

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF INFORMATICS

M.Sc. Thesis by
Çağdaş CİRİT

Department : Advanced Technologies in Engineering

Programme : Computer Science

JUNE 2009

A UML PROFILE FOR ROLE-BASED ACCESS CONTROL

İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF INFORMATICS

M.Sc. Thesis by
Çağdaş CİRİT

(704061005)

Date of submission : 04 May 2009
Date of defence examination: 08 June 2009

Supervisor (Chairman) : Assist. Prof. Dr. Feza BUZLUCA (ITU)
Members of the Examining Committee : Prof. Dr. Nadia ERDOĞAN (ITU)

 Prof. Dr. Oya KALIPSIZ (YTU)

JUNE 2009

A UML PROFILE FOR ROLE-BASED ACCESS CONTROL

HAZİRAN 2009

İSTANBUL TEKNİK ÜNİVERSİTESİ BİLİŞİM ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ
Çağdaş CİRİT

(704061005)

Tezin Enstitüye Verildiği Tarih : 04 Mayıs 2009
Tezin Savunulduğu Tarih : 08 Haziran 2009

Tez Danışmanı : Yrd. Doç. Dr. Feza BUZLUCA (İTÜ)
Diğer Jüri Üyeleri : Prof. Dr. Nadia ERDOĞAN (İTÜ)

Prof. Dr. Oya KALIPSIZ (YTÜ)

ROL-TABANLI ERİŞİM DENETİMİ İÇİN BİR UML PROFİLİ

 v

FOREWORD

I would like to express my deep appreciation and thanks for my advisor, Assist. Prof.
Dr. Feza BUZLUCA.

I also want to thank my parents, Ümmü and Mehmet; my brother, Ümit; my sister
Özlem; and my wife, Şule, for their understanding and support.

May 2009

Çağdaş Cirit

Computer Engineer

 vi

 vii

TABLE OF CONTENTS

 Page

ABBREVIATIONS ... ix
LIST OF TABLES ... x
LIST OF FIGURES .. xi
SUMMARY ... xiii
ÖZET ... xv
1. INTRODUCTION .. 1

1.1 Motivation .. 1
1.2 Suggested Approach ... 2
1.3 Contributions .. 3
1.4 Thesis Outline .. 4

2. BACKGROUND .. 5
2.1 RBAC ... 5

2.1.1 Core RBAC ... 6
2.1.2 Hierarchical RBAC ... 7
2.1.3 SSD Relations ... 7
2.1.4 DSD Relations ... 8

2.2 MDA ... 9
2.3 UML ... 9

2.3.1 Class Diagram ... 10
2.3.2 UML Profile .. 10

2.4 OCL .. 11
2.5 Related Works .. 12

3. RBAC UML PROFILE ... 15
3.1 Conceptual Model .. 15
3.2 Proposed UML Profile for RBAC .. 16

3.2.1 User Stereotype ... 18
3.2.2 Role Stereotype ... 18
3.2.3 Resource Stereotype .. 20
3.2.4 Operation Stereotype ... 20
3.2.5 Permission Stereotype ... 21
3.2.6 Session Stereotype .. 22
3.2.7 ResourceAssignment Stereotype ... 23
3.2.8 UserAssignment Stereotype .. 24
3.2.9 PermissionAssignment Stereotype .. 25
3.2.10 RoleInheritance Stereotype ... 25
3.2.11 SoD Stereotype ... 26
3.2.12 SSD Stereotype ... 27
3.2.13 DSD Stereotype ... 27
3.2.14 CriticalPermission Stereotype ... 27
3.2.15 TimeConstraint Stereotype ... 28

3.3 OCL Expressions for Profile Constraints ... 29

 viii

4. EXAMPLE DESIGN PROBLEM .. 31
4.1 Problem Domain Requirements ... 31
4.2 Access Control Requirements .. 31
4.3 System Design Model ... 32
4.4 Security Model ... 32
4.5 Platform Independent Model .. 39
4.6 Ill-formed Security Model .. 39

5. CONCLUSION AND RECOMMENDATIONS ... 41
REFERENCES ... 43
APPENDICES .. 45
CURRICULUM VITA ... 59

 ix

ABBREVIATIONS

ANSI : American National Standards Institute
CASE : Computer-Aided Software Engineering
DSD : Dynamic Separation of Duty
INCITS : International Committee for Information Technology
MDA : Model Driven Architecture
MDS : Model Driven Security
MOF : Meta-Object Facility
OCL : Object Constraint Language
OMG : Object Management Group
PIM : Platform Independent Model
PSM : Platform Specific Model
RBAC : Role-Based Access Control
SoD : Separation of Duty
SSD : Static Separation of Duty
UML : Unified Modeling Language
XMI : XML Metadata Interchange
XACML : eXtensible Access Control Markup Language

 x

LIST OF TABLES

 Page

Table 2.1 : OCL Constraints Types .. 12
Table A.1 : Global OCL Definitions .. 46
Table B.1 : Error Messages .. 51
Table C.1 : Errors of the ill-formed security model ... 54

 xi

LIST OF FIGURES

 Page

Figure 2.1 : Core RBAC .. 6
Figure 2.2 : Hierarchical RBAC .. 7
Figure 2.3 : SSD Relations ... 8
Figure 2.4 : DSD Relations .. 8
Figure 2.5 : Model Transformation in MDA Approach ... 10
Figure 3.1 : Conceptual model of RBAC elements and constraints 16
Figure 3.2 : RBAC UML Profile ... 17
Figure 4.1 : Hospital Automation System Class Diagram ... 32
Figure 4.2 : RBAC UML Profile Core Components applied to problem domain 34
Figure 4.3 : RBAC UML Profile Hierarchical RBAC applied to problem domain ... 34
Figure 4.4 : RBAC UML Profile Constrained RBAC applied to problem domain ... 37
Figure 4.5 : Platform Independent Model of the Hospital Automation System 38
Figure 4.6 : Ill-formed Security Model of the Hospital Automation System 40

 xiii

A UML PROFILE FOR ROLE-BASED ACCESS CONTROL

SUMMARY

When building an access control aware system, domain specifications are designed
typically separate from security specifications. Main reason of this separation is
representing security design models as structured text like policy files on the other
hand visualizing domain specifications by graphical models like Unified Modeling
Language (UML) models. This causes a gap between security modeling and system
design modeling. Even if security modeling is structured at the early phases of
development, security mechanisms are placed in to the system at the final phases,
this causes another gap in the middle. These gaps affect security and maintainability
of the resulting system in a bad way.

This study presents a solution that uses Model Driven Architecture (MDA) approach
for bridging these gaps. A UML Profile for Role-Based Access Control (RBAC) is
proposed. With this UML Profile, access control specifications can be modeled
graphically together with problem domain specifications from the beginning of the
design phase, making it possible to extend security integration over the entire
development process.

Major contribution of this study is introducing a UML Profile for RBAC, to integrate
security specifications of access control into the development process from the
beginning; to form a well-defined Platform Independent Model (PIM) that can be
used to automatically generate the corresponding Platform Specific Model (PSM) or
generate code directly by transformation functions; to maintain technology
independence and reusability, transformation functions handle technology-specific
details; to simplify the work of developers; to benefit from the advantage of wide-
range of commercial and non-commercial Computer-Aided Software Engineering
(CASE) tools support by using easily interchangeable and lightweight UML
extension mechanism. Additional contributions are employing significant RBAC
constraints like Static Separation of Duty (SSD) and Dynamic Separation of Duty
(DSD) into the profile, and introducing how Object Constraint Language (OCL) is
used to validate well-formedness (syntax) and meaning (semantics) of information
models against the RBAC.

 xiv

 xv

ROL-TABANLI ERİŞİM DENETİMİ İÇİN BİR UML PROFİLİ

ÖZET

Erişim denetiminin yapılacağı bir sistem oluşturulurken domen isterleri genellikle
güvenlik isterlerinden ayrı olarak tasarlanır. Bu ayrımın başlıca sebebi güvenlik
tasarım modelleri, ilke dosyaları gibi yapılandırılmış metin olarak ifade edilirken
domen isterlerinin birleştirilmiş modelleme dili (UML) modelleri gibi grafiksel
modellerle görselleştirilmeleridir. Bu ayrım güvenlik modellemesi ve sistem tasarım
modellemesi arasında bir boşluk oluşmasına sebep olur. Güvenlik modellemesi,
geliştirmenin erken safhalarında biçimlendirilse bile güvenlik mekanizmalarının
sisteme dâhil edilmesi geliştirmenin son safhalarında yapılır. Buda geliştirmenin ara
safhalarında başka bir boşluğun oluşmasına sebep olur. Bahsedilen bu boşluklar
ortaya çıkan sistemin güvenliğini ve bakım kolaylığını kötü yönde etkiler.

Bu çalışmada, bahsedilen boşlukların doldurulabilmesi için model güdümlü mimari
(MDA) yaklaşımıyla, Rol-Tabanlı Erişim Denetimi (RBAC) için bir UML Profili
geliştirilerek çözüm önerisi getirilmiştir. Bu UML Profili, tasarım aşamasının
başında erişim denetim isterlerinin domen isterleriyle birlikte grafiksel olarak
modellenebilmesini sağlayarak güvenlik entegrasyonunun geliştirme sürecinin
tamamına yayılacak şekilde yapılabilmesine olanak sağlar.

