

100 Elu 128 107 9261 0,31 0,24

200 Relu Whole 112 10521 0,32 0,25

200 Elu Whole 147 20312 0,42 0,33

200 Relu 16 204 40945 0,58 0,45

200 Elu 16 164 24669 0,47 0,36

200 Relu 32 206 39902 0,59 0,46

200 Elu 32 152 20130 0,43 0,34

200 Relu 64 197 36460 0,56 0,44

200 Elu 64 201 39799 0,57 0,45

200 Relu 128 188 34373 0,54 0,42

200 Elu 128 122 14430 0,35 0,27

300 Relu Whole 224 4882 0 0,64 0,50

300 Elu Whole 91 7566 0,26 0,20

300 Relu 16 207 41764 0,59 0,46

300 Elu 16 226 48389 0,65 0,50

300 Relu 32 208 42258 0,59 0,46

300 Elu 32 95 8171 0,27 0,21

300 Relu 64 187 33333 0,53 0,42

300 Elu 64 215 45447 0,61 0,48

300 Relu 128 139 17273 0,40 0,31

300 Elu 128 195 35288 0,56 0,43
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Table 5.6 2-Layer Grid Search Results on PCA Dataset

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 80 5272 0,23 0,32

100 Elu Whole 68 3449 0,19 0,27

100 Relu 16 151 21244 0,43 0,60

100 Elu 16 198 36781 0,57 0,79

100 Relu 32 152 20886 0,43 0,61

100 Elu 32 71 4056 0,20 0,28

100 Relu 64 175 29127 0,50 0,70

100 Elu 64 97 9110 0,28 0,39

100 Relu 128 188 34012 0,54 0,75

100 Elu 128 159 24469 0,45 0,64

200 Relu Whole 103 8609 0,29 0,41

200 Elu Whole 129 16003 0,37 0,52

200 Relu 16 75 4596 0,21 0,30

200 Elu 16 101 9469 0,29 0,40

200 Relu 32 65 1871 0,19 0,26

200 Elu 32 89 7087 0,25 0,36

200 Relu 64 113 11757 0,32 0,45

200 Elu 64 64 3207 0,18 0,26

200 Relu 128 87 7123 0,25 0,35

200 Elu 128 164 24693 0,47 0,66

300 Relu Whole 101 9019 0,29 0,40

300 Elu Whole 139 16847 0,40 0,56

300 Relu 16 54 1080 0,15 0,22

300 Elu 16 78 3671 0,22 0,31

300 Relu 32 72 2709 0,21 0,29

300 Elu 32 80 6117 0,23 0,32

300 Relu 64 47 2720 0,13 0,19

300 Elu 64 185 33201 0,53 0,74

300 Relu 128 185 32916 0,53 0,74

300 Elu 128 154 22095 0,44 0,62
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Table 5.7 3-Layer Grid Search Results on PCA Dataset

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 113 11580 0,32 0,34

100 Elu Whole 26 1481 0,07 0,77

100 Relu 16 116 12585 0,33 0,32

100 Elu 16 137 17437 0,39 0,22

100 Relu 32 61 3357 0,17 0,60

100 Elu 32 85 5757 0,24 0,48

100 Relu 64 78 5537 0,22 0,51

100 Elu 64 123 14031 0,35 0,29

100 Relu 128 69 3914 0,20 0,56

100 Elu 128 134 16586 0,38 0,23

200 Relu Whole 129 15763 0,37 0,26

200 Elu Whole 129 15661 0,37 0,26

200 Relu 16 84 6800 0,24 0,48

200 Elu 16 146 20766 0,42 0,17

200 Relu 32 155 23265 0,44 0,13

200 Elu 32 56 2599 0,16 0,62

200 Relu 64 43 859 0,12 0,69

200 Elu 64 49 1813 0,14 0,66

200 Relu 128 30 1492 0,09 0,75

200 Elu 128 55 2625 0,16 0,63

300 Relu Whole 49 1349 0,14 0,66

300 Elu Whole 128 15664 0,37 0,26

300 Relu 16 70 4426 0,20 0,55

300 Elu 16 135 17864 0,39 0,23

300 Relu 32 26 526 0,07 0,77

300 Elu 32 72 4640 0,21 0,54

300 Relu 64 106 10584 0,30 0,37

300 Elu 64 33 490 0,09 0,74

300 Relu 128 64 3727 0,18 0,58

300 Elu 128 74 4458 0,21 0,53
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Table 5.8 4-Layer Grid Search Results on PCA Dataset

