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ABSTRACT

NONLINEAR OBSERVER DESIGN WITH APPLICATION
TO THE SYNCHRONIZATION OF CHAOTIC SYSTEMS

Ercan Solak
M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Omer Morgtil
August 1996

Observers are used to estimate the states of dynamical systems whenever they
are not available through direct measurements. Although the design of lin-
ear observers is a well-developed branch of control theory, its counterpart for
nonlinear systems is a relatively new field.

In this thesis, an observer construction methodology is proposed for a class
of nonlinear systems satisfying certain conditions. Then, the problem of syn-
chronizing chaotic systems, which has found recent applications in the area of
secure message transmission, is addressed from the observer design point of
view. In the design, we exploited one of the essential properties of the chaotic
systems that the trajectories remain in a bounded region of the state space. It
is also shown that, for certain well-known chaotic systems, the system structure
enables one to use linear observer schemes in order to have global synchroniza-
tion.

Keywords : Nonlinear observers, chaotic systems, chaos synchronization.
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OZET

DOGRUSAL OLMAYAN GOZLEYICI TASARIMI VE
KAOTIK SISTEMLERIN ESZAMANLAMASINA
UYGULANMASI

Ercan Solak
Elektrik ve Elektronik Miihendisligi Bolimi Yiiksek Lisans
Tez Yoneticisi: Dog. Dr. Omer Morgiil
Agustos 1996

Gozleyiciler, dinamik sistemlerin durumlari dogrudan dlgiimlerle elde
edilemediginde, bu durumlar: tahmin etmekte kullanilirlar. Dogrusal gozleyici
tasarimi, kontrol kuraminin geligmig bir dali olmasina ragmen, bunun dogrusal

olmayan sistemlerdeki kargilig1 goreceli olarak yeni bir alandir.

Bu tezde, dogrusal olmayan sistemlerin belli gartlari saglayan bir sinifi
icin bir gozleyici tasarim yontemi Onerilmigtir. Daha sonra, son zaman-
larda glvenli bilgi aktarimi konusunda uygulama alant bulan, kaotik sistem-
lerin egzamanlanmas:1 problemi, gozleyici tasarimi noktasindan ele alinmigtir.
Tasarimda, kaotik sistemlerin yoringelerinin, durum uzaymin smirh bir
bolgesinde kalmasi ozelligi, vurgulanarak kullamilmigtir. Ayrica, bazi ¢ok
bilinen kaotik sistemler i¢in, sistem yapisimin global egzamanlama amaciyla

dogrusal gozleyici kullamimina olanak verdigi gosterilmistir.

Anahtar Kelimeler : Dogrusal olmayan gozleyiciler, kaotik sistemler, kaos

eszamanlamasi.
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Chapter 1

INTRODUCTION

In all control strategies, the state feedback gives more degrees of freedom to
the designer than that the output feedback does, which is clearly evidenced
by the fact that output is an algebraic combination of the states. Therefore
it is natural for a system designer to seek to have the system states or their
estimates available. While in some cases this can be achieved by a direct
measurement, in general either the additional complexity required to perform
a reliable measurement or the very nature of the system becomes a hindrance

to such an approach.

A common solution to this problem is to incorporate into the design a new
system called “state observer” or “state estimator” which gives an estimate
of the true states using only the directly measurable variables of the system,
namely, the output and the input. Under some mild conditions, any state feed-
back scheme performs as well even when the state variables in the formulation
are replaced by those of the observer [1, page 251].

Other than a control objective, one can design an observer for the sole
purpose of monitoring hard-to-measure variables of the system and using those
estimation towards some other aim, such as system diagnostic [2].

Although the theory of observer design for linear systems is a well-developed



field, its counterpart for nonlinear systems is a relatively new branch of control
science, see [3]. Almost all of the existing research in this field focuses on
some restricted classes of nonlinear systems satisfying certain conditions, see

[4,5,6,7,8,9, 10, 11].

Recently, independent of the ongoing research on nonlinear observer theory,
there has been an increasing interest in the synchronization of chaotic systems
through a set of common signals, see [12, 13, 14, 15]. The motivation underlying
these attempts is the secure transmission by exploiting the non-periodicity of
the chaotic signals. We show that this task can also be formulated as an
observer design problem, where the original system and the observer are the
two systems to be synchronized and the system output is the common signal.

The thesis is organized as follows; in the second chapter a survey on the
existing nonlinear observer theory is presented with a brief reminder for the
linear counterpart. For each method, the advantages and the drawbacks are
highlighted. The discussion in the third chapter begins with the exposition of
the limitations of linearization method. Then an explicit eigenvalue assignment
procedure is given to improve the method based on the transformation of the
system to observer canonical form, see [16]. Fourth chapter is an account of
our application of the nonlinear observer design techuniques to chaotic synchro-
nization. We also indicate some special cases where the design is simplified due
to the special form of the system. We also furnish the above approach with

several examples of well-known chaotic systems.

The thesis is concluded with the description of an observation technique
inspired by the gradient descent dynamics and a summarizing view of our
work.



Chapter 2

BASICS AND OVERVIEW OF
LITERATURE

2.1 Observability and Observer Notions

Observer design can be defined as the construction of an auxiliary dynamical
systemn driven by the measurable variables of the original system such as its
input and the output. Assuming that the state variables of the observer can
easily be measured, we require those states to be a good estimation of the true
states. Generally a priori knowledge of the system model is assumed. Namely,

given a dynamical system described by,

¢ = f(z,u), z(0) = zo, (2.1)
y = h(z), (2.2)

then the observer is a system described by,
&= F(&,y,u), (2.3)

which satisfies,
tlixglo(x(t) —z(t)) =0, (2.4)



where,ze R*" , 2 € R" ,uc R" ,ycR? , f:R"xR™ - R" ,h: R" - R?
and F: R" x R? x R? —» R".

When (2.4) is satisfied for every initial conditions z(0) € R™ and £(0) € R™,
(2.3) is a global observer for (2.1),(2.2). If convergence is guaranteed for #(0)
in some neighborhood of z(0), then we have a local observer.

Since the observer (2.3) estimates the set of all the system states, it is
also called a “full order observer”. When some of the states are available
either through direct measurements or in the output, the set of states to be
estimated can be reduced, yielding a “reduced order observer” [17, page 461].
In our work, we deal with full order observers.

For the above approach to work, observability is an important condition
that has to be satisfied by the system.

Definition 2.1.1 [1] Consider the system (2.1),(2.2). Two states zo and x;
are said to be distinguishable if there exists an input function u(-) such that
y(-,zo,u) # y(-,z1,u), where y(-,z5,u), 1 = 1,2 is the output function of
the system (2.1),(2.2) corresponding to the input function u(-) and the initial
condition £(0) = ;. The system is said to be locally observable af zo € R"
if there exists a neighborhood N of o such that every x € N other than zo is
distinguishable from zo. Finally, the system is said to be locally observable if
it is locally observable at each o € R. If the neighborhood extends to all the
state space then we have global observability.

Note that two states may be indistinguishable for some set of inputs but
existence of any one distinguishing input is enough to guarantee local observ-
ability. In the next section we will see that analysis is quite simplified when the
system is linear. For linear systems, notions of local and global observability
are the same. Further, if a linear system is observable for an input function ,
so it is for any input function.



2.1.1 Linear Case

The following theorem summarizes the above mentioned properties of a linear
time invariant system described by,

& = Az + Bu, z(0) = z,, (2.5)
y = Cur, (26)

where A € R™™", B € R™*™ (C € RP*™,

Theorem 2.1.1 For the system (2.5),(2.6) the following are equivalent,

1. The pair (C, A) is observable.

2. The following rank condition is satisfied;

(¢ )
CA

rank . =n. (2.7)
\ cAm1

3. For any polynomial p(A\) = X" + a1 A" 1+ ...+ a1 A+ an, 6, ER, 1 =
1,2,...,n, there ezxists a constant matriz K € R™™ such that det(A] —
A+ KC) = p(A).
Proof : See [18]. O

One immediately realizes that the input has no effect on the observability
of the linear system.

