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CUBIC NODAL EXPANSION METHOD FOR THE RADIAL SOLUTION OF 
THE NEUTRON DIFFUSION EQUATION IN CYLINDRICAL GEOMETRY 

SUMMARY 
The core calculations of nuclear reactors are based on two fundamental theories: 
diffusion and transport. The transport equation determines position, time, angle and 
energy dependent descriptions; however, it is also complicated. On the other hand, 
diffusion is an approximation to the transport theory, and solution is easier when 
compared to the transport equation. That’s why it is more practical for coarse reactor 
calculations. When the energy spectrum of neutrons is taken into consideration, one 
can divide the energy of the neutrons in the reactor core into multigroups. By the 
way, the multigroup neutron diffusion equation is expected to be solved in Reactor 
Physics. 

Nowadays, many methods have been developed for the solution of multigroup 
neutron diffusion. These methods are classified as analytical, numerical and semi-
analytical.  

When development of the nuclear engineering is observed, the most common 
numerical methods, which had been used till 70s, were FDM and FEM. The 
intersection point of these two methods was the inconvenience to the computer 
configurations of the period due to high computer memory requirement. Especially, 
FDM was remarked as an expensive method, for it needs fine and condensed mesh.   

Since 70s, Nodal Methods, which have owned their place in nuclear engineering, 
take attention with their successes in three classes of mathematical methods. The 
numerical method called as NEM was very useful thanks to its coarse mesh property 
in contrast to its alternatives FDM and FEM. Moreover, NEM becomes the most 
popular method of the last 35 years due to its nodes some 20 times greater than FDM 
cells when FDM system is formed by thousands or millions components, and the 
lower usage of the computer memory with respect to FEM. 

NEM is a numerical polynomial expansion method possessing similar mathematical 
basis with FEM. Depending on the degree of the polynomials, it may be classified as 
low (n  2) or high (n 3) order expansion. For low order expansions, Fick’s law and 
neutron balance equation are sufficient in order to solve the system. In contrast, high 
order expansions require the determination of the neutron flux moments. An thn  
order expansion needs to have n+1 basis polynomials and expansion coefficients. For 
high order expansions, n-2 neutron moments should be calculated, and also weighted 
residuals process is applied n-2 times. 

In the present study, Cubic NEM is applied for the radial solution of neutron 
diffusion equation in cylindrical geometry. After the formation of the algebraic 
system, the CNEMR code is built in order to obtain the solutions. CNEMR is a 
FORTRAN code which is able to calculate the effective neutron multiplication 
constant, intra-nodal averaged fluxes, and the general averaged flux of the core. The 
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data obtained from CNEMR is compared with Quadratic NEM, linear FEM, and 
Quadratic FEM. 

The comparisons reveals that convergence of Cubic NEM to acceptable values is 
faster than the compared methods in one-group problems, and the augmentation of 
node number results in the decrement of error. However, Cubic NEM behaves like a 
fine mesh method in 2-group examples. Besides slow convergence, error is 
decreasing sharply with respect to the increment of the node number, and it gets best 
results in terms of error versus its rivals after the node number reaches the saturation 
level. 
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3. DERECE NODAL AÇILIM METODUNUN SİLİNDİR GEOMETRİDE 
NÖTRON DİFÜZYON DENKLEMİNİN RADYAL BİLEŞKESİNE 
UYGULANMASI 

ÖZET 
Nükleer reaktörlerde kalp hesapları 2 temel teori üzerine dayanır:difüzyon ve 
transport teorisi. Tranport denklemi konum,zaman,açı ve enerjiye bağlı olarak detaylı 
bir tasvir vermekle beraber kaba hesaplamalar için oldukça karmaşıktır. Difüzyon ise 
bu teoriye bir yaklaşım olup, transport ile kıyaslandığında çözümü daha kolaydır, bu 
sebeple de kaba hesaplamalar için daha pratiktir. Reaktor fiziğinde, enerji spektrumu 
göz önüne alındığında,stratejik olarak nötronların kalp içinde sahip oldukları enerji 
birden fazla gruba ayrılabilir. Bu nedenle çok gruplu nötron difüzyon denklemi 
kullanılır.  

Günümüzde çok gruplu nötron difuzyon denklemi için bir çok farklı yöntem 
geliştirilmiştir. Bu yöntemler analitik, nümerik ve yarı-analitik olarak sınıflandırılır.  

Nükleer mühendisliğin gelişimine bakıldığında, 70 yıllara kadar en çok kullanılan 
nümerik yöntemlerin başında FDM ve FEM geliyordu. Bu iki yöntemin ortak yanı 
zamanın bilgisayar özelliklerine uyumlu olmayıp oldukça yüksek belleklere 
gereksinim duymasıydı. Özellikle FDM iyi bir ızgaralandırma ve yoğun bir hücre 
yapısına ihtiyacı olduğu için bellek konusunda oldukça pahalı bir yöntem olarak göze 
çarpıyordu. 

70lerden itibaren Nodal Yöntemler nükleer mühendislikte yerini alıp her 3 
matematiksel yöntem grubunda da başarılı sonuçlarıyla göze çarptı. NEM olarak 
adlandırılan nümerik nodal yöntemler kaba ızgara yöntemi karakteristiği 
gösterdiğinden rakipleri olan FDM ve FEM göre çok daha kullanışlı idi. Binlerle ya 
da milyonlarla ifade edilen FDM sistemlerine göre, nodal yöntemlerin yaklaşık 
olarak FDM hücrelerinin 20 katı büyüklüğündeki nodları ve  FEM’e göre de bellekte 
daha az yer kaplaması onun reaktor kalp hesaplarında son 35 yılın en popüler  
yöntemi olmasına sebep olmuştur. 

NEM bir nümerik polinom açılım yöntemidir. Kullanılan polinomların derecesine 
göre düşük(n  2) ve yüksek dereceli(n 3) olarak 2’ye ayrılabilir. Düşük açılımlar 
için Fick yasası ve nötron denge denklemi sistemi çözmek için yeterlidir. Ancak 
yüksek dereceli açılımlar için neutron akısının momentine ihtiyaç duyulur. Her n 
dereceli açılım, n+1 adet polinom ve açılım katsayısı gerektirir. Yüksek dereceli 
açılımlarda n-2 adet nötron akı momenti hesaplanır ve ağırlaştırılmış kalıntılar 
yöntemi n-2 defa uygulanır. 

Bu çalışmada 3. Derece NEM yöntemi silindir geometride nötron difüzyon 
denkleminin radyal bileşkesine uygulanmıştır. Sistem oluşturulduktan sonra kodlama 
gerçekleştirilerek sistemin çözümleri elde edilmiştir. Yazılmış olan CNEMR kodu 
etkin nötron çoğaltma katsayısını, nodlar içindeki ortalama akıları ve bunlardan 
oluşan ortalama akıyı hesaplayabilmektedir. Bulunan sonuçlar 2. Derece NEM, 
Lineer FEM ve  Kuadratik FEM sonuçlarıyla karşılaştırılmıştır. 
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Bulgular ışığında gözüken odur ki, 3. Derece Nodal Açılım Yöntemi tek gruplu 
problemlerde rakiplerine göre daha hızlı kabul edilebilir hata kriterine ulaşmaktadır. 
Gene tek gruplu problemlerde, nod sayısının arttırımı hata değerlerinde yavaş da olsa 
olumlu sonuçlar vermiştir. 2 gruplu problemlerde ise, düşük nod sayılarında 
beklenenden kötü bir performans çizmekte ama ilerleyen nod sayılarında hata 
değerlerinde keskin bir düşüş yaşanmaktadır. Nod sayısı belirli bir doygunluğa 
eriştikten sonra rakiplerinden daha iyi hata değerlerine ulaşmıştır. 
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1 INTRODUCTION 

1.1 Diffusion Approximation 

The principles of neutron dynamics have been related to the gas dynamics for a long 

time. Full physical description is maintained by neutron transport equation, which is 

based on Transport Equation derived by Boltzmann [1]. However, a steady state 

neutron transport equation is an integro-differential equation and may be considered 

as complicated for “coarse calculations” of nuclear reactors.  

The steady state neutron transport equation is as follows: 

 






4π 0

''''
s

''

t

)Ω̂E,r,Q)Ω̂,Er,)Ω̂Ω̂E,E(r,ΣdEΩ̂d

)Ω̂E,r,)Ω̂E,r,Σ)Ω̂E,r,Ω̂

                                      
(1.1) 

where, 

 Ω̂  = Unit vector in direction of motion, 

 )Ω̂E,r,  = Angular flux, 

 Ω̂)drdEdΩ̂E,r,  = Number of neutrons in a differential volume dr 
about r, with a differential energy in dE about E, 
moving in a differential solid angle in dΩ aboutΩ, 

 )Ω̂E,r,Σ t   = Macroscopic total cross section, 

 ''''
s dEΩ̂)dΩ̂Ω̂E,E(r,Σ   = Characterizes scattering of a neutron from an 

incident energy E and direction Ω̂ to a final 
energy 'E in 'dE and direction 'Ω̂ in 'Ω̂d , 

 )Ω̂E,r,Q  = Source. 

At this point, transport equation can be approximated to Neutron Diffusion equation 

for practical reactor core calculations. The overall effect of neutrons’ collisions is 

that the neutrons undergo a kind of diffusion in the reactor medium, much like the 

diffusion of one gas in another. It is much simpler than the transport equation, 

because it removes the neutron direction of motion from consideration; the 

dependent variable is the total flux at each energy rather than the angular flux. 
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In order to derive the diffusion neutron diffusion equation, one-speed neutrons with 

isotropic collisions can be taken as the simplest example. First of all, the neutron 

current should be defined as ingoing and outgoing partial currents for each direction. 

