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GENERAL PAIRS TRADING TECHNIQUES AND APPLICATION OF 

THE VASICEK MODEL USING GMM ESTIMATION 

SUMMARY 

 

The valuation problem of the securities in the marketplace is a very hard process 

and it is not always accurate. Pairs trading comes with the idea, relative pricing, 

which if two securities have similar characteristics, they should have the same 

price. In our work, we firstly find the best pair of assets using the Augmented 

Dickey Fuller Test and Granger Causality sort method. We then use Vasicek 

Model, which is a mean reverting model, to construct our trading algorithm. We 

use GMM optimization to compute the optimal model parameters K*, theta, 

sigma* of the Vasicek model. 
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EġLĠ ALIM SATIM YÖNTEMLERĠ VE GENELLEġTĠRĠLMĠġ MOMENT 

YAKLAġTIRIMI ĠLE VASICEK MODELĠNĠN UYGULANMASI 

ÖZET 

 

 

 

Piyasada alınıp satılan varlıkların fiyatlanması zor ve her zaman başarı ile 

sonuçlanmayan bir süreçtir. Eşli Alım Satım yöntemi; benzer özellikler içeren 

varlıkların göreceli fiyatlama fikrinden de yola çıkarak,  aynı fiyata sahip olması 

gerektiğini önkoşul olarak kabul eder. Çalışmada en iyi çiftleri Genişletilmiş 

Dickey Fuller Test, ve Granger Causality Sıralama yöntemlerini kullanarak 

seçtikten sonra, ortalamaya geri dönüş özelliği içeren Vasicek Modeli‟ni 

kullanarak alım satım yöntemi geliştirilmiştir. Vasicek Model parametreleri 

Genelleştirilmiş Moment Yaklaştırımı ile bulunmuştur. 
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1.  INTRODUCTION 

The idea behind pairs trading is an intuitive equity trading idea which identifies 

two equity issues that track each other closely and then looks for times when the 

issues fail to track one another. In its purest form, the pairs trading strategy 

involves different issues of the same company. The shares should behave 

identically, adjusted for the proportional difference in value. The idea would 

involve buying the shares in one market and selling the equivalent amount short in 

another market, and hedging the currency exposure. Pairs trading may also involve 

trading two different companies in the same industry. In this context the idea 

would be to buy one company and sell the other one. 

Pairs traders can cross check the performance of a pair of stocks using a variety of 

statistical methods. The success of a pairs strategy depends on being able to 

identify which stocks to buy and which stocks to sell and also being able to 

identify when to buy and when to sell. 

The first statistical pair trading was developed by Nunzio Tartaglia, the Morgan 

Stanley quant, who had lots of mathematicians and physicists in his group. The 

groups' aim was to develop automated trading systems and one of the techniques 

they used was pairs trading which involved trading securities in pairs. The process 

involved identifying pairs of securities that tend to move together. Whenever an 

anomaly was noticed, the pair would be traded with the idea that the anomaly 

would correct itself. After a successful implementation, when the group disbanded 

group members fell apart to other trading firms and diffused the technique: pairs 

trading. 

The general idea in the marketplace from a valuation point is to sell overvalued 

securities and to buy the undervalued ones. But, calculating the true value of the 

security is a very difficult process and it is not always accurate. Pairs trading 

solves this problem by the relative pricing idea which is if two securities have 

similar characteristics; their price movements should be the same. If one of the 
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securities gains more returns for a while it will get a relatively higher price than 

the other. Pairs trading involve selling the higher-priced security and buying the 

lower-priced security with the idea that the mispricing would correct itself.  

The mutual mispricing between securities is called spread. The greater spread 

would trigger greater mispricing and greater potential of profit. Then, a long-short 

position is constructed. By taking one long and one short position in the market, 

strategy minimizes beta and therefore minimizes exposure to the market. Hence, 

the returns of the trade are uncorrelated to market returns, which imply pairs 

trading to be a market neutral strategy. 

Although the idea of pairs trading straightforward, there are crucial points that an 

analyst should consider. A well constructed pairs trading strategy should have 

three main properties. 1) A good selection criterion to select the best profitable 

pairs 2) a good trading structure to maximize profit. 3) A good estimation 

technique to calibrate the trading strategy.  

This thesis, tries to compare different methods for both selection and trading 

structures while proposing new models for each section and generating an 

application of GMM estimation.  

The rest of this thesis is organized as follows; Chapter 1 introduces the main 

concept of pairs trading and introduces historical development of the idea, Chapter 

2 introduces selection strategies in the literature and introduces new ideas, Chapter 

3 introduces Trading Algorithms, Chapter 4 discusses estimation techniques, 

Chapter 5 introduces the algorithms and methodologies of selection and trading, 

Chapter 6 reports the empirical results of experiments with interpretations of 

results and Chapter 7 is a conclusion.  
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2.  SELECTION STRATEGIES 

Constructing a profitable trading strategy always starts with a comprehensible 

selection of investment options. There are mainly three types of analysis used by 

operators in order to effectively invest and trade on financial markets. These are:  

Fundamental analysis: through the analysis of a firm‟s ratios and financial 

statements, the investor tries to assess a forecast of the future performance and 

thus a company‟s valuation. Even though this type of analysis might be effective, 

its results are strongly biased and affected by a structural lack of the information 

available.  

Technical analysis: which is made by focusing on a security‟s past performance 

data, particularly price and volume.  

Quantitative analysis: investment issues are faced trough a quantitative approach, 

using mathematical and statistical analysis.  

In this thesis, four types of quantitative selection techniques will be illustrated: 

Minimum Distance Method, Augmented Dickey Fuller Test, Augmented Dickey 

Fuller Test in cooperation with Granger Causality and Market Factor Ratio test. 

2.1  Minimum Distance Method 

Gatev, Goetzmann and Rouwenhorst test the pairs trading strategy over the daily 

SP500 data through 1962 to 1997. They match stocks using the minimum distance 

method (also known as sum of squared deviations) and trade using the 2 standard 

deviation rule. They use Fama-French Factors to find an evidence of a higher 

excess return that pairs trading strategy generates comparing to the market return. 

They also use bootstrapping, to test their selection criteria.  

The main idea of the selection criteria is to select pairs which have had the same 

historical state prices. According to Law of One Price theory, similar securities 
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should have similar prices. To start the process, it is assumed that all the prices are 

same for a selected starting day. Then, the cumulative returns of the real prices are 

added to on the starting selected prices. By doing this, a cumulative return index is 

generated for all stocks. This process is also called normalizing the prices. To 

select pairs from this data set, sum of squared deviations is used. The formulation 

of the criteria is given as, 

𝛾 =   P1,t − P2,t 
2

𝑇

𝑡=1

 (2.1) 

where P1,t and P2,t are two normalized stock prices for a selected time t. The 

smaller value of 𝛾 will give us the information that selected stocks has the same 

price changes in the selected period of time.   

2.2 A New Selection Method using Market Factor Ratio 

As explained before, by going one long and one short position in the market, pairs 

trading strategy is a market neutral strategy.  This also means that we should find 

pairs that have similar market exposures. We propose a new model which checks 

the market exposures (𝛽) of the securities and selects the best pairs. This can be 

implemented by regressing securities to their relevant market index.  

Linear regression is a model that dependent variable, yi is a linear combination of 

the linear parameters.  Simple Linear Regression offers the model below 

for N data points where one independent variable is: xi, and two parameters 

are, β0 and β1: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝜀𝑖 ,    𝑖 = 1,… . , 𝑁 (2.2) 

As expected, this generates a straight line.  

εi is the error term for the observation point i. From a time series sample, the 

parameters β0 and β1 can be estimated, and following equation can be generated. 

𝑦𝑖 = 𝛽 0 + 𝛽 1𝑋𝑖 + 𝑒𝑖  (2.3) 
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ei is the residual, 𝜀𝑖 = 𝑦 − 𝑦  .  For parameter estimation we use the well known 

method, ordinary least squares estimation. This method calculates the parameter 

estimates that minimize the sum of squared residuals, which is given as: 

𝑆𝑆𝐸 =  𝑒𝑖
2

𝑁

𝑖=1

 (2.4) 

For simple regression, the least squares formula is, 

𝛽 1 =
∑ 𝑥𝑖−𝑥   𝑦 𝑖−𝑦  

 𝑥𝑖−𝑥  
2

  and  𝛽 0 = 𝑦 − 𝛽 1𝑥  

Where x is the mean (average) of the x values and y is the mean of the y values.  In 

matrix notation, the equation can be written as 

 𝑋𝑇𝑋 𝛽 = 𝑋𝑇𝑦 (2.5) 

If we accept that the population error term has a constant variance, the estimate of 

that variance is given by: 

𝜎 𝜀
2 =

𝑆𝑆𝐸

𝑁 − 2
 (2.6) 

This is called the root mean square error (RMSE) of the regression. The standard 

errors of the parameter estimates are given by 

𝜎 𝛽0
= 𝜎 𝜀 

1

𝑁
+

𝑥 2

∑ 𝑥𝑖 − 𝑥  2
 (2.7) 

 

𝜎 𝛽1
= 𝜎 𝜀 

1

∑ 𝑥𝑖 − 𝑥  2
 (2.8) 

 

If we accept that the error term is normally distributed, standard errors can be used 

to create hypothesis tests about the confidence of the parameters. 

Our selection method tries to find the stocks with similar β „s. And by doing this 

we expect more hedge on market risk.  

http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Root_mean_square_error
http://en.wikipedia.org/wiki/Standard_error_(statistics)
http://en.wikipedia.org/wiki/Standard_error_(statistics)
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2.3 Augmented Dickey Fuller Test 

In order to generate profit in a pairs trading strategy the spread or the ratio of the 

prices should have a constant mean and a constant volatility. In statistical analysis 

presence of these two properties are investigated by stationarity. 

2.3.1 Stationarity 

This property of time series which we will see is very important in the analysis for 

pairs trading and, more generally, in time series analysis. A time series  tX  is 

defined as weakly stationary if  

  2

tXE  

  mXE t  , m being a constant t  

   tstrsr xx  ,, 
 (2.9) 

The last condition says that, given Tsr , , ),( sr XXCoV is independent from t, 

being only a function of r and s. The intuition behind stationarity is quite simple. If 

a time series is stationary its probability distribution does not change between 

observations and this implies that parameters of the distribution (mean and 

variance for the Normal) do remain constant. On the other hand, a time series is 

non-stationary when it is affected by a trend or other periodic components.  

