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YÜKSEK LİSANS TEZİ
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PARALLEL CLUSTERING ALGORITHMS WITH APPLICATION TO
CLIMATOLOGY

SUMMARY

How to determine the ecoregions or climate zones has been a controversial issue.
Discussion appears from the debate if the selected method is objective or not. In
order to prevent from subjective approaches, one has to utilize some formulations
which are independent from such interferences. Cluster analysis, which is one of
the famous pattern recognition tools and has hierarchical and non-hierarchical
methods, contributes to the objectivity in this sense. Instead of relying on any
expertise or personal interpretations, clustering methods provide a mathematical
approach with the multivariate data set.

The aim of this work is to implement cluster analysis tools to climatology data
in order to obtain climate zones with some other statistical techniques that will
make the study more precise. In order to clarify, �rst we determine how many
clusters or regions do we need for valid regionalization by posing a validation
criterion on the algorithm.
While acquiring such a number of clusters, we have done experiments with both
the high dimensional set where there are from 96 to 109 number of variables and
the reduced dimensional data space which was obtained via Principal Component
Analysis (PCA). Under the criterion we posed, in the region 30o−50o N 3o−60o

E varying number of clusters obtained as the di�erent variable combinations are
used. Nevertheless, in 34o−43o N by 23o−47o E where Turkey covers almost all
the frame, we consistently acquired 4 climate zones. During the cluster analysis
(CA), besides the serial k-means algorithm we have also utilized parallel version.
According to the time measurements, it is seen that whereas serial code performs
better with the reduced dimensions, parallel version is good at dealing with high
dimensional sets.

Consequently, the k-means algorithm suggests another point of view for the
climate zones of both regions where it is possible to observe some climatic blocks
that are generally stable. More precisely, 4 climate zones appear in all cases
concerning the second frame which represents some di�erences from the preceding
climate zone de�nitions which are based on conventional and hierarchical ideas.
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İKLİM BİLİMİNDE UYGULAMASIYLA PARALEL KÜMELEME
ALGORİTMALARI

ÖZET

Ekolojik s�n�rlar�n nas�l belirlenece§i, iklim s�n��and�rmalar�n�n nas�l yap�laca§�
uzun zamand�r süregelen bir tak�m tart�³malara konu olmu³tur. Tart�³man�n
ç�k�³ noktas� ba³vurulan yöntemin ne derece tarafs�z oldu§una dair görü³
ayr�l�klar�d�r. �³te bir tak�m yanl� olabilecek yakla³�mlardansa, böylesi
müdahalelerin önlenebildi§i formulasyonlar kullan�lmas� gerekmektedir. Veri
madencili§inin önde gelen yakla³�mlar�ndan olan, hiyerar³ik ve hiyerar³ik olmayan
teknikleri de içeren kümeleme yöntemi bu aç�dan bak�ld�§�nda bize objektif
bir çözüm sunmaktad�r. Yanl� kararlara neden olabilecek ki³isel beceri veya
yorumlara dayanmak yerine, kümeleme analizi metodunu kullanmak, elimizdeki
çok de§i³kenli bir veri kümesi için matematiksel bir yakla³�m olacakt�r.
Bu çal�³mada, daha do§ru ve kolay iklim bölgeleri edinmek için baz� istatistiksel
enstrümanlarla beraber kümeleme yöntemi iklim verileri üzerinde uygulanm�³t�r.
�lk olarak geçerli bir ay�rma i³lemi için algoritma üzerinde bir geçerlilik kriteri
göz önüne al�nm�³t�r. De§i³ken say�s�n�n her bir deneyde 96 ile 109 aras�nda
de§i³ti§i hali ve Temel Bile³en Analizi (TBA) yoluyla indirgenmi³ boyutlar için
geçerlilik kriterinin onaylad�§� say�larda iklim bölgeleri saptanm�³t�r. De§i³ken
say�lar�ndaki bu de§i³im, ele ald�§�m�z 30o− 50o K 3o− 60o D bölgesinde farkl�
say�larda iklim bölgeleri önerirken, Türkiye'nin tamam�na yak�n�n� kaplad�§�
34o−43o K 23o−47o D bölgesinde devaml� olarak 4 iklim bölgesi saptamaktad�r.
Bu süreç ele al�n�rken, seri bir algoritman�n yan�nda paralelle³tirilmi³ k-ortalama
uygulamas� kullan�larak performans� gözlenmi³tir. Uygulama neticesinde seri
kodun TBA ile elde edilmi³ veri kümesiyle çal�³mas� daha kolayken, paralel
prosedürün yüksek boyutlu küme ile daha iyi sonuçlar verdi§ini görülmü³tür.
Sonuç olarak k-ortalama algoritmas� 30o − 50o K 3o − 60o D ve 34o − 43o K
23o−47o D bölgelerinin iklim s�n��and�rmalar�na yeni bir anlay�³ getirmi³, daha
önce yap�lm�³ olan bölgelendirmelerden farkl� olarak Türkiye co§rafyas�n� 4 s�n�fa
ay�rm�³t�r. Her iki çerçeveye ait deneylerde Türkiye üzerindeki s�n��ar genelde
ayn� seviyede kendini göstermi³tir.
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1. INTRODUCTION

The question

How can one de�ne climate zones with multivariate data clustering?

is the main problem that we have investigated in this study.

1.1 Defining Climate Zones

De�ning the climate zones has been one of the primary research areas of many
scholars. Koeppen and Thornthwaite are among the famous ones who came
up with their own methods [1]. The enthusiasm which has attracted so many
researchers is the aim of �nding the more precise and reliable model after those
frontiers. In this sense, many methods have been tried to be developed and
implemented to obtain models which are close to debate. However, still some
discussions are still going on.

As we have noted above, these determination ways are open to discussion since
those classi�cation rules have the possibility that they are subjectively formed.
In those de�nitions, experts have tried to integrate and weigh all of the variables
and put borders relying on this view. Often they confront the weakness of their
reasonings [2].

1.2 Cluster Analysis

In pattern recognition problems, procedures are named whether if they have
labeled data or not. Procedures that use labeled data are said to be supervised.
On the other hand, if a procedure deals with unlabeled data, then it is called
unsupervised [3]. Among the unsupervised learning methods, it can be claimed
that clustering is the most important one. The goal here is to discover the

1



relationship between the unlabeled data points. More precisely, it is organizing
the data set in a way that similar ones form a cluster whereas dissimilar objects
fall into separate groups [4]. Here is a simple graphical example:

Figure 1.1: Illustration of clustering [4]

In the illustration above, we can easily realize that the data set can be partitioned
into four groups. Each group consists of similar objects where similarity here is
based on the distance between the data points.

Besides the example above which provides an intuition for clustering, there are
some other techniques which have di�erent point of views. These clustering
methods can �t into several taxonomies. Such taxonomies are usually built by
considering: (i) the input data representation,e.g numerical, categorical, special
data structures, etc., (ii) the output representation, e.g a partition or hierarchy
of partitions (iii) probability model used (if any), (iv) core search process,
(v) clustering direction, e.g agglomerative or divisive. While many others are
available, objective function of a clustering algorithm plays an important role.
Actually, it can be said that objective function determines the output of the
clustering procedure for a given set [5].

1.2.1 Clustering Techniques

2



In the previous section, we pointed out that there are several ways to cluster
a data set. Moreover, all methods are capable of performing their jobs for a
multivariate data set. While handling such a problem, every method uses its
algorithm. Finally, we can list these algorithms which are also the names of the
methods. Here is possible taxonomy suggested by Jain for Clustering Algorithms
[5]:

• Heuristic-based

– Pattern Matrix

∗ Prototype-based (k-means, k-medoid)

– Proximity Matrix

∗ Linkage Methods (single link, complete link)

∗ Graph Theoretic (MST, spectral clustering)

• Model Based

– Spatial Clustering

– Mixture Model (Gaussian Mixture)

• Density Based

– Mode Seeking (mean shift)

– Kernel Based (DENCLUE)

– Grid Based (Wave-Cluster, STING)

All the listed algorithms are di�erent approaches for an unsupervised procedure.
Moreover, every algorithm has a cost or criterion function which they have to
optimize. On the other hand, it does not mean that if they have the same input
data, they have the same labeling at the end. As a matter of fact, objective
functions causes big di�erences among the outputs of the algorithms. Jain also
has a study which classi�es di�erent clustering algorithms in a way that takes
into account the distances between their objective functions. D(., .) between the
objective functions F1 and F2 on a data set X is estimated by the distance d(., .)

3



between the data partitions P1(X) and P2(X) respectively. In other words, we
have

Dx(F1,F2) = d(P1(X),P2(X))

where

P1(X) = argmaxP F1(P(X))

After de�ning such a procedure, Jain utilizes the classical Rand's index of
partition similarity and Variation of Information (V I) distance which are both
invariant w.r.t permutations of the cluster indices [5].

Finally, we observe that k-means algorithm shares the same cluster with
Wards method which is one of the hierarchical methods. On the other hand,
other hierarchical methods Single Linkage(SL), Average Linkage(CL), Complete
Linkage (CL)are in the same group [5].

1.2.2 Previous Work

While studies were aiming contributions to zone de�nitions which would provide
e�cient policies on di�erent areas, subjectivity of those qualitative methods
was still disputable. Question arising in this dilemma was if one could use
any quantitative method which would �nalize such debates or drawing borders
between zones should be relied on human expertise only [6]. A desire for preferring
a quantitative method, of course, is not fully objective because data processing
stage and interpreting the results also needs some human intervention. However,
the goal here is to utilize a model which minimizes the bias from subjective point
of views and develop a more transferable and consistent model.

