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NON-NEWTONIAN BLOOD FLOW SIMULATION IN A REALISTIC 

ARTERY 

SUMMARY 

In the literature blood flow simulations are studied frequently in order to understand 

the occurance of the diseases related to the blood flow and blood vessels. In these 

studies some assumptions are made because of the complexity of the physiology and 

vessel geometries. The most common used assumption is that viscosity of blood can 

be considered as constant on whole blood flow. However, blood has a complex 

structure and although this assumption may be convenient in some cases, the blood 

viscosity cannot be represented by constant viscosity. 

The effects of the non-Newtonian viscosity and the outcomes of the assumption of 

being Newtonian are studied in the literature. In the studies, non-Newtonian and 

Newtonian models are simulated on a particular geometry and under particular flow 

conditions and the results of these cases are compared and discussed. Generally, the 

effect of non-Newtonian property depends on the flow geometry and the flow 

condition; such as Reynolds number, Womersly numbers, e.g.. Some of these studies 

indicate that the non-Newtonian properties have significant effect, so they must be 

considered on the simulation. On the other hand, some of these indicates that the 

non-Newtonian effects are not important and they may be ignored on the studies. 

At present study, the effects of non-Newtonian viscosity are investigated on a 

realistic arterial domain. The used geometry was reconstructed from human CT data. 

Three dimensional Navier Stokes equation with three different non-Newtonian 

viscosity models; Casson, Carreau and Generalised Power Method is solved using 

finite volume method. At the input of the common carotid artery, experimental flow 

data which were obtained from a real artery bifurcation inlet are used. The response 

of vessel wall to the blood flow is also considered. The vessel wall is taken into 

account as isotropic and linear elastic material. The results of viscosity models in 

each cases, rigid wall and moving wall, are compared and discussed. The results 
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show that non-Newtonian viscosity has significant importance on WSS and velocity 

distribution at low Reynolds number.     
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GERÇEKÇİ DAMAR ÜZERİNDE NON-NEWTONIAN KAN ALKIŞI 

BENZETİMİ 

ÖZET 

Kan akışı ve damarlarla ilgili hastalıkların oluşumunu anlayabilmek amacıyla kan 

akışı simülasyonları literaturde sıkça çalışılmaktadır. Bu çalışmalarda birtakım 

kabuller yapılmaktadır. Bu kabullerin en önemlisi kanın Newtonian olduğu 

kabulüdür. Bu kabül ile kanın viskozitesi sabit kabul edilmektedir. Ancak kan 

kompleks bir yapıya sabittir ve sabit bir viskozite ile temsil edilmesi bazı durumlar 

için uygun görülebilir olmasına rağmen bazı durumlarda uygun değildir.  

Literaturde kanın viskozitesi üzerine yapılan kabullerin sonuçlarını inceleyen birçok 

çalışma yapılmıştır. Bu çalışmalarda bazı non-Newtonian modeller ile simulasyonlar 

yapılarak Newtonian durumu ile karşılaştırılmıştır. Bu karşılaştırmalar sonucunda 

birtakım değerlendirmeler yapılmıştır. Bu değerlendirmeler, simulasyonun yapıldığı 

geometriye, akış özelliklerine, akış hızına v.b. gibi özelliklere bağlı olarak değişiklik 

göstermektedir. Bazı çalışmalar non-Newtonian özelliklerin çok önemli olduğunu ve 

kan akışı simulasyonlarında ihmal edilmemesi gerektiğini vurgularken, bazı 

çalışmalar non-Newtonian özelliklerin ihmal edilebilir etkilere sahip olduklarını 

söylemektedirler. 

Bu çalışmamızda non-Newtonian özelliklerin etkileri gerçekçi atardamar geometrisi 

üzerinde incelenmektedir. Kullanılan geometri insan CT verisinden elde edilmiştir. 

Üç boyutlu Navier Stokes denklemi üç farklı non-Newtonian model; Carreau, Casson 

ve Generalised Power method ve Newtonian viscosity modeli ile birleştirilerek 

çözüldü. Ayrıca bu çalışmada damar çeperlerinin akışkana olan etkileri de göz önüne 

alınmıştır. Damar duvarı hem sabit hemde hareketli olduğu durumlarda simulasyon 

yapılarak her iki durum için de non-Newtonian etkiler incelenmiştir. Damar 

duvarının hareketli kabul edildiği durumda, damar duvarı doğrusal elastic, izotropik 

özelliklere sahip olduğu kabul edilmiştir. Sonuçlar düşük Reynold sayılı akışlarda 

non-Newtonian özelliklerin önemli etkilere sahip olduklarını göstermektedir. 
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1.  INTRODUCTION 

Human body has a complex structure. The complexity of human body complicates 

conducting studies on investigating the human physiology. Both biomechanical and 

biofluid studies suffer from the complexity of the human body. Thus, having some 

assumptions and constraints becomes an obligation when working on any subsystem 

of the human body, especially with the blood flow. Although the vessel wall is 

porous media, heterogeneous and highly viscoelastic material, it is assumed as rigid 

wall. Furthermore, human blood is multi-phase fluid, but it is considered as 

homogenous fluid. Moreover, while the vessel wall moves due to the pulsatile flow, 

the vessel wall is assumed as motionless. In addition to this, one of the most common 

assumption used in the simulations is simplification of the arterial domain which has 

a complex geometry. Another assumption used in the studies is on the rheological 

properties of the blood such that the viscosity of blood is considered as being 

Newtonian. While the assumptions make the studies of blood flow handleable, the 

accuracy of the studies damage.    

In the literature, several blood flow simulations are conducted to investigate the 

basics of blood flow in arteries, and to understand the construction of diseases 

relevant to blood flow. In these studies some assumptions are made because the 

blood flow simulation has difficulties due to the small size of vessel and the complex 

structure of blood. The most applied assumption about the structure of blood is that 

the blood viscosity can be describe as being Newtonian due to the having constant 

apparent viscosity above -1100s  in large arteries. However, the strain rate of blood 

flow is not above -1100s  in some regions or at some instants therefore, the 

assumption of being Newtonian may underestimate the flow properties on these 

regions and at these instants.  

In the present study, the effects of the assumptions on the structure of blood, on the 

blood flow simulations are investigated. The assumptions are assessed by using three 

viscosity models namely; Carreau, Casson, and Generalised Power Method, as well 
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as Newtonian model in the simulations, and comparing the results of wall shear 

stress distributions and velocity profiles of each case.  

The characteristics of viscosity models are investigated on the various flow 

conditions at a realistic artery domain. Steady and unsteady simulations are 

conducted with rigid vessel wall assumption. Furthermore, unsteady simulation is 

done with moving vessel wall boundary. The blood and vessel wall interaction is 

achieved by loosely coupling the both fluid and structural software.  The results of 

the flow properties at each flow condition are compared and discussed. 
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2.  LITERATURE REVIEW 

The blood flow simulations are studied to understand the occurrence of the diseases 

and the anomaly in blood flow in artery. Although, the blood flow simulations are 

studied in literature exhaustively, there is no generally accepted viscosity model that 

represents the behavior of blood rheology efficiently. Some studies assume the blood 

as Newtonian while some of them assume the blood as non-Newtonian. Moreover, 

there are various non-Newtonian viscosity models, which derived using parameter 

fitting.  

