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COMMUNITY DETECTION IN SOCIAL NETWORKS USING PARALLEL
CLIQUE-FINDING ANTS

SUMMARY

Constantly increasing popularity of Internet attracted people to share and collaborate
more information with the rest of the world. This phenomenon motivated many
disciplines to expand their research areas onto social networks which are also
constantly growing parallel to the advent of Internet. The growth of the social
networks with help of Internet also led research areas to search of community
structures to be established on those networks. Community structures can be
established depending on the interactions between the network elements and the
detection of those structures became popular in the last years.

The basis of community detection, the community structure, can be defined with the
density of interaction in between the network members of the corresponding
network. In graph theory, networks are represented with graphs, where the network
members are nodes/vertices and the interactions in between them are the edges of the
graph. Thus, the definition of community can be formed as follows: a group of
nodes which possess higher density of edges in between and lower density of edges
going other nodes out of that group can be named as community.

There are many community detection methods emerged with the popularity of the
subject. The popular ones can be named as hierarchical clustering, spectral bisection
and fast greedy community detection method based on modularity maximization.
The modularity is a quality assessment parameter proposed for community detection
and its widely used on aforesaid community detection tools as an indicator of
clustering quailty.

Inspite the fact that there is a lot of improvement on the community detection
methods (i.e. on time complexity), they still suffer from high computational costs and
ineligible scalability on large-scale network graphs. In this thesis study, we propose a
novel method to reduce the graph to a maintainable size while preserving its quality
based on modularity. With the algorithm we propose, the community detection tools
will be less affected from the scalability and computational cost problem on large-
scale social networks.

As the basis of our reducing algorithm, we used the clique scheme which can be
shown as the basic structure of a community on network graphs, along with clans and
plexes. The cligue is the fully connected subgraph where the almost fully connected
subgraph is named as quasi-cliqgue in graph theory. In the thesis study, we accept the
quasi-cliques as the basis of communities and try to find all possible quasi-cliques in
the network graph with an nature inspired optimization tool: Ant Colony
Optimization (ACO). The Ant Colony Optimization technique uses ants to search the
optimum solution in a given problem. They use pheromones to favor the overall
optimum solution each iteration and lay the pheromones on the solution path for ants
to follow the path on the next iterations. Ants search for all possible quasi-cliques in

Xvii



their journey on the graph to construct the best solution which leads to better
reducement with minimum quality loss.

The steps of our proposed algorithm are defined as follows:

1. Depending on the size of the network graph, especially on large-scale graphs
due to concerns on computational cost, a snowball sampling method is
applied to whole graph to create subgraphs on the original graph. Each
subgraph will be handled by threads in parallel for further processing.

2. ACO models are run on each snowball thread in parallel. The used ACO
models in the process are Ant Colony System (ACS), Max-Min Ant System
(MMAS) and Rank-based Ant System (RAS). The ants on find the best
collection of quasi-cliques one each subgraph. The cliques are intended to be
fully connected, however, regarding the relaxation threshold defined for our
thesis study, the connectedness of the clique can be relaxed upto a threshold,
which will in return allow to collect quasi-cliques on the journey. The best
ant is than chosen with the highest total score gained, depending on its clique
collection’s quality.

3. As the clique collection found by the ants intersect a node in between each
clique of the collection, it should be fixed. This problem is called overlapping
and its fixed right after the ACO step results with a clique collection. The
shared nodes are assigned to clique with higher number of nodes that shares
it.

4. The fixed cliques are transformed into a single node, called cligue-node,
which will be used with other clique-nodes and unassigned nodes in graph
transformation phase. In this phase, the exisiting edges are removed and new
edges are created to connect new nodes of the reduced graph, with assigned
weight values based on a weighting scheme derived from the concept of
edge-betweenness.

5. On the last phase, newly emerged reduced graph is processed with a fast
greedy community detection method and the results are compared with the
original graph’s results.

We run our experiments on several medium-scale and large-scale social network
graphs as well as some benchmarking datasets. The experiments produced results on
number of cliques found, total score achieved, number of nodes and edges in the
reduced graph, number of communities found, overall modularity of the graph and
Davies-Bouldin Index value of the graph. The results of the experiments show that
the ACO models do not differ significantly on clique quality and the overall solution
quality. Modularity values seems to be preserved on the reduced graph compared to
the original graph, while Davies-Bouldin Index, which is used as a cluster validty
tool, also validated the results of clustering on reduced graph and the original graph.
In addition, we monitored a reducement of 50% on nodes and edges on the original
graph, which will led to a improvement of time complexity O(E.ViogV) of the used
fast greedy algorithm to O((E.V/4)log(V/2)), when used with our preprocessing.

Consequently, we recommend the use of each ACO models in the process to
optimize the computational costs and scalability of the any community detection
method used with the preprocessing algorithm proposed in this thesis.
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SOSYAL AGLARDA TAM BAGLI ALT CiZGE ARAYAN PARALEL
KARINCALAR iLE TOPLULUK BULMA

OZET

Internet agmin siirekli artan popiilaritesiyle birlikte, insanlar daha ¢ok bilgiyi ag
iizerinden diinyanin geri kalaniyla paylagsmaya ve gelistirmeye bagladilar. Bu
fenomen bircok farkli disiplini, Internetin gelisimine eszamanli ve siirekli bir sekilde
biiyliyen sosyal aglar iizerinde arastirma faaliyetlerini genisletmeye yiireklendirdi.
Internetin yardimiyla sosyal aglarin bilyiimesi arastirma alanlarin1 bu ag cizgeleri
iizerinde topluluk yapisi aramaya yoneltti. Ag elemanlar1 arasinda olusan/varolan
etkilesimlere dayali olan topluluk yapilar1 ve bunlarin tespiti, son yillarda popiiler
olmaya basladu.

Topluluk arama yontemlerinin temeltasi, topluluk yapisi, verilen ag ¢izgesinde
bulunan ag elemanlarn arasindaki etkilesimin yogunlugu ile tanimlanabilir. Cizge
teorisinde ag yapilar ¢izge ile temsil edilir; ag elemanlan diiglime, elemanlar
arasindaki etkilesim/yakinlik gdstergesi ise ilgili iki diigiim arasindaki ayrita karsilik
diiser. Bununla ilintili olarak ¢izgelerdeki topluluk yapilar1 su sekilde tanimlanabilir:
birbirileri arasindaki ayrit sayis1 gruba dahil olmayan diger ayritlarin sayisina gore
fazla olan diigiim gruplar fopluluk olarak adlandirilir.

Konunun popiilerliginin artmasiyla birlikte birgok topluluk bulma algoritmasi ortaya
cikmigtir. Bunlardan popiiler olanlari, asamali kiimeleme, spektral boliimleme ve
birimsellik enbiiyiitme prensibi ile c¢alisgan hizli a¢ gozli topluluk bulma
algoritmasidir. Birimsellik, topluluk bulma yontemi i¢in Onerilen bir kalite analizi
aracidir ve birgok topluluk bulma algoritmasi tarafindan kiimeleme kalitesini 6l¢gmek
i¢in kullanilir.