Bu çalışmanın başlıca katkısı, erişim denetimi isterlerini geliştirme sürecine en
başından itibaren dâhil edebilmek; dönüşüm fonksiyonlarının otomatik olarak ilgili
platforma özel model (PSM) veya direkt kod üretebilmesi için iyi tanımlanmış bir
platform bağımsız model (PIM) oluşturabilmek; dönüşüm fonksiyonlarının
teknolojiye özel detayları kotarabilmesi sayesinde teknoloji bağımsızlığı ve tekrar
kullanabilirliği sağlayabilmek; geliştiricilerin işlerini kolaylaştırabilmek; kolaylıkla
değiş tokuş edilebilir ve hafif sıklet bir UML genişletme mekanizması kullanarak çok
sayıda ticari ve ticari olmayan bilgisayar destekli sistem mühendisliği (CASE)
aracının desteğinden faydalanabilmek amacıyla RBAC için bir UML Profili ortaya
çıkarmaktır. Ayrıca statik görevler ayrılığı (SSD) ve dinamik görevler ayrılığı (DSD)
gibi önemli RBAC kısıtlarını profile dâhil etmek ve RBAC’a dayalı modellerin
biçimsel (sentaktik) ve anlamsal (semantik) olarak iyi durumda olup olmadığının
denetiminin yapılabilmesi için nesne kısıt dilinin (OCL) nasıl kullanıldığını tanıtmak
diğer katkılarıdır.

 xvi

 1

1. INTRODUCTION

This thesis describes and illustrates the proposed UML Profile for RBAC, which is

used for bridging security modeling and system design modeling. With this UML

Profile, access control specifications and problem domain specifications can be

designed together with graphical models and UML notations from the beginning of

the design phase. The model to that the proposed UML Profile applied, forms the

PIM that can be used by transformation functions to generate corresponding code or

PSM. SSD, DSD, prerequisite, cardinality and time-based constraints, which are

significant RBAC constraints, are employed in the UML Profile. OCL is used to

express UML Profile constraints that are used to validate well-formedness and check

RBAC constraint rules of the PIM.

1.1 Motivation

Model building is a standard software engineering practice. Model construction

during the initial phases of development process, like requirement analysis and

system design, provides a foundation for early analysis of the problems and fault

detection. As a result, it improves the quality of the resulting system. If the model is

formal enough, it can be used to generate the corresponding code. Model building is

also used for security requirements but its integration into the overall development

process is problematic and suffers from two “gaps” [1]. First gap is the separation

between system design modeling and security modeling. Main reason of this

separation is representing security design models as structured text like policy files

on the other hand visualizing domain specifications by graphical models like UML

models. Even if security modeling is structured at the early phases of development,

security mechanisms are placed into the system at the final phases, this causes

second gap in the middle. These gaps affect security and maintainability of the

resulting system in a bad way.

Access control is a security technology that is applied extensively to protect system

resources against inappropriate or undesired user access. Many models have been

 2

developed and studied to construct and manage access control systems [2][3][4]. For

the last two decades, RBAC [5] has been very popular among access control systems

and has been widely accepted because of its ability to reduce the complexity and cost

of security administration. Under RBAC, security administration is greatly simplified

by using roles, hierarchies, and constraints to organize privileges [6]. In recent years,

vendors have begun implementing RBAC features in their products like database

management systems, security management and network operating system products,

without general agreement on the definition of RBAC features. ANSI INCITS

RBAC standard [7] aims to resolve uncertainty and confusion about utility and

meaning of RBAC by using a reference model to define RBAC features and then

describing the functional specifications for those features. Currently, in most

companies, a security administrator manually creates and manages the specification

policies for RBAC systems as an independent procedure during the deployment stage

after the software design and development. It is very difficult and time consuming to

create these policies because of their complex syntax. A UML Profile for RBAC can

solve the problem of late integration of security into the entire system development

process and simplify creation of the complex policies as well.

Access control specifications could be designed graphically in a language like UML

[8]. Resulting security model could be merged with system design model. UML

Profiles [8][9] can be used to mark system design model elements as domain

specific, here is RBAC, elements and add new building blocks for domain specific

concepts. Just modeling may not be enough to make it formal for generating security

infrastructure components. It may be supported by a constraint language for syntactic

and semantic checking of the model, and generating access control checking

mechanism of the resulting system. OCL [10] is the expression language for the

UML and appropriate for this kind of support.

1.2 Suggested Approach

This study proposes to use a UML Profile for RBAC to solve the issues raised in

Section 1.1. Key components of the proposed UML Profile are; stereotypes, tagged

values and OCL constraints. Stereotypes represent basic elements and constraints of

the RBAC. Tagged values are used for defining additional attributes for constraints

and making relations between profile elements. OCL constraints are used for

 3

validating well-formedness of the system model to that this profile is applied and for

checking SSD, DSD, prerequisite, cardinality and time-based constraint violations.

1.3 Contributions

The main contributions of this thesis are as follows:

• Introducing a UML Profile for RBAC

o to integrate security specifications of access control into the

development process from the beginning.

o to form a well-defined PIM in MDA approach [11]. The PIM can be

used by transformation functions to automatically generate the

corresponding PSM or directly generate code.

o to maintain technology independence and reusability. Access control

technology will evolve or change in time but models and

specifications will remain. Transformation functions handle

technology-specific details. Using new or updated transformation

functions will be enough to adapt to the new technology.

o to simplify the work of developers. Developers who take part directly

in the application design process can easily add security specifications

to the model without expertise on security issues, and security

administrators who may not understand the software structure and

details of problem domain well enough do not need to define complex

security policies rather they may focus on transformation functions.

Transformation functions for well-known access control

infrastructures may be ready to use so developers will just use them to

generate code, policies or whatever needed.

o to benefit from the advantage of wide-range of CASE-tools support.

UML Profiles are lightweight and easily interchangeable UML

extensions. They have a wide-range of commercial and non-

commercial CASE-tools support. Therefore, users can easily deploy

these extensions to their already using CASE-tools that support UML

 4

Profile. XML Metadata Interchange (XMI) [12] format is used for the

proposed UML Profile to be interchanged.

• Employing significant RBAC constraints like SSD, DSD, prerequisite,

cardinality and time-based constraints into the profile.

• Introducing how OCL is used to validate well-formedness and meaning of

information models against the RBAC.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Section 2 reviews the background of

the RBAC, the MDA approach, the UML, the UML Profile and the OCL. It also

compares this proposed approach with related works. Section 3 defines the proposed

UML Profile for RBAC. Section 4 introduces an example design problem and shows

how the proposed UML Profile for RBAC is applied to the example design model.

Section 5 presents conclusions and future work.

 5

2. BACKGROUND

This section gives general background information about the RBAC, the UML, the

OCL and the MDA approach. Furthermore, the proposed approach is compared with

related works.

2.1 RBAC

Using roles to separate access control privileges was first introduced in 1992 [5]. A

key feature of this study is that all access is through roles. A role is essentially a

collection of permissions, and all users receive permissions only through the roles to

which they are assigned. In 1996, Sandhu and colleagues [13] introduced a

framework of RBAC models, RBAC96. The RBAC model has been widely discussed

and further developed since then. In 2000, NIST initiated an effort to establish an

international consensus standard for RBAC, publishing a proposal [14] in the ACM

RBAC workshop. In 2004, the standard was approved as INCITS 359-2004 [7] by

the InterNational Committee for Information Technology (INCITS) standards, which

is accredited by the American National Standards Institute (ANSI) to develop

industry consensus standards for IT.

The RBAC can be stated formally using the notions of users, roles, permissions,

operations, resources and sessions, and the relationships between these entities. An

operation is an active process invoked by a user who wants to access protected

system resources. Permissions are authorizations to perform operations on the

resources. A Role is a job function or job title within the organization and associated

with some permissions. Users grant permissions by being member of appropriate

roles. This greatly simplifies management of permissions. Within an organization,

roles are relatively stable, while users and permissions are both numerous and may

change rapidly. If a user’s responsibilities or qualifications are changed, he can be

easily reassigned from one role to another. The access of users to the information is

regulated based on their assigned roles. RBAC also includes the notion of user

sessions. A user establishes a session during which he activates a subset of the roles

 6

assigned to him. Each user can activate multiple sessions; however, each session is

associated with only one user. The operations that a user can perform in a session

depend on the roles activated in that session and the permissions associated with

those roles. The session concept, which is a critical part of the RBAC, distinguishes

RBAC from traditional group mechanisms [15]. Without sessions, all roles that are

assigned to users, are always activated. This can potentially violate least privilege

rule.

This study is based on the RBAC model defined in the ANSI INCITS 359-2004

standard [7]. In this RBAC standard, the RBAC model is defined in terms of four

model components; Core RBAC, Hierarchical RBAC, Static Separation of Duty

(SSD) Relations, and Dynamic Separation of Duty (DSD) Relations.

2.1.1 Core RBAC

Core RBAC defines a minimum collection of RBAC elements as defined above;

users, roles, permissions, operations, resources (objects) and sessions, element sets

and relations like user-role assignment and permission-role assignment, considered

fundamental in any RBAC system. In addition, Core RBAC introduces the concept

of role activation as part of user’s session within a computer system. Core RBAC is

required in any RBAC system. Core RBAC includes sets of six basic data elements,

which are defined in Figure 2.1 [7], called users (USERS), roles (ROLES), objects

(OBS), operations (OPS), permissions (PRMS) and sessions (SESSIONS).

Figure 2.1 : Core RBAC

 7

2.1.2 Hierarchical RBAC

The Hierarchical RBAC component, which is indicated in Figure 2.2 [7], adds

relations for supporting role hierarchies. A hierarchy is mathematically a partial

order defining seniority relation between roles, whereby senior roles acquire the

permissions of their juniors. In the absence of role hierarchies, it is inefficient and

administratively cumbersome to specify general permissions repeatedly for a large

number of roles, or to assign large numbers of users to general roles [6]. Authorized

roles of a user include all assigned roles and their direct and indirect junior roles.

Figure 2.2 : Hierarchical RBAC

2.1.3 SSD Relations

SSD Relations adds exclusivity relations among roles with respect to user

assignment. Conflict of interest in a role-based system may arise because of a user

gaining authorization for permissions associated with conflicting roles. One means of

preventing this form of conflict of interest is though SSD, that is, to enforce

constraints on the assignment of users to roles. This means that if a user is assigned

to one of the conflicting roles, the user is prohibited from being member of another

conflicting role. Because of the potential inconsistencies with respect to SSD

relations and inheritance relations of a role hierarchy, the SSD relations model

component defines relations in both the presence, as illustrated in Figure 2.3 [7], and

absence of role hierarchies.