In literature, many studies are conducted to analyse the effects of the viscosity 

models numerically or experimentally. Some of these studies indicates that non-

Newtonian properties have significant role while some studies implies that non-

Newtonian properties have minor importance.  

To quantify the importance of non-Newtonain models on anastomotic flow patterns, 

the characteristics of Newtonian and non-Newtonian blood flows are compared in a 

2-D, 45°  end-to-side anastomosis model under steady and unsteady flow conditions 

[1]. The study indicates that non-Newtonian blood has a significant effect on steady 

flow wall shear stresses, but only minor effect on unsteady flow wall shear stresses. 

It is concluded that non-Newtonian viscosity effects in the distal circulation are of 

secondary importance. 

An idealised, 45°  rigid, 6 mm diameter, end-to-side femoral anastomosis was 

modeled to investigate the effects of non-Newtonian rheology of blood [2]. A steady 

flow with 0.15 and 0.01 m/s inlet velocities was simulated to model high and low 

wall shear stresses respectevely. While at high shear rates there was no significant 

difference between WSS distribution, at low shear rates there were qualitative 

differences of up to 300%. It was concluded that the choice of viscosity model has to 

be based on the situation under study, e.g flow rate, steady/unsteady flow, and 

geometry. 
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The influence of viscoelastic effects on blood flow in large arteries is investigated 

using the Jeffreys' type (Oldroyd-B) and Casson models [3]. Whereas Oldroyd-B 

describes the viscoelastic properties of blood, Casson describes the shear thinning 

properties. The effects are studied on the steady flow through a tree-dimensional 

axisymmetric tube with a stenosed, and a curved tube. The numerical results indicate 

significant influence of viscoelastic effects in the stenosed model. On the flow 

through the curved tube the effects of viscoelastic properties is minor important. 

Moreover, the shear thinning effect can be observed in both geometries. The study 

indicates that the influence of viscoelastic properties in large arteries depends on the 

shape of the flow domain. 

A comparative study of non-Newtonian and Newtonian models is carried out [4]. In 

the study, two non-Newtonian; the Power law and Casson models, and Newtonian 

model are used to simulate unsteady flow through a hypothetical stenotic geometry. 

Through comparison of the results the three models, it was found that the wall shear 

stress distribution for Newtonian model has the lowest value. However, the peak wall 

shear stress gradient for Power law is the highest. Flow characteristics such as higher 

pressure drop across the stenosis, location and movement of vortex are similar in all 

three models. It is pointed out that the effects of Non-Newtonian are more significant 

in the vicinity of the stenosis. 

Effects of the non-Newtonian viscosity of blood on flow in a coronary artery are 

studied [5]. In this stdy, the pressure drop, wall shear stress and velocity profiles for 

the case of blood viscosity were compared for the case of Newtonian viscosity. The 

effect of the non-Newtonian viscosity of blood on overall pressure drop across the 

arterial casting was flound to be significant at a flow of the Reynolds number of 100 

or less. In the region of flow separation or recirculation, the non-Newtonian viscosity 

of blood yields larger WSS than the Newtonian case. 

A study in a stenosed artery incorporating fluid-structure interaction is implimented 

[6]. In the study, the wall is considered as isotropic and elastic. The artery geometry 

was modeled as an axisymmetric stenosed vessel. The blood behavior described by 

the non-Newronian models (Power Law and Carreau) and Newtonian model. While 

the Carreau model showed only slightly smaller centreline axial velocities, the Power 

Law model showed more significant differeces, including flatter velocity profile. The 

WSS distributions show similar trends except the Power Law model shows 
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significantly smaller magnitudes. Moreover, the Carreau model exhibits slightly 

larger stresses.   

The study on aneurysmal wall is carried out to investigate the effect of non-

Newtonian models [7]. The geometry is constructed from angiography image data 

and the flow is considered as unsteady laminar flow in this study. The study indicates 

that the predictions with the Newtonian and  non-Newtonian blood models are 

similar and the effect of the non-Newtonian properties of blood on the WSS is 

important only in the arterial regions with high velocity gradients. 

In two dimensional blood flow which interact with compliant vessel [8]. Carreau and 

Yeleswarapu models used to presents the shear-thinning property of blood. The 

result was shown that there are only marginal differences in the WSS between non-

Newtonian models. On the other hand, the differences between the Newtonian and 

non-Newtonian models are more visible.   

The non-Newtonian effects were investigated on coronary bypass anastomosis [9]. In 

the study, a simplified geometry of end-to-side coronary bypass anastomosis is 

considered. The coronary artery has a 75% severity stenosis. The results shows that 

significant differences in axial velocity profiles, secondary flow streamlines and 

WSS between the non-Newtonian and Newtonian fluid flows are revealed. In the 

study, it is concluded that non-Newtonian property of blood alters the flow pattern 

and WSS distribution and is an important factor to be considered in simulating 

hemodynamic effect of blood flow in arterial bypass grafts. 

A comparison of non-Newtonian and Newtonian models was made on a bifurcation 

model with a non-planar daughter branch [10, 11]. In the study, the flow was 

considered as pulsatile flow, and for the non-Newtonian model, the Carreu-Yasuda 

model was used to take into account the shear thinning behavior of tha analog blood 

fluid. In the daughter vessel the non-Newtonian model result in flattened axial 

velocity due to the its shear thinning behavior. Moreover, significant difference 

between the non-Newtonain and the Newtonian flow was found. The study indicates 

that the non-Newtonian properties of blood is an important factor in hemodynamics 

and may play a significant role in vascular biology and pathophysiology. 

A study in which three non-newtonian models (Casson, Walburn-Schneck and 

Generalized Power Law) is carrried out to investigate the impact of the blood models 
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in an anatomically realistic model of the left coronary artery main bifurcation [12]. In 

the study, it was found that the WSS is influenced by the used model. Moreover, 

only the Walburn-Schneck model revealed significant varied WSS distribution if 

compared with Newtonian model. In this study it was concluded that the impact of 

the non-Newtonian blood model in WSS profiling of coronary artery flow may be 

neglected for clinical studies with normal or narrowed coronary arteries. However, 

for dilated coronary arteries, the non-Newtonian blood model is significant and 

should be included in numerical model of the coronary flow. 

A study on the flow behavior of blood through a porous medium stenosed artery and 

to investigate the significance of the non-Newtonian effects on bood flow is 

implemented [13]. The goemetry has stenosis severity ranging from 25% to 80%, is a 

straight tube of length of 5 cm and diameter of lumen is 0.21cm. The study indicates 

that the non-Newtonian model has significant effects on the velocity profile and the 

magnitude of the WSS.   

By taking turbulence effects into account, an investigation of effects of non-

Newtonian blood model is carried out [14]. In this study, the realistic pulsatile flow 

was used, and the geometry was simple vessels of actual size. Comparisons were 

made between non-Newtonian and Newtonian blood model on pressure, strain rate 

and velocity component distributions. Significant disaggrement between non-

Newtonian and Newtonian models were found. In this study, it is concluded that 

those models not using non-Newtonian models underestimate the risk of disruption 

to the human vascular system. 