Stationarity is a desirable property for mainly two reasons. The first is practical 

and is that many statistical tools and models are based on stationary time series 

and thus only work with them. The second reason is more theoretical and lies in 

the fact that stationary series have finite variance. This feature means that the 

series will never deviate from its mean value for more than a certain distance and 

hence suggests that the series is mean reverting, which is crucial for the 

implementation of pairs trading. The speed of mean reverting behavior is captured 

by the auto covariance function.  

Now we will go over the most common types of time series, showing their main features 

and statistical properties.  

 



7 

 

 

A time series  tX  is defined a white noise if  

  0tXE  

  22 tXE  

 









sr

sr
srx

,0

,
,

2
  (2.10) 

A White Noise is a sequence of drawings from a Normal distribution. The 

parameters of this Normal distribution are fixed and are not time-varying. 

Realizations are thus  2,0... Ndii   we also have that   0st XXE   

stTst  /, . This tells that the correlation between random variables is 0 at any 

time t, which implies that st XX ,  are independent stTst  /, .  

Given a  t  series of  2,0... dii  random variables, a time series  tX  is defined 

as a random walk if    

 


t

i itX
1
  (2.11) 

A random walk is thus the sum of all the past white noise realizations up to the 

current time t. Each observation can be also thought as the last value plus the 

current white noise realization. To find out whether a random walk is stationary or 

not, let‟s consider this: by hypothesis  t  are  2,0... dii , thus 

     tVVV   ...21  and  

     i

t

i it tVVXV   1
 (2.12) 

The variance is positively dependent on t and increases with time, this implying 

that the series might reach extreme values with the course of time. The analysis of 

the variance tells us that random walk is a non-stationary process which is not 

likely to be mean reverting.  
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2.3.2  Dealing with non stationarity 

 

Having considered the most typical pattern followed by time series we now go 

through some more consideration about time series. Time series of security prices 

are most of the time non stationary series. Any non-stationary series can be seen as 

follows  

tttt YSmX 
 (2.13) 

Where X is the original non stationary time series, m is a trend component, S is a 

seasonal component, Y represents a stationary time series with zero mean.  

This decomposition is based on the fact that non stationary series can be seen as a 

stationary series plus a trend/seasonal component. See the non stationary series in 

such a way is very helpful. In fact, it shows an easy way to remove the trend 

component from the time series and transform it into a stationary one. This 

technique is known as differentiation and works in a very simple way. It just 

requires taking the time series realizations and subtracting to each of them the 

previous one. The differenced time series can be defined as  

1 ttt XXX
 (2.14) 

The concept of differentiating leads to the definition of integrated process: a non 

stationary time series tX
 is said to be integrated of order n and is noted I(n) if it 

becomes stationary after differencing it at least n times.  

It is good to note that differentiation allows removing not only constant trend but 

linear trends as well. Let‟s consider 
tttt YSmX   with tmt 10    and, for 

sake of simplicity set S=0. 

tt YtX  10 
 (2.15) 

By differencing this process we obtain 

  11010 1  ttt YtYtX   

11  tt YY
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Here we have a constant plus a stationary process. The differentiation thus 

removed the linear trend. It can be shown that differencing twice removes trend of 

a quadratic form as well. In any case attention must be paid not to difference too 

much as this will intensify the errors.  

Before it has been assumed that the seasonal component is equal to 0. We can now 

remove this hypothesis thus having  

tttt YSmX   (2.16) 

with  tmt 10     and  dtt SS   

ttt YStX  10 
 

And, differencing for a time lag d.  

  dtdttttd SYdtSYtX   1010   (2.17) 

 dtt YYd  1  

d  is called lagged differencing operator and is simply defined as 

dtttd XXX   

 

We just presented one very common method used to transform a non stationary 

series into a stationary one. Apart from differentiation there are also other ways to 

do this. We only cite a general class of transformations proposed by Box and Cox 

(1964). It looks as follows:  

 

 













0,log

0,
1

)(








x

x
xf  (2.18) 

The log transformation is widely used in finance to obtain the series of the 

logarithmic prices which shows a number of desirable‟s properties.  
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2.3.3 Unit root testing  

It has been already said that what we desire that a price time series is stationary. 

Unit root test serves to check for stationarity. Unit root test is indeed defined as a 

statistical test of the following form: 

H0: Time series is non stationary 

H1: Time series is stationary 

For an autoregressive process AR(1) such as ttt XX   110   with 00   

(for simplicity reasons) the unit root test will be written as follows 

H0: 11   

H1: 11   

The same can also be expressed in a slightly different way. Consider  

1 ttt XXX  

  tt

P

t XX   11 1


 
(2.19) 

Which is the previous model with 00   and the unit root test is now written as 

H0: P=0 

H1: P<0 

Let‟s now try to investigate the logic behind this type of tests; we have to 

understand how the fact that 11   implies the stationarity of the time series 

model. Let‟s consider again the AR(1) model 

ttt XX   1  

It can be shown that it is possible to rewrite it as follows: 

  2

2

1 ttttX   

→
 




 
0i it

i

tX   (2.20) 
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The notation of this last formula clearly shows that the errors ε (also known as 

shocks) affect the independent variable and this influence exponentially declines 

when 1 . If, otherwise, 1 , then there is a unit root and we have that  




 
0i ittX   (2.21) 

In which case the shocks have a persistent effect and the dependent variable is 

fully determined by the sum of past and present shocks. Under the hypothesis that 

00 X  we have 0


 ti it  and is thus possible to write tX
 as the sum of the 

shocks from time 1 up to time t this is  

ttX   21  (2.22) 

And the variance of X is  

  2

tXV t 
 (2.23) 

This is the key point, in fact it is easy to see that the variance of the process is a 

positive function of t; given that the variance is not constant but time varying, we 

have shown that the process is non stationary. On the other hand, when 1  the 

variance of the process becomes  

 
2

2

1 

 


tXV

 
(2.24) 

This is a constant, independent from t. We can hence say that the time series is 

stationary with 1 .  

As an additional argument, consider that the autoregressive model AR(1) under the 

hypothesis of unit root ( 1 ) and non correlated, homoskedastic errors is actually 

a random walk, which we know is an example of non stationary process. The term 

t

t

i i ST 1
  is called stochastic trend, as opposed to the linear deterministic 

trend which takes the form tDTt  where t=1,2,…,T. Whether the independent 

variable is dependent on a stochastic or on a deterministic trend is a relevant 

matter as it takes us back to the concept of integration, which we already 
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introduced above. If a variable depends on a stochastic trend, this means that it is 

integrated of order one I(1). Otherwise the variable is integrated of order zero I(0) 

and hence weakly stationary.  

The presence of unit root causes some problems in using OLS methodology and 

hence deserves some detailed consideration. In fact, in presence of unit root, the 

parameters associated with it show an asymptotic distribution which is very 

different from the Normal. This distribution is still centered on the correct value 

(1) but it is skewed on the right with more probability in the right tail. These 

characteristics cause some difficulties in the assessment of unit root presence. 

More precisely, if we set a unit root test as described above, to test 0H : 11   

against 1H : 11  , we can still calculate the t statistic as  

 
 ols

ols

DF
es

t




ˆ..̂

1ˆ 


 
(2.25) 

but we must now be aware of the fact that its asymptotic distribution is not 

anymore the Student t, rather the t test distribution for unit root case is called 

Dickey-Fuller and the test is therefore also named Dickey-Fuller test. The DFt  

above converges in law to  

 






1

0

2

2

1 1
2

1

dtW

W

t

t
 

(2.26) 

Where W is a Brownian Motion defined for  1;0t . The Dickey-Fuller density 

function can be thus be computed only by using Monte Carlo simulation 

methodology. The critical value for the DF test is lower as it would be if we were 

using a Student-t distribution. Another peculiarity is that the distribution of the test 

changes according to the deterministic component of the model. Although Dickey-

Fuller test is specific for the AR(1) case, there is also a way to test for unit root an 

AR(p) process. Such a generic model can be expressed by  

tptptt XXX    11  (2.27) 

Which is equivalent to  tX ,  
p  211  
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For a unit root to be there it is required that  

0 , i.e. 11  p   

The test for 0 is called augmented Dickey-Fuller test (t-ADF) and has the 

same distribution of the DF test. When executing this king of tests, it must be 

remembered that their power becomes very low when the relevant parameter   is 

close to but not exactly one.  

As for our case, a testing of the time series stationarity would be working as 

follows. Consider the differenced AR(1) process as previously described  

  tt

P

t XX   11 1


 
(2.28) 

and the DF test as 

H0: P=0, i.e. time series is non stationary 

H1: P<0, i.e. time series is stationary 

We now have to regress tX  (that will be the dependent variable) against 1tX  

(the independent variable) to achieve an estimation P̂ of the parameter 11  P . 

At this point we can calculate the DF t-stat and compare its value with the 

corresponding DF distribution value, which can be found on proper tables 

according to the chosen level of significance and the number of observations. If 

 nttDF   we reject the null hypothesis, this implying that our time series is non 

stationary. It must be mentioned that, if the intercept of the regression is not null (

00  ) then this fact advises on the existence of a linear trend distribution and the 

value  nt  becomes different. This could hence lead to a different result of the 

test. While, as we already said, financial time series are quite often integrated of 

order one I(1), to run a unit root test on series of higher order of integration the 

following approach has to be followed. 

H0: time series is I (2) or higher 

H1: time series is I (1) 

Then regress 
tX2  against 1 tX , compute the t-stat and check for the result.  
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Augmented Dickey Fuller Test, which is a unit root test, serves to check for 

stationarity. Remember that, 

H0:  Time series is non stationary 

H1:  Time series is stationary 

For an autoregressive process AR (1) such as ttt XX   110   with 00   (for 

simplicity reasons) the unit root test will be written as follows 

which the previous model with 00   and the unit root test given as, 

H0:  P=0 

H1:  P<0 

Note that the term augmented comes from the lagged values of the dependent 

variable. The number of lagged difference terms to include is determined 

empirically, the idea being to include enough terms so that the error term in tested 

equation is serially uncorrelated. The tau statistics will be used to determine 

passing pairs. 

2.4 A New Selection Method : ADF Test with Granger Causality 

Another important point is in ADF is that, ADF test is a Boolean test which has 

only two results, Pass or Fail. This means that we cannot sort the tau statistics as 

we did in the Minimum Distance Method or we will do in the Regression method. 