Topluluk bulma algoritmalarindaki birgok yapilan iyilestirmeye (6rn. zaman
karmasikligi) ragmen, bu algoirtmalar islem maaliyetleri ve biiyiik Olcekli ag
cizgeleri iizerinde 6l¢eklendirilme sorunu yiiziinden olumsuz yonde etkilenmektedir.
Bu tez calismasinda, eldeki ¢izgeyi Olgeklenebilir bir boyuta indirgeyebilen ve bu
indigeme sonucunda birimsellige dayanan kalite analizinden minimum kayipla ¢ikan
bir yontem &nerilmektedir. Onerilen bu ydntem ile topluluk algoritmalari, islem
maaliyetleri ve 6l¢eklendirilsme sorunundan daha az etkilenecektir.

Onerdigimiz algoritmanin temeli olarak, klanlar ve pleksler gibi, ag cizgelerindeki
topluluklarin yapitas1 olarak kabul edilen tam bagl alt cizgeler kullanilmistir. Tam
bagh alt ¢izge (hizip), bitin diiglimleri arasinda en az bir ayrit olan diigiim
kiimelerine denir. Aralarinda ayrit olmayan diigiim ¢ifti sayisinin genele oranla ¢ok
cok az oldugu alt ¢izgelere ise yari-bagh alt ¢izgeler adi verilir. Bu tez ¢alismasinda
yari-bagh alt ¢izgeler topluluk yapilarinin yapitasi olarak ele alindi ve ¢izgelerdeki
biitiin olas1 yar-bagh alt ¢izgelerin, dogal esinli bir eniyilestirme araci olarak Karmca
Kolonisi Eniyilestirmesi yontemi, bulunmasi amaclandi. Karinca Kolonisi
Eniyilestirmesi teknigi, karincalar1 kullanarak problem iizerindeki en iyi sonucu
bulmaya calisir. Karicalar en iyi yontemi belirlemede yon gosterici olmasi i¢in her
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¢zOum liretme adiminda feromon salgilarlar ve bu feromonu problemde iirettikleri
¢Oziim yolu iistiine, bir sonraki adimda bagka karincalar tarafindan izlenebilmesi i¢in
birakirlar Karincalar ¢izge {izerindeki olas1 biitiin yari-bagh alt ¢izgeleri bulup en iyi
¢cOziimii tlireterek, c¢izge lizerinde minimum kalite kaybi ile indirgeme yapmaya
caligirlar.

Onerilen algoritmanin adimlar1 asagidaki siralanmustir:

1. Calisilan ag ¢izgesinin boyutuna baglh olarak, oOzellikle biiyiik Olgekli
cizgelerde dogabilecek islem maaliyeti sorununa 6nlem amagli, ¢izgeyi daha
kiigiik alt ¢izgelere boliimlendirmek igin kartopu 6rneklemesi yapilir. Olusan
her alt ¢izge iizerinde, bir sonraki adimlar icin biriryle paralel islecler ¢alisir.

2. Olusturulan her kartopu islecinde Karinca Kolonisi Eniyilestirmesi modelleri
calisir. Bu adimda kullanilan yontemler sirasiyla Karinca Kolonisi Sistemi,
Engok-Enaz Karinca Sistemi ve Riitbe-bazli Karinca Sistemi’dir. Karincalar
her alt ¢izgede en iyi yari-bagh alt ¢izge listesini olusturmaya calisirlar.
Cizgelerin tam bagli olmas1 amaclanir, fakat bu tez ¢alismasinda onerilen bir
esik degeri ile cizgede belli oranda ayritin eksik olmasina izin verilir ve iglem
boyunca yari-bagli alt cizgeler de listeye eklenir. Coziim listesindeki tam
veya yari-bagh alt cizgelerin kalitesine bagli olarak en iyi puana sahip
karinca, en iyi karinca segilir.

3. En iyi karincalar tarafindan olusturulan alt ¢izge listesindeki cizgeler, islemin
dogas1 geregi bir digimi paylasirlar. Bu sorun iistiiste binme olarak
adlandirilabilir ve bu asamada diizeltilir. Diizeltme isleminde paylasilan
diglim en cok diigiime sahip olan ve bu diigiimii paylasan alt ¢izgeye verilir.

4. Diizeltilen alt ¢izgeler tek bir diiglim haline doniistiiriiliir; diger diigiim
gruplart ve atanmamis diiglimlerle birlikte c¢izge doniistiirme isleminde
kullanilacak bu yeni diigiime ¢izge-diigiim denir. Bu adimda, islenmemis ana
cizgedeki tiim ayritlar silinir ve ayrnt-arasindalik kavramindan esinlenerek
belirlenen agirlik degeri ile ¢izge-diigiim ve atanamamis diigiimler arasinda
yeni ayritlar yaratilir.

5. Son adimda yeni oluisturulan indirgenmis ¢izge, bir hizli a¢ gozlii topluluk
bulma algoritmasi ile islenir; sonuglar islenmemis ¢izgenin sonuglari ile
karsilastirilir.

Popiiler kiyaslama verikiimeleri ile orta ve biiyiik 6l¢ekli sosyal ag verikiimeleri
tizerinde testlerimizi kostuk. Testlerimizin irettigi, karsilagtirma igin kullanilan
degerler, toplam tam veya yari-bagh alt ¢izge sayisi, toplam puan, indirgenen
cizgedeki diigiim ve ayrit sayisi, toplam topluluk sayisi, genel birimsellik ve Davies-
Bouldin Indeksi’dir. Sonuglar, tiim Karinca Kolonisi Eniyilestirme modellerinin,
bulunan tam veya yari-bagh alt ¢izge ve genel ¢oziim kalitesinde biribirine yakin
olduguna isaret etmektedir. Cizge indirgenmesi sonrasinda hesaplanan birimesllik
degerlerine gore kalitenin korundugu gozlenmis ve Davies-Bouldin indeksi’ne gore
de kiimeleme kalitesi acisindan da en alt seviyede kayip oldugu dogrulamustir.
Bunlara ek olarak, ¢izge tlizerinde diigiim ve ayrit sayis1 bkaiminda %50’ye varan bir
azaltilma gozlemlenmis, bu sonucun da, Onerilen Onisleme yoOntemiyle beraber
kullanildiginda, O(E.VIogV) zaman karmasikligina sahip topluluk bulma
algoritmasinin karmasikligint O((E.V/4)log(V/2)) degerine indirdigi hesaplanmustir.

Sonug¢ olarak, bu tez calismasinda sunulan oOnisleme yonteminin, kullanilacak
herhangi bir topluluk bulma yonteminin, islem maaliyetleri ve olgeklendirilme
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sorunun en aza indirgenmesi adma, bahsi gegen 3 Karinca Kolonisi Eniyileme
yontemlerinden biri segilerek, ilgili topluluk bulma yontemi ile beraber
kullanilmasini tavsiye ederiz.
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1. INTRODUCTION

The continuous growth of Internet, which makes information using/sharing and
collaborating easier for people, also allows the attractiveness of social networks as a
research topic in many different disciplines grow in parallel. Depending on the
frequency/density of interactions/similarities between each network members,
community structures might be established in those social networks. Detection of

these community structures is a popular research topic.