To assess the effects of non-Newtonian model, the lattice Boltzmann method was 

modified and used [15]. Two non-Newtonian models (Casson and Carreau-Yasuda) 

as well as Newtonian model were considered in the two-dimensional flow in context 

of simple steady flow and oscillatory flow in straight and curved pipe. Significant 

difference between non-Newtonian and Newtonian models was present in the steady 

flow simulation. In the oscillatatory flows, non-Newtonian models exhibit significant 

differences at low Reynolds and Womersley numbers. In the study it was concluded 

that these differences may be important for the study of atherosclerotic progression. 

Five non-Newtonian models, Casson, Carreau, Generalised Power Method, Power 

Method and Walburn-Schneck, were used and compared based on WSS distribution 

in a steady-state simulation [16]. Initial results reveal that for a low central inlet 
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velocity, WSS values of non-Newtonian models are higher than that of Newtonian. 

In the case of high central inlet velocity, WSS values of non-Newtonian and 

Newtonian models are nearly identical while the WSS of Power Law and Walburn-

Schneck are lower than that of others. In the subsequent study of these authors, 

Generalised Power Method and Newtonian method were compared in transient 

simulation [17]. Results show that the difference between distributions of WSS in 

Generalised Power Method and Newtonian Method is relatively small. 

Experimental and numerical studies were performed to investigate the effect of 

influence of the non-Newtonian properties on the velocity distribution [18]. In the 

study, steady flow in a three dimensional model of the carotid bifurcation was carried 

out. In this study it is indicated that significant differences between the Newtonian 

and non-Newtonian fluid are present. While the axial velocity profile for the 

Newtonian fluid is parabolic, the velocity profile of the non-Newtonian fluid is 

flattened. In the numerical simulation viscoelasticity property of blood was not 

considered, but only shear-thinning property was taken into account numerical 

results are well agreed with the experimental results. Since the numerical results and 

experimantel results are well agreed, it can be inferenced that the shear-thinning 

properties are the dominant non-Newtonian property of the blood.  

In a two dimensional human carotid artery bifurcation, the stationary flow of blood is 

simulated using Casson, Power-law and the Newtonian viscosity models [19]. The 

simulation is carried out using Reynolds number which taken as equal to 300. The 

velocity profiles of non-Newtonian models have 5-10% lower maximum values 

compared to the Newtonian model. The pressure non-Newtonian has higher values 

up to 25% than that of the Newtonian model. The generalized Newtonian models 

give higher wall shear stress along the non-divider wall than the Newtonian model, 

the maximum difference being 5%. From the results, it is concluded that the general 

flow structure is not influenced by the non-Newtonian models. 
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3.  BLOOD RHEOLOGY 

3.1 Blood Composition and Structure 

Blood has a complex structure with multi-phase fluid and composed of suspended 

elements in plasma which is continuous part of blood. It’s components are 91% 

water, 7% proteins, 2% inorganics and other organics solutes. The proteins include 

fibrinogen, globulins, albumin, beta lipoprotein and lipalbumin. The proportions of 

first three proteins are 5%, 45% and 50% in plasma protein respectively. Beta 

lipoprotein and lipalbumin are in very small proportions. Plasma can be considered 

as a Newtonian fluid which has a viscosity about 1.2 mPa s at 37 C . 

The White Blood Cells (WBCs) have major role in defense of body. It is known that 

the platelets have mission in clotting process. The concentrations of WBCs and 

platelets are fewer compared to the Red Blood Cells (RBCs). Therefore, the effects 

of WBCs on blood flow are negligible. 

The Red Blood Cells (RBCs) are biconcave discs with a diameter of approximate 8

μ m (see Figure 3.1). The volume of the typical RBC is approximately 85 to 90 

microns. The RBCs have a very flexible membrane enclosing hemoglobin solution. 

The viscosity of hemoglobin is about 6 mPa s which five times larger that of blood. 

Because of having the elastic membrane and highly viscous hemoglobin solution, the 

RBCs have abilities to deform themselves. The property of deformability enables the 

RBCs not only to pass through capillaries (5 μm in diameter), but also through the 

endothelial wall. Hematocrit is used to represent the volume friction in plasma. It is 

known that the hematocrit has significant role to determine the blood viscosity. Its 

normal range is about 47% in adult male and about 42% in adult female. 

Aggregation behavior of the RBCs is the most important characteristic acting on the 

blood viscosity. The RBCs tent to come together and form rouleaux at low shear rate. 

The fibrinogen in plasma have active role in aggregation. At rest state, the RBCs 

constitute one big aggregation which likes a solid. When a limiting shear stress, yield 

stress, is exceeded, the aggregation begins to break up. Then it occurs clusters of 
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rouleaux in plasma as shown in Figure 3.2. Between the size of aggregation and the 

shear stress, there is a dynamic equilibrium. At the high shear rates which above 

100 s1 , aggregates are reduced to individual cells, and RBCs are deformed into 

ellipsoid with their long axes aligned in the direction of flow. 

 

Figure 3.1 : Shape of Red Blood Cells  

 

Figure 3.2 : Aggregation of RBCs 
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3.2 Blood Viscosity 

Temperature is an important parameter for blood viscosity. Between fall in 

temperature and rise in viscosity there is a linear relationship within the range of

27-37°C . Plasma viscosity increases rapidly as the temperature falls below 27°C . 

In Figure 3.3, the relationship of viscosity of three types of RBCs between are 

illustrated. The types of RBCs are RBCs suspended in normal plasma (NP), RBCs 

suspended in albumin (NA), and hardened RBCs in albumin (HA). The albumin can 

be used to prevent the RBCs to aggregate therefore, the RBCs in albumin are 

individual cells. Moreover, hardened RBCs in albumin are prevented to deform. In 

this way, the effect of aggregation and deformation of the RBCs on the blood 

viscosity are clarified. The difference between NP and NA curves show the effect of 

cell aggregation, whereas the difference between NA and HA indicates the effect of 

cell deformation. Aggregation of red cells at low shear rates causes to increase of 

viscosity. The deformation at high shear rates leads to decrease of viscosity. 

Moreover, the viscosity hardened RBCs suspension is independent of shear. 

 

Figure 3.3 : Relation between relative viscosity and shear rate in three types of 

RBCs suspensions  

When blood flow through vessels smaller than about 1.5 mm in diameter, the 

apparent viscosity of the fluid decrease. This effect is known as the Fahraeus-

Lindqvist effect. Figure 3.4 shows that the viscosity is a function of vessel diameter. 

While the diameter of vessel decreases, viscosity of blood decreases. However, when 
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the diameter of the vessel closer to the diameter of the RBCs, the viscosity increases 

dramatically. 

 

Figure 3.4 : Fahraeus-Lindqvist Effect in the blood vessel 

The viscosity of blood is also a strong function of hematocrit, or volume percent of 

RBCs. Figure 3.5 shows the relationship between blood viscosity and hematocrit 

with the range from 0 to 0.65. 

