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FOREWORD

Nodal methods are fast and accurate methods which combine attractive features of
the finite element method as well as of the finite difference method. In this work, a
nodal method has been developed in cylindrical geometry which gives acceptably
accurate results for realistic problems.

I would like to express my sincere gratitude to my supervisor Prof. Dr. Atilla
OZGENER. His invaluable knowledge, expert guidance and care allowed this work
to be completed.

Special thanks and appreciation go to Prof. Dr. Bilge OZGENER and Prof. Dr. Akif
ATALAY for their great support, advice and time.

I also wish to thank my colleagues from Istanbul Technical University Institute of
Energy; especially physics engineer and ITU TRIGA MARK II reactor operator
Mehmet GENCELI for his guidance, support and encouragement.

I would also like to recognize my dear friends Abdiilhamit ERTUNGA, Erdal
KEKLIK, Ramazan AKYUZ for helping me in their own unique ways.

Finally I would like to thank my parents, Mehmet and Yiiksel MERCIMEK, my dear
brother Mustafa MERCIMEK and my sister Serpil MERCIMEK for encouraging me
throughout my life.

June 2008 Mehmet MERCIMEK

iii



TABLE OF CONTENTS

FOREWORD

TABLE OF CONTENTS
LIST OF ABBREVIATIONS
LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

OZET

SUMMARY

1. INTRODUCTION

1.1 Diffusion Theory

1.2 Numerical Methods for Solving the Neutron Diffusion Equation
1.3 Nodal Methods

1.4 Finite Element Method

1.5 Objectives of the Work

2. NODAL FORMALISM IN CYLINDRICAL GEOMETRY

2.1 Cell and Edge Averaged Quantities
2.2 Nodal Balance Equation
2.3 Transverse Integration
2.4 Nodal Expansion Method
2.4.1 Construction of Polynomial Basis
2.4.2 Fick's Law
2.5 TIterative Solution of the Nodal Equations
2.5.1 Matrix Equation
2.5.2 One-Node Formulation
2.5.3 Two-Node Formulation
2.5.4 Three-Node Formulation and General Matrix Form
2.5.5 General Matrix Equation with Reflective Boundary Condition
2.5.6 Fission Source Iteration in Multigroup Diffusion Equations

3. NUMERICAL APPLICATIONS

3.1 One-Group, Bare, Homogeneous Reactor
3.1.1 Analytical Solution
3.1.2 Solution with Nodal Method
3.1.3 NEMR and QFEMR Results

3.2 One-Group, Reflected Reactor
3.2.1 Analytical Solution
3.2.2 NEMR and QFEMR Results

3.3 Two-Group, Bare, Homogeneous Reactor
3.3.1 Analytical Solution

v

iii
iv
vi
vii
viii

ix

s

w
-

AN &N AP W= -



3.3.2 NEMR and QFEMR Results
3.4 TRIGA MARK II Reactor

4. CONCLUSION
REFERENCES
APPENDIX A A MANUAL FOR NEMR

A1l Input List
A2 Description of NEMR Subprograms

APPENDIXB COMPUTER PROGRAMS
RESUME

48
51

56
58
59

59
61

64
65



LIST OF ABBREVIATIONS

FEM : Finite Element Method

NEM : Nodal Expansion Method
ODE : Ordinary Differential Equation
RHS : Right Hand Side

1-d, 2-d : One-Dimensional, Two-Dimensional

vi



LIST OF TABLES

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9
Table 3.10
Table 3.11
Table 3.12
Table 3.13

Page Number

Iteration Steps of Newton’s Method for the Solution of (3.7)............ 31
Calculated Values of the Variables in the Two-Node Equations........ 32
Radii and Related Surface Areas.............coooiviiiiiiiiiiiiiiiii . 33
kefr Results of QFEMR and NEMR Programs...........ccccceeviiciennnneen. 34
Average Fluxes and Respective Errors .........ccooovveeiiniieiiiniciennneen. 36
Iteration Results of Newton Method..........ccccooeiiiiiiiiiiiiniiieeee. 39
Effective Multiplication Factors Calculated by 3 Methods................ 41

Average Fluxes with Their Errors in the Fuel and the Reflector........ 44
Iteration Steps in Two-Group Problem.............ccccoovviiiiiiiiiinennen. 47
Results of QFEMR and NEMR Programs for Two-Group Reactor...48
Homogenized Fast Group Cross-Sections for TRIGA Reactor.......... 52
Homogenized Thermal Group Cross-Sections for TRIGA Reactor...52
Ring Averaged Fluxes of TRIGA Reactor..........cccceeeeieeeeiiierennnnenn. 55

vil



LIST OF FIGURES

Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13

Page Number

Nodal Mesh Imposed on One-dimensional Cylindrical Domain ......... 7
One-dimensional, Bare, Homogeneous, Cylindrical Reactor ............ 29
Cylindrical Reactor with Two NOdes.........c.ccoeevviieiiniieeiiniiieennen. 32
Kerr Results Of FEM and NEM ....ooovveiiiiiiiiieiee et 35
Flux Distributions Along the Radial Distance...........cccccccevuveeernnnee.. 36
Variation of k. with Respect to Total Number of Nodes................. 42
kefr versus Number of Nodes in The Fuel Region.................c........... 43
Flux Distribution in the Reflected Reactor.............ccccceveeivvriinnennn.. 44
Effective Multiplication Factor Obtained by Three Method.............. 49
Fast and Thermal Flux Distributions ..........cccccceevveiiiiieeeeernriiiiieeennn. 49
Thermal to Fast Flux Ratios Along the Radius ..........ccccceeiiiennnnen. 50
ITU TRIGA MARK II Reactor Core Diagram ...........cccceevueeeennnnnenn. 51
TRIGA Reactor Flux Distribution (NEMR)...........ccovvvviviieiiieeieennn.n. 54
TRIGA Reactor Flux Distribution (Linear QFEMR) ........................ 54

viii



LIST OF SYMBOLS

I'i-1/2 Ti+1/25 Ti
Aj

j+

i

Si+12, Si1z, Si
P,

g

a

A (3x3)

=1

(_)(3)(3)

Jo, J1

Wg

Io, Ko, I, Ky,

: Neutron current density vector for group g

: Diffusion coefficient for group g

: Neutron flux for group g

: Macroscopic removal cross-section

: Macroscopic absorption cross-section

: Macroscopic scattering cross-section from group g to group g’
: Macroscopic fission cross-section

: Effective multiplication factor

: Fission spectrum

: Average number of neutrons released per fission

: Neutron source

: Radii at node edges and center respectively

: i node width

: Right-going partial current

: Left-going partial current

: Surface areas at node edges and center respectively
: 1" order polynomial

: Local variable

: Expansion coefficients for polynomial of 1" order

: 3 by 3 matrix constituted from one node formulation

: 3 by 3 matrix with all elements are zero

: Convergence parameter
: Buckling term
: Bessel functions of first kind, zeroth and first order respectively

: Recoverable energy per fission
: Average flux

: Maximum eigenvalue, Kt

: Zeroth and first order modified Bessel functions of first and second

kind respectively

1X



SILINDIRIK GEOMETRIDE NOTRON DiFUZYON DENKLEMINIiN
¢OZUMU iCIN NODAL BiR YONTEM GELiSTiRME

OZET

Niikleer reaktorlerin  bir¢ok fiziksel oOzelligi notron diflizyon teorisi ile
anlasilmaktadir. Difilizyon teorisinin gecerli olabilmesi i¢in reaktér ortamini
olusturan binlerce kiiciik malzeme, ortalama tesir kesitleri ve diflizyon katsayilar
kullanilarak homojenlestirilir.

Bu homojenlestirme islemine ragmen reaktor kalbi yine de oldukca heterojen bir
ortam olusturur. Bu heterojenlik yakit demetleri arasindaki yakit miktarlar
farkindan, yanici zehirlerden, kontrol c¢ubuklarindan, su kanallarindan, yapisal
malzemelerden vs. kaynaklanir.

Geleneksel sonlu farklar yonteminde ag araligi iki gereksinimi karsilayacak sekilde
secilmelidir: (a) kalan heterojenligi gosterebilmeli (b) termal difiizyon uzunlugundan
daha kisa olmall.

Boyle bir sonlu farklar modeli 100.000 - 1.000.000 kadar bilinmeyen icerir. Bu ise
bilgisayar donaniminda ki gelismeye ragmen iirkiitiicli bir problemdir.

Bunun yerine reaktor kalplerinde notron aki dagilimini ve etkin ¢ogaltma katsayisini
bulmak icin ¢ok sayida yaklasim yontemi gelistirilmistir. Bunlar nodal, kaba ag ve
sentez yontemleri olarak siniflandirilir.

Nodal yontemlerde, reaktor kalbi nod denilen biiyiilk homojenlestirilmis alanlara
boliiniir. Genellikle bir yakit toplulugu (asemble) ya da topluluklar1 bir nod olarak
tanimlanir. Boylece bilgisayar zamanindan ve depolama alanindan kazanilir. Nodal
hesaplamalar sonucu bir yakit toplulugu i¢in gii¢ ya da ortalama aki ve reaktor igin
etkin cogaltma katsayis1 bulunur.

Nodal yontemlerin temel fikri iki nod arasindaki yilizeyde notron akimlart ve bu
nodlarda ortalama notron akilari arasinda iliski kurmaktir. Bu iliskiyi saglayan bir
katsay1 matrisi olusturulur.

Geleneksel ve dik yonde integre edilmis nodal yontemler olmak iizere birbirinden
oldukga farkli iki sinif nodal yontem gelistirilmistir. Her ikisi de ayn1 nodal denge
denklemini kullanmalarina ragmen ayrik sistemi ¢ozecek ek denklemleri farkli
sekilde tiiretirler. Bu tezin teorik temelini dik yonde integrasyon yaparak elde edilen
nodal a¢ilim yéntemi olusturur.

Bu calismada polinom a¢ilim yontemlerinden biri olan nodal agilim yontemlerinden
en diisiik dereceden olani kullanilmistir. Sistem geometrisi olarak bir boyutlu silindir
alimmustir. A¢ilim katsayilarinin bulunmasinda Fick Yasasindan, ayrik nodal denge
denkleminden ve normal akimin siirekliliginden yararlanilmistir. Her bir nod i¢in
ikisi Fick Yasasindan biri ayrik nodal denge denkleminden olmak iizere ii¢ denklem
ya da bir baska ifadeyle ii¢c vektor elde edilmistir. Bu denklemler bir katsay1 matrisini
olustururlar.



Cok gruplu difiizyon teorisi i¢in yetkinlik-6zdeger hesaplamalar1 yapabilen bir
bilgisayar programi bu matris formundan yararlanilarak gelistirilmistir. Bu program
FORTRAN 90 dilinde yazilmis ve WINDOWS isletim sisteminde kosulmustur.
Derleyici olarak FORTRAN Power Station 4.0 kullanilmistir. Bu program ¢ok
gruplu nétron difiizyon denklemini ¢ok bolgeli bir sistem icin ¢ozerek etkin ¢ogaltma
katsayisimi, aki ve akim dagilimin1 ve ortalama akimlari bulma yetenegine sahiptir.
Bu FORTRAN programinin ismi olarak, R yoniinde nodal ac¢ilim yontemi
kelimelerinin Ingilizce bas harflerinden olusan NEMR secilmistir.

NEMR programinmi dogrulamak i¢in bir gruplu, bir grup iki bolgeli, iki gruplu
problemlerin analitik ¢oziimleri bulunmus, bu sonuglar hem NEMR programinin
sonuclart ile hem de lineer ve kuadratik sonlu elemanlar yontemi ile
karsilastirilmistir. Sonlu elemanlar yontemi icin QFEMR programi kullanilmastir.
Son olarak iki grup ¢ok bolgeli bir reaktdr olan TRIGA reaktorii i¢in program
kosulmus ve biitiin bu problemlerde NEMR programinin tutarli ve dogru sonuglar
verdigi gozlenmistir.

Bu tezin amaci sonsuz silindirik bir ortam i¢in nodal yontem programi gelistirmek ve
nodal yontemler ile sonlu elemanlar yontemini karsilastirmak, hangi yontemin hangi
durumlarda daha iyi sonu¢ verdigini goézlemlemek olmustur. Test problemlerinden
goriilecegi gibi bilgisayar programi dogrulanmis ve gelistirilen nodal yontemin sonlu
elemanlar yontemlerine gore nod sayisinin oldukca az oldugu kaba aglarda daha iyi
sonuclar verdigi goriilmiistiir.