Although those discussions may seem more recent, in 1947 a quantitative model
was already on the scene. In his The Holdridge Life Zone model, Holdridge
�rst comes up with a de�nition biotemperature. His assumption was that,
from the perspective of plant physiology, there is no di�erence between 0 oC

and its below because for these temperatures plants are dormant. Therefore,
the life zones are de�ned �rst taking into account variable-degrees mean and

4



annual temperature. In the second level, he combines other environmental
variables. Boundaries was then determined with respect to logarithmic increases
in mean annual temperature, logarithmic increases in total annual precipitation
and the ratio mean annual potential evapotranspiration to mean total annual
precipitation. After determining regions, he prefers hexagons in a triangular plot
which can be seen on the next page [7].

5



Figure 1.2: Holdridge Life Zone Model [8]

Both in the past and recent studies, many researchers have adopted quantitative
ways while dealing their multivariate data sets. Several local or global
investigations can be listed which considers a quantitative idea as a main
approach. While determining borders between groups, neural networks,
Bayesian approaches, clustering analysis and principal components analysis for
a preprocessing stage have been the pioneering quantitative patterns. A local
study regarding Puerto Rico was done via neural networks along with principal
component analysis [9]. Climate data from 18 stations were reduced to �ve
principal components of seasonal averages of climate data. Then they succeeded
in splitting Puerto Rico into four climate zones.

Dealing with an elicitation problem, one can also handle it with the help of
Bayesian statistical modeling. On the environmental variables from the target
region Normal density estimate was done in Pullar's study [10]. Pullar and
others, balance the prior information with the data classi�cation of environmental
data sets using Bayesian statistical modeling approach. That method is called
model-based clustering which �ts a Normal mixture model to the clusters
associated with regions. Results of the research were applied to eastern bioregions
within the state of Queensland in Australia. The delineation they obtained is the
following:

6



Figure 1.3: Bayesian mixture model classification for southern Queensland with:(a)
no prior, (b) moderate weighting on priors, and (c) strong weighting on
priors. The priors were calculated from the existing sub-bioregions [10].

For identi�cation of representative areas of national ecosystem, climatic and
edaphic factors were exploited since they were also helpful in modeling species
distribution [11]. Bernet and others chose using small-scale digital data to
quantify spatial relation among the environmental attributes. They grouped the
data via cluster analysis and multidimensional scaling. The method was applied
on previously de�ned ecological zone, the Western Belt of the Central United
States with the inputs soil associations, AVHRR remote imagery and a combined
data partition of landform, forest and soils data [12].

Host and others also among the ones who were complaining about the map units of
the classi�cation systems which had resulted from subjectively drawn boundaries
[13]. Moreover, they suggested that those delineations were derived by consensus
and with unclear selection and weighting inputs. Then they utilized geographic
information systems (GIS) with multivariate statistical analysis combined another
statistical tool, principal component analysis (PCA) for the input data from
northwestern Wisconsin.

In classi�cation of geological objects, multivariate clustering was also used. Har�
and Davis, obtained homogenous regions of geology using some environmental
characteristics [14]. A local application took place for western Kansas. Variables
are the geologic properties and the measure for similarity was Mahalanobis
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distances. To have regions of uniform crop yields, Lark refers to clustering a
multivariate data set to have classes with a spatially coherent distribution [15].
Another local study is about western Kenya where soil fertility management is
the main theme [16]. In addition to environmental variables, human variables
were also processed for this research. In the �rst part of the work, variable
selection was done whereas in the second part multivariate statistical techniques
were implemented to construct the strati�cation.

Jensen and his colleges came up with the map that had 84 subregions within
Colorado River Basin [17]. What they preferred was hierarchical clustering
algorithm which is Ward's method in particular. In this work, 19 indirect
biophysical variables identi�ed were bene�ted to produce an ecological clustering
of 7462 subwatersheds in the region. Implementing this agglomerative technique
84 hydrologic subregions were obtained.

To be able to reduce the judgement biases and uncertainty of manual analyses,
Zhou and others were after an objective mapping [18]. The aim was to be able
to delineate ecoregions at multiple levels. By using not only the satellite data,
but also climate and soil information they concluded the hierarchical processing
of 2024 polygons with 66 and 23 regions in Nebraska.

An environmental domain classi�cation was also done in New Zeland [19]. To be
more speci�c, environmental domains were created at 1 km resolution. Procedure
here was done in two stages of multivariate clustering with a data set which
included 10 climatic and landform variables a�ecting plant physiological process.
In the �rst stage, Leathwick and others used non-hierarchical clustering to get
350 zones. In the second part, they applied agglomerative clustering which was a
hierarchical pattern. Finally, they produced a tree showing 20 domains. In both
clustering technique, they take Gower metric to calculate the distances.

Esteban and others investigated the atmospheric circulation patterns related to
heavy snowfall days in Andorra, Pyrenees [20]. Synoptic-scale atmospheric events
were thought the cause of some avalanches. Referring to the intensity of at least
30 cm of snow in a 24 h period, they �rst applied PCA, then the clustering
technique k-means. Rejection of the iterations were also proposed. In this study,
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the synoptic-classi�cation of every heavy snowfall day, and composite maps were
constructed for sea level pressure, 500 hPa geopotential height and 1000-500 m
thickness. Study showed that there were seven circulation patterns, which mostly
had Atlantic component of wind. In a snowfall forecasting case those results were
expected to assist.

Another study regarding atmospheric circulation was also done by Esteban and
his colleagues like the work above. Again, they applied both PCA and CA. In
contrast to the previous research, they aimed to characterize the daily surface
synoptic circulation patterns over the region 30o N-60o N by 30o W-15o E for
the time interval 1960-2001 [21]. NCEP/NCAR Reanalysis Project Data was the
input. K-means algorithm was the clustering instrument imposing a criterion
for the number of clusters. Twenty SLP circulation patterns were acquired.
Furthermore, the composite maps for SLP and 500 hpa geopotential height, the
monthly distribution and long term variability for every circulation patterns was
obtained.

In addition to heavy snowfall research, daily rainfall patterns in a Mediterranean
area had become a source of curiosity for Penãrrocha and others [22]. They were
pursuing the classi�cation of daily rainfall patterns in the Valencia region which
gets a high level of rainfall with a precipitation level 800 mm. In this work, one of
the two perspectives were emphasizing on torrential rain events between 1971-95
acquired geographical distributions of the daily precipitation maxima whereas in
the second one PCA and CA were visited. From both perspectives, they got
consistent results re�ecting the main characteristics of the daily precipitation
patterns.

Climate clustering via k-means method was employed on temperature data
besides precipitation for Canada [23]. Spatially coherent patterns of variations
between two decades 1976-85 and 1986-95 was a conclusion of previously done
research. In this, works the aimed to expand previous results with �ner time
intervals which are also varying. Moreover, to get more accurate results they had
a greater number of stations. During the grouping process, k-means algorithm
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was implemented here, too. Authors, then had variations in seasonality of
temperature and precipitation.

Hargrove, whom we were initially inspired from has also several studies which
are mainly about de�ning ecoregions. With Luxmoore, he has a research on
a spatial clustering technique for the identi�cation of customizable ecoregions
where they used statistical analysis package (SAS) linked with GIS with 50-year
mean monthly precipitation, total plant-available water content of soil, total
organic matter in soil, total Kjeldahl soil nitrogen and elevation as input
variables [24]. Hargrove's another study with Ho�man on de�ning the ecoregions
is involving another contribution. At this time, they parallelized an existing
k-means algorithm for a huge data set. They developed a code on a highly
heterogeneous Beowulf-class parallel machine constructed from surplus 486- and
Pentium-based PCs. Not only reducing the time consumption via parallel
implementation, but also quantifying representativeness and edge characteristics
were other components that made this study di�erent [25]. Figure 1.4 is an
example from their ecoregion classi�cation approach. In addition to this study,
Hargrove was involved another research with Mahinthakumar, Ho�man and
Karonis where GLOBUS which is a metacomputing software toolkit was used
to achieve the parallel version [26].

Within the region where Turkey is focused on, there are some previous de�nitions
of zones also. First is the one which was accepted by Turkish scholars and was
de�ned via conventional approaches and still in use [27]. Another study done by
Unal and others has suggested 8 climatic zones which were obtained relying on
max, min, mean temperatures and precipitation variables processed via Ward's
method [27]. Whereas in the previous studies, the Aegean and Marmara regions
were considered as separate zones, in this cluster analysis they have found that
those two districts are in the same climatic division. As they used 4 variables,
they also made experiments with mean temperature and precipitation separately.
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Figure 1.4: 50 distinct ecoregions for US by using 9 environmental conditions
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2. METHODS

In this chapter, we are going to introduce some basic statistical instruments
that we used during our study. First, the cluster analysis will be discussed
by explaining the details of two main clustering algorithms, k-means algorithm
and hierarchical algorithm. Secondly, since those methods are for dealing with
multivariate data sets, principal component analysis is another mathematical
modeling to achieve a reduction in the dimension.

2.1 Instruments for Cluster Analysis

2.1.1 Similarity

Since our job here is to decide on the membership of a sample from the data set,
we �rst have to be able to measure the similarity. The most apparent answer for
this question is to select distance metric d where d can be de�ned in many ways.
Here are some of the best known distance measures:

• Minkowski Metric

• Euclidean Metric

• Manhattan Metric

• Mahalanobis Distance

Minkowski metric is a more general form where some others can be extracted
from.

d(x,x′) = (∑d
k=1 |xk− x′k|q)1/q

where d(x,x′) is the distance between x and x′.
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The Euclidean metric is a particular case of Minkowski metric. In this case we
have the distance as following:

d(x,x′) = (∑d
k=1 |xk− x′k|2)1/2

While doing the calculations, considering the similarity in terms of the squared
Euclidean does not matter.

Manhattan metric which can also be intuitively seen from Minkowski metric is

d(x,x′) = ∑d
k=1 |xk− x′k|

It is also known as taxicab distance.