The definition of community in a social network, from computer science perspective,
can be given as follows. Nodes/vertices represent the members of a given network
while edges in between the nodes represent the relevance/interaction/similarity
between the corresponding nodes. With regards to latter definition of network graph,
communities are defined as the group of nodes with higher density of edges in
between, when compared to the outward edges (edges from the community nodes to
the outer nodes which reside out of that community) [1]. A term, proposed in the
context of community detection on network graphs by Girvan and Newman [2], the
modularity is the density indicator of whole communities in a given network, used as

a quality metric.

There are many variants proposed for community detection, which use different
approaches such as greedy approaches [3], or hierarchical clustering on the given
social network [4]. However, large-scale social networks cause scalability problems
related to increasing computational costs when these community detection methods
are used. The computational complexity of these community detection methods
comes from these two parameters: number of nodes and number of edges in the
given network. In this thesis work, we propose a novel method which enables those
community detection methods to process effectively on large-scale social networks.
The proposed method reduces the size of the network, which reduces the execution
times of the community detection methods on large-scale networks which improves

methods’ scalability while preserving the solution quality.



In our approach, the base element that forms communities, cligues, are used to detect
community structures. Cligue, a graph theory concept, can be defined as a fully
connected subgraph, whereas an almost fully connected clique is named as a quasi-
clique. In [5], quasi-cliques are accepted as the basis of communities. Ant Colony
Optimization (ACO) techniques are used in literature [6] to search for cliques in a
given graph. We used a modified version of an ACO based maximum clique search
algorithm [6] to find the quasi-cliques of all possible sizes in the given graph.
Overlapping cliques (cliques which share node with other cliques) are corrected after
ACO step. The resulting cliques, named metanodes or clique-nodes in this study, are
used in graph transformation step. Graph transformation step is required to shrink the
original network graph to a manageable size for community detection methods. In
this step, connections between the individual nodes belonging to each clique are used
to form new edges between clique-nodes. At the last step, a traditional community
detection method [7] is used on the transformed graph for community detection. The
aforementioned approach is implemented and the experiments are run on benchmark
social networks commonly used to compare results of community detection
approaches [8]. We use the snowball sampling method [9], which is a technique to
create samples starting from a random instance and growing like a snowball by
adding the neighbors of that instance to the pile, to generate these subgraphs and we
run the ACO-based clique finding technique on each one in parallel, which allowed

us to run our experiments for larger-scale social networks, which is also used in [10].

This thesis is structured as follows: first, in Section 2, we give a problem definition
for community detection on given networks and we present related work in social
networks and community detection. Following with Section 3, we explain the ACO
technique and give details about the two ACO variants we use in this study, namely
the Ant Colony System (ACS), the Max-Min Ant System (MMAS) and the Rank-
based Ant System (RAS). Then, we present our proposed approach to find quasi-
cliques in a graph for community detection in Section 4. Section 5 shows our
experimental results and our analysis of these results. Finally, Section 6 concludes

the paper and provides directions for possible future work.



2. COMMUNITY DETECTION PROBLEM

2.1 Problem Definition

The community detection problem on social networks, while considering many
definitions proposed in the literature, can be defined and formulated as follows:
Nodes or vertices are represented with set V" while edges in between those vertices,
which  show the pair wise connections between the individuals
(similarities/relevancies between two individuals), are represented with set £. Graph
G=<V, E> is a model of a social network. With the given graph definition, a
community can be defined as a subgraph in a network graph that has a higher density
of edges in between its members and a lower density of edges from its members to

those outside the subgraph.

Figure 2.1 : Community definition

The social network graph is represented by an adjacency matrix M of NxN where N is
the number of nodes in the corresponding graph. An adjacency matrix cell M;; is the
indicator to an edge between the nodes i and j of the graph. The value of the cell will
be 0 if there is no connection (no similarities or interaction) between the
corresponding nodes; the value will be 1 or a positive real value depending on the

unweighted or weighted edges on the corresponding network graph. The problem of



community detection is to find £ number of communities in a given network graph,

such that each community satisfies Eq. (2.1):

Z Zaij > ZZbId
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where a;; is the similarity (a relation/relevance indicator value in real number form)
value of an edge in the community K and by is the similarity value of an edge to the

outside of that community K.
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Figure 2.2 : An example community structure

Essentially, the community detection problem is a type of clustering problem.
However, types of the network data used in the problem lead to significant
differences. In the original clustering problem, a similarity or distance matrix for the
given network data is enough to apply clustering methods (i.e. ~~-means, hierarchical
or spectral clustering). On the other hand, discrete network data (i.e. biological or

social networks) are different from the above menitoned network data; they are



large-scaled compared to the other types (real-world data and commonly have a
power law degree distribution), and contains data patterns to be detected by graph
algorithms (i.e. cliques). As a result, the community detection problem is based on
different parameters when compared to original clustering, which can be named as

edge-betweenness, network modularity and so on.

2.2 Related Literature

Cohesive groups like cliques, clans or plexes, can be the definition of communities.
There are many approaches in literature which use those cohesive groups as the basis
of their detection method. Among those approaches, Donetti and Munoz proposed a
hierarchical clustering approach, based on detection of larger communities using
Laplacian eigenvectors as a similarity measure on a given network graph [4]. The
essence of the approach lies on the division operation used to establish communities,
while the vectors are re-calculated as long as the division operation continues.
Despite the fact that the initial number of communities on the given graph is not
required by the method, the termination condition for the division process cannot be

optimized to come up with the best clustering result on the corresponding graph.

The Network Modularity term, proposed by Girvan and Newman [11], is introduced
by a divisive approach structured on elimination of edges from the network graph
based on the betweenness values. The betweenness used here is based on edge
betweenness where weights are assigned to edges, which are stationed on the shortest
path between pairs of nodes. The edge betweenness value increases in parallel with
the number of shortest paths on that edge. “Q”, the network modularity, is the ratio
of in-community edges to the randomly chosen edges on a network subgraph.
Network Modularity, Q, takes on values in between 0 and 1. The value depends on
the clustering measure on the given graph. A close to 1 value means the communities
in the graph have fewer connections to the outside of that cluster when compared to
its inward connections; likewise, a close to 0 value means the opposite. An optimized
Q value helps to find a better division on a given network graph, although the
performance loss on large-scale network graphs is still a drawback for the proposed
algorithm. Considering the performance of corresponding method, Radicchi

proposed a similar edge clustering algorithm with better performance [12].



A more enhanced, fast greedy clustering method, based on modularity maximization,
is proposed by Clauset, Newman and Moore [3]. Clustering continues by merging
nodes with maximum AQ and stops when AQ results are negative. Although Wakita
and Tsurumi [7] came up with an optimized version of this method, there are still

concerns on performance and solution quality for large-scale graphs.

A different clustering algorithm, proposed by Palla et al. [13], uses cliques as a basis
of the detection similar to the approach in this thesis. In the approach, called k-clique
percolation, an edge probability equation is proposed to find a suitable & value for
the k-cliques to be created. Once a suitable value is found, a giant component is
searched by attaching k-cliques one-by-one. The algorithm is said to be successful
with better performance on overlapping community detection on Erdos-Rényi (ER)

random graphs.