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 61 3583 0,17 0,60

100 Elu Whole 87 6514 0,25 0,47

100 Relu 16 63 3020 0,18 0,59

100 Elu 16 75 4873 0,21 0,53

100 Relu 32 90 7982 0,26 0,45

100 Elu 32 114 12171 0,33 0,33

100 Relu 64 57 2815 0,16 0,62

100 Elu 64 138 17930 0,39 0,21

100 Relu 128 90 7357 0,26 0,45

100 Elu 128 66 3894 0,19 0,57

200 Relu Whole 76 5449 0,22 0,52

200 Elu Whole 73 4181 0,21 0,54

200 Relu 16 68 3978 0,19 0,56

200 Elu 16 96 8898 0,27 0,42

200 Relu 32 20 452 0,06 0,80

200 Elu 32 126 15227 0,36 0,27

200 Relu 64 47 1281 0,13 0,67

200 Elu 64 38 961 0,11 0,71

200 Relu 128 35 651 0,10 0,73

200 Elu 128 50 1675 0,14 0,65

300 Relu Whole 75 4684 0,21 0,53

300 Elu Whole 61 2875 0,17 0,60

300 Relu 16 85 6454 0,24 0,48

300 Elu 16 108 11039 0,31 0,36

300 Relu 32 105 10108 0,30 0,38

300 Elu 32 73 5089 0,21 0,54

300 Relu 64 84 6350 0,24 0,48

300 Elu 64 20 403 0,06 0,80

300 Relu 128 66 3983 0,19 0,57

300 Elu 128 137 18678 0,39 0,22

50



lowest MAPE acquired is around 0.27 and R2 value is low similar to the previously

built single layer networks. Relu dominates the other activation functions in this

dataset. Table 5.10 shows the grid search results for 2-layer networks. There is

not a significant increase in MAPE, and R2 value is around 0.3. Relu is still the

most fitting activation function. Table 5.11 shows the grid search results for 3-layer

networks, and MAPE decreases up to 0.14 in these networks. In a similar manner,

3-layer networks have better R2 values in this dataset too. Differently, Elu is the

best fitting function for this dataset. Finally, table 5.12 shows the grid search results

for 4-layer networks. Results that are obtained from feature selection dataset are

not succesful compared to the previous datasets. Nevertheless, it still manages to

reach the MAPE of 0,1 and R2 value of 0,72.

Table 5.13 is a collection of best models on layer-basis from the original dataset. It is

observed that in general, Elu is more successful in the original dataset and 64 batch

size is ideal. R2 value increases significantly within the layer size. Additionally,

MAPE is decreased within each layer. Table 5.14 and 5.15 are prepared in similar

manner. Table 5.16 indicated the results of the other machine learning models. It

shows that Random forest is better than SVM and KNN, and it has a MAPE around

0.26 at best.
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Table 5.9 1-Layer Grid Search Results on Feature Selection Dataset