 8

Figure 2.3 : SSD Relations

2.1.4 DSD Relations

DSD relations, as illustrated in Figure 2.4 [7], define exclusivity relations with

respect to the roles that are activated as a part of a user’s session. DSD relations, like

SSD relations, are intended to limit the permissions that are available to a user.

However, DSD relations differ from SSD relations by the context in which these

limitations are imposed. SSD relations define and place constraints on a user’s total

permission space but DSD relations limit the availability of the permissions over a

user’s permission space by placing constraints on the roles that can be activated

within or across a user’s sessions.

Figure 2.4 : DSD Relations

 9

2.2 MDA

The MDA is an approach to separate the specification of the operation of a system

from the details of the way that system uses the capabilities of its platform [11].

MDA provides an approach for, and enables tools to be provided for:

• specifying a system independently of the platform that supports it,

• specifying platforms,

• choosing a particular platform for the system, and

• transforming the system specification into one for a particular platform.

The three primary goals of MDA are portability, interoperability and reusability

through architectural separation of concerns. The keystones in MDA are the models

and model elements; hence, it is important to use a well-defined modeling language,

such as UML, to describe each model precisely. The aim of MDA is that a PIM

(high-level model) can be transformed into a PSM (low-level model), as illustrated in

Figure 2.5. Therefore, to develop software system it is only have to be designed its

conceptual schema with all constraints using UML and OCL respectively.

The MDA process is divided into three steps:

1. Build a PIM, that is, a conceptual model of the desired system, which is

independent of any implementation technology.

2. Transform the PIM into a PSM that is based on elements and concepts of the

implementation in a specific technology.

3. Transform the PSM into code. A tool might transform a PIM directly into

deployable code, without producing a PSM, which means Step 2 might be

skipped.

2.3 UML

The Unified Modeling Language (UML) [8] is a widely used graphical language for

modeling object-oriented systems. It helps users to specify, visualize, construct and

document the components of software systems during the design and development

phase. UML supports the description of the structure and behavior of systems using

different model element types and corresponding diagram types. The class diagram,

 10

which is focused in this study, is one of these defined diagram types to provide a

structural view of information in a system.

Figure 2.5 : Model Transformation in MDA Approach

2.3.1 Class Diagram

The structural aspects of systems are defined using classes; each class represents a

group of things that have common services, properties, and behavior. Services are

described by functions, and properties are described by attributes and associations.

Every class participating in an association is connected to the association by an

association end, which may also specify the role name of the class and its cardinality

in the association. Classes and their relations are depicted in class diagrams.

2.3.2 UML Profile

UML Profile [8][9] is a kind of UML extension mechanism. It specializes some of

the language’s elements, imposes new restrictions on them while respecting the

UML metamodel and leaving the original semantics of the UML elements

unchanged. Icons and symbols can be specified for these specialized elements. The

Object Management Group (OMG) maintains some common and widely accepted

profiles, such as UML Profile for CORBA [16] and UML Testing Profile [17].

UML Profiles are defined in terms of three basic mechanisms: stereotypes, tagged

values, and constraints [9] that allow tailoring it to fit the needs of a specific domain.

A stereotype defines how an existing metaclass may be extended. It can be used to

create platform or domain specific terminology or notation in addition to, or in place

 11

of, the ones used for the extended metaclass. A tagged value is an additional meta-

attribute that is attached to a metaclass extended by a stereotype. A tagged value has

a name and a type, and is member of a specific stereotype. Constraints are expressed

in OCL or natural language and can be associated with stereotypes. They impose

restrictions on the corresponding metamodel elements. In this way, the properties of

a well-formed model can be defined.

2.4 OCL

Object Constraint Language (OCL) [10], which is part of the UML, is used to

express constraints and properties of model elements in a formal way. OCL, which is

based on first-order logic, is a textual language that describes constraints on the

UML model with expressions. These expressions typically specify invariant

conditions that must hold for the system being modeled or queries over objects

described in a model. Note that when the OCL expressions are evaluated, they do not

have side effects, which means their evaluation cannot alter the state of the

corresponding executing system. Expressions can be used in a number of places in a

UML model:

• to specify the initial value of an attribute or association end

• to specify the derivation rule for an attribute or association end

• to specify the body of an operation

• to indicate an instance in a dynamic diagram

• to indicate a condition in a dynamic diagram

• to indicate actual parameter values in a dynamic diagram

There are four types of constraints defined in OCL, shown in Table 2.1.

In OCL expressions, there can be used

• basic types like Integer, Real, String and Boolean;

• basic operations that can be used with the basic types, like

mathematical operations, string operations and Boolean operations;

 12

• collections that are structured data types that allow encapsulating

more than one element of a same type inside, like Set, Bag,

OrderedSet and Sequence;

• operations on collections like select, reject, collect, forAll, exists,

iterate and any.

Table 2.1 : OCL Constraints Types

OCL Constraints Type Description

Invariant

An invariant object normally attaches with a class
diagram. It is a constraint that states additional rules that
must always be obeyed by all objects of the class, type or
interface that are defined in the class diagram.

Precondition A precondition is used to restrict a condition that must be
true before an operation executes.

Post-condition A post-condition is used to restrict a condition that must
be true after an operation executes.

Guard A guard is used to restrict a condition that must be true
before a transition in a state machine happens.

A Set is a container where each element inside appears only one time. Therefore, it

does not contain duplicate elements. A Bag is like a Set but with duplications

allowed. Moreover, OrderedSet and Sequence are the same as Set and Bag in which

the elements are ordered.

2.5 Related Works

In literature, there are some studies about visualizing RBAC elements and constraints

in UML [18][19] and OCL representation of RBAC constraints [20][21]. None of

these studies points out a UML Profile that can be used for the both purposes. Basin

D. et al. [1] propose an approach, Model Driven Security (MDS), to build secure

systems. This approach is very close to the approach that is used in this study, in

bridging “gaps” between security models and system design models but they define a

new modeling language directly using Meta-Object Facility (MOF) [22]. In this

approach, developers should use an extra tool besides their modeling tool, or leave it

at all. In other words, a new modeling language requires a new CASE-tool. In

contrast, UML Profile is a lightweight UML extension and does not require an extra

 13

tool. Developers can easily deploy a UML Profile to their CASE-tools. Moreover, in

MDS, it is not mentioned how to employ RBAC constraints [7][20] into the model.

Another close approach to this subject was proposed by Jin X. [23]. She proposes a

framework to provide support for modeling the RBAC system in eXtensible Access

Control Markup Language (XACML) [24] architecture and automatic generation of

policy specification in XACML format. This study uses UML Profile mechanism to

integrate security to system development cycle but the profile contains both RBAC

elements and XACML elements like Rule and Policy, and only contains SSD RBAC

constraint. In contrast to this study, the proposed approach is for just RBAC elements

and includes critical RBAC constraints like SSD, DSD, prerequisite, cardinality and

time-based constraints. XACML could be a PSM and developers may not know

about XACML elements. Developers can design just PIM with the proposed UML

Profile for their problem domain. Transformation functions can handle this kind of

platform specific details if it is needed.

 15

3. RBAC UML PROFILE

The proposed UML Profile for RBAC has stereotypes, tagged values and constraints

to define a way of modeling RBAC elements and constraints.

3.1 Conceptual Model

The proposed UML Profile includes all elements of the four model components of

RBAC, which is mentioned in Section 2.1. Figure 3.1 shows conceptual model of the

standard RBAC elements, constraints and their relations, and some additional

elements; prerequisite roles, time-based constraint and critical permission. A role

can have one or more prerequisite roles means a user can be assigned to this role

only if the user is already authorized for those prerequisite roles. Time-based

constraints are used to restrict sessions to be established in only allowed time

intervals. Operations of a critical task are divided over roles, exclusive roles, by

assigning these operations to critical permissions. Every exclusive role in a

Separation of Duty (SoD) relation should be assigned to at least one critical

permission for that critical task. A critical permission can be assigned to only one

role. Critical permissions could not be shared among roles so it guarantees

consistency of user-exclusive role assignment and exclusive role-permission

assignment, for more information look at [6] p. 107-117. As shown in Figure 3.1,

the relations between users and roles, permissions and roles, and operations and

permissions are many-to-many. A resource can have one or more operations. A user

can establish multiple sessions and can activate one or more authorized roles in a

session. A role can have one or more junior roles for the role inheritance relations. A

role can have one or more prerequisite roles for the prerequisite constraint. An SoD

has at least two exclusive roles. SSD and DSD generalize SoD. Upper limit property

of the SoD kind element is a natural number ≥2 that no user is assigned to this much

or more roles (for SSD), no user can activate in a session this much or more roles

(for DSD), included in the exclusive roles set. A CriticalPermission, which is a

 16

Permission, has at least one SoD element shows for which critical task it is created. A

TimeConstraint has a property for session it constraints.

Figure 3.1 : Conceptual model of RBAC elements and constraints

3.2 Proposed UML Profile for RBAC

The proposed UML Profile can be expressed in three parts; RBAC Core

Components, Hierarchical RBAC and Constrained RBAC, to represent four model

components of the RBAC standard and additional RBAC constraints. All three parts

of the UML Profile has stereotypes, tagged values and constraints. All these

stereotypes and their relations are shown in Figure 3.2.

RBAC Core Components part of the proposed UML Profile contains User, Role,

Resource, Operation, Permission, Session, ResourceAssignment, UserAssignment

and PermissionAssignment stereotypes that are described in Section 3.2.1-3.2.9.

Hierarchical RBAC part contains RoleInheritance stereotype that is described in

Section 3.2.10. Constrained RBAC part contains SoD, SSD, DSD, CriticalPermission

and TimeConstraint stereotypes that ate described in Section 3.2.11-3.2.15.