Imagine a pure scattering medium, and let’s focus on z-dependent neutron 

movement, then  

-
zz jjJ  

z  (1.2)  

 

 

Figure 1.1 Geometry for derivation 

Using geometrical properties, one can show that 

  
 





 
2π

0Ψ

2
π

0θ 0r

rΣs-
z ddrdsiner)cos

4π
Σj s   (1.3) 

Taylor Expansion of the flux at origin results in: 




































0z0y0x z

z
y

y
x

x  (1.4) 

If spherical coordinate transformation is applied 
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.cosrz,sinsinry,cossinrx    (1.5) 

Then (1.4) becomes 

0z0y0x z
cosr

y
sinsinr

x
cossinrr)


 































   (1.6) 

Now, for just z-dependent ingoing partial current, putting (1.6) into (1.3) gives 

  
 








 



















2π

0Ψ

2
π

0θ 0r

rΣ

0z

s-
z ddrdsincose

z
cosr

4π
Σ

j s   (1.7) 

Because the terms containing cos and sin become zero when integrated over 

2π0  . 

Thus, 

0z

-
z z6

1
4

j


 















s

  (1.8) 

Using (1.2) 

0zz3
1J
















s
z  (1.9) 

Similarly, 

0x
x x3

1J















s

 and 
0y

y y3
1J
















s

 (1.10) 

By the way, the general vector form of neutron current is 

  



























z
e

y
e

x
e

3
1J zyx

s

  (1.11) 

Assume that 
s


3

1D in Lab system, we finally arrive to Fick’s law: 


DJ  

Here, some general properties can be revealed: 

• Flux is finite, real and non-negative 

• Flux preserves the symmetry 
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• Flux and current are continuous 

The diffusion equation is ready to be derived after the relation between the neutron 

current and neutron flux is shown.  

Consider an arbitrary volume V and establish the following balance: 

 
       
       
              

  

rate of change
rate of production rate of absorption rate of leakage

of the number of
of neutrons in V of neutrons in V of neutrons from V

neutrons in V

 (1.12) 

Then, 


















V

t)dVN(r,
dt
d

Vinneutrons
ofnumbertheof

changeofrate
, (1.13) 










V

t)dVQ(r,
Vinneutronsof

productionofrate
, (1.14) 

 








V
a t)dV(r,Σ

Vinneutronsof
absorptionofrate

  (1.15) 

 








VS

t)dV(r,JdSn̂J


Vfromneutronsof
leakageofrate

. (1.16) 

If one writes down the time dependent balance equation: 

 
VV

a
VV

t)dV(r,Jt)dV(r,Σt)dVQ(r,t)dVN(r,
dt
d 

 (1.17) 

The next step is to remove the integration from both sides of the equations: 

t)(r,J-t)(r,Σ-t)Q(r,
dt

t)dN(r,
a


  (1.18) 

Finally, in order to get the steady state neutron diffusion equation, time dependency 

should be vanished, and if the Fick’s law is applied: 

Q(r)(r)Σ(r)D- a
2   (1.19) 

It should be emphasized that neutron diffusion equation is an approximation, and it 

requires assumptions for its validity. 
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Figure 1.2 Extrapolation Distance 

Here, d is the extrapolation distance [2], and it is equal to 0.71 trλ which is the 

transport mean free path (cm). The general approximated relation between the 

diffusion constant and transport mean free path is: 

trλ3
3

1D 



tr

 (1.20) 

In short, a steady state diffusion theory is invalid under these conditions [2]: 

• in a medium that strongly absorbs neutrons, 

• within three mean free paths of either a neutron source or the surface of a 

material, 

• when neutron scattering is strongly anisotropic. 

1.2 Nodal Expansion Method 

History of the nuclear engineering signifies that FDM and FEM [3,4] had been the 

most popular numerical methods which were employed for core calculations till 70s. 

The common point of these two methods was the inconvenience to the computer 

configurations of the period due to high computer memory requirement. Especially, 

FDM is not practical for accurate solutions of core problems because of its high cost. 
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Spatial cell sizes may reduce the computer time; however, FDM becomes inaccurate. 

Nodal methods [5,6] have been popular since 70s, due to their advantage in 

increasing the speed of the computations, and their coarse mesh compared to fine 

mesh finite difference solutions [7]. The nodal methods divide the reactor core into 

large regions named “nodes” and represent the flux distribution averaging inside 

nodes. Probably, the most common popular nodal methods are transverse integrated 

nodal methods [5]. In this class of nodal methods the three-dimensional multigroup 

neutron diffusion equation is replaced by three ODEs. These one dimensional 

equations are obtained by integrating the 3-D neutron diffusion equation over the two 

directions transverse to aimed direction.  

Among the various polynomial methods, the Nodal Expansion Method (NEM) 

developed by Finnemann and Bennewitz [8] is situated to an important place in nodal 

diffusion calculations. NEM, one of the earliest polynomial methods, originated from 

the Nodal Synthesis Method [9]. Higher order expansions can be also performed [8]. 

Three of the coefficients of these polynomials are calculated by demanding neutron 

balance [7] for each node, and continuity of the surface average fluxes and currents 

between two adjacent nodes [10]. For high order cases, the remaining coefficients are 

determined by using preservation of higher moments of the flux using a weighted 

residual technique [11] on the transverse integrated diffusion equation.  

1.3 Objectives of the Work 

The objective of this study is to derive the system formed by Cubic NEM, and to 

compare the results with other methods in order to expose the performance. Cubic 

NEM is applied to neutron diffusion equation for radial solution in cylindrical 

geometry. The main comparison is made between Quadratic NEM and Cubic NEM 

to understand the difference. CNEMR, code built in FORTRAN, is able to perform 

both Quadratic and Cubic NEM. 

For a short description, Chapter 2 begins with the group independent derivation of 

the system which formed by Fick’s law, neutron balance, and first moment of 

neutron diffusion equation. Then, the system obtained is reformulated under group 

dependency. 

In Chapter 3, 4 numerical applications are shown. Analytical solutions are made for 

three of them; Quadratic FEM with 320 elements is taken as reference in the 
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remaining one. Effective neutron multiplication constants and neutron fluxes 

obtained from CNEMR and QFEMR are compared. The comparisons are based on 

convergence to a certain error percentage, coarse mesh performance, and response 

towards refinement. 
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2 NODAL FORMALISM IN CYLINDRICAL GEOMETRY 

2.1 Node Averaged Quantities and Moments 

Assuming that 

• All collisions are isotropic, 

• Axial component is so long(z>>r), so there is no leakage from this direction, 

Then, the multigroup neutron balance equation 

              G,1,2,g  , rr
k

rrr rrJ
G

1g
g

g
f

g1g

1g
g

gg
g

g
rg 





 










  (2.1) 

with no group-to-group upscatter assumption, and Fick’s Law 

     r rDrJ g
g

g


  (2.2) 

constitutes the basis of the nodal formalism. 

To avoid complexity in notation, scattering and fission sources will be defined as 

          G,1,2,g  , rr
k

rrrQ
G

1g
g

g
f

g1g

1g
g

gg
g 





 










  (2.3) 

Thus, (2.1) becomes 

        rQr rrJ gg
g
rg


  (2.4) 

Since group index is of no immediate concern in nodal development, the group 

indices will be suppressed and (2.4) and (2.2) will be written as 

        rQr rrJ r


  (2.5) 

     r rDrJ 
  (2.6) 
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r1/2        r3/2           r5/2                         ri-1/2       ri+i/2                                 rN+1/2 

Δ2 ri 
0 R 

Figure 2.1 illustrates a cylindrical mesh having nodes Ai=(ri-1/2, ri+1/2). The radii at 

node centers are similarly denoted as (ri) and it is convenient to define mesh spacing 

ri=ri+1/2-ri-1/2. 

Figure 2.1 Nodal Mesh Imposed on One-dimensional Cylindrical Domain 

 

Figure 2.2 Multigrid of Radial Component in Cylindrical Domain 

ri is replaced with i  for simplicity 

1/2i1/2ii rr    (2.7) 

Inherited from the nodal perspective and common to all nodal discretizations is the 

choice of node and edge-based unknowns. The node-based unknowns are defined by 










1/2ir

1/2ir
2
1/2-i

2
1/2i

i rdrr
)r(r

2  (2.8) 




 


1/2ir

1/2-irr
2
1/2-i

2
1/2i

i Q(r)rdr
)rr(

2Q  (2.9) 










1/2ir

1/2ir
2
1/2-i

2
1/2i

ni, rdrr
)r(r

2
nw  (2.10) 

where nw is the weight function of thn order. 
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These terms are the node average flux, source, and the moment of neutron flux 

respectively. While the edged-based unknowns, namely edge average fluxes and 

currents are just point fluxes and currents at node boundaries in one dimension, 

because there is no other dimension over which to find averages. They are shown as 

 i+1/2,  i-1/2 and Ji+1/2, Ji-1/2    

In some nodal methods, edge-averaged partial currents are also needed. To avoid 

notational complexity, the partial currents will be denoted by the lower case letter j. 

1/2ij  and 

1/2ij  denote the outgoing partial currents, while 
1/2ij  and 

1/2ij are the 

incoming partial currents at the right (i+1/2) and left (i-1/2) edges respectively. 

Under P1 approximation [12] 

     
2

rJn
4
rrj u

u







  (2.11) 

where u is an arbitrary direction. 