 

Figure 3.5 : The relationship between Hematocrit and Blood Viscosity 
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3.3 Mathematical Models of Blood Viscosity 

Blood flow exhibits non-Newtonian behavior such as shear thinning, thixotropy, 

viscoelasticity, and yield stress. It’s viscosity is effected by many factors such as 

plasma viscosity, aligment of RBCs, level of RBC aggregation and deformation, 

fibrinogen, flow geometry and size, rate of shear, hematocrit, male or female, smoker 

or non-smoker, temperature, lipid loading, hypocaloric diet, cholesterol level, 

physical index, diabetes mellitus, arterial hypertension, sepsis, etc.. Blood viscosity 

model in the literature may be group into two categories such as Newtonian viscosity 

and non-Newtonian viscosity. 

3.3.1 Newtonian viscosity  

The blood can be assumed as a Newtonian fluid when shear rate over a limiting 

value. In literature, there is a variation on the limiting shear rate. In some studies, the 

limiting shear rate is considered on the range from -150 s  to -1100 s whereas in others, 

this range is considered as from -1100 s  to -1300 s . At high shear rates in large 

arterial vessel which has diameter greater than 1mm, blood viscosity is modeled as 

constant value. The constant value is assumed as the value of high limiting viscosity 

of blood which generally accepted as 3.5 mPa s  . 

3.3.2 Non-Newtonian viscosity  

Due to the variations on the shear rate which approximately from zero to -11000 s over 

a cardiac cycle in large arteries, the blood exhibits shear thinning behavior. In 

addition to this, at low shear rate zones such as near bifurcations, graft anastomoses, 

stenoses, and aneurysm, the blood exhibits non-Newtonian properties. To model the 

shear thinning properties of blood, various non-Newtonian blood models are 

constituted in the literature. 

The apparent viscosity of blood have three distinct region, namely lower Newtonian 

region which has a constant viscosity,
0μ  at lower shear rate, upper Newtonian region 

which has a constant viscosity, μ
at higher shear rates and middle region where the 

apparent viscosity is decreasing with the increasing shear rate. 

Casson considers the effect of the RBC concentration. Generalised Power Law 

model consists of the Power Law model at low strain, the Newtonian model at mid-
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range and the Casson model at high strain rates. The Carreau model takes both
0μ  

andμ
into account to consider the limiting values of viscosity where 

0μ
 
is the 

limiting viscosity while shear rate tends to zero andμ
is the limiting viscosity while 

the shear rate goes to infinity. 

Model Name  Viscosity Model 

Newtonian model   0.00345 P   

Carreau model   ( 1) 2
2

0

0

( ) 1 ( ) ,

where λ=3.313s, n=0.3568, μ =0.56 P and μ =0.0345 P

    


 



     
n
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Generalised Power 

Law model 
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As it can be seen in Figure 3.5.a, the Generalized Power Method has a greater 

viscosity at low shear rate. The viscosity of Carreua and GPM models are close to 

each other for shear rate values over 0.2s. For high shear range, the GPM and 

Carreau models converge to a limiting value which is Newtonian viscosity. On the 

other hand, the viscosity of Casson model is smaller than that of others at low strain 

rate and above that of other models at high shear rates  and it does not converge to 

the Newtonian viscosity at high shear rates. Figure 3.5.b shows that the shear stresses 

for non-Newtonian models are higher than that of Newtonian at low strain values. 

Furthermore, above -1100 s , the shear stress of non-Newtonian models converges to 

the Newtonian model. 

Table 3.1: Mathematical Models of Blood Viscosity 
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(a) (b) 

Figure 3.6 : Apparent viscosity and shear stress as a function of strain (a) Viscosity 

(b) Shear Stress 
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4.  NON-NEWTONIAN FLUID BEHAVIOUR 

Blood is a non-Newtonian fluid whose flow curve (shear stress versus shear rate) is 

non-linear or does not pass through origin. At a given temperature and pressure, the 

apparent viscosity, shear stress divided by shear rate, is not constant. However, it 

depends on flow conditions such as flow geometry, shear rate, etc.. The non-

Newtonian fluid may be grouped into three general classes: 

1. Fluids for which the rate of shear depends only the value of the shear stress 

at that space and time. This type of fluid is known as “time independent fluids” or 

“generalized Newtonian fluids”. 

2. Fluids for which the rate of shear depends in addition upon the duration of 

shearing and their kinematic history. This type of fluid is called “time dependent 

fluids”. 

3. Substances exhibiting characteristics of both ideal fluids and elastics solids. 

This type of fluid categorized as “visco-elastic fluid”. 

4.1 Time-Independent Fluid Behaviour 

In the simple shear, the flow behavior of time independent fluids may be described 

by a constitutive relation of the form, 

   yx yxf                                                                                                            (4.1) 

where  is shear stress and   is strain rate.  

It can be inferred that the value of shear rate at any point is determined by only by 

the current value of shear stress at that point. These fluids may be further subdivided 

into three types according to the form of the function in Equation 4.1.  

a) Shear-thinning or pseudoplastic 

b) Viscoplastic 

c) Shear-thickening or dilatants 
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Figure 4.1 : Types of time-independent flow behavior 

 

4.1.1 Shear-thinning or pseudoplastic fluids 

This type of non-Newtonian fluids is characterized by an apparent viscosity which 

decreases with increasing shear rate. Both at low and high shear rates, most shear-

thinning fluids exhibit Newtonian behavior, apparent viscosity becomes straight 

lines. The resulting values of the apparent viscosity at very low and high shear rates 

are known as the zero shear viscosity,
0μ , and the infinite shear viscosity,

 
μ

, 

respectively. Therefore, the apparent viscosity of a shear-thinning fluid decreases 

from 
0μ
 
to μ

with increasing shear rate. 

 

Figure 4.2 : Shear thinning behavior 
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4.1.2 Viscoplastic 

The existence of a yield stress characterizes this type of fluids. The yield stress must 

be exceeded, before the fluid will deform or flow. When the magnitude of yield 

stress is exceeded the flow curve may be linear or non-linear but, it will not pass 

through origin as shown in Figure 4.3. Bingham plastic fluid has a linear flow curve 

for 
0yx  and is characterized by a constant viscosity and a yield stress. 

Moreover, yield-pseudoplastic fluid has a yield stress and a non-linear flow curve. In 

addition to this, a viscoplastic fluid displays an apparent viscosity which decreases 

with the increasing shear rate.   

 

Figure 4.3 : Shear stress – shear rate relationship of Bingham Plastic and a carbopol  

polymer solution 

 

4.1.3 Shear-thickening or dilatant fluid behavior  

Dilatant fluids have apparent viscosity which increases with increasing viscosity and  

they have no yield stress as pseudoplastic fluids.  
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4.2 Time-Dependent Fluid Behaviour 

The apparent viscosity of time-dependent fluid depends not only the rate of shear but 

also on the time for which the fluid has been subjected to shearing.  Time-dependent 

fluid behavior may be sub-divided into two categories:  thixotropy and rheopexy or 

negative thixotropy. For thixotropy fluid, the apparent viscosity decreases with the 

time of shearing when it is sheared at a constant rate. For rheopexy fluids, the 

apparent viscosity increases with time of shearing when it is sheared at a constant 

rate.  