As the popularity of community detection increases, different approaches are being
proposed. Nature inspired approaches are also used in this manner. A genetic
algorithm proposed by Pizzuti can be given as an example [14]. The algorithm uses a
fitness function for the diversification of node groups and establishes communities.
ACO techniques are also used for community detection. The study of Liu et al. [15]
proposes an ant clustering technique based on Enron’s mail network communities. In
the preliminary study of the thesis, described in [8] and [10], we also used an ACO
technique. However, unlike in [14], ACO is not used for clustering. We used ACO to
determine cliques, which will then be used as vertices in a reduced graph. A regular
clustering based community detection algorithm is then applied on this reduced
graph. By doing this, we aimed to overcome the performance loss of community
detection methods on large-scale networks. For optimization of the study and
structuring of the thesis, we further modified our approach to work in parallel on
subgraphs of the original network graph as in [10], which were created using
snowball sampling. We also modified the algorithm to search for quasi-cliques,

which will be described in detail in Section 4.

There are also similar graph reducing studies called as “graph coarsening”, which is
a part of “Multi-level Graph Partitioning”. Their main process is based on 3 sub-
processes: coarsening, partitioning and un-coarsening. A detailed comparison on the
schemes which Multi-level Graph Partitioning use is given in [16], as well as an

evolutionary approach proposed in [17]. Even though the coarsening part is similar,



the approach is not fully applicable to our algorithm as it mostly works on graphs
with weights on both edges and nodes. Following to that, the partitioning is based on
balanced partitions on the graphs, unlike community detection which is based on

clustering in search for a common trait.






3. ANT COLONY OPTIMIZATION

ACO, one of the most commonly used swarm intelligence techniques in literature, is
based on the behavior of real ants. ACO was first introduced by Marco Dorigo in his
PhD thesis [18]. In the real world, ants (initially) wander randomly, and upon finding
food return to their colony, while laying down a special chemical called the
pheromone. This is used to communicate with other ants. If other ants come across a
path with pheromones on it, they are likely to follow the trail, returning and

reinforcing it if they also find food along the same path.

The basic ACO algorithm is given below. An ACO iteration consists of the solution
construction and pheromone update stages. In each iteration, each ant in the colony
constructs a complete solution. Ants start from random nodes and move on the

construction graph by visiting neighboring nodes at each step.

Algorithm 1 Basic ACO Outline

1: set ACO parameters
initialize pheromone levels
while stopping criteria not met do
for each ant k£ do
select random initial node
repeat
select next node based on decision policy
until complete solution achieved
end for
update pheromone levels
end while
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An ant k chooses the best neighbor with a probability of gy. Otherwise, the next
visited node is determined using a stochastic local decision policy based on the
current pheromone levels 7; and heuristic information #; between the current node
and its neighbors with a probability pk,-j as calculated in Eq. (3.1); where a and S are
integer values to define powers of pheromone levels and heuristic information, N is

the neighborhood of nodes for ant £’s journey.
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Pheromone trails are modified when all ants have constructed a solution. First, the
pheromone values are evaporated by a constant factor on all edges. Then, pheromone
values are increased on the edges the ants have visited during their solution
construction. Pheromone evaporation and pheromone update by the ants are

implemented as given in Eq. (3.2) and Eq. (3.3) respectively,

7 < (1- o)z (3.2)

T@/<—T4i+ZAT,§ 3.3)

k=1

where 0 <p <1 and ATkjj is the amount of pheromone deposited by ant £.

ACO has been applied successfully to many combinatorial optimization problems,
such as routing problems, assignment problems, scheduling and sequencing problems
and subset problems, etc. Ant System (AS) is the first implementation of ACO
algorithms, and has been the basis for many ACO variants. There are many
successful AS variants in literature. Among the most commonly used variants, the
elitist AS, rank-based AS, the MAX-MIN AS (MMAS), the ant colony system
(ACS), the best-worst AS, the approximate nondeterministic tree search, and the
hyper-cube framework can be mentioned [19]. MMAS and ACS are shown to be
good both in solution quality and also in solution speed for the example cases in [19].
Therefore, we also use them in this study. In addition to above variants, RAS is also
used in our study to observe the differences with MMAS. MMAS, RAS and ACS are
among the approaches which can be considered as direct variants of AS, since they
both use the basic AS framework. The main differences between AS and these
variants are in the pheromone update and pheromone management details. The AS
algorithm implements the basic ACO procedure detailed above. The following
paragraphs explain the differences between the selected ACO variants and AS. For
further details see [19].
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3.1 The Ant Colony System (ACS)

The ACS [19] differs from AS in three main points:

e First, a pseudo-random proportional action choice rule is used, which allows

the exploitation of the ants’ search experience.

e Secondly, pheromone evaporation and deposit is applied to the edges of the

best-so-far solutions.

e Finally, a local pheromone update, which includes evaporation, is applied
each time an ant passes through the corresponding edge. This favors

exploration over exploitation.

At the end of each iteration in ACS, the pheromone trails are again updated similar to
in AS, but the pheromone trail updates, both evaporation and new pheromone

deposit, are implemented only for the edges belonging to the best-so-far solution.

3.2 The MAX-MIN Ant System (MMAS)

The MAX-MIN Ant System (MMAS) [19] has four major differences from AS:

e First, the pheromone update is allowed for the iteration-best, that is the ant
with the best solution for that iteration, or best-so-far ant, that is the ant with

the best solution for all iterations, throughout the runs.

e Secondly, pheromone limits in an interval [Tmin, Tmax] 1S defined to prevent

stagnation on local optimum.

o Thirdly, edges are initialized with upper pheromone limits to favor

exploration over exploitation in the beginning of the run.

e Finally, the pheromone trails are reinitialized when the solution does not

improve for a number of iterations or stagnation occurs.

Pheromones are deposited on the edges according to the equations as given for AS
above. The difference is that the ant which is allowed to add pheromone may be

either the best-so-far or the iteration-best ant. Commonly in MMAS
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implementations, both the iteration-best and the best-so-far update rules are used

alternatively.

3.3 The Rank-Based Ant System (RAS)

Rank-based Ant System (RAS) [19] is an improved version of the original Ant System
(AS). The amount of the pheromone, which selected ants deposit on the trail,
decreases over time with respect to their ranks of their solution. The ranks are
decided after the solutions are ordered by their solution quality. Each ant deposits its
pheromone according to their weight related with rank ». In each iteration, the best-
so-far ant and the remaining (w-1) best ant deposit their pheromones. The r-th best
ant will have a weight max (0, w-r), while the best-so-far ant’s weight is w. Eq. (3.4) is the

pheromone deposit rule for RAS, where S, denotes the solution cost for r-th best ant.

T« Ti+ Y (w=r)- AT, +w-AT),

AT = edge(i,j) e Tr=1/S8r .
g edge(la])eTr:>O

3.4 ACO for the Maximum Clique Problem

For the maximum clique version of ACO, each ant is placed on a random node of the
given graph G=<V, E> where V is the set of nodes and £ is the set of edges between
them. Ants lay pheromones on the edges of the cliques they find through their walk.
Ants are forced to visit a node only once in their journey, by keeping a tabu list for
each ant. This list contains all the nodes in the ant's trajectory until it gets stuck or it
finds a feasible solution. In such a case, the ant restarts its journey per request and its
tabu list is reset. Each ant chooses its next node based on the probabilistic state
transition rule, given in the previous subsection that uses pheromone values and
heuristic information as components. Also note that nodes are chosen by the ant if
they establish a clique with nodes the ant visited: next node to be selected should
have connections with all nodes in the clique the ant has created. After each ant
applies the same rules and creates a solution, pheromone update is performed, based
on the used ACO variant. The pheromones are deposited on the edges of the found

cliques. For further details on the ACO for Maximum Clique problem, please refer to

[6].
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4. COMMUNITY DETECTION USING ACO

In [8], we proposed an ACO-based technique for community detection. In this thesis,

we improve our approach through the below steps.