There are OCL expressions that are embedded as owned rules in its constrained

stereotype in the UML Profile, in the tables of stereotype definitions. Those

expressions use some general OCL definitions that are described in Section 3.3.

 17

Figure 3.2 : RBAC UML Profile

 18

3.2.1 User Stereotype

It represents a human being, machine, network or anything that want to access

system resources.

Icon :

Base Class : UML::Class

Parent : N/A

Tagged Values :

- maxAssignedRoleCount : Integer [1] = -1: maximum number of roles that can be

assigned to this user.

- maxActivatedRoleCount : Integer [1] = -1: maximum number of roles that can be

activated by this user in a session.

Constraints :

[1] Number of the assigned roles of a user should not exceed its

maxAssignedRoleCount value.

inv maxAssignedRoleCount :
self.isUser implies self.asUser.maxAssignedRoleCount>-1 implies
self.assignedUserRoles(self)->size()<=self.asUser.maxAssignedRoleCount

[2] Number of the activated roles in a session should not exceed session owner’s

maxActivatedRoleCount value.

inv maxActivatedRoleCount :
self.isUser implies self.asUser.maxActivatedRoleCount>-1 implies
self.establishedUserSessions(self)->forAll(endType->select(isRole)->
size()<=self.maxActivatedRoleCount)

3.2.2 Role Stereotype

It represents a job function or job title within the context of an organization.

Icon :

Base Class : UML::Class

Parent : N/A

 19

Tagged Values :

- maxPermissionCount : Integer [1] = -1: maximum number of permissions that

can be assigned to this role.

- maxUserCount : Integer [1] = -1: maximum number of users that can be assigned

to this role.

- prerequisiteRoles : Role [*]: prerequisite roles for this role.

Constraints :

[1] Number of the assigned permissions of a role should not exceed its

maxPermissionCount value.

inv maxRolePermissionCount :
self.isRole implies self.asRole.maxPermissionCount>-1 implies
self.assignedRolePermissions(self)->size()<=self.asRole.maxPermissionCount

[2] Number of the assigned users of a role should not exceed its maxUserCount

value.

inv maxUserCount :
self.isRole implies self.asRole.maxUserCount>-1 implies
self.assignedRoleUsers(self)->size()<=self.asRole.maxUserCount

[3] All generalizations of a Role should be RoleInheritance stereotyped

generalizations.

inv inheritanceShouldBeRoleInheritance:
self.isRole implies self.generalization->forAll(isRoleInheritance)

[4] PrerequisiteRoles tagged value should not include the owner Role stereotyped

class.

inv prerequisiteSelfContain :
self.isRole implies not self.asRole.prerequisiteRoles->
iterate(r;res:Set(Class)=Set{} | res->including(r.base_Class))->includes(self)

[5] Roles that are included in prerequisiteRoles tagged value, and their all parents

which means its direct and indirect ancestors, and the tagged value’s owner role and

its all parents should not form a role set that violates the SSD constraint.

inv prerequisiteSSDConsistency :
self.isRole implies self.asRole.prerequisiteRoles->notEmpty() implies let
authorisedRequiredRoles : Set(Class) = allFamily(prerequisites(self)->
union(Set{self.base_Class})) in self.allSSDs->forAll(ssd | sodRoles(ssd)->
intersection(authorisedRequiredRoles)->size()<ssd.extension_SoD.upperLimit)

 20

[6] If a CriticalPermission is assigned to a role, this role should be included in

separatedRoles tagged value of all SoD elements that are specified in sods tagged

value of that CriticalPermission.

inv shouldBeInSoD :
self.isRole implies assignedRoleCriticalPermissions(self)->forAll(cp |
cp.asCriticalPermission.sods->forAll(cps : RBAC::SoD |
sodRoles(cps.base_Class)->includes(self)))

3.2.3 Resource Stereotype

It represents an object that must be protected against inappropriate or undesired

access.

Icon :

Base Class : UML::Class

Parent : N/A

Tagged Values :

- maxPermissionCount : Integer [1] = -1: maximum number of permissions that

can be assigned to this resource.

Constraints :

[1] Number of the assigned permissions of a resource should not exceed its

maxPermissionCount value.

inv maxResorcePermissionCount :
self.isResource implies self.asResource.maxPermissionCount>-1 implies
self.assignedResourcePermissions(self)->
size()<=self.asResource.maxPermissionCount

3.2.4 Operation Stereotype

It is used to mark functions of the Resource stereotyped classes as protected.

Functions are used to access information of the class or make changes on the state of

the system, which makes them ideal to represent Operations on Resources in RBAC

context.

 21

Icon :

Base Class : UML::Operation

Parent : N/A

Tagged Values : N/A

Constraints :

[1] Owner class of the Operation stereotyped function should be Resource

stereotyped class.

inv operationEncloser :
self.isOperation implies self.owner.isResource

3.2.5 Permission Stereotype

It represents an approval to perform operations on protected resources.

Icon :

Base Class : UML::Class

Parent : N/A

Tagged Values :

- maxResourceCount : Integer [1] = -1: maximum number of resources that can be

assigned to this permission.

- maxRoleCount : Integer [1] = -1: maximum number of roles that can be assigned

to this permission.

Constraints :

[1] Number of the assigned resources of a permission should not exceed its

maxResourceCount value.

inv maxResourceCount :
self.isPermission implies
self.asPermission.maxResourceCount>-1 implies
self.assignedPermissionResources(self)->
size()<=self.asPermission.maxResourceCount

 22

[2] Number of the assigned roles of a permission should not exceed its

maxRoleCount value.

inv maxRoleCount :
self.isPermission implies self.asPermission.maxRoleCount>-1 implies
self.assignedPermissionRoles(self)->size()<=self.asPermission.maxRoleCount

3.2.6 Session Stereotype

It is established by a user to activate his one or more authorized roles.

Icon :

Base Class : UML::AssociationClass

Parent : N/A

Tagged Values : N/A

Constraints :

[1] It should associate a User stereotyped class with one or more Role stereotyped

classes.

inv user_session_roles :
self.isSession implies self.endType->one(isUser) and self.endType->
exists(isRole) and self.endType->forAll(isUser or isRole)

[2] Activated roles and their all parents should not form a role set that violates the

DSD constraint.

inv dsdRule :
self.isSession implies let sessionAuthorisedRoles : Set(Class) =
allFamily(activeSessionRoles(self)) in self.allDSDs->forAll(dsd |
sessionAuthorisedRoles->intersection(sodRoles(dsd))->
size()<dsd.extension_SoD.upperLimit)

[3] In order to activate a role in a session, User who establishes the session must be

authorized for that role.

inv userAssignedRolesActivation :
self.isSession and sessionUser(self)<>null implies
allFamily(assignedUserRoles(sessionUser(self)))->
includesAll(allFamily(activeSessionRoles(self)))

 23

3.2.7 ResourceAssignment Stereotype

It is used to assign a resource to a permission.

Icon : N/A

Base Class : UML::Association

Parent : N/A

Tagged Values :

- allowedOperations : Operation [*]: includes Operation stereotyped functions

belong to Resource end of the association. A user who is authorized for the role

that is assigned to Permission end of this association, grants right to execute these

functions.

- resourceActions : ResourceAction [*]: includes one or more ResourceAction

enumeration values:

 READ: execute all Operation stereotyped, getter functions of attributes

and association ends, and side-effect free functions that do not change the

state of the system when they are executed, of the Resource.

 UPDATE: execute all Operation stereotyped, setter functions of attributes

and association ends, and non-side-effect free functions of the Resource.

 CREATE: execute constructor function of the Resource.

 DELETE: execute destructor function of the Resource.

 FULLACCESS: all CREATE, READ, UPDATE and DELETE rights.

Constraints :

[1] It should associate a Resource stereotyped class with a Permission stereotyped

class.

inv permission_resource :
self.isResourceAssignment implies self.endType->exists(isPermission) and
self.endType->exists(isResource)

[2] allowedOperations tagged value should include Operation stereotyped functions

that are owned by Resource end of the association.

 24

inv allowedOperationsOwner :
self.isResourceAssignment implies let resource : Type = self.endType->
any(isResource) in resource<>null implies self.asResourceAssignment.
allowedOperations->forAll(op | op.owner=resource)

[3] Both allowedOperations and resourceActions tagged values could not be empty.

At least one of them must contain some elements.

inv hasOperations :
self.isResourceAssignment implies
self.asResourceAssignment.allowedOperations->notEmpty() or
self.asResourceAssignment.resourceActions->notEmpty()

3.2.8 UserAssignment Stereotype

It is used to assign a user to a role.

Icon : N/A

Base Class : UML::Association

Parent : N/A

Tagged Values : N/A

Constraints :

[1] It should associate a User stereotyped class with a Role stereotyped class.

inv role_user :
self.isUserAssignment implies self.endType->exists(isRole) and self.endType->
exists(isUser)

[2] User end of the association should be already authorized for prerequisite roles of

the Role end, and prerequisite roles of all parents of this Role end.

inv prerequisiteRule :
self.isUserAssignment implies let user : Type = endType->any(isUser), role :
Type = endType->any(isRole) in (user<>null and role<>null) implies let allPrrs :
Set (Class) = allFamily(Set{role})->collect(r | prerequisites(r))->asSet() in allPrrs->
notEmpty() implies authorisedRoles(user)->includesAll(allPrrs)

[3] Assignment of a user to a role should not cause violation of the SSD constraint.

inv ssdRule :
self.isUserAssignment implies let user : Type = endType->any(isUser), role :
Type = endType->any(isRole) in (user<>null and role<>null) implies self.allSSDs
->forAll(ssd | sodRoles(ssd)->includes(role.oclAsType(Class)) implies
assignedUserRoles(user)->intersection(sodRoles(ssd))->
size()<ssd.extension_SoD.upperLimit)

 25

3.2.9 PermissionAssignment Stereotype

It is used to assign a permission to a role.