4.3 Viscoelastic Fluid Behaviour 

Viscoelastic fluid is one whose property of material exhibits both viscous and elastic 

characteristics when external force applied. Viscous material resists to flow when a 

stress is applied. Elastic material strains and deforms themselves when stretched and 

once the external force is removed, elastic material returns to their original state.  

4.4 Mathematical Model for Non-Newtonian Fluids 

4.4.1 Power Law Method 

The relationship between shear rate and shear stress for a shear-thinning fluid can be 

approximated by a straight line over a limited range of shear rate. On this part of the 

flow curve, the following expressing can be suitable: 

  
n

yx yxm                                                                                                           (4.2) 

Hence, the apparent viscosity for the power law fluid given by: 

 
1

/   


 
n

yx yx yxm                   (4.3) 

The fluid exhibits shear thinning properties for n < 1, the Newtonian behavior for n = 

1 and the shear-thickening behavior for n > 1. In Equation 4.2 m and n are two 

empirical curve-fitting parameters and are called as the fluid consistency coefficient 

and the flow behavior index respectively. For a shear-thinning fluid, the smaller the 

value of n, the grater is the degree of the shear-thinning. The Power Law Method is 

convenient over only a limited range of shear rates and therefore, the fitting 
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parameters depends on the range of shear rates considered. Moreover, the zero 

viscosity and infinite viscosity are not predicted as shown in the Figure 4.4. 

 

Figure 4.4 :Demonstration of zero and infinite shear viscosity for a shear-thinning 

polymer solution
 

4.4.2 Carreau Model   

Carreau Model is a viscosity model for shear-thinning flud. Since the Power Law 

method does not consider the values of 
0 and

, at very low and very high shear 

rates, this model cannot describe shear thinning behavior. The Carreau model 

incorporates both limiting viscosities 
0 and 

as the following form: 

( 1)/2
2

0

1 ( )
( )

 


 







   

n

                                                                                  (4.4) 

where ( 1)n  and are two curve-fitting parameters. This model can represent shear-

thinning behavior over wide ranges of shear rates. 

4.4.3 The Bingham Plastic Model 

This model is the simplest mathematical expression describing the viscoelastic flow 

behavior. It is written as: 

0 0

0

( )

0

     

  

  

 

B B

yx yx yx

B

yx yx

for

for
                                                                       (4.5) 
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4.4.4 The Herschel-Bulkley fluid model 

The Herschel-Bulkley fluid is a simple generalization of the Bingham plastic model 

to cover the non-linear flow curve (for  
0

B

yx  ). 

0 0

0

( )

0

     

  

  

 

H n H

yx yx yx

H

yx yx

for

for
                              (4.6) 

where
0 is the yield stress.  

This model satisfies better fit to experimental data with the use of three constants. 

4.4.5 The Casson Fluid model 

This model is derived for viscoeslatic fluid, and often used to describe biological 

fluids. The model has form as: 

     
1/2 1/21/2

0 0

00

     

  

  

 

c c

yx yx yx

c

yx yx

for

for
            (4.7) 

where
0 is the yield stress. 
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5.  THE GOVERNING EQUATIONS 

5.1 The Continuity Equation 

In an infinitesimally fixed control volume in Figure 4.1, the rate of change of density 

is equal to the mass that flow into the element minus the mass that flows out the 

element. The equation of continuity is as following 

= 0 V  (5.1) 

 

Figure 5.1 : The control volume of fluid 

5.2 The Momentum Equations 

Applying the Newton’s second law to the element of fluid, it can be said that the net 

force on the element of fluid is equal to the product of the density of fluid with the 

acceleration of the fluid. The net force on the element of the fluid is the surface 

forces which are due to the stresses on the sides of the element surface.  These 

stresses are the sum of hydrostatic pressure and viscous stress ij . The Figure 5.2 

illustrates the stresses on the element of fluid.  
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Figure 5.2: Stresses on the element of the fluid 

The Newton second law on the element of fluid can be written for the element of  

fluid as following 

   
D

p
Dt

V
τ  

(5.2) 

whereV is the three-dimensional velocity vector, t the time, p the pressure,  the 

density and the stress tensor. Writing the Navier-Stokes equations in this form 

allows the flexibility to use an arbitrary non-Newtonian blood viscosity model. 

5.3 Linear Elastic Theory 

In this study the structural behaviour of the vessel wall is represented as linear elastic 

material. The fundamental assumption of linear elasticity is small deformation. 

Therefore, in the case of small deformation, the first derivations of displacement 

vector which appears in the Green’s strain tensor are very small, and the second 

derivation of displacement can be negligible. As a result of this, the Green’s strain 

tensor reduce the form as following : 

1
( )

2

j i
ij

i j

u u
e

x x

 
 

 
 (5.3) 

The Hooke’s law constructs the relationship between the stress and the strain on a 

deformed body. For a three-dimensional state of stress, the generalized Hooke’s law 

is:  
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.ij ijkl klC e   (5.4) 

where ijklC is the tensor of elastic constants representing the mechanicals properties of 

material. In general form the Hooke’s law has 36 ijklC s. In rest state, ij ji  because 

of the symmetry, so the number of ijklC s reduce to 21. In addition to this, in the case 

of isotropic material the number of constant of ijklC  in the Hooke’s law reduce to 2. 

The generalized Hooke’s law then becomes: 

2ij xx ij ije e      (5.5) 

where is Young’s Modulus and  is Poisson’s ratio.  

A linear relationship between stress and strain tensor exists in a material which is 

considered as linear elastic. Moreover, the stress at a point in the solid depends only 

on measure of strain at that point, and is independent of history of loading. 

5.4 Boundary Conditions 

At the input of the common carotid artery, Womersly velocity profile which fits the 

experimental flow data [21] which was obtained from a real artery bifurcation is 

used. In Figure 5.3 the inlet velocity profile, where its period is one second, is 

shown. 

 

Figure 5.3: The Inlet Velocity Profile 
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The geometry of the common carotid artery is anatomically realistic, series of 

techniques are implemented to extract the actual artery from CT or MRI images of a 

patient using the Mimics Software [22, 23]. In the case of moving wall, the vessel 

wall is assumed as linear elastic material whose the scale of Young’s Module is of 

order 510 and the Poisson ration is in the range from 0.3 to 0.45. The density of blood 

is 1050 3kg/m .  
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6.  NUMERICAL METHODS 

6.1 The Finite Volume Methods 

In the present study, the finite volume method is used to discritize the geometric 

domain. In the finite volume method, the geometric domain is divided into number of 

control volumes such that there is one control volume surrounding each grid point. 

To obtain the numerical solution the differential equation is integrated over each 

control volume. Second-order upwind scheme is employed to compute the quantities 

at the faces. By this scheme higher-order accuracy is satisfied at the cell faces. 

6.2 Pressure-Correction Methods 

The pressure-correction method is used to achieve the numerical solutions. In the 

pressure-correction method, the iteration starts by guessing the pressure fields, p*. 

The values of p* are used to solve for velocity components, u, v and w from the 

momentum equation. The velocity components which solved in this step are denoted 

by u*, v* and w* due to the association with p*. These velocity components do not 

satisfy the continuity equation efficiently. The pressure correction, p', is constructed 

using the continuity equation. Summation of the pressure correction and p* gives the 

corrected pressure p. 

