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CUBIC NODAL EXPANSION METHOD FOR THE RADIAL SOLUTION OF
THE NEUTRON DIFFUSION EQUATION IN CYLINDRICAL GEOMETRY

SUMMARY

The core calculations of nuclear reactors are based on two fundamental theories:
diffusion and transport. The transport equation determines position, time, angle and
energy dependent descriptions; however, it is also complicated. On the other hand,
diffusion is an approximation to the transport theory, and solution is easier when
compared to the transport equation. That’s why it is more practical for coarse reactor
calculations. When the energy spectrum of neutrons is taken into consideration, one
can divide the energy of the neutrons in the reactor core into multigroups. By the
way, the multigroup neutron diffusion equation is expected to be solved in Reactor
Physics.

Nowadays, many methods have been developed for the solution of multigroup
neutron diffusion. These methods are classified as analytical, numerical and semi-
analytical.

When development of the nuclear engineering is observed, the most common
numerical methods, which had been used till 70s, were FDM and FEM. The
intersection point of these two methods was the inconvenience to the computer
configurations of the period due to high computer memory requirement. Especially,
FDM was remarked as an expensive method, for it needs fine and condensed mesh.

Since 70s, Nodal Methods, which have owned their place in nuclear engineering,
take attention with their successes in three classes of mathematical methods. The
numerical method called as NEM was very useful thanks to its coarse mesh property
in contrast to its alternatives FDM and FEM. Moreover, NEM becomes the most
popular method of the last 35 years due to its nodes some 20 times greater than FDM
cells when FDM system is formed by thousands or millions components, and the
lower usage of the computer memory with respect to FEM.

NEM is a numerical polynomial expansion method possessing similar mathematical
basis with FEM. Depending on the degree of the polynomials, it may be classified as
low (n=2) or high (n>3) order expansion. For low order expansions, Fick’s law and
neutron balance equation are sufficient in order to solve the system. In contrast, high
order expansions require the determination of the neutron flux moments. An n"
order expansion needs to have n+1 basis polynomials and expansion coefficients. For
high order expansions, #-2 neutron moments should be calculated, and also weighted
residuals process is applied n-2 times.

In the present study, Cubic NEM is applied for the radial solution of neutron
diffusion equation in cylindrical geometry. After the formation of the algebraic
system, the CNEMR code is built in order to obtain the solutions. CNEMR is a
FORTRAN code which is able to calculate the effective neutron multiplication
constant, intra-nodal averaged fluxes, and the general averaged flux of the core. The

Xiil



data obtained from CNEMR is compared with Quadratic NEM, linear FEM, and
Quadratic FEM.

The comparisons reveals that convergence of Cubic NEM to acceptable values is
faster than the compared methods in one-group problems, and the augmentation of
node number results in the decrement of error. However, Cubic NEM behaves like a
fine mesh method in 2-group examples. Besides slow convergence, error is
decreasing sharply with respect to the increment of the node number, and it gets best
results in terms of error versus its rivals after the node number reaches the saturation
level.
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3. DERECE NODAL ACILIM METODUNUN SiLINDiR GEOMETRIDE
NOTRON DIiFUZYON DENKLEMININ RADYAL BILESKESINE
UYGULANMASI

OZET

Niikleer reaktorlerde kalp hesaplar1 2 temel teori ilizerine dayanir:difiizyon ve
transport teorisi. Tranport denklemi konum,zaman,ac1 ve enerjiye bagl olarak detayl
bir tasvir vermekle beraber kaba hesaplamalar i¢in oldukca karmasiktir. Difiizyon ise
bu teoriye bir yaklagim olup, transport ile kiyaslandiginda ¢6ziimii daha kolaydir, bu
sebeple de kaba hesaplamalar i¢in daha pratiktir. Reaktor fiziginde, enerji spektrumu
g6z Oniine alindiginda,stratejik olarak notronlarin kalp i¢inde sahip olduklar enerji
birden fazla gruba ayrilabilir. Bu nedenle ¢ok gruplu nétron difiizyon denklemi
kullanilir.

Giliniimiizde ¢ok gruplu nétron difuzyon denklemi ic¢in bir ¢ok farkli yontem
gelistirilmistir. Bu yontemler analitik, niimerik ve yari-analitik olarak siiflandirilir.

Niikleer miihendisligin gelisimine bakildiginda, 70 yillara kadar en ¢ok kullanilan
nliimerik yontemlerin basinda FDM ve FEM geliyordu. Bu iki yontemin ortak yani
zamanin bilgisayar Ozelliklerine uyumlu olmayip oldukc¢a yiliksek belleklere
gereksinim duymasiydi. Ozellikle FDM iyi bir 1zgaralandirma ve yogun bir hiicre
yapisina ihtiyact oldugu i¢in bellek konusunda olduk¢a pahali bir yontem olarak goze
carpiyordu.

70lerden itibaren Nodal Yontemler niikleer miihendislikte yerini alip her 3
matematiksel yontem grubunda da basarili sonuglariyla géze ¢arpti. NEM olarak
adlandirilan niimerik nodal yontemler kaba 1zgara yontemi Kkarakteristigi
gosterdiginden rakipleri olan FDM ve FEM gore ¢ok daha kullanisgl idi. Binlerle ya
da milyonlarla ifade edilen FDM sistemlerine gore, nodal yontemlerin yaklagik
olarak FDM hiicrelerinin 20 kat1 biiyiikliigiindeki nodlar1 ve FEM’e gore de bellekte
daha az yer kaplamasi onun reaktor kalp hesaplarinda son 35 yilin en popiler
yontemi olmasina sebep olmustur.

NEM bir niimerik polinom ag¢ilim yontemidir. Kullanilan polinomlarin derecesine
gore diisiik(n=2) ve yiiksek dereceli(n>3) olarak 2’ye ayrilabilir. Diigiik agilimlar
icin Fick yasasi ve nétron denge denklemi sistemi ¢ézmek i¢in yeterlidir. Ancak
yiiksek dereceli agilimlar i¢in neutron akisinin momentine ihtiya¢ duyulur. Her n
dereceli agilim, n+1 adet polinom ve agilim katsayis1 gerektirir. Yiiksek dereceli
acilimlarda n-2 adet notron aki momenti hesaplanir ve agirlastirilmig kalintilar
yontemi n-2 defa uygulanir.

Bu calismada 3. Derece NEM yontemi silindir geometride nétron diflizyon
denkleminin radyal bileskesine uygulanmistir. Sistem olusturulduktan sonra kodlama
gerceklestirilerek sistemin ¢oziimleri elde edilmistir. Yazilmis olan CNEMR kodu
etkin notron c¢ogaltma katsayisini, nodlar i¢indeki ortalama akilar1 ve bunlardan
olusan ortalama akiy1 hesaplayabilmektedir. Bulunan sonuglar 2. Derece NEM,
Lineer FEM ve Kuadratik FEM sonuglariyla karsilagtirilmistir.
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Bulgular 1s1¢inda goziiken odur ki, 3. Derece Nodal Acilim Yontemi tek gruplu
problemlerde rakiplerine gore daha hizli kabul edilebilir hata kriterine ulagsmaktadir.
Gene tek gruplu problemlerde, nod sayisinin arttirimi hata degerlerinde yavas da olsa
olumlu sonuglar vermistir. 2 gruplu problemlerde ise, diisiik nod sayilarinda
beklenenden kotii bir performans c¢izmekte ama ilerleyen nod sayilarinda hata
degerlerinde keskin bir diisiis yasanmaktadir. Nod sayis1 belirli bir doygunluga
eristikten sonra rakiplerinden daha iyi hata degerlerine ulagmistir.

xXvi



1 INTRODUCTION

1.1 Diffusion Approximation

The principles of neutron dynamics have been related to the gas dynamics for a long
time. Full physical description is maintained by neutron transport equation, which is
based on Transport Equation derived by Boltzmann [1]. However, a steady state
neutron transport equation is an integro-differential equation and may be considered

as complicated for “coarse calculations” of nuclear reactors.

The steady state neutron transport equation is as follows:

Q-V§(r,E, Q)+, (1, E, Q)d(r, E, Q) =

P : A . (1.1)
IdQ IdE T.(LE 5 EQ - O)rE,Q)+QE Q)
4n 0
where,

Q = Unit vector in direction of motion,

o(r,E, Q) = Angular flux,

o(r, E, Q)drdEdQ = Number of neutrons in a differential volume dr
about r, with a differential energy in dE about E,
moving in a differential solid angle in dQ about(Q,

2, (r,E,Q) = Macroscopic total cross section,

. (,E' > EQ —Q)dQ'dE' = Characterizes scattering of a neutron from an

incident energy E and direction Qto a final
energy E in dE and direction Q'indQ,

Q(r,E, f)) = Source.

At this point, transport equation can be approximated to Neutron Diffusion equation
for practical reactor core calculations. The overall effect of neutrons’ collisions is
that the neutrons undergo a kind of diffusion in the reactor medium, much like the
diffusion of one gas in another. It is much simpler than the transport equation,
because it removes the neutron direction of motion from consideration; the

dependent variable is the total flux at each energy rather than the angular flux.



In order to derive the diffusion neutron diffusion equation, one-speed neutrons with
i1sotropic collisions can be taken as the simplest example. First of all, the neutron
current should be defined as ingoing and outgoing partial currents for each direction.
Imagine a pure scattering medium, and let’s focus on z-dependent neutron

movement, then

I.=i,-10 a.2)

dA

:‘ ‘
Figure 1.1 Geometry for derivation
Using geometrical properties, one can show that
Z 2n g 00
i, == I j J-d)(r)cosé’e’zsrsianrde‘P 1.3)
4n

¥=06=0r=0

Taylor Expansion of the flux at origin results in:

¢, x| 0 %) L%
d=0¢,+ (ax]x_o+y(ayjy_o+ (azl_o+... 1.4)

If spherical coordinate transformation is applied



x =rsinfcos 'V, y =rsinfsin‘P, zZ=rcos0. (1.5)

Then (1.4) becomes

d(r) =, +rsin6cos ‘P(@j +rsin@sin ¥ @ +rcos€[@j (1.6)
aX x=0 5}’ y=0 aZ z=0

Now, for just z-dependent ingoing partial current, putting (1.6) into (1.3) gives

2n g )
J, = '[ _[ _[ {d)o +r1cos 0(@j }ezsr cos Bsin 6drd 6d¥ (1.7)
z=0

ZS
062020 0z

Because the terms containing cos'¥ and sin'¥ become zero when integrated over

0<V¥Y<2m.