Mahalanobis distance is

d(x,x′) = (x− x′)tΣ−1(x− x′)

where Σ−1 is the inverse of the covariance matrix [28].

2.1.2 Criterion Functions For Clustering

As we pointed out before every clustering algorithm has criterion or cost function
that is to be optimized. We also know that every clustering may have di�erent
outcomes depending on the objective function. The Sum-of-Squared-Error
criterion, related Minimum Variance Criteria, Scatter Criteria, The Trace
Criterion, The Determinant Criterion and Invariant Criterion are the criteria that
serve for di�erent clustering techniques [3]. In this part we are going to depict
The Sum-of-Squared-Error criterion which plays an important role for grasping
the idea behind k-means clustering.

Assume that we have set X = x1, ...,xn which is unsupervised and want to split this
set into k partitions. Let ni be the number and µi be the means of the samples
belonging to Gi where

µi =
1
ni

∑
x∈Gi

x (2.1)
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So we have the squared error summation in the following form:

Je =
k

∑
i=1

∑
x∈Gi

‖x−µi‖2 (2.2)

As one can realize, �rst the di�erences are taken within every partition. Secondly,
squared di�erences or distances are summed up over the whole set and this is
called the Sum-of-Squared-Error The goal in the following section will be to
minimize this error.

2.1.3 Obtaining the minimum for The Sum-of-Squared-Error criterion

After deciding on the appropriate criterion function a discrete optimization takes
place to �nd the minimum. One of the iteration steps, we obtain an allocation
which provides sum of squared errors at a desired level. Although the possibilities
of being trapped in a local minima, accepting a solution which may not be the best
and �nding di�erent solutions depending the initial points exist, computational
aspect which seems to be handled easily makes iterative optimization appealing.

The notations from preceding part are put into this form:

Je =
k

∑
i=1

Ji (2.3)

where we have Ji's like before

Ji = ∑
x∈Gi

‖x−µi‖2 (2.4)

and the µi, mean of each partition Gi, is

µi =
1
ni

∑
x∈Gi

x (2.5)

Suppose that x̂ is in Gi at some time of the iteration and may be moved to G j.
With a new member, mean of G j becomes

µ j = µ j +
x̂−µ j

n j +1
(2.6)

which leads a change in the sum of squared errors.
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J∗j = ∑
x∈G j

‖x−µ∗j ‖2 +‖x̂−µ∗j ‖2 (2.7)

= ( ∑
x∈G j

‖x−µ j− x̂−µ j

n j +1
‖2)+‖ n j

n j +1
(x̂−µ j)‖2 (2.8)

= J j +
n j

n j +1
‖x̂−µ j‖2 (2.9)

Since the sample x̂ is excluded from Gi, both µi and Ji is a�ected. In a similar
fashion above, one can update µi. Let µ∗i be the new mean after move. Then,

µi = µi− x̂−µi

ni +1
(2.10)

and

J∗i = Ji− ni

ni−1
‖x̂−µi‖2 (2.11)

Finally, we are about to decide whether to move the sample from one cluster to
another is worthwhile. To accept such a movement from Gi to G j, an increase in
the sum of squared errors must not occur. Namely if the following comparison
holds, one can have the advantage of moving sample x̂.

ni

ni−1
‖x̂−µi‖2 >

n j

n j +1
‖x̂−µ j‖2 (2.12)

From the equation above we can construct a motivation for k-means algorithm
by concentrating on the factors regarding the means. It can be claimed that such
a condition is mostly have a tendency to occur when x̂ is closer to µ j than µi.
Here is the sketch of the procedure [3]

begin initialize n,k,µ1,µ2, ...,µk

do randomly select a sample x̂

i← argmini′ ‖µi′− x̂‖ (classify x̂)

if ni 6= 1 then

ρ j = n j
n j+1‖x̂−µ j‖2 j 6= i
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ρ j = n j
n j−1‖x̂−µi‖2 j = i

if ρ` ≤ ρ j ∀ j then move x̂ to G` and calculate Je, µi, µ`

until no change in Je in n attempts

return µ1,µ2, ...,µk

end

2.2 Clustering Algorithms

2.2.1 K-means Algorithm

In the previous section, we acquired a stepwise algorithm where update is done
after each sample is reclassi�ed. On the other hand with the same idea an update
is also possible after n samples are reclassi�ed. This method is called k−means

which has advantages with respect to the iterative optimization procedure which
sustains some disadvantages. It is more preferable due to the stuck risk of iterative
optimization approach. Moreover, problems depending on the order in which
the candidates selected are also the weak sides of iterative optimization when
compared to k−means.

Relying on the squared error approach k-means is the simplest fashion for
clustering [28]. In addition to its simplicity, as the sample size increases,
conditions are found that ensure the almost sure convergence [29].

The procedure starts with a random initial assignments for clusters centers and
the classi�cations continues with respect to the similarity between the present
centroid and the pattern. After the comparison of the vicinity of the pattern to
all centroids, it is moved to the group which has the nearest one and a new mean
is computed. This process is allow to go on until the convergence criterion is
satis�ed [30].

begin initialize n,k,µ1,µ2, ...,µk

do classify n samples according to nearest µi

update µi

16



until the convergence criterion is met

return µ1,µ2, ...,µk

end

In addition to the superiorities of k-means on squared error procedure, it has also
a attractive side in terms of complexity when compared some other clustering
techniques. Having a more bearable computational burden O(n), it is seen an
easily implemented algorithm whereas, for instance, hierarchical methods require
O(n2) where n is the number of items to be clustered.

A major problem with k-means is the outcome also depends on the initialization
procedure. In addition, distribution of the data sometimes leads di�erent
outcomes with di�erent initial assignments [28]. Another, point which is open
to discussion is the validity of the cluster numbers. Namely, we should also
decide how well the cluster arrangement is appropriate to �nalize the procedure.
In the next chapter, we will also focus on this problem.

2.2.2 Hierarchical Clustering Algorithms

Hierarchical clustering is often portrayed as the better quality clustering
approach, but is limited because of its quadratic time complexity [31]. Its quality
may be observed if an appropriate distance metric can be de�ned to obtain the
similarity, in this case a distance matrix. From this point of view, hierarchical
clustering is the ideal method of clustering, but has not been preferred much due
to an O(n2) complexity [32].

There are two major types of hierarchical techniques: divisive and agglomerative.
Agglomerative hierarchical techniques are the more commonly used. The idea
behind this set of techniques is to start with each cluster comprising of exactly
one object and then progressively agglomerating (combining) the two nearest
clusters until there is just one cluster left consisting of all the objects. Nearness
of clusters is based on a measure of distance between clusters. All agglomerative
methods require as input a distance measure between all the objects that are to
be clustered. This measure of distance between objects is mapped into a metric
for the distance between clusters (sets of objects) metrics for the distance between
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Figure 2.1: Agglomerative Clustering [33]

two clusters. The only di�erence between the various agglomerative techniques
is the way in which this inter-cluster distance metric is de�ned. [32]

In order to measure inter-clusters distances, there are three graphical tools.
These graphical methods are single linkage, complete linkage and average linkage
methods.

a. Single Link: The distance between any two clusters is the minimum distance
between two points such that one of the points is in each of the clusters.

b. Complete Link: The distance between any two clusters is the maximum
distance between two points such that one of the points is in each of the clusters.

c. Average Link: The distance between any two clusters is the average distance
between two points such that each pair has a point in both clusters [34].

For the Single Linkage case we have the procedure below:

1. Determine and store the distance between each pair of clusters. (Initially,
each point is considered a cluster by itself) Also, for each cluster determine its
nearest neighbor.

2. Determine the pair of clusters with the smallest distance between them and
agglomerate them.

3. Update the pairwise distances and the new nearest neighbors.

4. If more than one cluster still exits goto Step2.

2.3 Parallel Clustering Algorithms
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Although hierarchical clustering algorithms have a higher computational
complexity w.r.t k-means algorithm, there have been many studies to reduce
complexities of both techniques via parallelization. Besides the technical report
prepared by Olson in which it is stated that complexity of the hierarchical
clustering procedure is reduced to O(n logn) on an appropriate architecture
and network, Zhihua and Lin have acquired the same complexity in a recent
study with n/ logn number of processors [35]. Nearby the e�orts for handling
hierarchical clustering, k-means clustering has been also parallelized despite its
low complexity.

In a physical problem concerning N -body simulation, k-means algorithm has
been utilized in a parallel fashion where weights of the observations were also
included [36]. Furthermore, studies have also done to enhance the performance
of k-means method. Jinlan and others have aimed to reduce the number of
iterations via re�ning the initial centroids with a parallel version also [37].

Likely, we will also prefer using parallel k-means algorithm where we become
capable of handling a large data set more easily. For a high dimensional variable
collection, data partitioning will lower the size of work per processor which
provides us save time.

2.4 Principal Component Analysis

Multivariate data analysis may seem to be a tedious job while dealing with
a high dimensional data space. Visualizing, processing such a huge data set
becomes a cumbersome and time consuming process many times. Therefore,
Principal Component Analysis is preferred as an easy and reliable way to be able
to overcome such obstacles. Moreover, it provides a reduction which is a loss of
information at a minimized level [38]. It has a wide range spectrum that can be
utilized. From neuroscience to computer graphics; from environmental sciences
to bioinformatics PCA is an appealing statistical tool due to its simple nature
and the ability to extract relevant information from confusing data sets.

The solution that we will sketch was derived Hotelling in 1933 [40]. The idea
behind PCA is projection. We project our raw data to another space. Namely,
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let X be our data set in this case, then the projection of X the direction of w is:
Z = wT X . Since we are looking for the most representative bases, we have to �nd
w such that Var(z) is maximized. After some algebra as follows, we obtain an
equation where the selections of w is seen.