1. Given network graph is divided into subgraphs through snowball sampling
method.

2. ACO techniques are applied in parallel to each snowball sample in the search

of quasi-cliques.
3. Opverlapping cliques are fixed.

4. Fixed subgraphs with non-overlapping cliques are combined and transformed
into a graph smaller than the original graph. The graph re-creation is based on

the concept of betweenness, to construct new edges for the graph.

5. The resulting, transformed graph is processed with a community detection

algorithm to find possible community structures in.

In the preliminary study, we used the above steps to reduce the network graph, using
ACO to search for fully connected cliques. As an enhancement on the protoype
version of the algorithm, we modified the search dynamics and the reconstuction
phase as well as parallelization of the method. We are able to reduce the size of the
network even more, through relaxing the fully connected clique search constraint and
modification to search for quasi-cliques. Through sampling and then parallelization,
we are able to search on the original network in parallel. This increases the

scalability of our proposed approach.

4.1 Snowball Sampling for Creating Subgraphs

In the preliminary study, ants traversed the whole graph to search for cliques. As an
improvement to shorten the execution times on large-scale network graphs, a
sampling method is performed on the whole graph to create subgraphs which then

allowed us to use ACO techniques on each of the subgraphs in parallel.
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First, the number of parallel ACO threads to be run on the network graph is
determined with respect to the size of the corresponding graph. The decided value is
given as a parameter to our method. Snowball sampling is performed on the given
graph to create subgraphs for each of the threads. Each snowball agent is placed on a
random node in the graph and it walks on the graph by adding neighbor nodes, until
the snowball can’t grow any more. Then each snowball becomes a subgraph on
which an ACO thread executes. In the process, if the snowball has fewer nodes then
the threshold limit, which is chosen as the number of ants, then the snowball is
discarded and started again while there are available unvisited nodes in the graph.

The snowball sampling algorithm is shown below.

Algorithm 2 Snowball Sampling

1: 1initialization of snowball sample memory
2: while there is an unfinished snowball do
3: for snowball thread ¢ do

4: if snowball is not successful then
5: select random initial node
6: if there is a node available then
7: select next connected and unvisited node
8: add selected node and the edges
9: else
10: if number of nodes in snowball is above threshold then
11: mark snowball successful
12: else
13: mark snowball not successful
14: release acquired nodes and edges
15: end for

16: end while

4.2 Ant Colony Optimization for Finding Quasi-Cliques

4.2.1 Clique Finding Approach

The Maximum Clique Finding Problem is the basis of the ACO aided search for
quasi-cliques in our solution. The original ACO based approach for the mentioned
problem is proposed by Fenet and Solnon [6], which uses an ACO variant, MMAS.
In the original approach, ants try to find the possible maximum clique in the given
network graph. In our approach, ants try to find all quasi-cliques on their path as well
as the possible maximum clique. An ant moves along its way while constructing its

cliques and starts a new clique when there is no eligible neighbor node left to add to
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the current clique. In this approach, ACS and RAS are also used as ACO variants
besides MMAS.

Different from the preliminary work on clique search, the search mechanism is
relaxed with a threshold value for connectivity. Quasi-cliques, which are actually
almost fully connected subgraphs, are dependent on that threshold value defined for
connectivity. An ant will try to find cliques on its way but it may also allow quasi-
cliques which satisfy the beforementioned threshold value. During the journey of the
ant, the next candidate node can be added to the current clique to form a quasi-clique
if the ratio is below the threshold value, which can be defined as the ratio of

unconnected nodes against the next node to number of nodes in the current clique.

4.2.2 Pheromone Trails and Heuristic Information

Ants decide to move on the next eligible node in their journey. The selection of the
next node depends on 3 parameters. The node must be unvisited, which is controlled
by a tabu list deployed to each ant. The second and the third parameters are the
pheromone level and the heuristic information, which will be described in this

section.

In the solution, pheromones are deposited on the edges of the given network graph.
Thus, the pheromone levels are represented with a two dimensional array, whose
cells are mapped to the edges of the graph. The pheromone level on an edge can be
symbolised as 7;. Higher pheromone levels on the edges attract ants to move through
them to add the nodes terminating on the corresponding edges. Higher pheromone
leves indicate the possibility of finding better cliques are on the trail. The amount of
pheromone laid on the edges are proportional to the quality of the solution.
Pheromones are initialized on the edges at the beginning of the process. The
pheromone levels are set to the same value for each ant, but the differentiation is
achieved by the addition of the heuristic information to the selection process. The
heuristic information, #;;, is the average of the degrees of the candidate nodes for
ants’ choice on the journey. Ants use both heuristic information and pheromone
combined together, to select the next best node to construct a series of quasi-cliques.
The combined value for the pheromone is called the total information and is defined
as 7% . 175 i» where a and f are the constants to adjust the weights of pheromone level

and heuristic information.
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A popular neighborhood tour is executed beforehand for pheromone initialization.
The tour creates a popular neighborhood list. Each row in the list corresponds to a
selected node and the columns correspond to the nodes connected to that node, sorted
in decreasing order of degrees of the nodes. This popular neighborhood list is used in
the heuristic approach for each node in the sub-graph. The pheromone limits differ
for each ACO variant. The following equations show the pheromone initialization for
each model. The equations (4.1), (4.2) and (4.3) are for ACS, MMAS and RAS

respectively.
Tinitial = n.pn_tour() 4.1

T max = p.pn_tour(),
T min = T max .(2]1)7] (4'2)

Tinitial = p.pn_tour() 4.3)

Pheromone limits are directly related to the number of ants used in the solution for
the Tmin value and the best-so-far ant’s score achieved at the “popular neighborhood”
tour for the Tmax value (Tiniga value for ACS and RAS). The pheromone levels on all
edges are set to the T, value to favor exploration in the beginning of the run. The
function pn_tour() returns the total score gained by the scout ant’s clique collection
constructed on the “popular neighborhood” tour, n is the number of nodes in the
graph and p is the evaporation rate. The pheromone constants 7 and (2rn)” are chosen

as in TSP problems.

The pheromone is globally distributed on the edges of the cliques found by the ants
and the amount is dependent on the solution quality defined as the score of ant. A
scoring system evaluates the score achieved by an ant, based on the cliques it has
found so far, as shown in (4.4)

midsum = bazq (vertices (C1) + edges (C1)),

=1

(4.4)

midsum
score (antk) = ———
nbCliques

where C; is the current clique found by the ant and nbCliques is the number of

cliques found by the current ant. vertices() and edges() functions give the number of
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vertices and edges in the current clique accordingly. Following that, the pheromone

difference can be calculated as in (4.5).
AT (ant k) =1 — (score( antk))_1 4.5)

The pheromone update procedures differ according to the ACO version used in the
process. There are update procedures mentioned here: global update, weigthed

global update and local update.