Thus,
j, = L} + L [% (1.8)
4 o6x \oz),,
Using (1.2)
P (1.9)
32.\0z),,
Similarly,
J = —L(@j and J = __ L% (1.10)
323 8X x=0 g 32; ay y=0
By the way, the general vector form of neutron current is
jo- L eX@ﬂe @+e2@ (1.11)
3z, "ox Yoy 0z

Assume that D = %in Lab system, we finally arrive to Fick’s law: J= -DV¢

S
Here, some general properties can be revealed:
* Flux is finite, real and non-negative

* Flux preserves the symmetry



* Flux and current are continuous

The diffusion equation is ready to be derived after the relation between the neutron

current and neutron flux is shown.
Consider an arbitrary volume V and establish the following balance:

rate of change

rate of production | |rate of absorption | | rateof leakage
of the number of | = - -

1 (1.12)

of neutronsinV of neutronsinV of neutrons fromV

neutrons inV

Then,

[ rate of change q
of the number of | = EJ‘N(r, t)dv, (1.13)
v

neutrons in 'V

rat ducti
rate of produc lon} _ IQ(T, 0av. (1.14)
\%

of neutrons inV

[ rat bsorpti
rate of absorp lon} _ J.Ea(b(r’ Hdv (1.15)
\%

of neutrons inV

[rate of leakage 05 orae o 3
= [7-fdS=[V-J@r,0dV. (1.16)
| of neutrons fromV |

If one writes down the time dependent balance equation:

d -
aJV.N(r, H)dV = l Q(r, H)dV — lzaq)(r, £)dV — i VI, H)dV (1.17)

The next step is to remove the integration from both sides of the equations:

dN(r, 1)

T Q(r,t) -2, (1, t) - V- J(r, 1) (1.18)

Finally, in order to get the steady state neutron diffusion equation, time dependency

should be vanished, and if the Fick’s law is applied:
-DV?9(r) + Z,0(r) = Q(r) (1.19)

It should be emphasized that neutron diffusion equation is an approximation, and it

requires assumptions for its validity.
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Figure 1.2 Extrapolation Distance

Here, d is the extrapolation distance [2], and it is equal to 0.71 A, which is the

transport mean free path (cm). The general approximated relation between the

diffusion constant and transport mean free path is:

D=1 =3

= (1.20)

tr
r

In short, a steady state diffusion theory is invalid under these conditions [2]:
* in a medium that strongly absorbs neutrons,

* within three mean free paths of either a neutron source or the surface of a

material,

* when neutron scattering is strongly anisotropic.

1.2 Nodal Expansion Method

History of the nuclear engineering signifies that FDM and FEM [3.4] had been the
most popular numerical methods which were employed for core calculations till 70s.
The common point of these two methods was the inconvenience to the computer
configurations of the period due to high computer memory requirement. Especially,

FDM is not practical for accurate solutions of core problems because of its high cost.



Spatial cell sizes may reduce the computer time; however, FDM becomes inaccurate.
Nodal methods [5,6] have been popular since 70s, due to their advantage in
increasing the speed of the computations, and their coarse mesh compared to fine
mesh finite difference solutions [7]. The nodal methods divide the reactor core into
large regions named ‘“nodes” and represent the flux distribution averaging inside
nodes. Probably, the most common popular nodal methods are transverse integrated
nodal methods [5]. In this class of nodal methods the three-dimensional multigroup
neutron diffusion equation is replaced by three ODEs. These one dimensional
equations are obtained by integrating the 3-D neutron diffusion equation over the two

directions transverse to aimed direction.

Among the various polynomial methods, the Nodal Expansion Method (NEM)
developed by Finnemann and Bennewitz [8] is situated to an important place in nodal
diffusion calculations. NEM, one of the earliest polynomial methods, originated from
the Nodal Synthesis Method [9]. Higher order expansions can be also performed [8].
Three of the coefficients of these polynomials are calculated by demanding neutron
balance [7] for each node, and continuity of the surface average fluxes and currents
between two adjacent nodes [10]. For high order cases, the remaining coefficients are
determined by using preservation of higher moments of the flux using a weighted

residual technique [11] on the transverse integrated diffusion equation.

1.3 Objectives of the Work

The objective of this study is to derive the system formed by Cubic NEM, and to
compare the results with other methods in order to expose the performance. Cubic
NEM is applied to neutron diffusion equation for radial solution in cylindrical
geometry. The main comparison is made between Quadratic NEM and Cubic NEM
to understand the difference. CNEMR, code built in FORTRAN, is able to perform
both Quadratic and Cubic NEM.

For a short description, Chapter 2 begins with the group independent derivation of
the system which formed by Fick’s law, neutron balance, and first moment of
neutron diffusion equation. Then, the system obtained is reformulated under group

dependency.

In Chapter 3, 4 numerical applications are shown. Analytical solutions are made for

three of them; Quadratic FEM with 320 elements is taken as reference in the



remaining one. Effective neutron multiplication constants and neutron fluxes
obtained from CNEMR and QFEMR are compared. The comparisons are based on

convergence to a certain error percentage, coarse mesh performance, and response

towards refinement.






2 NODAL FORMALISM IN CYLINDRICAL GEOMETRY

2.1 Node Averaged Quantities and Moments

Assuming that
* All collisions are isotropic,
* Axial component is so long(z>>r), so there is no leakage from this direction,

Then, the multigroup neutron balance equation

- el - g G L -

V-I,(E)+28(F) 9, (F) =D = _’g(r)¢g,(r)+%202§ (Fh, (), g=12,,G (2.1
g'=1 g'=1

with no group-to-group upscatter assumption, and Fick’s Law

1,(F)=-D(¥) Vo, (F) 22)

constitutes the basis of the nodal formalism.

To avoid complexity in notation, scattering and fission sources will be defined as
gl - Xg G )

Q,(F)=>=¢¢(t o, (¥)+ TZUZ;‘% (th,(F), g=1.2,---,G (2.3)
g'=1 g'=1

Thus, (2.1) becomes

VI, (F)+ 2(5) 9, (F)=Q,(F) 2:4)
Since group index is of no immediate concern in nodal development, the group

indices will be suppressed and (2.4) and (2.2) will be written as

V-({E)+Z,(7)6(F) = Q(F) 2.5)

J(F)=-D(F) Ve(F) (2.6)



Figure 2.1 illustrates a cylindrical mesh having nodes Ai=(ri.1;2, Ti+12). The radii at
node centers are similarly denoted as (r;) and it is convenient to define mesh spacing

AT=Tiv10-Ti1 2

. AY) I; \
L S

Tip 13 I'sp T2 Ti+i2 I'N+1/2

Figure 2.1 Nodal Mesh Imposed on One-dimensional Cylindrical Domain

Figure 2.2 Multigrid of Radial Component in Cylindrical Domain
Ar; is replaced with A; for simplicity

A =T, — T 2.7)

Inherited from the nodal perspective and common to all nodal discretizations is the

choice of node and edge-based unknowns. The node-based unknowns are defined by

o) ri+J1_/2
o, = O(r)rdr (2.8)
(121 —120) t i
o) Ti+1/2
Q=5 j Q(r)rdr (2.9)
(G — 1) =t
2 ri+j/2
b, =———— | w,0(r)rdr (2.10)
’ (riil/2 - rii/z )

G172

where w, is the weight function of »n" order.

10



These terms are the node average flux, source, and the moment of neutron flux
respectively. While the edged-based unknowns, namely edge average fluxes and
currents are just point fluxes and currents at node boundaries in one dimension,

because there is no other dimension over which to find averages. They are shown as

dit12, Oi2and Jisi, Jici

In some nodal methods, edge-averaged partial currents are also needed. To avoid

notational complexity, the partial currents will be denoted by the lower case letter j.
jiu, and j_,, denote the outgoing partial currents, whilej;,,, and j;,,are the

incoming partial currents at the right (i+1/2) and left (i-1/2) edges respectively.

Under P; approximation [12]

" r), d,-J(r

J;(r)zyi : (r) 2.11)
where u is an arbitrary direction.

If diffusion theory is valid,

- 1 _ Dlr) oolr

50)= £ ot 2 240 @)
from (2.10), obviously:

Vian = Jian = Jun (2.13)
Yiin =3ln —Jin (2.14)
and

Brara =2l +ire) (2.15)
b2 =200 + i) (2.16)

2.2 Cubic Nodal Expansion Method
2.2.1 Construction of Polynomial Basis

The NEM treatment of the transverse integrated ODE’s is based on a third order
polynomial expansion of the transverse integrated flux. In one dimension this is just r

dependent flux

11



3
o(r) = Zanpn (1), 1, <r<Ty,
n=0

At this point a normalized variable & is defined as

where &=+1/2 when r=tis 2.

& and r are the same order. Then, (2.17) can be written in normalized variable

BEO)=3a,P,(6). ~12<E<1

where P (§)is a polynomial of degree n.

For simplicity, the first polynomial is chosen as

Po(9)=1

and the higher order polynomials are required to be orthogonal to Py()

”an(g)dg =0, n#0

-1/2

Transformation of integration operator gives

The node averaged flux is

b= ———— [ENEA, +1)AdE

2
(Tn — L) Ja
Simplification gives

0 = [o@ea, +rade

iti-1/2
Inserting (2.19) into (2.24)

12 3

1
[ AP @)EA, + )8 dg

iti -12 n=0

o, =

12

2.17)

(2.18)

(2.19)

(2.20)

2.21)

(2.22)

(2.23)

(2.24)

(2.25)



Thus,
0, = [Py (©)+a P &)+ .2y (D) +a,PyO)EA, + 1) (2.26)

i-1/2

Due to the orthogonality,

[@P(©)+a,P,(8) +a,P(E)d5 =0 and [a,P,(£)5A,dE =0 (2.27)
Finally,
o =rl [@,rP, (&) +a,P,(B)EA, +2,P, (B)EA, +a,P, (E)EA, )dE (2.28)

i-12

One can derive the following polynomials by using the orthogonality identity and

putting convenient values into arbitrary constants [13]:

P(g)=¢ (2.29)
P,(¢)=3¢’ —i (2.30)
Py(&)=¢E- %)(é - %) 2.31)

Figure 2.3 The Basis Polynomials
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2.2.2 Determination of Expansion Coefficients

Recall the equation (2.26)

12

== I(aorIP (&) +a,P (8)CA; +a,P,(E)EA,; +a,P;(8)EA,)dg

1 -1/2

Then,
12
a, J Py (6)dE =a, (2.32)
-1/2
1/2
(2.33)
ri R i
1/2
(2.34)
i -1/2
12 QA A, 239)
Lo, 120
Finally,
a,A;  a A
= 41737 2.36
¢ =2 12r.  120r, (2.36)