Hence for an observable LTI system we can construct the observer as,

$ = A+ Bu+K(y—19), £0) =, (2.8)
Ct, (2.9)

L=43
|



where A, B and C are the same as in (2.5) , (2.6) and K € R™*? is the gain
matrix. Let us define the state error as € = 2 — &. Then the error dynamics is

given by,
¢ = ¢-—4%,
= Az - Az - KC(z — ),
= (A—KCQC)e. (2.10)

Thus, since (C,A) is observable, for a conjugate set of complex numbers
{A1,A2,... A} on the open left half plane, we can find a K € R™? such
that the eigenvalues of A — K'C correspond exactly to this set, i.e.,

det(A] — A+ KC) = [[(A - X, (2.11)

i=1

yielding a globally exponentially stable error system.

2.1.2 Generalization to Nonlinear Systems

There are some subtleties involved in the notion of observability for nonlinear
systems. First, the distinguishability of any two states depends on the input
function. There may exist some input function that yield the same output
function for two different initial conditions although they are distinguishable.
Another peculiarity is that in general, observability may only be satisfied lo-
cally. For examples of such cases, see [1, pages 415-416].

To give a sufficient condition for the local observability of an autonomous
system, we successively differentiate the output and impose a rank condition
to be able to extract the state information out of these quantities.

We consider a single input single output, (SISO), time-invariant nonlinear

system,

¢ = f(z), z(0) ==, (2.12)
y = h(z). (2.13)

To see the pattern, let us successively differentiate the output with respect to



time,

y = h(z)

y = Vh(z)-2=Vh(z)- f(z)

i = V(Vh(z): f(z)) - f(=),

where Vh(z) = [M la) .., %%?] is the gradient vector of A(z). Remem-

8x1 ¥ Bxp V7T

bering the definition of the Lie derivative L 0 of a C* function 6(z) with

respect to a C* vector field ¢(z),

L,b(z) = <Vb(z),e(z)>,
Leb(z) = Lo(Lg0(z)),
LgG(m) = 6(z),

we can express the time derivatives of the output as,

y = h(z),
j Lyh(z),

j = Ljh(z),

y" ) = Ly h(z).

Let us define the observability matrix Q(z) as,

- h(z)
a d | Lsh(z) do
Qe) = — : =T
| L7 h(z) |

(2.14)

Note that when the system is LTI, Q(z) becomes the constant observability

matrix introduced in (2.7).

Theorem 2.1.2 (Sufficient condition for local observability) Consider the
system (2.12),(2.13) and let xo € R™ be given. If Q(xo) has rank n, then the

system 1is locally observable at xq.



Proof : See [1, pages 418-421]. O

Remark 2.1.1 This condition is also sufficient for the ezistence of a nonlin-
ear diffeomorphic coordinate transformation z = T(x), such that, in the new

coordinates the system is linear up to output injection. Namely,

2 = Az+9(y), z(0) = z, (2.15)
y = Cz, (2.16)

with (C, A) observable. Obviously, the auziliary system,

2= At+g(y)+K@y—9) 2(0) =2, (2.17)
= O3, (2.18)

2

is an ezxponential observer for (2.15),(2.16). For an in-depth discussion of the
calculation of the nonlinear state transformation, see [19, page 244].

2.2 Methods of Observer Construction for

Nonlinear Systems

Determination of the nonlinear state transformation mentioned above is quite
difficult and to our knowledge, no systematic procedure has been proposed
to explicitly solve this problem. Instead, many attempts have been made to
deal with specific classes of nonlinear systems. In [20], a sufficient condition in
terms of the gradients of the system function and the output function is given.
Another approach is to impose a Lipschitz condition on the system nonlinearity,
which would enable the linear error dynamics to suppress nonlinear effects [8].
[16] uses a similar constraint together with a nonlinear transformation.

Here, we first give a brief description of analysis method of [8]. Then
a detailed exposition of the last technique proposed in [16] follows, since in
our work we use this design strategy together with an eigenvalue assignment

procedure of ours.



2.2.1 Linearization Method

As mentioned before this is an analysis approach rather than a constructive
one. But the following discussion is useful in the sense that it exposes the
limitations of the linearization approach. First, we state the following well-
known lemma;

Lemma 2.2.1 (Bellman-Gronwall) Let u(-) , ¢(-) and k(-) be real valued
piecewise continuous functions on Ry. If u(-) satisfies

u(t) < 4(0) + | E(r)u(r)dr, V>0, (2.19)

then ,
u(t) < $(¢) + /0’ $(r)k(r)el *Dgr v 0. (2.20)

Proof : See [21, page 476]. O

Consider the following autonomous system,

&t = Az+g(z), z(0) = zo, (2.21)

y = Cz, (2.22)

where the differentiable function g : R® — R" satisfies the following Lipschitz
condition;

llg(u1) — gu2)l| < Lljua — wall,  Vua,uz € R, (2.23)

where L > 0 is a Lipschitz constant. In the following discussion || - || denotes

either the standard Euclidean norm or the matrix norm induced by the 2-norm,
unless otherwise stated. For a definition see [1, page 22].

Assume the pair (C, A) is observable. Hence we can choose a gain matrix
K € R™*? such that A, = A — KC is a stable matrix. Then for a symmetric
and positive definite matrix ¢ € R™*", there exists a symmetric and positive
definite matrix P € R™ ™ such that the following Lyapunov matrix equation
is satisfied,

ATP + PA. = —Q. (2.24)



For the system (2.21) , (2.22) we construct the following observer,
i = Ab+9@)+Ky—19), #0) =320, (2.25)
y = Ci. (2.26)
Defining the error to be ¢ = z — &, its dynamics becomes,
é = Ace +g(z) — g(2). (2.27)

To check the stability of (2.27) we use the Lyapunov function V = e Pe. We
note that for symmetric positive definite matrices P and @), the following holds
for Vu € R™,

Amin(PYull* < u” P < Anaa(P)|ulf?,
Amin(@)lll® < vTQu < Amas (@)l (2.28)

By taking the time derivative of V along the error trajectory,
1% e Pé + éT Pe,
eT(ATP + PAL)e +2:7P [g() — 9(3)],

< —€"Qe+2||Pllllg(z) — g(@)lllell;
< ~(Amin(Q) = 2LAraz(P)) el
— | ———— — L | 2V. 2.
=1 (2:29)
Hence we can have an exponentially decaying bound on the Lyapunov function.
Namely,
V(t) < V(0)e ™, (2.30)
where v = % — L. Using (2.28), we have,
V(t) V(0)e " Apao(P) _
2 < < < 2+t 2 .
IO < 5y < 3Py S ey @I @3
or
Amaz(P) _
< Max ~t ] )
<l < || T30 )] (232
Thus, for a given Lipschitz constant L if
= —> L .
YD >0 (2.33)

10



then the observer states converge to the actual states exponentially fast. Also
note that the matrices P and () are determined by the choice of the gain matrix
K in the observer system.

An alternative way to see the same result, which could be related to our
work in the sequel, is to use the solution of (2.27) as follows:

¢
e(t) = ete(0) + [ A [gla(r)) — g(d(r))] dr. (2.34)
Since A, is stable, the following holds for some M > 0 and a > 0 ;
lleAt|l < Me™. (2.35)
By taking norms and using (2.35) in (2.34), we obtain
t
lle(®)Il < Me™|l(0)]] +A Mem7)||g(2(r)) — g(&(7))||dr, (2.36)

Using the Lipschitz condition (2.23), and multiplying by e**

leell < Mlle(O)l + [ MLll(r)edr. (2.37)
Finally, applying Lemma 2.2.1 and multiplying by e™** , we obtain
le@)Il < Me=C=MElg(0)]]. (2.38)
Hence if N
v L, (2.39)

then the estimation error decays to zero exponentially fast.

This method relies on the suppression of the nonlinearity by linear dynam-
ics. We will have more to say about the limits of this approach in the next
chapter. For now, we state a lemma about the local performance of the above

observer.

Lemma 2.2.2 For the system (2.21),(2.22) assume that the pair (C,A) is
observable, g : R® — R" is differentiable and that the following is satisfied,

limy [ Dy(=)] = (2.40)

where Dg(-) denotes the Jacobian of g(-). Then there exists a matriz K € R"*?
such that (2.33) holds if ||e(0)|| < r and ||z(t)|| <r, Vi2>0 for a sufficiently

small real number r > 0.