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 137 17843 0,39 0,30

100 Elu Whole 131 14622 0,37 0,29

100 Relu 16 114 10342 0,33 0,25

100 Elu 16 125 15044 0,36 0,28

100 Relu 32 102 9375 0,29 0,23

100 Elu 32 134 17381 0,38 0,30

100 Relu 64 142 19056 0,41 0,32

100 Elu 64 101 9101 0,29 0,22

100 Relu 128 126 13571 0,36 0,28

100 Elu 128 113 10454 0,32 0,25

200 Relu Whole 132 14986 0,38 0,29

200 Elu Whole 126 13444 0,36 0,28

200 Relu 16 130 14926 0,37 0,29

200 Elu 16 108 10127 0,31 0,24

200 Relu 32 130 16162 0,37 0,29

200 Elu 32 104 9310 0,30 0,23

200 Relu 64 114 12272 0,33 0,25

200 Elu 64 150 20655 0,43 0,33

200 Relu 128 133 16572 0,38 0,30

200 Elu 128 128 15121 0,37 0,28

300 Relu Whole 100 7805 0,29 0,22

300 Elu Whole 146 19347 0,42 0,32

300 Relu 16 139 16743 0,40 0,31

300 Elu 16 126 13332 0,36 0,28

300 Relu 32 101 7698 0,29 0,22

300 Elu 32 108 10375 0,31 0,24

300 Relu 64 145 20396 0,41 0,32

300 Elu 64 145 19767 0,41 0,32

300 Relu 128 128 15529 0,37 0,28

300 Elu 128 106 10579 0,30 0,24
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Table 5.10 2-Layer Grid Search Results on Feature Selection Dataset

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 81 4696 0,23 0,32

100 Elu Whole 94 8573 0,27 0,38

100 Relu 16 76 3819 0,22 0,30

100 Elu 16 85 6082 0,24 0,34

100 Relu 32 91 7781 0,26 0,36

100 Elu 32 70 2595 0,20 0,28

100 Relu 64 90 6000 0,26 0,36

100 Elu 64 71 2916 0,20 0,28

100 Relu 128 93 7225 0,27 0,37

100 Elu 128 98 7602 0,28 0,39

200 Relu Whole 75 3444 0,21 0,30

200 Elu Whole 94 7601 0,27 0,38

200 Relu 16 78 4594 0,22 0,31

200 Elu 16 84 5485 0,24 0,34

200 Relu 32 79 5615 0,23 0,32

200 Elu 32 100 8844 0,29 0,40

200 Relu 64 87 7151 0,25 0,35

200 Elu 64 71 2954 0,20 0,28

200 Relu 128 74 3342 0,21 0,30

200 Elu 128 82 5558 0,23 0,33

300 Relu Whole 100 8302 0,29 0,40

300 Elu Whole 81 4294 0,23 0,32

300 Relu 16 99 7685 0,28 0,40

300 Elu 16 77 4982 0,22 0,31

300 Relu 32 81 4759 0,23 0,32

300 Elu 32 97 8304 0,28 0,39

300 Relu 64 97 7036 0,28 0,39

300 Elu 64 100 8210 0,29 0,40

300 Relu 128 77 4680 0,22 0,31

300 Elu 128 89 7562 0,25 0,36

53



Table 5.11 3-Layer Grid Search Results on Feature Selection Dataset

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 69 3262 0,20 0,56

100 Elu Whole 65 3715 0,19 0,58

100 Relu 16 52 2103 0,15 0,64

100 Elu 16 61 3536 0,17 0,60

100 Relu 32 58 2212 0,17 0,61

100 Elu 32 67 4244 0,19 0,57

100 Relu 64 66 4241 0,19 0,57

100 Elu 64 70 3536 0,20 0,55

100 Relu 128 60 2386 0,17 0,60

100 Elu 128 70 4156 0,20 0,55

200 Relu Whole 66 3645 0,19 0,57

200 Elu Whole 73 4589 0,21 0,54

200 Relu 16 56 2045 0,16 0,62

200 Elu 16 64 3780 0,18 0,58

200 Relu 32 69 3844 0,20 0,56

200 Elu 32 64 3964 0,18 0,58

200 Relu 64 54 2600 0,15 0,63

200 Elu 64 54 1590 0,15 0,63

200 Relu 128 65 3616 0,19 0,58

200 Elu 128 51 1987 0,15 0,65

300 Relu Whole 56 1704 0,16 0,62

300 Elu Whole 75 4454 0,21 0,53

300 Relu 16 72 4480 0,21 0,54

300 Elu 16 64 3341 0,18 0,58

300 Relu 32 59 2560 0,17 0,61

300 Relu 64 70 3976 0,20 0,55

300 Elu 64 60 3296 0,17 0,60

300 Relu 128 50 2178 0,14 0,65

300 Elu 128 60 3267 0,17 0,60
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Table 5.12 4-Layer Grid Search Results on Feature Selection Dataset