Now, starting and end points of a node should be defined in terms of expansion

coefficients. Moreover, high order polynomials are restricted (» > 2), which means:

& (i%) =0 2.37)
Then,
3 1 1 1 { .
| = nzanPn D=k +aP (D) +aP () +a,P () 2.38)
a, a,

TRty 2.39
¢i+% 0" 5 9 ( )
and

3 1 1 | . |
= ;anPn (_5) = aOP() (_5) + alpl (_5) + a2P2 (—5) + a3P3 (—5) (2.40)

14



a, a

O, =a,——+-2 (2.41)
= 2 2

Till this point, 3 equations are obtained from node points. However, 3 equations are

not sufficient to find 4 expansion coefficients. By the way, high order expansions

require supplementary terms which are called as moments. An n” order expansion

needs to have n-2 moment(s) to get solved. So, just first moment of neutron flux is

enough for cubic expansion in order to establish a system.

o) fi+1/2

Remember that n” moment of neutron flux was ¢,, =————— J‘wncl)(r)rdr. By
T (e T T0R),
i-1/2
the way, first moment of neutron will be following term:
o) fi+1/2
by = | mdr)rdr (2.42)
(T —T00) .

i-1/2

Here, the weight function w, is equivalent to the first order polynomial P,. Hence,

12 12 3
b =Ai [ P@0@EA +1)AdE = [E(Ya,PE)EA +1)AL  (243)
ifi in AT 557 =0

After the evaluation of the integral, the moment of neutron flux can be written as

follows:

_A 3 aA 3y

= 2.44
b 12r, 12 60r, 120 (249
| A, 0 Y _ao_ b,
12r, 120r,
1 % % 0 a,; ¢i+%
1 L1 . = (2.45)
2 2 e
A, 1A 1 2
[12r, 12 60 120 L9 | ¢y,

After the solution of the linear system above, the expansion coefficients are revealed:

5

Let a, = (2.46)

15



a; I;
a, = _{ ¢i+l - (I)i_l +609; (A_J — 609,
: .

2 i

+2a, [—124% (Z—i}m&pi,l ;—j ]

2.3 Fick’s Law

Fick’s law states that

_ pdo®
Jr)=-D i

Note that

do() _dode _ 1 do(©)
dr  dedr A, dg

(2.50) may be written as

D; dé(©)

O =15

Using (2.19)

dp(¢)  dp, dp,  dP,  dP,

=a,——~+a,—+a,—>+a,
dg dg dg dg dg
Then,

J(©) = '%|:al +a26{5+aa(3§2 _%):l

for &=+1/2

16

L
A.

(2.47)

(2.48)

(2.49)

(2.50)

2.51)

(2.52)

(2.53)

(2.54)

(2.55)



1 D; a
J(E) =Jin = 'I[% +3a, +73} (2.56)

1

Similarly, for E&=-1/2
1 D, a
J(-E):Ji—l/Z =-A_i|:al —33.2 +73:| (2.57)

Now, put the expansion coefficients into current terms:

D.
Let 6, = ——- (2.58)
A,

1

Starting with J,,, ,,

| —
N—
+
K
1
=
i
1
\&)
|
W
N
7\
> |-
N—
[\S]
|
N
VY
> |_."$
N—
L 1
e —|

J =9 (¢i+1_¢i
2

I, ’ T, T, ’ T,
+ eiai d)i_% lg{A_,j - 4(?]} + d)i [24(A_1] - lz(A_l]:H (2.59)
+0,0,] by, [240[r—iJ - 24(r—im
1T A, A,

First, use (2.13) and (2.14) to expand the currents, then (2.15) and (2.16) to expand

the flux in order to express them with ingoing and outgoing partial currents:

j,+1 _j,il :ei|:j:r1 +j'7+ _j:1 _jil}

i+— i+ i 1
2 2 2 2

2
I I
1002 i, 232 ] 4
1 [J”; J”Jl (Aij (Aiﬂ




After arrangements and factorizations, one can get following equation:

L (1+20,+20,0,A,) . (20,0,B, -260,) .
3 Joat ]
i (1-20, -20,0,A,) 75 (1-20, —20,0,A,) i
(20,0,B, -26,) ..
(1-260, —26(xA) i
2 (2.61)
+ 0o, 24 S| —12] | o,
(1-20, -20.0.A,)| | A, A,

2
b, 240 1 | —24] 5|l
(1 20, —20,0,A, A, Ai ’

One can apply the same procedure for J, ,, and obtain:

\/

. (20,0,E, -20,-1) . (20, -20,0.F) ., (20, —26,0.F)
on (20, -20,0.E, —1)J1~+(2e ~20,0,E, —1)Jn+f (29.—2e.a.E.—1)Ji+i
2 i i 2
B 2
0.0. T. T.
- i 24— | +12 — | |9 2.62
(26, —26.a.E, —1) (AJ ’ (AJ]‘I" (2.62)
0, : ’
(X, T. T
240 —— | +24] — | |0,
(20, ~20,0.E, 1) [Ai] " [Ai]]q)“
where
2
E. =32(r—ij —4[ N J—z (2.63)
Y Y
and

I'i ? I'_1
e

To avoid complexity in notation, more discretized terms may be defined. For the

equation (2.61):

(1+26, +26,0,A,)

—k. 2.65
(1-20, -20.0,A,) (2.65)
(26,0,B, —26,) _1 2.66)
(1-20, -20.0,A,)
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0.0,
(1-20, —20.0,A,)

=m, (2.67)

For the equation (2.62):

(20,0,E, =20, 1)

% E; . 2.68
(20, -20,0.E, -1) (265
(20, —20,0,F,)
TRy, 2.69
(20 —20.0,E, ~1) (269
0,0, =z (2.70)
(26, —26,0,E, - 1)
After these new defined discretized terms, the equations become:
2
i o=k +Li, L, +m 24(r—i) —12(r—i] o
R B PO | iJ, 1 iJ, 1 i i
i+ i+ i i Ai Ai
) 2.71)
+m,| 240 - | —24) - ||g,,
Ai Ai ’
and
2
. " " . I, I
J =X 0Ty Ty T 24(A_j +12[A_J o,
I—E I—E H—E H—E i i
(2.72)

2
+2.] 240 | 424 T |lg.
N A

(2.71) and (2.72) are the expressions for the outgoing partial currents. Substitute the

outgoing current j._,, defined by (2.72) into (2.71), then simplify:
o k,+Ly, )._ L+1x, )._
1= Tlﬁf Ty P
B Ly ) LYy )

2
12[2(m1 -lizi)(riJ +(- 1z, m)[ . j]
A, A,

" ) 0, 2.73)
24{10(m1 +1izi)(rij +(lz, -mi)( . ﬂ
A, A,
’ (1 'liYi) b

19



Similarly, substituting the outgoing current j,, defined by (2.71) into (2.72), then
simplify:

. x; +Ly; )., v +yik .-
J_1:(11 ]J_1+[11 J
Y Ly, ) A 3

2
12[2(3’imi -Z; {21 j + (' Z; -y;m, {ZJ]

+ . 2.74
(1 - liYi) (I)l ( )
24[10(y1m1 +zi)(2J +(zi -miyi{zi j]
+ .
(l'liYi) (I)l’

(2.73) and (2.74) constitute 2 equations per node. The number of unknowns per node

is 4. The outgoing partial currents (j,,,J.,, ), the node flux ¢, , and the first
moment of neutron flux¢,, constitute the four unknowns. The incoming partial

currents (. ,,,Ji.,, ) can be considered known quantities, since they are either equal

to the outgoing partial currents of the neighboring nodes or are known from

boundary condition.

The remarks above are valid if conventional homogenization theory is used and, thus
continuity of partial currents is assumed. If equivalence homogenization theory is
used; the incoming partial currents are not equal to the outgoing partial currents of
the neighboring nodes. The incoming partial current can be written in terms of the
outgoing partial current of the neighboring node, outgoing partial current of the same

node and the flux discontinuity factors.

2.4 Nodal Balance Equation

The nodal view of the first order system (2.5) and (2.6) suggests that a natural

starting point is to integrate the exact balance equation (2.5) over an arbitrary node

[v-3(r)dv + [£,(r)é(r)dV = [Q(r)dV (2.75)

In cylindrical coordinates, over radial component

I. I. I.

i+1/2 i+1/2 i+1/2
2n I —i[rJ(r)]rdr +2n%! I ¢(r)rdr =2n IQ(r)rdr (2.76)
rt o rdr I r,

i-1/2 i-1/2 i-1/2
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Since the node is already homogenized, macroscopic removal cross section is

constant for a node, X,(r)=X! and it is also assumed constant for all nodes of the

same material, X! =X . When the integrations are carried out with the help of (2.8)

and (2.9), (2.17) becomes:

2 2 2 2
] X0, 2n(r,, —1,) _ Q;2n(r.,, —17,,)

2zt )., =1, ] + 2.77
[ i+1/2Y 1+1/2 i-1/2vi-1/2 2 2 ( )
where ¢, and Q. represent the node averaged flux and source respectively.
Surface areas can be defined as
Sinp =2mr,,,,and S, =2nr,_, (2.78)
Combining (2.7) and (2.19) with (2.18) gives
Zr(l)iAi QiAi

Si+1/2Ji+1/2 - Si—l/ZJi—l/z —(Si+1/2 + Si—l/z ) = T(Si+1/2 + Si—l/z) (2-79)
Surface areas at nodes are
S, =2mr, (2.80)
where r; can be written as
r = Tian Tlhian 2.81)

2
Using (2.78) and (2.80)
Si — Si+1/2 ;Sil/Z (2.82)

Substituting (2.13), (2.14) and (2.81) into (2.78), finally, the discrete nodal balance

equation
Si+1/2 (ji++I/2 - j;+1/2 )_ Si—1/2 (jitl/z - j;—1/2 )+ qu)iAiSi = QiAiSi (2-83)

2.5 Weighted Residual Process - First Moment of Diffusion Equation

It was claimed that equations from Fick’s law and nodal balance equation are not

sufficient to solve the system for high order expansions. Therefore, moments are

useful definitions, which help us in order to build a system. An n"” order expansion
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needs to have n-2 moment(s), and weighted residual method should be applied n-2

times as well.