For selecting a portfolio of pairs or more generally to quantify the best pair one 

needs a sorting algorithm supporting ADF test. In this thesis, the pairs will be 

sorted using the Granger Causality Method. 

Granger [9] approach to the question of whether x causes y is to see how much of 

the current y can be explained by past values of y and then to see whether adding 

lagged values of x can improve the explanation. y is said to be Granger-caused 

by x  if x helps in the prediction of y, or equivalently if the coefficients on the 

lagged x's are statistically significant. Two–way causation is frequently the 

case; x Granger causes y and y Granger causes x. 
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The statement "x Granger causes y" does not imply that y is the effect or the result 

of x. Granger causality measures precedence and information content but does not 

by itself indicate causality in the more common use of the term. 

To run a Granger Causality test, bi-variate regressions of the form should be run: 

𝑦𝑡 = 𝛼0 + 𝑎1𝑦𝑡−1 +⋯+ 𝑎𝑙𝑦𝑡−𝑙 + 𝛽1𝑥𝑡−1 +⋯+ 𝛽𝑙𝑥𝑡−𝑙 + 𝜀𝑡  (2.29) 

 

𝑥𝑡 = 𝛼0 + 𝑎1𝑥𝑡−1 +⋯+ 𝑎𝑙𝑥𝑡−𝑙 + 𝛽1𝑦𝑡−1 +⋯+ 𝛽𝑙𝑦𝑡−𝑙 + 𝜀𝑡   (2.30) 

for all possible pairs of (x,y) series in the group. The reported F-statistics are the 

Wald statistics for the joint hypothesis: 

𝛽1 = 𝛽2 = ⋯ = 𝛽𝑙 = 0 

for each equation. The null hypothesis is that x does not Granger-cause y in the 

first regression and that y does not Granger-cause x in the second regression.  

We propose investigating pairs which does Granger cause each other. This is 

satisfied by checking F-Statistics of the Granger Causality test and taking the sum 

of the probabilities of the test. 
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3.  TRADING ALGORITHMS 

3.1 Two Standard Deviation Rule 

As expressed in the Gatev, Goetzmann and Rouwenhorst‟s paper, traders in the 

industry generally use as the rule of thumb the two standard deviation rule on pairs 

trading. Looking from a mathematical finance perspective, this rule actually 

implements the mean reversion rule using a quantitative and probabilistic way. 

The main idea of pairs trading is to take open the trade when the spread or the ratio 

between a selected pair grows and hits a barrier and close it when it comes back to 

its mean. So one parameter to be found is actually this barrier which will point out 

an historical high. 

As told before, two standard deviation is a kind of industry standard for this kind 

of historical high observations and not surprisingly it is used in pairs trading also. 

To get in detail of this rule, we should investigate what standard deviation concept 

explains.   

In probability theory and statistics, standard deviation is a measure of the 

variability or dispersion of a data set, or a probability distribution. A low standard 

deviation indicates that the data points tend to be very close to the same value (the 

mean), while high standard deviation indicates that the data are “spread out” over a 

large range of values. Two standard deviation is about in the %98 of the 

confidence interval, which means that with a probability of 0.98 the point will be 

inside the 2 standard deviation barrier.   

When the spread or ratio of pairs goes over %98 confidence interval, traders open 

their positions on the spread, expecting it will come back to its confidence interval 

and hopefully will reach back to its mean. It is sure that this rule of thumb may be 

optimized by using some profit optimization techniques and other quantitative 

tools. 
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3.2 Implementation of Vasicek Model to Pairs Trading 

Mean reversion is a tendency for a stochastic process to remain near, or tend to 

return over time to a long-run average value. As a well know examples interest 

rates and implied volatilities can be given. In general stock prices tend not to have 

a mean reversion. In pairs trading, the ratio or the spread between pairs tend to 

have a mean reverting affinity.  

Vasicek model [6] is generally used for interest rate modeling but it can be applied 

on other mean reverting processes as well. The model assumes that a mean 

reverting process has the stochastic differential equation in the form of:  

𝑑𝑅𝑡 = 𝜅 𝜃 − 𝑅𝑡 𝑑𝑡 + 𝜎𝑑𝑊𝑡  (3.1) 

where 𝑊𝑡   is a Wienner process modeling the random which models the 

continuous randomness of the system. The standard deviation parameter, 𝜎  

determines the volatility of the mean reverting process and adjusts the randomness 

amplitude.  

𝜃 , long term mean level. All future trajectories of 𝑅 will evolve around a mean 

level in the long run; 

𝜅, speed of reversion.  characterizes the velocity at which such trajectories will 

regroup around 𝜃 in time; 

𝜎, instantaneous volatility, measures instant by instant the amplitude of 

randomness entering the system. Higher ζ implies more randomness. 

The following derived quantity is also of important to find, 

𝜎2

2𝜅
 , long term variance. All future values of R will come back to the long term mean 

with this variance after a period of time. 

It should be noted that 𝜅 and ζ tend to oppose each other: increasing ζ increases the 

amount of randomness entering the system, but at the same time increasing 𝜅 

amounts to increasing the speed at which the system will stabilize statistically 

around the long term mean 𝜃 with a corridor of variance determined also by 𝜅. This 

is clear when looking at the long term variance, 
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𝜎2

2𝜅
 (3.2) 

which increases with ζ but decreases with 𝜅. 

 

When we solve the stochastic differential equation we come to the result, 

𝑅 𝑡 = 𝑅 0 𝑒−𝜅𝑡 + 𝜃 1 − 𝑒−𝜅𝑡  + 𝜎𝑒−𝜅𝑡  𝑒𝜅𝑠
𝑡

0

𝑑𝑊𝑠 (3.3) 

And the expected value or the mean as, 

𝐸 𝑅𝑡 = 𝑅0𝑒
−𝜅𝑡 + 𝜃(1 − 𝑒−𝜅𝑡 ) (3.4) 

And the variance 

𝜎2

2𝜅
(1 − 𝑒−2𝜅𝑡  ) (3.5) 

In the limit t goes to infinity, we have 

lim
𝑡 ∞

𝐸 𝑅𝑡 = 𝜃 
(3.6) 

And 

lim
𝑡 ∞

𝑉𝑎𝑟 𝑅𝑡 =
𝜎2

2𝜅
 (3.7) 

 

In this thesis, we use Vasicek model to calibrate the Pairs trading strategy. Perhaps 

the most important parameter 𝜎 , the conditional volatility is a measure of 

oscillation magnitudes. Conditional properties of  𝜎  help the analyst to calibrate it 

with the level of the ratios. A very high sigma can lead to a risky trading structure. 

𝜃 is the long term mean which the ratio will converge and another important 

parameter 𝜅 calibrates the converging speed. A very high convergence parameter 

can lead to  less trading oppurtinities and a very low one can lead to a more risky 

trading structure. 
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4.  ESTIMATION TECHNIQUES FOR VASICEK MODEL 

Calibrating the parameters of the Vasicek model is a hard process and it can be 

done by several methods. In this thesis, Generalized Method of Moments is 

selected for estimation of the parameters. This method does have adventage of not 

having an underlying distribution assumption, which is a very crucial point in 

dealing with spreads of the pairs. 

4.1 Generalized Method of Moments 

To explain the dynamic properties of the economic systems, statistical analysis and 

estimation procedures have crucial importance. Generalized method of moments 

(GMM) was first introduced into the econometrics literature by Lars Hansen in 

1982 [7] . After the invention, the estimation procedure has become a ready to use, 

flexible tool of application to a large number of econometric and economic 

models.  By relying on gentle and convincing assumptions, GMM has had a big 

impact on the theory and practice of econometrics. For the theory side, the main 

earning is that GMM provides a very general framework for considering issues of 

statistical consequence because it contains many estimators of interest in 

econometrics. For the practical side, unlike other methods like maximum 

likelihood process, it generates a computationally appropriate method of 

estimating nonlinear dynamic models without knowing the probability distribution 

of the data. Only specified moments derived from an underlying model are enough 

for GMM estimation. This property of GMM made itself very useful in areas like 

macroeconomics, finance, agricultural economics, environmental economics, and 

labor economics. 

Consider the single linear equation model below, 

yt = zt
′𝛿0 + 𝜀𝑡    𝑡 = 1,…𝑛 (4.1) 
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Where 𝜀𝑡  are the error terms,  𝑧𝑡  are the explanatory variables, a 𝐿 × 1  matrix, and 

may be correlated with 𝜀𝑡 , lastly 𝛿0 are the unknown coefficients. It is well known 

that if 𝐸 𝑧𝑡𝜀𝑡 ≠ 0 than 𝑧𝑡  is contains endogenous variables and the estimator 𝛿0  

will be biased and inconsistent. To overcome this, define 𝑥𝑡  as a set of 

instrumental variables, a 𝐾 × 1 matrix which is orthogonal to set of  𝜀𝑡  , which 

means that 𝑥𝑡  is not correlated with 𝜀𝑡  . Than we can write, 

𝐸 𝑔𝑡 𝑤𝑡  , 𝛿0   = 𝐸 𝑥𝑡𝜀𝑡 =  𝐸 𝑥𝑡 yt − zt
′𝛿0  = 0 (4.2) 

Where 𝑔𝑡 𝑤𝑡  , 𝛿0  =  𝑥𝑡𝜀𝑡 = 𝑥𝑡(yt − zt
′𝛿0) . From here we can write,  

𝐸[𝑥𝑡yt] = 𝐸[𝑥𝑡zt
′ ]δ0 (4.3) 

Which generates a set of equations, with  𝐸 𝑥𝑡zt
′    being a 𝐾 × 𝐿 matrix .To solve 

these equations  𝐸 𝑥𝑡zt
′     matrix must be a full rank of L. There appears to be 

three cases between K and L. 

The first case, where 𝐾 < 𝐿, 𝛿0 is not identified, and we cannot find a solution to 

the equations. If 𝐾 = 𝐿 then δ0 is identified and an analytic solution can be found 

as, 

𝛿0 =  𝐸[𝑥𝑡zt
′ ]−1𝐸[𝑥𝑡yt] (4.4) 

And lastly where 𝐾 > 𝐿 , δ0 is over identified.  