If diffusion theory is valid, 

       
r
r

2
rDr

4
1rju 


   (2.12) 

from (2.10), obviously: 

-
1/2i1/2i1/2i jjJ 


   (2.13) 





  1/2i1/2i1/2i jjJ  (2.14) 

and 

 



  1/2i1/2i2/1i jj2  (2.15) 

 



  1/2i1/2i2/1i jj2  (2.16) 

2.2 Cubic Nodal Expansion Method 

2.2.1 Construction of Polynomial Basis 

The NEM treatment of the transverse integrated ODE’s is based on a third order 

polynomial expansion of the transverse integrated flux. In one dimension this is just r 

dependent flux 
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1/2i1/2-in

3

0n
n rrr    r),(Par 



   (2.17) 

At this point a normalized variable ξ is defined as 

i

ir-r


  (2.18) 

where ξ=±1/2 when r=ri±1/2.  

ξ and r are the same order. Then, (2.17) can be written in normalized variable 

1/2    ),(Pa n

3

0n
n  



 (2.19) 

where )(Pn  is a polynomial of degree n. 

For simplicity, the first polynomial is chosen as 

P0()=1 (2.20) 

and the higher order polynomials are required to be orthogonal to P0() 

 



2/1

2/1
n 0   , 0dξ ξP n

 
(2.21) 

Transformation of integration operator gives 

i

drd


  (2.22) 

The node averaged flux is 

 





1/2

1/2-
iii2

1/2-i
2

1/2i
i d)r

)r(r
2  (2.23) 

Simplification gives 

 



1/2

1/2-
iii

ii
i d)r

r
1  (2.24) 

Inserting (2.19) into (2.24) 

  





1/2

1/2-
iiin

3

0n
n

ii
i d)r))(Pa(

r
1  (2.25) 
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Thus, 

 
1/2

1/2-
ii33221100

i
i )dr)(Pa(Pa(Pa(Pa(

r
1  (2.26) 

Due to the orthogonality, 

0)d(Pa(Pa(Pa(
1/2

1/2-
332211   and 0d(Pa

1/2

1/2-
i00   (2.27) 

Finally, 

 
1/2

1/2-
i33i22i110i0

i
i )d(Pa(Pa(Pa(Pra(

r
1   (2.28) 

One can derive the following polynomials by using the orthogonality identity and 

putting convenient values into arbitrary constants [13]: 

  1P  (2.29) 

 
4
1ξ3ξP 2

2   (2.30) 

  )
2
1(ξ)

2
1ξ(ξξP3   (2.31) 

 

Figure 2.3 The Basis Polynomials 
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2.2.2 Determination of Expansion Coefficients 

Recall the equation (2.26) 

 
1/2

1/2-
i33i22i110i0

i
i )d(Pa(Pa(Pa(Pra(

r
1  

Then, 

0

1/2

1/2-
00 ad(Pa   (2.32) 

i

i1
1/2

1/2-
1

i

i1

12r
ad(P

r
a 





 
(2.33) 

0d(P
r

a 1/2

1/2-
2

i

i2 

  (2.34) 

i

i3
1/2

1/2-
3

i

i3

120r
a

d(P
r

a 



  (2.35) 

Finally, 

i

i3

i

i1
0i 120r

a
12r
aa





  (2.36) 

Now, starting and end points of a node should be defined in terms of expansion 

coefficients. Moreover, high order polynomials are restricted )2( n , which means: 


2
1(P3

 
(2.37) 

Then, 

)
2
1(Pa)

2
1(Pa)

2
1(Pa)

2
1(Pa)

2
1(Pa 33221100n

3

0n
n

2
1 i

 


 (2.38) 

2
a

2
aa 21

0
2
1i




 (2.39) 

and 

)
2
1(Pa)

2
1(Pa)

2
1(Pa)

2
1(Pa)

2
1(Pa 33221100n

3

0n
n

2
1 i

 


 (2.40) 
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2
a

2
aa 21

0
2
1i




 (2.41) 

Till this point, 3 equations are obtained from node points. However, 3 equations are 

not sufficient to find 4 expansion coefficients. By the way, high order expansions 

require supplementary terms which are called as moments. An thn order expansion 

needs to have n-2 moment(s) to get solved. So, just first moment of neutron flux is 

enough for cubic expansion in order to establish a system.  

Remember that thn moment of neutron flux was 








1/2ir

1/2ir
2
1/2-i

2
1/2i

ni, rdrr
)r(r

2
nw . By 

the way, first moment of neutron will be following term: 










1/2ir

1/2ir
12

1/2-i
2

1/2i
i,1 rdrr

)r(r
2 w  (2.42) 

Here, the weight function 1w  is equivalent to the first order polynomial 1P . Hence, 

   









1/2

1/2-

1/2

1/2-
iiinn

ii
iii1

ii
i,1 d)r))(P

3

0n
a(

r
1d)r(P

r
1

 
(2.43) 

After the evaluation of the integral, the moment of neutron flux can be written as 

follows: 

120
a

60r
a

12
a

12r
a 3

i

i21

i

i0
i,1 





  (2.44) 











































































































i,1

2
1i

2
1i

i

i

i

i

i

i

i

i

i

120
1

60r12
1

12r

0
2
1

2
11

0
2
1

2
11

120r
0

12r
1

3

2

1

0

a

a

a

a

 

(2.45) 

After the solution of the linear system above, the expansion coefficients are revealed: 

Let  























2

Δ
201

5

i

i

i
r



 

(2.46) 



 

 16

Then, 

































2

i

i
i

i

i
i,1

2
1i

2
1i0 Δ

r60
Δ
r60

15
a i  (2.47) 

2
1i

2
1i1a


  (2.48) 











































































2

i

i
i

i

i
i,1

2

i

i

2
1i

2

i

i

2
1i2 Δ

r
24

Δ
r

24
Δ
r

121
Δ
r

121
3

a i

 (2.49)

 







































































































2

i

i
i,1

i

i
i

2

i

i

i

i

2
1

i

2

i

i

i

i

2
1

i
3

Δ
r

240
Δ
r

122

Δ
r

20
Δ
r

41
Δ
r

20
Δ
r

412a

i

i





  (2.50) 

2.3 Fick’s Law  

Fick’s law states that 

dr
(r)d-DJ(r) 

   (2.51) 

Note that 














d
d1

dr
d

d
d

dr
r)d

i

 (2.52) 

(2.50) may be written as 







d
)(dD

-)J(
i

i  (2.53) 

Using (2.19) 
















d
dP

a
d
dPa

d
dPa

d
dP

a
d

)(d 3
3

2
2

1
1

0
0  (2.54) 

Then, 





 


 )

4
1ξ3(a6aaD-)J( 2

321
i

i  (2.55) 

for ξ=+1/2 
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



 


  2

a
a3aD-J)

2
1J( 3

21
i

i
1/2i  (2.56) 

Similarly, for ξ=-1/2 





 


  2

a
a3aD-J)

2
1J(- 3

21
i

i
1/2i  (2.57) 

Now, put the expansion coefficients into current terms: 

Let 
i

i
i Δ

Dθ   (2.58) 

Starting with 1/2iJ  , 
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
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 (2.59) 

First, use (2.13) and (2.14) to expand the currents, then (2.15) and (2.16) to expand 

the flux in order to express them with ingoing and outgoing partial currents: 
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(2.60) 
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After arrangements and factorizations, one can get following equation: 
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(2.61) 

One can apply the same procedure for 1/2iJ   and obtain: 
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(2.62) 

where 

2
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Δ
r32E

i

i

2

i

i
i 








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




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  (2.63) 

and 




















i

i

2

i

i
i Δ

r4
Δ
r8F  (2.64) 

To avoid complexity in notation, more discretized terms may be defined. For the 

equation (2.61): 
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  i
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 (2.67) 

For the equation (2.62): 
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(2.70) 

After these new defined discretized terms, the equations become: 
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and 

i,1
i

i

2

i

i
i

i
i

i

2

i

i
i

2
1ii

2
1ii

2
1ii

2
1i

Δ
r24

Δ
r240z

Δ
r12

Δ
r24zjyjyjxj





























































 















 (2.72) 

(2.71) and (2.72) are the expressions for the outgoing partial currents. Substitute the 

outgoing current 
1/2ij  defined by (2.72) into (2.71), then simplify: 
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Similarly, substituting the outgoing current 
1/2ij  defined by (2.71) into (2.72), then 

simplify: 
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(2.73) and (2.74) constitute 2 equations per node. The number of unknowns per node 

is 4. The outgoing partial currents ( -
1/2-i1/2i j,j  ), the node flux i  , and the first 

moment of neutron flux i,1  constitute the four unknowns. The incoming partial 

currents ( -
1/2i1/2i j,j 


 ) can be considered known quantities, since they are either equal 

to the outgoing partial currents of the neighboring nodes or are known from 

boundary condition. 

The remarks above are valid if conventional homogenization theory is used and, thus 

continuity of partial currents is assumed. If equivalence homogenization theory is 

used; the incoming partial currents are not equal to the outgoing partial currents of 

the neighboring nodes. The incoming partial current can be written in terms of the 

outgoing partial current of the neighboring node, outgoing partial current of the same 

node and the flux discontinuity factors. 

2.4 Nodal Balance Equation  

The nodal view of the first order system (2.5) and (2.6) suggests that a natural 

starting point is to integrate the exact balance equation (2.5) over an arbitrary node 

        
iii VV

r
V

dV rQdV r rΣdV rJ  (2.75) 

In cylindrical coordinates, over radial component 
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








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i
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r

r
Q(r)rdr2(r)rdr

r

r
 Σ2rdrrJ(r)
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d

r

r r
12  (2.76) 
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Since the node is already homogenized, macroscopic removal cross section is 

constant for a node, i
rr Σ(r)Σ   and it is also assumed constant for all nodes of the 

same material,  r
i
r ΣΣ  . When the integrations are carried out with the help of (2.8) 

and (2.9), (2.17) becomes: 

 
2

)rr2Q
2

)rr2Σ
JrJr2

2
1/2-i

2
1/2ii

2
1/2-i

2
1/2iir

1/2i1/2i1/2i1/2i





 
  (2.77) 

where i  and iQ represent the node averaged flux and source respectively. 