For the Cubic Expansion, first moment of diffusion equation is enough, and weighted

residual process can be accomplished by the application of followings steps:

First of all, multiply both sides of diffusion equation by the first order polynomial,

j w,V.J(@)dV + j w, X o(r)dV = j w,Q(r)dV (2.84)

At this point, a return from normalized variable to real variable can be useful,

r—r r—r
E= =, w(©=P(©)=E = w()= : (2.85)
A, A,
Divide the equation into 3 parts,
Ti+1/2 d Tit1/2 fi+1/2
on j —d—[rJ(r)]Plrdr +2mY, j P,¢(r)rdr = 21 j P,Q(r)dr (2.86)
rdr
G172 L 1/2 G172
! 2 3
For the first part, the integration in radial coordinates,
Ti41/2 Ti41/2 _r
(h=2n | Y goprar = (1)=2n | L g = ar (2.87)
L0 ordr L0 ordr A,
i-1/2 i-1/2
Use Fick’s law,
d¢ i+1/2 d dd)
) =-Dr— = (1)=-2aD, j (—)d (2.88)
dr L0 dr A,
i-1/2
Now, apply integration by parts,
L P .. Pl T (2.89)
dr| dr dr’ A, A,
One can obtain
fi1/2 Y12
(1) =-27D. 40 o 2e j r 404, (2.90)
d A‘ A, dr

L_1/2 ' in1/2
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Gi+1/2

d
Apply integration by parts for the term 27rA— I rd—¢dr
r

R )

%dr:dv = v=0, u=r = du=dr (2.91)
r

After the definition of new variables, integral becomes

D fi+1/2 do Ti+1/2

i — i+1/2
o= j rdr= 2n [q)]r 2 j ddr (2.92)

Y12 A fi-1/2
Hence, the first part
dq) fi+1/2 D s D G+1/2
(1) =—2xD, K drj( X H +on—t N Hrglin 2 lrjd)dr (2.93)
li-1/2 #
A B C

the calculation of A, B, and C

fiv1/2 S 1 S 1
dd) r—r. i+— B i— _
(A)==2mD || r— | —- =—21]" -] -—2|J" =) (2.94)
l dr Ai 2 i+% i+% 2 i,l i,l

fi-1/2 2 2
D 2DIS 1 2D1S 1
— g i [ Tisr2 — WL Ty 1
(B)=2n—= [ro]iv172 = - [J‘ = ‘J - [J = ‘J (2.95)
i i 1+5 1+5 i 1—5 1—5
A Tit1/2
(C)=-2m— [odr =—2nD;a, (2.96)

)

Now, the second part can be derived using the definitions. Recall that the first

moment of neutron flux is

1 12 1 Ti1/2

b=~ [ POOEEA, +1)AdE =—— [P o(rdr 2.97)
T. A.r

i1 -1/2 it
T.
i-1/2
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I. .
i+1/2 i+1/2
AT

(2)=2n3 j P ¢(rrdr =21y, | =t j P, (r)rdr

Ar,
fi-1/2 fi-1/2
Ti+1/2 (2.98)
=21 A, A [P, ¢(rrdr
fi-1/2
i
(Q)=2n2 Ard,, =S 2, Ad,, (2.99)
The third part can be determined similarly,
Ti+ly2 Ti+1/2 vy
(3)=2n jP,Q(r)rdrzzn J’ kf P ¢(r)rdr (2.100)
fi-1/2 Ti-1/2
vy Ti+1/2 vy Airi fi+1/2
(3)=2m—" L [Pg(rrdr=2n—=" A [P, ¢(ordr
fi-1/2 L Ti-1/2
. (2.101)
vy 1 fi+1/2
=2“TfAiri H IPlcl)(r)rdr
fi-1/2 i
91
S A ¢
(3)=2n fo Ard,, = % 2.102)

Finally, after simplifications and factorizations, the first moment of neutron diffusion

equation
4nDo; S, 2D;S;,, |.- 4nDo; S, 2D;S;,, |..
- - i-1/2 + - i-1/2
15 2 A, 15 2 A,
+ 4nDia; Sy, + 2D S, i 4nD; + Siin + 2DS;, i (2.103)
15 2 A, 15 2 A,
B 2
I, T, v SA;,
+| 8nD.a. | S+ S. A —8mD.a.|—||¢p., =————
i I(Aij :ld)l |: 1Zr i i 1£Ai ]:|¢1,1 k
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2.6 Formation of Iteration Matrix

2.6.1 Discretized Terms Revisited

. k, +Ly; .- I, +1x; |._
o ity s
3 I-ly; )i I-ly, )i
\_V—J \—V——J

)y s
2
12!2(m1 -lizi{ f J +(-1.z, -mi{ f J]
Ai Ai
+ (l -liyi) . (2.104)
€

2
24{10(1111 +1izi)[ ri J +(lz, m)( " ﬂ
A, A,

+ .
(l'liYi) bi
€
(+%) 4nD.a, 3 S, 1» B 2DS, ,, - 4nD,a; N S ~ 2DS, ,, .
15 2 A, i-172 15 2 A, i-12
(Cs); (Cg)s
" 4nD; 0, _Si+1/2 + 2D;S,, i 4nD;a, + Sian + 2D;S;, 1, i (2.105)
15 2 A, 15 2 A,
(©7); (Cg);
2
I L. v SA0.,
+(8nD.a,| — S S A —8tD.a.| - ||p. = 2%,
{ 1 ](Alj ]4)] { 1 T 1 1 I(Al J:|¢1§1 k
| (Cy); ‘ €0k
(%) i, :(Xi+1iyi]j-+l+£Yi+Yiki]j-1
) I-Ly, Jis 1-Ly; "y
— [ —
€ (€1
2
T. T.
12 2 -m. -z. _r +(-z. -yv.m. 1
[ i I{Aij b2y, I{Ai J]
* - 2.106
(1'113’1) ® ( )
€13);

2
24{10(y1m1 +zi{2J +(zi -miyi{zi J]

(l'liYi)

(€145

_l_
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2.6.2 Final Aspect of the Equations

3 (€D ()i +(C)i0+(C)i0y, =0 (2.107)
2 2 2

Si+1/2 (ji++1/2 - ji_+1/2 )_ Si—1/2 (jitl/z - ji_—1/2 )"’ Erq)iAiSi = QiAiSi (2-108)

(C5)idinn +(Ce)ijin +(Cq)ilian +(Coidian +(Co)idi +(Cy)i 0y,

_ v SiAd;, (2.109)

- k

_j,-il +(C11)1J‘;£ +(C12)1J‘;£ +(Ci3)i0; +(Cpy)id;, =0 (2.110)
2 2 2

2.6.3 Response Matrix for Reflected-Vacuum Boundary Condition

Reflected Boundary Condition on the inner ring: j, = j; (2.111)
2 2
Vacuum Boundary Condition on the outer ring: j,,, =0 (2.112)
2
General Matrix equation is:
1
A Jy ZEEN N (2.113)
where the response matrix is:
0((4N—8)X4))
Al ((4N-4)x(4N-4)) C2 “
- SN-1/2
é(;]lN)MN) - C7 . Q4x3 (2.114)
Cl2,,
Cly -1 C3, C4, 0
- SN-]/Z SN-1/2 RN 0 SN+I/2
Q1 C6y, Cc5, €9, Cl0, C8,
Cl1y 0 Cl3, Cl14, -1
L L 4Nx4N
J 1s the vector which contains the unknows:
lT = [ji/z ¢1 ¢1,1 j;/z j;/z ¢2 j;/z --------------- j(ZN»I)/Z ¢N (I)N,I j(+2N+1)/2] (2.115)

Source Matrix gets the following form:
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_EFM) 9<4x4) ........ 9(4x4) ]
4x4) (4x4) (4x4)
0° O 0
Fo =12 = - (2.116)
N (O FY
L= = =N _4NxaN

where F is a node-variant term, and its primal state

0 0 0 0
F& _ 0 (sz SA) 0 0 @2.117)
=! 0 0 (v2;SA) O
0 0 0 0
2.7 Group Dependency
The multigroup diffusion equations can be written as
i 1
-V.D,\V§, +Z;,0, = k_XlQ
flf (2.118)
—-V.D,V§, +Z,0, = k_XzQ + 25,0,
. eff .
- = 1 )
= V.D;Vog +Zpadq :k_XGQ"'ESHGd)] to + Zg61)560a1
eff
It is assumed that there is no upscattering and fission source is defined as
G
Q) =2 v, Zyd,(r) (2.119)
g'=1

The spatial dependence of the fission source is identical in each group diffusion equation.

The multigroup weighted residuals becomes

fi+1/2 N+1/2 f4+1/2
1
-D,2n IVzd)GPlrdr + X 2T '[d)GPlrdr =2n j — QP rdr
Hio1/2 i1/2 Gio1/2 keff
(2.120)
Tit1/2
+2n J-(Zs1—>c¢1 oo+ g6y P P 1dr
Gi-1/2

The multigroup system is solved by the Fission Source Power Iteration [9], and the
eigenvalue of the system is obtained as the effective neutron multiplication factor.
This eigenvalue is the positive, real and dominant eigenvalue which corresponds to
non-negative neutron fluxes. Furthermore, CNEMR is using linear system solver

subroutines [14] in order to find J which contains the unknowns.
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3 NUMERICAL APPLICATIONS

The formulations derived in the previous chapter have been implemented in the
CNEMR code which is a computer program written in FORTRAN 90. This code and
the numerical results obtained will be described in this chapter. Also comparison
with FEM is made by using the results of a computer program, QFEMR. For

analytical solutions, the reader is referred to the thesis by M. Mercimek [13].

3.1 One-group, Bare, Homogeneous Reactor

In this problem, a bare, cylindrical reactor of diameter 7.5cm is considered (Figure
3.1). Zero incoming current boundary condition (j- = 0) is assumed at the surface of
this cylinder. Effective multiplication factor of this system is determined using the

one group cross sections D=0.65cm, %,=0.12cm™ and vZ=0.185cm".

IR I=1
@ | A g
dri g

=0 E=3775

Figure 3.1 One-dimensional, Bare, Homogeneous, Cylindrical Reactor
3.1.1 Analytical Solution

One-group diffusion equation can be written as

1d do() Z,00) 1
rdr dr D k.