In the model, the error terms are allowed to be serially correlated and conditionally 

heteroskedastic.  For the case in which εt is conditionally heteroskedastic, it is 

assumed that {gt} = {xtεt} is a 

stationary and ergodic martingale difference sequence (MDS) satisfying  

𝐸 𝑔𝑡𝑔𝑡
′  = 𝐸 𝑥𝑡𝑥𝑡

′εt
2 = 𝐒  (4.5) 

Where S is a non singular 𝐾 ×  𝐾   matrix, also the asymptotic variance-covariance 

matrix of the sample moments   𝒈 = 𝑛−1 ∑ 𝑔𝑡(𝑤𝑡 , 𝛿0)𝑛
𝑡=1  . Using central limit 

theorem one can show that,  
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 𝑛 𝑔 = 1 
1

  𝑛
 𝑥𝑡𝜀𝑡

𝑛

𝑡=1

𝑑
 𝑁(0, 𝑺)  (4.6) 

 

𝑺 =  Γ𝑗 = Γ0 + (Γ𝑗 + Γ𝑗
′)

∞

𝑗=1

∞

𝑗=−∞

 (4.7) 

Where Γ𝑗 = 𝐸 𝑔𝑡𝑔𝑡−𝑗
′  = 𝐸[𝑥𝑡𝑥𝑡−𝑗

′ 𝜀𝑡𝜀𝑡−𝑗 ] . 

 

GMM Estimator of 𝛿 is constructed using the orthogonality conditions. The idea is 

to create a set of moment conditions to estimate 𝛿 . 

𝑔𝑛 𝛿 =
1

 𝑛
 𝑥𝑡(𝑦𝑡 − 𝑧𝑡

′𝛿)

𝑛

𝑡=1

 (4.8) 

 

=

 

 
 
 
 
 

1

𝑛
 𝑥1𝑡(𝑦𝑡 − 𝑧𝑡

′𝛿)

𝑛

𝑡=1 .
.
.

1

𝑛
 𝑥𝐾𝑡(𝑦𝑡 − 𝑧𝑡

′𝛿)

𝑛

𝑡=1  

 
 
 
 
 

 (4.9) 

 

The system has K linear equations and L unknowns. As told before, as if 𝐾 > 𝐿 

than there may not be a single unique solution to the system.  Then we try to find 

the most possible solution, the value of 𝛿 that makes 𝑆𝑥𝑦 − 𝛿𝑆𝑥𝑧 = 0. To do this 

we introduce a new matrix W, often called the weighting matrix , which is a 𝐾 × 𝐾 

symmetric and positive definite weight matrix, than the GMM estimator is defined 

as, 

𝛿  𝑤 = arg min 𝐽(𝛿, 𝑤 ) (4.10) 

Where  
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𝐽 𝛿, 𝑤  = 𝑛𝑔𝑛 𝛿 ′ 𝑤 𝑔𝑛 𝛿  (4.11) 

 

= 𝑛 𝑆𝑥𝑦 − 𝛿𝑆𝑥𝑧 ′𝑤  𝑆𝑥𝑦 − 𝛿𝑆𝑥𝑧  (4.12) 

The analytical solution to this problem can be found by setting   
𝑑𝐽

𝑑𝛿
= 0  . And the 

solution appears as; 

𝛿  𝑤 =  𝑆𝑥𝑧
′ 𝑤 𝑆𝑥𝑧 

−1 𝑆𝑥𝑧
′ 𝑤 𝑆𝑥𝑦   (4.13) 

 

 

Under standard regularity conditions, it can be shown that, 

𝜹  𝑊  
𝑑
 𝛿0 

 𝒏 𝜹  𝑊  − 𝛿0 
𝑑
 𝑁(𝟎, 𝒄𝒐𝒗(𝜹  𝑊  ) (4.14) 

Where 𝒄𝒐𝒗  𝜹  𝑊   =  Σ𝑥𝑧
′ 𝑊Σ𝑥𝑧

′  −1Σ𝑥𝑧
′ 𝑊𝑆𝑊Σ𝑥𝑧  Σ𝑥𝑧

′ 𝑊Σ𝑥𝑧  
−1  and the 

consistent estimate is, 

𝒄𝒐𝒗  𝜹  𝑊   =  Σ𝑥𝑧
′ 𝑾 Σ𝑥𝑧

′  
−1
Σ𝑥𝑧
′ 𝑾 𝑺 𝑾 Σ𝑥𝑧 Σ𝑥𝑧

′ 𝑾 Σ𝑥𝑧 
−1

 (4.15) 

Where 𝑺   is the consistent estimate for  𝑺 = 𝒄𝒐𝒗(𝑔 ). 

𝛿 is defined by the positive semi definite matrix W so that the asymptotic variance 

of 𝛿 depends on W. It is crucial to choose a good W, unless the variance of 𝛿‟s 

may be high. So to produce the possible smallest value of  𝑊 , Hansen (1982) 

showed that 𝑊 = 𝑆−1   is a good choice. Here S is the long run variance as 

expressed earlier. With selecting 𝑊 = 𝑆−1 the variance becomes,  

𝒄𝒐𝒗 𝑔  =  Σ𝑥𝑧
′ 𝑺 −𝟏Σ𝑥𝑧

′  
−1

 (4.16) 

 

 

From here the efficient GMM Estimator is defined as, 
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𝛿(𝑺 −𝟏) = arg min 𝑛𝑔𝑛 𝛿 𝑺 
−𝟏 𝑔𝑛(𝛿) (4.17) 

As seen, the estimator needs a consistent estimate for S, the covariance matrix. 

However to find a consistent estimate of S, a consistent estimate of 𝜹 is needed as 

explained below: 

𝑆 =
1

𝑛
 𝑥𝑡𝑥𝑡

′𝜀𝑡
2

𝑛

𝑡=1

=
1

𝑛
 𝑥𝑡𝑥𝑡

′  𝑦𝑡 − 𝑧𝑡
′𝛿 2

𝑛

𝑡=1

 (4.18) 

 

 

The iterated efficient GMM estimation process is repeated until the unknown 

vector 𝛿 , do not change significantly. We know that,   

𝛿(𝑾) = arg min 𝑛𝑔𝑛 𝛿 𝑾𝑔𝑛(𝛿)  and 𝑾 = 𝑺−𝟏 

We may choose 𝑾 = 𝑰  and than S will become,  𝑆 = ∑ 𝑥𝑡𝑥𝑡
′  𝑦𝑡 − 𝑧𝑡

′𝛿(𝑰) 2𝑛
𝑡=1  as 

the start of the iteration. If we solve the equation and find the first S and set 

𝑾 = 𝑺−𝟏 we find another 𝜹 which will be the second iteration point to start.  

If we repeat this process until a certain point that 𝜹 does not change significantly 

anymore, we will find the optimal solution to our problem. 

In some systems, the GMM moment conditions may be dependent on some 

nonlinear functions. In these cases, the optimal solution to the 𝑝 model 

parameters 𝜃, depending on the models moment conditions  𝑔(𝑤𝑡 , 𝜃) should be 

satisfying the condition for 𝐾 ≥ 𝑝 nonlinear functions. 

𝐸 𝑔 𝑤𝑡 , 𝜃0  = 0 (4.19) 

Adding a response variable 𝑦𝑡 , 𝑳 explanatory variables 𝒛𝒕 and 𝑲 instruments 𝒙𝒕, 

the model may define a nonlinear error term,  

𝑎(𝑦𝑡 , 𝑧𝑡 ; 𝜃0) = 𝜀𝑡  (4.20) 

 

Such that, 

𝐸 𝜀𝑡 = 𝐸 𝑎 𝑦𝑡 , 𝑧𝑡 ; 𝜃0  = 0 
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Given that 𝑥𝑡  is orthogonal to 𝜀𝑡 , define 𝑔 𝑤𝑡 , 𝜃𝑜 = 𝑥𝑡𝜀𝑡 = 𝑥𝑡𝑎 𝑦𝑡 , 𝑧𝑡 ; 𝜃0  so 

that,  

𝐸 𝑔 𝑤𝑡 , 𝜃0  = 𝐸 𝑥𝑡 , 𝜀𝑡 = 𝐸 𝑥𝑡𝑎 𝑦𝑡 , 𝑧𝑡 ; 𝜃0  = 0 

Defines the GMM orthogonality conditions. These equations define also a system 

of K nonlinear equations in p unknowns. To find 𝜃0 following are needed:    

𝐸 𝑔 𝑤𝑡 , 𝜃0  = 0 

𝐸 𝑔 𝑤𝑡 , 𝜃0  ≠  0 𝑓𝑜𝑟 𝜃 ≠ 𝜃0 

And the 𝐾 × 𝑝 matrix defined as; 

𝑮 = 𝐸  
𝜕𝑔 𝑤𝑡 , 𝜽𝟎 

𝜕𝜽′
  (4.21) 

Has the full column rank p. The sample moment condition for an arbitrary θ is 

𝑔𝑛 𝜃 = 𝑛−1  𝑔(𝑤𝑡 , 𝜃)

𝑛

𝑡=1

 (4.22) 

If K=p than the system is well identified and the GMM estimator becomes, 

𝜽 = 𝒂𝒓𝒈 𝒎𝒊𝒏 𝑱 𝜽  (4.23) 

Where J is defined as, 

𝑱 𝜽 = 𝒏𝒈𝒏 𝜽 
′𝒈𝒏 𝜽  (4.24) 

If K>p, then θ0 is over identified. As in the fist section, we again define a 𝐾 ×

𝐾weighting matrix W. Than our GMM estimator becomes, 

𝜽  𝑾  = 𝒂𝒓𝒈 𝒎𝒊𝒏 𝑱 𝜽,𝑾  = 𝒏𝒈𝒏 𝜽 
′  𝑾 𝒈𝒏(𝜽)  (4.25) 

 

Again the efficient GMM estimator uses  𝑾 = 𝑺−𝟏 , where S can be found by 

using the iterative techniques in section 1.  

Hansen (1982) introduced the J-statistic to test behaviors and significance of the 

models suggested. Hansen refers to GMM objective function evaluated using an 

efficient GMM estimator:  
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𝐽 = 𝐽 𝜹  𝑺 −𝟏 , 𝑺 −𝟏 = 𝒏𝒈𝒏(𝜹  𝑺 −𝟏 
′
𝑺 −𝟏𝒈𝒏(𝜹  𝑺 −𝟏 ) (4.26) 

Where 𝜹  𝑺 −𝟏  is an efficient GMM estimator of δ and 𝑆  is a consistent estimate of 

S. If K=L than J=0, and if K> L than J >0. The larger value of J is an evidence of 

model misspecification. J-Statistic behaves like a chi-square random variable with 

degrees of freedom equaling the number of over identifying conditions. 

