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IMPLEMENTATION OF RELIABILITY BASED DESIGN OPTIMIZATION
TECHNIQUES FOR AEROSPACE STRUCTURES

SUMMARY

A deterministic design optimization does not account for the uncertainties that
exist in modeling and simulation, manufacturing processes, design variables and
parameters. Therefore the resulting deterministic optimal solution is usually
associated with a high chance of failure.

Reliability based design optimization (RBDO) deals with obtaining optimal
designs characterized by a low probability of failure. The first step in RBDO
is to characterize the important uncertain variables and the failure modes which
can be done using probability theory. The probability distributions of the random
variables are obtained using statistical models. The whole process aims to design
more reliable products.

In this work, some solution methodologies of RBDO are investigated.
Performance measure approach which is one the FORM (first order reliability
method) based methods is used for reliability analysis. The implemented
algorithm is first verified for a benchmark problem in literature and a compromise
is reached on the obtained results.

Finally, the written code is integrated with commercial softwares to solve a
reliability based design optimization problem of an aircraft wing. The results
are compared to the ones which were previously computed by a deterministic
design optimization process. The compatible outputs indicate that integration of
the code and softwares results in success.
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GÜVENİL İRL İK TABANLI TASARIM OPT İM İZASYONU TEKN İKLER İN İN
HAVA-UZAY YAPILARI İÇ İN UYGULANMASI

ÖZET

Deterministik tasarım eniyilemesi modelleme, simulasyon, üretim süreci, tasarım
değişkenleri ve parametrelerinde oluşan belirsizlikleri hesaba katamaz. Bu
yüzden, ortaya çıkan en iyi deterministik çözüm genellikle yüksek oranda çöküş
olasılığı taşır.

Güvenilirlik tabanlı tasarım eniyilemesi (GTTE) düşük çöküş olasılıklı
en iyi tasarımı elde etmekle ilgilenir. GTTE’deki ilk adım önemli
rastlantısal değişkenleri ve bunların çöküş durumlarını olasılık teorisi kullanarak
belirlemektir. İstatistiki veriler kullanılarak rastlantısal değişkenlerin davranışları
hakkında bilgi elde edilebilir. Tüm GTTE süreci ortaya daha güvenilir tasarımlar
çıkarmayı hedefler.

Bu çalışmada, GTTE’nin belli bazı çözüm yöntemleri incelenmiştir. Birinci
dereceden güvenilirlik yöntemlerine dayanan başarım ölçümü yaklaşımı,
güvenilirlik çözümlemesi yapmakta kullanılmıştır. Uygulanan algoritma önce
bilimsel yazından bir deneme problemi üzerinde çalıştırılmış, elde edilen
sonuçların bilimsel yazındaki sonuçlarla uyuştuğu gözlemlenmiştir.

Son olarak, yazılan kod, basit bir uçak kanadının güvenilirlik tabanlı tasarım
eniyilemesi problemini çözmek için ticari yazılımlarla birleştirilmiştir. Daha önce
elde edilen deterministik eniyileme sonuçlarıyla karşılaştırılan sonuçların uyumlu
ve mantıklı çıkması, kod ve yazılımların birleştirilmesinin başarıyla sonuçlandığını
göstermiştir.
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1. INTRODUCTION

1.1 Background and Literature Review of Reliability and Optimization

The term reliability, in the modern understanding by specialists in engineering,

system design, and applied mathematics, is an acquisition of the 20th century.

It appeared because various technical equipment and systems began to perform

not only important industrial functions but also served for the security of people

and their wealth.

Initially, reliability theory was developed to meet the needs of the electronics

industry. This was a consequence of the fact that the first complex systems

appeared in this field of engineering. Engineering design problems often

involve uncertainties stemming from various sources such as manufacturing

process, material properties and operating environment. Because of these

uncertainties, the performance of a design may differ significantly from its nominal

value. Traditional deterministic designs obtained without any consideration of

uncertainties can be sensitive to the variations. For example, a system can be

risky (with high chance of failure) if its design has low likelihood of constraint

satisfaction. On the other hand, a system can be uneconomic and conservative

if the safety factor of the design is much larger than required. Therefore it is

important to consider uncertainties during the engineering design process and

develop computationally efficient techniques that enable engineers to make both

optimal and reliable design decisions. These factors lead to the development

of a specialized applied mathematical discipline which allowed one to make a

priori evaluation of various reliability indexes at the design stage, to choose an

optimal system structure, to improve methods of maintenance, and to estimate

the reliability on the basis of special testing or exploitation.
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There are two categories of methodologies handling uncertainties in engineering

design: reliability based design and robust design. An optimization process that

accounts for feasibility under uncertainty is commonly referred to as reliability

based design optimization (RBDO). RBDO ensures that the design is feasible

regardless of the variations of the design variables and parameters. Robust design

focuses on minimizing the variance of the design outcome under the variations of

design variables and parameters. RBDO is the focus of this work.

In general, a RBDO model includes deterministic design variables, random design

variables and random parameters. A deterministic design variable is a design

variable to be designed with negligible uncertainties. A random design variable

is a variable to be designed with uncertainty property being considered (usually

the mean of the variable is to be determined) while a random parameter can

not be controlled. The probability distributions can be used to describe the

stochastic nature of the random design variables and random parameters, where

the variations are represented by standard deviations which are assumed to

be constant. Thus, a typical RBDO problem can be defined as a stochastic

optimization model with the performance measure over the mean values of design

variables (deterministic and stochastic) is to be optimized, subject to probabilistic

constraints.

Reliability analysis and optimization are two essential components of RBDO: (1)

Reliability analysis focuses on analyzing the probabilistic constraints to ensure

that the reliability levels are satisfied; (2) Optimization seeks for the optimal

performance subjected to the probabilistic constraints. Extensive research has

been done to explore various efficient reliability analysis techniques including

expansion methods, approximate integration methods, sampling methods and

"Most Probable Failure Point" (MPP) based methods. Among those, MPP-based

approaches have attracted more attention as they require relatively less

computational effort while still producing results with acceptable accuracy

compared to the other three approaches [7, 8].
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Since expansion methods such as Taylor expansion method or Neumann

expansion method needs high-order partial sensitivities to calculate the

probability of failure, it is not appropriate for large-scale engineering application.

There are also other expansion methods such as Karhunen-Loeve (KL) and

Polynomial Chaos Expansion (PCE). In the KL expansion, truncated KL series

are used to represent the random field and can be implemented in the Finite

Element Model, and either perturbation theory or a Neuman expansion can be

applied to determine the response variability. The KL expansion requires the

covariance function of the process to be expanded in which a-priori knowledge

of the eigen functions is required. Polynomial Chaos Expansion (PCE) is a

method that has been used to explore the variability of response in control

[9, 10], computational fluid dynamics [11, 12] and buckling problems [13]. It is

implemented in a similar way to the KL expansion, but does not require expansion

of the covariance functions, and is simple to implement when determining the

response model. The use of PCE for the stability and control of non-linear

problems has been found as an efficient method even when other techniques

such as Lyapunov’s method have failed [9]. The potential of PCE is tremendous

because of its simplicity, versatility and computational efficiency within the

framework of Probability Theory.

One representative method in approximate integration methods is a Point

Estimation Method (PEM). This method selects experimental points first,

and then conducts numerical integration by using the system responses of

experimental points and corresponding weight values. As the results of numerical

integration, statistical moments of the system are obtained and the probability

of failure is calculated from these values by using the Pearson system. However,

since the Pearson system uses only the first four moments of the system, the

accuracy of the method cannot be guaranteed.

Monte Carlo Simulation(MCS), a representative method in sampling methods

is widely used because it has simple formulation and it is not affected by the

shape of limit state function and the number of failure regions. This method

3



features effectiveness on problems that are highly nonlinear with respect to the

uncertainty parameters. But MCS needs an excessive number of analyses, which

is not adequate for practical problems. This computational cost is the most

serious drawback, in particular when the reliability level is high, that is the failure

probability low. Latin Hypercube Sampling (LHS), one of the other sampling

methods is known that it is more efficient than the MCS.

MPP-based methods are also widely used to calculate the probability of failure.