Vlif o(r) 3.1
Simplifying (3.1)

1d do(r) pou
ST B =0 (3.2)

where B is defined as

B2 = it 3.3
D 3.3)
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Solution of (3.2) is

o(r) = AJ,(Br)

Zero incoming current boundary condition is

:@4_2@ :0
4 2 dr|_;

J(R)
Using (3.4) in (3.5) gives
J,(BR) =2DBJ,(BR)

(3.6) can be written as

2Dx

Jo(x) = R

J,(x)

where x=BR. Substituting the numerical values of D and R in (3.7) gives

2.884615382),(x)—xJ,(x)=0

(3.8) can be solved by using Newton’s Method [15]

®
) — O _ f:(X )
£ (x“)

(3.4)

3.5)

(3.6)

3.7

3.8)

(3.9)

where, t is the iteration number. Here f(x) is the left hand side of (3.8). f'(x) can be

found using recurrence relation for Bessel Function of first kind,

'
xJ,=n] —-xJ ,=-nJ +xJ ,

Thus, (3.9) becomes

LD 0, 2.884615382J,(x"") —x“J,(x)
2.884615382],(x) +x“J,(x)

(3.10)

@3.11)

Initial estimate of x” can be found by assuming critical reactor, kes=1. In this case,

(3.3) gives B=0.316227766 and x”=BR=1.185854123. Table 3.1 shows the results

of Newton’s method.
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Table 3.1 Iteration Steps of Newton’s Method for the Solution of (3.7)

t x g (%)
0 1.185854123 -

1 1.799773445 94.9837
2 1.771173535 1.6145

3 1.771285989 0.0063
4 1.771285991 9.114x10™

These calculations are made using MATHEMATICA 5.2. Finally, x=1.771285991
and B=x/R=0.47234293cm™". Effective multiplication factor can be calculated as

v
k . =————=0.698060264 3.12
eff DBZ +2 ( )

a

Average flux is defined as

T(I)(r)andr

¢ = T (3.13)

Average flux can be calculated from (3.13)

- 9 X

b= FJ.AJO(O.47234293r)rdr =0.58086137546A (3.14)
0

In order to find an expression for A, it is necessary to make a separate calculation of
the reactor power. In particular, there are X,¢(r) fissions per cm’/sec at the point of

r, and if the recoverable energy is wy joules per fission (ws=3.2x10""" joules), then the

total power per axial distance, in watts/cm, is
R

P =w, 2, [ (r)2mrdr (3.15)
0

Performing the integration gives
P =w, 2, mR*0.58086137546A (3.16)

If the reactor power is given as P=2000watt/cm, and the macroscopic fission cross

section is X, =0.0764cm™, then A is calculated as

P

A= .
w, 2, mR>0.58086137546

=3.1894954 x 10" (3.17)
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Flux distribution can be found by multiplying constant A with cell average fluxes.

Finally, average flux is calculated using (3.16) in (3.14) as
¢ =1.852654684 x10" n’cm’sec. (3.18)

3.1.2 Geometrical Discretization(2 nodes)

Here, formulations derived in previous section are tested with two node calculations
before their implementation into the computer program. Figure 3.2 shows the nodes
of this system. Since A and D are the same for the same material in one-group

calculation, t is the same for two nodes. From (2.73),
1=12.3152
A is calculated by dividing radius, R by the number of nodes, 2. Therefore

A=1.875

Figure 3.2 Cylindrical Reactor with Two Nodes

Radii and corresponding surface areas are given in Table 3.2. They are used in (2.76)

through (2.80).

Table 3.2 Radii and Related Surface Areas

i ri (cm) Si (cm” )
1/2 0 0

1 0.9375 5.8875
3/2 1.8750 11.7750

2 2.8125 17.6625
5/2 3.7500 23.5500
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3.1.3 CNEMR and QFEMR Results

Cubic NEM, Quadratic NEM, Linear FEM, and quadratic FEM results of effective

neutron multiplication factor are given in Table 3.3

Table 3.3 ks Results of QFEMR and CNEMR Programs

et | Ny | k| Erorc
2 0.746411132 | 6.92646
Linear 10 0.699714822 | 0.23702
FEM 50 0.698125364 | 0.00933
100 0.698076062 | 0.00226
1 0.720881392 | 3.26922
Quadratic 2 0.699073117 | 0.14509
FEM 10 0.698061073 | 0.0001158
50 0.698059636 | 0.00009
3 0.694169485 | 0.55737
Quadratic 5 0.696634106 | 0.204303
NEM 11 0.697764156 | 0.042418
21 0.697979689 | 0.011543
3 0.696976545 |  0.1552
5 0.697824723 | 0.0332
7 0.697985806 | 0.010668
Cubic 9 0.698037814 | 0.003217
NEM 11 0.698060852 | 0.0000825
13 0.698070554 | 0.001472
15 0.698075272 | 0.002148
21 0.698078962 | 0.002677

N elements correspond to N+1 node in the linear FEM. In case of quadratic finite
elements, the number of nodes per element increases to three. N quadratic elements

contain 2N+1 nodes.

Cubic NEM gets the best result for 3 nodes, which means it shows its coarse mesh
behavior. Error percentage is decreasing while the node number is increasing. When
the all node numbers are examined, Cubic NEM performance is obviously better than
Quadratic NEM, and Linear NEM gets dramatically the worst results in all cases. If
the node number is between 11 and 13, unexpected oscillation occurs in error

percentages of Cubic NEM. In contrast, this situation doesn’t exist in Quadratic
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NEM. For the large numbers of node, Quadratic FEM reflects the most correct

results thanks to its fine mesh property. The variation of k., obtained from 4

methods is shown in figure 3.3.

0.720 + \ \ r
0.715

0.710 -
- ——QuadraticNEM
] SN 1 )
& 0.705 —Linear FEM
—— Quadratic FEM
0.700 - —— CubicNEM
Analytic
0.695 -
Y713 J A A A
1 6 11 16 21 26 31

Node Number

Figure 3.3 k.¢r Results of FEM and NEM

Nodal Expansions from both degrees are converging from the values lower than
analytical solution as it is shown in figure 3.3; however, FEM is converging from the
values higher than analytical solution. Moreover, the rate of decrement is high
between 3-6 nodes for the error values of Quadratic FEM. On the other hand, Linear
FEM is approaching slowly to the analytical solution. The variation of error
percentage of both Nodal Expansions is sketched in figure 3.4 to emphasize the

advantage of cubic expansion.

34



0.6

04 -

S

= 0.3 -

X ——QuadraticNEM
0.2 ———CubicNEM

A
JESSSEass e

3 8 13 18

Node Number

Figure 3.4 k ¢ %error Variation

The error percentage variation of two expansions reveals that Cubic expansion
results are better than Quadratic expansion results for all numbers of node. The ratio
of error percentages is increasing slowly with respect to node number. For example,
the ratio of Quadratic and Cubic NEM error percentage is 3.567 when the node
number is 3. For 21 nodes, this ratio becomes 4.312. Furthermore, both error

percentage functions behave like exponentially decreasing function.

In order to determine neutron flux, (3.13) can be discretized as

§ = - (3.19)

=1

CNEMR calculates average flux using (3.19). They are given in table 3.4 with linear
FEM results. Comparison with analytical result shows that CNEMR is able to
calculate average flux with small error percentage. The values of NEM are so close;
in addition, Linear NEM gets similar results as well. Moreover, the error values are
sometimes increasing although node number is increasing. This effect is observed in

three methods.
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Table 3.4 Average Fluxes and Respective Errors

Number of ¢x107"

Method Nodes (n’/cm’sec.) Error (%)
3 1.851715510 0.050693418
Quadratic 5 1.851715485 0.050694768
NEM 11 1.851715342 0.050702486
21 1.851715253 0.050707290
3 1.851715451 0.050696604
Cubic 5 1.851715260 0.050706913
NEM 11 1.851715429 0.050697791
21 1.851715147 0.050713012
Linear 2 1.851715400 0.050699356
FEM 10 1.851715400 0.050699356

CNEMR can calculate cell average fluxes with small error. Flux distributions are

given in figure 3.5 for 31 nodes in both Nodal expansions.

It is shown in figure 3.5 that both Cubic and Quadratic NEM graphs are
superimposed. Maximum flux is approximately 2.83x10"°n"/cm’sec at the center of

the cylinder when the reactor power is taken to be 2000 W/cm.
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2.4

2.2
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——QuadraticNEM
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1.6
14
1.2 -

0 0.5 1 1.5 2 2.5 3 3.5 B

Radius(cm)

Figure 3.5 Flux Distribution Along the Radial Distance
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3.2 One-Group Reflected Reactor

In this section, two-region cylindrical reactor is considered. It is composed of a
central cylinder of one fuel-bearing material (region 1) embedded in an annulus of a
second reflector material (region 2). It is assumed that multigroup spectra have been
determined for the different (nuclearly homogeneous) materials in regions (1) and (2)
and that the one-group cross-sections have been obtained by averaging over these

spectra.

Fuel-bearing material is the same with the material defined in section 3.1. It has the

same cross-sections and the same radius, R;=3.75¢cm.

Reflector is a graphite material with thickness 1.25cm. Hence R,=5cm. Absorption
cross-section and diffusion coefficient of the graphite are taken to be 0.00032cm™

and 0.84cm respectively.
3.2.1 Analytical Solution

The resulting form of the one-group diffusion equation is thus

D (liriq)(r)J (—ka -z jd)(r) =0 3.20)
rdr dr

Continuity and boundary conditions are

B(R,)” = 6(R,)" (3:21)

=t d¢(R1)|:D<z drl i (3.22)
()

TR+ 0R,) =0 (3.23)

where R, and R, are the radii of the fuel-bearing material and the reflector

respectively. If one defines

Azl -3k

(") == (k =12) (3.24)

(3.20) can be written as:

1d _d
(_d_rd_¢(r)j+(]< Y d(r) =0 3.25)
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Note that, (") can be real or pure imaginary depending on the magnitudes of the

reactor parameters. It takes the form

-1 F F
(") = kvi+2a (Fuel region, real) (3.26)
X o
(x®) = D—; (Reflector region, imaginary) 3.27)

k" is real if A7'WE[ > =F. Therefore, A < (vZ} /Zf =1.54). Since the reflector can

not increase the effective multiplication factor so much, the solution in the fuel

region is

Op(r) = C T (') (3.28)
where Jy is the zeroth-order Bessel function of the first kind. For the reflector region
p (1) = C,I, (1) + C,K (1) (3.29)

where I, and K are zeroth-order modified Bessel functions of the first and second

kind respectively. Applying zero incoming current boundary condition (3.23) to the

(3.29) gives

R _ATR.R R
C, =, Ko(KRRz) 2DRKRK1(1; R)) - L (3.30)
I[,(k"R,)+2D "« [,(x"R,)
(3.29) becomes
dp (1) = C, (-LI, ("1) + K, (k1)) (3.31)

The continuity conditions at r=R;, (3.21) and (3.22) now require that

C,J,(x°R,) = C,(-LI,(k"R,) + K, (k"R,)) (3.32)

-C, DT, (x°R,) = C,D® (-Lc"I,(x"R,) - k"K, (x"R,)) (3.33)

The critical equation may be obtained by dividing the first equation (3.32) into the
second (3.33)

JO(KCR1) _ 'LIO(KRR1)+K0(KRR1)
DkJ,(x°R,)  DN(Lx"L(x"R,) + k"K,(x"R)))

(3.34)

RHS of (3.34) is calculated using MATHEMATICA 5.2
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Jo(k°R))

——————=2.7822129453 3.35)
Dk, (x°R,)

(3.35) can be re-arranged as

J,(k°R,)—1.8084384144x°J (k°R,) =0 (3.36)
(3.36) would be suitable for the Newton’s Method, if it is written as

f(x) =J,(x)—0.482250243xJ,(x) =0 3.37)
where x=k°R,.