4.2 Vasicek Model Estimation via GMM  

To estimate parameters of the Vasicek model explained earlier, GMM estimation 

will be used. The trading algorithm will include the θ and ζ parameters to take the 

decision on trades. [5] 

We assume that pairs trading include mean reverting dynamics; modeling the ratio 

and the spread with this model and finding the parameters θ and ζ will give us 

dynamic information on the behavior of the pairs. 

GMM estimation will be used to estimate parameters dynamically, one reason we 

choose to use GMM estimation is that it does not assume any probability 

distributions. As explained earlier, GMM estimation takes the moment conditions 

into account. While dealing with daily data, the moment conditions can have a bad 

behavior; to avoid this we use weekly data. 

Different from the two standard deviation rule our trading algorithm uses one 

standard deviation to open the positions and closes the positions when it hits back 

to its long term mean θ . This can be explained by the Vasicek Model‟s mean 

reverting behavior, as we estimate the parameters in a moving window, θ changes 

by the value κ and the time t exponentially. As expected, if we use 2 standard 

deviation rule in the Vasicek model, less trades will be opened.  
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5.  APPLICATION METHODOLOGY 

This section describes the methodology used for the analysis. Firstly, it introduces 

the training and testing periods used for the experiments, then it introduces the 

algorithms used for selection and trading.  

5.1 Training and Testing Periods 

We first define two consecutive periods as Training and Testing. Training period is 

a selected period of time where the parameters of the experiment are calculated 

and fixed. It can be seen as a preparation for the testing period. Immediately after 

the training period, the testing period follows which runs the experiments with 

tuned parameters.  

In our analysis, we first select pairs and then take trading decisions using one step 

ahead forecasts of the parameters of an underlying model. To generate one step 

ahead forecast we need to specify a fixed moving window length. 

Because of this, our training period needs to answer two questions. 

1.1 What are the best pairs for trading? 

1.2 What is the optimum window length? 

We first select pairs with a selection algorithm and then calibrate the optimum 

window length. Note that, we scan the same training period two times, once for the 

selection and once for the window length optimization. Selection of the pairs is 

made by three different methods as explained earlier,  Minimum Distance Method, 

Market Factor Ratio Selection and ADF Test with Granger Causality.  

Window length optimization is actually a profit optimization. With the selected 

pairs, we trade with 24, 36, 48, 60 and 72 weeks of window length in training 

period. The most succesfull window length with the highest cumulative profit is 

selected as the optimum window length. 
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In our experiment, the dates between 01/01/2007 and 01/01/2008 is selected as 

training period. Following period, 01/01/2008 to 01/01/2009 is the training period.  

 

5.2 Selection Methods 

5.2.1 Minimum Distance Method 

The first method for selecting pairs in training period is Minimum Distance 

Method. This method tries to catch up stocks with similar price movements. For 

this purpose, it first generates the cumulative price indexes for each series. It is a 

kind of normalization of the price series to generate a comparable number. For an 

individual stock, cumulative price index construction starts by setting up the start 

price of the training period to 100.  Then for the next days, the return of the stock 

is multiplied by the previous cumulative price index member (100 for the second 

day) and adding this onto the previous cumulative price index member (100 again, 

for the second day). 

After building two cumulative price indexes for the two stocks which are going to 

be analyzed, the squared difference between two series is summed up. For each 

possible pair in the selected space this routine is repeated. The sums of each 

analysis are sorted ascending, and the best pairs are selected from the top of the 

sorted list.  

In our analysis, we select pairs from Dow Jones 30 index, and for  
 

30
2
 

2
= 435 

possibilities, we make the analysis. Note that, we do not start the analysis for the 

reversed pairs, as the results will be the same. 

5.2.2 Market Factor Ratio Method 

The second method tries to implement the idea of market risk hedging. It tries to 

find similiar betas for a selection of pairs. The more the betas are similiar, the 

more market risk hedging will be done by going one long and one short in the 

market. For this purpose, this method calculates betas for each pair in the selected 

space. Then it searches the ratios of betas which are close to one for each possible 

pair. The criteria below is generated for each possible pair and sorted ascendingly. 

Again, the best pairs are selected from the top of the sorted list. 
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𝑀𝐹𝑅 = 𝐴𝑏𝑠 (
𝛽1

𝛽2
− 1) (5.1) 

In our analysis, we select pairs from Dow Jones 30 index, and for  
 

30
2
 

2
= 435 

possibilities, we make the analysis. Note that, we do not start the analysis for the 

reversed pairs, as the results will be the same. 

5.2.3 ADF Test with Granger Causality 

ADF Test and Granger Causality Test are explained earlier in Chapter 2. ADF test 

is a test for stationarity and Granger Causality Test is a test for is a technique for 

determining whether one time series is useful in forecasting another.  

This method firstly searches for the pairs who passes the ADF test, if the ratio of a 

selected possible pair passes the ADF test on a selected confidence interval, then a 

Granger Causality test is implemented on this pair, and if in both two tests; Stock
1
 

does not Granger Cause Stock
2
 and Stock

2
 does not Granger Cause Stock

1
 can not 

be rejected on a selected confidence interval, the pair is selected as a tradeable 

pair. 

In our analysis, we select pairs from Dow Jones 30 index, and for  
 

30
2
 

2
= 435 

possibilities, we make the analysis with the confidence interval selected %90 for 

each tests (ADF Test and Granger Causality). Note that, we do not start the 

analysis for the reversed pairs, as the results will be the same. 

5.3 Trading Methods 

5.3.1 Two Standard Deviation Rule 

The first trading algorithm we try is an industry standard for pairs trading. On a 

selected moving window length, the method calibrates one step ahead forecasts of 

the mean and the standard deviation parameters related to ratio of the selected pair. 

Long positions are opened for the ratio when the -2 standard deviation barrier is 

passed, claiming that the ratio of the pairs will go upward to its mean. Short 

positions are opened for the ratio when the +2  standard deviation barrier is passed, 

claiming that the ratio will go down to its mean. Long position are closed when the 

http://en.wikipedia.org/wiki/Time_series
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ratio comes under its mean, and the short positions are closed when the ratio 

comes below its mean. 

The pseudo-code below describes the trading algorithm shortly; 

Algorithm Two Standard Deviation (Optimum Window Length (OWL)) 

    

FOR I = Testing Period Start Date  

  To I = Testing Period End Date 

  // Step 1: Calibrate the Parameters 

   MEAN[I+1] = MEAN(RATIOSERIES[I-OWL to I]) 

   STD[I+1]  = STD (RATIOSERIES[I-OWL to I]) 

 // Step 2: Check if any trades are possible 

   IF (RATIO[I+1]> 2*STD[I+1]) 

 TRADE=SHORT; 

   ELSE IF (RATIO[I+1]< -2*STD[I+1]) 

 TRADE=LONG; 

   ELSE IF ( TRADE = LONG AND RATIO[I+1]< MEAN[I+1]) 

 TRADE = CLOSE; 

   ELSE IF ( TRADE = SHORT AND RATIO[I+1]> MEAN[I+1]) 

 TRADE = CLOSE; 

   END IF 

END FOR 

 

5.3.2  Vasicek Model, GMM Estimation and Pairs Trading 

The second trading algorithm we try is a strategy where the parameters mean and 

standard deviation is calibrated using Vasicek Model. On a selected moving 

window length, the method calibrates one step ahead forecasts of the mean and the 

standard deviation parameters related to ratio of the selected pair. For parameter 

optimization of Vasicek Model, Generalized Method of Moments is used.  

The trading decision are taken using the calibrated parameters. Same as two 

standard deviation rule, long positions are opened for the ratio when the -2 

standard deviation barrier is passed, claiming that the ratio of the pairs will go 

upward to its mean. Short positions are opened for the ratio when the +2  standard 

deviation barrier is passed, claiming that the ratio will go down to its mean. Long 

position are closed when the ratio comes under its mean, and the short positions 

are closed when the ratio comes below its mean. The pseudo-code below describes 

the trading algorithm shortly; 
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Algorithm Vasicek Model Pairs Trading (Optimum Window Length 

(OWL)) 

   FOR I = Testing Period Start Date  

  To I = Testing Period End Date 

  // Step 1: Calibrate the Parameters 

   MEAN[I+1] = VASICEK CALIBRATION VIA GMM(RATIOSERIES[I-OWL to 

I]) 

   STD[I+1]  = VASICEK CALIBRATION VIA GMM (RATIOSERIES[I-OWL to 

I])    

  // Step 2: Check if any trades are possible 

   IF (RATIO[I+1]> 2*STD[I+1]) 

 TRADE=SHORT; 

   ELSE IF (RATIO[I+1]< -2*STD[I+1]) 

 TRADE=LONG; 

   ELSE IF ( TRADE = LONG AND RATIO[I+1]< MEAN[I+1]) 

 TRADE = CLOSE; 

   ELSE IF ( TRADE = SHORT AND RATIO[I+1]> MEAN[I+1]) 

 TRADE = CLOSE; 

   END IF 

END FOR 

5.3.3 GMM Estimation Algorithm 

Vasicek model calibration is done using GMM estimation where an iterative 

GMM method is used. Iterative GMM technique is explained earlier in Chapter 4. 

The GMM algorithm is explained below: 

First Step. Define 𝛽 as the parameter vector: 𝛽 = [Α Β σ ]. (In our trading 

implementation, long term mean is 𝜃 =
−𝐴

𝐵
 .) Take 𝑊1 = 𝐼 (the identity matrix), 

and compute preliminary GMM estimate  𝛽1 by using 𝛽0 = [Α0 Β0  σ0]  where, 

Α0, B0 and σ0 are the starting values of estimation.  

𝛽1 = arg min[(  
1

𝑇
 𝑔 𝑌𝑖 , 𝛽0 )′

𝑁

𝑖=1

𝑾𝟏  
1

𝑇
 𝑔 𝑌𝑖 , 𝛽0 )

𝑁

𝑖=1

] (5.2) 

and for our Vasicek estimates g is defined as below : 

𝑔 =  
𝑒1 = 𝑦 − (𝐴 + 𝐵𝑥)

𝑒2 = 𝑒1
2 − 𝜎2

  (5.3) 

http://en.wikipedia.org/wiki/Identity_matrix


34 

 

Where x is the ratio and y is the one lagged ratio. It can be seen that g takes the 

first 2 moments into consideration. This estimator is consistent for 𝛽1, although 

probably not efficient. 