Surface areas can be defined as 

1/2i1/2i r2S   , and  1/2i1/2i r2S    (2.78) 

Combining (2.7) and (2.19) with (2.18) gives 

   1/2i1/2i
ii

1/2i1/2i
iir

1/2i1/2i1/2i1/2i SS
2

QSS
2

JSJS  





  (2.79) 

Surface areas at nodes are 

ii r2S   (2.80) 

where ri can be written as 

2
rr

r 1/2i1/2i
i

 
  (2.81)  

Using (2.78) and (2.80) 

2
SS

S 1/2i1/2i
i

 
  (2.82) 

Substituting (2.13), (2.14) and (2.81) into (2.78), finally, the discrete nodal balance 

equation  

    iiiiiir1/2i1/2i1/2i1/2i1/2i1/2i SQSjjSjjS  









  (2.83) 

2.5 Weighted Residual Process - First Moment of Diffusion Equation 

It was claimed that equations from Fick’s law and nodal balance equation are not 

sufficient to solve the system for high order expansions. Therefore, moments are 

useful definitions, which help us in order to build a system. An thn order expansion 
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needs to have n-2 moment(s), and weighted residual method should be applied n-2 

times as well.  

For the Cubic Expansion, first moment of diffusion equation is enough, and weighted 

residual process can be accomplished by the application of followings steps: 

First of all, multiply both sides of diffusion equation by the first order polynomial, 

    
ii i V

1
V V

r11 Q(r)dVdVr.J(r)dV www
 

(2.84) 

 
At this point, a return from normalized variable to real variable can be useful, 
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Δ
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(2.85) 

Divide the equation into 3 parts, 
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(2.86) 

For the first part, the integration in radial coordinates, 
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Use Fick’s law, 
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Now, apply integration by parts, 
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One can obtain 
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Apply integration by parts for the term dr
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After the definition of new variables, integral becomes 
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the calculation of A, B, and C 
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Now, the second part can be derived using the definitions. Recall that the first 

moment of neutron flux is 
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The third part can be determined similarly, 
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Finally, after simplifications and factorizations, the first moment of neutron diffusion 
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2.6 Formation of Iteration Matrix 

2.6.1 Discretized Terms Revisited 
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2.6.2 Final Aspect of the Equations 
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2.6.3 Response Matrix for Reflected-Vacuum Boundary Condition 

Reflected Boundary Condition on the inner ring:  
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General Matrix equation is: 
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where the response matrix is: 
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NJ  is the vector which contains the unknows: 
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Source Matrix gets the following form: 
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where F is a node-variant term, and its primal state  
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2.7 Group Dependency 

The multigroup diffusion equations can be written as 
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It is assumed that there is no upscattering and fission source is defined as 
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The spatial dependence of the fission source is identical in each group diffusion equation.  

The multigroup weighted residuals becomes 
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The multigroup system is solved by the Fission Source Power Iteration [9], and the 

eigenvalue of the system is obtained as the effective neutron multiplication factor. 

This eigenvalue is the positive, real and dominant eigenvalue which corresponds to 

non-negative neutron fluxes. Furthermore, CNEMR is using linear system solver 

subroutines [14] in order to find NJ  which contains the unknowns. 
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3 NUMERICAL APPLICATIONS 

The formulations derived in the previous chapter have been implemented in the 

CNEMR code which is a computer program written in FORTRAN 90. This code and 

the numerical results obtained will be described in this chapter. Also comparison 

with FEM is made by using the results of a computer program, QFEMR. For 

analytical solutions, the reader is referred to the thesis by M. Mercimek [13]. 

3.1 One-group, Bare, Homogeneous Reactor  

In this problem, a bare, cylindrical reactor of diameter 7.5cm is considered (Figure 

3.1). Zero incoming current boundary condition ( 0j  ) is assumed at the surface of 

this cylinder. Effective multiplication factor of this system is determined using the 

one group cross sections D=0.65cm, a=0.12cm-1 and f=0.185cm-1. 

 
Figure 3.1 One-dimensional, Bare, Homogeneous, Cylindrical Reactor 

3.1.1 Analytical Solution 

One-group diffusion equation can be written as 








 r

Dk
1

D
r

dr
rdr

dr
d

r
1 f

eff

a  (3.1) 

Simplifying (3.1) 


 rB

dr
rdr

dr
d

r
1 2  (3.2) 

where B is defined as 

D
kB

a
eff

f

2




  (3.3) 
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Solution of (3.2) is 

(Br)AJr) 0  (3.4) 

Zero incoming current boundary condition is 

0
dr
d

2
D

4
R)(R)j

Rr

- 






  

(3.5) 

Using (3.4) in (3.5) gives 

(BR)2DBJ(BR)J 10   (3.6) 

(3.6) can be written as 

(x)J
R

2Dx(x)J 10   (3.7) 

where x=BR. Substituting the numerical values of D and R in (3.7) gives 

0(x)xJ(x)J884615382.2 10   (3.8) 

(3.8) can be solved by using Newton’s Method [15] 

)(x'f
)f(xxx

(t)

(t)
(t)1)(t 

 
(3.9) 

where, t is the iteration number. Here f(x) is the left hand side of (3.8). f’(x) can be 

found using recurrence relation for  Bessel Function of first kind, 

1nn1nnn xJnJxJnJ'xJ    (3.10) 

Thus, (3.9) becomes 

)(xJx)(xJ884615382.2
)(xJx)(xJ884615382.2xx (t)

0
(t)(t)

1

(t)
1

(t)(t)
0(t)1)(t






 
(3.11) 

Initial estimate of (0)x  can be found by assuming critical reactor, keff=1. In this case, 

(3.3) gives B=0.316227766 and (0)x =BR=1.185854123. Table 3.1 shows the results 

of Newton’s method. 
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Table 3.1 Iteration Steps of Newton’s Method for the Solution of (3.7) 

t x(t) ε(t) (%) 
0 1.185854123 - 
1 1.799773445 94.9837 
2 1.771173535 1.6145 
3 1.771285989 0.0063 
4 1.771285991 9.114x10-8 

These calculations are made using MATHEMATICA 5.2. Finally, x=1.771285991 

and B=x/R=0.47234293cm-1. Effective multiplication factor can be calculated as 

698060264.0
DB

k
a

2
f

eff 



  (3.12) 

Average flux is defined as 

2
0

R

rdr2r






R

 (3.13) 

Average flux can be calculated from (3.13) 

A65808613754.0rdrrJ
R
2

0
02  

R

 (3.14) 

In order to find an expression for A, it is necessary to make a separate calculation of 

the reactor power. In particular, there are r)f  fissions per cm3/sec at the point of 

r, and if the recoverable energy is wf joules per fission (wf=3.2x10-11 joules), then the 

total power per axial distance, in watts/cm, is 

 
R

0
ff rdr2rwP

 
(3.15) 

Performing the integration gives 

A65808613754.0RwP 2
ff   (3.16) 

If the reactor power is given as P=2000watt/cm, and the macroscopic fission cross 

section is f =0.0764cm-1, then A is calculated as 

13
2

ff

101894954.3
65808613754.0Rw

PA 


  (3.17) 
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Flux distribution can be found by multiplying constant A with cell average fluxes. 

Finally, average flux is calculated using (3.16) in (3.14) as    

131041.85265468  n0/cm2sec. (3.18) 

3.1.2 Geometrical Discretization(2 nodes) 

Here, formulations derived in previous section are tested with two node calculations 

before their implementation into the computer program. Figure 3.2 shows the nodes 

of this system. Since Δ and D are the same for the same material in one-group 

calculation, τ is the same for two nodes. From (2.73), 

τ=12.3152 

Δ is calculated by dividing radius, R by the number of nodes, 2. Therefore  

Δ=1.875 

 

Figure 3.2 Cylindrical Reactor with Two Nodes 

Radii and corresponding surface areas are given in Table 3.2. They are used in (2.76) 

through (2.80). 

Table 3.2 Radii and Related Surface Areas 

i ri (cm) Si (cm2 ) 
1/2 0 0 
1 0.9375 5.8875 

3/2 1.8750 11.7750 
2 2.8125 17.6625 

5/2 3.7500 23.5500 
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3.1.3 CNEMR and QFEMR Results 

Cubic NEM, Quadratic NEM, Linear FEM, and  quadratic FEM results of effective 

neutron multiplication factor are given in Table 3.3 

Table 3.3 keff Results of QFEMR and CNEMR Programs 

Method Number of Elements(FEM)  
or Nodes(NEM) keff Error (%) 

Linear  
FEM 

2 0.746411132 6.92646 
10 0.699714822 0.23702 
50 0.698125364 0.00933 
100 0.698076062 0.00226 

Quadratic  
FEM 

1 0.720881392 3.26922 
2 0.699073117 0.14509 
10 0.698061073 0.0001158 
50 0.698059636 0.00009 

Quadratic  
NEM 

3 0.694169485 0.55737 
5 0.696634106 0.204303 
11 0.697764156 0.042418 
21 0.697979689 0.011543 

Cubic  
NEM 

3 0.696976545 0.1552 
5 0.697824723 0.0332 
7 0.697985806 0.010668 
9 0.698037814 0.003217 
11 0.698060852 0.0000825 
13 0.698070554 0.001472 
15 0.698075272 0.002148 
21 0.698078962 0.002677 

N elements correspond to N+1 node in the linear FEM. In case of quadratic finite 

elements, the number of nodes per element increases to three. N quadratic elements 

contain 2N+1 nodes.   