Node A.Func. Batch MAE MSE MAPE R2

100 Relu Whole 58 1961 0,17 0,61

100 Elu Whole 36 1301 0,10 0,72

100 Relu 16 56 2990 0,16 0,62

100 Elu 16 41 1322 0,12 0,70

100 Relu 32 61 3077 0,17 0,60

100 Elu 32 49 1900 0,14 0,66

100 Relu 64 55 2703 0,16 0,63

100 Elu 64 54 2351 0,15 0,63

100 Relu 128 36 1076 0,10 0,72

100 Elu 128 55 2513 0,16 0,63

200 Relu Whole 40 2249 0,11 0,70

200 Elu Whole 55 1758 0,16 0,63

200 Relu 16 52 2236 0,15 0,64

200 Elu 16 55 2687 0,16 0,63

200 Relu 32 62 2501 0,18 0,59

200 Elu 32 42 1559 0,12 0,69

200 Relu 64 61 3457 0,17 0,60

200 Elu 64 37 655 0,11 0,72

200 Relu 128 40 1380 0,11 0,70

200 Elu 128 55 2154 0,16 0,63

300 Relu Whole 62 2968 0,18 0,59

300 Elu Whole 62 3326 0,18 0,59

300 Relu 16 62 3072 0,18 0,59

300 Elu 16 35 1010 0,10 0,73

300 Relu 32 45 1439 0,13 0,68

300 Elu 32 47 1433 0,13 0,67

300 Relu 64 36 740 0,10 0,72

300 Relu 128 53 2298 0,15 0,64

300 Elu 128 43 1550 0,12 0,69
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Table 5.13 Best Models in Original Dataset

Layer Node A.Func. Batch MAE MSE MAPE R2

1 100 Elu 64 80 4980 0,23 0,18

1 200 Elu 64 82 4072 0,23 0,18

1 200 Relu 64 89 5234 0,25 0,20

1 100 Elu 16 103 7619 0,29 0,23

1 200 Elu 32 101 9269 0,29 0,22

2 100 Elu 16 50 1669 0,14 0,20

2 300 Elu 64 52 2852 0,15 0,21

2 300 Elu 32 56 1143 0,16 0,22

2 200 Relu Whole 66 3752 0,19 0,26

2 100 Elu 64 74 5062 0,21 0,30

3 300 Elu 64 32 1087 0,09 0,74

3 100 Elu 64 36 7169 0,10 0,72

3 300 Elu 32 57 2870 0,16 0,62

3 300 Relu 32 56 1861 0,16 0,62

3 100 Elu Whole 56 2008 0,16 0,62

4 100 Relu Whole 28 675 0,08 0,76

4 300 Elu 32 26 452 0,07 0,77

4 200 Relu 64 25 652 0,07 0,78

4 100 Relu 16 30 724 0,09 0,75

4 100 Elu 16 30 508 0,09 0,75
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Table 5.14 Best Models in PCA Dataset