Algorithm 3 Global Pheromone Update

1: for each ant k do

2: for each clique C; do
3: for each edge ij do

) ) vertices{Cr)
4: CanCh {A T(ant). m_vertices antk)
S end for
6: end for
7 end for

In Algorithm 3, global pheromone update can be seen. The amount of pheromone
added to the trails is determined by the solution quality shown in (4.6). It can be seen
from the equation that cliques with higher number of vertices get more pheromone
compared to other cliques. m_vertices() function in (4.6) gives the number of nodes

in the maximum clique found so far.

vertice{Ci)

Tj < E{Af(anﬂf) |,
m_verticesantk) (4.6)

[ =1..nbCliques

Algorithm 4 Weighted Global Pheromone Update

1: for each ant £ do

2: for each clique C; do
3: for each edge ij do

: SN weioht- vertice{Ci)
4. b <_Tj-{ Clante)- weight m_verticesantr)
5 end for
6: end for
T: end for

In the weighted version of global pheromone update, shown in Algorithm 4, the
weights are used to differ selected ants when laying pheromones. This procedure is

used in RAS to determine pheromone deposits, depending on the rank of the ant.
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The local pheromone update algorithm, which is described in Algorithm 5, is only
used in ACS and allows every ant to deposit its pheromones. The parameters & and
Tinitial, Where 0<E<1 and Tiyiia 1S the initial pheromone on the edge is used. Whether
the ant creates the best solution or not, the pheromone is deposited on the edge for

both feasible and infeasible solutions.

Algorithm 5 Local Pheromone Update

1: for each ant k do

2 for each clique C; do

3 for each edge ij do

4: Tj < Tj- (1= &) + Tnitial - £
5: end for

6 end for

7: end for

The differences in pheromone update procedures between ACO variants used in this

thesis are described in the following subsections.

4.2.2.1 The pheromone update of ACS

In the ACS pheromone update process, shown in Algorithm 6, only the best-so-far
ant is allowed to deposit its pheromones on the edges of its clique series. Evaporation
is implemented at the same time of accumulation. Local pheromone update, shown in

Algorithm 5, is still used for every ant.

Algorithm 6 ACS Pheromone Update

1: for each ant k do

2: for each clique C; do
3: for each edge ij do
vertice{Ci)
i 1-p)-Ti+p-| A e —
4. Ged=p)ytitp |: Flant) mvertice:(antk)}
2 end for
: end for
7: end for

4.2.2.2 The pheromone update of MMAS

In the MMAS pheromone update process, shown in Algorithm 7, the best-so-far,
iteration-best ants are alternatively allowed to deposit pheromones on the edges of
their clique series. Iteration-best ant is the best ant for a specific iteration, where
best-so-far ant has the best solution of all iterations so far. There is one major

difference between the original MMAS model and the model in our work: restarting
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for ants depending on a branching factor is not used in our solution. Thus, the
diversity of solutions is not a problem and restart-best ant is not used in this process.
In Algorithm 7, u_gb is used to select iteration-best and best-so-far ant alternatively

throughout the algorithm. The value is chosen as 1, as restart-best ant is omitted.

Algorithm 7 MMAS Pheromone Update

1: if iteration % u_gb do

2 Global Pheromone Update for iteration-best ant
3: else

4: Global Pheromone Update for best-so-far ant

5: endif

4.2.2.3 The pheromone update of RAS

Algorithm 8 shows the pheromone update procedure of RAS. In RAS, a number of
selected ants from a ranked list are allowed to deposit their pheromones, along with
the best-so-far ant. The weight, wich will be used in the weighted global update
procedure, is determined respectively to their ranks in the list. The best-so-far ant

will have w value as weight, where ™ ranked ant will have w-r value as weight.

Algorithm 8 RAS Pheromone Update

1: for each ant k that has rank <w do
2: Weighted Global Pheromone Update
3: end for

Overall flow for the update procedure is shown in Algorithm 9. Each ant finishes its
trail, comes up with a solution and pheromone update procedure is processed

afterwards.

Algorithm 9 Pheromone Update

1: for each ACO method do
evaporate pheromones except for ACS
call the update procedure of the selected ACO method
end for
if MMAS then
check pheromone limits on the trails
end if
for each ACO method do
compute total pheromone as % . T]Bjj
end for

SPRXRADINHELD
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First, evaporation takes place on the edges with pheromones. Selected pheromone
update procedure is run after evaporation step. Before the last step, if the ACO
variant is MMAS, the pheromone limits on the edges are checked and corrected if
there is an exceeded value. Pheromone trails are updated with the total information,

defined as % . n;.

4.2.3 Solution Construction

The journey of each ant is limited with a tabu list; ants can not move to previously
visited nodes. Ants will use the degrees of the nodes in the neighborhood of the
current node as the heuristic information along with the pheromone trails on the
edges. This information helps to choose the node with the maximum degree and the
information becomes active depending on the pseudo-random proportional action

choice rule. The construction steps are shown in Algorithm 10.

Algorithm 10 Solution Construction

1: for each ant £ do

2: place ant on a random node

3: end for

4: while step <n-1do

5: stept++

6: for each ant k do

7: move to next eligible node

8: if ACS then

9: local acs pheromone update
10: end if
11: end for

12: end while

13: for each ant k£ do

14: pheromone trail update
15: end for

Ants can traverse all the nodes in the subgraph and if they get stuck along the
journey (if they could not find any eligible node to add to thier trajectory), they are

killed. Search continues until all ants are killed.

Selection of the next eligible node depends on the pheromone and heuristic
information of the edge tied to that node. A probability ratio is used to determine
dominance of pheromone and heuristic information; the selection decision is
implemented with a pseudo-random proportional action choice rule. In this rule,
shown in Algorithm 11, each eligible node is assigned a probability proportional

value and ordered in an array. Cumulative probability value is calculated and the

20



random node is selected after exceeding a defined probability parameter. The
feasibilty of the node is defined by two parameters. If the node is unvisited and if the
threshold value is not exceeded when the node is added, then the node can be
selected for that ant to move. If there are more than one feasible candidate node, then

the one with higher total information is chosen.

Algorithm 11 Solution Construction

1: prob sum=0

2: current node =c

3. for each candidate node i do
4 if not feasible then

5 prob_ptr[i] =0

6: else

7: prob_ptr[i] = total information[c][i]
8: prob_sum += prob_ptr[i]
9: end if

10: if prob_sum == 0 then

11: choose best eligible node without total information
12: else

13: select a random node in prob_sum

14: calculate the score of ant

15: end if

16: end for

4.3 Fixing Overlapping Cliques

The resulting cliques, created by the best-so-far ants in each snowball piles, are
naturally overlapping with at most one node. Traversing ants stop the constructed
clique once they get stuck, and start a new one from the last node they are at.
Eventually, a visited node in a previously created clique will be another clique’s

initial node.

Fixing overlapping cliques is easy, as shared nodes between these cliques are
detected. When two overlapping cliques are found, the shared node is added to the
clique with the higher number of nodes and is deleted from the other. The details of
this operation are explained in the first and second steps of Figure 4.1. Resulting

cliques will have no shared nodes after this operation.