Var(Z) = Var(wT X) = E[(wT X−wT µ)2] (2.13)

= E[(wT X −wT µ)(wT X −wT µ)] (2.14)

= E[wT (X −µ)(X−µ)T w] (2.15)

= wT E[(X −µ)(X−µ)T ]w = wT Σw (2.16)

where we conclude that Var(X) = E[(X−µ)(X−µ)T ] = Σ

To get a unique solution, assume that ‖w‖=1 and solve the equation below:

max
w1

wT
1 Σw1−α(wT

1 w1−1) (2.17)

If we take the derivative of the equation (2.17) and equate it to zero, we have

2Σ−2αw1 = 0 (2.18)

Σw1 = αw1 (2.19)

One can realize from (2.19) that we have a eigenvalue equation. Namely, w1 is
eigenvector of Σ

Finally, to make Var(z) maximized Var(wT X) must be maximized by choosing the
largest eigenvalue since

Var(z) = Var(wT X)

When we want to get the second principal component, it means that we are now
after w2 which makes Var(z2) maximized under the constraints ‖w2‖= 1 and, of
course, orthogonal to w1. So,
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max
w2

wT
2 Σw2−α(wT

2 w2−1)−β (wT
2 w1−0) (2.20)

Again taking the derivative w.r.t wT
2 in this case and multiplying by w1, what we

have now is the eigenvalue equation for w2.

Σw2 = αw2 (2.21)

Iteration above is done as until the desired number of orthonormal bases are
obtained. All the work done above can be summarized in Z = W T (X −µ) where
the columns of W are the eigenvectors of Σ and µ is the mean of sample X [38].
Figures below also illustrates the process.

Figure 2.2: Visualization of 3D Data Space [39]
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Figure 2.3: Standardized Data [39]

Figure 2.4: Representation of the data set with 2 principal components [39]
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2.5 Visualization Techniques

In visualization process, we preferred NCL toolbox where it stands for
The NCAR Command Language. NCL is a product of the Computational
and Information Systems Laboratory at the National Center for Atmospheric
Research (NCAR), is a free interpreted language designed speci�cally for scienti�c
data processing and visualization.

NCL has a wide variety input output options. It can read an write netCDF-3,
netCDF-4, HDF4, binary, and ASCII data, and read HDF-EOS2, GRIB1 and
GRIB2.

It can be run not only in Linux environment, but also can be run on Solaris, AIX,
IRIX, MacOSX, Dec Alpha, and Windows with Cygwin/X platform.

NCL can be run in interactive mode, where each line is interpreted as it is entered
at your workstation, or it can be run in batch mode as an interpreter of complete
scripts. One can also use command line options to set options or variables on the
NCL command line.

In the areas of �le input and output, data analysis, visualization, the power and
utility of the language are noticeable.

NCL has many common features with other programming languages, in terms
of types, variables, operators, expressions, conditional statements, loops, and
functions and procedures. In addition to common programming features, NCL
also has features that are not found in other programming languages, including
features that handle the manipulation of metadata, the con�guration of the
visualizations, the import of data from a variety of data formats, and an algebra
that supports array operations [41].
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3. METHODOLOGY

3.1 Data

In our experiments, we bene�t from the Climatic Research Unit data set which
has 10′ latitude/longitude resolution of monthly mean surface climate over global
land areas except Antarctica [42]. Within climatology, there are eight climate
components which are precipitation, wet-day frequency, temperature, diurnal
temperature range, relative humidity, sunshine duration, ground frost frequency
and wind speed. In addition to those variables, coe�cients of variation of
precipitation is also calculated. From the same study, it is noticed that data
are interpolated from a data set of station means for the period 1961-1990.

A similar study were done in a lower resolution. In other words, this work
represents an improvement on an earlier gridded climatology at 30′ lat/lon
resolution through an increased spatial resolution. Contribution of additional
station data and inclusion of precipitation variability which was calculated
through a probability distribution of monthly precipitation [42].

3.1.1 Quality Control

The CRU work has also used World Meteorological Organization and National
Meteorology Agency data collections. The data obtained from those sources were
subjected to a comprehensive series quality control checks by National Climatic
Data Center (NCDC) and NMA respectively. However, all data were also checked
through a 2-stage check [42].

1. Standard series of automated tests were done on individual station normals

(a) internal consistency checks, e.g ensuring that the monthly mean follow
a consistent seasonal cycle and the prede�ned absolute limits are not
exceeded
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(b) between-variable consistency tests, e.g ensuring that monthly minimum,
mean and maximum temperatures are consistent and that months with
zero precipitation have zero wet-days.

2. During the interpolation of station data interpolation diagnostics were enabled
in order to identify station-months that had large residuals, and were
potentially in error. As a general rule, data that failed these QC tests were
removed from the interpolation. In some cases, however, the data could be
compared and replaced with normals calculated from the CRU monthly station
time-series which was also described in this work.

3.1.2 Interpolation of Climate Variables

The station climate statistics were interpolated using thin-plate smoothing
splines (ANUSPLIN) developed by Mike Hutchinson at the Australian National
University. It is a technique which was originally described by Wahba in 1979
and its robustness may be observed in areas with sparse or irregularly spaced
points [42].

Trivariate thin-plate spline surfaces were �tted as functions of latitude, longitude
and elevation to the station data over several regional domains. Taking into
account the elevation, topographic controls were also enabled over climate.
Moreover, for some variables, for instance precipitation, there is a huge number of
station. Due to the memory constraints of the computers, authors preferred to do
the interpolation over sub-areas instead of the large continental domains. Since
sub-areas were determined considering the overlapping areas, discontinuities were
avoided after merging process [42].

The spline-�tting program made them have the stations where the largest
residuals from the �tted surfaces were observed. Via this labeling, they were
able to identify and check potentially erroneous stations. Nonetheless, in some
cases those were accepted to be correct and their positions as outliers were seen
as some results that come from local climatological variations which could not
be resolved with available network. On the other hand, a number of stations
that apparently have some mistakes including inaccurate locational or elevation
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information, typographic errors in which data for a single month did not �t in
with the seasonal pattern. Stations in this pattern were corrected or, excluded
from the interpolation set if not possible to overcome it.

Like many numerical approaches, interpolation done here also has some errors in
it. For geostatistical interpolation to be considered well, the data should have
some spatial predictability. Variability in the data that is not predictable (in
this case, variability that is not a function of latitude, longitude and elevation)
is accepted as noise. If the data set has much noise, its predictive error also will
be greater as one moves from control stations.

In the derivation of CRU data set, Lume and others have used generalized
cross validation technique (GCV ) to obtain an estimate of predictability. GCV
procedure is simply removing each data point in turn and summing, with
appropriate weighting, the square of the di�erences between the omitted point
and that predicted by a surface �tted using all the other points [42].

3.1.3 Data Preprocessing

All the variables listed above are in ASCII �le format with 10′ latitude/longitude
resolution in a gridded pattern as follows:

1. All grid �les except elevation (elv) and precipitation includes latitude,
longitude, 12 monthly values (Jan to December) where latitudes and longitude
are in degrees.
format='(2f9.3,12f7.1)'
Example (�rst line of temperature �le):
-59.083 -26.583 0.2 0.3 0.2 -1.9 -6.0 -9.8 -13.6 -9.2 -8.1 -5.3 -2.3 -1.1

2. The �le for precipitation includes latitude, longitude, 12 monthly means of
precipitation, 12 monthly CVs of precipitation
format='(2f9.3,24f7.1)'
Example (�rst line of precipitation �le):
-59.083 -26.583 105.4 121.3 141.3 146.7 159.6 162.4 141.5 151.1 141.6 124.9
110.0 93.9 35.2 38.7 38.4 27.5 49.5 40.8 50.8 33.5 42.2 56.6 35.5 43.4
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3. The �le for elevation has latitude, longitude, elevation
format='(3f9.3)'
Example (�rst line of elevation �le):
-59.083 -26.583 0.193

For our study we select reference points that we exclude from the raw data.
Namely, since we are aiming to determine climatic characteristics of both 30o-50o

N by 3o-60o E and 34o 43o N by 23o 47o E regions whose common aspect is that
they include Turkey.

Exclusion has been done by using Matlab for both regions from the data set of
every variable which means that we have elevation, 24 columns for precipitation
and remaining variables 7x12 columns in each row. In addition to this 97 columns
we have also 2 columns for latitude and longitude values at the beginning of our
set.

Since the data set is huge with 97 columns and 31208 row for the �rst region
de�ned above, we have also worked with a reduced dimension. Acquiring a
reduced dimension was possible �nding the principal components of our data
set. The principal component analysis procedure was also handled with Matlab
via its statistical toolbox. In both dimensions, initial and reduced, we
have not omitted the standardization. In other words, we �rst utilized autosc

function of Matlab over our initial data set and then princomp for PCA .

3.2 K-means on Climatology

In the previous chapters, we had pointed out that there are several applications
of quantitative techniques for de�ning zones. In particular, k-means has also a
wide range application examples in semioriental sciences. Hargrove and others are
among the ones who utilized k-means algorithm and its parallel version in de�ning
ecoregions. Since they have also some additional data besides the climatic data
set, they were able to determine those zones [25]. On the other hand, we also
employed k-means algorithm with only climate data. Slope, soil bulk density,
mineral soil depth, bedrock depth variables does not exist within our variables
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Figure 3.1: k-means algorithm [45]

whereas we have relative humidity, sunshine duration, ground frost frequency
and wind speed in contrast to their study.

3.2.1 K-means procedure

The algorithm we used was written Wei-keng Liao who is a Research Assistant
Professor at Electrical Engineering and Computer Science Department at
Northwestern University. The procedure in the algorithm relies on the notion
that was developed by J. MacQueen, in 1967.

In the general description of k-means algorithm it is stated that initially random
points are selected as many as the desired number of clusters. However, if we are
to determine k clusters, without violating randomness, our algorithm takes the
�rst k data points as initial cluster centers or centroids.In our case, clusters can
be considered as climatic zones or regions.