11



Proof : Observability of (C, A) implies the existence of a K € R™*? such that
A, = A— KC is a stable matrix. Then we can find two symmetric and positive
matrices P and @ which satisfy (2.24). In a ball of radius R > 0, a Lipschitz
constant L can be chosen to be [22, page 199],

L =sup{|Dg(a)|l | =l < R}. (2.41)

Now choose R > 0 such that L given by (2.41) satisfies (2.33). Such an R can
always be found since (2.40) holds.

Note that (2.25) can be written as
& =(A-KC)i+g(2)+ KCxz. (2.42)

Since A, = A — KC is a stable matrix, it can be shown that the solutions of
(2.42) remain bounded provided that ||#(0)|| and ||z(t)|| are sufficiently small.
To see this, we write the solution of (2.42) as

¢ ¢
#(t) = e*t2(0) —l—/é A<= g(2(7))dr —I—/é et KCx(7)dr. (2.43)

Stability of A. implies the existence of the constants M; > 0 and é > 0 such
that
lle?<t]| < Mye . (2.44)

By taking norms in (2.43) and using (2.44) we obtain,

¢
@I < M1e"5t||:?;(0)”+/(; M=t |g(#(r))||dr
t
+ [ M DK Cfla(r) dr. (2.45)
Now assume that ||2(0)]] < r; and ||z(¢)|| < r2 V& > 0. By using (2.23) in
(2.45) one has

M ||KC||r,

i (1 —e%). (2.46)

2@ < Mye™rs + /;,t My Le™*¢=7||()||dr +

By multiplying both sides by €% and using Lemma 2.2.1,

M ||KC||rq
6

¢
-l-/ ML | Myry +
0

le2(t)]| < Mary + (e” —1)

MIHKC“T'Z

5 (7 —1) elr MaLds g (2.47)

12



By routine integration and then multiplying by e% , (2.47) can be simplified

as
”.’%(t)“ S A1r2 + (Az?"l —_ Al?"z)e(MlL_s)t, (248)
where MyIKC|
Al == m, A2 = M]. (24:9)

Now, the constant R > 0 in (2.41) could be chosen sufficiently small so that L
given by (2.41) satisfies 6 — My L > 0. Then from (2.48) it follows that ||Z|| is
also bounded. Moreover, the existence of sufficiently small r; and r, guarantees
that the Lipschitz constant given in (2.41) remains valid for V¢ > 0. Hence
we can set r = ry so that, whenever |[e(0)|| < r and |[u(t)] < r, (2.25) is an
observer for the system (2.21),(2.22).

Remark 2.2.1 The condition of (2.40) is always satisfied when the system
description (2.21) is obtained by the linearization of a nonlinear system around
an equilibrium point in which case g necessarily contains at least second order

terms.

2.2.2 Transformation to Observable Canonical Form

This section is devoted to the exposition of an observer design method for
nonlinear systems proposed by [16]. Since we used an improved version of this
method in our work, an elaborate treatment of this technique is given next.

First we need to establish a lemma.

Lemma 2.2.3 Let A\, \a,..., A, € R and consider the Vandermonde matriz

given below,

anloamr 1
DLt Vac D VI |

viy=|"7 7 R (2.50)
| apt a2, 1

13



Then for any a > 0 and ¢ > 0, there exist 0 > Ay > Ay... > A, such that the
Sfollowing is satisfied
M+ VI )e = —e. (2.51)

Proof : See [16]. O
Now we give the description of the observer as a theorem in the lines of

[16].

Theorem 2.2.1 [16] Let Q(x) be the observability matriz defined in (2.14) for
the system (2.12) , (2.13). If
H1 Q(z) has full rank for all z € R,

H2 L?h(@‘l(u)) is uniformly Lipschitz for all uy,us € R™, i.e. the following
holds for some v > 0 ;

L3R (@7 (ur)) — LEA(2™! (u2))ll < Ylux — wall,

then there exists a finite gain vector K € R™ such that the solution of the
following system equation,

= f(#)+Q ' (#)K(y—h(2)), #0) =2 (2.52)

converges exponentially to the solution of (2.12) , (2.13).

Proof : Let us define the nonlinear state transformation;

[ h(z) ]

e = | ’f(x) , zCR" (2.53)

| L h(z)

14



which admits inverse because of the implicit function theorem and H1. In the
new coordinates the system (2.12),(2.13) becomes;

¢ = Az+ BL}h(®7'(2)), (2.54)
y = Cxz, (2.55)

where A € R**", B € R**!, C' € R!*" are given by the Brunowsky canonical

form;

(010 ...0] [0 ]
001 ..0 0
A= |, B=|:|, c=q10...0. (2.56)
000 ...1 0
(000 ... 0] 1|

In the same way, defining 2 = ®(Z) , the observer (2.52) assumes the form
(= A2+ BLTh(®7'(2)) + K(y — C3), %= ®(&). (2.57)
Then the dynamics of the error in the transformed domain is given by
é= (A~ KC)e+ B[Lh(97'(2)) — LTh(371(2))] - (2.58)

Since the pair (C, A) is observable, by an appropriate choice of the feedback
gain matrix K, the eigenvalues of A, = A — KC can be assigned arbitrarily.
Now, assume that the assigned eigenvalues, A = {1, A2,..., A} are all real,
negative and distinct such that 0 > Ay > ... > A,. Then the matrix A, can be
diagonalized by the Vandermonde matrix. Namely, we have

A, = VTINAV()), (2.59)
where A = diag [\ A2...\,]. To see this, note that
[ -k 10 ... 0 -
k01 0
Ao=| . (2.60)
K1 0 1
i -k, 0 0 |




The characteristic polynomial of A, can easily be calculated to be
p(s) =det(s] — A.) = 8" + kys™ ™ + kos" 2 ..+ k18 + k. (2.61)
We know that for an eigenvalue X; of A, , p(\;) = 0 is satisfied. Namely,
A= g AP — B APk — ki hi — ke, 1=1,2,... 1. (2.62)

Now rewrite (2.59) as
V(A)A. = AV(X). (2.63)

The RHS of the above equation is a matrix given as

-

ATOATTE LA )
PLIED L D D
AV =| 7 7 2 (2.64)
AR AT AR A
Also, the LHS of (2.63) can be calculated as
n—1 . 7
S (ki X)) MNP0 XE N
e
n—1 .
D (=kajAy) AT oL A2 X
VA, = | == ’ : (2.65)
n—1 . .
D (—kasiX) AnTL oL X2,
L ;=1 d
By using (2.62) in (2.65), we obtain (2.63).
Then we have
et = V1) MV (). (2.66)

The solution of (2.58) can be written as

V(\e(t) = eA:V()\)e(O)
+ /0 M-IV (A)B [L3h(@7(2(7))) — L3A(®(5(r)))] dr. (2.67)
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Taking the 2-norm of both sides and using H2 and the fact that |[V(\)B]| =
/1, we have

VOVl < V@l + [ 6y VAN IV (A)e(r)ldr. (268)

M1t and use Lemma 2.2.1 to write

Now we multiply both sides by e
IV(Ve@®)]] < X+ v (2)e(0)). (2.69)

By Lemma 2.2.3, we can choose the eigenvalues of (A — KC) such that the
exponent

MV Vey = —a (2.70)

in (2.69) becomes negative. Hence we obtain

VD@l < e [V(Ve@ll,  e>0. (2.71)

Let o1 > 0 and o, > 0 be the maximum and the minimum singular values of

V(A), respectively. Then we have
oullull < IVOull < oullul, Vo € R (2.12)
Thus, from (2.71) we obtain

el < Z=e= O], (2.73)

showing the exponential decay of observation error. O
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Chapter 3

LIMITATIONS AND
IMPROVEMENTS

3.1 A Bound on the Linearization Method

It would be useful if we could give an explicit bound on the achievable perfor-
mance by the linearization method. To do this we proceed, as in the previous
section, by writing the solution of the error equation. First we state the follow-
ing lemma relating the maximum eigenvalue of a stable matrix to the condition
number of its diagonalizing matrix.