Icon : N/A

Base Class : UML::Association

Parent : N/A

Tagged Values : N/A

Constraints :

[1] It should associate a Permission stereotyped class with a Role stereotyped class.

inv role_permission :
self.isPermissionAssignment implies self.endType->exists(isRole) and
self.endType->exists(isPermission)

3.2.10 RoleInheritance Stereotype

It represents a hierarchy between two roles. General end is junior role and specific

end is senior role. Senior role inherits all assigned permissions of the junior role.

Users, who are assigned to this senior role, grant these inherited permissions via the

generalization.

Icon : N/A

Base Class : UML::Generalization

Parent : N/A

Tagged Values : N/A

Constraints :

[1] Both general end and specific end of the generalization should be Role

stereotyped classes.

inv role_role :
self.isRoleInheritance implies self.general.isRole and self.specific.isRole

[2] It should not cause an inheritance cycle. All parents of the junior role should not

include the senior role.

inv inheritanceCycle :
self.isRoleInheritance implies not self.general.allParents->select(isRole)->
includes(self.specific)

 26

[3] RoleInheritance should not cause violation of the SSD constraint.

inv roleInheritanceSSDRule :
self.isRoleInheritance implies Class.allInstances()->forAll(u | u.isUser implies let
generalFamily : Set(Class) = allFamily(Set {self.general}) in authorisedRoles(u)
->includesAll(generalFamily->union(Set {self.specific})) implies self.allSSDs->
forAll(ssd | sodRoles(ssd)-> intersection(generalFamily)->size()>0 implies
authorisedRoles(u)-> intersection(ssdRoles(ssd))->
size()<ssd.extension_SoD.upperLimit))

3.2.11 SoD Stereotype

It is an abstract stereotype for Separation of Duties that is a fundamental requirement

for critical tasks. A critical task should not be completed by a single user in SSD

context. Operations of a critical task should not be performed in the same session in

DSD context.

Icon : N/A

Base Class : UML::Class

Parent : N/A

Tagged Values :

- separatedRoles : Role [2:*]: includes roles that permissions of a critical task are

divided among them.

- upperLimit : Integer [1] = 2: a natural number ≥2 with the property that,

 in SSD context, no user is assigned to

 in DSD context, no user may activate in the same session

this much or more roles included in separatedRoles tagged value.

Constraints :

[1] upperLimit tagged value should be a natural number between 2 and the size of the

separatedRoles array.

inv allowedRolesUpperLimit :
self.isSoD implies self.asSoD.upperLimit>=2 and
self.asSoD.upperLimit<=self.asSoD.separatedRoles->size()

[2] Each Role that is included in separatedRoles tagged value should be assigned to

at least one CriticalPermission that has sods tagged value includes this SoD element.

 27

inv criticalTaskDividedToRoles :
self.isSoD implies sodRoles(self)->forAll(role |
assignedRoleCriticalPermissions(role)->exists(cp |
cp.asCriticalPermission.sods.base_Class->includes(self)))

3.2.12 SSD Stereotype

It is used to ensure that roles in an SSD relationship have no common user assigned.

SSD constraints provide reduced risk and fraud, and increased opportunity for

detecting errors, since two or more parties are involved in completing a transaction.

Icon :

Base Class : UML::Class

Parent : SoD

Tagged Values : N/A

Constraints : N/A

3.2.13 DSD Stereotype

It is used to ensure that roles in a DSD relationship are not activated in the same

session.

Icon :

Base Class : UML::Class

Parent : SoD

Tagged Values : N/A

Constraints : N/A

3.2.14 CriticalPermission Stereotype

It is assigned to some protected operations of one or more critical tasks. It is a kind

of permission that can be assigned to only one role.

Icon :

Base Class : UML::Class

 28

Parent : Permission

Tagged Values :

- sods : SoD [1:*]: includes SoD kind stereotyped classes to specify for which SoD

relations, this permission is created as critical.

Constraints :

[1] sods tagged value should not be empty.

inv emptySoDs :
self.isCriticalPermission implies self.asCriticalPermission.sods->notEmpty()

[2] CriticalPermission could be assigned to only one role. It should not be shared

among roles.

inv onlyOneRole :
self.isCriticalPermission implies self.assignedPermissionRoles(self)->size()<=1

3.2.15 TimeConstraint Stereotype

TimeConstraint is used to restrict a Session to be established in only allowed time

intervals. If a Session is restricted by more than one TimeConstraint, it can be

established when at least one of these constraints is valid at the establishment time.

Icon :

Base Class : UML::Class

Parent : N/A

Tagged Values :

- constrainedSession : Session [1]: a Session stereotyped class that is wanted to be

restricted.

- notBefore : String [0:1]: a String value that represents a time. Before this time,

constrainedSession cannot be established.

- notAfter : String [0:1]: a String value that represents a time. After this time,

constrainedSession cannot be established.

- period : Period [1] = NONE: includes one of the Period enumeration values;

NONE, DAILY, WEEKLY, EVERY WEEKDAY, EVERY WEEKEND,

 29

BI-WEEKLY, MONTHLY and YEARLY. At these periods within notBefore

and notAfter time interval, constrainedSession can be established.

Constraints : N/A

3.3 OCL Expressions for Profile Constraints

OCL invariant expressions are used for defining profile constraints. Each constraint,

which is defined in natural language and in OCL Expression on stereotype elements

of the RBAC UML Profile (see Section 3.2 stereotype definitions), corresponds to an

OCL expression that is embedded in its constrained stereotype element as owned rule

in the profile. Each stereotype element is the context for the OCL Expressions of its

owned rules. These OCL expressions are used to validate models if the model is

well-formed and does not violate any RBAC constraints. OCL expressions are

created by considering the role inheritance. All defined OCL expressions can be

found in the XMI format of the proposed UML Profile for RBAC [25]. APPENDIX

A.1 shows global OCL definitions that are used in OCL expressions for the UML

Profile constraints.

 31

4. EXAMPLE DESIGN PROBLEM

In this section, it is introduced a design problem along with its access control

requirements, as an example for how the proposed UML Profile for RBAC can be

applied to the design model.

4.1 Problem Domain Requirements

It is considered developing a subset of the requirements of a system for hospital

automation. In this system, there are doctors, nurses, patients and an external system,

pharmacy system as actors. Each Patient is assigned to one Doctor and one or more

Nurses. A Doctor can be assigned to more than one Patient. Doctor diagnoses

diseases of the Patient and creates a medicine order. Nurse can list the medicine

orders. She selects an order from the list and then picks medicines that are listed in

that order, from the medicine dispenser. Nurse gives the Patient medications at the

times specified in the order. External Pharmacy System is responsible for listing the

medicine orders and loading medicines to the medicine dispenser if it is necessary.

4.2 Access Control Requirements

As the thesis proceeds, it will be seen how to formalize a design model for this

system along with the following access control demands.

1. Loading medicines to medicine dispenser, creating medicine order and

picking medicines from the medicine dispenser are operations forming a

critical task. This critical task should not be performed by a single user.

2. A user should already grant diagnosing right to create medicine orders.

3. Only one user, here is the Pharmacy System, can load medicines to the

medicine dispenser.

4. Pharmacy System may get reports and status information of the medicine

dispenser. However, it should not perform these operations when it is loading

medicines to the medicine dispenser.

 32

5. Pharmacy System can load medicines to the dispenser only at a time interval

12:00-13:00 in a day.

6. Only Doctors and Nurses can read patient records. Pharmacy System should

not read patient records even if it can read patient medicine orders.

Five of these access control demands are samples of RBAC constraints that are

mentioned in the standard [7]; static (1) and dynamic (4) separation of duties, and

constraints that are mentioned in [20]; prerequisite (2), cardinality (3) and time-based

(5) constraints. Remaining one (6) is sample of the user assignment to a role.

4.3 System Design Model

While the UML already provides standards for the design of this system in general, it

does not provide everything necessary for the design of access control specifications.

Classes [8] can be used for defining the structural aspects of this system. Each class

formalizes a set of objects with common services, properties and behavior. Figure 4.1

represents the structural aspect of the problem domain but does not include the

security aspect of the system for access control specifications. Lack of the security

elements in this class diagram is the problem. A UML Profile can solve this problem.

Figure 4.1 : Hospital Automation System Class Diagram

4.4 Security Model

Core RBAC elements and their relations for the problem domain can be defined by

analyzing problem domain requirements. Core component stereotypes of the

proposed UML Profile for RBAC can be used to mark design elements of the

problem domain as RBAC core elements.

 33

Doctor, Nurse and PharmacySystem are Users of the system. Order, Patient and

MedicineDispenser are Resources that are required to be protected against

inappropriate or undesired user access. There are some Operations on the protected

resources, adding disease, applying medicines and reading on the Patient; reading,

creating and deleting on the Order; dispensing medicines, loading medicines and

getting reports and status information on the MedicineDispenser. These operations

should be assigned to some Permissions so they can be performed by users via Roles.

Therefore, some permissions and roles should be defined.

Adding disease can be assigned to Diagnose permission that can be assigned to

Diagnoser role. Applying medicines can be assigned to Medicate permission that

can be assigned to Medicater role. Reading patient records can be assigned to

ReadPatientRecord permission that can be assigned to PatientRecordReader role.

Reading order can be assigned to ReadOrder permission that can be assigned to

OrderReader role. Creating and deleting order can be assigned to CreateOrder

permission that can be assigned to OrderCreater role. Dispensing medicines can be

assigned to Dispense permission that can be assigned to the Medicater role. Loading

medicines can be assigned to LoadMedicine permission that can be assigned to

MedicineLoader role. Getting reports and status information can be assigned to

ManageDispense permission that can be assigned to DispenserManager role.

All operation-permission assignments are done by creating relations between

corresponding Permissions and Resources that enclose the Operations, with

ResourceAssignment. The Operations that are functions of the Resource stereotyped

classes, are Operation stereotyped elements. AllowedOperations tagged value of the

ResourceAssignments should contain the required Operations. Reading, creating and

deleting are Resource actions so appropriate ResourceAction enumeration values

should be included in the resourceActions tagged value of the corresponding

ResourceAssignments.