X1



DEVELOPMENT OF A NODAL METHOD FOR THE SOLUTION OF THE
NEUTRON DIFFUSION EQUATION IN CYLINDRICAL GEOMETRY

SUMMARY

Diffusion theory is sufficiently accurate to provide a quantitative understanding of
many physics features of nuclear reactors. A homogenized mixture with average
cross-sections and diffusion coefficients are used to create a computational model for
which diffusion theory is valid.

Even after assembly homogenization, the reactor core remains a highly
heterogeneous medium because of assembly-to assembly variation in fuel
composition, burnable poisons, control rods, water channels, and structure and so on.

The mesh spacing in a conventional few-group finite difference model of the core is
constrained by two requirements: (a) Representation of the remaining heterogeneity
(b) it must be shorter than thermal diffusion length.

Such finite difference model requires 100,000 to 1,000,000 unknowns. This is a
formidable problem even today despite tremendous advances in computer hardware.

A large number of approximation methods has been developed to enable a more
computationally tractable solution for the effective multiplication constant and
neutron flux distribution in reactor cores. These methods can be classified as nodal,
coarse-mesh and synthesis methods.

In nodal methods, the reactor core is subdivided into large homogenized regions and
each such region constitutes a node. Usually a subassembly (or sometimes a group of
assemblies) is defined as a node. Nodal calculations are carried out to determine the
effective multiplication factor and assembly powers (or assembly average fluxes).

The essential idea of nodal methods is to relate neutron currents across an interface
between two nodes to the average flux levels in those two nodes; that of the
coefficient matrix is to relate the fluxes and currents on the nodal surfaces directly to
each other.

Two rather distinct classes of nodal methods have evolved; conventional and
transverse integrated. They have a common foundation in the discrete nodal balance
equation and are characterized by the techniques they employ to derive the additional
equations necessary to solve the discrete system. Transverse integrated nodal
expansion method constitutes the theoretical basis of this thesis.

In this work, a lowest order nodal expansion method has been developed in one
dimensional cylindrical geometry. The expansion coefficients are determined by
applying Fick’s law in combination with discrete nodal balance equation and
continuity of normal current. Three equations for each node are obtained. Nodal
balance equation constitutes one equation and other two equations are derived from
Fick’s law. These equations are used to form a coefficient matrix.

A computer program which can carry out criticality-eigenvalue calculations in multi-
group diffusion theory is developed using this matrix form. The program has been

Xii



written in FORTRAN 90 and run in WINDOWS operating system. It is compiled in
FORTRAN Power Station Version 4.0. It is capable of calculating effective
multiplication factor, flux and current distribution, average fluxes for multi-group
and multi-region problems. It has been named NEMR (Nodal Expansion Method in
R direction)

In order to validate this program, it was run for the problems with known analytical
solutions. Results were compared with calculated values and finite element method
solutions which were obtained using a FORTRAN program called QFEMR.
(Quadratic Finite Element Method in R direction)

Four problems extend from a simple bare, one group reactor to two-group, seven-
region TRIGA reactor were cosidered. Effective multiplication factors, flux
distributions and average fluxes were compared with analytical solutions.

The objective of this thesis has been to develop a nodal method program for infinite
cylinder and compare nodal and finite elements methods. It has been seen from the
benchmarking problems that this aim has been accomplished. Nodal expansion
method and quadratic finite element method were shown to be of better accuracy
with respect to linear finite element method. It also appears that nodal expansion
method is a practical method for the problems in which the mesh is very coarse.

xiii



1 INTRODUCTION

1.1 Diffusion Theory

In order to design a nuclear reactor properly, it is necessary to be able to predict how
the neutrons will be distributed throughout the system. The approximate value of the
neutron distribution can be found by solving the diffusion equation, essentially the
same equation as is used to describe diffusion phenomena in other branches of
engineering. This procedure was used for the design of most early reactors and it is

still widely used to provide first estimates of reactor properties [1].

Diffusion theory provides a strictly valid mathematical description of the neutron
flux when the assumptions made in its derivation - absorption much less likely than
scattering, smooth spatial variation of the neutron distribution, isotropic or linearly
anisotropic scattering - are satisfied. The first condition is satisfied for most of the
moderating and structural materials found in a nuclear reactor, but not for the fuel
and control elements. The second condition is satisfied a few mean free paths away
from the boundary of large (relative to the mean free path) homogeneous media with
relatively uniform source distributions. The third condition is satisfied for scattering

from most nuclei.

A modern nuclear reactor consists of thousands of small elements, many of them
highly absorbing with dimensions on the order of a few mean free paths or less. Yet
diffusion theory is widely used in nuclear reactor analysis and makes accurate
predictions. The many small elements in a large region are replaced by a
homogenized mixture with effective averaged cross sections and diffusion

coefficients, thus creating a computational model for which diffusion theory is valid.

Even after the local fuel pin, clad, coolant, and so on, heterogeneity is replaced by a
homogenized representation; a reactor core remains a highly heterogeneous medium
because of the intra-assembly and assembly-to-assembly variation in fuel

composition, burnable poisons, control rods, water channels, structure and so on [2].

One not only must consider nonuniformities corresponding to fuel pellets, cladding

material, moderator, coolant, control elements, but spatial variations in fuel and



coolant densities due to nonuniform core power densities and temperature
distributions as well. Such complexities immediately force one to discard analytical
methods in favor of a direct numerical solution of the diffusion equation. In fact even
when an analytical solution of the diffusion equation is possible, it is frequently more
convenient to bypass this in favor of a numerical solution, particularly when the
analytical solution may involve numerous functions that have to be evaluated
numerically in any event, or when parameter studies are required that may involve a

great many such solutions [3].

1.2 Numerical Methods for Solving the Neutron Diffusion Equation

The general procedure is to rewrite the differential diffusion equation in finite
difference form and then solve the resulting system of difference equations on a
digital computer. The mesh spacing in a conventional few group finite-difference

model of a reactor core is constrained by two requirements:

. It must be sufficiently fine to represent the remaining spatial
heterogeneity
. It must be no larger than the shortest (thermal) group diffusion length in

order to avoid numerical inaccuracy

A few group finite difference model that could adequately describe such a core might
well have 100,000-1,000,000 unknowns (the fluxes in each group at each mesh
point). The direct solution of such a problem, even in diffusion theory, remains a
formidable computation. For calculations such as fuel burnup or transient analysis, in
which many full-core spatial solutions are needed, direct few group finite-difference

solutions remain impractical.

A large number of approximation methods have been developed to enable a more
computationally tractable solution for the effective multiplication constant and
neutron flux distribution in nuclear reactor cores. Following historical precedent,
these methods can generally be classified as nodal, coarse-mesh and synthesis
methods, although distinction among categories may be largely a matter of

perspective and sequencing of calculational steps [2].



1.3 Nodal Methods

In order to avoid the large storage and execution time requirements of a direct finite
difference treatment of the diffusion equation a scheme is provided by so called
nodal methods. The general idea is to decompose the reactor core into relatively
large subregions or node cells in which the material composition and flux are
assumed uniform. One then attempts to determine the coupling coefficients
characterizing node cell leakage and then to determine the node cell fluxes

themselves [3].

If the number of nodal cells N is large, the nodal method becomes equivalent to the
finite difference scheme and hence loses any calculational advantages. The real
power of the nodal approach is realized only when the number of node cells N is
small, since then the cells are large enough that they become coupled via neutron

diffusion only to nearby cells, that is the transfer matrix is sparse [3].

Usually a subassembly (or sometimes a group of assemblies) is defined as a node so
typical dimension of a node cell is in the order of ~20 cm in a nuclear reactor. Nodal
calculations are carried out to determine the effective multiplication factor and
assembly powers (or assembly average fluxes). Nodal methods are classified further
into two distinct categories: conventional nodal methods and transverse integrated

nodal methods.

Conventional nodal methods are based on the calculation of a nodal average flux or
fission rate for each homogenized subassembly. Neutron diffusion between adjacent
nodes is represented by coupling coefficients which are usually determined by
empirical means. Conventional nodal methods are also called simulators and can
achieve impressive accuracy for the particular reactor type they were intended. Due
to the lack of theoretical foundation in conventional nodal methods, researchers have
sought to develop nodal methods which have sound theoretical basis and which
converge to the correct solution as the node sizes are taken smaller. The transverse
integrated nodal method is based on integrating the three (or two) dimensional
diffusion equation over the transverse direction(s) and reducing it to a one
dimensional diffusion equation, with transverse leakage terms. The most popular of
the transverse integrated nodal methods is based on a polynomial expansion of the
one dimensional flux and can obtain higher orders of accuracy than conventional

finite difference methods [4].



1.4 Finite Element Method

The finite element method (FEM) provides a systematic approach for developing
solutions with higher order accuracy than the conventional finite difference
equations. Although FEM could be based on a weighed residual approach, FEM
applications to the neutron diffusion depend usually on the equivalence of the
solution of the diffusion equation with the minimization of a functional. System of
interest is divided into homogeneous regions of specified geometric shape which are
called finite elements. The spatial dependence of the neutron flux (and sometimes
current) is assumed to be a polynomial of a certain degree within the element. The
degree of the polynomial dependence determines the name of a particular FEM

application (i.e. linear, quadratic, cubic etc. finite elements) [4].

FEM is a coarse-mesh method. Like nodal methods, coarse-mesh methods generally
require detailed regional heterogeneous flux distributions in order to construct
homogenized parameters and to combine with the coarse-mesh solution to construct

a detailed heterogeneous flux solution [2].

1.5 Objectives of the Work

The objective of this thesis is to develop a nodal method which gives acceptably
accurate results for realistic problems at a considerable savings over finite difference
methods. This method is capable of calculating multiregional and multigroup
problems in a one dimensional cylindrical geometry. Comparison this method with
FEM is another aim of this work. These are accomplished by using a computer
program written in FORTRAN 90. It is named NEMR as the abbreviation of nodal

expansion method in r dimension for the cylinder.

Chapter 2 is about the development of a transverse integrated nodal method. A nodal
formalism is obtained using lowest order nodal expansion method. The expansion
coefficients are determined by applying Fick’s law in combination with continuity of
normal current. Three equations for each node are obtained. Nodal balance equation
constitutes one equation and other two equations are derived from Fick’s law. These
equations are used to form a matrix equation. Then, a computer program which can
carry out criticality-eigenvalue calculations in multigroup diffusion theory is

developed using this matrix form. This program can find effective multiplication



factor, flux and current distribution and average fluxes for multigroup and

multiregion problem:s.

Chapter 3 is devoted to validation of this program. It is run for the problems which
have been solved analytically. Results are compared with analytical and FEM
solutions. Linear and quadratic finite element method results are obtained using a
FORTRAN 90 program called QFEMR. (Quadratic Finite Element Method in R

dimension)
Chapter 4 includes the conclusion and recommendations for future work.

Finally, appendixes are given for the description of NEMR program.



2 NODAL FORMALISM IN CYLINDRICAL GEOMETRY

2.1 Cell and Edge Averaged Quantities
The multigroup neutron balance equation

Vfg(f)+Zf(f)¢g(¥):gz_izg"’g(f)q)g,(fhX{ivzf(f)q)g,(f), g=12,-G (2.1

g'=1

with no group-to-group upscatter assumption, and Fick’s Law

S me(=\En (=

Jg(r)_ D (r)vq)g(r) (22)
constitute the basis of the nodal formalism.

To avoid complexity in notation, scattering and fission sources will be defined as

Q(F)= X (00, (F)+ £ Y oxy (20, (7). =120 23

g'=1

Thus, (2.1) becomes
V-, () + 28 (7) 0, (F) = Q, (F) 24)

Since group index is of no immediate concern in nodal development, the group

indices will be suppressed and (2.4) and (2.2) will be written as

V- 1(7)+2,(7)o(F) = Q(F) (2.5)
1()=-D(7) Vo(r) (2.6)

Although nodal methods are generally devised for three dimensional whole core
calculations, the transverse integration procedure fails in (r,0) or (r,0,z) cylindrical
geometry. Because the transverse integration over r (in 2-d) or z and r (in 3-d) leads
to an impasse. The difficulty arises with the azimuthal term [5]. This impasse may be
circumvented using analytical methods but it is not within the scope of this work.
Here a one dimensional development is presented. However, extension from 1-d (r)

to 2-d (r-z) is actually trivial for further studies.