They transform original random space into standard normal random space and

define the reliability index as the minimum distance between the origin of the

standard normal random space and transformed failure surface. The point on

the failure surface which has minimum distance is called Most Probable failure

Point(MPP) and the probability of failure is determined by Probability Density

Function(PDF) of normal distribution with obtained reliability index. There are

two representative methods in this category: Reliability Index Approach(RIA)

and Performance Measure Approach(PMA). RIA was a widely used method to

handle the probabilistic constraints before the 1990s. However, RIA is not likely

to find a solution when responses of limit state function are stationary or target

probability of failure is too small [14]. To overcome these problems, Performance

Measure Approach(PMA), which adapts a performance function instead of the

reliability index [4, 15, 16], is used. RIA and PMA are based on the concept

of characterizing the probability of survival by the reliability index and then

performing computations based on first order reliability methods (FORM). This

method approximates the reliability index and require a search for the MPP on

the failure surface (g j = 0) in the standard normal space. FORM employs a

linear approximation of the limit state function at the MPP and is considered

accurate as long as the curvature is not too large. On the other hand, second order

reliability method (SORM) features an improved accuracy by using a quadratic

approximation.

Another research issue in RBDO is to investigate the integration of reliability

analysis and optimization, using nested double-loop strategy or decoupled
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double-loop strategy. Nested double-loop methods treat the reliability analysis

as the inner loop analyzing the probabilistic constraint satisfaction given the

solutions provided by the outer optimizer which locates the optimal solution

iteratively. As a result, nested double-loop methods are computationally

expensive for a complex engineering design [7, 17, 18]. Therefore, decoupled

double-loop methods have been developed to address the computational

challenges [4, 7, 18–22]. However, since the reliability analysis dominates the

use of computational resources during the entire design process, the efficiency of

RBDO is still of great concern. What is added importance of improving RBDO

is the increased attention to integrate reliability analysis with multi-disciplinary

optimization.

A survey of the literature reveals that the various RBDO methods can be divided

into two broad categories: Nested double-loop RBDO and decoupled double-loop

RBDO models.

Nested Double-Loop RBDO Model

Traditional approaches for solving RBDO problems employ a double-loop strategy

in which the reliability analysis and the optimization are nested [23]. As shown

in figure 1.1 [8], the inner loop is the reliability assessment of probabilistic

constraints, which involves an iterative procedure; the outer loop optimizer

controls the optimization search process, which calls the inner loop repeatedly

for gradient or function assessments. Since reliability analysis is needed for every

probabilistic constraint, the efficiency of nested methods is especially low when

there are many probabilistic constraints.

Decoupled Double-Loop RBDO Model

To improve the efficiency of a probabilistic analysis, some methods decouple the

optimization loop and the reliability analysis loop. These methods include MPP

based decoupling methods, first order Taylor series approximation and derivative

based decoupling methods. Each of these methods is reviewed in the following

sections.

5



Figure 1.1: Flowchart of the nested double-loop strategy [8]

MPP Based Decoupling Approaches

The concept of MPP is widely used in RBDO to decouple the reliability analysis

loop and optimization loop. The MPP (or called design point) is defined as a

particular point in the design space that can be used to evaluate the probability

of system failure.

Du and Chen [18] develop a decoupled double-loop method termed Sequential

Optimization and Reliability Assessment (SORA). As shown in figure 1.2 [18],

the SORA method employs a sequential strategy where a series of optimization

and reliability assessments are employed in turn. In each circle, optimization

and reliability assessment are decoupled from each other so that no reliability

assessment is required within the optimization loop. The reliability assessment is

6



only conducted after the optimization loop is finished. The key concept of SORA

is to drive the boundaries of violated probabilistic constraints to the feasible region

based on the reliability information obtained in the previous cycle. Hence, the

design is improved from cycle to cycle and the computation efficiency is improved

by decoupling the reliability analysis from the optimization loop.

Figure 1.2: Flowchart of SORA [18]

Thanedar and Kodiyalam [19] also explore the use of MPP for RBDO and

propose a double-design-variable method to decouple the reliability analysis

and optimization loops, where one vector is used for the mean values of the

original random design variables and another vector is introduced to contain the

7



MPP values. One drawback of this method is that it doubles the dimension

of the design variables [8]. Thus the applicability of this method to large scale

design is questionable. Another decoupling approach is developed by Sues and

Cesare in which MPPs are computed using the updated design variables in each

optimization iteration [25]. As stated by Liu et al. [8], one potential issue with

this approach is that the MPPs obtained may not be accurate.

First order Taylor series approximation

Other than MPP based decoupling approaches, first order Taylor series

approximation has been used to replace the probabilistic constraints. The

reliability analysis is not performed inside the optimization loop as in nested

double-loop RBDO approaches so that there are no reliability evaluations within

the optimization loop. One example is design potential method (DTM) [20],

where the search direction for optimization is determined using the first-order

Taylor series approximation. The Taylor expansion is written at the so called

design potential point (DPP), which is defined as the design point derived from

the MPP using FORM. Zhou and Mahadevan [7] decouple the optimization and

reliability analysis by first-order Taylor series expansion, where the approximation

of the probabilistic constraints is based on the reliability analysis results.

Derivative based decoupling approaches

Chen et al. [21] propose the Single-loop Single Variable (SLSV) approach, in

which the optimization and reliability analysis are decoupled. The derivatives are

calculated before the optimization and then used to drive the optimal solution

to the feasible region. Traditional Approximation Method (TAM) evaluates the

functions and their derivatives first which are then used to solve an approximate

optimization problem iteratively until convergence [17]. Choi and Youn [4] apply

hybrid method which combines the SLSV and MPP in RBDO to improve the

optimization efficiency.

With the decoupling strategies, the reliability analysis loop and optimization loop

are included in the same cycle sequentially instead of being nested. Clearly, the
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decoupling methods reduce the computational effort greatly comparing to the

nested double-loop methods in general.

Reliability methods are becoming increasingly popular in the aerospace,

automotive, civil, defense, and power industries because they provide design

of safer and more reliable products at lower cost than traditional deterministic

approaches. These methods have helped many companies improve dramatically

their competitive position and save billions of dollars in engineering design and

warranty costs. To name a few, recent successful applications of reliability design

in the mentioned industries involve advanced systems such as space shuttle,

aerospace propulsion, nanocomposite structures, and bioengineering systems.

Design optimization of complex aircraft structures for maximum performance

and minimum cost has been a challenging research area for aircraft manufacturer

companies in recent years. In that context, a previous work by Nikbay et

al. [6] includes evaluation of a single discipline optimization problem on a generic

three dimensional wing geometry by employing Catia and Abaqus as two of the

most commonly used structural engineering tools for computer aided engineering

in aerospace industry. A practical optimization methodology was created as

a commercial optimization software, Modefrontier was coupled by this finite

element based framework for its gradient-based optimization algorithm options.

Three similar but distinct optimization problems were investigated. The first

case leant on the structural optimization of a statically loaded wing where as the

second case leant on the optimization of modal frequencies and deflections of that

wing. Finally, third case was a combination of both the first and the second cases

previously mentioned. The optimization criteria made use of mass, fundamental

frequency, maximum deflection and maximum stress of the structure. The design

variables were chosen as the thicknesses of all structural members and geometric

positions of selected rib and spar members. Abstract optimization variables were

introduced to reduce the number of optimization variables which were still enough
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to relate the full set of design variables to the optimization criteria to update the

geometry.

1.2 Purpose and Outline of the Thesis

Main purpose of this work is to learn and take advantage of the reliability

based design optimization concept and underline its importance for the practical

industrial applications. In this context, first step is taken by evaluating an aircraft

wing [6] optimization problem in terms of RBDO.

In the second chapter, reliability based design optimization is introduced and

its main differences with respect to deterministic optimization are explained.

Mathematical approaches about reliability analysis are given and the related

methods are presented.

Third chapter covers the first verification of implemented algorithm. A

benchmark problem with a cantilever beam design from the literature is solved

and the methodology is validated. Different reliability analysis methods are

compared in terms of efficiency.

Fourth chapter includes the integration of the written code and commercial

softwares for the optimization problem presented formerly by Nikbay et al. [6].

Reliability based optimization of a simple aircraft wing structure is performed

and results are compared to the ones of the deterministic optimization [6].