Cubic NEM gets the best result for 3 nodes, which means it shows its coarse mesh 

behavior. Error percentage is decreasing while the node number is increasing. When 

the all node numbers are examined, Cubic NEM performance is obviously better than 

Quadratic NEM, and Linear NEM gets dramatically the worst results in all cases. If 

the node number is between 11 and 13, unexpected oscillation occurs in error 

percentages of Cubic NEM. In contrast, this situation doesn’t exist in Quadratic 
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NEM. For the large numbers of node, Quadratic FEM reflects the most correct 

results thanks to its fine mesh property. The variation of effk obtained from 4 

methods is shown in figure 3.3. 

 
Figure 3.3 keff Results of FEM and NEM 

Nodal Expansions from both degrees are converging from the values lower than 

analytical solution as it is shown in figure 3.3; however, FEM is converging from the 

values higher than analytical solution. Moreover, the rate of decrement is high 

between 3-6 nodes for the error values of Quadratic FEM. On the other hand, Linear 

FEM is approaching slowly to the analytical solution. The variation of error 

percentage of both Nodal Expansions is sketched in figure 3.4 to emphasize the 

advantage of cubic expansion. 
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Figure 3.4 keff %error Variation  

The error percentage variation of two expansions reveals that Cubic expansion 

results are better than Quadratic expansion results for all numbers of node. The ratio 

of error percentages is increasing slowly with respect to node number. For example, 

the ratio of Quadratic and Cubic NEM error percentage is 3.567 when the node 

number is 3. For 21 nodes, this ratio becomes 4.312. Furthermore, both error 

percentage functions behave like exponentially decreasing function. 

In order to determine neutron flux, (3.13) can be discretized as     










 N

1i
i

N

1i
ii

S

S
 (3.19) 

CNEMR calculates average flux using (3.19). They are given in table 3.4 with linear 

FEM results. Comparison with analytical result shows that CNEMR is able to 

calculate average flux with small error percentage. The values of NEM are so close; 

in addition, Linear NEM gets similar results as well. Moreover, the error values are 

sometimes increasing although node number is increasing. This effect is observed in 

three methods. 
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Table 3.4 Average Fluxes and Respective Errors 

Method Number of  
Nodes sec.)/cm(n

10
20

13
 Error (%) 

Quadratic 
NEM 

3 1.851715510 0.050693418 
5 1.851715485 0.050694768 
11 1.851715342 0.050702486 
21 1.851715253 0.050707290 

Cubic 
NEM 

3 1.851715451 0.050696604 
5 1.851715260 0.050706913 
11 1.851715429 0.050697791 
21 1.851715147 0.050713012 

Linear  
FEM 

2 1.851715400 0.050699356 
10 1.851715400 0.050699356 

CNEMR can calculate cell average fluxes with small error. Flux distributions are 

given in figure 3.5 for 31 nodes in both Nodal expansions. 

It is shown in figure 3.5 that both Cubic and Quadratic NEM graphs are 

superimposed. Maximum flux is approximately 2.83x1013n0/cm2sec at the center of 

the cylinder when the reactor power is taken to be 2000 W/cm.  

 
Figure 3.5 Flux Distribution Along the Radial Distance 
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3.2 One-Group Reflected Reactor 

In this section, two-region cylindrical reactor is considered. It is composed of a 

central cylinder of one fuel-bearing material (region 1) embedded in an annulus of a 

second reflector material (region 2). It is assumed that multigroup spectra have been 

determined for the different (nuclearly homogeneous) materials in regions (1) and (2) 

and that the one-group cross-sections have been obtained by averaging over these 

spectra.  

Fuel-bearing material is the same with the material defined in section 3.1. It has the 

same cross-sections and the same radius, R1=3.75cm.  

Reflector is a graphite material with thickness 1.25cm. Hence R2=5cm. Absorption 

cross-section and diffusion coefficient of the graphite are taken to be 0.00032cm-1 

and 0.84cm respectively. 

3.2.1 Analytical Solution 

The resulting form of the one-group diffusion equation is thus 

0r)ΣνΣ
λ
1r)

dr
dr

dr
d

r
1D k

a
k
f

k 





 






   (3.20) 

Continuity and boundary conditions are 

  11 RR  (3.21) 

|| dr
RdD

dr
RdD 1(2)1(1)

 


  (3.22) 

 2

(2)

2 R
dr
d

2
DR

4
1  (3.23) 

where 1R  and 2R  are the radii of the fuel-bearing material and the reflector 

respectively. If one defines 

1,2)(k
D

)( k

k
a

k
f2k 






    v  (3.24) 

(3.20) can be written as: 

0r))(r)
dr
dr

dr
d

r
1 2k 






 

 
(3.25) 
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Note that, )( k can be real or pure imaginary depending on the magnitudes of the 

reactor parameters. It takes the form 

 v
F

F
a

F
f2F

D
)( 




               (Fuel region, real) (3.26) 

 R

R
a2R

D
)( 
                              (Reflector region, imaginary) (3.27) 

F  is real if  F
a

F
f   v . Therefore, )54.1/( F

a
F
f  v . Since the reflector can 

not increase the effective multiplication factor so much, the solution in the fuel 

region is 

r)(JCr) F
01F   (3.28) 

where J0 is the zeroth-order Bessel function of the first kind. For the reflector region 

r)(KCr)(ICr)( R
04

R
03R   (3.29) 

where 0I  and 0K  are zeroth-order modified Bessel functions of the first and second 

kind respectively. Applying zero incoming current boundary condition (3.23) to the 

(3.29) gives 

LC
)R(ID2)R(I
)R(KD2)R(KCC 4

2
R

1
RR

2
R

0

2
R

1
RR

2
R

0
43 











  (3.30) 

(3.29) becomes 

r))(Kr)((-LICr)( R
0

R
04R   (3.31) 

The continuity conditions at r=R1, (3.21) and (3.22) now require that 

))R(K)R((-LIC)R(JC 1
R

01
R

041
c

01   (3.32) 

))R(K)R(I(-LDC)R(JDC- 1
R

1
R

1
R

1
RR

41
c

1
cc

1   (3.33) 

The critical equation may be obtained by dividing the first equation (3.32) into the 

second (3.33)    

))R(K)R(I(LD
)R(K)R(LI-

)R(JD
)R(J

1
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1
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




  (3.34) 

RHS of (3.34) is calculated using MATHEMATICA 5.2 
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7822129453.2
)R(JD

)R(J

1
c

1
cc

1
c

0 


  (3.35) 

(3.35) can be re-arranged as 

0)R(J8084384144.1)R(J 1
c

1
c

1
c

0   (3.36) 

(3.36) would be suitable for the Newton’s Method, if it is written as 

0)x(xJ)x(Jf(x) 10   (3.37) 

where x= 1
cR . 

Newton’s Method, (3.9), takes the form 

)(xJ3x0.48225024)(xJ
)(xJ3x0.48225024-)(xJxx (t)

0
(t)(t)

1

(t)
1

(t)(t)
0(t)1)(t




 
(3.38) 

Table 3.5 shows the steps of this iteration process, (3.38) 

Table 3.5 Iteration Results of Newton Method 

t x(t) ε(t)(%) 
0 1 40.599315 
1 1.683482 4.13843 
2 1.61658 0.0276963 
3 1.61703 9.32603x10-7 

4 1.61702907 1.37316x10-14 

Thus 

431207753.0
R
x

1

c   (3.39) 

Effective multiplication factor is found analytically from (3.39) as 

 λ=keff=0.768077605 (3.40) 

From (3.13) and (3.15) average flux is 

2
1ff Rw

P


  (3.41) 

Average flux in the fuel region is the same as calculated in section (3.1.1) and given 

in (3.17). 13
F 1041.85265468  n0/cm2sec, since all variables of (3.41) remains the 

same.   
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But, it is complicated to find the average flux in the reflector.  First, it is necessary to 

find C1 in (3.28) 

 
1R

0
012

1
F rdrrJC

R
2  (3.42) 

This integral is evaluated by using the following recursion formula 

(x)Jx(x)dxJx n
n

1n
n    

(3.43) 

Thus 

1F C706884906.0  (3.44) 

From (3.17) 

13
1 10620871754.2C   (3.45) 

Next, C4 is found from (3.32) 

87991806.1
))R(K)R((-LI

)R(JCC
1

R
01

R
0

1
c

01
4 




  (3.46) 

Average flux in the reflector is defined as 
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 (3.47) 

Substituting (3.31) into (3.47) 
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These integrals are evaluated using the following recursion formulas 

(x)Ix(x)dxIx n
n

1n
n    and  (x)Kx(x)dxKx n

n
1n

n    (3.49) 

Final equation for the average flux in the reflector is 
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   (3.50) 

Average flux has been calculated from (3.50) using MATHEMATICA 5.2 
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.sec/cmn10727287006361.8 2012
R   (3.51) 

3.2.2 CNEMR and QFEMR Results 

The effective neutron multiplication factors obtained by NEM and FEM are shown in 

Table 3.6 with their error percentages. As in the previous situation, NEM gives the 

best results for initial nodes.  

Table 3.6 Effective Multiplication Factors Calculated by 4 Methods 
Number of Nodes 

keff Error (%) Quadratic NEM 
Fuel Refl. Total 

2 1 3 0.76390350 0.5434 
3 2 5 0.76581560 0.2945 
4 3 7 0.76673990 0.1742 
6 3 9 0.76756920 0.0662 
7 4 11 0.76767430 0.0525 

Cubic NEM keff Error (%) Fuel Refl. Total 
2 1 3 0.76284032 0.6819 
3 2 5 0.76627059 0.2353 
4 3 7 0.76720524 0.1136 
6 3 9 0.76776720 0.0404 
7 4 11 0.76787128 0.0269 

Number of Elements and Total Nodes 

keff Error (%) Linear FEM 
Fuel 
(El.) 