28



After the initialization where the centroids are from the �rst k points, each data
row is examined. In fact, distance from every point to the centroids are computed.
A sample is then moved to the nearest centroid's cluster. If the sample examined
moves from one group to another, the control variable δ is incremented by 1. Until
the stability, there will be shifts;therefore, after all the members are checked in
every step, a new mean is calculated. What we have obtain is the new centroid
that will be used in the calculation of the distance.

Procedure above stops when the stopping criterion is satis�ed. As a stability
measure, a threshold, which is .0001 in our case, is given by the user in the code.
When the ratio δ/N is remains under the threshold, process ends with the �nal
con�guration of memberships.

3.2.2 Number of Clusters

Deciding on the number of clusters is another area for some researchers. Among
the separation measures, validation techniques developed by Davies-Bouldin and
Dunn are the best known ones. Nonetheless, there are studies which are capable
of illustrating de�ciencies of those indices and pursuing new ones [43]. In
our experiments, besides the threshold which provides a stabilized clustering
con�guration, we also pose a criterion which was developed by Siddheswar and
Rose [44].

Their method suggests another way of overcoming the obstacles for determining
the number of clusters by incorporating a technique based on the intra-cluster
and inter-cluster distance measures. In an image-segmentation experiment with
k-means clustering algorithm, they used their method and compared the results
with Davies-Bouldin and Dunn indices. In conclusion, their measure worked
more consistently for the natural images than both indices. Namely, the number
of clusters produced by this measure produced good segmentation results for each
of the natural images as opposed to the previous measures.

In this mentioned measure compactness is being questioned. Because k-means
intends to minimize the sum of squared distances from all points to their centroids,
normally compact clusters should be obtained. Therefore, distances from the
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points to centroids are used to determine if the present con�guration is compact.
Naturally, distance between a point and its cluster center is computed �rst.
Secondly, average of these distances calculated in the following fashion:

intra =
1
N

k

∑
i=1

∑
x∈Ci

‖x− zi‖2 (3.1)

where N is the number of samples, k is the number of clusters, and zi is the cluster
center of cluster Ci. At �rst glance, one can assert that this quantity should be
minimized.

Another component of this method is inter-cluster distance which is to be
maximized as opposed to intra-cluster quantity. It has to be maximized because
they aim to obtain clusters centers which are as far as possible away from each
other. Relying on this statement, they calculate mutual distances of centroids.
In order to work with the smallest one, minimum of those distances are also
calculated.

inter = min(‖zi− z j‖2), i = 1,2, ...,k−1 j = i+1, ...,k (3.2)

It is because, if we take the smallest one and maximize it other distances will
automatically be bigger than this value.

Both complements are combined in a way that relation between them roughly
explains how well the clustering is �nalized. While minimizing the distances
within the clusters is enabling to have compact groups, maximizing the
inter-cluster gives us well separated clusters. A ratio of those two results gives us
the validity index. In other words,

validity =
intra
inter

=
1
N ∑k

i=1 ∑x∈Ci ‖x− zi‖2

min(‖zi− z j‖2)
(3.3)

Obviously, validity de�ned above is going to be minimized where we will have
minimized intra and a maximized inter value. Likewise, in our experiments we
preferred the same validity measure while deciding about the number of climate
zones which would have an optimal con�guration.
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3.3 Visualization

At the end of the clustering process, we get labeled samples such that each has
number varying from 1 to the desired number of clusters. At this level, it is not
possible to visualize the labeled data since our matrix has missing values due to
the nature of data set which only cover the land area. In order to be able to cover
all grid for the mentioned latitudes and longitudes, we �ll zeros for sea areas in
the matrix. Finally, we have 120x342 matrix for the 30o-50o N by 3o-60o E and
54x144 matrix for 34o-43o N by 23o-47o E regions in which coordinates of sea
areas have zeros.

After forming matrices consisting of numbers from zero to the number we desired,
we construct contours over the maps con�ned by the coordinates above. For
drawing those contours, we used the toolboxNCL. NCL �rst reads the input from
an ASCII �le which contains the matrices that we formed beforehand. Secondly,
it reads the speci�ed �les containing latitudes and longitudes again from ASCII
�les. When I/O stage �nishes, it generates a map regarding our assignments for
the resources of associated variable.
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4. PARALLEL K-MEANS ALGORITHM

In most cases where one has to handle a large data set or intensive computation
takes place, parallel computing appears to be the �rst choice of the user. Due
to its characteristics of dividing the job into small pieces, time consuming jobs
become easy to achieve in a shorter time period. Besides reducing the size of the
data set via data partitioning, computational complexity of a particular problem
can also be reduced considerably [46].

In our case, we do not have a large number of points, but we have a high
dimensional data space. Dealing with a 40140x109 matrix may not be always
easy depending on the computation that we try to achieve. With the algorithm
having an O(n) complexity, parallelization process saves time.

The platform that we have run our code is Redhat 3.0 AS + SFS operating
system in ITU HPCC lab where we utilized hp clusters. It is a distributed
environment having nodes with Intel(R)Xeon(TM) 3.4 GHZ processors and 2x2
GB RAM. The communication infra-structure is myranet.

4.1 Parallel k-means Procedure

In contrast to the serial procedure, I/O is also done in parallel. We used
Intel MPI library for the communication between the nodes. Every processor
participates the reading process by reading the assigned partition which was
previously arranged regarding the information in binary input �les. After getting
the data, �rst members of the whole data set, which are naturally in processor 0,
are broadcasted to all processors as the initial centroids by using MPI_Bcast.
In every processor, standard k-means procedure takes place and every sample is
associated with a group. Meanwhile, whenever a shift occurs from one cluster
to another our control variable δ is incremented by 1. Once the assignments are
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completed, members of each group is summed separately. During the summation
process, members of the clusters are also counted [45].

It is dependent on the δ if we need one more iteration. Namely, via
MPI_Allreduce function each processor has the sum of all δ s. Likewise, every
processor becomes able to take the average of summed coordinates and summed
counts which helps us to calculate the new centroids. Since total number of the
objects is also known, call it N in this case, ∑nproc

k=1 δk
N is compared with the threshold.

If the comparison leads to another iteration, updated cluster centers are put into
process again. Iterations go on until the threshold is reached.

4.2 Results and Conclusion

As we mentioned before, we have two data sets used in computations. In addition
to low complexity of k-means algorithm, sizes of those inputs give idea about the
scalability of the algorithm. When we observe the outputs with a variety of input
types where number of clusters and the dimension of the sets are separately
examined, it becomes apparent under which conditions our code performs better.

More precisely, two point of views make us be able to compare the facts behind
the performance. One of those is computational burden which is related to the
number of clusters. As the number of clusters is increased, more distances are
calculated. In other words, all the samples are examined as many as the speci�ed
number. Whenever the number is low, less computation is required as opposed
to greater ones. Therefore, for a particular data set, computation time may
increase for large number of clusters. The second approach is to consider about
the dimension. For a given number of points, if the dimension increases, time
consumption also increases.

Regarding the criterion above, we pay attention how well the parallel
implementation performs. To be able to gain knowledge depending on the size
of the data sets, we did experiments for two cases. To see what happens if we
work a larger data set for the same number of clusters, we run the code with both
31208x109 and 5465x109 matrices. Since the number of centroids that are to be
examined for each member of both data sets, the only independent variable that
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is to be observed is the size. Outputs from two experiments show that algorithm
is scalable when the large data set is taken as the input. In addition to scalability,
e�ciency does not drop below % 76 whereas 5465x109 matrix has an e�ciency
within the range from % 98 to % 39 which is drastically bad as it can be realized
from the tables and the �gures below.

Table 4.1: Speed Up and Efficiency

1st Region 2nd Region
# of procs speed up efficiency speed up efficiency
2 1.87 0.93 1.96 0.98
3 2.77 0.92 2.85 0.95
4 3.68 0.92 3.76 0.94
5 4.52 0.90 4.48 0.90
6 5.36 0.89 4.95 0.82
7 6.06 0.87 5.22 0.75
8 7.10 0.89 5.53 0.69
9 7.67 0.85 6.27 0.70
10 8.34 0.83 6.27 0.63
11 9.14 0.83 6.27 0.57
12 9.94 0.83 6.27 0.52
13 10.19 0.78 6.27 0.48
14 11.00 0.79 6.27 0.45
15 11.40 0.76 6.27 0.42
16 12.19 0.76 6.27 0.39
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Figure 4.1: Speed Up for the 1st data set with 6 clusters

Figure 4.2: Speed Up for the 2nd data set with 6 clusters
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Figure 4.3: Efficiency for the 1st data set with 6 clusters

Figure 4.4: Efficiency for the 2nd data set with 6 clusters
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It can be stated that although we have an embarrassingly parallel algorithm with
an O(n/p) complexity, the time for communication dominates over the time for
computation. In other words, after a point the messaging load becomes so heavy
that parallel processing does not speed up the computation. As a result, we can
claim that as the dimension of the data is set increased, we can have more scalable
and e�cient outcomes in further applications.
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5. K-MEANS IMPLEMENTATION ON CLIMATOLOGY

Until this section we have given some preliminary work that we are going to utilize
in this section. Our work is maintained with both data sets belonging to the
regions 30o-50o N by 3o-60o E and 34o-43o N by 23o-47o E. The purpose behind
these selections comes from the fact that those frames both include Turkey in
narrower and broader views. Generally speaking, experiments takes into account
�rst the whole data set which has 109 variables where combinations of cv and
elevation are observed. Secondly, the reduced version of them for those di�erent
data sets via PCA are used to obtain zones. Not only the memberships, but
also the intermediate steps are also colored by using NCL toolbox in the further
applications which will be explained later.