Lemma 3.1.1 For a matriz A € R™"™ with real, distinct and negative eigen-
values 0> Ay > Ay > ... > A, let T € R ™ denote the matriz of eigenvectors
of A, i.e., A= TAT™, where A = diag[ M A\y... )\, |. Then the following
inequality is satisfied,

Al
< 5 (A), 3.1
iz = 7 &0
where 0,(A) denotes the minimum singular value of A and || - || is the matriz

norm induced by the 2-norm.
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Proof : Let v € R™ be a vector of unity norm and g a real number that is
different than any eigenvalue of A. Also let r = Av — pv. Then we have,

r = TAT v — pv,

= (TAT™' — pl)v,
= T(A—u)T v,
v=T(A~p)>'T'r. (3.2)
Taking the norm,
1< ITIICA = oD, (3.3)
where
I(A = D)7 = max(X; — pl™") = (min |} — p)~" (3.4)
Thus, we have
min | A — uf < T |||l (3.5)

Now, let (v, i) be an cigenvector-eigenvalue pair of the perturbed matrix A+6A
with |lv|| = 1. Expressing this as

(A+6A)v = po, (3.6)
or
— 60Av = Av — po, (3.7)
and using (3.5), one has
min |A; — | < [SA|TINT. (3.8)

Choose the perturbation matrix §A such that A + A becomes singular and
choose g = 0. Then
min | Al
[T

Since the minimum norm perturbation to make a matrix singular is the one

< ||6A]|. (3.9)

whose norm is equal to the minimum singular value of the perturbed matrix[23,
page 330], we finally get,

min |A;]

g = oA 8 (310
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Note that this ratio can be readily identified with the ratio 7 introduced in
(2.39).

A shorter proof of the same result can be given as follows; we first write
the SVD of A as
A=UsVH (3.11)

and equate it to the modal decomposition of A to obtain
USVH = TAT, (3.12)
Taking the inverse of both sides, one has
VETWUH = TATIT, (3.13)

or
» ' =VETATITU. (3.14)

By taking norm and using the unitarity of U and V, we obtain

=M< AT, (3.15)
" L _ Ty
(@) = min]n] (3.16)
Lemma 3.1.2 For the system
& = Az +yg(z), z(0)= zo, (3.17)
y = Ce, (3.18)

let the eigenvalues of A. = A— KC be all real, negative and distinct. Then the
observer (2.25),(2.26) is not guaranteed to work if L > 0,(A.), where L is the
Lipschitz constant of g(+) and o,(A.) is the smallest singular value of A..

Proof: Here we repeat the error equation;
€= A+ g(z) — g(£), €(0)= e, (3.19)

and write the solution of (3.19) as,

e(t) = Hleo + [ A4 [g(a(r)) — g(a(r)]dr. (3.20)
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Assuming the eigenvalues of A, are all real, negative and distinct, we have the
Jordan form of A, as A, = TAT " where T is the matrix of eigenvectors of A,.
Then (3.20) becomes,

¢

e(t) = TeMT e +/§ Tert-m)p—1 lg9(z(7)) — g(2(7))] dT. (3.21)

Taking 2-norm of both sides and using the Lipschitz property of g(z), one has
i

le@I < ITIT lleolle™* + ||T||||T_1||L MO L)e(r)|ldr,  (3.22)

where ), is the eigenvalue closest to the imaginary axis. Application of Lemma

2.2.1 to (3.22) yields,
le(®)]| < cond(T)|jeol|e™ D+ zamdery)®, (3.23)

where cond(T) = ||T|||T"]| denotes the condition number of T. For the
exponent in (3.23) to be negative, we require that

|Aa]
cond(T) > L. (3.24)

By Lemma 3.1.1, the quantity on the LHS of (3.24) cannot be larger than
o(A.), the minimum singular value of A.. O

Note that the LHS of the inequality (3.24) can be adjusted by varying
the feedback gain matrix K and this point may be exploited in the observer
design. The inequality (3.24) gives a bound on the Lipschitz constant of the
nonlinearity g(-) so that the observer given by (2.25), (2.26) is guaranteed to
provide an estimate of the states of the system (2.21), (2.22). Hence in this
approach, in order to tolerate a larger class of nonlinearities, the LHS of (3.24)
may be maximized with an appropriate choice of the feedback gain K. Below

such a maximization is given as an example.

Example 3.1.1 Suppose A, € R?*? is stable and in companion form,

k1 }
, (3.25)
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which can be diagonalized by the Vandermonde matrix,

A1 }
V= , (3.26)

al 1

where ¢ > 1 and A < 0 and A , a) are the eigenvalues of A,. Then, using

I-norm [1, page 22] we can write,

1—al
A—a)’

IVil: = max{2,[A+ad]}, V7= (3.27)

The case where [A + aA| < 2 is easily ruled out by considering the ordering
of the eigenvalues in the Vandermonde matrix. Thus for |A + a)A| > 2, the
quantity to be maximized is

—A A—al
C(A,a) = = . 3.28
R 7 I Ve (329
Taking the partial derivatives of C'(), a) with respect to A,
A 1
90N a) _ (3.29)

o (1—ar2(l+a)?’

we see that C(, a) increases in the direction of decreasing A. Also the solution

of ’
0C(A,a)

Jda

a=1+\/2—%, (3.31)

whose maximum value is 1 ++/2. The gains &, and k, are given by the formula

By =204+ vV2X2 — X, ky = A2 4 AV/2)2 - (3.32)

=0, (3.30)

is found to be

We can calculate the maximum value of C'(A,a) as

V2
(1+v2)(2+V?2)

This is illustrated below by a 3-D plot of C(), a).

C(—00,1+/2) =

~ 0.17 (3.33)
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Figure 3.1: C(},a)

Hence for a suitable design we choose @ = /241 and then choose ) as large
as possible. This, of course, is restricted by the maximum obtainable gain in
the implementation.

3.2 An Eigenvalue Assignment Procedure for

Vandermonde Matrix

In the previous chapter, we intentionally skipped the discussion of the eigen-
value assignment scheme that is required to make the exponent of (2.69) neg-
ative. In [16] it is claimed that it would be enough if the maximum eigenvalue
in the Vandermonde matrix is chosen to be larger in magnitude than the Lips-
chitz constant. This can easily be contradicted by an example. Instead we give
an explicit eigenvalue assignment procedure for the error in (2.73) to converge
exponentially to zero.
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Lemma 3.2.1 The determinant of the Vandermonde matriz is given by

DD e I W
AU am? 1
det(V(N) =det| 2 o =TI=n). 339
: : PO >3
Azt oan? oA 1

Proof : See [24, page 3]. O

Now we are ready to describe our eigenvalue assignment procedure by a theo-
rem. Note that in [16] 2-norm was used. However, in the following discussion

we will use co-norm, which is defined for A € R™" as ||A]| = max ) _ |as;],

j=1
[1, page 22]. Since all the p-norms are topologically equivalent in R™ [25, page
258], this will make no major difference apart from changing the Lipschitz

constant in Theorem 1 of [16]. Also the exponent given in (2.73) will be

—a= A+ 7V (3.35)

Theorem 3.2.1 Let V(A) denote the Vandermonde matriz constructed with
the set Sy = {A1, Az, ..., A}, and let \; = a'~'\ for some A < 0 and a > 1.
Then, if |A| and a are sufficiently large, we have ||[V*())||co independent of A
and

lim ||V (A)]eo = 1. (3.36)

a-—r00

Proof : We know that the inverse of a nonsingular matrix is found by dividing
its adjoint matrix to its determinant. Let M(A) denote the inverse of the
Vandermonde matrix. Then to find the i** element in the last row of M())

we delete the last column and i** row of V()\) and calculate the corresponding
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cofactor. Namely,

PULED B ¢ W
(1) MANT A A
Mpi = —————det( ). (3.37)
det(V (X)) DY Vi D ¢ W
An-lom=2 A2 ), ]

It is easy to see that, the matrix on the RHS of (3.37) can be scaled to get
another Vandermonde structure. Then using Lemma 3.2.1, one has

A dicidipn A T Op = A)
(pasti)
Mg = (—1)" s : (3.38)
H(’\P - )‘q)

P>q

Canceling the common terms in the products we get,

11
M = (—1)+" H#Z(A = (3.39)

p>q
(p=5)V(g=0)

Now we assign A; = '\, where @ > 1 and A < 0,

H a’ )
ni = (—1)" L . 3.40
My, ( ) H (ap__l _ (Lq_l)/\ ( )

p>9
(p=t}Vv(g=1)

Obviously the numbers of the factors in both of the products are n — 1, thus

[Ie
Mg = (—1)7+" i (3.41)

I @ ey

P>q
(p=t)V(g=)

cancelling A’s.
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or by calculating the product in the numerator, we obtain

n?—n42-2i
a

I (@*- a?™l)’

p>q
(p=9)V(9=1%)

M = (—1)""

(3.42)

The degree of the denominator can be calculated as the sum of the degrees of
each product term. To see the calculation, let us write out the denominator as

H (ap—l _ aq—l) — (an—l _ ai—l)(an——z _ ai—-l) . (ai _ ai—l)
p>q h " g
(p=t)v{g=%) (n—i) times
1+ (ai—l _ ai—2)(az—1 _ ai—S) . (ai—l _ 1) .
(i—-1) Emes

Then we obtain,

(3

deg J[ (@ '=a"") = D (G-D+(E-1)(E-1),

p>q i+1

(p=1)V{9=7)
n(n—1)+ (c —1)(z — 2)
5 .