Figure 2.1 illustrates a cylindrical mesh having nodes Ai=(ti.12, Ti+12). The radii at
node centers are similarly denoted as (1;) and it is convenient to define mesh spacing

Ari=Tis 10 Ti 0.

. Ay I N
e e

Tip I3 I5/ Ti-i2 Titi2 IN+1/2

Figure 2.1 Nodal Mesh Imposed on One-dimensional Cylindrical Domain
Ar; is replaced with A; for simplicity
A =Ty, — T, 2.7

Inherited from the nodal perspective and common to all nodal discretizations is the

choice of cell and edge-based unknowns. The cell-based unknowns are defined by

o) i+172
(I)i = (1’131,2 _ Ifl/z) ) I¢(r)rdr (28)
i-1/2
o) Ti+1/2
Q=— [Q@yrdr 2.9)

(tp = rfl/z) =t 1p
which are the cell average flux and source. While the edged-based unknowns,
namely edge average fluxes and currents are just point fluxes and currents at node
boundaries in one dimension, because there is no other dimension over which to find

averages. They are shown as ¢ i1, ¢i.12and Jizi2, Jioi2

In some nodal methods, edge-averaged partial currents are also needed. To avoid

notational complexity, the partial currents will be denoted by the lower case letter j.
jiu, and j_,, denote the outgoing partial currents, whilej_,, and j’, ,are the

incoming partial currents at the right (i+1/2) and left (i-1/2) edges respectively.

Under P; approximation

()= ) B T() (2.10)

4 2

where u is an arbitrary direction.

If diffusion theory is valid,



)= 0007 ?g—i’(r) @.11)

from (2.10), obviously:

Ton = Jian = Jion (2.12)
T = itan = Jran (2.13)
and

Oura = 2055 + i) (2.14)
01 = 2000 + iian) (2.15)

2.2 Nodal Balance Equation

The nodal view of the first order system (2.5) and (2.6) suggests that a natural

starting point is to integrate the exact balance equation (2.5) over an arbitrary cell

[v-3(r)av + 2 (r)o(r)dV = [Q(r)dV (2.16)

In cylindrical coordinates,

Lup 1 Lip Lip

o j —i[rJ(r)]rdenz; j O(0)rdr = 27 j Q(r)rdr (2.17)
poordr

i-1/2 I‘i—1/2 I‘i»1/2
Since the node is already homogenized, macroscopic removal cross section is
constant for a node, X (r)=X! and it is also assumed constant for all nodes of the

same material, X\ =X . When the integrations are carried out with the help of (2.8)

and (2.9), (2.17) becomes:

2 2 2 2
2,021, — 1) _ Q20 — 1)

2710 T — Tand n ]+ 5 ; (2.18)
where ¢, and Q, represent the node averaged flux and source respectively.

Surface areas can be defined as

S.,,, =2mnr,,,,and S, ,=27r_,, (2.19)

Combining (2.7) and (2.19) with (2.18) gives



L oA Q;A,

Si+1/2Ji+l/2 - Si—l/zJi—l/z + T (Si+l/2 + Si—1/2 ) = T (Si+1/2 + Si—l/z ) (2-20)
Surface areas at nodes are

S, =2mr, (2.21)
where r; can be written as

r = Liap Thp (2.22)

2
Using (2.21) and (2.22)
S, = Siiin ;_Si—I/Z (2.23)

Substituting (2.13), (2.14) and (2.23) into (2.20), finally, the discrete nodal balance
equation is
Si+1/2 (jiJr+1/2 - ji_+1/2 )_ Si—1/2 (ji+—1/2 - ji_—1/2 )+ qu)iAiSi = QiAiSi (2.24)

Various nodal methods have a common foundation in the discrete nodal balance
equation and are characterized by the techniques they employ to derive the additional

equations necessary to solve the discrete system.

Two rather distinct classes of nodal methods have evolved. The first class, often

referred to as conventional or simulation models, makes use of detailed calculations

or reactor operating experience to evaluate the edge averaged currents in terms of
differences in cell averaged fluxes for adjacent nodes, with empirically adjusted

coupling coefficients. So these methods lack theoretical foundation.

The second class, sometimes referred to as consistently formulated models, makes

use of the concept of transverse integration and of higher order (than ordinary finite

difference) approximations to evaluate the edge averaged currents and the internodal
coupling terms in order to derive nodal equations that can be expected to converge to

the exact solution in the limit of small mesh spacing.



2.3 Transverse Integration

Finneman, et al. developed a popular discretization procedure which utilizes the
partial current directly. This is transverse integration procedure which has become a

cornerstone of modern nodal methods [5].

The usual strategy for solving the neutron diffusion equation in two or three
dimensions by nodal methods is to reduce the multidimensional partial differential
equation to a set of ordinary differential equations (ODE’s) in the separate spatial
coordinates. This reduction is accomplished by transverse integration of the
equations. In cylindrical coordinates, the three-dimensional equation is first
integrated over r and 0 to obtain an ODE in z, then over r and z to obtain an ODE in
0, and finally over 0 and z to obtain an ODE in r. Then these ODE’s are solved to
obtain one-dimensional solutions for the neutron fluxes averaged over the other two
dimensions. Because the solution in each node is an exact analytical solution, the
nodes can be much larger than the mesh elements used in finite-difference solutions.
Then the solutions in the different nodes are coupled by applying interface

conditions, ultimately fixing the solutions to the external boundary condition [6].

Transverse integrated equations contain transverse leakage terms. They must be
satisfied in an integral sense. That is, these equations are multiplied with the weight
function and integrated over the node. The integrals of the weighted residue must
vanish. This is called as weighted residual procedure. In the lowest order nodal
expansion method (NEM), weight function is chosen as one. This procedure gives
(2.24), discrete nodal balance equation. In the lowest order case which is treated

here, (2.24) is enough to constitute one equation for a node.

There are two distinct applications of the transverse integrated equations. The first is
the weighted residual procedure of the NEM by Finneman et al. In one dimensional
analysis here, transverse integration is not necessary to reduce dimension. The
second variety depends on the analytical solutions of the transverse integrated
equations. The second approach has been presented in [6] for cylindrical geometry

and in [7]. It will not be treated here.

10



2.4 Nodal Expansion Method

The development of modern consistent nodal discretizations began in the mid 70’s.
These methods were based on local polynomial expansions. The first polynomial
method was the nodal expansion method (NEM). In fact, although some variations
and improvements have been considered, the NEM ideology still dominates the

polynomial class of nodal methods.

In this lowest order form, NEM considers a quadratic expansion of the averaged flux
on each cell. The expansion coefficients are determined by applying Fick’s law in
combination with discrete nodal balance equation (2.24) and continuity of normal

current.

Considerable effort has been made to utilize higher order polynomial expansion
within NEM. The difficulty this creates is centered around the evaluation of the
higher order expansion coefficients. In particular, the weighted residual procedure
that is typically used relies on transverse-integrated equations and as a result an
approximation of the transverse normal currents (i.e. transverse leakage) is also

required.

2.4.1 Construction of Polynomial Basis
The NEM treatment of the transverse integrated ODE’s is based on a low order

polynomial expansion of the transverse integrated flux. In one dimension this is just r

dependent flux
N

o(r)= D aP(r), 1,,<r<r,, (2.25)
=0

At this point a local variable & is defined as
E=—>= (2.26)

where £=+1/2 when r=ris .

€ and r are the same order. Then, (2.25) can be written in local variable
N
0E) =>aP©®), -12<E<1/2 (2.27)
=0

where P, (&) is a polynomial of degree .

11



For simplicity, the first polynomial is chosen as

Py(§)=1 (2.28)
and the higher order polynomials are required to be orthogonal to Py(&)

1/2

[PE)ac=0, 1+0 (2.29)

-1/2

Transformation of integration operator gives
dg=— (2.30)

Using (2.30) and (2.26) in (2.8)

0= 2 JoEEn o @31

(Gop — 11/2) in

Substituting (2.22) into (2.31)

12

= A— [o©)EA, +1)AdE (2.32)

Lowest order NEM uses quadratic expansion, so N=2. Inserting (2.27) into (2.32)

12 N=2
= Z L( IZ(:)a P (E)EA, +1)AdE (2.33)
Thus
f(a P, (&) +a,P (§) +a,P,(§))(EA, +1,)dE (2.34)

1 -172

Using (2.28)

172

S =— I(aoéA +a,P(E)EA, +a,P,(E)EA, +a 1, +a,P (E)r, +a,P, (&)r,)dE (2.35)

i-1/2

The orthogonality requirement results in last two terms to be vanished in the

integrand. Also integration of the first term is zero. Thus

0. = [aA [ Pi(©Ede+a,A, [P,&)&dE+a,r, [dE (2.36)

-1/72 -172 -1/2

12



All odd polynomials satisfy the requirement (2.29). Thus

P(E)=0g (2.37)

where Q; is a constant yet to be determined. If an even polynomial has only one term

(one monomial), it can never satisfy (2.29), since

1/2

, nheven 2.38
if 45 = m+1)2" (2:39)
Specifically

1/2

j £2de = — (2.39)

-1/2

Thus any quadratic polynomial of the form

P,(E)= OL{E_,Z —%j (2.40)

would satisfy (2.29).

Substituting (2.37) and (2.40) into (2.36)

1 172 12 12 & 1/2
0, =r—[a1Ai(x1 [gde+a,n0, [EdE—a,A0, j dE+a,r, [dg (2.41)
i -172 -1/2 —1/2 -1/2

Second and third integrals have to be vanished since they contain odd polynomials

1|aAa a,A o
L =—|———+4a,, |[=a,+——— 2.42
¢1 I |: 12 0 1:| 0 121_ ( )

1 1

If £=+1/2, this describes node outer boundary

0.1 Za P,(1/2)=a,P,(1/2)+a,P,(1/2)+a,P,(1/2) (2.43)
=0
o o
Gip =2, +a, — 5 t+a, 62 (2.44)

If £=-1/2, this describes node inner boundary

0.1 ZaP( 172)=a,P,(-1/2)+a,P,(-1/2)+a,P,(-1/2) (2.45)
(X o
O =2y — 5 — ta, 62 (2.46)

13



Subtracting (2.46) from (2.44)

1

a =— (¢1+1/2 - ¢1—1/2) (2.47)
o
Adding (2.46) and (2.44),
a,
O +0,,, =223, +a, T (2.48)

Substituting (2.47) into (2.42),

Ad. ., —0.
(I)i :ao + 1(¢1+1/2 ¢1—1/2) (249)
12r,
Thus
A'(I)'—l/Z Aq) 1/2
a =@ 4tz iV 2.50
0 =% 12r, 12r, (20)

Substituting (2.50) into (2.48),

Ao Ao, o
Oivip +0i, =20, + or 2 or = +a, ?2 (2.51)

1

The last coefficient a, is found from (2.51)

a, = i[[ o + 4, jq)m/z -2¢; + [61‘1 4 Jq)il/Zj (2.52)

o, 6r 6r

i i

To make (2.47) and (2.52) as simple as possible, a;=1 and op=3 are chosen.

Polynomial basis are constructed for the lowest order NEM as

P(&)=¢ (2.53)

P,(8)=3¢" - n (2.54)

Using these polynomials and coefficients in (2.27),

_ Ad), _ Aidipn _
o= 0, + 200280 s, o,

br, + A, 3 br, — A, , 1
+ {(6—1‘1}1)“1/2 2¢i +( 6I‘i J¢il/2i|(3§ 4)

(2.55)

14



Finally, after some arrangements in (2.55)

(3 . -1 1 1)
00=(3-6: jq’i*(g@ sy etk J¢

(2.56)
11 1 5
+(8(ri/Ai) 4 E“+[3 2(ri/Ai)J§ ]q)i‘”z
2.4.2 Fick’s Law
Fick’s law states that
Ir) = —Dm (2.57)
dr

Note that
do(r) _dod§ _ 1 do(r)

dr  dédr A, dE (2.58)
(2.57) may be written as

D, d¢()
—_ i) 2.