Doctor as a user, should be assigned to Diagnoser, PatientRecordReader and

OrderCreater roles to fulfill his job. Nurse should be assigned to Medicater and

PatientRecordReader roles. PharmacySystem should be assigned to MedicineLoader,

DispenserManager and OrderReader roles.

All assignments that are mentioned above are done with appropriate association

stereotypes of core components of the proposed UML Profile. Figure 4.2 illustrates

 34

how the core components of the UML Profile for RBAC can be applied to domain

model of the hospital automation system. As the thesis proceeds, missing parts will

be added to the model.

Figure 4.2 : RBAC UML Profile Core Components applied to problem domain

In this example system, it is desired that OrderCreater and Medicater roles should

have ReadOrder permission. Instead of assigning this permission to both roles, they

may inherit this permission over OrderReader role. This inheritance relation, which

is depicted in Figure 4.3, could be created with RoleInheritance Stereotype.

Figure 4.3 : RBAC UML Profile Hierarchical RBAC applied to problem domain

In order to model access control requirements of the example system, constrained

RBAC elements of the proposed UML Profile can be used.

Access control requirement (1) mentions a critical task that is formed by loading

medicine, creating medicine order and dispensing medicine operations. Permissions

that are assigned to these operations, should be created as CriticalPermissions and

roles that are assigned to these permissions, should be in an SSD relation. Therefore,

 35

LoadMedicine, Dispense and CreateOrder should be CriticalPermissions and

MedicineLoader, Medicater, and OrderCreater roles should be included in

separatedRoles tagged value of an SSD stereotyped element. For this critical task,

MedicineSSD is created and OrderCreater, Medicater and MedicineLoader roles are

added to the separatedRoles tagged value of this element. It is assumed that, all roles

in this SSD relation are required to be assigned to different users so upperLimit

tagged value of MedicineSSD should be 2 which means no user can be assigned to 2

or more roles that are included in the separatedRoles. CriticalPermissions that are

mentioned above should contain MedicineSSD in their sods tagged value.

Access control requirement (2) points out that diagnosing is a prerequisite for

creating medicine orders. Prerequisite relations are for Roles in RBAC context.

Consequently, prerequisiteRoles tagged value of the OrderCreater role that grants

right to perform creating medicine orders operation over CreateOrder permission,

should include the Diagnoser role that grants right to perform diagnosing operation

over Diagnose permission.

Access control requirement (3) is about cardinality constraint for loading medicines

to the medicine dispenser operation. MedicineLoader role that grants right to perform

this operation over LoadMedicine permission, should have maxUserCount tagged

value is set to 1 to cover this requirement. By this way, this role cannot be assigned

to another user while it is already assigned to a user, PharmacySystem.

Access control requirement (4) also mentions a critical task that is formed by loading

medicine and, getting reports and status information of the MedicineDispenser. This

constraint is about DSD, means these operations should not be performed in the same

session. MedicineLoader and DispenserManager roles that grant rights to perform

operations forming this critical task, should be in a DSD relation. Therefore,

LoadMedicine and ManageDispense should be CriticalPermissions and

MedicineLoader and DispenserManager roles should be included in separatedRoles

tagged value of a DSD stereotyped element. For this critical task, PharmacyDSD is

created and MedicineLoader and DispenserManager roles are added to the

separatedRoles tagged value of this element. It is assumed that, the roles in this DSD

relation are required to be activated in different sessions so upperLimit tagged value

of PharmacyDSD should be 2 which means no user can activate 2 or more roles that

are included in the separatedRoles in the same session. LoadMedicine and

 36

ManageDispense CriticalPermissions should contain PharmacyDSD in their sods

tagged value.

Access control requirement (5) refers a time constraint on loading medicines

operation so a TimeConstraint stereotype should be applied to an element of the

model. MedicineLoadConstraint is created for this purpose. It should constraint a

session in that MedicineLoader role that grants right to perform the loading

medicines operation, is activated. Therefore, MedicineLoadSession association class

element to that Session stereotype is applied, is created. It associates

PharmacySystem user with MedicineLoader role. This session should be established

only at a time interval 12:00-13:00 in a day so tagged values of the

MedicineLoadConstraint should be set like that constrainedSession is set to the

MedicineLoadSession, notBefore tagged value is set to 12:00, notAfter tagged value

is set to 13:00 and period tagged value is set to DAILY period enumeration value.

Access control requirement (6) is satisfied by assigning Doctor and Nurse users, not

PharmacySystem user, to the PatientRecordReader role that grants right to reading

patient records over ReadPatientRecord permission.

Figure 4.4 illustrates how the Constrained RBAC elements of the UML Profile for

RBAC can be applied to domain model of the hospital automation system to fulfill

the access control requirements.

 37

 Figure 4.4 : RBAC UML Profile Constrained RBAC applied to problem domain

 38

Figure 4.5 : Platform Independent Model of the Hospital Automation System

 39

4.5 Platform Independent Model

The PIM of the hospital automation system, which is depicted in Figure 4.5, is

constructed by modeling domain requirements and access control requirements

together by virtue of the proposed UML Profile for RBAC. This model is validated

successfully which means it is well-formed and does not violate any RBAC

constraint.

4.6 Ill-formed Security Model

Ill-formed security model of the hospital automation system as illustrated in Figure

4.6 is constructed to constitute design error and constraint violation samples. Whole

security model elements are not employed in this model to keep the model simple to

show only elements that could not pass validation check. When the model is

validated, there are some errors on some elements. All found errors and their reasons

are described in APPENDIX C.1. Some CASE-tools like IBM Rational Software

Modeler allow defining custom error and warning messages for violated OCL

expressions. These messages can be internationalized. Defined error messages for the

proposed UML Profile for RBAC are in APPENDIX B.1.

 40

Figure 4.6 : Ill-formed Security Model of the Hospital Automation System

 41

5. CONCLUSION AND RECOMMENDATIONS

This thesis has proposed a UML Profile for RBAC, which provides early integration

of access control specifications to the entire development process. This study

employed RBAC constraints to the UML Profile in order to get use of the strengths

of RBAC, such as separation of duties and cardinality constraints. The models to that

this profile applied, can be validated against ill-formedness and security constraint

violations. By this way, design problems can be realized and fixed earlier. A formal

language; OCL is used for validation. The proposed UML Profile is lightweight,

easily interchangeable and deployable, and has a wide-range of CASE-tools support.

In this study, the proposed UML Profile is designed to be used only in UML class

diagrams, for the structural and static aspects of the system. It can be designed for

other popular diagram types of UML like sequence diagram and state diagram, for

the dynamic aspects of the system. If the profile can be used for both static and

dynamic aspects of the system, it will be more flexible and usable. For example, the

profile will be applied to state diagrams for the controller-based systems. Session,

which is one of the core elements of the RBAC, is created at run time in the system.

It is a dynamic system element so it will be more appropriate to show it in a UML

diagram that is for dynamic view of the system. In this thesis, it is provided a way to

put Session element in a class diagram. It will be useful if users cannot drop or add a

role in an established session, if it is defined at design time which roles will be

activated in which sessions, or if a session is required to be restricted by a time-based

constraint. One will create transformation functions for a well-known access control

infrastructure to examine how the PIM can be used to generate the PSM or generate

code directly. Employing role delegation feature and temporal constraints [26] into

the profile will enrich it.

 43

REFERENCES

[1] Basin, D., Doser, J., and Lodderstedt, T., 2006. Model Driven Security:
From UML Models to Access Control Infrastructures. ACM
Transactions on Software Engineering and Methodology, Vol. 15, No.
1, 39-91.

[2] Bell, D.E., and LaPadula, L.J., 1976. Secure Computer System: Unified
Exposition and Multics Interpretation. MTR-2997 Rev. 1, Bedford,
MA: The Mitre Corporation, March.

[3] Brewer, D., and Nash, M. 1989. The Chinese Wall Security Policy. In
Proceedings of the 1989 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 206–214.

[4] Clark, D. D., and Wilson, D. R., 1987. A Comparison of Commercial and
Military Computer Security Policies. In Proceedings of the 1987 IEEE
Symposium on Research in Security and Privacy. IEEE Press, 184-
194.

[5] Ferraiolo, D., and Kuhn, R., 1992. Role-Based Access Control. In
Proceedings of the 15th NIST-NSA National Computer Security
Conference, 554-563.

[6] Ferraiolo, D., Kuhn, R., and Chandramouli, R., 2007. Role-Based Access
Control, Second Edition. Artech House, Information Security and
Privacy Series.

[7] American National Standard for Information Technology, 2004. Role
Based Access Control, ANSI INCITS 359-2004.

[8] Object Management Group, 2009. OMG Unified Modeling Language
(OMG UML), Superstructure, Version 2.2 (Feb. 2009).
<http://www.omg.org/cgi-bin/doc?formal/09-02-02>

[9] Fuentes-Fernández, L., and Vallecillo-Moreno, A., 2004. An Introduction
to UML Profiles. UPGRADE, European Journal for the Informatics
Professional, Vol. 5, No. 2, 5-13.

[10] Object Management Group, 2006. Object Constraint Language, OMG
Available Specification, Version 2.0 (May. 2006).
<http://www.omg.org/spec/OCL/2.0/>

[11] Object Management Group, 2003. MDA Guide Version 1.0.1 (Jun. 2003).
<http://www.omg.org/cgi-bin/doc?omg/03-06-01>

[12] Object Management Group, 2007. MOF 2.0/XMI Mapping, OMG
Available Specification, Version 2.1.1. (Dec. 2007)
<http://www.omg.org/cgi-bin/doc?formal/2007-12-01>

[13] Sandhu, R., et. al., 1996. Role-Based Access Control Models. IEEE
Computer, Vol. 29, No.2, 1996, 38-47.