For 7 > 1, the degree of the denominator is greater than that of the numerator,
but for 7 = 1 they are equal. Thus one can conclude that, for the above
assignment procedure, the last row of V~! will uniformly converge to

lim m, = [(-=1)" 0 0 ... 0]. (3.43)

a—>00

Note that the last row of V! is independent of A.

Now, we will prove the dominance of this last row when calculating the co-norm
of V=*(X). To do this, let us consider an arbitrary cofactor (—1)"*"~9V,(,_;) of
V, where j # 0. By deleting the i*» row and (n — j)™ column of V, one obtains
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Vitn—g) =

[ Ar-t e it Pt D S | -
g1 )n-1 o @iti)iH ad~t N1 ceead 1
gli-D(=1) \n=1  LGE-1G+1) )+ G611 )i-1 | 41y ]
agilr=)\n=t i) )i+ aU-UN-1 0 @ix 1
P N N I C S VR DY A BM G MR DY o S S SN |

Considering the definition of the determinant of a matrix, to calculate the
determinant of Vj(,—;) we pick n entries no two of which lie in the same column
or row and multiply those to get an element in the summation that we carry
out over all possible permutations. A careful inspection reveals that the degree
in A of the determinant of Vj(,_;) is at least one less than the degree in A
of the determinant of V(A) because a row and a column are missing in the

multiplications. Hence,
deg (det(Viga—)) < dega(det(V(N)), (3.44)

which implies that, ( )
det(Vin—s) _
oo det(V(N))

Hence, as || gets larger, all the rows of V=1()\) other than the last row uni-

0. (3.45)

formly converge to a zero-row vector. Then for |A| and a sufficiently large,
the absolute sum of the last row of V~'()) will be dominant. In this case
IV1(Q)]| is given by

VO = S st 8 64

p>q
(p=i)v(a=i)

Although it is cumbersome to determine the exact relation between A and
a for (3.46) to be valid in the general case, here we give the results for n = 2, 3.
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For n=2:

—aX A
and
SMES 2
WV o = P for a> ) 1. (3.47)
For n=3 :
A2x 1
V(}‘) =1a?X? a) 1 3
a*d? a?) 1
(a—a®)X  (®—1Xx  (1-a)A
- 1
Vi) = Y@~ 1)@= a)(a 1) (a*—a®)X? (1—aY)X? (a2 -1 |,
(a* —a®)X3 (a*—a?)N® (a—a?)X3
and

Ve = dor o> -2 (3.48)

Now we give a step by step outline of the observer design procedure;

1. Given a nonlinear single-input single-output TI system

& = f(z), (3.49)
y = h(z), (3.50)
find Q(z) by using (2.14).
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2. Determine if Q(z) has rank n for all z € R".

3. If so, this means that the nonlinear state transformation z = ®(z) is
invertible, where ®(-) is defined in (2.14). Then, using oo-norm, find a
global Lipschitz bound +y on the function L}h(®7!(z2)).

4. Choose a > 1 and by using (3.46), calculate

w0 = [V e (3.51)

5. Assign the first eigenvalue A such that ||V =1(}1)||e, depends only on a and
A< —w. (3.52)

The number o = A 4+ w determines the lower bound on the exponential

decay rate of observation error.

6. Assign the remaining eigenvalues as

MNi=a"l, i=1,...,n. (3.53)

7. Determine the gain vector K by using
" ks kst k= (85— M) (8= A2)... (8= M) (3.54)
and K = [kl k2 e kn]T

8. Construct the observer as

&= f(#)+ Q@] K(y — h(2)). (3.55)

We conclude this chapter by mentioning a disadvantage of the above eigenvalue
assignment procedure. Usually the observer gains are so high that the transient
oscillations in the convergence may be quite damaging in practical applications,
apart from the fact that such high gains are not so easy to implement.
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Chapter 4

APPLICATION TO
SYNCHRONIZATION OF
CHAOTIC SYSTEMS

Recently there has been a great deal of interest toward the synchronization of
nonlinear systems operating in a chaotic regime. Its major application area is
the secure transmission of information imposed on chaotic signals. The non-
periodicity of the chaotic signal makes it almost impossible to tap into the
channel by classical methods. On the other hand, the intented receiver of the
information has to possess means, which, assumedly no eavesdropper has, of
extracting the information out of the chaotically modulated signal. Apart from
a robust synchronizing scheme, the receiver end of the communication has the
extra knowledge of the system model that has produced the chaotic signals.

In this chapter we show that synchronization of chaotic systems can be
achieved by using state observers in the receiver end. For some chaotic systems
the results of the linear observer theory can easily be applied while for some
other cases one needs to employ the observer construction methods described
in the previous chapter.
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The fact that the system operates in chaotic regime can be exploited to
facilitate the observer design. Loosely speaking, the trajectories of a chaotic
system passes through almost all points in a bounded region of the state space.
This peculiarity enables one to define global Lipschitz bounds on the nonlin-

earities involved.

In Figure 4.1, a communication system using chaotic signals in modulation
is depicted. Here, s(t) and y(t) can be viewed as two states of a chaotic system.
We modulate s(¢) additively by the message signal m(t) and send the resulting
signal f(t) to the receiver end. Also another state y(t) of the chaotic system
is directly sent to the receiver end through a different channel. This signal is
used to reconstruct s(¢) which, in turn, is subtracted from f(¢) to get a copy
of the original message.

¥(1) ¥y
[ - ————
. (0] .
Chaotic System Reconstruction
s(t) System
ALY
NVWW
m(t)
-
C e
1ty
Transmitter Channel Receiver

Figure 4.1: A communication system using chaotic modulation

4.1 Synchronization by Exploiting the Sys-

tem Structure

A common approach to the synchronization problem is the one that has been
proposed in [12, 13]. In this section we will briefly outline their method with
an example. This method is based on the separation of the system into two

subsystems, i.e.,

u = f(uaw)a (41)
w = g(u,w). (4.2)
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(4.3)

whereu e R" ,w e R, f: R" X R™ - R"and g : R* x R™ — R™. At
the receiver end, we replicate the second subsystem and call it the “response
system”.

b = g(u,). (4.4)

We assume that the state u of the first subsystem is known and is directly sent
to the receiver end. Thus this scheme can be viewed as some of the original state
variables driving the response system, for that reason our original system is
called the “drive system”. The two systems synchronize if the error €, = w—w
goes asymptotically to zero,

tliglo ew(t) = 0. (4.5)

Although the scheme may seem simple at first glance, there does not exist an
explicit procedure to choose response subsystem to guarantee the stability of
error system. Moreover there may not exist any plausible choice at all, see [13].

Example 4.1.1 [13] Consider the Lorentz chaotic attractor system

z = o(y—=2), (4.6)
y = —xzz+rz—y, (4.7)
z = zy-—bz. (4.8)

We choose the parameters o = 16 , b = 4, and r = 45.92 so that the system
operates in chaotic regime. Then dubbing y and z as the response variables,
we replicate the response system at the receiver end. Note that the first state
variable z(t) is sent as the synchronizing signal.

—zZ+rr —1q, (4.9)
2 — b3, (4.10)

2.
I

1S3
J

Below is shown the convergence of the response variable y to the true state of
the system for a typical initial condition and for the above choice of parameters.
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— drive

————— - response

Figure 4.2: Convergence of g(t) of the response system to y(¢) of the drive
system for the initial conditions z(0) =5 , y(0) =5, 2(0) = —4, §(0) = —10,
and £(0) = 15.