In the fifth chapter, conclusions are drawn based on the experiences.
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2. RELIABILITY BASED DESIGN OPTIMIZATION

2.1 Introduction

In this chapter, the concept of reliability based design optimization is presented.

RBDO formulation and all related mathematical topics are introduced. Before

proceeding to the reliability-based design optimization, formulation of the

deterministic design optimization is first given below.

2.2 Deterministic Design Optimization Formulation

A typical deterministic design optimization problem can be formulated as:

min f (d,p,y(d,p))

s.t. gR
i (d,p,y(d,p)) ≥ 0, i = 1, · · · ,Nhard,

gD
j (d,p,y(d,p)) ≥ 0, j = 1, · · · ,Nso f t ,

dl ≤ d ≤ du (2.1)

where d are the design variables and p are the fixed parameters of the

optimization problem. gR
i is the ith hard constraint that models the ith critical

failure mechanism of the system (e.g., stress, deflection, loads, etc). gD
j is the jth

soft constraint that models the jth deterministic constraint due to other design

considerations (e.g., cost, marketing, etc). The design space is bounded by dl

and du. If gR
i < 0 at a given design d then the artifact is said to have failed

with respect to the ith failure mode. y(d,p) is a function which is defined to

predict performance characteristics of the designed product. Obviously, equality

constraints could also be included in the optimization formulation.

Although a clear distinction is made between hard and soft constraints,

deterministic design optimization treats both these type of constraints similarly,
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and the failure of the designed product due to the presence of uncertainties is not

taken into consideration.

2.3 Reliability-Based Design Optimization Formulation

The basic idea in reliability based design optimization is to employ numerical

optimization algorithms to obtain optimal designs ensuring reliability. When

the optimization is performed without accounting the uncertainties, certain hard

constraints that are active at the deterministic solution may lead to system failure.

RBDO makes the solution locate inside the feasible region.

A reliability-based design optimization problem can be formulated as follows:

min f (d,p,y(d,p))

s.t. gprob
i (X,ηηη) ≥ 0, i = 1, · · · ,Nprob,

gdet
j (d,p,y(d,p)) ≥ 0, j = 1, · · · ,Ndet ,

dl ≤ d ≤ du (2.2)

where probabilistic constraints are represented with the superscript "prob"

while deterministic constraints are represented with the superscript "det".

It is clear that the hard constraints in deterministic design optimization

formulation correspond to probabilistic constraints and soft contraints correspond

to deterministic constraints in this formulation. Moreover, X denotes the

vector of continuous random variables with known (or assumed) joint cumulative

distribution function (CDF), FX(x). The design variables, d, consist of either

distribution parameters θ of the random variables X, such as means, modes,

standard deviations, and coefficients of variation, or deterministic parameters,

also called limit state parameters, denoted by η . The design parameters p consist

of either the means, modes, or any first order distribution quantities of certain

random variables. Mathematically, this can be represented by the statement

[p,d] = [θ ,η ] (p is a subvector of θ ). Additionally, gprob
i can be written as given

below:

gprob
i = Pallowi −Pi or βi −βreqi (2.3)
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where Pi and βi are the probability of failure and reliability index respectively due

to ith failure mode at the given design. On the other hand, Pallowi and βreqi are

the allowable probability of failure and required (target) reliability index for this

failure mode. The equation regarding the relationship between the probability of

failure and reliability index is

Pf ≈ Φ(−β ) (2.4)

where Φ is the standard normal cumulative distribution function (CDF). The

probability of failure Pi is given by

Pi =
∫

gi(x,η)≤0
fX(x)dx, (2.5)

where fX(x) denotes the joint probability density function (PDF) of X and

g(x,η) ≤ 0 represents the failure domain.

2.4 Reliability Analysis

Since equation (2.5) can not be evaluated analytically in most cases, two

representative MPP-based reliability analysis methods can be used to calculate

the probability of failure; Reliability Index Approach (RIA) and Performance

Measure Approach (PMA). Although PMA is taken as the main methodology for

this work, RIA is also investigated.

Both of these methods estimate the probability of failure by the reliability index

and then perform computations based on first order reliability methods (FORM).

Two representations of the reliability analysis can be seen in figures 2.1 [1] and 2.2

[2]. In order to evaluate the reliability index for the limit state function, FORM

requires the transformation of the random variables vector X into the standard

normal space:

U = T (X) (2.6)

After the transformation, the components of U are normally distributed with

zero means and unit variance and are statistically independent. Rosenblatt

transformation [33] is preferred in this work among possible approaches.
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Figure 2.1: Overview of FORM process [1]

Figure 2.2: Reliability Analysis [2]

2.4.1 Rosenblatt Transformation

The Rosenblatt transformation [33] is a set of operations that permits the

mapping of jointly distributed, continuous valued random variables and their

realizations from the space of an arbitrary joint probability distribution into the

space of uncorrelated, standard normal random variables. Let X1, . . . ,Xn be a

collection of arbitrarily, jointly distributed random variables with known marginal

and conditional cumulative distribution functions (CDF), FX1(x1),FX2|X1
(x2|x1),
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etc. Then the sequence of operations:

U1 = FX1(x1), Z1 = Φ−1(U1)

U2 = FX2|X1
(x2|x1), Z2 = Φ−1(U2)

...

Un = FXn|X1...Xn−1
(xn|x1, . . . ,xn−1), Zn = Φ−1(Un) (2.7)

transform the original random variables, first into a sequence of independent

uniform[0, 1] random variables, U1, . . . ,Un, then into the sequence uncorrelated,

standard normal random variables, Z1, . . . ,Zn. The function Φ(.) is the standard

normal CDF.

The transformation T can be written down explicitly in several cases. When

F(x1, . . . ,xk) is a normal distribution with mean M = (µ1, . . . ,µk) and covariance

matrix Λ = λi j, i, j = 1, . . . ,k. Let Λ(r) = λi j, i, j = 1, . . . ,r ≤ k, and Λ(r)
i j be the

cofactor of λi j in Λ(r), then the transformation T is given by

F1(x1) = Φ

(

x1−µ1√
λ11

)

,

F2(x2|x1) = Φ

(

x2−µ2 +(Λ(2)
21 /Λ(2)

22 )(x1−µ1)
√

Λ(2)/Λ(2)
22

)

,

...

Fk(xk|xk−1, . . . ,x1) = Φ











xk −µk +
k−1
∑
j=1

(Λk j/Λkk)(x j −µ j)

√

Λ/Λkk











(2.8)

Let F(x1,x2) be a normal distribution with means µ1,µ2, variances σ2
1 ,σ2

2 and

correlation coefficient ρ . The transformation can then be written as

F1(x1) = Φ

(

x1−µ1

σ1

)

,

F2(x2|x1) = Φ

(

x2−µ2 + ρσ1
σ2

(x1−µ1)

σ2
√

1−ρ2

)

(2.9)

This transformation makes it possible to take advantage of the useful properties

of the standard normal space which include rotational symmetry, exponentially
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decaying probability density in the radial and tangential directions, and the

availability of formulas for the probability contents of specific sets, including

the half space, parabolic sets, and polyhedral sets.

After reliability analysis is done, which means a new MPP is found, inverse

transformation has to be performed in order to calculate the new design point

in the original design space. This inverse transformation can be represented as

follows:

xnew ≈ xmean +J−1(u0−unew) (2.10)

where xnew and unew denote the new design point in the original design space

and the new MPP in standard normal space, respectively. On the other hand,

xmean is the mean value vector of the random variables and u0 is the vector which

represents the origin. J−1 is the inverse of the Jacobian transformation matrix.

2.4.2 Reliability Index Approach

Reliability Index Approach (RIA) can be formulated as follows:

min ‖U‖

s.t. G(U) = 0 (2.11)

where U is the vector of random variables and G(U) is the limit state function.