1) A dE (2.59)
Using (2.56)
do) _ 1 _ _ 1

1 [l . 2&[3 Ty Ai)Bm +[ I+ 2&[3 ey AJD(PH’Z (2.60)
Substituting (2.60) into (2.59), for E&=+1/2

D. 1 1

il _eo = o E.—} 2.61
J1+l/2 Ai ( 6¢1 +(4 + 2(I'i /Ai)]q)HI/Z +(2 2(I'i /Ai)jq)ll/zJ ( )
Similarly, for &=-1/2

D. 1 1

o —_Yilgh — = o —l4- . 2.62

J171/2 Ai (6(:])1 (24— Z(I'i /Ai)j¢1+l/2 [4 Z(I'i /Ai)jq)ll/zj ( 6 )

(2.61) may be written in terms of edge averaged partial currents, using (2.14) and

2.15)

15



6D,¢, 2D, 1 " .
S = A - A (4"' 2(1}/Ai)j[]i+m +Ji+1/2]

1 1

2D. 1
- i 2- i+
A ( 2 /Ai)j[]l—l/z Jl—l/z]

1

(2.63)

Using (2.12) in (2.63) and after arrangements

8D, D, . 8D, D, |._ 4D, D, ..
1+T+r_ Jinn = I_T_r_ Jinp — A 1 Jiai

i i i i i i

(2.64)

4D, D, ). 6D,
- - Jiap T o,
I, A,

i i

Similarly, using (2.13), (2.14), and (2.15), in (2.62)

o+ 5 — 6D1 q) + 2D1 2 + 1 o+ + 21)1 2+ 1 .
Jicin — Jian A A 2 /A, Jivin A 2t /A Jivin

2D, 1 " 2D, 1 .
+ 4- Jiap t 4- Jian
A, 2r, /A) A, 21, /A;)

After some arrangements

8D, D, |._ 4D, D, ., 4D, D, ..
- 1+T_r_ Jian = A_+r_ Japn T T+r_ Jivin

i i i i i i

(2.65)

(2.66)

8D, D, ., 6D,
- _T+T Ji—1/2_T¢i

1 1 1

(2.64) and (2.66) are the expressions for the outgoing partial currents. Substituting

the outgoing current j;_,, defined by (2.66) into (2.64) gives

16



8D, D, .. 8D, D, .. 4D, D, .,
1+Ti+? Jivin = I_T_T Jivin — T_r_ Jicin

1 1 1 1

4D, _D; | 4D; | D; 4D, _D; | 4D; | D;
A1 A ) A1 Ao )

cp T o 2.67)
D D Jisin D. D Jisin (
1+ —-— 14— i

A, I, A L.

+

i i i i

o, b)Y, D) (4, D),
A L A L ). A L 6D,

Jisin — + -0,

. . ) ) A,

1+8D1_E Ai 1+8D1_D1 i
A T, A L.

i i i i

Collecting terms

16D; B D;
. 8D, D, A r
Jivin I+—+— |- =
A ( 8D, Dij
I+t
A, T,
4D, D,Y, 8D, D,
o b LA AT
— i — = i i i 1 (2.68)
A1 | 8D, D,
A1
2 2
16D; Dj 6D, 4D, D,
o 8D, D, Al f 6D A1
+ Jivin _T_ . D D +0, A - D D
R TN ) RN Y
Ai rl i ri
Simplifying (2.68) yields
" 16D, 48D} | .. |2D, 8D,
Jian 1+Ti+ A2 = Jian N
(2.69)

. 2D, 48D; 6D, 24D;
* Jivin l_r__ A +0, T"' A2

i i i

Similarly, substituting the outgoing current j;,,, defined by (2.64) into (2.66)

17



4Di+& 1_8Di_Di
(pwmn) e el T )
A, " i1 ( 8D, D, j i+12
1+ 4
i ri
16Di2 D12 16Di2 D12 4D, D, |6D,
2 2 2 2 T
A L + A L . A; L) A o (2.70)
D D. Jisin D. D Jian D. D i .
1+ 40 1+ 4 1+ 4
i L A, L A, L

1

i+12
A1 A

i i

4D, D, .. 8D, D, ., 6D,
Tl ——t— I_T“‘_ Jan =0

Collecting terms in (2.70)

(16D D? SD D 8D. D
L —1+A1— i1+ —r+—

. Ai2 r12 i L A, L _
Jicin ( 8D, D, j
I+— 4+
| A, T,
. (4D, D 8D, D 8D, D.) 16D* D2
LIt & 1—- i i 1 iy i 21 _ 21
- 2 Ai i -+ Ai ri Ai rl A1 i (2 71)
Jis -~ |7 )
1/2 8D D 1/2 8D D
1+t =0 1+
A, r, A, L,
6D, (_ 4D, 1}
A. A.
+ q)l 1 1
( 8D, D, j
I+ 4+
i L
Simplifying (2.71)
_ 16D, 48D | . 2D, 8D,
Jop| 1+ Tl + Ai2 = Jin| — _1 - A_1
(2.72)

. 2D, 48D; 6D, 24D;
* Jian 1+r__ A +0, T"' A2

i i

If a dimensionless variable is defined as

18



2
T = (1+16Ai+ 48D j (2.73)

2
i i

(2.69) becomes
2

2D, l _i 3 2D, _ 48]31 6D, 1+ 4D,
" . A )., T, A; B A, A,
Jivp = Jian T Jian T o, (2.74)

T, T, T,
and (2.72) becomes
2
- 2Di(1 i A4j (1 #2 4? J 6D (. 4D
I. ) I. : ) .

I S S A R ! ! i+ T+ —L o, 2.75
Jian T Jivin T Jian At [ Al jq)l ( )

(2.74) and (2.75) constitute 2 equations per node. The number of unknowns per node

is three. The outgoing partial currents (j;,,,,j;,, ) and the cell flux ¢, constitute the

three unknowns. The incoming partial currents ( j.,,, ji,,, ) can be considered known

quantities, since they are either equal to the outgoing partial currents of the

neighboring cells or are known from boundary condition.

The remarks above are valid if conventional homogenization theory is used and, thus
continuity of partial currents is assumed. If equivalence homogenization theory is
used; the incoming partial currents are not equal to the outgoing partial currents of
the neighboring cells. The incoming partial current can be written in terms of the
outgoing partial current of the neighboring cell, outgoing partial current of the same

cell and the flux discontinuity factors.

If we wish to use a higher order flux expansion, say N=4, the higher order flux
moments appear in their counterpart of the two equations (2.74) and (2.75). Thus,
extra equations are needed. Weighted residual procedure equates the number of
unknowns to the number of equations provided the treatment of transverse leakage
term does not introduce any extra unknowns. The most successful approximation for
the treatment of the transverse leakage term has been an approximation called

quadratic approximation [8].
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2.5 Iterative Solution of the Nodal Equations

(2.74) and (2.75) can be written in shorter forms, if the following variables are

defined

;-]
m, = i 4 (2.76)
T
,_2D, 48D
r A?
n, = i i (2.77)
T
6D1( 4Dlj
=
P, =T— (2.78)
142D 48D}
I. A?
0, = i i (2.79)
T
—ZD{1+4J
r. A
=i Ti) (2.80)
T

Therefore (2.75) becomes
Jian =M, + 04, + 0, (2.81)
Jian = tdian 000, T D0 (2.82)

- . . o .
Here J;,,, and j;,, are known quantities. Butj, ,, j._,, and ¢, are unknowns. So

a third equation is necessary for the determination of the three nodal unknowns. It’s

the discrete nodal balance equation. From (2.24)

— _ [Si+1/2 (ji++1/2 — Jian ) ~Siin (j;r—l/z —Jin )] QS
(o} + (2.83)
1 TAS, T AS, '

(2.83) can be written as

¢i = Zi Qi - AL [(Si+1/2ji++l/2 + Si—l/zji_—llz )_ (Si+l/2ji_+l/2 + Si—1/2j1+—1/2 )] (2.84)

S.

171
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2.5.1 Matrix Equation
(2.81) and (2.82) can be put into matrix form as

|:J'i_+l/2:| _ |:mi ni:||:.]'i_—1/2:| + q)i[Pi} (2.85)
Jiain O G || jrn P;
(2.85) can be written shortly

-out

=

i"+o;p (2.86)

and (2.84) can be written as

1 .out .in
0, =Z—[Qi s -] (2.87)
where
§T = 1 [S. S ] (2.88)
24 Aisi i+1/2 “i-172 :
Il'li l'li_
R= { (2.89)
o 0; ¢ |
o = |:J'i_+1/2 and jin _ {J’i_—m:l (2.90)
- Ji—l/2 i - Ji+l/2

(2.86) and (2.87) are used for iterative process. One method is to use two matrix
equations separately. Q; would be known from estimates kesr and ¢, of the previous

outer iteration or initial guess. Inner iteration provides estimates of the incoming
partial currents and cell average fluxes. A marching procedure takes places
throughout the core in an inner iteration. Inner iteration ends when the per cent
difference between the consecutive estimates of the cell averaged fluxes drops below

a certain predetermined convergence criteria.

After the convergence of the inner iteration, next outer iteration begins and a new K¢
estimate is found. The outer iterations stop when the percent error between Kkegr

estimates drops a certain predetermined convergence criterion.

Alternatively, (2.86) and (2.87) are written in one matrix equation form as

AJ=—o
o keff

I

J+8S (2.91)
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Here, J is the unknown vector. It contains outgoing partial currents and cell average
fluxes. é 1s 3Nx3N band matrix, where N is the total number of nodes. E is again
3Nx3N diagonal matrix and only (3i-1)th elements contain nonzero fission source
term. (i=1,2,...N) S is the scattering source vector. In the first iteration, right hand
side (RHS) of (2.91) is known. J is known from initial estimates of outgoing partial

currents and cell averaged fluxes.

AJ™D =p™ (2.92)

New J vector is found with a linear system solver which has two main subroutines,
first makes LU factorization of the matrix A and second solves the system. New K

estimate is found after fission source iteration. Iteration continues until the difference
between two successive ke estimates drops below the convergence criterion.
Converged J vector contains both fluxes and currents as it is shown in (2.93) and

they are separated into flux and current vectors in the next step.

lT:[ji/Z q)l j;/Z j;/Z q)z j;/Z ““““““““ j(_2N-l)/2 q)N j:—2N+l)/2:| (293)

2.5.2 One-Node Formulation
In one-group formulation, removal cross section is equal to the absorption cross
section. Node thickness is equal to the radius of the cylinder. Only fission source

exists.

Then, (2.82), (2.84) and (2.81) become
Jin = Uiy T 0.1 + P10, (2.94)

(I)l — sz q)l _ SS/Zj;/Z _ S1/2jl_/2 + SS/Zj;/Z + SI/Zj:—/Z (295)
Tk, I,AS  XIAS, IAS IAS,

j;/z = mlj;r/z +0,J5, + P10, (2.96)

Boundary conditions are J,,, =j,,—j;,»=0—j;,,=1J;,, (reflective) andj,, =0
(vacuum). Also S;,=0, no surface area exists at the center of the cylinder. Thus, after
the application of boundary conditions, the equations (2.94), (2.95) and (2.96)

describe the whole system:

(1-0,)jf, —p0, =0 (2.97)
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(I) +SS/2j§/2 — sz
l Z:aASl Z;akeff

j;r/z - mlj;r/z -po, =0

In matricial form

AJ=—FJ,
o keff -
where
1- 0 —Ph 0
— O 1 S3/2
=! X AS,
-m =P 1

0 0 O
F =|0 VX, 0
= Za

10 0 0 |

2.5.3 Two-Node Formulation

Whole system is homogeneous and the nodes have equal thickness. If i=1,

(1 Y )J1+/2 —pi0, —tj5, =0

(I) +S3/2j;/2_s3/2j;/2 — sz (I)
" ZAS, X AS Ik, |

Jsn —myji, —nJ5, -pig, =0
For i=2, j;, =0 (boundary condition)
By = 023n = P20, =0

q) +SS/2j;/2 +S3/2j;/2 _S3/2j;-/2 — Vz’f q)
* T AS, XAS, LAS, Ik,

jg/z - mzj;/z -p,9, =0

23

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)



(2.104) through (2.109) can be written in matrix form

1
ézlﬁgﬁz Js
where
i -t, 0 0
S
(3x3)
él 32 0 0
X AS,
-n, O 0
_2:
0 0 -o, 1 -p, O
_ S3/2 S3/2 S5/2
XAS, X AS, X AS,
10 0 -m, 0 -p, 1