Second Step. Take 

𝑊2 =   
1

𝑇
  𝑔 𝑌𝑖 , 𝛽1 𝑔 𝑌𝑡 , 𝛽1 

′

𝑁

𝑖=1

 

−1

 (5.4) 

where we have plugged our first-step preliminary estimate 𝛽1.  

This matrix converges in probability to Ω − 1 and therefore if we compute 𝜃 with 

this weighting matrix, such estimator will be asymptotically efficient. And then 

calculate, 

𝛽2 = arg min[(  
1

𝑇
 𝑔 𝑌𝑖 , 𝛽1 )′

𝑁

𝑖=1

𝑾𝟐  
1

𝑇
 𝑔 𝑌𝑖 , 𝛽1 )

𝑁

𝑖=1

] (5.5) 

Iterative Steps . Essentially the same procedure as second step GMM, only 

matrix   is recalculated several times. That is, estimate obtained in second step 

is used to calculate weighting matrix for step 3, and so on. For each minimization 

process we use fmincon function of MATLAB, which is a constrained nonlinear 

optimization routine. We use constrained optimization to lower the computation 

time and also to find rational parameters between a selected range. The lower 

constraints for the first and second moment is -10 and 0.001 the upper constraints 

are 10 for both moments. 

Iteration ends these steps when parameter vector 𝛽 and the corresponding J 

statistic does not change significantly. As explained earlier, J-stat is a chi-square 

distributed variable, and the confidence intervals of chi-square distribution can be 

used. The estimation code can be found in Appendix. 

J stat: 

  𝑱 = 𝐽 𝛽(𝑾),𝑾 = 𝑵𝒈𝒊(𝛽 𝑾 )
′𝑾𝒈𝒊(𝛽 𝑾 ) (5.6) 
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6.  EXPERIMENTS AND ANALYSIS 

In our work we implemented two main pair‟s selection algorithms Minimum 

Distance Method and Augmented Dickey Fuller Test. Moreover, we tried two new 

methods Market Factor Ratio Selection Method and ADF test with Granger 

Causality as we explained earlier. After selecting the pairs, we focused on trading 

side, and using the portfolios selected by our testing algorithms, we tested our 

trading algorithms, the two standard deviation rule and the Vasicek Model. 

6.1 Data and Coding Infrastructure 

Using the DJ30 (Dow Jones 30) index components which are listed shortly below, 

we implement our selection algorithms between the dates 01/01/2007 and 

31/12/2007 which we define as training period. The window length optimization is 

also made in this time frame. The testing period is between 01/01/2008 and 

31/12/2008. Note that, after this dataset was constructed, the members of the DJ 

index was changed. On June 8, 2009, GM and Citigroup were replaced by The 

Travelers Companies and Cisco Systems, which became the third company traded 

on the NASDAQ to be part of the Dow. 

The data was downloaded from Datastream with weekly (end of week) frequency. 

The analysis was made on MATLAB 7.1 . We also use MFE Toolbox for Granger 

Causality Tests. Codes can be found in the Appendix. 

Table 6.1: List of Dow Jones 30 Members 

Symbol   Industry   Company   

MMM  Conglomerate 3M 

AA Aluminum Alcoa 

AXP  Consumer finance American Express 

T Telecommunication AT&T 

BAC  Banking Bank of America 

BA Aerospace and defense Boeing 

http://en.wikipedia.org/wiki/General_Motors
http://en.wikipedia.org/wiki/Citigroup
http://en.wikipedia.org/wiki/The_Travelers_Companies
http://en.wikipedia.org/wiki/The_Travelers_Companies
http://en.wikipedia.org/wiki/Cisco_Systems
http://en.wikipedia.org/wiki/NASDAQ
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CAT  Construction and mining equipment Caterpillar 

CVX  Oil & gas Chevron Corporation 

C Financial services Citygroup 

KO Beverages Coca-Cola 

DD Chemical industry DuPont 

XOM  Oil & gas ExxonMobil 

GE Conglomerate General Electric 

HPQ  Technology Hewlett-Packard 

HD Home improvement retailer The Home Depot 

INTC  Semiconductors Intel 

IBM  Computers and technology IBM  

JNJ  Pharmaceuticals Johnson & Johnson 

JPM  Banking JPMorgan Chase 

KFT  Food processing Kraft Foods 

MCD  Fast food McDonald's 

MRK  Pharmaceuticals Merck 

MSFT  Software Microsoft 

PFE  Pharmaceuticals Pfizer 

PG Consumer goods Procter & Gamble 

GM Automotive General Motors 

UTX  Conglomerate United Technologies Corporation 

VZ Telecommunication Verizon Communications 

WMT  Retail Wal-Mart 

DIS  Broadcasting and entertainment Walt Disney 

6.2 Result of the Selection Methods 

We select our pairs using three different methods as explained earlier. For the 

Minimum Distance Method (MDM) and for the Market Factor Ratio (MFR) 

Selection we select Top 5 pairs from their sorted list outputs and create a equally 

weighted portfolio. For ADF Test with Granger Causality (ADF-G), whole eight 

passing pairs are added to the portfolio.  
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Table 6.2: Selected Portfolio Members 

Portfolio MDM Portfolio MFR Portfolio ADF-G 

MMM IBM WMT JPM BA AXP 

XOM UTX HPQ DD CAT AA 

DIS DD XOM CVX GE CAT 

VZ HPQ HD DIS MRK MCD 

INTC HPQ UTX CAT PFE AA 

    
T GE 

    
T KFT 

    
T MMM 

 

We start analyzing these pairs by reporting their industries. As our goal is to 

increase the market risk and make profits using the idiosyncratic risk, we expect to 

find evidence that these pairs are from the same or related industries. Industries of 

the selected pairs are listed below. 

 

Table 6.3: Industries of Portfolio MDM Members 

Portfolio MDM   

Conglomerate Computers and technology 

Oil & gas Conglomerate 

Broadcasting and entertainment Chemical industry 

Telecommunication Technology 

Semiconductors Technology 

 

Table 6.4: Industries of Portfolio MFR Members 

Portfolio MFR   

Retail Banking 

Technology Chemical industry 

Oil & gas Oil & gas 

Home improvement retailer Broadcasting and entertainment 

Conglomerate Construction and mining equipment 
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Table 6.5: Industries of Portfolio ADF-G Members 

Portfolio ADF-G   

Aerospace and defence Consumer finance 

Construction and mining 
equipment Aluminium 

Conglomerate Construction and mining equipment 

Pharmaceuticals Fast food 

Pharmaceuticals Aluminum 

Telecommunication Conglomerate 

Telecommunication Food processing 

Telecommunication Conglomerate 

 

When we examine these results we see that, all three selection criterias are 

selecting pairs from closely related industries.  

For our improvement on ADF test we record that, % 15 of the possible total pairs 

are passed through ADF test but only %12 of them achieved succesfull results on 

Granger Causality test. The percentage of the total number of pairs who passed 

ADF and Granger Causality both was only %2 . From this results we see that in 

%85 of the selected pairs by ADF, stationarity of the series was reinforced with 

only one of the component of the pairs. However, in % 15 the stationarity was 

reinforced by both components of the pairs. 

6.3 Result of the Trading Methods 

After selecting the pairs in training period we run a profit based window length 

optimization for each trading algorithm as we discussed earlier in Chapter 5. The 

Results are listed as below. 
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Table 6.6: Optimum Window Lengths 

Optimized 
Window 
Length For 
each Pair   

MMM-
IBM 

XOM-
UTX DIS-DD VZ-HPQ 

INTC-
HPQ       

  Pairs                 

MDM 
Portfolio 2STD 48 72 36 48 24       

  V2STD 24 24 60 24 24       

    
WMT-
JPM 

HPQ-
DD 

XOM-
CVX HD-DIS 

UTX-
CAT       

MFR 
Portfolio 2STD 36 24 24 36 72       

  V2STD 48 36 24 24 48       

    
BA-
AXP 

CAT-
AA 

GE-
CAT 

MRK-
MCD PFE-AA 

T-
GE 

T-
KFT 

T-
MMM 

ADF-G 
Portfolio 2STD 36 36 48 48 24 60 60 24 

  V2STD 24 24 72 48 72 24 72 36 

 

Then with this optimum window lengths we start trading with each of these 

portfolios. We use two different trading algorithms 2 Standard Deviation Rule 

(2STD) and Vasicek Model Calibrated 2 Standard Deviation Rule (V2STD) which 

are explained in Chapter 5. The cumulative profit of each portfolio for each 

algorithm is listed below. 

 

Table 6.7: Trade Counts And Cumulative Profits 

 Selection 
Method 

 Trading 
Method 

Trade 
Counts 

Cumulative 
profits 

MDM Portfolio 2STD 8 15,59517 

  V2STD 13 21,48928 

MFR Portfolio 2STD 6 5,717047 

  V2STD 8 17,55449 

ADF-G Portfolio 2STD 12 20,52247 

  V2STD 17 36,13609 

 

As we see from Table 6.7 ADF-G Portfolio with the V2STD trading method 

outperforms the other methods. The graph below shows the values of the equally 

weighted portfolios with different methods. 
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Figure 6.1 : The Cumulative Portfolio Changes over The Testing Period  

 

In our analysis the best profitable selection method was the ADF-Granger 

Causality method. We see that, Market Factor Ratio Selection method is 

performing poorly comparing to other methods. Altough pairs trading stragies are 

hedging the market risk by going one long and one short position in the market, 

the profits of pairs are related to the idiosyncratic risks of the firms which Market 

Factor Ratio selection does not take into consideration. Industry standard MDM 

Selection is a good selection algorithm.It considers both market risk and 

idiosynratic risks of stocks by looking up directly to price movements of stocks. 

However, it cannot capture directly the long run relationship as ADF-Granger 

Causality Method does. In our analysis, we see that, ADF-Granger Causality 

Method finds out more strong relationships which are more likely to go on being 

pairs in time. 

As a trading algorithm, 2 Standard Deviation rule is a well performing tool. 

However, Vasicek model calibrated 2 Standard Deviation rule is more attractive to 

changes in the parameters 𝜽 and 𝝈. While Vasicek Model takes the mean reverting 
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structure of pairs into consideration, it can generate a better estimate for the 

parameters. By using the advantages of its nature, Vasicek Model calibrated 

trading algorithm generates more trades and more profit in both selection methods.  