Most probable (failure) point (MPP) (the point on the limit state function

which is closest to the origin), also called design point is the solution of the

above nonlinear constrained optimization problem. To solve this problem,

various algorithms have been reported in the literature. One of the approaches

is Hasofer-Lind and Rackwitz-Fiessler (HLRF) algorithm that is based on a

Newton-Raphson root solving approach. As shown in equation (2.11), the

reliability analysis in RIA is to minimize the distance ‖UG(U)=0‖ in the standard

normal space to the failure surface G(U) = 0. The iterative HLRF method is

formulated as

u(k+1)
HLRF = (u(k)

HLRF n̂(k))n̂(k) +
G(u(k)

HLRF)

‖∇U G(u(k)
HLRF)‖

n̂(k) (2.12)
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where the normalized steepest descent direction of G(U) at u(k)
HLRF is defined as

n̂(k) = n̂(u(k)
HLRF) = − ∇U G(u(k)

HLRF)

‖∇U G(u(k)
HLRF)‖

(2.13)

and the second term in equation (2.12) is introduced to account for the fact that

G(U) may not be zero.

The family of HLRF algorithms can exhibit poor convergence for highly nonlinear

or badly scaled problems, since they are based on first order approximations of

the constraint. Actually, these algorithms may fail to converge even for many

well-scaled problems due to the similarities they share with Newton-Raphson

approach, for example cycling of iterates may also occur in this method. The

solution typically requires many system analysis evaluations. The situations

where the optimizer may fail to provide a solution to the problem may include

when the limit state surface is far from the origin in U-space or when the case

G(U) = 0 never occurs at a particular design variable setting. For cases when

G(U) = 0 does not occur, the algorithm provides the best possible solution for

the problem through,

min ‖U‖

s.t. G(U) = ε (2.14)

where ε is a positive real number, which is small enough.

The reliability constraints formulated by the RIA are therefore not robust. To

overcome these difficulties, Tu et al [23] provided an improved formulation to

solve the RBDO problem, which is called the performance measure approach.

2.4.3 Performance Measure Approach

Reliability analysis in Performance Measure Approach is formulated as the inverse

of reliability analysis in RIA. The first-order probabilistic performance measure

G is obtained from a nonlinear optimization problem in U-space as:

min G(U)

s.t. ‖U‖ = βt (2.15)
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Figure 2.3: Representations of RIA and PMA [3]

where the optimum point on the target reliability surface is identified as the

MPP u∗
β=βt

with a prescribed reliability target βt = ‖u∗
β=βt

‖. In iterative

optimization process, unlike RIA, only the direction vector u∗
β=βt

/‖u∗
β=βt

‖ needs

to be determined by exploring the spherical equality constraint ‖U‖ = βt in

equation (2.15). Solving RBDO by the PMA formulation is usually more efficient

and robust than the RIA formulation where the reliability is evaluated directly.

Also, in PMA, it can be guaranteed that the equality constraints in (2.15) can

be satisfied in contrast to the standard formulation in (2.11). Rather than a

general optimization algorithm, the Advanced Mean Value (AMV), Conjugate

Mean Value (CMV), and Hybrid Mean Value (HMV) methods are commonly

used to solve the problem in equation (2.15), since they do not require a line

search.

2.4.3.1 Advanced Mean Value Method

Formulation of the first-order AMV method begins with the mean value (MV)

method, defined as

u∗
MV = βtn̂(0) where n̂(0) = − ∇X G(µ)

‖∇X G(µ)‖ = − ∇U G(0)

‖∇U G(0)‖ (2.16)

That is, to minimize the performance function G(U) (i.e., the cost function in

equation (2.15), the normalized steepest descent direction n(0) is defined at the

mean value. The AMV method iteratively updates the direction vector of the

steepest descent method at the probable point u(k)
AMV initially obtained using the
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MV method. Thus, the AMV method can be formulated as

u(1)
AMV = u∗

MV , u(k+1)
AMV = βtn̂(u(k)

AMV )

where

n̂(u(k)
AMV ) = − ∇U G(u(k)

AMV )

‖∇U G(u(k)
AMV )‖

(2.17)

As will be shown, this method exhibits instability and inefficiency in solving a

concave function since this method updates the direction using only the current

MPP.

2.4.3.2 Conjugate Mean Value Method

When applied for a concave function, the AMV method tends to be slow in the

rate of convergence and/or divergent due to a lack of updated information during

the iterative reliability analysis. These kinds of difficulties can be overcome by

using both the current and previous MPP information as applied in the conjugate

mean value (CMV) method. The new search direction is obtained by combining

n̂(u(k−2)
CMV ), n̂(u(k−1)

CMV ) and n̂(uk
CMV ) with an equal weight, such that it is directed

towards the diagonal of the three consecutive steepest descent directions. That

is,

u(0)
CMV = 0, u(1)

CMV = u(1)
AMV , u(2)

CMV = u(2)
AMV ,

u(k+1)
CMV = βt

n̂(u(k)
CMV )+ n̂(u(k−1)

CMV )+ n̂(u(k−2)
CMV )

‖n̂(u(k)
CMV )+ n̂(u(k−1)

CMV )+ n̂(u(k−2)
CMV )‖

, f or k ≥ 2

where

n̂(u(k)
CMV ) = − ∇U G(u(k)

CMV )

‖∇U G(u(k)
CMV )‖

(2.18)

Consequently, the conjugate steepest descent direction significantly improves the

rate of convergence, as well as the stability, compared to the AMV method for

the concave performance function. However, as will be seen, CMV method is

inefficient for the convex function.
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2.4.3.3 Hybrid Mean Value Method

To select an appropriate MPP search method, the type of performance function

must first be identified. In this work, the function type criteria are proposed by

employing the steepest descent directions at the three consecutive iterations as

follows:

ζ (k+1) = (n̂(k+1)− n̂(k)) · (n̂(k)− n̂(k−1))

sign(ζ (k+1)) > 0 Convex type at u(k+1)
HMV w.r.t design d

≤ 0 Concave type at u(k+1)
HMV w.r.t design d

(2.19)

where ζ (k+1) is the criterion for the performance function type at the (k + 1)th

step and n̂k is the steepest descent direction for a performance function at the

MPP u(k)
HMV at the kth iteration. Once the performance function type is defined,

either AMV or CMV is adaptively selected for the MPP search. This numerical

procedure is therefore denoted as the hybrid mean value (HMV) method.

The convergence criteria concerning MPP search in this method (consequently in

AMV and CMV) is checked like the following: If max(|∆G(k+1)
rel |, |∆G(k+1)

abs |) ≤ ε

where

|∆G(k+1)
rel | =

∣

∣

∣

∣

∣

G(u(k+1)
HMV )−G(u(k)

HMV )

G(u(k+1)
HMV )

∣

∣

∣

∣

∣

(2.20)

and

|∆G(k+1)
abs | = |G(u(k+1)

HMV )−G(u(k)
HMV )| (2.21)

then new MPP is found. Otherwise gradient of the performance function is

computed at the new u, performance function type is determined and rest of the

calculations are performed adaptively, either using AMV or CMV.

Aforementioned iterative processes in AMV and CMV methods can be observed

in the written MATLAB code in a while loop. In each iteration, a new MPP is

found. Using this newly calculated MPP, one of the above stated convergence
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criteria is checked. If this criterion is satisfied, while loop is broken and algorithm

continues with the further steps. Otherwise, newly calculated MPP is assigned

to the point which is used for the calculation of the new gradient vector.

The main difference between AMV and CMV methods can also be seen in that

while loop. While AMV method uses only the current steepest descent direction,

CMV method uses three consecutive directions. All remaining parts of each while

loop was written in a similar manner.

In this work, PMA is preferred for reliability analysis calculations due to its

advantages expressed above. In order to verify the implemented MATLAB code

for AMV and CMV algorithms, some example problems from the literature [4]

are solved and the exact results given in [4] are reached. Next section covers those

problems and comparison of the results obtained.