ﬂ:br/z 0, j;/z Jin 0, j;/z]

3x3
F

Q(3x3)

2.5.4 Three-Node Formulation and General Matrix Form

(_)(3x3)

3x3
F™

6x6

Three-node matrix form is

>

;l3 =

R
keff

where

lles

393

24
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(2.110)

@2.111)

2.112)

(2.113)

(2.114)



0(3x3)
é (6x6) —t, 0 0
= Ssn 0 (2.115)
=3 T AS,
-n, O 0
-0, 1 -Ps 0
0(3x5) _ S5/2 S5/2 1 S7/2
= Y AS, I AS, ¥ AS,
L -m;, 0 “Ps 1 Jox9
L =[itn 0 5 5o 0 Bt G 05 Jia) (2.116)
'Eiaxa) (=)(3x3) (=)(3x3) T
F = Q(3x3) Eaxa) (=)(3x3) 2.117)

0(3x3) 0(3x3) F(3x3)

= = =1 _loxg

The implementation of A matrix in the computer code can be accomplished by
comparing A matrices in one-node (2.101), two-node (2.111) and three-node (2.115)

formulations. General matrix form

1
AJv=—F I (2.118)
keff

llgs]

N

where
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Q((3N—6)X3))
((3N-3)x(3N-3))
éN-l —tu 0 0
A — SN-1/2 0
2y
X ASy,
-ny, O 0
-0y 1 -Px 0
QEN-H) ) Sxun Sy Sxain
= XAS, X, AS; X ASy
L - My 0 -Pn 1
8-l 0 5o e e 6
INT Ui P Jap Tz ceeeeeeeenens Iz On Inai
'Ei3x3) (_)(3x3) ...... Q(3x3) 7
Q(axa) Eiaxa) """" 0 (3x3)
=N |3 T :
| = = = BN

(2.119)

13Nx3N

(2.120)

(2.121)

2.5.5 General Matrix Equation with Reflective Boundary Condition

Reflective boundary condition is

— it — 1 —
Insn = Insin — Innn =0

(2.122)

And (2.122) states that jy,,, is equal tojy,,, at boundary. So, only the equations

related with the last node will be changed. This corresponds to last column of A | i.e.

A(N,N), A(N-1,N) and A(N-2,N). After some simplification, these equations become

. " " _
Inan = Ondnane ~ Endnen — POy =0

. "
" Snondnin  Ssandyan _ VX,

YT AS, X AS, Xk,

(1-n)jNsan = Myjran - POy =0

and é I
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(CGN-6)x3)
éN-l((3N»3)x(3N-3)) _ tN . 0 0
SN-1/2
A = 0 (2.125)
=N X ASy,
-ny, O 0
- Oy 1 “Pn b
OEN-H) _Snap Swan
= XAS, X, AS;
L - My 0 “Px l_nN_SNx3N
F and J are the same as before.
2.5.6 Fission Source Iteration in Multigroup Diffusion Equations
The multigroup diffusion equations can be written as
R 1
—V.D, Vo, + X0, =—%,Q
keff
(2.126)
R 1
—V.D,V0, + 24,0, =—x%,Q+ X, ,,9,
L] eff .
Lo 1 :
- V'DG Vq)G + ZR(;q)G = k_ XGQ + Z51—>G¢1 RIERNE + ZS(G»I)—>G¢G»1
eff
It is assumed that there is no upscattering and fission source is defined as
G
Q) =D v, E.0,(r) (2.127)
g'=1

The spatial dependence of the fission source is identical in each group diffusion

equation.

The initial estimates of Q(r)and multiplication eigenvalue k.s are made before first

iteration
QW) ~Q”(), and  ky ~k” (2.128)
Next the first group diffusion equation is solved by using linear system solver

subroutines [9]
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S 1
~V-D VO + 200" = 1 QY () (2.129)

eff

The flux in the first group is calculated and the diffusion equation for the next lowest

energy group is solved

- = 1
= VD,V 4’ = QY (1) + X ) (2.130)

eff

and flux of this group is determined for every nodes. All of the group fluxes are
found using this procedure. Diffusion equation corresponds to neutron balance

equation, so only RHS of (2.123) is changed with additional scattering source term.

A new fission source can be calculated since (])il) , (2” e ¢g> are known.
1 < 1
QY () =) v, E,00 (1) (2.131)
g'=1

And a new value of kg

j Q" () d’r
k}‘” [Q"(md’

eff

@ _
eff —

(2.132)

There will always exist a maximum eigenvalue, k. that is real and positive. The
corresponding eigenfunction, cell average fluxes and outgoing partial currents, is
unique and nonnegative everywhere within the reactor. It can be demonstrated that
this fission source iteration will converge to this positive dominant eigenvalue kgt

and the corresponding eigenfunction [5].

At this point one tests the source iteration for convergence, such as by comparing

k(nﬂ) _ k(n) ?
% <e (2.133)

If the changes in k() are sufficiently small, one assumes that convergence has been

achieved, and the iterative procedure is ended. If not, a new fission source is

calculated and the iteration continues.
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3  NUMERICAL APPLICATIONS

The formulations derived in the previous chapter have been implemented in the
NEMR code which is a computer program written in FORTRAN 90. This code and
the numerical results obtained from it will be described in this chapter. Also

comparison with FEM is made by using the results of a computer program, QFEMR.

3.1 One-group, Bare, Homogeneous Reactor

In this problem, a bare, cylindrical reactor of diameter 7.5cm is considered (Figure
3.1). Zero incoming current boundary condition (j~ = 0) is assumed at the surface of

this cylinder. Effective multiplication factor of this system is determined using the

one group cross sections D=0.65cm, ¥,=0.12cm™ and vEZ=0.185cm™.

d .
E‘*’;Dl | > r(em)

=0 E=275

Figure 3.1 One-dimensional, Bare, Homogeneous, Cylindrical Reactor

3.1.1 Analytical Solution

One-group diffusion equation can be written as

1d dor) Xo(r) 1 vE, 3]
rdrr dr D k; D o(r) G-

Simplifying (3.1)

1d B0 | gy =0 3.2)

rdr dr

where B is defined as

VX,

-X
B2 — keff ) (3 3)
—D .

Solution of (3.2) is
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o(r) = AJ,(Br)
Zero incoming current boundary condition is

“Rry= QR Ddoj
JR="4 +2drr:R 0

Using (3.4) in (3.5) gives
J,(BR) =2DBJ, (BR)
(3.6) can be written as

2D
T,(x) = T"L(x)

where x=BR. Substituting the numerical values of D and R in (3.7) gives

2.8846153827,(x) - xJ,(x) =0

(3.8) can be solved by using Newton’s Method [10]

f(x"
N '( )
f (X(t))

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

where, t is the iteration number. Here f(x) is the left hand side of (3.8). f’(X) can be

found using recurrence relation for Bessel Function of first kind,

xJo=n) —xJ, =-nJ +xJ_,
Thus, (3.9) becomes

e _ o 28846153825, (x") —x"T, (x)

2.8846153827,(x ") + x T, (x©)

(3.10)

3.11)

Initial estimate of x© can be found by assuming critical reactor, keg=1. In this case,

(3.3) gives B=0.316227766 and x=BR=1.185854123. Table 3.1 shows the results

of Newton’s method.
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Table 3.1 Iteration Steps of Newton’s Method for the Solution of (3.7)

t X(t) g(t) (%)
0 1.185854123 -

1 1.799773445 94.9837
2 1.771173535 1.6145
3 1.771285989 0.0063
4 1.771285991 9.114x10™

These calculations are made using MATHEMATICA 5.2. Finally, x=1.771285991
and B=x/R=0.47234293cm". Effective multiplication factor can be calculated as

K, = # = 0.698060264 (3.12)
DB’ 4%,

Average flux is defined as

Tq)(r)ZTtrdr
o= ‘)T (3.13)
Average flux can be calculated from (3.13)
- o R
0= e '([ AJ,(0.47234293r)rdr = 0.58086137546A (3.14)

In order to find an expression for A, it is necessary to make a separate calculation of
the reactor power. In particular, there are X,¢(r) fissions per cm’/sec at the point of

r, and if the recoverable energy is w; joules per fission (w=3.2x10"" joules), then the

total power per axial distance, in watts/cm, is
R

P=w,2, j o(r)27rdr (3.15)
0

Performing the integration gives
P =w, X, mR*0.58086137546A (3.16)

If the reactor power is given as P=2000watt/cm, and the macroscopic fission cross

section is X, =0.0764cm™, then A is calculated as

p

A= . = 3.1894954x10" (3.16)
w, X, TR >0.58086137546
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Flux distribution can be found by multiplying constant A with cell average fluxes.

Finally, average flux is calculated using (3.16) in (3.14) as

0 =1.852654684 x10" n’/cm’sec. (3.17)

3.1.2 Solution with Nodal Method

Here, formulations derived in previous section are tested with two node calculations
before their implementation into the computer program. Figure 3.2 shows the nodes
of this system. Since A and D are the same for the same material in one-group

calculation, t is the same for two nodes. From (2.73),
1=12.3152
A is calculated by dividing radius, R by the number of nodes, 2. Therefore

A=1.875

Figure 3.2 Cylindrical Reactor with Two Nodes

Calculated values of the variables describes in (2.76)-(2.80) are given in table 3.2.
Radii and corresponding surface areas are given in Table 3.3. They are used in (2.76)

through (2.80).

Table 3.2 Calculated Values of the Variables in the Two-Node Equations

i 1 2

m -0.112598 -0.187663
n -0.499805 -0.42474
t -0.337794 -0.262729
0 -0.274609 -0.349674
p 0.403101 0.403101
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Table 3.3 Radii and Related Surface Areas

1 r; (cm) Si(cm?2)
1/2 0 0

1 0.9375 5.8875
3/2 1.8750 11.7750

2 2.8125 17.6625
5/2 3.7500 23.5500

Table 3.2 can be used to test further computer programs which will be developed

using nodal methods in cylindrical geometry.

Equations derived in section (2.5.3) are formed. These equations constitute the

matrix, A, with numerical values

[1.27461 -0.403101 0 0.337794 0 0
0 1 8.88854 -8.88854 0 0
0.112598 —0.403101 1 0.499805 0 0
A= (3.18)
0 0 0349674 1 -0.403101 0
0 0 -2.96284  2.96284 1 592569
0 0 0.18663 0  -0403101 1 |

This matrix has 3 upper diagonals and 3 lower diagonals. It is a band matrix. All
other A matrices with increased node number have the same character. Therefore, in
order to use computer memory economically, only 7 diagonals of these matrices are

stored. They are transferred into a new matrix in the NEMR computer program.

All the elements of the matrix F are zero except F(2,2)=F(5,5)=1.541605. Hence,

only these elements are used in calculations of NEMR.

If a new matrix defined as

F (3.19)

A'FI=Bl=k,]J (3.20)

ket i1s the maximum eigenvalue of the matrix, B. MATHEMATICA 5.2 first

calculates 12 using (3.19), then finds the eigenvalues of it. Therefore,
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ke=0.689617 (3.21)

and the error

Analytick ., — Nodalk
Error% = - x100% =1.2095% (3.22)
Analytick

This is a reasonable error as will be shown in the following section.

3.1.3 NEMR and QFEMR Results

Linear FEM, quadratic FEM and NEM results of multiplication factor are given in
Table 3.4

Table 3.4 ks Results of QFEMR and NEMR Programs

Number of
Method Elements(FEM) or Kest Error (%)
Nodes(NEM)

2 0.746411132 6.92646

Linear FEM 10 0.699714822 0.23702

50 0.698125364 0.00933

100 0.698076062 0.00226

1 0.720881392 3.26922

Quadratic 2 0.699073117 0.14509
FEM 10 0.698061073 0.0001158

50 0.698059636 0.00009

3 0.694169485 0.55737

Lowest 5 0.696634106 0.204303
Order NEM 11 0.697764156 0.042418
21 0.697979689 0.011543

Quadratic FEM gives better results than linear FEM. In the FEM terminology, the
points in the mesh where the unknowns are introduced are called nodes. In the nodal
method, a node is not a point, it describes a cell. A linear finite element has two
nodes; both are located at the endpoints of the element. Therefore, N elements
correspond to N+1 node in the linear FEM. In case of quadratic finite elements, the
number of nodes per element increases to three. N quadratic elements contain 2N+1

nodes.
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NEM is better than linear FEM. NEM also seems the best method for 3 nodes which
corresponds to 1 quadratic element in the quadratic FEM, but then, quadratic FEM

gives more accurate results than other methods as shown in figure 3.3.