4.2 Observer Based Synchronization

The synchronization problem described so far can also be addressed from the
observation point of view, see [26, 27]. We can take the common synchronizing
signal to be the system output of the drive system and the response system can
be chosen as a full order observer. Then it becomes possible to use existing
observer design strategies for the purpose of synchronization. Besides, the
system output is not a priori defined for chaotic systems. Hence one can tailor
an output such that the observer design is facilitated.

Another peculiarity of the chaotic systems is that, since the trajectories
always remain in a compact region, we can always find a global Lipschitz bound
on the nonlinearities involved. Thus the observer proposed in the previous
chapter works globally whenever a diffeomorphic transformation to Brunowsky

canonical form can be found.

In the following discussion, we first expose the simplification of the observer
design for two classes of nonlinear systems, then the nonlinear state transforma-
tion method is applied to Rossler and Lorentz systems and the Chua oscillator.
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4.2.1 Systems in Lur’e Form

A L(s)

n{.)

Figure 4.3: Lur’e Form

We consider the class of systems having the structure shown in Figure 4.3.
Here L(s) represents the transfer function of a single-input single-output LTI
system and n(-) : R — R is a memoryless nonlinearity. This is the well-known
Lur’e form which have been heavily investigated [1] and is known to exhibit
chaotic behavior for certain cases. Such a system can always be synchronized
using a global observer. We assume that L(s) is a strictly proper transfer
function, then we can find an observable realization (A, B,C) of L(s) such
that L(s) = C(sI — A)™'B. Rewriting the system description in state space,

¢z = Az - Bn(y), (4.11)
y = Ca, (4.12)
we choose the observer as
& = Ai— Bn(y)+K(y—9), (4.13)
gy = Cz. (4.14)

Hence the error dynamics is given by
€ = Ace, (4.15)

where, by the observability of (C,A) , Ac = A — KC can be chosen to be a
stable matrix with an appropriate choice of K. The idea is just the design of

observer for a system that is linear up to output injection.
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Example 4.2.1 Let L(s) and n(-) be

—ky ly] <1
1

L) = sratims W=

2ky — 2k sgn(y) 1<[|y| <3  (416)
3k sgn(y) ly| >3

with & = 1.8 . This system is known to exhibit chaotic behavior for this set of
parameters [28]. Realization is given by

0 1 0 0
A=10 0 11, B=10o]|, C=[100]. (4.17)
0 —-1.25 -1 1

Below is shown the system’s chaotic behavior and the exponential convergence

of the observer states to the system states when the observer is as described

29 11 :1_9]T'

above. The feedback gain is chosen as K = [{5, 35, =3
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time time

(c) (d)

Figure 4.4: (a) The chaotic behavior of the system. (b)-(c)-(d) System and the
observer states for z(0) = [1, —1, —0.1]7 and #(0) = [-2, -2, 1]¥

Example 4.2.2 The well-known Chua’s Oscillator circuit [29] can also be rep-
resented in Lur’e form. The state equations are,
Ry 1

:&1 = —thl - sz, (418)
. 1 G

Ty = —'6—'23171 - 62.’172 + 6;.’33, (4:19)
. G G 1

T3 = —z9— —z3— —f(z3), (4.20)

01 Cl Cl
where 21 = 17, , T3 = vy , 23 = v; , and G = lR. The nonlinear resistor is
described by ig = f(vr), where f : R — R is a three segment piecewise linear
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R=—l——
G
A -
iR
RO
+
C, :E+ ¢, :E-l- e
L v, \2
i3 Ng
Figure 4.5: Chua Oscillator
function given as

and Gy < 0,G2 <0, F > 0 are some constants.

If the output is chosen as y = x3, the system is already a realization of
Lur’e form with

B 1z 0 0
A=| -4 & & |, B=|o |, C=[o01], (4.22)
and
n(y) = G2y + 0.5(G1 — Ga)(ly + E| — |y — EI). (4.23)

For the simulations, to facilitate the numerical integration, we define a new
independent variable 7 = g;t and scale z; by §. After these changes the
system is rewritten as (R = 0)

213.1 = —,B:Ez, (424)
Ty = Z1— Ty+ T3, (425)
T3 = Ty — aTs— %f(xg), (4.26)

where a = —gf; and g = foé; The linear part of this system is observable
if @ # 0. We choose the parameters as Gy = 0.8 , G, = 0.5, a = 8,

B =11, E =1, and G = 0.7. When we give examples of observer design
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by nonlinear state transformation, we will see that the Chua’s oscillator also
satisfies the necessary conditions for such a diffeomorphic transformation to
exist, see Example 4.2.7. Now, we give the simulation results for the above
design with K =[-8 2 —1]7.

97 8

Figure 4.6: (a) The chaotic behavior of the Chua Oscillator. (b)-(c)-(d) System
and the observer states for z(0) = [0.1, 0.1, 0.1] and £(0) = [-2, -2, 2]T
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4.2.2 Forced Oscillators

Consider an n'* order differential equation
w™ 4+ F(w,,...,w" V) = ht), (4.27)

where F' is a differentiable function of its arguments. Van der Pol and Duff-
ing systems are two examples of the above type displaying chaotic behavior.
Choosing z; = w and z; = ;-1 , ¢ = 1,2,...,n , we write the state space
representation of (4.27) as

& = Az + Bg(z) + Bu, (4.28)
where
r 7
01 0 0 S
0
0 0 1 0 )
A= : t |, B=| |, g9(z) = —F(z), u=h(t).
0
0 .. 0 1
1
0 0 | -
With the choice of output as y = z;, the above representation is in the

Brunowsky canonical form of previous chapter. Hence the eigenvalue assign-
ment procedure described therein can directly be applied to design the observer

as

This observer has been used in [30] to design controllers for the purpose of
driving following two systems to stable limit cycles.

Example 4.2.3 As a first example of this type, consider the following forced
Van der Pol oscillator;

& +d(z* — 1)z + = = acoswt + r(t). (4.30)

It was shown in [31] that for various values of d , ¢ and w, this oscillator
exhibits a large variety of nonlinear phenomena, including chaos. This system
is in the form given by (4.27) with

F(z,z) = d(z* — 1)z + . (4.31)
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Transforming to state space coordinates and choosing y = z;, we obtain

T = xo, (4.32)
2 = —d(z?— 1)z — z; + acoswt + r(t). (4.33)

We note that, although the nonlinearity is not globally Lipschitz, the solutions
which are of interest to us remain in a bounded convex region ), of the state
space. Thus a Lipschitz constant can be found by

L = sup [V f(z)] o, (4.34)
z€N

where, f(z) = —d(z? — 1)z2 — 1. Proceeding this way,

—2d$1$2 -1
IV (@)oo =l lloo (4.35)
—d(z} - 1)
and
L = sup max{|2dz1zs + 1], |d(z? — 1)|}. (4.36)
€0

For a particular trajectory with d =6 , ¢ = 2.5 , w = 3, we inspect the phase
portrait of (4.32),(4.33) to set L = 241, then we arbitrarily pick a ratio r > 1.
The first eigenvalue is chosen such that

r+1
r—1

A=A —

L (4.37)

and the second eigenvalue is given by Ay = rA. Finally the gains are found by
equating
32 + k‘]S + kz = (3 bt Al)(S — )\2) (438)

So, choosing r = 4 and A = —403, we find Ay = —1612 , k1 = 2015 , k2 =
649636.

One can use this observer to design a state feedback for the purpose of
eliminating chaos. Using the bifurcation diagram given in [31], it can be seen
that for certain different ranges of the parameter d , the system exhibits chaos
or limit cycle. Hence effectively changing the value of this parameter with state
feedback of the form r(t) = ds(z? — 1), the system behavior can be changed
from chaos to limit cycle, with the new parameter being d, = d — dy. For
the present example, the bifurcation diagram reveals that when d = 6 , the
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system operates in chaotic regime, and for d = 0.5 , we have a limit cycle. Thus,
choosing d; = 5.5 we achieve the desired change. When the feedback states are
taken from the observer, a nonlinear feedback of the form r(¢) = 5.5(22 — 1)2,,
still drives the system to a stable limit cycle, see [30]. In the simulations both
the chaotic regime and the limit cycle are shown. Note that the convergence
of the observer states to the system states is quite fast while we have a large

overshoot in Z,.

15 — ——

X2 Or

-2t

-100}
—150}
—200¢!