Newton’s Method, (3.9), takes the form

@) 0 Jo(x")-0.482250243x Y7, (xV)

X 3.38
J,(x") +0.482250243x“J, (x) (3-38)
Table 3.5 shows the steps of this iteration process, (3.38)
Table 3.5 Iteration Results of Newton Method
t x £9(%)
0 1 40.599315
1 1.683482 4.13843
2 1.61658 0.0276963
3 1.61703 9.32603x10”
4 1.61702907 1.37316x10™"
Thus
K¢ = =0.431207753 (3.39)
Rl
Effective multiplication factor is found analytically from (3.39) as
A=kes=0.768077605 (3.40)
From (3.13) and (3.15) average flux is
- P
R — 3.41
¢ w,Z R} (540

Average flux in the fuel region is the same as calculated in section (3.1.1) and given
in (3.17). ¢, =1.852654684 x 10" n’/cm’sec, since all variables of (3.41) remains the

same.
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But, it is complicated to find the average flux in the reflector. First, it is necessary to

find C; in (3.28)

_ 7 R

br = [ €1J,(0.431207753r)rdr
o

This integral is evaluated by using the following recursion formula
J‘X“Jm1 (x)dx =x"J_(x)

Thus

o, = 0.706884906C,

From (3.17)

C, =2.620871754 x10"

Next, Cy4 1s found from (3.32)

CJ,(xR))

.= - ——— =1.87991806
(-LI,(x"R,) + K, (7R, ))

Average flux in the reflector is defined as

f(I)R (r)2mrdr
R RY

Substituting (3.31) into (3.47)

- 2¢, |

R, R,
= LI (x*)rdr + | K, (x®r)rdr
%= R [ L1, ryrdr + [K (")

R, R,
These integrals are evaluated using the following recursion formulas
J.X“In_1 (x)dx =x"I, (x) and J‘X“Kn_1 (x)dx = —x"K (x)

Final equation for the average flux in the reflector is
- -2C,

©(RI-RI(Y)

+xk"R,K,(k*R,)-x"R K,(k"R)))

—(Lk"R, I, (k"R,) - Lk "R I, (k"R))

Average flux has been calculated from (3.50) using MATHEMATICA 5.2
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b =8.728700636172x10"n’/cm’sec. 3.51)
3.2.2 CNEMR and QFEMR Results

The effective neutron multiplication factors obtained by NEM and FEM are shown in
Table 3.6 with their error percentages. As in the previous situation, NEM gives the

best results for initial nodes.

Table 3.6 Effective Multiplication Factors Calculated by 4 Methods

Number of Nodes
Quadratic NEM Kesr Error (%)

Fuel Refl. Total

2 1 3 0.76390350 0.5434

3 2 5 0.76581560 0.2945

4 3 7 0.76673990 0.1742

6 3 9 0.76756920 0.0662

7 4 11 0.76767430 0.0525
Fuel Cll;l::lt;. e Total Kerr Error (%)

2 1 3 0.76284032 0.6819

3 2 5 0.76627059 0.2353

4 3 7 0.76720524 0.1136

6 3 9 0.76776720 0.0404

7 4 11 0.76787128 0.0269

Number of Elements and Total Nodes

Fuel Llllzl:?lr =5 Total Ker Error (%)
(El) (El) (Node)

1 1 3 0.99030426 | 28.9328

2 2 5 0.80352910 4.6156

4 2 7 0.77568958 0.9910

5 3 9 0.77290074 0.6279

7 3 11 0.77046017 0.3102

uadratic FEM

Fuel ? Refl. Total Kerr Error (%)

1 1 5 0.78547520 2.2651

2 1 7 0.76887844 0.1043

2 2 9 0.76888222 0.1047

3 2 11 0.76822594 0.0193

4 2 13 0.76812242 0.0058

Especially, Quadratic NEM has the smallest error for 3 nodes; however, Cubic NEM
gets better results for the other numbers of node. The increase of the nodes in the fuel
region improves ke value more than the reflector, since the fuel region is a
multiplier medium for neutrons, and the radius of the fuel is greater than the radius of

the reflector.
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When the number of nodes is 7, there exists small difference between error values of
Quadratic FEM and Cubic NEM, but if it is 9, NEM seems better unexpectedly. It is
claimed that number of nodes in the fuel region is larger than the reflector region in
NEM. But, quadratic FEM puts the same number of elements, 2, into both regions
although the total number of nodes is the same in both methods. Therefore, NEM
gives more accurate result than quadratic FEM, for fuel region is generating the
neutron multiplication. After 9 nodes, quadratic FEM gives better results than other

methods. Linear NEM shows the worst results again.

One can conclude that NEM is more advantageous than linear and quadratic FEM
due to its faster convergence using the coarse mesh. While the mesh is getting finer,
number of nodes is increased and quadratic FEM becomes more advantageous than

other methods. This is shown in figure 3.6.

0.790 T m
0.785 A
0.780 -
b Quadratic NEM
v (0.775
- Linear FEM
Quadratic FEM
0.770 A i | Analytic
~ e Cubic NEM
AT
0765 1/~
0.760 T T T T T T T T T

3 6 9 12 15 18 21 24 27 30

Node Number

Figure 3.6 Variation of kesr with Respect to Total Number of Nodes

Nodal Expansions from both degrees are converging from the values lower than
analytical solution as it is shown in figure 3.6; on the other hand, Linear FEM is
converging from the values higher than analytical solution. Quadratic FEM starts
with the values higher than the analytical solutions, gets results lower than the

reference solution when the corresponding node number is between 8 and 11.
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The comparison of NEM error percentages is illustrated in Figure 3.7. Cubic NEM
has better results for all numbers of node except initial trials. After 4 nodes, the

difference between errors is getting larger, and it becomes stable after 9 nodes.

Table 3.7 shows the average fluxes calculated in the fuel and the reflector regions.
Both methods calculate average fluxes accurately in the fuel region with very small
and similar error values. The ratio between the number of nodes or elements of the
fuel and reflector is selected as 2. In the reflector, Cubic NEM is the fastest method
which converges to the analytical solution. For example, Cubic NEM gets 2.5 times
better result than Quadratic NEM although the node number is 9 for Cubic and 10 for
Quadratic. A surprising point is that the error percentages of Cubic NEM are
increasing between 9 and 30 nodes despite of the node augmentation. Similar effect

is observed in the error values of Quadratic NEM between 20 and 30 nodes.
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Table 3.7 Average Fluxes with Their Errors in The Fuel and The Reflector

Number of Nodes - 13 Error (%) n 13 Error (%)
Fuel | Reflector | Total ¢, x10 (Fuel) ¢p x10 (Reflector)
Quadratic 2 5 1.8517154770.050695200 | 0.878367521 | 0.629813968
NEM 7 3 10 1.851715418]0.050698385 | 0.873525390 | 0.075077163
14 |6 20 1.85171545710.050696280 | 0.872703571 | 0.019074193
20 |10 30 1.8517157560.050680141 | 0.872564972 | 0.034952673
4 2 6 1.851715421]0.050698223 | 0.874402950 | 0.175614464
Cubic |6 3 9 1.851715455(0.050696388 | 0.873133308 | 0.030158507
NEM (12 |6 18 1.8517154570.050696280 | 0.872519172 | 0.04019972
20 |10 30 1.851715302 | 0.050704646 | 0.872424767 | 0.05101519
Number of Elements
Fuel | Reflector | Total
Linear 2 2 4 1.851715400 | 0.050699336 | 0.798289649 | 8.544274488
FEM 6 3 9 1.851715400]0.050699336 | 0.866251779 | 0.758221061
13 |6 19 1.851715400|0.050699336 | 0.871193009 | 0.192131084
19 |10 29 1.851715400|0.050699336 | 0.871814416 | 0.120939875

In figure 3.8, flux distribution

along the radius of the cylinder are shown for 30

nodes, 20 fuel and 10 reflector. It is appeared that two graphs overlap. Hence, two

expansions find aproximately the same fluxes.
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Figure 3.8 Flux Distribution in the Reflected Reactor
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3.3 Two-group, Bare, Homogeneous Reactor

In this problem, two-group analysis of a bare, cylindrical reactor is developed. First,
critical radius is calculated for zero incoming current boundary condition. Then,
QFEMR and CNEMR results are compared to see how close they can calculate kegr to

critical value. Two-group parameters are given as

D=1.2627cm, Zx;=0.02619cm”, 3. ,=0.01412cm”, v;3;=0.008476cm™,

S, 152

D>=0.3543cm, £,5=0.1210cm™, v,X;,=0.18514cm™ and =1, x,=0.
Reactor power is taken to be 2000W/cm as in the previous problems.
3.3.1 Analytical Solution

Two-group diffusion equations can be written as

o o 1
-V.D,\Vo, + 23,0, = k_ [Vlzfl(l)l + V22f2¢2] (3.52)

eff
- V.D2V¢2 + Zazq)z = 25,1»24)1 (3.53)

Since the reactor is critical k_; =1. Assuming, thermal to fast flux ratio is constant

and defined by
g% (3.54)
¢,

using (3.54) in (3.52) and (3.53) gives respectively

lir d¢1 + (VIZfl +V22fZS_ZR1)
rdr dr D,

¢, =0 (3.55)

1d do,  (B./8-2,)
rdr dr D,

¢, =0 (3.56)

Fast and thermal group buckling terms are defined as

B’ = (Vlzfl +Vf)zﬁs - ZRl) (3.57)
1
Y 1,,/S-2

B; = (SLHZ) (3.58)

D,

Solutions of (3.55) and (3.56) are given by
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¢,(r) =C,J,(B1) (3.59)
¢,(r) =C,J,(B,1) (3.60)

Next, applying zero incoming current boundary condition, (3.5) to (3.59) and (3.60)

yields
J,(B,R) =2B ,D,J,(B,R) (3.61)
J,(B,R)=2B,D,J,(B,R) (3.62)

(3.61) and (3.62) are solved iteratively using Newton’s Method, (3.9). Then
f(x)=J,(x)-2B,D,J,(x) (3.63)
f(y)=J,(y) - 2B,D,J,(y) (3.64)
where x=B,R and y=B,R . Applying Newton’s Method to (3.63) and (3.64) gives

(1,*)-2B,D,J,(x"))

D — 5 ® _ (3.65)
(Jl (x" )(2B1D1 - 1)_ 2B,D,J, x" ))
. J,(y")-2B,D,J (y"
y =y - <t>( Oz(y : -1 2—; o )) 0) (3.66)
(Jl(y )( B,D, ) B,D,J,(y ))
Before iteration, initial estimates of buckling terms are needed. From (3.58)
)y
S (3.67)

S:2—
D,B +X,

First, initial value of B is estimated. Next, this value is used in (3.65) and flux ratio,
S is found. Then, S is used in (3.57) and new value of B, is found. B, and B, are used
in (3.65) and (3.66). Also, initial x and y values are estimated with initial critical
radius. Solution to this problem with zero flux condition at r=R gives the geometric
buckling and the critical radius as B=0.05418cm™, R=44.3889cm [16]. So, initial B,

and R values are taken to be 0.06cm™ and 42.0cm respectively.