0,720
0,715 -
0,710 -
0,705 -
0,700 -
0,695 -
0,690 -
0,685 +
0,680

—— nodal

—— analytic
——linear FEM
—— quadratic FEM|

k-eff

1 6 11 16 21 26 31
Number of Nodes

Figure 3.3 k. Results of FEM and NEM

NEMR code with two nodes gives ke =0.68963090 with an error 1.20754102%.
They are very similar to two-node calculations of ke (3.21) and its error (3.22). This

shows that nodal equations are implemented into the code correctly.

If the number of nodal cells is large, the nodal method loses its calculational
advantages with respect to finite element methods. But if the number of nodes are
small as 1, 2, 3 nodes, nodal method seems more advantageous than finite element

methods as seen in figure 3.3.

(3.13) can be discretized as

o ==t (3.23)

N
28

i=l

NEMR calculates average flux using (3.23). They are given in table 3.5 with linear
FEM results. Comparison with exact average flux, (3.17), shows that NEMR is able
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to calculate average flux with very little error. The same average flux and therefore
the same error are found in linear FEM independently from the number of linear
elements. Therefore, only results for 2 and 10 linear elements are given in the table
3.5. Double precision is used as the computer numbering format for the calculation

of these fluxes and 9 digits after the decimal point are placed in the table.

Table 3.5 Average Fluxes and Respective Errors

Number of ox10™"
Method Elements(FEM) (n/cm’sec.) Error (%)
or Nodes(NEM)
3 1.851715510 0.050693418
5 1.851715485 0.050694768
Nodal
11 1.851715342 0.050702486
21 1.851715253 0.050707290
2 1. .
Linear FEM 851715400 0.050699356
10 1.851715400 0.050699356

NEMR can calculate cell average fluxes with small error. Flux distributions are given
in figure 3.4 for 31 nodes in NEM which corresponds to 30 linear elements and 15

quadratic elements in QFEMR.

It is shown in figure 3.4 that both NEM and linear FEM graphs are superimposed.
Maximum flux is approximately 2.83x10"n%cm’sec at the center of the cylinder

when the reactor power is taken to be 2000 W/cm.

$107"(@m"/em?sec)
B e

2,75

257

2,25 + — nodal

— linear FEM

1,75 -
1,5

1,25

1 T T T T T T T 1
0 05 1 15 2 25 3 35 4 Fem

Figure 3.4 Flux Distribution Along the Radial Distance
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3.2 One-Group Reflected Reactor

In this section, two-region cylindrical reactor is considered. It is composed of a
central cylinder of one fuel-bearing material (region 1) embedded in an annulus of a
second reflector material (region 2). It is assumed that multigroup spectra have been
determined for the different (nuclearly homogeneous) materials in regions (1) and (2)
and that the one-group cross-sections have been obtained by averaging over these

spectra.

Fuel-bearing material is the same with the material defined in section 3.1. It has the

same cross-sections and the same radius, R;=3.75cm.

Reflector is a graphite material with thickness 1.25cm. Hence R,=5cm. Absorption
cross-section and diffusion coefficient of the graphite are taken to be 0.00032cm™

and 0.84cm respectively.

3.2.1 Analytical Solution

The resulting form of the one-group diffusion equation is thus

D (li i(I)(r)j (—VZ" ';jq)(r):O (3.24)
dr dr

Continuity and boundary conditions are

®(R,) =0(R))" (3.25)

Do d¢£1R1) | _p® @ " (3.26)
" g ’

—¢<R )+ 0(Ry) =0 (3.27)

where R, and R, are the radii of the fuel-bearing material and the reflector

respectively. If one defines

AhEk -zt

(") = o (k=1,2) (3.28)

(3.24) can be written as:

1d
(—d—rd—¢(r)j+(1( )20(r) =0 (3.29)
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Note that, (k*)can be real or pure imaginary depending on the magnitudes of the

reactor parameters. It takes the form

-1, vF _ yF
(k") = % (Fuel region, real) (3.30)
R
(x*)? = % (Reflector region, imaginary) (3.31)

k" is real if ATWE] >XF. Therefore, A < (vE[ /Zf =1.54). Since the reflector can

not increase the effective multiplication factor so much, the solution in the fuel

region is

0p(r) = C Jy (k1) (3.32)
where Jj is the zeroth-order Bessel function of the first kind. For the reflector region
O (1) = C;1, (k1) + C K, (") (3.33)

where I and K are zeroth-order modified Bessel functions of the first and second

kind respectively. Applying zero incoming current boundary condition (3.27) to the

(3.33) gives

R _ R_.R R
C3:_C4[KO(KRR2) 2DRKRK1(]§ R) =-C,L (3.34)
I[,(k"R,)+2D"x"I,(x"R,)
(3.33) becomes
Op (1) =C, (-LI, (k1) + K, (x"1)) (3.35)

The continuity conditions at r=R}, (3.25) and (3.26) now require that

CJo(k°R,) = C,(-LI,(x"R ) + K (k"R ))) (3.36)
-C,D°x°J,(x°R,) = C, D (-Lx"I,(x"R,) — k*K, (k"R )) (3.37)
The critical equation may be obtained by dividing the first equation (3.36) into the

second (3.37)

J,(kR)) -LI,(x"R,) + K, (k"R,)

= 3.38
DxJ,(k°R,) D®(Lk"I,(x"R,)+k"K,(k"R))) (5:55)

RHS of (3.38) is calculated using MATHEMATICA 5.2
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Jo(x°R))
DkJ,(x°R,)

=2.7822129453

(3.39) can be re-arranged as
Jo(K°R,)—1.8084384144x°J,(x°'R,)=0

(3.40) would be suitable for the Newton’s Method, if it is written as
f(x) =J,(x)—0.482250243xJ,(x) =0

where x=x‘R .

Newton’s Method, (3.9), takes the form

) 0 J,(x)-0.482250243x VT, (x)

X
7,(xV) +0.482250243x T, (x )

Table 3.6 shows the steps of this iteration process, (3.42)

Table 3.6 Iteration Results of Newton Method

t xV (%)

0 1 40.599315

1 1.683482 4.13843

2 1.61658 0.0276963
3 1.61703 9.32603x107
4 1.61702907 1.37316x10™"

Thus

K = Ri = 0.431207753

1
Effective multiplication factor is found analytically from (3.43) as
A=k.=0.768077605
From (3.13) and (3.15) average flux is

P
w, X, R}

0=

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

Average flux in the fuel region is the same as calculated in section (3.1.1) and given

in (3.17). q_>F =1.852654684 x 10" n’/cm’sec, since all variables of (3.45) remains the

same.
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But, it is complicated to find the average flux in the reflector. First, it is necessary to

find Cy in (3.32)

_ 2 R

Or = [€195(0.431207753r)rdr
1o

This integral is evaluated by using the following recursion formula
j X" (x)dx = x"J, (x)

Thus

0. =0.706884906C,

From (3.17)

C, =2.620871754x10"
Next, C4 is found from (3.36)

CJ,(x°R))

.= - ——— =1.87991806
(LI, (k"R ,) + K, (KR )

Average flux in the reflector is defined as

%= RI-RY)

f({)R(r)27rrdr
R,

Substituting (3.35) into (3.51)

—- _2C,
q)R _(Rg_RI

R, R,
—| - ILIO(KRr)rdr+ IKO(KRr)rdr
) R, R,
These integrals are evaluated using the following recursion formulas
j X" (x)dx = x"I_(x) and j x"K,_, (x)dx = —x"K  (x)

Final equation for the average flux in the reflector is

_ -2C,
% = (R} —RP)(x")

~(LK"R,I,(k"R,) - Lk*R I, (k*R,)

+K*R,K, (kR,) - k"R K, (k"R,))
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(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)



Average flux has been calculated from (3.54) using MATHEMATICA 5.2

0, =8.728700636172x10">n’/cmsec. (3.55)

3.2.2 NEMR and QFEMR Results

Table 3.7 shows the effective multiplication factors with their errors. As in the case
of previous problem when the node cells are large i.e. with 3 and 5 nodes; NEM
gives the best results. The increase of the nodes in the fuel region improves ks value

more than the reflector, since the fuel region is a multiplier medium for neutrons.

Table 3.7 Effective Multiplication Factors Calculated by 3 Methods

Number of Nodes, NEM
Fuel Reflector | Total Ketr Error (%)
2 1 3 0.76390350 0.54344834
3 2 5 0.76581560 0.29450214
4 3 7 0.76673990 0.17416274
6 3 9 0.76756920 0.06619188
7 4 11 0.76767430 0.05250837
Linear FEM
Fuel Reflector | Total Ketr Error (%)
1 1 3 0.99030426 28.9328382
2 2 5 0.80352910 4.61561344
4 2 7 0.77568958 0.99104196
5 3 9 0.77290074 0.62794903
7 3 11 0.77046017 0.31019905
Quadratic FEM
Fuel Reflector | Total Ketr Error (%)
1 1 5 0.78547520 2.26508252
2 1 7 0.76887844 0.10426505
2 2 9 0.76888222 0.10475721
3 2 11 0.76822594 0.01931299
4 2 13 0.76812242 0.00583464

When the number of nodes is 7, quadratic FEM is better than NEM, but if it is 9,
NEM seems better unexpectedly. Number of nodes in the fuel region is larger than
the reflector region in NEM. But, quadratic FEM puts the same number of elements,
2, into both regions although the total number of nodes is the same in both methods.
Therefore, NEM gives more accurate result than quadratic FEM since fuel region is

responsible for the neutron multiplication.

After 9 nodes, quadratic FEM gives better results than other two methods. It has been
seen that NEM and quadratic FEM have always been better methods than linear FEM

for all nodes.
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As a result of these considerations, it can be said that nodal method is more
advantageous than linear and quadratic FEMs, if the mesh is coarse. When the mesh
is getting finer, number of nodes is increased and quadratic FEM becomes more

advantageous than other methods. This is shown in figure 3.5.

0790 |~ - -

0785 + - - - p - - - -
—e— NEM
—&—Linear FEM |_______________
— — Quadratic FEM

0.780 -

'lql—) 0.775 | nalytic
R4
(/R e ——_—_—_",_,—,——,——"——
=" =
e
0.760 T T T T T T T T T
3 6 9 12 15 18 21 24 27 30

Number of Nodes

Figure 3.5 Variation of kegr with Respect to Total Number of Nodes

Here, number of elements (nodes) in the fuel region is two times the number of
elements (nodes) in the reflector region in FEM (NEM). In the basic mesh there are 2
and 1 nodes in the fuel and the reflector respectively. By multiplying the number of
nodes with an integer (which is called degree of refinement) finer meshes are
obtained. For example, if the degrees of refinements are 1, 2, 3, 4 and 5; then the
number of node ratios in fuel and reflector will be (2:1), (4:2), (6:3), (8:4) and (10:5)

respectively.

Mesh refinement is an important tool for editing meshes in order to increase the
accuracy of the solution. Refinement is performed in an iterative procedure in which
a solution is found, error estimates are calculated, and elements in regions of high

error are refined. This process is repeated until the desired accuracy is obtained.

If the total number of nodes is chosen a constant value 33, the optimum number of
nodes in the fuel and reflector are found to be 26 and 7 respectively in this problem.
So the best rate for the degree of refinement is 26:7. Therefore, optimum mesh
spacing or widths of the nodes are calculated as A;=0.14423cm in the fuel and

A»=0.17857cm in the reflector.
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Quadratic elements seem to be more stable and less influenced to the degree of

refinement of the mesh.

Figure 3.6 shows the ke; values from degree of refinement 1 (2:1) to 11 (22:11) for
NEM and linear FEM and 6 (12:6) for quadratic FEM. Quadratic FEM seems the
same as analytical result since the basic mesh (2:1) corresponds to 7 nodes in

quadratic FEM in which its error is very small.