5.1 Experiments with high dimensional data set

Through a standardization process, we have a scaled data set where we prevent
a column from dominating others while doing the calculations. We do our
experiments with the data set gathered from the region 30o-50o N by 3o-60o

E and 34o-43o N by 23o-47o E. Since our data are con�ned only with land areas,
we have 31208x109 data matrix instead of 41040x109 which corresponds to all
the points within this frame. Likely, for the second area we have 5465x109 where
actual grid consists of a 7776x109 matrix.

The algorithm originally does not deal with how to obtain intra and inter
distances. We modi�ed the code such a way that it runs a reasonable number of
times. More precisely, we pose an upper bound for the number of clusters and we
make the code run until the upper limit. We determined this upper limit as 20.
However, when we confront with very similar validity indices we take one which
indicates the greatest number of clusters.
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For the region 34o-43o N by 23o-47o E, to be able to compare the current 7
geographic zones for Turkey we constrain it with 10 in the second frame.

Instead of a straightforward clustering, we have preferred combining the
environmental variables. Namely, besides taking the principal components of
the data set, we have also tried to observe a�ect of coe�cient of variations for
precipitation and the topographic component, elevation, on clustering.

Initially, all the variables including both cv and elevation were are tested for two
regions. For the matrix 41040x109 we obtain 6 clusters whereas our algorithm
suggests 4 as the optimum number of clusters for 5465x109 data set. Ratios for
those sets are 0.18539 and 0.53898 which can be compared with the other validity
results from the tables below:

Table 5.1: Validity Results for 30o−50o N 3o−60o E with CV and Elevation

# of clusters Intra Distance Inter Distance Validity
3 55.304 123.655 0.44724
4 45.735 99.112 0.46145
5 41.467 76.839 0.53966
6 37.621 202.930 0.18539
7 35.267 99.254 0.35532
8 34.328 55.137 0.62261
9 32.779 71.268 0.45994

10 28.029 55.528 0.50477
11 26.608 56.659 0.46962
12 26.089 37.250 0.70038
13 24.701 43.530 0.56744
14 24.470 70.168 0.34874
15 24.046 67.537 0.35604
16 22.268 25.133 0.88602
17 21.406 35.247 0.60733
18 21.567 24.299 0.88758
19 19.633 31.997 0.61357
20 19.923 24.746 0.80508
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Table 5.2: Validity Results for 34o−43o N 23o−47o E with CV and Elevation

# of clusters Intra Distance Inter Distance Validity
3 63.675 72.557 0.87758
4 54.116 100.405 0.53898
5 48.430 73.841 0.65587
6 45.951 36.083 1.27350
7 41.875 37.285 1.12310
8 40.435 41.576 0.97254
9 36.179 44.525 0.81254

10 34.413 43.903 0.78385
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Figure 5.1: validity for every number of cluster

Figure 5.2: validity for every number of cluster
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Figure 5.3: 30o−50o N 3o−60o E with cv and elevation

Figure 5.4: 34o−43o N 23o−47o E with cv and elevation
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If elevation is excluded, then we have a new valid number of clusters. In this
case, we have 108 columns for each data set and 10 zones with 0.11552 whereas
4 again with 0.54367 respectively. It can be easily seen from the graphs that at
10 and 4 we obtain the minimum values. Thus, it gives us the maps accordingly.

Table 5.3: Validity Results for 30o−50o N 3o−60o E with CV without Elevation

# of clusters Intra Distance Inter Distance Validity
3 54.316 123.706 0.43908
4 44.987 98.984 0.45449
5 40.689 75.713 0.53742
6 37.103 70.108 0.52923
7 34.650 98.844 0.35055
8 33.713 55.587 0.60648
9 29.677 73.249 0.40515

10 28.218 244.263 0.11552
11 26.173 53.949 0.48515
12 24.820 34.051 0.72889
13 24.314 58.960 0.41239
14 24.088 41.447 0.58116
15 22.615 44.851 0.50422
16 21.773 25.124 0.86662
17 21.154 32.249 0.65596
18 20.177 26.218 0.76957
19 20.001 37.248 0.53697
20 19.682 33.431 0.58873

Table 5.4: Validity Results for 34o−43o N 23o−47o E with CV without Elevation

# of clusters Intra Distance Inter Distance Validity
3 63.128 70.440 0.89620
4 53.614 98.616 0.54367
5 48.091 71.254 0.67493
6 45.631 35.649 1.28000
7 41.568 37.306 1.11426
8 39.625 51.109 0.77531
9 35.896 44.102 0.81393

10 34.135 43.684 0.78141
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Figure 5.5: validity for every number of cluster

Figure 5.6: validity for every number of cluster
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Figure 5.7: 30o−50o N 3o−60o E with cv without elevation .

Figure 5.8: 34o−43o N 23o−47o E with cv without elevation .
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Now we consider another case in which both cv and elevation are excluded from
the data sets. However, what we confront here is that there are competing
numbers of clusters for the broader region. After the computation, which can
also be noticed from the graphs, 4 and 14 seem to compete with the values
0.43134 and 0.44215 respectively. Although 19 seems the strongest candidate, we
reject it since we do not prefer such a high number of zones. On the other hand,
for the second region we have 4 zones with validity 0.48718.

Table 5.5: Validity Results for 30o−50o N 3o−60o E without CV and Elevation

# of clusters Intra Distance Inter Distance Validity
3 49.680 98.466 0.50455
4 40.555 94.021 0.43134
5 36.581 68.616 0.53313
6 33.793 66.850 0.50551
7 32.336 58.465 0.55308
8 30.924 67.349 0.45916
9 27.095 40.074 0.67612

10 25.804 43.730 0.59006
11 23.800 33.680 0.70665
12 22.533 34.133 0.66016
13 21.657 32.825 0.65978
14 20.505 46.375 0.44215
15 20.026 39.915 0.50171
16 19.248 35.755 0.53832
17 18.330 33.349 0.54965
18 17.582 35.462 0.49578
19 17.404 41.417 0.42022
20 17.287 16.497 1.04789

Table 5.6: Validity Results for 34o−43o N 23o−47o E without CV and Elevation

# of clusters Intra Distance Inter Distance Validity
3 57.706 68.896 0.83758
4 48.113 98.759 0.48718
5 43.173 70.802 0.60978
6 39.219 51.145 0.76683
7 36.287 52.183 0.69539
8 34.214 42.046 0.81372
9 31.931 41.649 0.76668

10 30.383 40.941 0.74213
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Figure 5.9: validity for every number of cluster

Figure 5.10: validity for every number of cluster
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Figure 5.11: 30o−50o N 3o−60o E without cv and elevation .

Figure 5.12: 34o−43o N 23o−47o E without cv and elevation .
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Another combination that we have dealt with is the case where we take into
account the elevation, but not cv. As a result, 97 columns are used to de�ne a
valid separation. 15 zones with 0.50876 and 4 zones with 0.48743 values came up
with same computations.

Table 5.7: Validity Results for 30o−50o N 3o−60o E without CV with Elevation

# of clusters Intra Distance Inter Distance Validity
3 50.670 98.431 0.51478
4 41.292 93.875 0.43987
5 37.150 96.810 0.38374
6 34.343 45.134 0.76091
7 32.875 48.786 0.67387
8 31.361 70.635 0.44399
9 30.346 44.984 0.67459

10 29.112 45.943 0.63365
11 24.226 33.710 0.71866
12 23.231 52.846 0.43959
13 22.571 39.746 0.56789
14 20.702 34.624 0.59792
15 19.941 120.530 0.16544
16 19.794 38.906 0.50876
17 18.657 19.784 0.94304
18 18.636 38.727 0.48123
19 17.571 39.002 0.45052
20 16.741 91.716 0.18253

Table 5.8: Validity Results for 34o−43o N 23o−47o E without CV with Elevation

# of clusters Intra Distance Inter Distance Validity
3 58.223 70.622 0.82444
4 48.590 99.687 0.48743
5 43.518 72.930 0.59671
6 39.544 52.136 0.75847
7 36.618 53.156 0.68887
8 34.479 42.503 0.81121
9 32.204 42.199 0.76315

10 30.625 41.560 0.73688
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Figure 5.13: validity for every number of cluster

Figure 5.14: validity for every number of cluster
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Figure 5.15: 30o−50o N 3o−60o E without cv with elevation

Figure 5.16: 34o−43o N 23o−47o E without cv with elevation .
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5.2 Utilizing PCA

In the preprocessing stage of data, we use princomp function of Matlab.
Observing the output of this function we notice that �rst eigenvalue is extremely
dominant. Following ones are also dominant on the remaining, but in PCA 1 is
considered as the cut-o� eigenvalue and dominance of below 1 is omitted in this
case.

Like in the previous part, we will also think about di�erent variations depending
on cv and elevation. As we modify the data set, principal components will also
vary accordingly.

When we attempt to do principal component analysis with the whole data set, we
acquire 109 eigenvalues. PCA puts those values in order. We present the greater
ones in the table and bar plot for all.