Not suprisingly, the best Selection – Trading couple are the ADF- Granger 

Causality Selection and Vasicek Model Calibrated Trading algorithms. These two 

methods can be an alternative for the current industry standards in pairs trading.  

Another point we should mention is market neutrality of the general pairs trading 

algorithms. As pairs trading strategies claim to be market neutral, we report the 

profit compared to the benchmark index DJ30.  

 

Figure 6.2 : The Cumulative Portfolio Changes Compared to Benchmark 

Index Dow Jones 30, in Testing Period 

 

As we see from Figure 6.2, the profits compared to the Benchmark Index Dow 

Jones 30 are remarkably positive . This graph can be regarded as an evidence to 

the market neutrality of the pairs trading strategies. As the subprime mortgage 

crisis was still alive in the US markets in 2008, all of the pairs trading strategies 

kept on generating positive returns. 
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7.  CONCLUSION 

This thesis surveyed techniques and quantitative analysis employed in pairs 

trading. A quality pairs trading strategy should have a good selection criteria, a 

well defined trading algorithm and a good calibration technique. In this thesis we 

tried to implement minimum distance method, market factor ratio and ADF- 

Granger Causality tests as selection criterias. Our results show that minimum 

distance method is a good measure in selecting pairs, whereas ADF with Granger 

Causality makes more improvements as a selection criteria. Secondly, we 

compared 2 standard deviation rule with a mean reverting Vasicek trading model. 

we calibrated Vasicek using Generalized method of moments. We found GMM 

method as a succesfull, fast, easy to implement estimator for Vasicek model, and 

also Vasicek model implemented the trading idea succesfully. 
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APPENDICES 

 

 

 
function [nameSet,TopInNumbers]=MinimumDistanceMethod(date1,date2) 
close all; 
clc; 

  
conn=database('PairsTrading','',''); 
queryString='SELECT DOWJONES.[TICKER] FROM DOWJONES GROUP BY 

DOWJONES.[TICKER]'; 
curs = exec(conn, queryString); 
setdbprefs('DataReturnFormat','cellarray'); 
curs = fetch(curs); 
nameSet = curs.Data; 
for i=1:length(nameSet) 
    for j=1:length(nameSet) 
        time1=cputime; 
        if(i>j) 
            stock1=char(nameSet(i)); 
            stock2=char(nameSet(j)); 
            queryString=['select DATE,VALUE from DOWJONES where 

TICKER= ''' stock1 ''' and DATE Between #' date1 '# and #' date2 

'# order by DATE']; 
            curs = exec(conn, queryString); 
            setdbprefs('DataReturnFormat','cellarray'); 
            curs = fetch(curs); 
            dataset = curs.Data; 
            datesData= datenum(dataset(:,1),'yyyy-mm-dd 

HH:MM:SS'); 
            stock1Data=cell2mat(dataset(:,2)); 
            queryString=['select DATE,VALUE from DOWJONES where 

TICKER=''' stock2 ''' and DATE Between #' date1 '# and #' date2 '# 

order by DATE']; 
            curs = exec(conn, queryString); 
            setdbprefs('DataReturnFormat','cellarray'); 
            curs = fetch(curs); 
            dataset = curs.Data; 
            stock2Data=cell2mat(dataset(:,2)); 
            returnStock1=(stock1Data(2:end)-stock1Data(1:end-

1))./stock1Data(1:end-1);             
            returnStock2=(stock2Data(2:end)-stock2Data(1:end-

1))./stock2Data(1:end-1); 

             
            normalizedStock1(1)=100; 
            normalizedStock2(1)=100; 
            for k=2:length(stock1Data); 
            normalizedStock1(k)=normalizedStock1(k-

1)+returnStock1(k-1)*normalizedStock1(k-1); 

    APPENDIX A.1 :  Matlab Codes for Minimum Distance Method 
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            normalizedStock2(k)=normalizedStock2(k-

1)+returnStock2(k-1)*normalizedStock2(k-1); 
            end 
            sumSquaredDev(i,j)=sum((normalizedStock1-

normalizedStock2).^2);              
            fprintf ([stock1 '\t' stock2 '\t' 

num2str(sumSquaredDev(i,j))  '\tNS time:\t' num2str(cputime-time1) 

'\n']) 

            
        end 
    end 
end 

  
close(conn); 
u=1; 
for i=1:length(nameSet) 
    for j=1:length(nameSet)-1 
    toBeSorted(u)=sumSquaredDev(i,j); 
    sortMap(u)=cellstr(strcat(int2str(i),'-',int2str(j))); 
    u=u+1;    
    end 
end 
fprintf('To be Sorted Matrix ready. \n') 

  

  
[ncol nrow] = size(toBeSorted); 
u=1; 

  
for i=1:nrow 
    if(toBeSorted(i)~=0) 
    nonZeroToBeSorted(u) = toBeSorted(i); 
    nonZeroSortMap(u) = sortMap(i); 
    u=u+1; 
    end 
end 
fprintf('Non zero elements are found. \n') 
[B,IX] = sort(nonZeroToBeSorted); 
for i=1:20 
Top(i) = nonZeroSortMap(IX(i)); 
TopInNumbers(i,:)=str2num(char(strrep(Top(i),'-',' '))); 
end 
fprintf('Sort Complete. \n') 

  

  
end 
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function [nameSet,TopInNumbers,counterTest]=ADFGranTest 

(date1,date2) 
close all; 
clc; 
addpath('MFE_Toolbox'); 
conn=database('PairsTrading','',''); 
queryString='SELECT DOWJONESTABLE.[TICKER] FROM DOWJONESTABLE 

GROUP BY DOWJONESTABLE.[TICKER]'; 
curs = exec(conn, queryString); 
setdbprefs('DataReturnFormat','cellarray'); 
curs = fetch(curs); 
nameSet = curs.Data; 
counterTest=0; 
counterPassedADF=0; 
generalCounter=0; 
for i=1:length(nameSet) 
    for j=1:length(nameSet) 
        time1=cputime; 
        if(i>j) 
%             date1='01/01/2000'; 
%             date2='01/01/2009'; 
            % Open Connection-------------------------------------

--------------------- 

             
            %stock1=char(nameSet(i)); 
            %stock22=char(nameSet(j)); 
            generalCounter=generalCounter+1; 
            stock1=char(nameSet(i)); 
            stock2=char(nameSet(j)); 
            queryString=['SELECT DATE,VALUE FROM DOWJONESTABLE 

WHERE TICKER= ''' stock1 ''' AND DATE BETWEEN #' date1 '# AND #' 

date2 '# ORDER BY DATE']; 
            curs = exec(conn, queryString); 
            setdbprefs('DataReturnFormat','cellarray'); 
            curs = fetch(curs); 
            dataset = curs.Data; 
            datesData1= datenum(dataset(:,1),'yyyy-mm-dd 

HH:MM:SS'); 
            stock1Data=cell2mat(dataset(:,2)); 
            queryString=['SELECT DATE,VALUE FROM DOWJONESTABLE 

WHERE TICKER= ''' stock2 ''' AND DATE BETWEEN #' date1 '# AND #' 

date2 '# ORDER BY DATE']; 
            curs = exec(conn, queryString); 
            setdbprefs('DataReturnFormat','cellarray'); 
            curs = fetch(curs); 
            dataset = curs.Data; 
            datesData2= datenum(dataset(:,1),'yyyy-mm-dd 

HH:MM:SS'); 
            stock2Data=cell2mat(dataset(:,2)); 
            fts11 = fints(datesData1,[stock1Data],{'stock1'}); 
            fts11=toweekly(fts11); 

  
            fts21 = fints(datesData2,[stock2Data],{'stock2'}); 
            fts21=toweekly(fts21); 

    APPENDIX A.2:   Matlab Codes for Augmented Dickey Fuller Test 
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            ratio=fts2mat(fts11.stock1)./fts2mat(fts21.stock2); 
            fts1=fints(fts11.dates,[fts2mat(fts11.stock1) 

fts2mat(fts21.stock2) ratio],{'stock1','stock2','Ratio'}); 

             

             

             
            [adf, adfresid, df, 

dfresid]=unitroot(fts2mat(fts1.Ratio)); 

             

             
            if (adf(3,4)==1) 
                testadf(i,j)=50000; 
                testadfgranger(i,j) = 50000; 
                ratioSigmaMu(i,j)=std(ratio)/mean(ratio); 
                %             fprintf ([stock1 '\t' stock2 '\t' 

num2str(testadf(i,j))  '\tNS time:\t' num2str(cputime-time1) 

'\n']) 
                fprintf ([stock1 '\t' stock2 '\t' 

num2str(testadfgranger(i,j))  '\tNS time:\t' num2str(cputime-

time1) '\n']) 
            else 
                counterPassedADF=counterPassedADF+1; 
                testadf(i,j)=adf(2,4); 
                ratioSigmaMu(i,j)=std(ratio)/mean(ratio); 
                Y = [fts2mat(fts11.stock1)  

fts2mat(fts21.stock2)]; 
                [STAT,PVAL]=grangercause(Y,0,1); 
                if(PVAL(1,2)<0.1 && PVAL(2,1)<0.1) 
                    testadfgranger(i,j)= 0.01; 
                    counterTest=counterTest+1; 
                else 
                    testadfgranger(i,j) = 50000; 
                end 
                %             fprintf ([stock1 '\t' stock2 '\t' 

num2str(testadf(i,j))  '\t' num2str(adf(3,4)) ' time:\t' 

num2str(cputime-time1) '\n']) 
                fprintf ([stock1 '\t' stock2 '\t' 

num2str(testadfgranger(i,j))  '\t' num2str(PVAL(2,1)) '\t' 

num2str(PVAL(1,2)) ' time:\t' num2str(cputime-time1) '\n'])                 
            end 

             
        end 
    end 
end 

  
close(conn); 
u=1; 
for i=1:length(nameSet) 
    for j=1:length(nameSet)-1 
%     toBeSorted(u)=testadf(i,j); 
    toBeSorted(u)=testadfgranger(i,j); 
    sortMap(u)=cellstr(strcat(int2str(i),'-',int2str(j))); 
    u=u+1;    
    end 
end 
fprintf('To be Sorted Matrix ready. \n') 
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[ncol nrow] = size(toBeSorted); 
u=1; 

  
for i=1:nrow 
    if(toBeSorted(i)~=0) 
    nonZeroToBeSorted(u) = toBeSorted(i); 
    nonZeroSortMap(u) = sortMap(i); 
    u=u+1; 
    end 
end 
fprintf('Non zero elements are found. \n') 
[B,IX] = sort(nonZeroToBeSorted); 
if(counterTest==0) 
    counterTest=5; 
    fprintf('No Pair Could pass the test, providing ADF passers 

instead.\n') 
end 
for i=1:counterTest 
Top(i) = nonZeroSortMap(IX(i)); 
TopInNumbers(i,:)=str2num(char(strrep(Top(i),'-',' '))); 
end 
fprintf('Sort Complete. \n') 