2.4.4 Example Problems

Problem 1: Convex Performance Function

A convex function is given as [4]

G(X) = −exp(X1−7)−X2 +10 (2.22)

where X represents the independent random variables with Xi ∼ N(6.0,0.8), i =

1,2 and the reliability index is set to βt = 3.0. As shown in figure 2.4 [4], the

constraint in equation (2.15) is always satisfied and the performance function

around the MPP is convex with respect to the origin of U -space. The AMV

method demonstrates good convergence behavior for the convex function since

the steepest descent direction n̂(u(k)
AMV ) of the response gradually approaches to

the MPP, as shown in figure 2.4(a). In table 2.1, the convergence rate of the AMV

method is faster than that of the CMV method for the convex function because

the conjugate steepest descent direction tends to reduce the rate of convergence

for the convex function. Thus, for the convex performance function, the AMV

method performs better than the CMV method.
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Figure 2.4: MPP search for convex performance function [4]

Table 2.1: MPP history for convex performance function

AMV CMV

Iteration X1 X2 G X1 X2 G

1 6.829 8.252 0.905 6.829 8.252 0.905
2 7.546 7.835 0.438 7.546 7.835 0.438
3 8.077 7.203 -0.991 7.839 7.542 0.144
4 8.272 6.774 -0.341 8.043 7.260 -0.097
5 8.311 6.648 -0.357 8.165 7.035 -0.242
6 8.317 6.625 -0.358 8.234 6.877 -0.312

. . . . . .
11 8.310 6.651 -0.357
12 8.317 6.625 -0.358

Converged Converged

Problem 2: Concave Performance Function 1

Consider the concave performance function [4]

G(X) = [exp(0.8X1−1.2)+ exp(0.7X2−0.6)−5]/10 (2.23)

where X represents an independent random vector with X1 ∼ N(4.0,0.8) and

X2 ∼ N(5.0,0.8) and the target reliability index is set to βt = 3.0. As shown in
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Figure 2.5: MPP search for concave performance function 1 [4]

figure 2.5 [4], the performance function around the MPP is concave with respect to

the origin of U -space. The AMV method applied to the concave response diverges

as a result of the oscillation observed in figure 2.5(a). As shown in table 2.2,

after 34th iteration, oscillation occurs in first-order reliability analysis due to

the cyclic behavior of the steepest descent directions, i.e., n̂(u(k)
AMV )=n̂(u(k−2)

AMV )

and n̂(u(k+1)
AMV )=n̂(u(k−1)

AMV ). This example shows that, unlike the convex function,

the AMV method does not converge for the concave function. As presented in

table 2.2, the CMV method applied to the PMA is stable when handling the

concave function by using the conjugate steepest descent direction.

Problem 3: Concave Performance Function 2

A different situation is presented using another concave function with an inflected

part as [4]:

G(X) = 0.3X2
1 X2−X2 +0.8X1 +1 (2.24)

where X represents the independent random variables with X1 ∼ N(1.3,0.55) and

X2 ∼ N(1.0,0.55) and the target reliability of βt = 3.0 is used. Although the

AMV method has converged in this case, it requires substantially more iterations

than the CMV method as can be seen in table 2.3.
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Table 2.2: MPP history for concave performance function 1

AMV CMV

Iteration X1 X2 G X1 X2 G

1 2.989 2.823 0.225 2.989 2.823 0.225
2 2.348 3.259 0.234 2.348 3.259 0.234
3 3.073 2.786 0.238 2.687 2.990 0.204
4 2.268 3.338 0.253 2.680 2.996 0.204
5 3.162 2.751 0.255
6 2.190 3.424 0.277

. . . . . .
34 1.981 3.703 0.380
35 3.464 2.661 0.335
. . . . . .
999 1.981 3.703 0.380
1000 3.464 2.661 0.335

Diverged Converged

Figure 2.6: MPP search for concave performance function 2 [4]

Similar to Problem 2, the slow rate of convergence is the result of oscillating

behavior of reliability iterations (figure 2.6) [4] when using the AMV method.

Based on the previous examples, it can be concluded that the AMV method
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Table 2.3: MPP history for concave performance function 2

AMV CMV

Iteration X1 X2 G X1 X2 G

1 -0.275 1.491 -0.678 -0.275 1.491 -0.678
2 0.487 2.436 -0.873 0.487 2.436 -0.873
3 -0.105 1.864 -0.997 0.016 2.036 -1.023
4 0.368 2.362 -0.959 0.232 2.257 -1.036
5 -0.035 1.969 -1.000 0.119 2.152 -1.048
6 0.303 2.315 -1.009 0.174 2.206 -1.047
7 0.009 2.028 -1.020 0.146 2.180 -1.048
8 0.260 2.281 -1.027 0.160 2.193 -1.048
9 0.041 2.067 -1.033 0.153 2.186 -1.048
10 0.230 2.256 -1.036 0.157 2.190 -1.048
11 0.064 2.094 -1.039 0.155 2.188 -1.048
. . . . . .
23 0.124 2.158 -1.048
24 0.155 2.188 -1.048

Converged Converged

either diverges or performs poorly compared to the CMV method, for the concave

performance function. Thus, a desirable approach is to select either the AMV

or CMV methods once the type of performance function has been determined

to achieve the most efficient and robust evaluation of probabilistic constraint, as

explained above in the HMV method.
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3. CANTILEVER BEAM PROBLEM

3.1 Introduction

This chapter includes verification of the implemented reliability analysis based

MATLAB code for a benchmark problem and discussions about the results

obtained.

3.2 The Algorithm

In order to solve the benchmark problem using the reliability methods mentioned

in the previous chapter, a code in MATLAB was written. The figure below

represents the flowchart of the algorithm:

Figure 3.1: Flowchart of implemented algorithm
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The deterministic optimization part of the algorithm which is shown as the outer

loop in the figure is handled by a built-in MATLAB function called fmincon.

Further information about this function is given in the next sections.

3.3 Definition of the Problem

This test problem is adapted from the reliability-based design optimization

literature [5] and involves a simple uniform cantilever beam as shown in figure

3.2 [5].

Figure 3.2: A beam under vertical and lateral bending [5]

The design problem is to minimize the weight (or, equivalently, the cross-sectional

area) of a simple uniform cantilever beam subjected to a displacement constraint

and a stress constraint. Random variables in the problem include the yield stress

R of the beam material, the Young’s modulus E of the material, and the horizontal

and vertical loads, X and Y , which are modeled with normal distributions using

N(40000,2000), N(29E6,1.45E6), N(500,100), and N(1000,100) respectively.

Problem constants include L = 100in. and D0 = 2.2535in. The constraints have

the following analytic form:

stress =
600Y
wt2 +

600X
w2t

≤R (3.1)

displacement =
4L3

Ewt

√

(Y
t2

)2
+
( X

w2

)2
≤D0

(3.2)
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or when scaled

gS =
stress

R
−1 ≤0 (3.3)

gD =
displacement

D0
−1 ≤0 (3.4)

It is notable that the stress function (3.1) is linear in the three normal random

variables and therefore the FORM solution will produce the exact result for each

design. However, it is nonlinear in w and t. On the other hand, displacement

function (3.2) is nonlinear in all the three normal random variables and therefore

the FORM solution is approximate. Additionally, in this work, stress constraint

is treated as dominant constraint for computational simplicity.

3.3.1 Deterministic Optimization Results

If the random variables E, R, X and Y are fixed at their means, the resulting

deterministic design problem can be formulated as:

min f = wt

s.t. gS ≤ 0

gD ≤ 0

1.0≤ w ≤ 4.0

1.0≤ t ≤ 4.0 (3.5)

The deterministic solution is (w, t) = (2.35,3.33) with an objective function of

7.82.

3.3.2 Probabilistic Optimization Results

If the normal distributions for the random variables E, R, X , and Y are included,

a probabilistic design problem can be formulated as:
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min f = wt

s.t. βD ≥ 3

βS ≥ 3

1.0≤ w ≤ 4.0

1.0≤ t ≤ 4.0 (3.6)

where target reliability (βt)=3 (probability of failure = 0.00135 if responses are

normally-distributed) is being sought on the scaled constraints. Probabilistic

optimizations solution is (w, t) = (2.45,3.88) with an objective function of 9.52

[5]. Both deterministic and probabilistic optimization results are obtained with

perfect accuracy with the written MATLAB code. The results demonstrate that

a more conservative design is needed to satisfy the probabilistic constraints.

3.4 fmincon Function in MATLAB

This function attempts to find a constrained minimum of a scalar function of

several variables starting at an initial estimate. This is generally referred to as

constrained nonlinear optimization or nonlinear programming.

fmincon uses one of three algorithms: active-set, interior point or trust region

reflective. The algorithm can be chosen at the command line. These algorithms

are briefly explained below:

Trust Region Reflective

To understand the trust region approach to optimization, the unconstrained

minimization problem, minimize f(x), where the function takes vector arguments

and returns scalars, has to be considered. Let us suppose we are at a point x in

n-space and we want to improve, i.e., move to a point with a lower function value.