Layer Node A.Func. Batch MAE MSE MAPE R2

1 100 Relu 32 65 3598 0,19 0,14

1 100 Relu 64 67 3923 0,19 0,15

1 100 Elu 32 81 5155 0,23 0,18

1 100 Elu 64 67 3923 0,19 0,15

1 300 Elu 32 95 817 0,27 0,21

2 300 Relu 16 54 1080 0,15 0,22

2 100 Elu Whole 68 3449 0,19 0,27

2 200 Relu 32 65 1871 0,19 0,26

2 200 Relu 64 64 3207 0,18 0,26

2 300 Relu 64 47 2720 0,13 0,19

3 100 Elu Whole 26 1481 0,07 0,77

3 300 Relu 64 33 490 0,09 0,74

3 300 Relu 32 26 526 0,07 0,77

3 200 Relu 64 43 859 0,12 0,69

3 200 Elu 32 56 2599 0,16 0,62

4 300 Elu 64 20 403 0,06 0,8

4 200 Relu 32 20 452 0,06 0,8

4 200 Relu 128 35 651 0,10 0,73

4 200 Elu 64 38 961 0,11 0,71

4 200 Relu 64 38 1281 0,13 0,67
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Table 5.15 Best Models in Feature Selection Dataset

Layer Node A.Func. Batch MAE MSE MAPE R2

1 300 Relu Whole 100 7805 0,29 0,22

1 100 Relu 32 102 9375 0.29 0.23

1 300 Relu 32 101 7698 0.29 0.22

1 300 Relu 128 128 15529 0,27 0,28

1 300 Elu 128 106 10579 0,30 0,24

2 100 Elu 32 70 2595 0,20 0,28

2 200 Elu 64 71 2954 0,20 0,28

2 200 Relu Whole 75 3444 0,21 0,3

2 200 Relu 16 78 4594 0,22 0,31

2 200 Relu 32 79 5615 0,23 0,32

3 300 Relu 128 50 2178 0,14 0,65

3 300 Elu 128 60 3267 0,17 0,6

3 300 Elu 64 60 3296 0,17 0,6

3 200 Relu 64 54 2600 0,15 0,63

3 200 Elu 64 54 1590 0,15 0,63

4 100 Relu Whole 36 1301 0,10 0,72

4 100 Relu 128 36 1076 0,10 0,72

4 200 Relu Whole 40 2249 0,11 0,7

4 200 Elu 64 37 655 0,11 0,72

4 200 Relu 128 40 1380 0,16 0,63
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Table 5.16 Results of Other Machine Learning Models

Model MAE MSE MAPE R2

RF - 100 140 11685 0,36 0,28

RF - 200 135 10329 0,32 0,26

RF - 400 110 9987 0,26 0,34

RF - 800 130 14294 0,28 0,25

RF - 1000 125 13284 0,28 0,22

SVM - Linear 198 32784 0,51 0,11

SVM - RBF 165 27888 0,39 0,25

SVM - 2 188 35192 0,45 0,16

SVM - 3 182 3 3782 0,42 0,15

SVM - 4 175 31167 0,44 0,12

SVM - 5 172 26710 0,46 0,15

SVM - 6 176 29112 0,41 0,14

KNN - 1 195 34901 0,53 0,12

KNN - 3 179 29128 0,47 0,2

KNN - 5 175 26721 0,44 0,19

KNN - 7 162 24272 0,39 0,21

KNN - 9 155 22156 0,35 0,24
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6. CONCLUSIONS

In this study, a novel approach to very-short term solar irradiance forecasting is

taken. Sliding windows methodology is integrated into model by applying all of the

features, and wind direction is also used as a categorical measure. 15-minute ahead

is directly forecasted from the data with 1-minute resolution. During the forecasting

phase, no future features are used, as the main aim of the study is to built a regular

time series method from Supervised Machine Learning methods. Feature selection

and extraction methods are used in order to enhance the accuracy of the built mod-

els. As the result of the study, 0.06 MAPE is reached within the 4-layer networks

combined within the Principal Component Analysis as the dimensionality reduc-

tion method. This thesis additionally indicates that integration of sliding windows

method provides a robust framework to the solar irradiance prediction problems, as

their performance are not negatively influenced by taking the lag number as 15.

Further studies can be accomplished in order to increase the performance of the

mentioned models. One possible improvement is to select a better hyper parameter

optimization method, rather than random search or grid search. As mentioned in

chapter 2, response surface methodology can be integrated in order to overcome this

problem.
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