Refl. 
(El.) 

Total 
(Node) 

1 1 3 0.99030426 28.9328 
2 2 5 0.80352910 4.6156 
4 2 7 0.77568958 0.9910 
5 3 9 0.77290074 0.6279 
7 3 11 0.77046017 0.3102 

Quadratic FEM keff Error (%) Fuel Refl. Total 
1 1 5 0.78547520 2.2651 
2 1 7 0.76887844 0.1043 
2 2 9 0.76888222 0.1047 
3 2 11 0.76822594 0.0193 
4 2 13 0.76812242 0.0058 

 

Especially, Quadratic NEM has the smallest error for 3 nodes; however, Cubic NEM 

gets better results for the other numbers of node. The increase of the nodes in the fuel 

region improves keff value more than the reflector, since the fuel region is a 

multiplier medium for neutrons, and the radius of the fuel is greater than the radius of 

the reflector. 
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When the number of nodes is 7, there exists small difference between error values of 

Quadratic FEM and Cubic NEM, but if it is 9, NEM seems better unexpectedly. It is 

claimed that number of nodes in the fuel region is larger than the reflector region in 

NEM. But, quadratic FEM puts the same number of elements, 2, into both regions 

although the total number of nodes is the same in both methods. Therefore, NEM 

gives more accurate result than quadratic FEM, for fuel region is generating the 

neutron multiplication. After 9 nodes, quadratic FEM gives better results than other 

methods. Linear NEM shows the worst results again.  

One can conclude that NEM is more advantageous than linear and quadratic FEM 

due to its faster convergence using the coarse mesh. While the mesh is getting finer, 

number of nodes is increased and quadratic FEM becomes more advantageous than 

other methods.  This is shown in figure 3.6.  

 
Figure 3.6 Variation of keff  with Respect to Total Number of Nodes 

Nodal Expansions from both degrees are converging from the values lower than 

analytical solution as it is shown in figure 3.6; on the other hand, Linear FEM is 

converging from the values higher than analytical solution. Quadratic FEM starts 

with the values higher than the analytical solutions, gets results lower than the 

reference solution when the corresponding node number is between 8 and 11. 
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Figure 3.7 keff %error Variation  

The comparison of NEM error percentages is illustrated in Figure 3.7. Cubic NEM 

has better results for all numbers of node except initial trials. After 4 nodes, the 

difference between errors is getting larger, and it becomes stable after 9 nodes.  

Table 3.7 shows the average fluxes calculated in the fuel and the reflector regions. 

Both methods calculate average fluxes accurately in the fuel region with very small 

and similar error values. The ratio between the number of nodes or elements of the 

fuel and reflector is selected as 2. In the reflector, Cubic NEM is the fastest method 

which converges to the analytical solution. For example, Cubic NEM gets 2.5 times 

better result than Quadratic NEM although the node number is 9 for Cubic and 10 for 

Quadratic. A surprising point is that the error percentages of Cubic NEM are 

increasing between 9 and 30 nodes despite of the node augmentation. Similar effect 

is observed in the error values of Quadratic NEM between 20 and 30 nodes.   
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Table 3.7 Average Fluxes with Their Errors in The Fuel and The Reflector 

 Number of Nodes 
F x10-13 Error (%) 

(Fuel) R  x10-13 Error (%) 
(Reflector) 

Quadratic 
NEM 

Fuel Reflector Total 
3 2 5 1.851715477 0.050695200 0.878367521 0.629813968 
7 3 10 1.851715418 0.050698385 0.873525390 0.075077163 
14 6 20 1.851715457 0.050696280 0.872703571 0.019074193 
20 10 30 1.851715756 0.050680141 0.872564972 0.034952673 

 
Cubic 
NEM 

 

4 2 6 1.851715421 0.050698223 0.874402950 0.175614464 
6 3 9 1.851715455 0.050696388 0.873133308 0.030158507 
12 6 18 1.851715457 0.050696280 0.872519172 0.04019972 
20 10 30 1.851715302 0.050704646 0.872424767 0.05101519 

 Number of Elements     

Linear 
FEM 

Fuel Reflector Total 
2 2 4 1.851715400 0.050699336 0.798289649 8.544274488 
6 3 9 1.851715400 0.050699336 0.866251779 0.758221061 
13 6 19 1.851715400 0.050699336 0.871193009 0.192131084 
19 10 29 1.851715400 0.050699336 0.871814416 0.120939875 

 

In figure 3.8, flux distribution along the radius of the cylinder are shown for 30 

nodes, 20 fuel and 10 reflector. It is appeared that two graphs overlap. Hence, two 

expansions find aproximately the same fluxes.   

 
Figure 3.8 Flux Distribution in the Reflected Reactor 
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3.3 Two-group, Bare, Homogeneous Reactor  

In this problem, two-group analysis of a bare, cylindrical reactor is developed. First, 

critical radius is calculated for zero incoming current boundary condition. Then, 

QFEMR and CNEMR results are compared to see how close they can calculate keff to 

critical value.  Two-group parameters are given as  

D1=1.2627cm, ΣR1=0.02619cm-1, 2S,1 =0.01412cm-1, ν1Σf,1=0.008476cm-1, 

D2=0.3543cm, Σa,2=0.1210cm-1,  ν2Σf,2=0.18514cm-1 and χ1=1, χ2=0. 

Reactor power is taken to be 2000W/cm as in the previous problems. 

3.3.1 Analytical Solution 

Two-group diffusion equations can be written as 

   f2f1
eff

R11 k
1.D

 
(3.52) 

  2S,1a22.D  (3.53) 

Since the reactor is critical effk =1. Assuming, thermal to fast flux ratio is constant 

and defined by 








S  (3.54) 

using (3.54) in (3.52) and (3.53) gives respectively 

  0
D

S
dr
dr

dr
d

r
1

1

R1f2f1 






  (3.55) 

 
0

D
-S

dr
dr

dr
d

r
1

2

a22S,1 






  (3.56) 

Fast and thermal group buckling terms are defined as 

 
1

R1f2f12
1 D

SB 
   (3.57) 

 
2

a22S,12
2 D

-S
B


   (3.58) 

Solutions of (3.55) and (3.56) are given by 



 

 46

r)(BJCr) 101  (3.59) 

r)(BJCr) 202  (3.60) 

Next, applying zero incoming current boundary condition, (3.5) to (3.59) and (3.60) 

yields  

R)(BJD2BR)(BJ 111110   (3.61) 

R)(BJD2BR)(BJ 212220   (3.62) 

(3.61) and (3.62) are solved iteratively using Newton’s Method, (3.9). Then 

(x)JD2B(x)Jf(x) 1110   (3.63) 

(y)JD2B(y)Jf(y) 1220   (3.64) 

where x= RB1  and y= RB2 . Applying Newton’s Method to (3.63) and (3.64) gives 

 
  )(xJDB21DB2)(xJ

)(xJDB2)(xJ
xx (t)

01111
(t)

1

(t)
111

(t)
0(t)1)(t




  (3.65) 

 
  )(yJDB21DB2)(yJ

)(yJDB2)(yJyy (t)
02222

(t)
1

(t)
122

(t)
0(t)1)(t






 
(3.66) 

Before iteration, initial estimates of buckling terms are needed. From (3.58) 

a2
2
22

2S,1

BD
S




   (3.67) 

First, initial value of B2 is estimated. Next, this value is used in (3.65) and flux ratio, 

S is found. Then, S is used in (3.57) and new value of B1 is found. B1 and B2 are used 

in (3.65) and (3.66). Also, initial x and y values are estimated with initial critical 

radius. Solution to this problem with zero flux condition at r=R gives the geometric 

buckling and the critical radius as B=0.05418cm-1, R=44.3889cm [16]. So, initial B2 

and R values are taken to be 0.06cm-1 and 42.0cm respectively.  

After the first iteration, new values of x and y are found. These inner iterations 

continue until the differences x(t+1)- x(t) and  y(t+1)- y(t) are less than 10-6.  From 

converged x and y values, radii R1 and R2 are found. New B2 value is estimated using 

R1 and R2, since it is inversely rated with R2. Outer iteration continues until the 

difference between R1 and R2 is less than 10-7. One outer iteration step contains two 
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inner iteration steps for thermal and fast group equations. Table 3.8 shows the first 

two, 10th and the last two outer iteration steps 

Table 3.8 Iteration Steps in Two-Group Problem 

Step B1 B2 R1 R2 R1-R2 
1 0.0538777 0.06 42.0489334 39.3658509 2.6830825 
2 0.0543778 0.05 41.6380127 47.3828900 5.7448773 
10 0.0540664 0.05644 41.8930428 41.8942962 0.0012534 
17 0.0540663 0.05644157 41.8931097 41.8931066 3.12286x 10-6  
18 0.0540663 0.05644157 41.8931096 41.8931096 6.8311x10-8 

Critical radius is found as R=41.8931096cm.  Inserting B2 =0.05644157cm-1 into the 

(3.65), then gives thermal to fast flux ratio S=0.116309825. 

Average fluxes can be calculated from (3.13) 

1
0

0121 C4820488124.0rdrrJC
R
2

  

R

 (3.68) 

2
0

0222 C4462414984.0rdrrJC
R
2

  

R

 (3.69) 

Assume that average thermal to fast flux ratio is equal to thermal to fast flux ratio: 

12 8C0.12564214C   (3.70) 

C1 and C2 can be written as 

1
9

2
f,1f

1
1 P103591393.3

4820488124.0Rw
PC 


  (3.71)  

2
8

2
f,2f

2
2 P106633048.1

446241498.0Rw
PC 


  (3.72) 

Thermal and fast power constitute the total reactor power 

2000W/cmPP 21   (3.73) 

There are four equations with four unknowns. Solutions are P1=565.3845886W/cm, 

P2=1434.615411W/cm, C1=18.992055x1011, C2=2.3862027x1011. Fast and thermal 

fluxes are found from (3.59) and (3.60) approximately.   