-250}

—_

0% 0.02 0.04 0.06 0.08 0.1 —800; 0.02 0.04 . 0.06 0.08
me

time

(¢) (d)

Figure 4.7: (a) The chaotic behavior of the Van der Pol forced Oscillator. (b)
The limit cycle when the observer-state control is applied (c)-(d) System and

the observer states for z(0) = [0, 0]7 and 2(0) = [1, 1]%.
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Example 4.2.4 Our second example for forced oscillators is Duffing Equation
which is used to model different natural phenomena, see [32]. It is described
by the differential equation

& + aoz + a1 + azz® = gcos wt + r(t). (4.39)

The bifurcation structure of this system with respect to parameters ag , a; ,
a2 can be found in [32].

The state space description of Duffing equation is

B = @, (4.40)

$3 = —aoTy — a1Ty — axxs + qcos wt + r(t). (4.41)

Although the observer design scheme of the previous example is quite applicable
here, we note that the system becomes a realization of Lur’e form when z; is
chosen as output. Then the observer given by

31 = Za+ki(y — #1), (4.42)
Ty = —aofy — a1®z + ka(y — 1) — a2y® + qcos wt + r(t) (4.43)

works globally and converges exponentially to the true states. With appropri-
ate choice of k; and ky, we can place all the eigenvalues of A— KC on the open
left half plane. This is always possible since the pair (C, A) with

0 1
A= , C=[10] (4.44)

—Qo —a1

is observable whenever ag # 0. The parameters are chosen such that the
system operates in chaotic regime, ap =0.25 , a1 =0.2 a2 =1, ¢ = 7.5 and
w = 1. Then by choosing the gain vector K such that A — KC is stable, we
construct the observer (4.42),(4.43). Here we give the simulation results for

K =%, BT and r(t) = 0.
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Figure 4.8: (a) The chaotic behavior of the Dufling system. (b)-(c) System
and the observer states for (0) = [2, 2] and #(0) = [-3, —1]%.

4.2.3 Rossler and Lorentz Systems

Example 4.2.5 A common test system for the performance of synchronization

schemes is the Rossler system,

$1 = —wp— 23, (4.45)
&y = x4 azy, (4.46)
f;?3 = —cx3+ 2123 + b (447)
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This system exhibits chaotic motion for certain range of parameters a > 0
b>0,c¢>0,[13].

We first try y = z;. Using (2.14),

T
dd d
Qz) = ;l—;:% —Z2 — T3 ’
—21 —azy+ cx3 — 13— b

—1—23 —a c—x

which is singular for z; = a + ¢. Thus, the sufficiency condition of global
observability is not met for this choice of output since £ = ®(z) is not a
globally invertible transformation.

This time, we choose y = z3. Then ®(z) becomes (the constant input b can be

ignored)
) 0 1 0
(I)(ZB) = T + azg =11 a g T = T:I}, (4.48)
—29 — 23 + azy + az, a —1+4ad*> -1
and
do

which is always nonsingular, enabling us to define a global diffeomorphic state
transformation by z = ®(z). In the new domain the state equations become

é’l = 22 (450)
éz = Z3, (451)
z3 = f(2), (4.52)
where
f(2) = —cz1 4 (ca — )zg + (a — €)z3 — az? — az2 + (a® + 1)z122 + 2223 — az12s.
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A Lipschitz bound on f(2) can be found by
L =539 V()] (459

where ) is the compact domain confining the chaotic trajectories of the system.

—2az1 + (a?+ 1)z —azz — ¢
Vi(z) = —2az + (a2 + 1)z —2az+ 23+ (ca—1) |
| —az1+ 22+ (a —¢) |

—2a¢ a’4+1 —a 2 —c—2aW

= a2+1 —2a 1 2|+t ca—1 |,

| —a 1 0 Z3 a—c
= Dz+ E.

Using (4.48) we can write

IVi(Z)llo < NI Dlleollzllo + | Elloos
< [1Dlleo 1T Nlooll oo + NI Elloo (4.54)

Thus for a parameter choiceof a =0.2 ,6=0.2, c=5, (4.54) becomes

IVF(2)llo < (1.64)(2.16)][z]|oo + (5.4)
= (3.5424)||z]loo + (5.4) (4.55)

Hence the Lipschitz constant L can be found by replacing |||l in (4.55)
by the maximum absolute coordinate of the trajectories. Inspecting a typical
trajectory we find a bound on the maximum absolute coordinate as |||l < 18.
Thus the Lipschitz constant can be assigned L = 70. Picking a ratio a = 3 and

using (3.48) we obtain
3?41

=5 =2 :
Hence the largest eigenvalue A is assigned such that
AL = A < —(70)(2.5) = —175. (4.57)

Let us choose A = —180. Then we obtain Ay = aX = —540 and A3 = a2\ =
—1620. The feedback gain matrix is calculated using (3.54) as

k1 = 2340, ko = 1263600, ks = 157464000. (4.58)

Below are shown the simulation results for this choice of gains.
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Figure 4.9: (a) The chaotic behavior of the Rossler system (b)-(c)-(d) System
and the observer states for z(0) = [1, 1, 1]¥ and 2(0) = [1.1, 0.9, 0.99].

Example 4.2.6 Consider the system described by

z; =
iz =

T3 =

—Bz1 + T3z,

—0%; + 03,

—pr2 — T3 — T123,

(4.59)
(4.60)
(4.61)

also known as the Lorentz chaotic attractor. When the output is chosen as one

of the states, y = z;, ¢ =1,2,3, it can be shown by some lengthy but routine

calculations that the state transformation defined in (2.53) is not invertible.
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But here, we would like to stress an interesting observation that we obtained
through simulations. For all of the chaotic systems that are investigated in our
work, we noted that the observers designed by considering only the linear part
of the system perform globally converging state estimation. Namely, given a
chaotic system of the form

T = Az+g(z), (4.62)
y = Cz, (4.63)

where ¢(-) contains only nonlinear terms, the observer

&= Aé +g(2)+ K(y — C#) (4.64)
works globally for A, = A — KC stable. Hence we are led to conjecture that
such an observation scheme is always valid for chaotic systems. Although the
behavior of the chaotic systems is not well-understood for the present [33], there
have been reports that chaotic systems may have superior properties that can
be employed in control applications [34, 35]. Further developments in this field
may reveal the underlying paradigm which, as it seems, enabled us to simplify
the observer design for chaotic systems. If our conjecture turns out to be true,
then such an observer design would be quite a simplification, considering the
pathologically high feedback gains that is obtained in the design using the

nonlinear state transformation to observer canonical form [36].

For now, we give the simulation results for the Lorentz system. The system

is separated into linear and nonlinear parts as

& = Az+g(z), (4.65)
y = Cu, (4.66)
where
-5 0 0 T3To
A= 0 -0 o |, glz)= 0 , C=1[010]. (4.67)
0 p -1 —T1Ty

Note that with this choice of output y = 3, the pair (C, A) is observable. For

the parameter set o = 10, 3 = & and p = 28 , we assigned the three cigenvalues

-1 23]

of A. = A — KC, real, negative, and distinct by choosing K = [0, ==, %°].

Below are shown the simulation results for this choice of gains.
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Figure 4.10: (a) The chaotic behavior of the Lorentz attractor (b)-(c)-(d) Sys-
tem and the observer states for z(0) = [5, 5, —4]T and £(0) = [-2, -3, 4]7.

Example 4.2.7 (Chua Oscillator revisited) We have already seen that with
the appropriate choice of the system output, Chua oscillator can be represented
as a realization of a system in Lur’e form. This example shows that it is also
possible to transform the system by a diffeomorphic change of coordinates to
observer canonical form. Let us rewrite the system equations

m'l = —,3.’132, (4:68)
37.2 = 1 — X2 + T3, (469)
.’17.3 = Q9 — QXT3 — %f($3), (470)
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and choose the output y = ;. Then using (2.53), the coordinate transforma-
tion is given by

zn = 1z, (4.71)
zg = —fxg, (4.72)
z3 = —fz1+ Pz, — Pzs, (4.73)
or
z="Tz, (4.74)
where
1 0 0
T=)10 -8 0 |- (4.75)
-8 B B
Hence
Qz) = %gf) =T (4.76)

is nonsingular whenever 8 # 0. This corresponds to the condition that L—CC?Z # 0
which is trivially satisfied.