' *p p p                                                                                               (6.1) 

Similarly, the velocity components are corrected by adding the corrections, u', v' and 

w' to the velocity components of u*, v* and w*. 

' *

' *

' *

u u u

v v v

w w w

 

 

 
 (6.2) 

These processes are repeated until a velocity fields are found that does satisfy the 

continuity equation. 
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6.3 Finite Elements Method 

In the present study Finite Element Method (FEM) is used to obtain the numerical 

solution of the partial differential equations which describe the structure’s behaviour. 

In this method, the structural system is modelled by a set of appropriate finite 

elements interconnected at points, called nodes. This method is based on getting the 

PDE into a system of linear equations and solving this system numerically using 

standard techniques. 

6.4 Convergence Criteria 

An iterative solution method requires a convergence and stopping criteria to 

terminate the iteration process. The measure of convergence is the change in the 

solution vector between successive iterations. The relative difference between 

consecutive solutions: 

( 1) ( )

( 1)

n n

n

x x
err

x






  (6.3) 

are used as the convergence criteria in the study. When the magnitude of the 

difference are less then -31x10 , the iteration will stop. 

6.5 Validation of the Models 

A reliable CFD model must satisfy several criterions, independent of time step size 

and independent of mesh size. To verify the validation of the model, the results 

obtained in different time steps, 0.1s, 0.01s and 0.001s are compared. Figure 6.1 

shows the velocity distributions of these cases which same in qualitatively. However, 

small differences exist such as the maximum of the difference between 0.01s and 

0.1s is 3.12% while the difference between 0.001s and 0.01s is 0.14%. So the model 

is independent of the time step size and we use 0.01s of step size in the calculations.   
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Figure 6.1: Velocity Profile of the Different Time Step Sizes 

 

Table 6.1: Difference Mesh Sizes  

 Number of Cells Number of Faces Number of Nodes 

Size A 84159 180853 20928 

Size B 595301 1228065 118870 

Size C 872803 1796425 172045 

Size D 1302751 2668292 249603 

 

Table 5.1 exhibits four distinct geometry cases with different mesh sizes. The Size A 

case has the coastest mesh while the Size D has the finest mesh.  

 

 

Figure 6.2: Velocity Profile of the Different Mesh Sizes 

 

As it can be seen in Figure 5.2 the result of Size B, Size C and Size D are very close 

to each other. Moreover, the maximum difference occurs between Size B and Size C 
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and it is equal to 2.2%. However the results obtained using Size A gives smaller 

velocity distribution. The maximum difference between Size A and Size B is 20%. 

As a result, since the results of Size B, Size C and Size D are very close, using one of 

them in the simulation is convenient. In this study, simulation of all cases are done 

but only the results of Size C are represented in Result Section.   

6.6 Fluid Structure Interaction 

The blood flow simulation with moving boundary is studied in the present study. In 

the simulation, the behaviors of both fluid and solid wall must be considered and 

investigated. However, the physical properties of fluid and solid are distinct and can 

be described by different sets of differential equations, Navier-Stoke’s Equations for 

fluid, and the Equilibrium Equation for the solid. Therefore, two separated systems 

constitute the blood flow simulation with moving boundary. The coupled system is 

illustrated in the Figure 5.3. 

 

Figure 6.3: The Scheme of Coupled Systems 

Although the two systems seem distinct to each other, they also share some variables. 

In the Figure 5.3, the coupling region contains the shared variables and coupling 

domain. In the blood flow simulation with moving boundary which is also called 

fluid structure interaction (FSI), the shared variables are pressure in fluid flow, and 

deformation in solid structure and the coupling domain is a 2D surface mesh. 

The solution of FSI system requires appropriate data exchanges between fluid and 

solid code during the coupling process. The data exchange is a process that the data 
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is send and received from one solver to another solver. The data is defined on a mesh 

of the sender code and then shall be transferred to the mesh of the receiver code. 

These meshes present the same geometric entity, but differ in element size and node 

location, and this types of matching is also called as "non-matching grids" as shown 

in the Figure 6.4. The data exchange process consists of two steps, association and 

interpolation. In the association step, for each node or element of one mesh, the 

partners on the other mesh must be found. This process is also called neighborhood 

search. In the interpolation step, the data which shall be transfered must be adapted 

to the target mesh. The data will be exchanged between associated nodes by means 

of interpolation. After association step, if a node is not associated to an node of other 

grid then it is called “orphaned” elements and this node neither send nor receive any 

data.  

 

Figure 6.4 Data exchange between fluid and structure 

The coupling process consists of three main steps; initialization, iteration and 

finalization. In the initialization step, the codes initialize their data and the partner of 

each node are determined by executing the neighborhood search process. In the 

iteration step, each codes compute their part of the problem and data is exchanged at 

the certain time. During the iteration step, the data exchanged several times 

according to the coupling algorithm which consists of send- and/or receive- functions 

at different states of computation. Depending on the problem types the data can be 

exchanged: 

 At the beginning of the each time step 

 At the end of the each time step 

 Before or after an iteration step 
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Each subsystem is solved separately and the pressure and displacement are 

exchanged and inserted into the equation of the other problem. The FSI simulation 

starts with solving the Navier-Stoke’s equation and pressure values are calculated. 

While the Navier-Stoke’s is being solved, the solid mechanics simulation waits for 

the pressure value to start the calculations. When the Navier-Stoke’s is solved 

succesfully, the pressure data are sended from Fluid Flow Simulation to Solid 

Mechanics Simulation. After one succesful step and sending the pressure data, the 

Fluid Flow Simulation waits until the displacement data is received from Solid 

Mechanics Simulation.  

Receiving the pressure data starts the calculation on the Solid Mechanics Simulation 

and the displacement data is obtained by this step. The resultant displacement data 

are sended to the Fluid Flow Simulation which waits for the data. The processes 

described above, is illustrated in the Figure 6.5.  
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Figure 6.5: The Process of FSI 

6.7 Construction of the Geometric Domain 

The geometric model which used in this study has been constructed from human CT 

images. The CT images are shown by 3 distinct planes: axial, coronal and saggital in 

the Figure 6.6. The construction process consists of number of steps. The first step is 

defining the vessel on the images by adjusting the Hounsfield scale. The Figure 6.7 

shows a slice on which the Hounsfield scale is applied with proper range for vessel. 

The tissues which are in same range of Hounsfield scale may also be marked in this 

step. One more step for clearing up these tissues is necessary. Deleting the undesired 

tissues from the mask on the slice completes the defining vessels process. When the 

clearing up process is achieved the mask contains only the vessels. To complete 

defining process on whole domain successfully, these steps are applied all CT slices. 

After the defining process is completed successfully, 3D representation of the mask 

is constructed as shown in the Figure 6.8. The 3D representation is a surface mesh 

which consists of triangles. The surface mesh is generated by way of interpolation on 

the vessel contours. After number of smoothing process on the 3D surface mesh, this 

step is completed successfully.  

A last step is required to fill the interior of domain with unstructured tetrahedral 

elements. Once the last step is achieved the geometric domain is ready to CFD 

analysis.  