The basic idea is to approximate f with a simpler function q, which reasonably

reflects the behavior of function f in a neighborhood N around the point x. This

neighborhood is the trust region.
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The trust region reflective algorithm is a subspace trust region method and is

based on the interior-reflective Newton method described in [34]. Each iteration

involves the approximate solution of a large linear system using the method of

preconditioned conjugate gradients (PCG).

Interior Point

The interior point approach to constrained minimization is to solve a sequence

of approximate minimization problems. To solve the approximate problem, the

algorithm uses either a Newton step or a conjugate gradient step at each iteration.

Detailed information is available in [35].

Active Set

fmincon uses a sequential quadratic programming (SQP) method. This method

attempts to solve a nonlinear program directly rather than convert it to a

sequence of unconstrained minimization problems. The basic idea is analogous

to Newton’s method for unconstrained minimization: At each step, a local model

of the optimization problem is constructed and solved, yielding a step toward

the solution of the original problem. In unconstrained minimization, only the

objective function must be approximated, and the local model is quadratic. In

the NLP

min f (x)

s.t g(x) (3.7)

both the objective function and the constraint must be modeled. An SQP method

uses a quadratic model for the objective function and a linear model of the

constraint. A nonlinear program in which the objective function is quadratic

and the constraints are linear is called a quadratic program (QP). A SQP method

solves a QP at each iteration.

Let x(k) be the current estimate of a solution x(∗), then g can be approximated by

g(x(k) + p) = ∇g(x(k))T p+g(x(k)), (3.8)
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and so the constraint

g(x) = 0 (3.9)

is replaced by

∇g(x(k))T p+g(x(k)) = 0 (3.10)

At first glance, one would expect that the quadratic objective function for the

model problem would be the Taylor approximation to f :

f (x(k) + p) = f (x(k))+∇ f (x(k))p+
1
2

p∇2(x(k))p. (3.11)

However, this would be the wrong choice, because the curvature of the constraints

must be captured by the model problem.

If λ ∗ is the Langrange multiplier corresponding to a local minimizer x(∗) of

min f (x)

s.t g(x) = 0 (3.12)

then the Langrangian ℓ(x;λ ∗) = f (x) for all feasible x. It follows that

min ℓ(x;λ ∗)

s.t g(x) = 0 (3.13)

also has x∗ as a local minimizer. Here, λ ∗ is typically not known, but an algorithm

can approximate λ ∗ as it approximates x∗. Given x(k) and λ (k), (for p near 0)

ℓ(x(k) + p;λ k)) =
1
2

p∇(2)ℓ(x(k);λ k)p+∇ℓ(x(k);λ k)p+ ℓ(x(k);λ k) (3.14)

Then solving

min
1
2

p∇(2)ℓ(x(k);λ k)p+∇ℓ(x(k);λ k)p+ ℓ(x(k);λ k)

s.t ∇g(x(k))T p+g(x(k)) = 0 (3.15)

yields improved values of x(k) and λ (k), at least when x(k) and λ (k) are close to x∗

and λ ∗, respectively.
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The active set algorithm is not a large-scale algorithm. An optimization algorithm

is large scale when it uses linear algebra that does not need to store, nor operate

on full matrices. This may be done internally by storing sparse matrices, and by

using sparse linear algebra for computations whenever possible.

In contrast, medium-scale methods internally create full matrices and use dense

linear algebra. If a problem is sufficiently large, full matrices take up a significant

amount of memory, and the dense linear algebra may require a long time to

execute. A medium-scale algorithm has to be chosen to access extra functionality,

such as additional constraint types or possibly for better performance.

3.5 Results and Discussion

First, both stress and displacement functions in the beam problem are evaluated

as explained in the previous chapter and function types of both are determined

as concave for every step in the iteration. The tables 3.1, 3.2 and 3.3 show the

outputs of the algorithm for AMV, CMV methods and deterministic optimization

respectively. In the tables, beta and Pf represent target reliability index and

Table 3.1: AMV Method for Beam Problem

ε = 0.001

Beta Pf niter n fd n fu w t fmin

2.0 0.0228 16 51 102 2.3021 3.8650 8.8975
2.5 0.0062 16 55 110 2.3757 3.8756 9.2073
3.0 0.0013 14 45 90 2.4460 3.8922 9.5202
3.5 2.3263e-04 15 48 96 2.5135 3.9139 9.8374
4.0 3.1671e-05 18 57 114 2.5786 3.9400 10.1598
4.5 3.3977e-06 17 54 108 2.6419 3.9700 10.4886
5.0 2.8665e-07 12 39 78 2.7062 4.0000 10.8249

corresponding probability of failure, niter, n fd and n fu are number of iterations,

number of function evaluations in design space and number of function evaluations

in standard normal space, respectively. The optimization algorithm used is
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Table 3.2: CMV Method for Beam Problem

ε = 0.001

Beta Pf niter n fd n fu w t fmin

2.0 0.0228 17 54 54 2.3021 3.8650 8.8975
2.5 0.0062 17 59 59 2.3757 3.8756 9.2073
3.0 0.0013 16 51 51 2.4460 3.8922 9.5202
3.5 2.3263e-04 14 45 45 2.5135 3.9139 9.8374
4.0 3.1671e-05 16 55 55 2.5786 3.9400 10.1598
4.5 3.3977e-06 16 52 52 2.6419 3.9700 10.4886
5.0 2.8665e-07 14 45 45 2.7062 4.0000 10.8249

Table 3.3: Deterministic Optimization Results for the Beam Problem

niter n fd w t fmin

13 42 2.3520 3.3263 7.8235

medium-scale: SQP, Quasi-Newton, line-search. In addition, w and t are the

optimum values of the design variables and fmin is the minimum value of the

objective function.

Since both constraints are concave, CMV method is expected to perform better

for this problem. The obtained results also verify this expectation in terms of the

function evaluation numbers in standard normal space. For every different value

of target reliability index, n fu in CMV is less than that of in AMV. Efficiency of

these methods for this problem is depicted in figure 3.3. However, optimum values

of design variables and minimum value of the function are equal in both methods

for every beta value. Another important point which is illustrated in figure 3.4

is that increase in target reliability values results in increase in minimum value

of the function for both AMV and CMV. This is sensible because increase in beta

means the decrease in probability of failure and final design is less likely to fail if

it is more conservative.
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Figure 3.4: Optimum Function Values according to Different Reliability Indices

It is also observed that the iteration and function evaluation numbers in design

space for probabilistic optimization are greater than those in deterministic

optimization.

35



3.6 Verification of Algorithm’s Integration with Commercia l Softwares

In order to confirm that the integration of MATLAB code is done smoothly

and the commercial softwares (Abaqus and ModeFrontier) are interacting well, a

similar workflow for the wing problem defined in the next chapter was prepared for

this beam problem. While final values of design variables were (w, t) = (2.44,3.89)

and minimum value of objective function (wt) was 9.52 using only MATLAB,

the prepared workflow in ModeFrontier gives (w, t) = (2.42,3.83) and wt = 9.27

as probabilistic optimization outputs. In short, results seem to be in good

agreement. Detailed explanations about the defined workflow are given in the

next chapter.
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4. AIRCRAFT WING PROBLEM

4.1 Introduction

This chapter contains the reevaluation of a single discipline deterministic

optimization problem on a generic three dimensional wing geometry in a previous

work by Nikbay et al. [6]. In this work, the multiobjective optimization problem

of [6] is solved with variables of Young’s Modulus E and yield strength σyield

of the material are assumed to be random. Consequently, the constraints

concerning stress, displacement and frequency become probabilistic constraints.

The reliability analysis part of MATLAB code and commercial software Abaqus

are integrated in the framework of commercial software ModeFrontier and

obtained RBDO results are compared to the deterministic ones in [6].

4.2 Definition of Multiobjective Optimization

There are many practical applications where the designer may want to optimize

two or more objective functions simultaneously. These are called multiobjective,

multicriteria, or vector optimization problems. Since the wing problem in

this work is also a multiobjective optimization problem, basic terminology and

solution methods for such problems are given briefly.