 44

[14] Sandhu, R., Ferraiolo, D., and Kuhn, R., 2000. The NIST Model for Role-
Based Access Control: Towards a Unified Standard. In Proceedings of
the 5th ACM Workshop on Role-Based Access Control, 2000, 47-63.

[15] Ferraiolo, D., Kuhn, R., and Sandhu, R., 2007. RBAC Standard Rationale:
Comments on "A Critique of the ANSI Standard on Role-Based
Access Control". IEEE Security and Privacy, Vol. 5, No. 6, 51-53.

[16] Object Management Group, 2002. UML Profile for CORBA Specification,
Version 1.0 (Apr. 2002). <http://www.omg.org/cgi-
bin/doc?formal/02-04-01>

[17] Object Management Group, 2005. UML Testing Profile, Version 1.0 (Jul.
2005). <http://www.omg.org/cgi-bin/doc?formal/05-07-07>

[18] Ray, I., Li, N., France, R., and Kim, D., 2004. Using UML to Visualize
Role-Based Access Control Constraints. In Proceedings of the 9th
ACM Symposium on Access Control Models and Technologies, 2004,
115-124.

[19] Shin, M.E., and Ahn, G., 2000. UML-Based Representation of Role-Based
Access Control. In Proceedings of the 9th IEEE International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2000, 195-200.

[20] Ahn, G., and Shin, M.E., 2001. Role-Based Authorization Constraints
Specification Using Object Constraint Language. In Proceedings of
the 10th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2001, 157-162.

[21] Wang, H., Zhang, Y., Cao, J., and Yang, J., 2004. Specifying Role-Based
Access Constraints with Object Constraint Language. APWeb 2004,
LNCS Vol. 3007, Springer Berlin / Heidelberg, 687-696.

[22] Object Management Group, 2006. Meta Object Facility (MOF) Core
Specification, OMG Available Specification, Version 2.0 (Jan. 2006).
<http://www.omg.org/spec/MOF/2.0/>

[23] Jin, X., 2006. Applying Model Driven Architecture Approach to Model Role
Based Access Control System. Thesis (M.Sc.)--University of Ottawa,
2006.

[24] Organization for the Advancement of Structured Information Standards,
2005. Core: eXtensible Access Control Markup Language (XACML)
Version 2.0 (Feb. 2005). <http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf>

[25] Cirit, C., and Buzluca, F. 2009. A UML Profile for RBAC, in XMI format.
<http://www.buzluca.info/rbac/RBAC.profile.xmi>

[26] Joshi, J.B.D., Bertino, A., and Ghafoor A., 2002. Temporal Hierarchies and
Inheritance Semantics for GTRBAC. In Proceedings of the 7th ACM
Symposium on Access Control Models and Technologies, 2002, 74-83.

 45

APPENDICES

APPENDIX A.1 : Global OCL Definitions for the proposed UML Profile for
RBAC

APPENDIX B.1 : Error messages of the proposed UML Profile for RBAC
APPENDIX C.1 : Found errors of ill-formed security model of the hospital

automation system

 46

APPENDIX A.1

Table A.1 : Global OCL Definitions

context Classifier

--Returns parents of the Classifier
def:

parents(): Set(Classifier) =
self.generalization.general

--Returns all parents of the Classifier
def:

allParents(): Set(Classifier) =
self.parents()->union(self.parents()->collect(p | p.allParents()))

context Element

--Returns true if the element is a User
def:

isUser : Boolean =
self.oclAsType(Class).extension_User<>null

--Returns User as a Stereotype
def:

asUser : Boolean =
self.oclAsType(Class).extension_User. oclAsType(RBAC::User)

--Returns true if the element is a Role
def:

isRole : Boolean =
self.oclAsType(Class).extension_Role<>null

--Returns Role as a Stereotype
def:

asRole : Role =
self.oclAsType(Class).extension_Role. oclAsType(RBAC::Role)

--Returns true if the element is a Permission
def:

isPermission : Boolean =
self.oclAsType(Class).extension_Permission<>null

 47

Table A.1 (contd.) : Global OCL Definitions

--Returns Permission as a Stereotype
def:

asPermission : Permission =
self.oclAsType(Class).extension_Permission.
oclAsType(RBAC::Permission)

--Returns true if the element is a Resource
def:

isResource : Boolean =
self.oclAsType(Class).extension_Resource<>null

--Returns Resource as a Stereotype
def:

asResource : Boolean =
self.oclAsType(Class).extension_Resource.
oclAsType(RBAC::Resource)

--Returns true if the element is a SoD
def:

isSoD : Boolean =
self.oclAsType(Class).extension_SoD<>null

--Returns SoD as a Stereotype
def:

asSoD : SoD =
self.oclAsType(Class).extension_SoD. oclAsType(RBAC::SoD)

--Returns true if the element is a SSD
def:

isSSD : Boolean =
self.oclAsType(Class).extension_SoD<>null and
self.oclAsType(Class).extension_SoD. oclIsTypeOf(RBAC::SSD)

--Returns true if the element is a DSD
def:

isDSD : Boolean =
self.oclAsType(Class).extension_SoD<>null and
self.oclAsType(Class).extension_SoD. oclIsTypeOf(RBAC::DSD)

--Returns true if the element is a CriticalPermission
def:

isCriticalPermission : Boolean =
self.oclAsType(Class).extension_Permission<>null and
self.oclAsType(Class).extension_Permission.
oclIsTypeOf(RBAC::CriticalPermission)

 48

Table A.1 (contd.) : Global OCL Definitions

--Returns CriticalPermission as a Stereotype
def:

asCriticalPermission : Boolean =
self.oclAsType(Class).extension_Permission.
oclAsType(RBAC::CriticalPermission)

--Returns true if the element is a Session
def:

isSession : Boolean =
self.oclAsType(AssociationClass). extension_Session<>null

--Returns true if the element is a Operation
def:

isOperation : Boolean =
self.oclAsType(Operation). extension_Operation<>null

--Returns true if the element is a ResourceAssignment
def:

isResourceAssignment : Boolean =
self.oclAsType(Association). extension_ResourceAssignment<>null

--Returns ResourceAssignment as a Stereotype
def:

asResourceAssignment : ResourceAssignment =
self.oclAsType(Association). extension_ResourceAssignment.
oclAsType(RBAC::ResourceAssignment)

--Returns true if the element is a PermissionAssignment
def:

isPermissionAssignment : Boolean =
self.oclAsType(Association). extension_PermissionAssignment<>null

--Returns true if the element is a UserAssignment
def:

isUserAssignment : Boolean =
self.oclAsType(Association). extension_UserAssignment<>null

--Returns true if the element is a RoleInheritance
def:

isRoleInheritance : Boolean =
self.oclAsType(Generalization). extension_RoleInheritance<>null

--Returns assigned Permission(s) of a Role
def:

assignedRolePermissions(role : Type) : Set (Type) =
Association.allInstances()->select(as : Association |
as.isPermissionAssignment and as.endType->exists(t | t=role))->
collect(endType)->asSet()->select(isPermission)

 49

Table A.1 (contd.) : Global OCL Definitions

--Returns assigned CriticalPermission(s) of a Role
def:

assignedRoleCriticalPermissions(role : Type) : Set (Type) =
assignedRolePermissions(role)->
select(oclAsType(Class).extension_Permission.
oclIsTypeOf(RBAC::CriticalPermission))

--Returns assigned Role(s) of a Permission
def:

assignedPermissionRoles(permission : Type) : Set (Type) =
Association.allInstances()->select(as : Association |
as.isPermissionAssignment and as.endType->exists(t | t=permission))->
collect(endType)->asSet()->select(isRole)

--Returns assigned Resource(s) of a Permission
def:

assignedPermissionResources(permission : Type) : Set (Type) =
Association.allInstances()->select(as : Association |
as.isResourceAssignment and as.endType->exists(t | t=permission))->
collect(endType)->asSet()->select(isResource)

--Returns assigned Permission(s) of a Resource
def:

assignedResourcePermissions(resource : Type) : Set (Type) =
Association.allInstances()->select(as : Association |
as.isResourceAssignment and as.endType->exists(t | t=resource))->
collect(endType)->asSet()->select(isPermission)

--Returns assigned User(s) of a Role
def:

assignedRoleUsers(role : Type) : Set (Type) =
Association.allInstances()->select(as : Association |
as.isUserAssignment and as.endType->exists(t | t=role))->
collect(endType)->asSet()->select(isUser)

--Returns assigned Role(s) of a User
def:

assignedUserRoles(user : Type) : Set (Type) =
Association.allInstances()->select(as : Association |
as.isUserAssignment and as.endType->exists(t | t=user))->
collect(endType)->asSet()->select(isRole)

--Returns established Session(s) of a User
def:

establishedUserSessions(user : Type) : Set (Type) =
AssociationClass.allInstances()->select(asc : AssociationClass |
asc.isSession and asc.endType->exists(t | t=user))

 50

Table A.1 (contd.) : Global OCL Definitions

--Returns activated Roles in a Session
def:

activeSessionRoles(session : Class) : Set(Type) =
session.endType->select(isRole)

--Returns owner User of the Session
def:

sessionUser(session : Class) : Type =
session.endType->any(isUser)

--Returns prerequisite roles of a role
def:

prerequisites(role : Class) : Set (Class) =
role.extension_Role.prerequisiteRoles-> iterate(r;res:Set(Class)=Set{} |
res-> including(r.base_Class))

--Returns base set union all parents of set members
def:

allFamily(baseFamily : Set(Type)) : Set(Class) =
baseFamily->union(baseFamily->
collect(allParents().oclAsType(Class))->asSet())

--Returns all SSD stereotyped classes in the model
def:

allSSDs : Set(Class) =
Class.allInstances()->select(isSSD)

--Returns all DSD stereotyped classes in the model
def:

allDSDs : Set(Class) =
Class.allInstances()->select(isDSD)

--Returns excluded roles in a SoD
def:

sodRoles(sod : Class) : Set (Class) =
sod.extension_SoD.separatedRoles-> iterate(r;res:Set(Class)=Set{} |
res-> including(r.base_Class))

--Returns authorized roles of a User
def:

authorisedRoles(user : Type) : Set(Class) =
allFamily(assignedUserRoles(user))

 51

APPENDIX B.1

Table B.1 : Error Messages

OCL Invariant Name Error Message

operationEncloser

Operation::operationEncloser | Owner Class of the

<<operation>> function should be stereotyped with

<<resource>>.

role_permission

PermissionAssignment::role_permission |

<<permissionAssignment>> Association should connect

<<role>> Class to <<permission>> Class.

role_user
UserAssignment::role_user | <<userAssignment>> Association

should connect <<role>> Class to <<user>> Class.

permission_resource

ResourceAssignment::permission_resource |

<<resourceAssignment>> Association should connect

<<permission>> Class to <<resource>> Class.

allowedOperations
Owner

ResourceAssignment::allowedOperationsOwner |

allowedOperations have an Operation that does not belong to

assigned Resource.

hasOperations
ResourceAssignment::hasOperations | allowedOperations or

resourceActions should include some elements.

user_session_roles
Session::user_session_roles | <<session>> AssociationClass

should connect <<user>> Class to <<role>> Class(es).

inheritanceShouldBe
RoleInheritance

Role::inheritanceShouldBeRoleInheritance | <<role>> Class has

a generalization that is not stereotyped with

<<roleInheritance>>.