——NEM

Analytic
Linear FEM
Quadratic FEM

k-eff

3 8 13 18 23
Number of Nodes in the Fuel

Figure 3.6 ki versus Number of Nodes in the Fuel Region

Table 3.8 shows the average fluxes calculated in the fuel and the reflector regions.
Both methods calculate average fluxes accurately in the fuel region with very small
and similar error values. In the reflector, NEMR gives 13.5 times (error ratios) better
result for 5 nodes than linear QFEMR for 4 elements which corresponds to 5 nodes.
Then, NEMR is still better than linear QFEMR. But linear QFEMR is getting closer
to the analytical solution more rapidly. As a result, both methods find the average

fluxes with smaller errors when the number of nodes is increased.
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Table 3.8 Average Fluxes with Their Errors in The Fuel and The Reflector

Number of Nodes - 13 Error (%) - 13 Error (%)
Fuel | Reflector | Total ¢x10 (Fuel) Op x10 (Reflector)
3 2 5 1.851715477 | 0.050695200 | 0.878367521 | 0.629813968
NEM |7 3 10 1.851715418 | 0.050698385 | 0.873525390 | 0.075077163
14 |6 20 1.851715457 | 0.050696280 | 0.872703571 | 0.019074193
20 |10 30 1.851715756 | 0.050680141 | 0.872564972 | 0.034952673
Number of Elements
Fuel | Reflector | Total
Linear 2 2 4 1.851715400 | 0.050699336 | 0.798289649 | 8.544274488
FEM 6 3 9 1.851715400 | 0.050699336 | 0.866251779 | 0.758221061
13 |6 19 1.851715400 | 0.050699336 | 0.871193009 | 0.192131084
19 |10 29 1.851715400 | 0.050699336 | 0.871814416 | 0.120939875

In figure 3.7, flux distribution along the radius of the cylinder are shown for 30
nodes, 20 fuel and 10 reflector, which corresponds to 29 linear elements. It is seen
that two graphs overlap in the figure. Hence, two methods find about the same

fluxes.
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Figure 3.7 Flux Distribution in the Reflected Reactor

3.3 Two-group, Bare, Homogeneous Reactor

In this problem, two-group analysis of a bare, cylindrical reactor is developed. First,

critical radius is calculated for zero incoming current boundary condition. Then,
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QFEMR and NEMR results are compared to see how close they can calculate K¢ to

critical value. Two-group parameters are given as

Di=1.2627cm,  Zg;=0.02619cm™, X, ,=0.01412cm™,  viZ;;=0.008476cm™,
D,=0.3543cm, %,,=0.1210cm™, v,%;,=0.18514cm™ and =1, %=0.

Reactor power is taken to be 2000W/cm as in the previous problems.

3.3.1 Analytical Solution

Two-group diffusion equations can be written as

e 1
_V-D1V¢1 +2Xp0, = k_[vlzflq)l +V22f2¢2] (3.56)

eff
- §-D2§¢2 +2X,0, = ZS,1—>2¢1 (3.57)

Since the reactor is critical k_; =1. Assuming, thermal to fast flux ratio is constant

and defined by
g0 (3.58)
0,

using (3.58) in (3.56) and (3.57) gives respectively

lir%-l- (Vlz‘fl +VZZQS_ZR1)
rdr dr D,

lir d¢2 + (ZS,I—>2/S_Za2)
rdr dr D,

6, =0 (3.59)

0, =0 (3.60)

Fast and thermal group buckling terms are defined as

B2 — (Vlzfl +V22fZS_ZR1) (361)
1 Dl
Yo ,IS-X
Bg — ( S, 12 a2) (362)
D2
Solutions of (3.59) and (3.60) are given by
0,(r)=C,J,(Byr) (3.63)
0,(r) = C,J,(B,1) (3.64)

Next, applying zero incoming current boundary condition, (3.5) to (3.63) and (3.64)
yields
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Jo,B,R) =2B,D,J,(B,R) (3.65)
J,(B,R)=2B,D,J,(B,R) (3.66)
(3.65) and (3.66) are solved iteratively using Newton’s Method, (3.9). Then

f(X) = J() (X) - 2B1D1J1(X) (367)
f(y) = 3o (y)— 2B2D2J1(Y) (3.68)
where x=B,R and y=B,R . Applying Newton’s Method to (3.67) and (3.68) gives

LD 0 _ (l()JO x“)-2B,D,J,(x" )) . (3.69)
(1,x")(2B,D, -1)-2B,D,J,(x"))
y(H—l) _ O _ (l)(Jo(y(O) —2B,D,J, (y(t) )) = (3.70)
(Jl(y )(2B2D2 _1)_2B2D2J0(y ))
Before iteration, initial estimates of buckling terms are needed. From (3.62)
X
S, 152 (371)

S=
D2B2 + ZaZ

First, initial value of B, is estimated. Next, this value is used in (3.69) and flux ratio,
S is found. Then, S is used in (3.61) and new value of B; is found. B, and B, are used
in (3.69) and (3.70). Also, initial x and y values are estimated with initial critical
radius. Solution to this problem with zero flux condition at r=R gives the geometric
buckling and the critical radius as B:O.05418cm'1, R=44.3889cm [12]. So, initial B,
and R values are taken to be 0.06cm™ and 42.0cm respectively.

After the first iteration, new values of x and y are found. These inner iterations

)

x® and y®D- yt

continue until the differences x y ) are less than 10°. From
converged x and y values, radii R; and R; are found. New B, value is estimated using
R; and R,, since it is inversely rated with R, Outer iteration continues until the
difference between R; and R; is less than 10”. One outer iteration step contains two
inner iteration steps for thermal and fast group equations. Table 3.9 shows the first

two, 10" and the last two outer iteration steps.
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Table 3.9 Iteration Steps in Two-Group Problem

Step | Bl B2 R1 R2 R1-R2

1 0.0538777 | 0.06 42.0489334 | 39.3658509 | 2.6830825

2 0.0543778 | 0.05 41.6380127 | 47.3828900 | 5.7448773

10 | 0.0540664 | 0.05644 41.8930428 | 41.8942962 | 0.0012534

17 | 0.0540663 | 0.05644157 | 41.8931097 | 41.8931066 | 3.12286x10-6
18 | 0.0540663 | 0.05644157 | 41.8931096 | 41.8931096 | 6.8311x10-8

Critical radius is found as R=41.8931096cm. Inserting B, =0.05644157cm™ into the
(3.69), then gives thermal to fast flux ratio S=0.116309825.

Average fluxes can be calculated from (3.13)

R
0, = % [ C3,(Byr)rdr = 0.4820488124C, (3.72)
0

R
0, = % [ €3, (B,r)rdr = 0.4462414984C, (3.73)
0

Assume that average thermal to fast flux ratio is equal to thermal to fast flux ratio:

C, =0.125642148C, (3.74)
C;and C; can be written as
P, 9
C = > =3.3591393x10"P, (3.75)
w, X, mR"0.4820488124
P2 8
C,= 5 =1.6633048x10°P, (3.76)
w2, ,mR0.446241498
Thermal and fast power constitute the total reactor power
P, +P, =2000W/cm (3.77)

There are four equations with four unknowns. Solutions are P;=565.3845886W/cm,
P,=1434.615411W/cm, C;=18.992055x10"!, C,=2.3862027x10"". Fast and thermal
fluxes are found from (3.63) and (3.64) approximately.

0, =18.992055x10"J,(B,r)  and 0, =2.3862027 x10"J,(B,r)  (3.78)
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3.3.2 NEMR and QFEMR Results

Effective multiplication factor is calculated with very small error as in the case of the
previous sections. The QFEMR and NEMR results of effective multiplication factor,
ke and thermal to fast flux ratios, S are given in table 3.10. S is nearly constant as

assumed before. As a result, it is seen that both programs successfully find Kegr .

Figure 3.8 shows the ks values with respect to number of nodes. Again quadratic
FEM and NEM are better than linear FEM. When the number of nodes is small,
NEM seems to be better and then, quadratic FEM becomes a successful method

having a small difference from the NEM.

ke results of the NEM and quadratic FEM converge ~0.9996. Assumption of
constant thermal to fast flux ratio may cause this difference. Actually it is not
constant but slowly varying. It is the ratio of zeroth order Bessel functions.

g CaloBar) _ T, (KByp) _
CJ,Br) 1B,

3%4

Table 3.10 Results of QFEMR and NEMR Programs for Two-Group Reactor

Method Number of Kest Error S Error (%)
7 1.028537586 | 2.853759 | 0.116332898 | 0.019837
Linear 10 1.013512079 | 1.351208 | 0.115647141 | 0.569757
FEM 20 1.003065418 | 0.306542 | 0.115165093 | 0.984209
30 1.001166149 | 0.116615 | 0.115076868 | 1.060063
5 0.999908366 | 0.009163 | 0.115465162 | 0.726218
Quadratic 10 0.999663253 | 0.033675 | 0.115673310 | 0.547258
FEM 15 0.999655302 | 0.034470 | 0.115693296 | 0.530075
50 0.999654311 | 0.034569 | 0.115697384 | 0.529607
2 0.990966845 | 0.903315 | 0.115348487 | 0.826681
(L)(r’gvee:t 11 0.999426275 | 0.057372 | 0.115080686 | 1.056929
NEM 21 0.999611910 | 0.038809 | 0.115030297 | 1.100252
31 0.999648762 | 0.035124 | 0.115017806 | 1.110991
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Figure 3.8 Effective Multiplication Factor Obtained by Three Method

Fast and thermal flux distributions can be found from (3.78) analytically. Figure 3.9
shows the fast and thermal fluxes from NEM and analytical method with constant

average flux ratio assumption.
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Figure 3.9 Fast and Thermal Flux Distributions
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Finally, thermal to fast flux ratios, S, are calculated for 31 nodes. NEM and
Quadratic FEM graphs are superimposed as shown in figure 3.10. S values are nearly
constant except for the last 2-3 nodes. Average value of S is found to be 0.11418 for
all nodes in NEM, but it is 0.11552 when the last two S values for the nodes near the

boundary are extracted. When the last four values are extracted, it becomes 0.11567.

Fast and thermal diffusion lengths are calculated as L;=6.94cm and L,=1.7lcm

respectively. Using these values together with buckling terms, nonleakage
probabilities are

VAR
P, =(1+12B?)" =0.8764

Py =(1+12B2)" =0.9907

Amount of fast neutrons is getting higher with respect to the thermal neutrons near
the boundary. Therefore, thermal to fast flux ratio, S is lower near the boundary than

the inner nodes of this cylindrical reactor.
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Figure 3.10 Thermal to Fast Flux Ratios Along the Radius
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3.4 TRIGA MARK II Reactor

Diffusion theory has been traditionally used for TRIGA whole-core calculations. In

this study, one dimensional cylindrical geometry model of TRIGA core is chosen.

Reactor core may be divided into 7 annular regions. Ring A contains only the central
thimble. Ring B has 6 fuel elements. Ring C contains 11 fuel elements and one water
gap, while ring D has 17 fuel elements and one water gap. Ring E consists of 23 fuel
elements and one water gap. Ring F contains 12 fuel elements, 2 water gaps and 16

graphite elements. The core is surrounded by a graphite reflector.

The outer radii of A, B, C, D, E and F rings are 2.1371, 5.9709, 9.8979, 13.8629,
17.7329 and 21.8049 cm’s respectively. The graphite reflector outside the F-ring

extends to an outer radius of 51.64cm.

The core configuration of the ITU TRIGA MARK II Reactor is given in figure 3.11
[12].

Fuel Element

BT
:o :o 3@3 020 ¢zz

Q . .
'o'o?%o' &

. Source
®@®@@o.

Pneumatic Transfer System

Instrumented Fuel Element
Central Thimble

Graphite element

oco®e ® e O

Figure 3.11 ITU TRIGA MARK II Reactor Core Diagram

The homogenized two-group cross-sections for the fuel elements, central thimble,

water gap, graphite elements and the graphite reflector has been evaluated using
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WIMS-D/4 code in a previous study [13]. These cross-sections are subjected to

volume averaged homogenization with:

1 Niine
z“ring =T Z Nizi

N (3.79)

ring 1=l

where N, represented the total number of cells in a ring; N;, the number of cells

type i in the ring. For the diffusion constant, the volume-averaging is done by:

(3.80)

After the ring homogenizations are done with (3.79) and (3.80), the following cross-
section data are obtained. Table 3.11 and 3.12 shows the homogenized fast and

thermal cross-sections respectively.