After the first iteration, new values of x and y are found. These inner iterations

(t 1) O

) y" are less than 10°. From

continue until the differences x x¥ and y
converged x and y values, radii R; and R; are found. New B, value is estimated using
R; and Ry, since it is inversely rated with R, Outer iteration continues until the

difference between R; and R is less than 107, One outer iteration step contains two
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inner iteration steps for thermal and fast group equations. Table 3.8 shows the first

two, 10™ and the last two outer iteration steps

Table 3.8 Iteration Steps in Two-Group Problem

Step | Bl B2 R1 R2 R1-R2

1 0.0538777 | 0.06 42.0489334 | 39.3658509 | 2.6830825

2 0.0543778 | 0.05 41.6380127 | 47.3828900 | 5.7448773

10 0.0540664 | 0.05644 41.8930428 | 41.8942962 | 0.0012534
17 0.0540663 | 0.05644157 | 41.8931097 | 41.8931066 | 3.12286x 107
18 0.0540663 | 0.05644157 | 41.8931096 | 41.8931096 | 6.8311x10™

Critical radius is found as R=41.8931096cm. Inserting B, =0.05644157cm™ into the
(3.65), then gives thermal to fast flux ratio S=0.116309825.

Average fluxes can be calculated from (3.13)

_ 7 R

¢, = FICIJO(Blr)rdr =0.4820488124C, (3.68)
0

_ 7 R

d, = ?J. C,J,(B,r)rdr = 0.4462414984C, (3.69)
0

Assume that average thermal to fast flux ratio is equal to thermal to fast flux ratio:

C, =0.125642148C, (3.70)
C; and C; can be written as
Pl 9
C = 5 =3.3591393x10°P, 3.71)
w. X, mR"°0.4820488124
= P =1.6633048x10°P. 3
, = 5 =1. ; 3.72)
wZ,mR0.446241498
Thermal and fast power constitute the total reactor power
P, +P, =2000W/cm 3.73)

There are four equations with four unknowns. Solutions are P1=565.3845886W/cm,
P,=1434.615411W/cm, C;=18.992055x10"', C,=2.3862027x10"". Fast and thermal
fluxes are found from (3.59) and (3.60) approximately.

o, =18.992055x10"J,(B,r)  and b, =2.3862027 x10"J ,(B,r) (3.74)
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3.3.2 CNEMR and QFEMR Results

The effective neutron multiplication factors determined by NEM and FEM are given
in Table 3.9. Results of this section are quite interesting, for Cubic NEM

characteristics change totally.

Table 3.9 Results of QFEMR and CNEMR Programs for Two-Group Reactor

Number of Error

Method Elements(FEM) or Kest (%)
Nodes(NEM)

7 1.028537586 | 2.853759

Linear 10 1.013512079 | 1.351208

FEM 20 1.003065418 | 0.306542

30 1.001166149 | 0.116615

5 0.999908366 | 0.009163

Quadratic 10 0.999663253 | 0.033675

FEM 15 0.999655302 | 0.034470

50 0.999654311 | 0.034569

2 0.990966845 | 0.903315

Quadratic 11 0.999426275 | 0.057372

NEM 21 0.999611910 | 0.038809

31 0.999648762 | 0.035124

6 1.006172820 | 0.61728

Cubic 11 1.001437628 | 0.14376

NEM 21 1.000150288 | 0.015028

31 0.999899120 | 0.010089

First of all, error percentage values show that Cubic NEM is very impractical for
initial nodes because its results are worse than Quadratic FEM and NEM.
Traditionally, Linear FEM continues to be the worst and this hasn’t changed since
the beginning. Secondly, Quadratic FEM shows an unexpected performance when
number of elements is 5. Quadratic FEM generally behaves as a fine mesh method;
however, the best error percentage value obtained from all trials is the result of
Quadratic FEM at 5 elements. Moreover, this is a kind of oscillation because the
errors begin to increase, and Cubic NEM becomes the best surprisingly after 14

nodes. By the way, the response of Cubic NEM toward refinement is positive.
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Figure 3.9 k.¢r Results of FEM and NEM

Another important difference from previous examples occurs in the variation of ke
of Cubic NEM. When the figure 3.9 is examined, again, Quadratic NEM is
converging from the values lower than analytical solution, and FEM starts to
converge from the values higher than analytical solution. Also, Quadratic NEM is the
fastest method, and Linecar NEM is the slowest one. In contrast, Cubic NEM shows
the similar characteristic with FEM; it is converging from the higher values.
Specifically, ke variation of Cubic NEM seems to Linear FEM for initial nodes, but

of course Cubic NEM is faster and more correct.

The error comparison of Quadratic and Cubic NEM is illustrated in figure 3.10. The
point that should be emphasized is the slow convergence of Cubic NEM up to 14
nodes. Cubic NEM needs more condensed mesh for this problem in order to be
accurate. The increase in the node number affects positively, and Cubic NEM
surpasses all other methods in error variation. The change in the characteristic begins
exactly after 14 nodes. The rate of change in the error values of Quadratic NEM is

small, and it becomes approximately stable after 14 nodes.
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Radial Flux variation and comparisons of methods are shown in the figure 3.11 using

31 nodes. Small deviations from analytical solutions exist in the values of both

expansions.
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Figure 3.11 Fast and Thermal Flux Distributions
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3.4 TRIGA MARK II Reactor
Diffusion theory has been traditionally used for TRIGA whole-core calculations. In

this study, one dimensional cylindrical geometry model of TRIGA core is chosen.

Reactor core may be divided into 7 annular regions. Ring A contains only the central
thimble. Ring B has 6 fuel elements. Ring C contains 11 fuel elements and one water
gap, while ring D has 17 fuel elements and one water gap. Ring E consists of 23 fuel
elements and one water gap. Ring F contains 12 fuel elements, 2 water gaps and 16

graphite elements. The core is surrounded by a graphite reflector.

The outer radii of A, B, C, D, E and F rings are 2.1371, 5.9709, 9.8979, 13.8629,
17.7329 and 21.8049 cm’s respectively. The graphite reflector outside the F-ring

extends to an outer radius of 51.64cm.

The core configuration of the ITU TRIGA MARK II Reactor is given in figure 3.11
[16].
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Figure 3.11 ITU TRIGA MARK II Reactor Core Diagram

Control Rod

Pneumatic Transfer System
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The homogenized two-group cross-sections for the fuel elements, central thimble,
water gap, graphite elements and the graphite reflector has been evaluated using
WIMS-D/4 code in a previous study [17]. These cross-sections are subjected to

volume averaged homogenization with:
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1 Niing
z:ring =7 z Nizi

~ (3.75)

ring =l

where Nyip, represented the total number of cells in a ring; N, the number of cells

type i in the ring. For the diffusion constant, the volume-averaging is done by:

(3.76)

After the ring homogenizations are done with (3.75) and (3.76), the following cross-
section data are obtained. Table 3.10 and 3.11 shows the homogenized fast and

thermal cross-sections respectively.

Table 3.10 Homogenized Fast Group Cross-Sections for TRIGA Reactor

Ring D;(cm) Ta(em™) Ya_2(cm™) viZn(em™)
A 1.21848 0.054012 0.053725 0

B 1.01686 0.048046 0.04267 0.00319902

C 1.02952949 0.04861092 0.04365908 0.00293244

D 1.02527139 0.04842261 0.04332939 0.00302130

E 1.02315553 0.04832846 0.04316454 0.00306573

F 1.19993689 0.03345527 0.03123407 0.00127961
Reflector 1.30156 0.002848 0.002845 0

Table 3.11 Homogenized Thermal Group Cross-Sections for TRIGA Reactor

Ring D(cm) Taa(cm™) v,Zp(em™)
A 0.246318 0.01588 0
B 0.244494 0.07921 0.119481
C 0.23985532 0.07394167 0.10952425
D 0.24138186 0.07569778 0.11284317
E 0.24215245 0.07657583 0.11450262
F 0.35853809 0.03561933 0.0477924
Reflector 0.886434 0.000194 0

This data is supplemented with v;=2.55, v»,=2.44, y;=1 and y,=0. All of them are
intended for input to the programs CNEMR and QFEMR.

Then, the node number is chosen as 20 nodes at the beginning. In this basic mesh,
there are 1, 2, 3, 3, 3, 2 and 6 nodes in A, B, C, D, E, F rings and the graphite
reflector respectively. This mesh strategy seems to be convenient only for Quadratic

NEM; however, it doesn’t show the same performance for Cubic NEM. For that
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reason, 2 different basic meshes are applied for the expansions of different degrees.
The basic mesh of Cubic NEM contains 1, 3, 4, 4, 4, 3, 6 nodes respectively in 7
regions. By multiplying the number of annular regions in the basic mesh by an integer
(degree of refinement), finer meshes may be produced. In QFEMR finest mesh
consists of 641 nodes which correspond to 640 linear elements and 320 quadratic
elements. QFEMR with 320 quadratic elements or 16 degree of refinement gives ke
=1.21051196. Quadratic FEM gives more exact results as shown in the previous
problems when the number of elements is increased. Considering the finest
Quadratic FEM data as reference value, Table 3.12 shows the effective neutron

multiplication factors with their errors.

Using 20 nodes (1, 2, 3, 3, 3, 2, 6), Quadratic NEM finds the effective multiplication
factor as ke=1.21054283. The ke calculated by Cubic NEM is 1.21021145. Linear
QFEMR and quadratic QFEMR find kg =1.21279558 and ke =1.21052344 with 20
elements respectively. The error percentage of Quadratic NEM is approximately 10

times better than Cubic NEM value.