After some routine but tedious algebraic manipulations the system equations
in the new coordinates can be obtained as

2 = 2, (4.77)
z2 = 23, (4.78)
z3 = g(2), (4.79)
where
Ba 1 1
9(2) = —afz — Bza — (a+ 1)z3 + ?f(—zl ~ g7 Ez3). (4.80)

A Lipschitz bound on ¢(z) can be found as

—af— L (.
L= suwp Vo)l =]l | —f-gF() |lo (481

~(a+1) - &f()
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Using the fact that |f'(-}] < Gy, for the set of parameters G; = 0.8 , G, = 0.5,
a=8,03=11,FE =1, and G = 0.7, the Lipschitz constant can be assigned
as L = 189. Note that, although the nonlinearity is not differentiable at two
points, this poses no problem in the assignment of the Lipschitz constant.

Picking a ratio ¢ = 3 and using (3.48) we obtain

3241

-1 _
”V ”00 - (3 . 1)2

=25 (4.82)

Hence the largest eigenvalue A is assigned such that
A1 = 2 < —(189)(2.5) = —472.5. (4.83)

Let us choose A = —475. Then we obtain Ay = a) = —1425 and A3 = a?) =
—4275. The feedback gain matrix is calculated using (3.54) as

ky = 6175, ko = 8799375, ks = 2.89 x 10°. (4.84)

Below is the simulation results for these unusually huge gains.
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Figure 4.11: (a) The chaotic behavior of the Chua oscillator (b)-(c)-(d) System
and the observer states for z(0) = [0.1, 0.1, 0.1]7 and £(0) = [-1, 1, —1]%.
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Chapter 5

AN OBSERVER WITH
GRADIENT UPDATE

In this chapter we examine the possibility of adapting the gradient descent
algorithm to observer design. The observer discussed in the previous chapter,
like many existing observers, is a replica of the original system with the additive
injection term calculated using the error between the outputs of the system and
the observer. Namely, given a single-input single-output TI nonlinear system

t = f(z), (5.1)
y = h(z), (5.2)
the observer is constructed as

&=f&)+ G@E)y-ha) - (5.3)

output error injection

Note that z = £ is an equilibrium point of the error system since the injection
term in (5.3) diminishes when x = . This is equivalent to assert that if

:f?(to) = m(to) for to € R+ (54)
then
E(t) =z(t) for Vt2>to. (5.5)
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Another observer form that satisfies this condition might be

:_ y(z)—g(@) . .

&= v — @) (%) (5.6)
where ¢ : R* —» R and K € R"*" are the parameters to be chosen in the
design such that the error system is stable. In order to overcome a possible
singularity at ¢ = & = 0, g(-) should be chosen such that ¢g(0) # 0. Note that
while we have an additive injection in (5.3), in (5.6) dynamics are modified by
a multiplicative term.

Now consider the system given in (5.1),(5.2). Choose the observer as

& = F(39), (5.7)
= g(z), (5.8)

2
|

where FF : R" x R — R" and ¢ : R — R are to be determined later in the
analysis. Let us define the output error as

1 .
&0 =5y —9)" (5.9)

We would like to update the observer state in the opposite direction of its
contribution to the output error defined above. To do this, we calculate the
directional derivative of the output error with respect to the observer states,

T = ) (5.10)
= ~[h(=) - 9(&)] V() (1)

Then, we choose the observer dynamics as
& = S[h(z) — g(8)] Vg(2) (5.12)
where ¥ = diag[oy, 02,...,0,] and o; > 0 are constant scalars.
To satisfy the equilibrium condition we should have
F(z,h(z)) = f(z) (5.13)
or

E[h(z) — 9(2)] Vy(z) = f(2). (5.14)
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We see that (5.14) is a system of nonlinear partial differential equations with
f(-) and A(-) known and g¢(-) to be solved. Also note that ¥ brings n free

parameters.
Assuming (5.14) has a solution go(z) , the observer becomes

) = 0o(®) , .
h@) — 0@ ) (519

Note that this observer has the form given in (5.6).

=

Although the existence of a solution for (5.14) seems unlikely for all f(-) and
h(-), it may still be possible to obtain plausible simplifications by narrowing
down the class of nonlinearities involved. This issue together with the stability
problem of the error system will be investigated further in a future work.
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Chapter 6

CONCLUSION

In this work, we addressed the problem of synchronizing chaotic systems from
the nonlinear observer design point of view. A solution to this problem is pro-
vided for some classes of nonlinear systems satisfying some mild requirements.
In doing this, properties of chaotic systems is exploited in order to simplify the

observer design.

Observer design is achieved by first transforming the nonlinear system to
observer canonical form and then choosing the output error injection gains in
this transformed coordinates. An explicit eigenvalue assignment procedure is
given in order to choose the gain vector. This procedure is incorporated in a

step-by-step design scheme.

We provided a restriction on the class of nonlinearities for which the linear
observer design paradigm is guaranteed to yield exponentially decaying errors.
For this, we derived a bound on the ratio of the minimum eigenvalue of a
matrix to the condition number of its matrix of eigenvectors.

In applying the above nonlinear observer design techniques to the synchro-
nization of chaotic circuits, we noted that for certain widely known chaotic
systems (e.g. Chua oscillator) the system output can be chosen such that the
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system becomes linear up to output injection, which admits simple global ob-
server. Besides, based upon the simulations we carried out, we conjectured
that linear observer design schemes are directly applicable to nonlinear sys-
tems operating in chaotic regime. Such a technique does not suffer from the
shortcomings of the observer based on the nonlinear state transformation to
observer canonical form.

In the latter design, observer gains are unusually large which may cause se-
rious problems in the actual implementations. Moreover, the system structure
should satisfy certain requirements in order for the transformation to exist.
However, the former design does not involve any state transformation.

Finally we proposed a gradient descent observer for nonlinear systems. Al-
though restrictions imposed in this design seem rather stringent, this topic
can be further investigated by narrowing down the class of nonlinear systems
involved.

Another topic of further research is the issue of finding the underlying
behavior of chaotic systems that led us to conjecture that the linear observer

techniques can be applied for this class of nonlinear systems.
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OZET

DOGRUSAL OLMAYAN GOZLEYICI TASARIMI VE
KAOTIK SISTEMLERIN ESZAMANLAMASINA
UYGULANMASI

Ercan Solak
Elektrik ve Elektronik Miihendisligi Boliimii Yiiksek Lisans

Tez Yoneticisi: Dog¢. Dr. Omer Morgiil
Agustos 1996

Gozleyiciler, dinamik sistemlerin durumlari dogrudan Olglimlerle elde
edilemediginde, bu durumlar: tahmin etmekte kullanilirlar. Dogrusal gozleyici
tasarimi, kontrol kuraminin geligmis bir dali olmasina ragmen, bunun dogrusal
olmayan sistemlerdeki karsiligr goreceli olarak yeni bir alandir.

Bu tezde, dogrusal olmayan sistemlerin belli sartlar1 saglayan bir sinifi
icin bir gozleyici tasarim ydntemi Onerilmigtir. Daha sonra, son zaman-
larda glivenli bilgi aktarimi konusunda uygulama alani bulan, kaotik sistem-
lerin egzamanlanmasi problemi, gozleyici tasarimi noktasindan ele alinmigtir.
Tasarimda, kaotik sistemlerin yoriingelerinin, durum uzayinin simrli bir
bolgesinde kalmasi ozelligi, vurgulanarak kullanilmigtir. Ayrica, bazi ¢ok
bilinen kaotik sistemler igin, sistem yapisimin global eszamanlama amaciyla
dogrusal gozleyici kullanimina olanak verdigi gosterilmigtir.

Anahtar Kelimeler : Dogrusal olmayan goézleyiciler, kaotik sistemler, kaos

egzamanlamasi.
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Observers are used to estimate the states of dynamical systems whenever they
are not available through direct measurements. Although the design of lin-
ear observers is a well-developed branch of control theory, its counterpart for

nonlinear systems is a relatively new field.

In this thesis, an observer construction methodology is proposed for a class
of nonlinear systems satisfying certain conditions. Then, the problem of syn-
chronizing chaotic systems, which has found recent applications in the area of
secure message transmission, is addressed from the observer design point of
view. In the design, we exploited one of the essential properties of the chaotic
systems that the trajectories remain in a bounded region of the state space. It
is also shown that, for certain well-known chaotic systems, the system structure
enables one to use linear observer schemes in order to have global synchroniza-

tion.
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