Prerequisite
SelfContain

Role::prerequisiteSelfContain | prerequisiteRoles contains

owner <<role>> Class.

emptySoDs
CriticalPermission::emptySoDs | sods tagged value of

<<criticalPermission>> Class is empty.

 52

Table B.1 (contd.) : Error Messages

OCL Invariant Name Error Message

onlyOneRole
CriticalPermission::onlyOneRole | <<criticalPermission>>

Class is assigned to more than one Role.

inheritanceCycle
RoleInheritance::inheritanceCycle | <<roleInheritance>>

Generalization caused an Inheritance Cycle.

role_role
RoleInheritance::role_role | general and specific end types

should be <<role>> Classes.

maxResourceCount
Permission::maxResourceCount | maxResourceCount of

<<permission>> Class is exceeded.

maxRoleCount
Permission::maxRoleCount | maxRoleCount of <<permission>>

Class is exceeded.

maxRole
PermissionCount

Role::maxRolePermissionCount | maxPermissionCount of

<<role>> Class is exceeded.

maxUserCount
Role::maxUserCount | maxUserCount of <<role>> Class is

exceeded.

maxAssigned
RoleCount

User::maxAssignedRoleCount | maxAssignedRoleCount of

<<user>> Class is exceeded.

maxActivated
RoleCount

User::maxActivatedRoleCount | maxActivatedRoleCount (in a

session) of <<user>> Class is exceeded.

maxResorce
PermissionCount

Resource::maxResorcePermissionCount | maxPermissionCount

of <<resource>> Class is exceeded.

prerequisiteSSD
Consistency

Role::prerequisiteSSDConsistency | prerequisiteRoles violates

SSD constraint.

shouldBeInSoD

Role::shouldBeInSoD | <<role>> Class is not included in

excludedRoles of SoDs that are included in sods tagged value of

assigned <<criticalPermission>> Classes.

allowedRoles
UpperLimit

SoD::allowedRolesUpperLimit | upperLimit is not between 2

and size of seperatedRoles.

 53

Table B.1 (contd.) : Error Messages

OCL Invariant Name Error Message

criticalTask
DividedToRoles

SoD::criticalTaskDividedToRoles | one or more excludedRoles

are not assigned to a CriticalPermission that its sods tagged

value includes this SoD.

dsdRule
Session::dsdRule | <<session>> AssociationClass associated

DSD role(s) by exceeding upper limit.

userAssigned
RolesActivation

Session::userAssignedRolesActivation | a <<role>> Class that is

not assigned to session owner <<user>> Class, is associated

with <<session>> Class.

prerequisiteRule

UserAssignment::prerequisiteRule | associated <<user>> Class

is not already assigned to the prerequisiteRoles of the associated

<<role>> Class.

ssdRule
UserAssignment::ssdRule | associated <<user>> Class is

assigned to SSD role(s) by exceeding upper limit.

roleInheritance
SSDRule

RoleInheritance::roleInheritanceSSDRule | <<roleInheritance>>

Generalization violates an SSD constraint.

 54

APPENDIX C.1

Table C.1 : Errors of the ill-formed security model

Element Violated OCL
Expression Reason

<<Role>>
MedicineLoader

Role::
maxUserCount

Even though its maxUserCount

tagged value is set to 1, the role is

assigned to two users, Nurse and

PharmacySystem.

<<Role>>
MedicineLoader

Role::
inheritance

ShouldBeRole
Inheritance

It has a generalization that is not

stereotyped with

<<roleInheritance>>.

<<Role>> OrderCreater
Role::

prerequisiteSelf
Contain

Its prerequisiteRoles tagged value

contains itself.

<<Role>> OrderCreater
Role::

prerequisiteSSD
Consistency

Its prerequisiteRoles tagged value

contains Medicater. Medicater and

OrderCreater roles are exclusive

roles in the MedicineSSD so this

prerequisite relation violates the SSD

constraint.

<<Role>>
MedicineLoader

Role::
shouldBeInSoD

Even though it is assigned to

LoadMedicine CriticalPermission, it

is not included in excludedRoles

tagged value of MedicineSSD that is

specified in sods tagged value of

LoadMedicine.

 55

Table C.1 (contd.) : Errors of the ill-formed security model

Element Violated OCL
Expression Reason

<<Operation>>
printReports()

Operation::
operation
Encloser

Owner class of the <<operation>>

stereotyped function should be

stereotyped with <<resource>>. Its

owner class is stereotyped with

<<user>>.

<<UserAssignment>>
(Diagnoser) (Diagnose)

User
Assignment::

role_user

It should connect a <<role>>

stereotyped class to a <<user>>

stereotyped class but it connects

Diagnoser role to Diagnose

permission.

<<SSD>> MedicineSSD

SoD::
criticalTask
DividedTo

Roles

Medicater role that is included in its

excludedRoles tagged value, is

assigned to Dispense

CriticalPermission but sods tagged

value of this CriticalPermission does

not include MedicineSSD.

<<DSD>> PharmacyDSD
SoD::

allowedRoles
UpperLimit

Its upperLimit tagged value is set to

1 but it should be ≥2.

<<Session>>
MedicineLoadSession

Session::
dsdRule

It associates MedicineLoader role but

this role is in excludedRoles tagged

value of PharmacyDSD and

upperLimit is 1 means no role that is

included in the excludedRoles can be

activated. Activated role count in this

session is not small than upperLimit,

1.

 56

Table C.1 (contd.) : Errors of the ill-formed security model

Element Violated OCL
Expression Reason

<<Session>>
DiagnoseSession

Session::
userAssigned

RolesActivation

Doctor user and Diagnoser role are

associated by this session but

Diagnoser role is not assigned to

Doctor. A User should not activate a

role if he is not authorized for that

role.

<<ResourceAssignment>>
(Medicine Dispenser)

(LoadMedicine)

Resource
Assignment::

allowed
Operations

Owner

Its allowedOperations tagged value

contains <<operation>> stereotyped

applyMedicine() function that does

not belong to MedicineDispenser

resource.

<<ResourceAssignment>>
(Patient) (Diagnose)

Resource
Assignment::
hasOperations

Its both allowedOperations and

resourceActions tagged values are

empty, which is not allowed.

<<UserAssignment>>
(Doctor) (OrderCreater)

User
Assignment::
prerequisite

Rule

OrderCreater role has Medicater role

as prerequisite role but Doctor user is

not already assigned to the Medicater

role.

<<UserAssignment>>
(Nurse) (OrderCreater)

User
Assignment::

ssdRule

Nurse user is already assigned to

Medicater role that has an SSD

relation with OrderCreater role. This

assignment violates SSD constraint.

<<RoleInheritance>>
(senior: OrderReader)
(junior: OrderCreater)

Role
Inheritance::
inheritance

Cycle

OrderReader role is already junior

role of the OrderCreater role. This

inheritance causes an inheritance

cycle, which is not allowed.

 57

Table C.1 (contd.) : Errors of the ill-formed security model

Element Violated OCL
Expression Reason

<<RoleInheritance>>
(senior: Medicater)

(junior: OrderReader)

Role
Inheritance::

roleInheritance
SSDRule

OrderReader role inherits

permissions from OrderCreater role

that means Medicater role indirectly

inherits permissions from

OrderCreater role via this inheritance

but OrderCreater and Medicater roles

are in SSD relation. Therefore, this

inheritance violates the SSD

constraint.

<<CriticalPermission>>
Dispense

Critical
Permission::
emptySoDs

It has an empty sods tagged value,

which is not allowed. Sods tagged

value should include at least one SoD

element.

<<CriticalPermission>>
Dispense

Critical
Permission::
onlyOneRole

It is assigned to both Medicater role

and MedicineLoader role but it

should be assigned to only one role

because it is a CriticalPermission that

is not sharable.

 59

CURRICULUM VITA

Candidate’s full name: Çağdaş CİRİT

Place and date of birth: Gülnar/Mersin/Türkiye 01.01.1983

Permanent Address: Hürriyet M. Karaca Sk. Ekşioğlu Selvi Sitesi B Blok
D: 32 Yakacık/Kartal İstanbul Türkiye

Universities attended: BSc: Computer Engineering; Izmir Istitute of
Technology; Turkey.

Publications:
 Şaşıoğlu, B., Cirit, Ç., Çakmakkaya, Z., and Örencik, B., 2007: Taktik Sahada

Özel Bir Sertifika Doğrulama Problemine Alternatif Yaklaşım. ISCTurkey 2007 2.
Uluslararası Katılımlı Bilgi Güvenliği ve Kriptoloji Konferansı, Bildiriler Kitabı, p.
270-275.