)r(BJ10992055.18 10
11        and            )r(BJ103862027.2 20

11  (3.74) 
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3.3.2 CNEMR and QFEMR Results 

The effective neutron multiplication factors determined by NEM and FEM are given 

in Table 3.9. Results of this section are quite interesting, for Cubic NEM 

characteristics change totally.  

Table 3.9 Results of QFEMR and CNEMR Programs for Two-Group Reactor 

Method 
Number of  

Elements(FEM) or 
Nodes(NEM) 

keff 
Error 
(%) 

Linear 
FEM 

7 1.028537586 2.853759 
10 1.013512079 1.351208 
20 1.003065418 0.306542 
30 1.001166149 0.116615 

Quadratic 
FEM 

5 0.999908366 0.009163 
10 0.999663253 0.033675 
15 0.999655302 0.034470 
50 0.999654311 0.034569 

Quadratic 
NEM 

2 0.990966845 0.903315 
11 0.999426275 0.057372 
21 0.999611910 0.038809 
31 0.999648762 0.035124 

Cubic 
NEM 

6 1.006172820 0.61728 
11 1.001437628 0.14376 
21 1.000150288 0.015028 
31 0.999899120 0.010089 

 

First of all, error percentage values show that Cubic NEM is very impractical for 

initial nodes because its results are worse than Quadratic FEM and NEM. 

Traditionally, Linear FEM continues to be the worst and this hasn’t changed since 

the beginning. Secondly, Quadratic FEM shows an unexpected performance when 

number of elements is 5. Quadratic FEM generally behaves as a fine mesh method; 

however, the best error percentage value obtained from all trials is the result of 

Quadratic FEM at 5 elements. Moreover, this is a kind of oscillation because the 

errors begin to increase, and Cubic NEM becomes the best surprisingly after 14 

nodes. By the way, the response of Cubic NEM toward refinement is positive. 
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Figure 3.9 keff Results of FEM and NEM 

Another important difference from previous examples occurs in the variation of keff 

of Cubic NEM. When the figure 3.9 is examined, again, Quadratic NEM is 

converging from the values lower than analytical solution, and FEM starts to 

converge from the values higher than analytical solution. Also, Quadratic NEM is the 

fastest method, and Linear NEM is the slowest one. In contrast, Cubic NEM shows 

the similar characteristic with FEM; it is converging from the higher values. 

Specifically, keff variation of Cubic NEM seems to Linear FEM for initial nodes, but 

of course Cubic NEM is faster and more correct. 

The error comparison of Quadratic and Cubic NEM is illustrated in figure 3.10. The 

point that should be emphasized is the slow convergence of Cubic NEM up to 14 

nodes. Cubic NEM needs more condensed mesh for this problem in order to be 

accurate. The increase in the node number affects positively, and Cubic NEM 

surpasses all other methods in error variation. The change in the characteristic begins 

exactly after 14 nodes. The rate of change in the error values of Quadratic NEM is 

small, and it becomes approximately stable after 14 nodes. 
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Figure 3.10 keff %error Variation 

Radial Flux variation and comparisons of methods are shown in the figure 3.11 using 

31 nodes. Small deviations from analytical solutions exist in the values of both 

expansions. 

 
Figure 3.11 Fast and Thermal  Flux Distributions 
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3.4 TRIGA MARK II Reactor 

Diffusion theory has been traditionally used for TRIGA whole-core calculations. In 

this study, one dimensional cylindrical geometry model of TRIGA core is chosen.  

Reactor core may be divided into 7 annular regions. Ring A contains only the central 

thimble. Ring B has 6 fuel elements. Ring C contains 11 fuel elements and one water 

gap, while ring D has 17 fuel elements and one water gap. Ring E consists of 23 fuel 

elements and one water gap. Ring F contains 12 fuel elements, 2 water gaps and 16 

graphite elements. The core is surrounded by a graphite reflector. 

The outer radii of A, B, C, D, E and F rings are 2.1371, 5.9709, 9.8979, 13.8629, 

17.7329 and 21.8049 cm’s respectively. The graphite reflector outside the F-ring 

extends to an outer radius of 51.64cm.  

The core configuration of the ITU TRIGA MARK II Reactor is given in figure 3.11 

[16]. 

 

Figure 3.11 ITU TRIGA MARK II Reactor Core Diagram 

The homogenized two-group cross-sections for the fuel elements, central thimble, 

water gap, graphite elements and the graphite reflector has been evaluated using 

WIMS-D/4 code in a previous study [17]. These cross-sections are subjected to 

volume averaged homogenization with: 
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



ringN

1i
ii

ring
ring ΣN

N
1  (3.75) 

where Nring represented the total number of cells in a ring; Ni , the number of cells 

type i in the ring. For the diffusion constant, the volume-averaging is done by: 





ringN

1i i

i

ring
ring

D
N

N
D  (3.76) 

After the ring homogenizations are done with (3.75) and (3.76), the following cross-

section data are obtained. Table 3.10 and 3.11 shows the homogenized fast and 

thermal cross-sections respectively.  

Table 3.10 Homogenized Fast Group Cross-Sections for TRIGA Reactor 

Ring D1(cm) Σr1(cm-1) Σs1→2(cm-1) ν1Σf1(cm-1) 
A 1.21848 0.054012 0.053725 0 
B 1.01686 0.048046 0.04267 0.00319902 
C 1.02952949 0.04861092 0.04365908 0.00293244 
D 1.02527139 0.04842261 0.04332939 0.00302130 
E 1.02315553 0.04832846 0.04316454 0.00306573 
F 1.19993689 0.03345527 0.03123407 0.00127961 

Reflector 1.30156 0.002848 0.002845 0 

Table 3.11 Homogenized Thermal Group Cross-Sections for TRIGA Reactor 

Ring D2(cm) Σa2(cm-1) ν2Σf2(cm-1) 
A 0.246318 0.01588 0 
B 0.244494 0.07921 0.119481 
C 0.23985532 0.07394167 0.10952425 
D 0.24138186 0.07569778 0.11284317 
E 0.24215245 0.07657583 0.11450262 
F 0.35853809 0.03561933 0.0477924 

Reflector 0.886434 0.000194 0 

This data is supplemented with ν1=2.55, ν2=2.44, χ1=1 and χ2=0.  All of them are 

intended for input to the programs CNEMR and QFEMR. 

Then, the node number is chosen as 20 nodes at the beginning. In this basic mesh, 

there are 1, 2, 3, 3, 3, 2 and 6 nodes in A, B, C, D, E, F rings and the graphite 

reflector respectively. This mesh strategy seems to be convenient only for Quadratic 

NEM; however, it doesn’t show the same performance for Cubic NEM. For that 
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reason, 2 different basic meshes are applied for the expansions of different degrees. 

The basic mesh of Cubic NEM contains 1, 3, 4, 4, 4, 3, 6 nodes respectively in 7 

regions. By multiplying the number of annular regions in the basic mesh by an integer 

(degree of refinement), finer meshes may be produced. In QFEMR finest mesh 

consists of 641 nodes which correspond to 640 linear elements and 320 quadratic 

elements. QFEMR with 320 quadratic elements or 16 degree of refinement gives keff 

=1.21051196. Quadratic FEM gives more exact results as shown in the previous 

problems when the number of elements is increased. Considering the finest 

Quadratic FEM data as reference value, Table 3.12 shows the effective neutron 

multiplication factors with their errors.  

Using 20 nodes (1, 2, 3, 3, 3, 2, 6), Quadratic NEM finds the effective multiplication 

factor as keff=1.21054283. The keff calculated by Cubic NEM is 1.21021145. Linear 

QFEMR and quadratic QFEMR find keff =1.21279558 and keff =1.21052344 with 20 

elements respectively. The error percentage of Quadratic NEM is approximately 10 

times better than Cubic NEM value. 

Using 25 nodes (1, 3, 4, 4, 4, 3, 6), Quadratic NEM error percentage is higher than its 

value with 20 nodes although the node number is increased. Cubic NEM result is 40 

times better than Quadratic NEM value. The cause of this effect is that both methods 

behave exactly like a fine mesh method. Not only the node number, but also mesh 

strategy is very important for multigroup problems. Especially, when FDM is 

applied, if the mesh doesn’t fit on geometry, one can observe incoherent results.  

Cubic NEM performs to have %0.0001008 at 50 nodes, and this validates that 

CNEMR can calculate effective multiplication factors of the TRIGA-like two-group, 

multiregional systems with a small error. 

Table 3.12 CNEMR keff Results for Different Meshes in TRIGA Reactor 

Nodes Quadratic NEM Cubic NEM 
Mesh Total Nodes keff Error(%) keff Error(%) 

1x2x3x3x3x2x6 20 1.21054283 0.00255016 1.21021145 0.0248249 
1x3x4x4x4x3x6 25 1.21072643 0.01771730 1.21046235 0.0040983 

2x4x6x6x6x4x12 40 1.21052886 0.00139610 1.21045264 0.0049004 
2x6x8x8x8x6x12 50 1.21057897 0.00553567 1.21051074 0.0001008 
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Figure 3.12 shows the fast and thermal flux distributions from CNEMR. Reactor 

thermal power is taken to be 1000W/cm. These flux profiles are very similar to the 

results of previous studies [13]. A straight line shows the boundary between the fuel 

region and the reflector at 21.8 cm. 

Figure 3.13 shows linear QFEMR results with 640 elements. CNEMR and linear 

QFEMR flux profiles are very close to each other. 