  

  
end 
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function [nameSet,TopInNumbers]=MarketFactorTest (date1,date2) 
close all; 
clc; 

  
conn=database('PairsTrading','',''); 
queryString='SELECT StocksTableDowJones.[Ticker] FROM 

StocksTableDowJones GROUP BY StocksTableDowJones.[Ticker]'; 
curs = exec(conn, queryString); 
setdbprefs('DataReturnFormat','cellarray'); 
curs = fetch(curs); 
nameSet = curs.Data; 
for i=1:length(nameSet) 
    for j=1:length(nameSet) 
        time1=cputime; 
        if(i>j) 
            stock1=char(nameSet(i)); 
            stock2=char(nameSet(j)); 
            queryString=['select Date,Value from 

StocksTableDowJones where Ticker= ''' stock1 ''' and Date Between 

#' date1 '# and #' date2 '# order by date']; 
            curs = exec(conn, queryString); 
            setdbprefs('DataReturnFormat','cellarray'); 
            curs = fetch(curs); 
            dataset = curs.Data; 
            datesData= datenum(dataset(:,1),'yyyy-mm-dd 

HH:MM:SS'); 
            stock1Data=cell2mat(dataset(:,2)); 
            queryString=['select Date,Value from 

StocksTableDowJones where Ticker=''' stock2 ''' and Date Between 

#' date1 '# and #' date2 '# order by date']; 
            curs = exec(conn, queryString); 
            setdbprefs('DataReturnFormat','cellarray'); 
            curs = fetch(curs); 
            dataset = curs.Data; 
            stock2Data=cell2mat(dataset(:,2)); 
            x=(1:length(stock1Data))'; 
            output1 =ols(stock1Data,x); 
            output2 =ols(stock2Data,x); 
            testols(i,j) = output1.beta/output2.beta; 
            fprintf ([stock1 '\t' stock2 '\t' 

num2str(testols(i,j))  '\tNS time:\t' num2str(cputime-time1) 

'\n']) 

             
        end 
    end 
end 

  
close(conn); 
u=1; 
for i=1:length(nameSet) 
    for j=1:length(nameSet)-1 
    toBeSorted(u)=testols(i,j)-1; 
    sortMap(u)=cellstr(strcat(int2str(i),'-',int2str(j))); 

APPENDIX A.3:    Matlab Codes for Market Factor Test 
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    u=u+1;    
    end 
end 
fprintf('To be Sorted Matrix ready. \n') 

  

  
[ncol nrow] = size(toBeSorted); 
u=1; 

  
for i=1:nrow 
    if(toBeSorted(i)~=0) 
    nonZeroToBeSorted(u) = toBeSorted(i); 
    nonZeroSortMap(u) = sortMap(i); 
    u=u+1; 
    end 
end 
fprintf('Non zero elements are found. \n') 
[B,IX] = sort(nonZeroToBeSorted); 
for i=1:5 
Top(i) = nonZeroSortMap(IX(i)); 
TopInNumbers(i,:)=str2num(char(strrep(Top(i),'-',' '))); 
end 
fprintf('Sort Complete. \n') 

  

  
end 
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function [ beta, stderr, covbeta, Qmin, test, ptest ] = 

GMMSecond(MomFct,beta0,... 
                A,b,Aeq,beq,lb,ub,nonlcon,options,... 
                GMMLags,GMMiter,GMMtol1,GMMtol2,varargin); 

 
% start with a call to the core function to get an idea of the 

sample size involved 
fs=feval(MomFct,beta0,varargin{:}); 
[T,r]=size(fs); %T=number of observations 

  
k=size(beta0,1); %number of parameters 
ddl=T-k; %degree of freedom 

  
b0=beta0; 
Omega=eye(r); %start with identity matrix  
Qmino=100000; %something big 
i=1; 
while i <= GMMiter; 
      betai=b0; % parameters we started with  

            
      [beta,Qmin,exitflag,output,lambda,grad,hessian] =... 
      

fmincon(@GMM_obj,b0,A,b,Aeq,beq,lb,ub,nonlcon,options,Omega,MomFct

,varargin{:}); 
      disp('parameters after optimization'); 
      beta 

     
      if ((max(abs(beta-b0))<GMMtol1) | (abs(Qmin-Qmino)<GMMtol2)) 

%complete with precision over J 
         fprintf('the parameters before and after  loop are'); 
         [betai beta ] 
          break; 
      end 

       
      H  = feval(MomFct,beta,varargin{:}); 
      mH = mean(H); 
      H  = H - kron(mH,ones(size(H,1),1)); 
      Omega = (H'*H)/T; 

    
      for j=1:GMMLags 
        % size(H(j+1:end,:)') 
        % size(H(1:end-j)) 
          Gamma = ( H(j+1:end,:)'*H(1:end-j,:)) /T; 
          Omega = Omega + (1-j/(GMMLags+1)) * (Gamma + Gamma'); 

%Parzen type weighting 
      end 

    
      b0=beta; 
      fprintf('the weighting matrix is \n');     
      Omega 
      fprintf('done with GMM iteration %5.0f\n',i); 
      Qmino=Qmin; 

     

    APPENDIX A.4:     Matlab Codes for Vasicek GMM Estimation 
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      i=i+1; 
end 

  
D=gradp(@GMM_momgen,beta,MomFct,varargin{:}); 

  
if cond(Omega)>100000 
    invOmega=pinv(Omega); %Moore-Penrose inverse 
else 
    invOmega=Omega\eye(size(Omega,1)); 
end 

  
DiOmegaD=D'*invOmega*D; 
covbeta=((DiOmegaD)\eye(size(DiOmegaD,1)))/T; 
stderr=sqrt(diag(covbeta)); 
corbeta=covbeta./kron(stderr,stderr'); 
tstudent=beta./stderr; 
pvalue=2*(1-tcdf(abs(tstudent),ddl)); 

  
r=size(Omega,1); 
k=size(DiOmegaD,1); 
if r>k 
    test=T*Qmin; 
    ptest=chi2cdf(test,r-k); 
else 
    test=[]; 
    ptest=[]; 
end 

  
name=1:size(beta,1); 
name=name'; 
omat=[ name beta stderr tstudent pvalue]; 
fprintf('\n'); 
fprintf('Number of observations : 

.....................%12.4f\n',T); 
fprintf('Number of parameters :   

.....................%12.4f\n',k); 
fprintf('Number of degrees of freedom : 

...............%12.4f\n',ddl); 
fprintf('Number of orthogonalit conditions 

:...........%12.4f\n',r); 
fprintf('Value of the objective function : ............%12.4f\n', 

Qmin); 
fprintf('\nTest of overidentification of restrictions :..%12.4f 

\n',test); 
fprintf('\nCorresponding marginal probability : .........%12.4f 

\n',ptest); 
fprintf('\n'); 
fprintf('\n'); 
fprintf(' Parameter  Estimate      Standard Error   Student-t    

Signif.\n'); 
fprintf('---------------------------------------------------------

-----------\n'); 
for j=1:size(omat,1); 
      fprintf('%7.0f %14.6f %14.6f %14.6f %14.6f \n',omat(j,:)); 
end 
fprintf('\n'); 

  
fprintf('correlation matrix of parameters\n'); 
for j=1:size(corbeta,1); 
      fmt1='%8.4f'; 
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      fmt=kron(ones(1,size(corbeta,1)),fmt1); 
      fprintf([fmt '\n'],corbeta(j,:)); 
end 

  
%---------------------------------------------------------------- 

  
function g=gradp(f,x0,varargin) 
% computes the gradient of f evaluated at x 
% uses forward gradients. Adjusts for possible differently scaled 

x by taking percentage increments 
% this function is the equivalent to the gradp function of Gauss 
% f should return either a scalar or a column vector 
% x0 should be a column vector of parameters 
f0=feval(f,x0,varargin{:});  
[T,c]=size(f0); 

  
if size(x0,2)>size(x0,1) 
    x0=x0'; 
end 

  
k=size(x0,1); % number of parameters wrt which one should compute 

gradient 

  
h=0.000000000001; %some small number 

  
g=zeros(T,k); %will containt the gradient 
e=eye(k);  
for j=1:k; 

         
    f1=feval(f,(x0.*( ones(k,1) +  e(:,j) *h )),varargin{:});     
    g(:,j)=(f1-f0)/(x0(j)*h);     

     
end 

  
%---------------------------------------------------------------- 

  
function GT=GMM_momgen(beta,fnam,varargin); 
% computes the average over momentized observations. Corresponds 
% to computing gT. 
% imports the name of the function, the parameters and the 

observations 

  
mt=feval(fnam,beta,varargin{:}); 
GT=mean(mt)'; 

  
%---------------------------------------------------------------- 

  
function J=GMM_obj(beta,Omega,fnam,varargin); 
% computes the value of the objective function. 
% imports the name of the function, the parameters and the 

observations 

  
GT = feval(@GMM_momgen,beta,fnam,varargin{:}); 
if cond(Omega)>100000 
    invOmega=pinv(Omega); %Moore-Penrose inverse 
else 
    invOmega=Omega\eye(size(Omega,1)); 
end 
J=GT'*invOmega*GT; 
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%---------------------------------------------------------------- 

 
function mt=tobeoptimized(beta,rt) 
% beta[1)=mean  
% beta(2)=standard deviation (not !! variance)  
T=size(rt,1); 
mt = zeros(T,3);  
X=rt(2:end); 
Z=[ones(T-1) X]; 
y = X -rt(1:end-1); 
alpha  = beta(1); 
betae = beta(2); 
sigsq  = beta(3); 
gamma=0; 
e1 = y - (alpha + betae*X)/52; 
e2 = e1.^2 - (sigsq*X.^(2*gamma))/52; 
e = [e1 e2]; 

  
mt = e; 
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