The processes of defining vessel mask and construct 3D surface mesh are 

implemented with MIMICS which is a commercial software. The last step is applied 

with TGRID which a commercial software.  
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Figure 6.6 : The CT images 

 

Figure 6.7 : The slice on which Hounsfield scale is applied 
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Figure 6.8 : 3D representation of arterial vessel 
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7.  RESULTS 

In this section, to investigate the effect of non-Newtonian models, simulation results 

of all viscosity models are compared.  On three distinct regions WSS distributions 

are compared for four time-steps on unsteady flow with rigid wall assumption. One 

of the regions is the Carotid Sinus on where a lot of diseases occur. The WSS 

distribution on this region is responsible the occurrence of the many disorders. 

Another region is the carotid bifurcation. Because the blood flow is forced for 

separation (stagnation point), very high velocity gradient exists on this region. The 

third region is a region on common carotid before the bifurcation. On this region 

there is not any stenosis or dilatation, and the curvature on this region is very low 

therefore the velocity gradient is very small. The comparisons on this region are 

made because of the small velocity gradient on this region. 

Moreover, the velocity profiles of each cases are investigated along 3 lines inside the 

artery. These three lines are located before the carotid bifurcation, on carotid 

bifurcation, and the carotid sinus.  

And finally, the results of simulations with the assumption of rigid wall and moving 

wall are compared. The effect of the assumption of rigid wall with non-Newtonian 

fluid is analysed by comparing the results of rigid wall and moving wall. Moreover, 

to assess the effects of non-Newtonian viscosity, the comparison of WSS 

distributions of different viscosity models are made in three regions.   
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7.1 Main Carotid Bifurcation  

 

Figure 7.1: Main bifurcation of the Carotid artery 

 

Figure 7.2: WSS distributions of various viscosity models 

The flow is forced for separation on main bifurcation of the carotid artery. This 

region has very high velocity gradient due to the separation. In Figure 7.2, the WSS 
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distributions of different viscosity models at different time steps are presented. On 

the main bifurcation of carotid artery, the maximum WSS occurs on the stagnation 

point because of the high velocity gradient. Moreover, the relative differences with 

non-Newtonian and Newtonian models are minimum on this point due to the high 

shear rates. On the stagnation point, the Carreau model gives the highest WSS values 

at all time steps. In this region, Generalised Power Method and Carreau models have 

very close results. However, on the stagnation point, the difference between the 

results of Carraeu and Generalised Power models is increased significantly. 

Furthermore, the Casson model causes WSS distribution that is similar to the 

Newtonian model. The difference between the Casson and Newtonian models is 

increased on the stagnation point but the rate of difference is remained unchanged.  

 

Table 7.1: Differences between the results of non-Newtonian models and Newtonian 

model 

 Newtonian 

Maximum Minimum Mean 

Carreau 58.7% 0.159 Pa 13.9% 0.058 Pa 38% 0.095 Pa 

Generalised 

Power Method 

58.6% 0.13 Pa 2.7% 0.02 Pa 33% 0.12 Pa 

Casson 14.9% 0.07 Pa 5.8% 0.02 Pa 10% 0.04 Pa 

 

Table 7.1 shows the maximum, minimum and mean value of the difference and the 

relative difference. The values in the Table 7.1 is calculated from simulations at 

t=0.02 sec. of period. From Table 7.1, it can be seen that, despite of small 

quantitative difference in WSS, the rates of difference which are up to 59% are 

significant,  

 

 

Figure 7.3 : Difference rate and magnitude of WSS distributions 
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Figure 7.3 shows the differences and the rates of difference at the path which span 

from A to C. The rate of difference is the minimum at the stagnation point because of 

high strain rates. Moreover, the Generalised Power Method gives closer results to 

that of Newtonian model at the high shear rates. The rate of difference between the 

Casson model and Newtonian has same the tendency along the path from A to C.   

7.2 Carotid Sinus 

The sinus region of internal carotid is one of the most problematic region. 

Accumulation of plaque occurs on this region due to the high WSS distribution. At 

the sinus region of internal carotid artery, WSS increases as the artery gets narrower 

and reaches its biggest effect at the narrowest zone. The difference between non-

Newtonian and Newtonian effects is the minimum in this zone which has the 

maximum WSS. While the artery enlarges after the narrowest region, the value of 

WSS decreases rapidly. On the other hand, the difference between non-Newtonian 

and Newtonian effects increases rapidly. The Carreau and Generalised Power 

Method generally give similar WSS distribution, but at the peak point of WSS, the 

results of Generalised Power Method move away from the results of Carreau and get 

close to the results of Newtonian. The Casson model is a non-Newtonian model 

which generally results lowest WSS values. However, on the peak values of WSS, 

the Generalised Power Method gives lower values than that of the Casson. Moreover, 

the Casson and the Newtonian model results show that the rate of difference in WSS 

distribution is not significantly change in the region spanning from A to B. 
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Figure 7.4 :Carotid Sinus 

 

 
Figure 7.5 : WSS distributions of various viscosity models 
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Table 7.2: Differences between the results of non-Newtonian models and Newtonian 

model 

 Newtonian 

Maximum Minimum Mean 

Carreau 123.5% 0.203 Pa 9.3% 0.07 Pa 60.6% 0.12 Pa 

Generalised 

Power Method 

130.1% 0.142 Pa 0.4% 0.006 Pa 60.2% 0.09 Pa 

Casson 26% 0.185 Pa 8.5% 0.02 Pa 15.15% 0.04 Pa 

 

Table 7.2 shows that the Generalised Power Method has the maximum and the 

minimum rate of difference. At the Carotid Sinus the rate of difference is up to 

130%. The mean and maximum value of rate of difference of Carreau and 

Generalised Power Method are close.  

 

 

Figure 7.6 : Difference rate and magnitude of WSS distributions 

The rate and magnitude of difference along the path spanning from A to B are shown 

in the Figure 7.6. The Carreau and Generalised Power Method have the same 

tendency in the rate of difference, but the magnitude of difference of these two 

models differs on the point which has the maximum WSS. While the difference 

between Carreau and Newtonian increases, the difference between Generalised 

Power Method and Newtonian decreases at that point.  
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7.3 Common Carotid 

 

Figure 7.7 :Common Carotid 

 
Figure 7.8 : WSS distributions of various viscosity models 
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Since the radius in the Common Carotid artery does not change very much and the 

artery has not any significant increase on curvature, the WSS distribution along the 

artery does not exhibit a big change. On the path spanning from A to B, the Carreau 

and Generalised Power Methods give higher WSS distribution than that of 

Newtonian. Furthermore, the differences of both Carreau and Generalised Power 

Method with Newtonian model are small. The Casson model gives the lowest WSS 

distribution in this region. At the highest inlet velocity (see Figure 7.8.b ), the WSS 

distribution of each model gives closer results which are an expected behavior of the 

non-Newtonian models. 