A multiobjective optimization problem can be defined as follows:

min f(x) = ( f1(x), f2(x), . . . , fk(x))

s.t. hi(x) = 0; i = 1, . . . , p

g j(x) ≤ 0; j = 1, . . . ,m (4.1)

where k is the number of objective functions, p is the number of equality

constraints, and m is the number of inequality constraints. f(x) is a k-dimensional
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vector of objective functions. The feasible set S (also called the feasible design

space) is defined as a collection of all the feasible design points, as

S = {x|hi(x) ≤ 0; i = 1, . . . , p; and g j(x) ≤ 0; j = 1, . . . ,m} (4.2)

Pareto optimality is the main solution method for the wing problem. Basically,

a point x∗ in the feasible design space S is called Pareto optimal if there is no

other point x in the set S that reduces at least one objective function without

increasing another one. This can be defined more precisely as follows:

A point x∗ in the feasible design space S is Pareto optimal if and only if there

does not exist another point x in the set S such that f(x) ≤ f(x∗) with at least

one fi(x) < fi(x∗).

Inequalities between vectors apply to every component of each vector; e.g., f(x)≤
f(x∗) implies f1 ≤ f ∗1 , f2 ≤ f ∗2 , and so on. The set of all Pareto optimal points is

called the Pareto optimal set. The above definition means that for x∗ to be called

the Pareto optimal point, no other point exists in the feasible design space S that

improves at least one objective function while keeping others unchanged.

Other solution concepts related to these problems include weak pareto optimality,

efficiency and dominance, utopia point, and compromise solution, nominally.

Detailed explanations can be found in [36].

4.3 Aircraft Wing Design Model

A simple aircraft wing which has a NACA0012 airfoil profile is modeled

parametrically in Catia V5-R16. The wing’s three dimensional geometric model

consists of 90 skin panels, 10 ribs and 4 spars while some of the skin panels

are stiffened by stringers along the wing span. The wing has a rectangular

planform with 6 m semi-span and 1.6 m chord length. Finite element model

of the wing is prepared at Abaqus 6.7.1 and is composed of linear shell and beam

elements. The model is shown in figure 4.1 [6], and consists of 17,070 linear

quadrilateral elements of shell type, 1264 linear line elements of beam type, total

element number of 18,334 and 16,024 nodes, thus 96,144 degrees of freedom. In all
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members of the structure, aluminium is employed with Young’s modulus E=70000

MPa, Poisson ratio ν=0.33, density ρ=2700 kg/m3, yield strength σyield=400

MPa. As a cantilevered boundary condition, all of the degrees of freedom at the

root of the wing are set to zero. The aerodynamic load that will be applied to the

wing is supplied from a computational fluid dynamics (CFD) analysis performed

for the initial design. An Euler inviscid flow analysis by using Fluent commercial

software was performed for Mach= 0.3 at sea level. For the sake of simplicity, the

obtained total lift force of approximately 25,000 N is then expressed as an elliptic

lift function which changes along the wing span but assumed to be constant along

the chord [6].

Figure 4.1: Computational model of the wing structure [6]

4.3.1 Deterministic Optimization of the Aircraft Wing

In this work, the physical design parameters are defined as independent functions

of some abstract optimization variables for computational simplicity. The

optimization variables will cover structural parameters such as cross sectional

and thickness dimensions of the structural elements and some shape parameters.
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The optimization criteria can cover the structural behavior descriptors such as

mass, displacements, stresses, strains, and modal frequencies.

The deterministic optimization problem that will be solved has two objectives

as minimization of weight and maximization of the first modal frequency of the

structure while constraining maximum Von Mises stress with the yield strength

of the material. A factor of safety is not used on the stress constraint in the

deterministic optimization.

min
s∈S

M(s), max
s∈S

f1(s) (4.3)

g1(s) =
σyield

σmax(s)
−1 ≥ 0, g1(s) ∈ R

g2(s) =
u0

umax(s)
−1 ≥ 0, g2(s) ∈ R

g3(s) = 1− f 0
1

f (s)
≥ 0, g3(s) ∈ R

g4(s) =
M0

M(s)
−1 ≥ 0, g4(s) ∈ R

where M(s) is the total mass, umax(s) and σmax(s) are the maximum displacement

and maximum Von Mises stress of the wing structure. u0 = 187mm and M0 =

330kg are chosen as reference values from the reference wing to constrain the

displacement and mass. f1(s) is the first natural frequency of the structure,

while f 0
1 = 4.35 Hz is the first natural frequency of the reference wing.

4.3.2 Definition of Optimization Variables

Since ribs, spars and skin panels are modeled as shell elements, the thicknesses of

these elements and the diameter of the stringers are chosen as design parameters.

The thicknesses of spars, ribs and skin panels are divided into three groups along

the wing span, introducing 9 design variables. The outer diameter of all the

stringers are kept constant along the span and expressed as only one design

parameter while the wall thickness of the stringers are taken as one over third

of the outer diameter. In figure 4.1, the structural components of the wing and

the thickness parameters related to these components are presented so that each

different color shows a different design parameter.
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The computational time that will be spent for optimization will be shortened if

the number of optimization variables that will be used in the optimization loop

can be reduced by using abstract optimization variables. Therefore, four abstract

optimization variables k1,k2,k3,k4 are used to describe 9 design variables related

to the thicknesses of all spars, ribs and stringers. The relation between design

parameters and abstract optimization variables are as follows;

tA1 = k1k2k3t̃A1 tA2 = k2k3k4t̃A2 tA3 = k3k4k1t̃A3 (4.4)

where, tA1, tA2, tA3 are the physical design variables describing the skin panel

thicknesses for the three partitions along the span. tA1 is chosen to be on the

cantilevered side. t̃A1, t̃A2, t̃A3 are the reference values for the thicknesses of the

three type skin panels which are dictated in the initial wing design. Similarly;

tB1 = k1k2k3t̃B1 tB2 = k2k3k4t̃B2 tB3 = k3k4k1t̃B3 (4.5)

where, tB1, tB2, tB3 are the physical design variables describing the spar thicknesses

for the three partitions along the span. tB1 is chosen to be on the cantilevered

side. t̃B1, t̃B2, t̃B3 are the reference values for the thicknesses of the three spar

partitions which are dictated in the initial wing design. Finally;

tC1 = k1k2k3t̃C1 tC2 = k2k3k4t̃C2 tC1 = k3k4k1t̃C3 (4.6)

where, tC1, tC2, tC3 are the physical design variables describing the rib thicknesses

for the three partitions along the span. tC1 is chosen for the first rib on the

cantilevered side. t̃C1, t̃C2, t̃C3 are the reference values for the thicknesses of

the three different rib groups which are dictated in the initial wing design. In

addition, two more design variables, the stringer outer diameter d0 and the inner

wall thickness of the stringer beam tw are:

d0 = k4d̃0 tw =
d0

3
(4.7)

where d0 is the reference diameter value of the initial wing design. The abstract

optimization variables are chosen to be less than one so that the inital rough
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structure will be forced to get lighter. The lower and upper limits of the abstract

optimization variables are determined as:

0.8≤ k1 ≤ 1.0 (4.8)

0.6≤ k2 ≤ 1.0 (4.9)

0.4≤ k3 ≤ 1.0 (4.10)

0.2≤ k4 ≤ 1.0 (4.11)

In addition, the location of the first four ribs which is the group on the wing root

side and also the location of the middle two spars are chosen to be variable. The

absolute distance from the root to each of the first four ribs are chosen as four

optimization variables y1,y2,y3,y4 . For two middle spars, the ratio of the distance

between the leading edge of the wing to the spar divided by the chord length is

chosen as two dimensionless optimization variables c1,c2. Thus, 16 independent

design variables are introduced at all.