Using 25 nodes (1, 3, 4, 4, 4, 3, 6), Quadratic NEM error percentage is higher than its
value with 20 nodes although the node number is increased. Cubic NEM result is 40
times better than Quadratic NEM value. The cause of this effect is that both methods
behave exactly like a fine mesh method. Not only the node number, but also mesh
strategy is very important for multigroup problems. Especially, when FDM is

applied, if the mesh doesn’t fit on geometry, one can observe incoherent results.

Cubic NEM performs to have %0.0001008 at 50 nodes, and this validates that
CNEMR can calculate effective multiplication factors of the TRIGA-like two-group,

multiregional systems with a small error.

Table 3.12 CNEMR k¢ Results for Different Meshes in TRIGA Reactor

Nodes Quadratic NEM Cubic NEM
Mesh Total Nodes Kesr Error(%) Kesr Error(%)
1x2x3x3x3x2x6 20 1.21054283 | 0.00255016 | 1.21021145 | 0.0248249
1x3x4x4x4x3x6 25 1.21072643 | 0.01771730 | 1.21046235 | 0.0040983
2x4x6x6x6x4%x12 40 1.21052886 | 0.00139610 | 1.21045264 | 0.0049004
2x6x8x8x8x6x12 50 1.21057897 | 0.00553567 | 1.21051074 | 0.0001008
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Figure 3.12 shows the fast and thermal flux distributions from CNEMR. Reactor
thermal power is taken to be 1000W/cm. These flux profiles are very similar to the
results of previous studies [13]. A straight line shows the boundary between the fuel

region and the reflector at 21.8 cm.

Figure 3.13 shows linear QFEMR results with 640 elements. CNEMR and linear
QFEMR flux profiles are very close to each other.
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Figure 3.12 TRIGA Reactor Flux Distribution (CNEMR)

Fast and thermal group average fluxes are calculated by CNEMR with 50 nodes as

. =0.5115984987x10"*neutrons/cm’sec.

$,=0.3703848362x10"*neutrons/cm’sec.
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Figure 3.13 TRIGA Reactor Flux Distribution (Linear QFEMR)

Finally, ring averaged fluxes are given in table 3.13. Similar results are obtained with

the finest mesh linear QFEMR.

Table 3.13 Ring Averaged Fluxes of TRIGA Reactor

Average Quadratic NEM Cubic NEM Linear FEM
Fluxes (2x6x8x8x8x6x12) (2x6x8x8x8x6x12) (finest, 640 elements)
Fast Thermal Fast Thermal Fast Thermal
Ring Flux Flux Flux Flux Flux Flux

B x 107" | Gy x107" | G x 107" | §, %107 | §, x107" | §, x107"

11.06090 9.85227 11.02715 9.74307 11.07604 9.8165

11.74338 7.07840 11.72994 7.06320 11.74535 7.0797

11.14001 6.37665 11.13714 6.37682 11.14006 6.3775

9.88907 5.59886 9.88998 5.60023 9.88817 5.5988

m|o|Q|wE| >

8.12078 4.84942 8.12201 4.85135 8.11869 4.8495

F 6.06031 4.62868 6.06090 4.63061 6.05777 4.6272

Reflector | 1.72135 2.13119 1.72296 2.13150 1.72210 2.1299
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4 CONCLUSION

Present study is the application of a high order Nodal Expansion, Cubic NEM, to the
neutron diffusion equation in cylindrical geometry. NEM provides the opportunity of
precision selection, which is defined by the degree of the basis polynomials. The
same advantage exists in Finite Element Method with the decision on the degree of
Elements. On the other hand, Finite Difference Method is just categorized as

forward, backward, and mesh centered difference.

High order and low order Nodal expansions have common and different points
during the derivation of the iterative system. First of all, the common steps are Nodal
Balance Equation and usage of Fick’s law with partial neutron currents. Both
expansions require these two steps in order to find the necessary unknowns.
However, the differences overweigh the similarities. The first difference is that
Fick’s Law and Nodal Balance equation are sufficient to derive the system of low
order expansion; in contrast, Cubic Expansion needs a supplementary expression in
order to find expansion coefficient because n” order expansion needs to have n+1
basis polynomials and expansion coefficients. Hence, first moment of neutron flux
should be determined in order to calculate the expansion coefficients. The second
difference is the recalculation of the expansion coefficients. Each order of expansion
causes changes in the coefficient terms, and the coefficients are getting more
complicated as the degree of expansion is increasing. Another important difference is
the requirement of weighted residual technique. The unknowns of Quadratic NEM

are the outgoing partial currents (j;,,,j.,, ), the node flux ¢, for each node, so

Quadratic NEM has 3Nx3N matrix system due to its 3 unknowns per node. However,
the first moment of neutron flux is added in Cubic NEM. This means that the number
of the unknowns becomes 4 per node, and the dimension of the response matrix will
be 4Nx4N. At this point, the remaining equation is obtained by the first moment of

neutron diffusion equation.

57



After the derivation of the response matrix and the matrix system is implemented to
the CNEMR code, which is able to realize Quadraric and Cubic NEM in FORTRAN.
A finite element method program, namely QFEMR was used in order to compare
Nodal Expansion Method with Linear and Quadratic Finite Element methods.
CNEMR was tested by running four benchmarking problems and making
comparisons with analytical solutions. In order to find solutions, other numerical
methods are also used: Newton Method for transcendental relations in analytical
solutions, Fission Source Power Iteration for the eigenvalue of the system, and linear

solvers.

The comparisons are based on the calculation of effective neutron multiplication
factors, average fluxes for each group and the material with their errors. Moreover,

flux distributions are illustrated and compared with Quadratic NEM.

The comparisons reveal that convergence of Cubic NEM to acceptable values is
faster than the compared methods in one-group problems, and the augmentation of
node number results in the decrement of error. However, Cubic NEM behaves like a
fine mesh method in 2-group examples. Besides slow convergence, error is
decreasing sharply with respect to the increment of the node number, and it gets best
results in terms of error versus its rivals after the node number reaches the saturation
level.

One can consider Cubic NEM as an intermediate method between Quadratic NEM
and Quadratic FEM for two reasons, and actually it contains the advantages of both
these methods. The first reason is that Cubic NEM may be considered slower with
respect to Quadratic NEM, but it is faster than Quadratic FEM. The other reason is
that the response of Quadratic NEM is not positive for refinement because the error
variation is so slow. However, Cubic NEM always shows nice results when the

refinement occurs.

All in all, Cubic NEM can be preferred instead of FEM in order to get fast
“acceptable” results, and it is more attractive than Quadratic NEM with the freedom
in error precision. It shouldn’t be forgotten that this decision depends on your

computer configuration, your time, and your tolerance for error.
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APPENDIX A

A MANUAL FOR CNEMR

A.1 INPUT LIST

CARD 1
NGT
MAT
NETSOR

NRBCT

Ord

CARD 2
ITMAX
EPS
ENGEN1
CARD 3
SKAY(, J)

CARD 4
D(L,J)
CARD 5
CEKES(IJ)
CARD 6
SEKES(LK,J) :

CARD 7
FEKES(LJ)
CARD 8
FEKES1(L,J) :

: Number of energy groups.
: Number of materials.

: Free neutron source. It is 1, if the free neutron source exists in the

system. It is 0 otherwise.

: Boundary condition. It is 1, if the boundary condition is zero

incoming current at the boundary.

: Order of Nodal Expansion. It is 2 for Quadratic Expansion, 3 for

Cubic Expansion.

: Maximum number of iterations.
: Convergence parameter.

: Initial estimate of effective multiplication factor.

: Free neutron source of I™ group and J™ material. Every line

indicates the material number and every given number in a line is
for the energy group of that material. CNEMR skips this card if
NETSOR is given zero.

: Diffusion coefficients for 1™ group and J™ material.

. h h .
: Removal cross-sections for I"" group and J" material.

Scattering cross-sections from group K to the group I for o
material.

: Fission reaction cross-section. v for I" group and J™ material.

Fission cross-section, ¢ for I group and J™ material.

Card 4,5,6,7 and 8 are repeated for each material.
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CARD 9
SFIS(I)
CARD 10
NOD (I)
CARD 11
RDIS(I)
CARD 12
P

: Fission spectrum, y for I™ group.
: Number of nodes in I™ material.
: Outer radius of I'" material.

: Reactor thermal power in Watts/cm.

A.2 DESCRIPTION OF CNEMR SUBROUTINES

SKINP

INPUT

FISSOR
MATRIS

SCASOR

DGBF

DAXPY

IDAMAX

: Reads the free source values for each group and the material from

the input file.

: Reads the cross-sections, fission spectrums, number of nodes for

each material and the material outer radii from the input file and
writes to the output file.

: Makes the fission source iteration.

: Calculates the elements of matrix A described in the equation

(2.114) for the zero incoming current for all expansions and
reflective boundary conditions for Quadratic Expansion. All
elements of the matrix A were described in section (2.5).

: Free source and scattering terms of the nodal balance equation are

calculated with this routine. B1 contains these terms. Adding B1
from this routine and B2 from FISSOR constitutes new B2 which is
the RHS of matrix equation.

: Factors a double precision band matrix by elimination. ABD

contains the matrix in band storage

On return, ABD is an upper triangular matrix in band storage and
the multipliers which were used to obtain it. The factorization can
be written A = L*U where L is a product of permutation and unit
lower triangular matrices and U is upper triangular. IPVT contains
the pivot indices.

If info returns info=0, this is the normal value. It equals to k if U
(k, k) equals to 0.0. This is not an error condition for this
subroutine, but indicates that DGBSL will divide by zero if called.

DGBEF calls the subroutines DAXPY and DSCAL and the integer
function IDAMAX.

: It returns constant times a vector plus a vector. It uses unrolled

loops for increments equal to one.

: Finds the smallest index of that component of a vector having the

maximum magnitude.
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DSCAL : Scales a vector by a constant. It uses unrolled loops for increment
equals to one.

DGBSL : Solves the double precision band system Ax=B using the factors
computed by DGBFA. B is the RHS vector. On return, it gives the
solution vector B. It calls subroutine DAXPY.

AVG : Calculates the average fluxes for each material and group. AFLUX
is the group averaged flux and AF is material averaged flux.
OuUTPUT : First calculates, the constant A described (3.16) for the problem 1.

Then, flux distribution with respect to the radius is found. Last,
averaged fluxes are written into the output file.

Important Note:

The maximum node number that can be used for runs is 50 for Cubic Expansion, and
66 for Quadratic Expansion. Also, the group number can be increased up to 10, and
the diversity of the materials can be divided into 10 regions. Additionally, Cubic
expansion requires a supplementary array for Neutron Flux Moments, and it is
selected as MOM (1, J).
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APPENDIX B COMPUTER PROGRAMS

CNEMR and QFEMR programs with input files for the problems considered in this
study are given in an enclosed CD.
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