 

Table 7.3: Differences between the results of non-Newtonian models and Newtonian 

model 

 Newtonian 

Maximum Minimum Mean 

Carreau 63.9% 0.128 Pa 34.3% 0.103 Pa 44.5% 0.116 Pa 

Generalised 

Power Method 

66.7% 0.122 Pa 27.7% 0.093 Pa 41.3% 0.106 Pa 

Casson 14.6% 0.038 Pa 9.8% 0.02 Pa 11.8% 0.031 Pa 

 

Table 7.3 shows the value of rate of difference and the magnitude of difference at the 

Common Carotid. Although the Generalised Power Method has the maximum rate of 

difference, the biggest mean rate of difference is belong to Carreau. The smallest rate 

of difference occurs between Casson and Newtonian.  

 

Figure 7.9 : Difference rate and magnitude of WSS distributions 

 

Figure 7.8 shows that, despite the fact that the magnitudes of differences along the 

path spanning from A to B have not significant changes, the rates of differences have 

big changes (see Figure 7.9.a) except the Casson model.   

  



 
42 

7.4 Velocity Profiles of Main Bifurcation 

 

Figure 7.10 :Lines 
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Figure 7.11 : Velocity profiles of various viscosity models 

 

In this section the effects of non-Newtonian properties on velocity profiles are 

discussed. To assess this effect, the velocity profiles along three lines inside the 

arteries  are compared.      

Velocity profiles of non-Newtonian and Newtonian model simulations are studied on 

three distinct lines inside the arteries. The first of these lines, L1, is located right 

before the main bifurcation, the second line, L2, is on both the main bifurcation and 

entrance of internal carotid artery, and the last line, L3, is located on the largest zone 

of the carotid sinus (see Figure 7.10).  

Due to the lower shear rate on the centre-line of the artery, the non-Newtonian 

properties are dominant in this region. Because, the shear rate near the artery walls is 

higher, the impact of non-Newtonian effects is not dominant on velocity profiles on 

this region. As it can be seen in the Figure 7.11, while the velocity profile of a 
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Newtonian model is paraboloid, the non-Newtonian models cause flatter velocity 

profiles according to shear-thinning properties of non-Newtonian models. 

Furthermore, the differences between non-Newtonian and Newtonian models are 

greater in the centre-line. Generally the Carreau and the Generalised Power Methods 

are in the same tendency.  

The comparison of the velocity profiles on L1, L2 and L3 lines indicates that the 

bigger velocity gradient from A to B results an increment of non-Newtonian 

properties. In L1 line, the velocity gradient is smaller and velocity profile is smoother 

then the values of difference rate under 5%. Moreover, in the L2 line, the value of 

difference rate is about 20% because of the higher velocity gradient and the rougher 

velocity profile. Figure 7.12 shows the differences and the differences rate with non-

Newtonian and Newtonian models.  

 

Figure 7.12 : Differences between non-Newtonian and Newtonian on Velocity 

Profiles 

 

7.5 Blood Flow and Moving Vessel Wall Interaction 

To investigate the effect of the moving wall on the WSS distributions, the 

comparison of results of moving boundary and rigid boundary is made. In the 

simulations Carreau, Casson and Generalised Power Method viscosity models are 

used to incorporate the blood rheology. As it can be seen in figures, moving 

boundary results in higher WSS distribution. The difference between the moving and 

rigid boundaries increases when the velocity gradients are higher. At the time of 

0.09s the velocity inlet profile has maximum value and at the time of 0.38s the 
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velocity inlet profile has the minimum value. Therefore, the difference between the 

WSS distribution at t=0.09s and the WSS distribution at t =0.38s occurs due to the 

velocity magnitude at these time steps. 

7.5.1 Rigid-Moving Wall Comparison of the Casson viscosity 

 

Figure 7.13 :On A region, WSS differences between moving boundary and rigid 

wall at time 0.09s 

 
 

Figure 7.14 :On A region, WSS differences between moving boundary and rigid 

wall at time 0.38s 
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Figure 7.15 :On C Region, WSS differences between moving boundary and rigid 

wall at time 0.09s 

 

Figure 7.16 :On C Region, WSS differences between moving boundary and rigid 

wall at time 0.38s 
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7.5.2 Rigid-Moving Wall Comparison of Generalised Power Method viscosity 

 

Figure 7.17 :Carotid Sinus 

 

  

Figure 7.18.a :Difference at time=0.02s Figure 7.18.b :Difference at time=0.09s 

  
Figure 7.18.c :Difference at time=0.38s Figure 7.18.d :Difference at time=0.95s 
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Figure 7.19: Main bifurcation of the Carotid artery 

 

  

Figure 7.20.a :Difference at time=0.02s Figure 7.20.b :Difference at time=0.09s 

 

 
 Figure 7.20.d :Difference at time=0.95s 
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Figure 7.21: Common Carotid 

  

Figure 7.22.a :Difference at time=0.02s Figure 7.22.b :Difference at time=0.09s 

 

 

Figure 7.22.c :Difference at time=0.38s  
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7.5.3 Rigid-Moving Wall Comparison of Casson viscosity 

 

Figure 7.23 :Carotid Sinus 

  

Figure 7.24.a :Difference at time=0.02s Figure 7.24.b :Difference at time=0.09s 

  
Figure 7.24.c :Difference at time=0.38s Figure 7.24.d :Difference at time=0.95s 
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Figure 7.25: Main bifurcation of the Carotid artery 

 

  

Figure 7.26.a :Difference at time=0.02s Figure 7.26.b :Difference at time=0.09s 

  
Figure 7.26.c :Difference at time=0.38s Figure 7.26.d :Difference at time=0.95s 
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Figure 7.27: Common Carotid 

  

Figure 7.27.a :Difference at time=0.02s Figure 7.27.b :Difference at time=0.09s 

  
Figure 7.27.c :Difference at time=0.38s Figure 7.27.d :Difference at time=0.95s 
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8.  CONCLUSION 

In blood flow simulations with low Reynolds number, the importance of non-

Newtonian properties are effected by some factors. One of these factors is the 

geometrical properties of the artery. At the bifurcation and narrowing zones of 

arteries, the non-Newtonian effects are small due to the high shear rate at these 

regions. Another factor is the magnitude of an instantaneous velocity at the velocity 

inlet profile. For example, at t=0.09 sec. the velocity profile has maximum value so, 

the differences between non-Newtonian and Newtonian models are minimum. 

On the other hand, no big differences on the velocity profiles of non-Newtonian and 

Newtonian are appeared and the maximum effect of non-Newtonian properties are 

observed on the center-line of the vessel according to the lower shear rate. 

The Carreau and the Generalised Power Method generate higher viscosity at lower 

shear rates thus, these two models predict higher WSS distribution than that of the 

Newtonian model. But, at higher shear rates, the results of the Generalised Power 

Method converged to the results of Newtonian more quickly than the Carreau model. 

This feature is directly related to the mathematical formulation of the Generalised 

Power Method and the Carreau model.  

The Casson model predicts lower WSS values than the other non-Newtonian models 

because at low and middle shear rates its viscosity smaller than those of the Carreau 

and the Generalised Power Method as it can be seen in the figure of apperant 

viscosity. At high shear rates the viscosity of Casson is a little above of the 

Newtonian viscosity and it does not converge to the Newtonian viscosity. As a result 

of this at the region with high shear rates the difference rate does not decrease while 

the difference of the others decreases.  
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