4.4 Transforming the Graph

After fixing the overlapping cliques, resulting cliques will be used to transform a

new graph from the original one. The resulting non-overlapping cliques will be used
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as meta-nodes, called clique-nodes, to form a new graph which is smaller then the
original. The number of edges and the number of nodes are reduced in the
transforming process. With the reduced network graph, it will be possible to use a

community detection algorithm in the next phase of the method.

The edges in the reduced graph will have weigths as they are actually merged edges
into one edge for each node in the new graph; therefore, their weigth values should
be re-calculated. The equation for the new edge weights is given in (4.7). Edge
weight calculation is needed for the edges from clique-nodes to clique-nodes. The

intra-community edge values of the cliques are also used in this equation.

PN

ieCk jeCi

o= mln( z Zymn, Z Z ypr) (4'7)

meCk neCrk peCireCi

In (4.7), x;; 1s the relevance value of the edges between the clique-nodes while y,,
and y,, represent the relevance values of the intra-community edges of the clique-
nodes C; and C;. The edge weight ey, of the newly formed edge between the clique-
nodes or between a clique-node and an existing node is the result of the above

equation. Higher values of edge weights mean a higher similarity.

In the ACO step, each thread provides a solution constructed from a set of quasi-
cliques.After the overlap fixing step, the outputs of all threads are gathered and
combined to find the whole set of quasi-cliques. The leftover nodes, which are not a
member of any quasi-clique, are considered as nodes again in the new graph, while
each quasi-clique is formed as clique-node. Then, we calculate the weights of the
new edges in between the clique-nodes as well as the edges in between non-clique
nodes with the created clique-nodes. The edges in between nodes which are not a
member of any clique will also be preserved with their initial relevance values and

are added to the new reduced graph.

4.5 Using a Community Detection Algorithm

The reduced graph with new edges and nodes (formed from original nodes and
clique-nodes) is processed with a commonly used community detection method in
the last step of the algorithm. Among the variants of community membership

detection methods, the one which is able to process edge weights is chosen. The edge
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weights determine the strength of the relevance/similarity values between newly
formed nodes in the reduced graph. The greedy method proposed in [7] is used to

calculate modularity differences between the original graph and the reduced graph.

Clique overlapping steps (I and II) with graph transformation step (III) is shown in
Figure 4.1. (I) and (II) illustrate the detection of a node shared by two cliques after
which it is assigned to the clique with more nodes and removed from the other; (III)
shows the resulting clique-nodes with the edge weight calculated between them as

shown in (II).

0] {n (1

Figure 4.1 : Illustration of clique-node formation
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5. EXPERIMENTAL STUDY

5.1 Experimental Setup

The proposed algorithm is coded in the C language and we used the iGraph [20] C
library for the last step. For all of our experiments, we used a single PC (4GHz quad

core processor with 16GBytes of main memory).

In the experiments, for each dataset, we first run iGraph on the whole (unreduced)
graph and then on the graph reduced using our approach. We evaluate our results
based on the number of communities detected, the node and the edge count reduction
amounts, the Davies-Bouldin index values calculated as in [21] and the modularity

values (Q) calculated using the iGraph community detection implementation.

5.1.1 Datasets

We used 9 network graphs for our experiments. The first 4 are the popular network
grpahs used for benhcmarking in community detection area. The rest of the network
graphs are used for performance testing and they are significantly large-scale in size.
The information of the network graphs are given below, including the number of
edge and node number of corresponding graphs. Following datasets are retrieved

from [22,23,24].

5.1.1.1 Zachary’s Karate Club
Social network of friendships between 34 members of a karate club at a US
university in the 1970 [25]. The graph has 34 nodes and 78 edges. In the original

data, 2 community groups are introduced.

5.1.1.2 Chesapeake Bay Food Web
A food web of lifeforms on Chesapeake Bay [26,27]. The graph consists of 34 nodes

and 72 edges. In the original reports, 3 community groups are introduced.

5.1.1.3 Les Miserables
A social network graph for the characters played in the novel “Les Miserables” [28].
The edges show 2 character, each of which are represented with a node, are seen in

the same scene. It consists of 77 characters and 254 connections.
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5.1.1.4 American College Football

Network of American football games between Division [A colleges during regular
season Fall 2000 [29]. The number of teams (nodes) is 115 and the number of
matches played (edges) is 616. The reports say that there are 12 groups for the teams.

5.1.1.5 EPA

This graph was constructed by expanding a 200-page response set to a search engine
query, as in the hub/authority algorithm [30]. The data is about the pages linking to
www.epa.gov. It consists of 4,772 nodes and 8,695 edges.

5.1.1.6 Political Blogs
Political blogosphere Feb. 2005, compiled by Lada Adamic and Natalie Glance [31].
Links between blogs were automatically extracted from a crawl of the front page of

the blog. It consists of 1,490 nodes and 19,090 edges.

5.1.1.7 Power Grid

An undirected, unweighted network representing the topology of the Western States
Power Grid of the United States [32]. Data compiled by D. Watts and S. Strogatz. It
consists of 4,941 nodes and 6,598 edges.

5.1.1.8 Free Online Dictionary of Computing

FOLDOC is a searchable dictionary of acronyms, jargon, programming languages,
tools, architecture, operating systems, networking, theory, conventions, standards,
mathematics, telecoms, electronics, institutions, companies, projects, products,
history, in fact anything to do with computing [33,34]. The graph contains 13,356
words (edges) and 120,238 cross-references (edges).

5.1.1.9 Scientific Collaborations

Coauthorship network of scientists working on network theory and experiment, as
compiled by M. Newman in May 2006 [35]. The graph contains 15,179 authors
(nodes) and 79,934 coauthorship connections (edges).

5.1.2 Parameter Settings

Parameters which are specific to our algorithm and the ACO techniques used in our
implementation are shown in this section, where m is the number of ants and g0 is
the psuedo-random proportional action choice parameter used in calculating the
heuristic. The threshold value is used for quasi-cliques; it defines the acceptable

unconnected node ratio for the next node to be added to the constructed clique. We

26



performed initial experimentation to determine the ACO parameters given in the
table that provided the best performance. In ACS we used & = 0.1 for the local
pheromone update. For each of the datasets, we executed the algorithms 10 times
with each run scheduled to complete in 15 seconds or 100 iterations, whichever
occurs first. We used American College Football dataset and MMAS model, which

provides better results compared to other variants, to tune our parameters.

First, we used the dataset to optimize the time based on the constructed cliques and
achieved score for our proposed algorithm. The time is selected where the highest
score with lower nuber of cliques, which means more successful cliques are
constructed according to the proposal of the algorithm in Section 4. Figure 5.1 shows
the effect of time interval to the number of cliques found and the achieved score.
According to the figure, 15 seconds is enough to have optimum values as no valuable

contribution is monitored beyond 15 seconds.