Table 5.9: Eigenvalues for all data set

# 1st Region 2nd Region
1 58.08 48.54
2 15.64 18.82
3 11.49 10.64
4 6.65 7.31
5 4.46 4.89
6 2.49 4.25
7 1.81 2.63
8 1.36 2.33
9 1.06 1.37

10 0.93 1.21
11 0.69 1.14
12 0.56 0.99
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Figure 5.17: Eigenvalues from greatest to smallest

Figure 5.18: Eigenvalues from greatest to smallest
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Table 5.10: Validity Results for 9 PC from 30o − 50o N 3o − 60o E with CV and
Elevation

# of clusters Intra Distance Inter Distance Validity
3 49.401 123.444 0.40019
4 39.820 98.585 0.40392
5 35.588 230.643 0.15430
6 31.807 123.524 0.25750
7 31.003 72.830 0.42569
8 28.696 127.985 0.22421
9 24.627 260.328 0.09460

10 22.571 37.261 0.60577
11 21.194 102.004 0.20777
12 20.808 52.991 0.39267
13 19.369 32.518 0.59562
14 19.130 32.553 0.58765
15 18.379 58.071 0.31650
16 18.151 43.171 0.42045
17 16.993 23.086 0.73607
18 15.922 35.304 0.45098
19 15.289 28.708 0.53259
20 15.050 27.354 0.55020

Table 5.11: Validity Results for 11 PC from 34o− 43o N 23o− 47o E with CV and
Elevation

# of clusters Intra Distance Inter Distance Validity
3 57.834 72.420 0.79859
4 48.319 99.623 0.48502
5 42.748 73.599 0.58082
6 40.366 34.203 1.18018
7 36.305 35.374 1.02632
8 33.890 33.827 1.00186
9 31.980 49.673 0.64382

10 30.298 46.586 0.65037
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Figure 5.19: validity for every number of cluster

Figure 5.20: validity for every number of cluster
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Figure 5.21: 9 PCs from 30o−50o N 3o−60o E with cv and elevation

Figure 5.22: 11 PCs from 34o−43o N 23o−47o E with cv and elevation
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If we omit elevation again and do the PCA, 9 components for the �rst region and
11 components for the second region are able to represent the nature of the data
sets that they belong to. Nonetheless, deciding for the valid number of clusters
is a problem again since the values do not di�er much. To clarify, it can be seen
that 5, 8, 13 competes with the values 0.10609, 0.11040 and 0.10631 respectively.
On the other hand, for the second region validity measure determines the number
of clusters as 4 again.

Table 5.12: Eigenvalues for all data set except elevation

# 1st Region 2nd Region
1 58.08 48.25
2 15.43 18.40
3 11.15 10.64
4 6.43 7.10
5 4.45 4.89
6 2.47 4.21
7 1.81 2.62
8 1.23 2.33
9 1.05 1.36

10 0.93 1.21
11 0.69 1.13
12 0.55 0.99
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Figure 5.23: Eigenvalues from greatest to smallest

Figure 5.24: Eigenvalues from greatest to smallest
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Table 5.13: Validity Results for 9 PC from 30o− 50o N 3o− 60o E with CV without
Elevation

# of clusters Intra Distance Inter Distance Validity
3 48.474 123.497 0.39251
4 39.136 98.222 0.39844
5 34.878 328.767 0.10609
6 31.309 121.894 0.25685
7 30.500 72.679 0.41966
8 28.153 255.015 0.11040
9 26.415 114.195 0.23131

10 22.811 70.303 0.32446
11 20.809 99.578 0.20897
12 19.523 60.467 0.32286
13 19.058 179.265 0.10631
14 18.267 33.674 0.54247
15 17.580 31.800 0.55283
16 17.441 23.360 0.74664
17 16.619 23.223 0.71560
18 16.302 24.650 0.66132
19 15.288 31.024 0.49277
20 14.127 54.253 0.26040

Table 5.14: Validity Results for 11 PC from 34o−43o N 23o−47o E with CV without
Elevation

# of clusters Intra Distance Inter Distance Validity
3 57.305 70.565 0.81208
4 47.831 98.418 0.48600
5 42.421 71.075 0.59685
6 40.059 34.374 1.16541
7 36.011 35.517 1.01391
8 33.578 33.654 0.99776
9 31.742 48.864 0.64960

10 30.050 46.554 0.64550
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Figure 5.25: validity for every number of cluster

Figure 5.26: validity for every number of cluster
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Figure 5.27: 9 PCs from 30o−50o N 3o−60o E with cv without elevation

Figure 5.28: 11 PCs from 34o−43o N 23o−47o E with cv without elevation
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Once we exclude both variables, 97 columns remains to be analyzed. After the
analysis, �rst 9 and 10 components represents main information about the data
sets. Therefore, validity ratios and the zones are determined accordingly. Namely,
0.12017 leads to 13 clusters whereas 0.44045 points 4.

Table 5.15: Eigenvalues for all data set without cv and elevation

# 1st Region 2nd Region
1 50.68 41.32
2 15.13 18.09
3 10.57 9.37
4 5.88 6.91
5 3.65 4.78
6 2.18 3.94
7 1.50 2.56
8 1.16 2.06
9 1.03 1.18

10 0.64 1.00
11 0.59 0.91
12 0.49 0.89
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Figure 5.29: Eigenvalues from greatest to smallest

Figure 5.30: Eigenvalues from greatest to smallest
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Table 5.16: Validity Results for 9 PC 30o−50o N 3o−60o E without CV and Elevation

# of clusters Intra Distance Inter Distance Validity
3 45.498 98.535 0.46174
4 36.370 93.696 0.38817
5 32.443 67.486 0.48073
6 29.682 44.046 0.67389
7 27.911 56.919 0.49036
8 26.187 94.837 0.27612
9 25.815 43.021 0.60004

10 21.086 40.806 0.51674
11 20.304 42.683 0.47569
12 19.103 34.772 0.54938
13 17.882 148.811 0.12017
14 16.738 33.905 0.49368
15 16.398 41.661 0.39360
16 15.859 18.880 0.83997
17 14.968 18.668 0.80178
18 14.283 31.713 0.45039
19 15.015 15.986 0.93927
20 13.957 16.150 0.86421

Table 5.17: Validity Results for 10 PC 34o − 43o N 23o − 47o E without CV and
Elevation

# of clusters Intra Distance Inter Distance Validity
3 52.960 68.757 0.77026
4 43.402 98.538 0.44045
5 38.512 70.184 0.54873
6 34.623 51.126 0.67721
7 32.614 24.519 1.33016
8 29.802 41.400 0.71984
9 27.609 40.380 0.68374

10 26.266 39.701 0.66160
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Figure 5.31: validity for every number of cluster

Figure 5.32: validity for every number of cluster
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Figure 5.33: 9 PCs from 30o−50o N 3o−60o E without cv and elevation

Figure 5.34: 10 PCs from 34o−43o N 23o−47o E without cv and elevation
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Lastly, in the �nal combination elevation is included, but cv is removed from the
set. When the analysis is done, representative dimensions are acquired as 9 and
11 by evaluating the eigenvalues corresponding to our data sets. Moreover, those
principal components suggests 9 and 4 partitions where the optimum values are
0.09460 and 0.48502.

Table 5.18: Eigenvalues for all data set without cv with elevation

# 1st Region 2nd Region
1 50.68 41.62
2 15.30 18.5
3 10.99 9.37
4 6.06 7.11
5 3.66 4.78
6 2.20 3.98
7 1.50 2.58
8 1.29 2.06
9 1.03 1.19

10 0.65 1
11 0.60 0.91
12 0.49 0.89
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Figure 5.35: Eigenvalues from greatest to smallest

Figure 5.36: Eigenvalues from greatest to smallest
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Table 5.19: Validity Results for 9 PC from 30o− 50o N 3o− 60o E without CV with
Elevation

# of clusters Intra Distance Inter Distance Validity
3 46.428 98.380 0.47192
4 37.044 93.603 0.39575
5 32.949 96.431 0.34168
6 30.171 44.591 0.67661
7 28.440 60.737 0.46825
8 24.367 47.846 0.50927
9 23.549 38.389 0.61343

10 21.524 40.683 0.52908
11 20.510 35.253 0.58179
12 19.321 32.242 0.59926
13 18.202 32.556 0.55910
14 16.969 33.523 0.50621
15 17.299 40.653 0.42553
16 16.080 19.028 0.84507
17 15.638 27.596 0.56668
18 14.393 31.776 0.45295
19 13.732 18.838 0.72893
20 14.768 16.945 0.87154

Table 5.20: Validity Results for 10 PC from 34o−43o N 23o−47o E without CV with
Elevation

# of clusters Intra Distance Inter Distance Validity
3 53.464 70.444 0.75895
4 43.863 99.390 0.44133
5 38.835 72.393 0.53645
6 34.927 52.582 0.66424
7 32.925 24.275 1.35636
8 30.056 42.374 0.70929
9 27.869 41.010 0.67955

10 26.502 40.674 0.65156
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Figure 5.37: validity for every number of cluster

Figure 5.38: validity for every number of cluster
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Figure 5.39: 9 PCs from 30o−50o N 3o−60o E without cv with elevation

Figure 5.40: 10 PCs from 34o−43o N 23o−47o E without cv with elevation
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5.3 Visualizing the distances from members to centroids

In the previous part, coloring was done according to the labels of each sample.
In other words, random colors were assigned to each label that we obtained after
cluster analysis. What we investigate in this section is how far the members away
from the mean that belongs to their partition. To obtain the distances, we have
modi�ed the code where we obtain the �nal con�guration. When the algorithm
gives the �nal clusters that we indicated beforehand, we compute the Euclidean
distances. Let N j be the order of n dimensional cluster C j. Distance between

xi ∈C j and µ j, which is the mean of cluster C j, can be calculated as follows:

d(xi,µ j) = (
k=n

∑
k=1

‖xik−µ jk‖2)1/2 i ∈ {1,2, ...,N j} (5.1)

In contrast to previous work, where we assigned a color for each cluster number,
our aim here is to be able to present the intermediate values. In order to clarify,
after associating a point with a cluster number which comes with a particular
color for that cluster, we are going to add the position within the cluster to
its group label. Position of every sample is decided relying on a normalization
process. We �rst normalize the distances within their partitions, then add their
normalized value to their class labels which were cluster numbers as we mentioned
above. Normalization is done as follows:

Let di j = d(xi,µ j) and d
′
i j is the normalized values.

d
′
i j =

di j−min(di j)
max(di j)−min(di j)

(5.2)

From (5.2) one can easily realize that all d
′
i j will vary from 0 to 1. Since we

are regarding the numeric value of each sample while coloring and the toolbox
provides contours for those values, we simply add the normalized distance to
its class label, i.e., j + d

′
i j. Instead of contouring for discrete values, NCL will

draw contours over the map for �oating numbers. Consequently, we will obtain
a stepwise coloring of our climate regions. Under the same criteria like in the
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previous work, we have maps that are able to represent how well a point exhibits
its climatic characteristics with respect to others in the same cluster. As the color
gets darker, we derive that it's far away from the centroid and among the ones that
are in the vicinity of next cluster. However, we cannot claim that representation
is strong enough because NCL cannot assign colors for every �oating number
which means that it assigns colors for intervals. Although there are many steps,
it reduces the step size which causes a less representative contouring. Here are
two maps based on this process from two regions where cv and elevation variables
are excluded.