500mm ≤ y1 ≤ 800mm 2150mm ≤ y4 ≤ 2800mm (4.12)

900mm ≤ y2 ≤ 1300mm 0.25≤ c1 ≤ 0.45 (4.13)

1400mm ≤ y3 ≤ 1950mm 0.55≤ c2 ≤ 0.75 (4.14)

A rather bulk wing initial design will be given for the optimization problem since

abstract variables are chosen as such to reduce the thicknesses in any ways. At

the initial configuration, t̃A1 = t̃A2 = t̃A3 = 5mm, t̃B1 = t̃B2 = t̃B3 = 20mm, t̃C1 = t̃C2 =

t̃C3 = 16mm, y1 = 600mm, y2 = 1100mm,y3 = 1600mm, y4 = 2250mm, c1 = 0.35,

c2 = 0.65.

4.3.3 Reliability Based Design Optimization of the AircraftWing

A structural optimization problem similar to the one in equations (4.3) will be

solved with two random variables which are Young Modulus E and yield strength

σyield of the material. Thus, the constraints concerning stress (g1), displacement

(g2) and frequency (g3) in those equations become probabilistic constraints due

to their dependencies on the random variables vector X = [E σyield]
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Young’s Modulus E of the material and yield strength σyield are modeled with

normal distributions using N(70000, 350) MPa and N(400, 20) MPa. Thus, the

optimization problem can be formulated as;

min
s∈S

M(s), max
s∈S

f1(X,s) (4.15)

gprob
1 (X,s) =

σyield(X)

σmax(X,s)
−1 ≥ 0, gprob

1 (X,s) ∈ R

gprob
2 (X,s) =

u0

umax(X,s)
−1 ≥ 0, gprob

2 (X,s) ∈ R

gprob
3 (X,s) = 1− f 0

1

f (X,s)
≥ 0, gprob

3 (X,s) ∈ R

gdet
4 (s) =

M0

M(s)
−1 ≥ 0, g4(X,s) ∈ R

4.3.4 Optimization Framework

During the optimization process Abaqus-6.7.1 is used to compute the structural

response of the structural system and AMV method code written in MATLAB is

used to evaluate the random variables. In order to perform an optimization study,

a workflow should be prepared in Modefrontier to govern the optimization process.

In this workflow the optimization variables (with their upper and lower bounds

and incrementations), scheduler, design of experiments, objectives, constraints,

output variables and the softwares are defined. Optimization workflow is prepared

to automate the multiobjective multidisciplinary optimization problem. Once the

workflow is run, it controls the optimization process automatically by using the

well prepared script files and models. Figure 4.6 shows the workflow of this

optimization problem. In this workflow, Modefrontier’s script files drive Abaqus

node in batch mode. In each optimization iteration, Modefrontier updates the

thickness parameters of the wing and create a new input file for Abaqus and

MATLAB. In MATLAB, Abaqus is called twice for each reliability analysis

iteration to calculate the gradient of the stress constraint: Once for yplus (design

point plus step size h) and once for yminus (design point minus step size h).

In this way, by running Abaqus from the MATLAB code depending on the

random variable E, maximum stress of the wing is calculated and the gradients
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of the stress constraint is computed in that loop by central finite difference

approximation. The output of the MATLAB reliability code provides updated

values of Young’s Modulus and yield stress. Finally, this output file is used

by Abaqus to calculate the desired values of displacement, frequency, mass and

maximum stress for deterministic optimization. For reliability analysis, target

reliability index is chosen as βt = 3. A parallel type of system is considered when

the stress and displacement constraints are treated. For the sake of simplicity,

stress constraint is considered to be dominant for reliability analysis. Figure 4.2

is a simple representation of the implemented workflow.

Figure 4.2: Workflow of the optimization problem

4.4 Results and Discussion

In the aircraft wing study, 24 design of experiments (DOE) with "Sobol sequence"

are used and 300 maximum number of iterations per subiterations for the

NLPQLP (an algorithm based on SQP) are defined. Sobol sequence distributes

the experiments uniformly in the design space. Finally, a total number of 171

designs are generated for the optimization problem. Solution of the problem

took about 85 hours on a workstation with Intel(R) Core(TM)2 Quad CPU
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6700@2.40 GHz processor and 2GB of RAM on Microsoft Windows XP operating

system. 65 designs were found to be feasible that satisfy the constraint condition.

Furthermore, there are 10 error designs. As a result, 3 designs are found in the

pareto front set for this optimization problem. These paretos are demonstrated

in table 4.1 and in figure 4.3. The first design in table 4.1 is selected

Table 4.1: Paretos from RBDO

Pareto Mass (kg) Frequency (Hz)
1 291.47 5.7084
2 291.51 5.7087
3 291.61 5.7075

Table 4.2: Paretos from Deterministic Optimization

Pareto Mass (kg) Frequency (Hz)
1 282.23 5.2682
2 282.65 5.2691
3 282.77 5.2658

as the optimum design due to its cumulative improvement concerning both

objectives. Table 4.4 demonstrates those improvements after reliability based

design optimization with respect to the reference values of M0 = 330kg and f 0
1

= 4.35 Hz. Here, both objectives are evaluated with equal weight, i.e. %50

importance for each is taken into account. Other design engineers may choose

among these three designs according to their needs. Moreover, the designs which

Table 4.3: Comparison of Deterministic and Probabilistic Optimization Results

Deterministic Optimization Probabilistic Optimization
Mass (kg) 282 291

Frequency (Hz) 5.26 5.70

are found previously in the deterministic optimization process in [6] are given

in table 4.2. Briefly, table 4.3 shows the difference between deterministic and

probabilistic optimization analysis. The results demonstrate that the mass of the
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reliability based designed wing has to be greater compared to the wing of the

deterministic optimization in order to obtain a safer design. Furthermore, it

Table 4.4: Cumulative Improvements for Multicriteria Decision

Mass (kg) Imp. in M. (%) Frequency (Hz) Imp. in F. (%) Cumu. Imp. (%)
291.47 11.6750 5.7084 31.2275 21.4512
291.51 11.6636 5.7087 31.2344 21.4490
291.61 11.6333 5.7075 31.2068 21.4200

Figure 4.3

can be observed that the first natural frequency also increased after RBDO when

compared to the deterministic optimization. As can be seen in the figures 4.4

and 4.5, thicknesses of the structural members decrease from the edge to the root
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of the wing in order to increase the inertia of the wing structure. Therefore,

depicted results explain the increase in frequency clearly and compromise with

the expectations.
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Figure 4.6: ModeFrontier Workflow
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5. CONCLUSION

In this work, reliability-based design optimization is investigated and some of

the related solution methodologies are explained, coded and implemented in

MATLAB. Finally, MATLAB code and Abaqus are integrated in a ModeFrontier

framework to solve an optimization problem concerning an aircraft wing. The

results can be summarized as the following:

• Reliability analysis can be performed much more effectively using Performance

Measure Approach compared to Reliability Index Approach. Due to its

efficiency, PMA is preferred in solving the problems. Relevant methods to

PMA are introduced and validated using some example problems from the

literature before proceeding to the major problems.

• In chapter 3, both deterministic and probabilistic optimizations of a cantilever

beam are performed. Here, stress and displacement constraints are calculated

analytically. The results given in literature are obtained with perfect accuracy

with MATLAB code. This beam problem is also solved in a ModeFrontier

framework where the reliability analysis code written in MATLAB is coupled

with Abaqus for stress computation. ModeFrontier produced very close

optimization outputs using the integration of reliability analysis part of

MATLAB code and Abaqus.

• At last, a multi-objective design optimization problem of an aircraft wing is

reevaluated following the developed approach. RBDO results are proved to be

acceptable when the results of first evaluation (i.e. deterministic optimization)

of the same problem are considered.

• To the best of the author’s knowledge, commercial finite element analysis

tools such as Abaqus and Nastran do not include reliability analysis modules.
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Therefore, the integration of the reliability analysis code written in MATLAB

and Abaqus is the most remarkable novelty of this work.

• As the main inference, it is observed that RBDO method exhibits superiorities

to deterministic optimization when dealing with uncertainties in the design

process.

• Future work for this study may include using more complicated models and

improving the capabilities of reliability analysis code: First, the system

integration of multiple probabilistic constraints has to be implemented. Next,

more effective methods such as second-order reliability method (SORM, based

on MPP) or Latin Hypercube Sampling (LHS, one of the most efficient

sampling methods) may be implemented and performed. Furthermore,

reliability analysis algorithms based on a sequential single-loop can be

preferred to overcome the potential computational burden. Parallel computing

is another effective solution where applicable.
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