Table 3.11 Homogenized Fast Group Cross-Sections for TRIGA Reactor

Ring Di(cm) Zrl(cm’l) pIN 1_,2(cm’1) v 12f1(cm'1)
A 1.21848 0.054012 0.053725 0

B 1.01686 0.048046 0.04267 0.00319902

C 1.02952949 0.04861092 0.04365908 0.00293244

D 1.02527139 0.04842261 0.04332939 0.00302130

E 1.02315553 0.04832846 0.04316454 0.00306573

F 1.19993689 0.03345527 0.03123407 0.00127961
Reflector 1.30156 0.002848 0.002845 0

Table 3.12 Homogenized Thermal Group Cross-Sections for TRIGA Reactor

Ring D,(cm) To(cm™) VoXp(em™)
A 0.246318 0.01588 0
B 0.244494 0.07921 0.119481
C 0.23985532 0.07394167 0.10952425
D 0.24138186 0.07569778 0.11284317
E 0.24215245 0.07657583 0.11450262
F 0.35853809 0.03561933 0.0477924
Reflector 0.886434 0.000194 0

This data is supplemented with v;=2.55, v,=2.44, x;=1 and y»,=0. All of them are

intended for input to the programs NEMR and QFEMR.



Then, the nodal program NEMR is run with a mesh consisting of 20 nodes. In this
basic mesh, there are 1, 2, 3, 3, 3, 2 and 6 nodes in A, B, C, D, E, F rings and the

graphite reflector respectively.

NEMR finds the effective multiplication factor as kes=1.21054283. Linear QFEMR
and quadratic QFEMR find keg =1.21279558 and ke =1.21052344 with 20 elements

respectively.

By multiplying the number of annular regions in the basic mesh by an integer
(degree of refinement), finer meshes may be produced. For example, the mesh whose
degree of refinement is 4 contains 80 annular regions with 4, 8, 12, 12, 12, 8 and 24

in A, B, C, D, E, Frings and the graphite reflector respectively.

In QFEMR finest mesh consists of 641 nodes which correspond to 640 linear
elements and 320 quadratic elements. QFEMR with 320 quadratic elements or 16
degree of refinement gives ke =1.21051196. Quadratic QFEMR gives more exact
results as shown in the previous problems when the number of elements is increased.
Therefore, using the finest mesh quadratic QFEMR method, the error in the NEMR
result is

11.21051196 —1.21054283 1 x100%

Error(%) = =0.00255016%
1.21051196

This validates that NEMR can calculate effective multiplication factors of the

TRIGA-like two-group, multiregional systems with a small error.

QFEMR with 640 linear elements or 32 degree of refinement (32, 64, 96, 96, 96, 64,

192 annular regions from center to the outside) gives ke =1.21051424.

Figure 3.12 shows the fast and thermal flux distributions from NEMR. Reactor
thermal power is taken to be 1000W/cm. These flux profiles are very similar to the
results of before studies [13]. A straight line shows the boundary between the fuel

region and the reflector at 21.8 cm.

Figure 3.13 shows linear QFEMR results with 640 elements. NEMR and linear
QFEMR flux profiles are very close to each other.
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Fast and thermal group average fluxes are calculated by NEMR as
(DF:O.4599215758X1012neutrons/cmzsec.

®1=0.3468320710x10"*neutrons/cm’sec.

Finally, ring averaged fluxes are given in table 3.13. Similar results are obtained with

the finest mesh linear QFEMR.

Table 3.13 Ring Averaged Fluxes of TRIGA Reactor

Agvlﬁiaegse NEMR Linear QFEMR

) Fast Flux Thermal Flux Fast Flux Thermal Flux
Ring 0, x107" 0, x107"! 0, x107" 0, x107"

A 10.96218643 | 10.06898070 | 11.07603868 | 9.81655374
B 11.73097594 | 7.076657695 | 11.74535495 | 7.07977055
C 11.14299074 | 6.369204184 | 11.14005651 | 6.37756205
D 9.895614128 | 5.599215700 | 9.88816852 | 5.59883768
E 8.131826966 | 4.847352052 | 8.11869472 | 4.84953114
F 6.068752771 | 4.638547901 | 6.05777394 | 4.62723878

Reflector | 1.718679834 | 2.138829250 | 1.72210595 | 2.12991548
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4 CONCLUSION

In the present work lowest order nodal expansion method in solving neutron
diffusion equation in one dimensional cylindrical geometry has been presented and
numerically evaluated. Based on the nodal balance equation and Fick’s Law, the
relationships between the cell averaged flux and partial currents were derived for
each node, which can provide efficient formulations for the multigroup and

multiregional problems to be solved in a computer program.

The derived formulations have been implemented in the NEMR code which is a
FORTRAN 90 program. It can be used for the problems with zero incoming current
and reflective boundary conditions. Flux distributions, average fluxes for each group
and the material, number of iterations for convergence and the effective
multiplication factor are found in the output file. NEMR has been tested with four

benchmarking problems with obtained analytical solutions.

First problem was the bare homogeneous reactor and the matrix equation was tested
in section (3.1.2) before implementation into the code. Other problems were one-
group reflected reactor, two group reactor and TRIGA reactor respectively. Iterative
methods have had to be used for finding the analytical solutions because of the
transcendental nature of the resulting equations after applying zero incoming current
boundary condition. Comparison of analytical and numerical results has shown that
NEMR gives accurate results of effective multiplication factor, average fluxes and

flux distributions.

A finite element method program, namely QFEMR was used in order to compare
nodal expansion method with linear and quadratic finite element methods. NEM and
quadratic FEM were shown to be of better accuracy with respect to linear FEM. It
also appears that NEM is a practical method for the problems in which the mesh is
very coarse (1, 2, 3 nodes etc.). The real power of the nodal approach is realized
only when the number of node cells is small, since then the cells are large enough

that they become coupled via neutron diffusion only to nearby cells.
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For future work, higher order polynomial basis can be constructed. Especially, the
cubic polynomial and the quartic polynomial can be formed, since N is rarely chosen
greater than 4. But it is not possible to express the coefficients solely in terms of the
edged averaged fluxes and the cell averaged flux. It is needed to define flux moments

and express the coefficients of the polynomials in terms of them.

Next, one dimensional cylindrical geometry can be expanded two dimensional
cylindrical geometry (r-z). Two dimensional partial differential equation can be
reduced ordinary differential equations using transverse integration. But in (r-0) and

(r-6-z) dimensions it fails.
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APPENDIX A A MANUAL FOR NEMR
APPENDIX A.1 INPUT LIST

Every line subjected to a single READ command in the input file of NEMR is called
a card. Therefore, the input file consists of the following cards:

CARD 1
NGT: Number of energy groups.
MAT: Number of materials.

NETSOR: Free neutron source. It is 1, if the free neutron source exists in the
system. It is O otherwise.

NRBCT: Boundary condition. It is 1, if the boundary condition is zero incoming
current at the boundary. It is 0, if the reflective boundary condition is used.

CARD 2

ITMAX: Maximum number of iterations.

EPS: Convergence parameter.

ENGENT1: Initial estimate of effective multiplication factor.
CARD 3

SKAY(, J): Free neutron source of I" group and 1™ material. Every line indicates
the material number and every given number in a line is for the energy group of that
material. NEMR skips this card if NETSOR is given zero.

CARD 4

D(L,J): Diffusion coefficients for I™ group and J™ material.
CARD 5

CEKES(LJ): Removal cross-sections for ™ group and J " material.
CARD 6

SEKES(LLK,J):  Scattering cross-sections from group K to the group I for o
material.

CARD 7

FEKES(LJ): Fission reaction cross-section. vZ;for I group and J™ material.
CARD 8

FEKES1(LJ): Fission cross-section, X for M group and I material.

Card 4,5,6,7 and 8 are repeated for each material.
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CARD 9

SFIS(I): Fission spectrum, y for 1™ group.
CARD 10

NOD (I): Number of nodes in I material.
CARD 11

RDIS(): Outer radius of I material.
CARD 12

P: Reactor thermal power in Watts/cm.
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APPENDIX A.2 DESCRIPTION OF NEMR SUBPROGRAMS

MAIN PROGRAM: ML, MU and M denote band width below diagonal, band
width upper diagonal and total diagonals of matrix A formed in subroutine MATRIS.
All matrix A formed have the same band width, ML=3, MU=3 and hence M=7 in
this nodal formalism. SUM is the total number of nodes and N is the dimension of
matrix A which corresponds to number of equations in nodal formalism. Next
program segment is for band storage. This uses rows ML+1 through 2xML+MU+1
of ABD. In addition, the first ML rows in ABD are used for elements generated
during the triangularization. The total number of rows needed in ABD is
2*ML+MU+1=10. The ML+MU by ML+MU upper left triangle and the ML by ML
lower right triangle are not referenced.

After factorization with subroutine DGBF, two dimensional matrix ABD and one
dimensional vector IPVT are transferred new three dimensional array ABC and two
dimensional array IP, since energy group constitutes extra dimension.

Fission source iteration starts with ITT=0 which is the iteration number. Initial
estimates of cell average fluxes and the edge averaged currents are given with the
array B2(ILIEG)=1, where IEG denotes the energy group. B2 is the RHS of the
matrix equation. After fission source iteration using subroutine FISSOR, CHKEG is
tested with the convergence criterion EPS. CHKEG shows the relative difference
between two successive effective multiplication factors calculated from iterations.

After adding scattering terms to the B2 with a routine called SCASSOR, linear
system is solved with another routine called DGBSL. The solution vector is B, which
is equalized B2(LLIEG) for each group. FLUX(LIEG) consists of cell average fluxes
for each node. Then, iteration continues.

Next, these new fluxes are used in the next iteration. At the end of the iterations,
converged k.g and fluxes are obtained. Average fluxes and the normalized fluxes
with the given power are obtained from the last subroutines.

SKINP: Reads the free source values for each group and the material from the
input file.

INPUT: Reads the cross-sections, fission spectrums, number of nodes for each
material and the material outer radii from the input file and writes to the output file.

FISSOR: Makes the fission source iteration described in section 2.5.6. S is the
vectorial form of Q in (2.126). Initial elements of S are found using the initial
estimate of B2 for the first iteration. In the next iterations, B2 is the solution vector
from the routine DGBSL. Initial S vector is given as
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FINT corresponds to the numerator of (2.132). FINOR is the integral of the
denominator of (2.132). Finally, new B2 vector is the RHS of nodal balance equation
without scattering term.

MATRIS: Calculates the elements of matrix A described in the equation (2.125)
for the zero incoming current and reflective boundary conditions. All elements of the
matrix A were described in section (2.5).

SCASOR: Free source and scattering terms of the nodal balance equation are
calculated with this routine. B1 contains these terms. Adding B1 from this routine
and B2 from FISSOR constitutes new B2 which is the RHS of matrix equation.

DGBF: Factors a double precision band matrix by elimination. ABD contains the
matrix in band storage. The columns of the matrix A are stored in the columns of
ABD and the diagonals of the matrix A are stored in rows ML+1 through
2xML+MU+1 of ABD. LDA is the leading dimension of the array ABD. LDA must
be greater or equal to 2xML + MU + 1=10.

On return, ABD is an upper triangular matrix in band storage and the multipliers
which were used to obtain it. The factorization can be written A = L*U where L is a
product of permutation and unit lower triangular matrices and U is upper triangular.
IPVT contains the pivot indices.

If info returns info=0, this is the normal value. It equals to k if U(k,k) equals to 0.0.
This is not an error condition for this subroutine, but indicates that DGBSL will
divide by zero if called.

DGBF calls the subroutines DAXPY and DSCAL and the integer function
IDAMAX.

DAXPY: It returns constant times a vector plus a vector. It uses unrolled loops for
increments equal to one.

INTEGER FUNCTION IDAMAX: Finds the smallest index of that component of
a vector having the maximum magnitude.

DSCAL: Scales a vector by a constant. It uses unrolled loops for increment equals
to one.
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DGBSL: Solves the double precision band system Ax=B using the factors
computed by DGBFA. B is the RHS vector. On return, it gives the solution vector B.
It calls subroutine DAXPY.

AVG: Calculates the average fluxes for each material and group. AFLUX is the
group averaged flux and AF is material averaged flux.

OUTPUT: First calculates, the constant A described (3.16) for the problem 1.
Then, flux distribution with respect to the radius is found. Last, averaged fluxes are
written into the output file.
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APPENDIXB COMPUTER PROGRAMS

NEMR and QFEMR programs with input files for the problems considered in this
study are given in an enclosed CD.
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