Figure 5.41: 30o−50o N 3o−60o E without cv and elevation .

Figure 5.42: 34o−43o N 23o−47o Ewithout cv and elevation .
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5.4 Results and Conclusion

As we mentioned earlier, di�erent cases have been examined through the cluster
analysis. Not only the clustering process, but also the visualization via maps
provide us di�erent climate zone de�nitions. It is worthwhile to bear in mind
that there may be apparent di�erences between the representation of broader
and narrower zones. For each region, we are going to interpret the results with
di�erent variable combinations as well as principal components.

5.4.1 With Cv and Elevation

When we work with the whole data sets in which coe�cient of variations
and elevation included, for the �rst regions we 6 climate zones where most
noticeable thing is the places seaside which share the same characteristics. Lands
neighboring Mediterranean, Black Sea and South Caspian Sea are the ones from
this cluster. While a wide range area in Italy and Greece has this property,
in Turkey only the parts nearby sea and Thrace are put in the same zone.
Moreover, whole inner Anatolia is in another cluster which has also common
property with the areas below South East Caspian Sea and a small part in North
Africa. Remaining clusters are the blocks including West and South Europe as
well as Ukraine with South Russia.

If we try to represent the data set with 9 principal components, our algorithm
suggests 9 partitions over the same area. At the �rst glance, similarity with
the previous partitioning can be realized because areas nearby sea are mostly
preserved in this map also. Blocks are also conserved, but some new partitions
occur over South Caspian Sea, inner Libya and Switzerland. In contrast to the
previous one, the region surrounded by Alps appears as another climatic region.

In the second region that is to be split into zones we have both types of variables.
PCA suggests 11 components to represent the whole set. For both initial and
the reduced dimensions, computations resulted in 4 clusters which are nearly the
same. Like in the broader region we see that seaside areas have common climatic
characteristics. In addition, in both representations, between the inner Anatolia
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and the seaside a thin line draws attention that has similar characteristics with
North East and North West of the area.

5.4.2 With Cv Without Elevation

Blocks that we acquired in the previous map are roughly preserved again in this
case. In contrast to the 6 clustered version, Greece has a greater area that is
similar to inner Anatolia. Alps and its surroundings present a separate nature.
Furthermore, around the Caspian Sea it is possible to notice three climatic zones.
The �rst one lies in the South; the second one covers the middle and expands
towards East and the last one is in the North and continues in the same direction.
Nine principal components with 13 zones do not a�ect the distribution of the

zones around the Caspian Sea at all. Whereas all the seaside areas were in the
same cluster, vicinity of Black Sea in North Anatolia, most of Italy and South
Mediterranean Sea are now a separate group. Similarity between Greece and
Turkey changes in a way that both have same characteristics in inner regions and
in the neighboring areas of the Mediterranean Sea. Alps still preserve its climatic
borders. In addition to this new formation, the Balkans exhibits a di�erent
characteristics with a split version of the previous partitioning.

Concerning the second region, we can claim that both high and reduced
dimensions with 11 principal components provide the same map with 4 clusters.
Only in a few places we notice di�erences which do not a�ect the generalizations
at all.

5.4.3 Without Cv and Elevation

The neighboring lands of Caspian Sea from Turkmenistan, Kazakhistan and Iran
forms the same blocks again with some insigni�cant di�erences. Inner parts of
Iran, Northern Iraq and Northern Syria fall into the same cluster.

In this con�guration, Southern Syria is located in a cluster with some members
from Southern Iran and small area from Libya. Another evident separation occurs
around the seasides. Namely, in the Mediterranean, Northern Egypt, Northern
Libya and Italy excluding inner regions show the similar characteristics. However,
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in the same region Southern Anatolia, West Anatolia and Greece are members of
another division. Alps are located like in the previous experiments. Commonality
between Moldova, Romania, Ukraine and some parts of Russia that are next to
Georgia is sustained.

Now, we let 9 principal components help us to do another cluster analysis.
Divisions including the regions Caspian Sea and the areas below the Northern
Iraq are represented nearly same as the previous one. Alps form a detached
cluster. As opposed to all previous maps, Italy is divided into three main zones.
South Italy with North Libya, North Egypt, Mediterranean and Aegean side of
Anatolia are similar, whereas East Greece, East Bulgaria and Central Anatolia
are the members of the same group. Moreover, a small area in the Central Italy
has a commonality with Germany and France. Membership of the third part
that is the area from Central Italy to the North of the country and seaside of the
Balkans also overlaps.

When we focus on the narrower region, we do not have signi�cant di�erence from
partitioning done before. Some small changes begins to be appear. For instance,
in the Southern part of Turkey, two small portions that are in the cluster of Syria
are noticed within another zone. Likely, again with same number of clusters 10
principal components give almost same distribution.

5.4.4 Without Cv with Elevation

In the experiment where we excluded both cv and elevation we had 14 climatic
zones de�ned. If let the elevation take place in the cluster analysis, we have
15 clusters as an outcome. The most apparent change occurs in Bulgaria
and Romania which were together with Ukraine and South Russia until this
experiment. Therefore, towards the North West a new cluster appears when
compared the 14 clustered map. In addition, inner parts of Iran exhibits a
compact picture with respect to the last delineation again.

After the PCA, we decide on 9 principal components which were responsible for
the clustering stage. As a result, we are to delineate the region in 5 climatic zones
which come up with 5 blocks. In order to clarify, Inner and East Anatolia, some
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parts of Northern Iraq and North West of Iran with some inner areas form a block
along the line from the West to the East. Another block extends from Georgia
to France along the upper side of Black Sea including Russia, Ukraine, Moldova
and Romania. An apart member of this group is located on a stripe from North
Italy to South. Libya, Syria, Iraq and West Turkmenistan remains to be another
ostensible band below the region.

Lastly, due to the lack of cv with the small portions appearing in the South, we
have again our 4 clustered map which consistently remains to be same except a
few details. Same generalization can also be made for the distribution based on
10 principal components.
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6. CONCLUSION

Without involving any discussion concerning objectivity issue for de�nition of
climatic zones, in this study we have showed that k-means clustering technique is
capable of dividing the regions that we worked on independent from any personal
expertise or interpretation. Thus, we have examined di�erent combinations of
variables based on an objective mathematical modeling which has been employed
with its parallel version also. In this study, other than handling whole data

set which is high dimensional, we also utilized PCA to work with reduced
but representative dimensions. Evaluations of the eigen spectrum of covariance
matrices of our data sets have determined the number of principal components.
In general, we attained a variety of dimensions from 9 to 11.

Number of clusters, data points and dimension have shown time consuming
pattern of the algorithm. We obtained a scalable work with the high dimensional
data set. Moreover, with the same data set, greater number of partitions which
leads to an intensive computation made the code give more scalable outcomes.
The reason behind those two facts is the low level communication overhead which
is dominated when the size and the computational burden is increased.

In the combinations where coe�cient of variation for precipitation is excluded, we
try to observe how elevation e�ects the distributions. If the elevation is considered
as an input parameter, we notice that the Balkans are evidently separated from
the block above the Black Sea. Furthermore, Greece and seaside parts of Western
Anatolia are in the same climatic zone. When we look at Northern Italy, we realize
another dissemblance w.r.t the case where elevation is not taken into account.
However, when it is tried to be delineated based on 9 principal components a
similar partition occurs. On the other hand, if coe�cient of variation is put
into experiments, North Libya and North Egypt come into scene as a climatic
block, but some parts of Libya present another climatic property in the absence of
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elevation. Actually, in the exclusion of elevation 4 more clusters appear. Besides
the new formations in the South Mediterranean, around the Caspian Sea, Alps
and in the North Western direction of Thracia other arrangements draw attention.
In addition to all comparisons above, we note that a consistent climatic zone,
which has small modi�cations in all cases, goes along the direction from West
Anatolia to the region below South Caspian Sea.

Whereas there are di�erent number of clusters for the �rst region, as we noted
earlier, we have 4 climatic zones for the second region where Turkey is the main
experimental area within the frame based on a data set in which elevation and
coe�cients of variation are added and removed. What pays attention is the
climatic block which lies on the line from West to East like in the previous
frame that we mentioned above. Remaining divisions are generally compact, but
occasionally they may include members of other zones. It is also another fact that
in both North East and North West areas of the region, there are considerable
amount of members of the same climatic characteristics. When those results are
compared with the ones that Karaca and others found out, it is noticed that their
results are similar to the current con�guration of the zones [27]. In particular, our
model concludes that all the seasides are the same whereas in Karaca's work Black
Sea and Mediterranean parts are seen di�erent. On the other hand, a common
outcome of our studies is that the Aegean and Marmara regions were considered
as the same region. Moreover, characteristics of South Eastern Anatolia and
Eastern Anatolia are found similar in both studies.

Finally, k-means clustering algorithm provides us a variety of zone de�nitions
with respect to the criterion we have posed on it. Variety is not only dependent
on the criterion we put, but also dependent on the nature of the data sets having
di�erent combinations of variables as well as the PCA. Regarding all the facts
concerning both PCA and variable combinations, we can conclude that within
the frame we have focused Turkey has 4 climatic zones.
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