 

Figure 3.12  TRIGA Reactor Flux Distribution (CNEMR) 

Fast and thermal group average fluxes are calculated by CNEMR with 50 nodes as 

F =0.5115984987x1012neutrons/cm2sec.  

T =0.3703848362x1012neutrons/cm2sec.  
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Figure 3.13 TRIGA Reactor Flux Distribution (Linear QFEMR) 

Finally, ring averaged fluxes are given in table 3.13. Similar results are obtained with 

the finest mesh linear QFEMR. 

Table 3.13 Ring Averaged Fluxes of TRIGA Reactor 

 

Average 
Fluxes 

Quadratic NEM 
(2x6x8x8x8x6x12) 

Cubic NEM 
(2x6x8x8x8x6x12) 

Linear FEM 
(finest, 640 elements) 

Ring 
Fast  
Flux 

11
F 10  

Thermal 
Flux 

11
T 10  

Fast  
Flux 

11
F 10  

Thermal 
Flux 

11
T 10  

Fast  
Flux 

11
F 10  

Thermal 
Flux 

11
T 10  

A 11.06090 9.85227 11.02715 9.74307 11.07604 9.8165 

B 11.74338 7.07840 11.72994 7.06320 11.74535 7.0797 

C 11.14001 6.37665 11.13714 6.37682 11.14006 6.3775 

D 9.88907 5.59886 9.88998 5.60023 9.88817 5.5988 

E 8.12078 4.84942 8.12201 4.85135 8.11869 4.8495 

F 6.06031 4.62868 6.06090 4.63061 6.05777 4.6272 

Reflector 1.72135 2.13119 1.72296 2.13150 1.72210 2.1299 
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4 CONCLUSION 

Present study is the application of a high order Nodal Expansion, Cubic NEM, to the 

neutron diffusion equation in cylindrical geometry. NEM provides the opportunity of 

precision selection, which is defined by the degree of the basis polynomials. The 

same advantage exists in Finite Element Method with the decision on the degree of 

Elements. On the other hand, Finite Difference Method is just categorized as 

forward, backward, and mesh centered difference.  

High order and low order Nodal expansions have common and different points 

during the derivation of the iterative system. First of all, the common steps are Nodal 

Balance Equation and usage of Fick’s law with partial neutron currents. Both 

expansions require these two steps in order to find the necessary unknowns. 

However, the differences overweigh the similarities. The first difference is that 

Fick’s Law and Nodal Balance equation are sufficient to derive the system of low 

order expansion; in contrast, Cubic Expansion needs a supplementary expression in 

order to find expansion coefficient because thn  order expansion needs to have n+1 

basis polynomials and expansion coefficients. Hence, first moment of neutron flux 

should be determined in order to calculate the expansion coefficients.  The second 

difference is the recalculation of the expansion coefficients. Each order of expansion 

causes changes in the coefficient terms, and the coefficients are getting more 

complicated as the degree of expansion is increasing. Another important difference is 

the requirement of weighted residual technique. The unknowns of Quadratic NEM 

are the outgoing partial currents ( -
1/2-i1/2i j,j  ), the node flux i  for each node, so 

Quadratic NEM has 3Nx3N matrix system due to its 3 unknowns per node. However, 

the first moment of neutron flux is added in Cubic NEM. This means that the number 

of the unknowns becomes 4 per node, and the dimension of the response matrix will 

be 4Nx4N. At this point, the remaining equation is obtained by the first moment of 

neutron diffusion equation.   
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After the derivation of the response matrix and the matrix system is implemented to 

the CNEMR code, which is able to realize Quadraric and Cubic NEM in FORTRAN. 

A finite element method program, namely QFEMR was used in order to compare 

Nodal Expansion Method with Linear and Quadratic Finite Element methods. 

CNEMR was tested by running four benchmarking problems and making 

comparisons with analytical solutions. In order to find solutions, other numerical 

methods are also used: Newton Method for transcendental relations in analytical 

solutions, Fission Source Power Iteration for the eigenvalue of the system, and linear 

solvers.   

The comparisons are based on the calculation of effective neutron multiplication 

factors, average fluxes for each group and the material with their errors. Moreover, 

flux distributions are illustrated and compared with Quadratic NEM. 

The comparisons reveal that convergence of Cubic NEM to acceptable values is 

faster than the compared methods in one-group problems, and the augmentation of 

node number results in the decrement of error. However, Cubic NEM behaves like a 

fine mesh method in 2-group examples. Besides slow convergence, error is 

decreasing sharply with respect to the increment of the node number, and it gets best 

results in terms of error versus its rivals after the node number reaches the saturation 

level. 

One can consider Cubic NEM as an intermediate method between Quadratic NEM 

and Quadratic FEM for two reasons, and actually it contains the advantages of both 

these methods. The first reason is that Cubic NEM may be considered slower with 

respect to Quadratic NEM, but it is faster than Quadratic FEM. The other reason is 

that the response of Quadratic NEM is not positive for refinement because the error 

variation is so slow. However, Cubic NEM always shows nice results when the 

refinement occurs.  

All in all, Cubic NEM can be preferred instead of FEM in order to get fast 

“acceptable” results, and it is more attractive than Quadratic NEM with the freedom 

in error precision. It shouldn’t be forgotten that this decision depends on your 

computer configuration, your time, and your tolerance for error. 
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APPENDIX A A MANUAL FOR CNEMR 

A.1 INPUT LIST 

CARD 1   
NGT : Number of energy groups. 

MAT : Number of materials. 

NETSOR : Free neutron source. It is 1, if the free neutron source exists in the 
system. It is 0 otherwise. 

NRBCT : Boundary condition. It is 1, if the boundary condition is zero 
incoming current at the boundary.  

Ord : Order of Nodal Expansion. It is 2 for Quadratic Expansion, 3 for 
Cubic Expansion.  

CARD 2    
ITMAX : Maximum number of iterations.  

EPS : Convergence parameter.  

ENGEN1 : Initial estimate of effective multiplication factor. 

CARD 3 
SKAY(I, J) : Free neutron source of Ith group and Jth material. Every line 

indicates the material number and every given number in a line is 
for the energy group of that material. CNEMR skips this card if 
NETSOR is given zero. 

CARD 4 
D(I,J) : Diffusion coefficients for  Ith group and Jth material.  

CARD 5 
CEKES(I,J) : Removal cross-sections for Ith group and Jth material. 

CARD 6 
SEKES(I,K,J) : Scattering cross-sections from group K to the group I for Jth 

material.  

CARD 7 
FEKES(I,J) : Fission reaction cross-section. νΣf for Ith group and Jth material. 

CARD 8  
FEKES1(I,J) : Fission cross-section, Σf for Ith group and Jth material. 

Card 4,5,6,7 and 8 are repeated for each material. 
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CARD 9 
SFIS(I) : Fission spectrum, χ for  Ith group. 

CARD 10 
NOD (I) : Number of nodes in Ith material. 

CARD 11 
RDIS(I) : Outer radius of Ith material. 

CARD 12 
P : Reactor thermal power in Watts/cm. 

A.2 DESCRIPTION OF CNEMR SUBROUTINES 

SKINP : Reads the free source values for each group and the material from 
the input file. 

INPUT : Reads the cross-sections, fission spectrums, number of nodes for 
each material and the material outer radii from the input file and 
writes to the output file. 

FISSOR : Makes the fission source iteration. 

MATRIS : Calculates the elements of matrix A described in the equation 
(2.114) for the zero incoming current for all expansions and 
reflective boundary conditions for Quadratic Expansion. All 
elements of the matrix A were described in section (2.5).  

SCASOR : Free source and scattering terms of the nodal balance equation are 
calculated with this routine. B1 contains these terms. Adding B1 
from this routine and B2 from FISSOR constitutes new B2 which is 
the RHS of matrix equation. 

DGBF : Factors a double precision band matrix by elimination. ABD 
contains the matrix in band storage  

On return, ABD is an upper triangular matrix in band storage and 
the multipliers which were used to obtain it. The factorization can 
be written A = L*U where L is a product of permutation and unit 
lower triangular matrices and U is upper triangular. IPVT contains 
the pivot indices. 

If info returns info=0, this is the normal value. It equals to k if U 
(k, k) equals to 0.0. This is not an error condition for this 
subroutine, but indicates that DGBSL will divide by zero if called. 

DGBF calls the subroutines DAXPY and DSCAL and the integer 
function IDAMAX. 

DAXPY : It returns constant times a vector plus a vector. It uses unrolled 
loops for increments equal to one. 

IDAMAX : Finds the smallest index of that component of a vector having the 
maximum magnitude. 
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DSCAL : Scales a vector by a constant. It uses unrolled loops for increment 
equals to one. 

DGBSL : Solves the double precision band system Ax=B using the factors 
computed by DGBFA. B is the RHS vector. On return, it gives the 
solution vector B. It calls subroutine DAXPY. 

AVG : Calculates the average fluxes for each material and group. AFLUX 
is the group averaged flux and AF is material averaged flux.  

OUTPUT : First calculates, the constant A described (3.16) for the problem 1. 
Then, flux distribution with respect to the radius is found. Last, 
averaged fluxes are written into the output file. 

Important Note:  
The maximum node number that can be used for runs is 50 for Cubic Expansion, and 
66 for Quadratic Expansion. Also, the group number can be increased up to 10, and 
the diversity of the materials can be divided into 10 regions. Additionally, Cubic 
expansion requires a supplementary array for Neutron Flux Moments, and it is 
selected as MOM (I, J). 
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APPENDIX B COMPUTER PROGRAMS 

CNEMR and QFEMR programs with input files for the problems considered in this 
study are given in an enclosed CD.  
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RESUME 
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