Time values are dependent on the CPU times of the computers we used in our
experiments. According to that, the values in seconds may be changed in computers
with different CPU speeds, however, the step counts will be similar to the graph we
obtained. The seconds between 0-60 seconds are quantized to 12 samples; in faster
CPU speeds, for instance max 30 seconds wil be quantized to 12 and the result will
be same as the one we produced (i.e. 7.5 seconds time in faster CPU will be equal to

the one we found on our computer will lower CPU speed with 15 seconds ).
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17.5 2
200 + 17 §
g 1 T |mmmScoe
9 1450 4 5 _
0 1165 % —+— Cliques
100 + T
E=]
a0 | 116 E
=
15.5
S 10 15 20 25 30 35 40 45 50 55 &0
Time (seconds)

Figure 5.1 : Effect of maximum allowed time on cliques&score
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Next, the effect of number of ants to the number of cliques and achieved score is
investigated. In Figure 5.2, it is clearly seen that after number of ants is beyond 10
ants, the quality of the cliques found are decreased significantly, according to the
degrading score. The reason behind this decrease is the amount of pheromones
deposited on the edges. As the number of solution is limited by 100, which is also the
iteration count given as the termination condition, each ant finds only 1 solution
when the number of ants is given as 100. In that condition, the anst will not be able
to use pheromone matrices as the termination condition is met. As an outcome, the
amount of pheromone usage increases asthe number of ants decreases. The best
results are achieved when the number of ants are chosen as 5, where the ants find 20

solution supported with the pheromone matrix.
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Figure 5.2 : Effect of number of ants used on cliques&score

The weights of pheromone information and the heuristic information used on the
total pheromone matrix of the process are represented with o and . a=0 means the
choice of the node with highest heuristic information while =0 means only
pheromone information for the next node is used, which is explained on Section 3.
The parameter tweaking is based on the values higher than O for those 2 parameters.
In Table 5.1 and 5.2, the number of cliques found and the achieved scores are listed
according to the varying values of a and f. The tests are done with the integer values

of a and f, upto a=3 and =4. The best results are obtained using a=2 and f=2.
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Table 5.1: Effect of o and f on number of cliques found

a s

0 1 2 3 4
0 178 17.1  17.2 17 17
1 16.7 172 168 174 16.7
2 169 163 164 167 17.1
3 174 17.1 17 16.8 17.2

Table 5.2: Effect of o and f on achieved score

B
¢ 0 1 2 3 4
0 18747 18527 18423 192.79 200.54
1 23132 227.97 23009 227.83 230.12
2 22928 23028 236.61 23450 23031
3 23150 23047 232.15 232.14 23436
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Figure 5.3 : Effect of go on cliques&score

In the next step, the effect of g is tested using the example dataset. The g value is a
probability threshold to determine the next move of the ants. For the values below
the threshold value ¢, the edge with the best pheromone information is chosen,
while for the rest of the values above gy, which can be defined as 1-go, the pseudo-
random proportional choice rule is applied. The details are covered in Section 3. The
qo value brings randomness to the number of cliques found ans score achieved
beyond 0.3. The best results in score is achieved on 0.1 and 0.7, however, 0.1 is

selected as the number of cliques should be lower, which indicates better cliques are
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found. Higher values might provide diversity in the search space, however, it

affected our proposed algorithm negatively.

The effect of py is also tested. The results of the varying po values are shown in

Figure 5.4. According to the figure, py is chosen as 0.1, where the best results are

obtained.
290 19

=

L 185 §

200 2

B 18 ﬁ
s 160 L 175 & [mmmScore
@ 100 - L 17 .E —e—Cliques

- 16.5 ‘g

&0 16 E

=

0 - L 15.5

0 01 02 03 04 05 06 07 08 09 1
po

Figure 5.4 : Effect of py on cliques&score

As the next step, the number of ranks used in RAS, shown as w, is determined. The
results are shown in Figure 5.5. The maximum number of ranks is chosen as 2

according to the figure below.
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Figure 5.5 : Effect of w on cliques&score for RAS model

Branching factor is not used for MMAS approach. It actually brings diversity in the
search space, however, as the ants traverse all the nodes in the search space by

default, the branching factor is omitted for the MMAS model.
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The number of threads used on datasets for subgraph sampling via Snowball
Sampling method is determined manually according to the size (node+edge) of the
corresponding dataset. As the size of the dataset grows, an appropriate number of
threads are assigned to run on the dataset and divide the graph into that number of
snowball samples. Following that rule, no multiple threads are run in smaller dataset.
The number of snowball threads used in the process for each dataset is given in Table

5.3.

Table 5.3: Number of threads used on datasets

OZ )
o 72
~ 8% 2 o4 S 2 T ¢
o WLaot S Bw o =
Datasets | 3 2535 ¢ & ; 2 =2 5 2
5 g% B g § 8
g v a °
Threads | 1 1 3 5 10 10 10 20 20

In addition to our parameter optimization test run on Football data, we also tested our
parameters on a bigger data for validation: Scientific Collaboration data. The results
we obtained are nearly same with the results obtained on Football data, with some
minor exceptions on go and a/f tests. We will be using the parameters which we
optimized on Football data, you can further analyze the results we found on

Scientific Collaboration data in the Appendix section.

5.2 Experimental Results

We present the experimental results in Tables 5.4 to Table 5.11. Table 5.3 and 5.4
show the overall reduced cliques for datasets on each ACO model (ACS, MMAS,
RAS). We run the ACO techniques for 10 times for each execution and calculate the
results over 10 execution. The tables contain the best results of each ACO model,

according to the threshold value used in the datasets.

With the lower-upper bounds of the confidence interval for number of reduced
cliques with confidence level of 95% for the given datasets, there are no signifcant
differences between ACS, MMAS and RAS along with the change on the threshold
value. According to the relaxing of the threshold value, the number of cliques found

per dataset with any of the ACO models decrease eventually. As the threshold value
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increases, the next node availability in the graph increases because required number

of edges per node decreases and the cliques can grow bigger with the availability of

new nodes. Another answer to insignificant difference between the ACO models on

the number of cliques is the randomness of the starting point of clique generation. As

a result of the random starting point of clique construction, possible bigger cliques

can be scattered into many smaller cliques, thus resulting in more but smaller cliques

found by the clique-finding ant. The results of the cliques found is more meaningful

with the addition of achieved scores.

Table 5.4: Lower and upper bounds of number of cliques found with 95%
confidence interval (partl)

ACS MMAS RAS
Datasets Threshold
lower upper | lower upper | lower upper
0 6.20 6.39 5.49 5.70 5.90 6.09
0.1 6.29 6.50 5.60 5.79 6.11 6.28
0.2 5.78 6.01 5.99 6.00 5.86 6.13
Karate
0.3 5.49 5.70 5.29 5.50 4.83 4.96
0.4 8.50 9.29 8.14 9.05 8.37 9.22
0.5 6.68 7.31 5.64 6.35 5.58 6.41
0 10.39 10.60 10.11 10.28 10.13 10.46
0.1 10.20 10.39 10.39 10.60 10.16 10.43
0.2 10.11 10.28 10.07 10.32 10.20 10.39
Chesapeake
0.3 9.98 10.21 10.43 10.76 9.90 10.09
0.4 8.04 8.35 8.16 8.63 7.83 8.36
0.5 7.83 7.96 7.04 7.35 7.33 7.66
0 13.99 14.00 13.29 13.50 11.39 11.60
0.1 10.90 11.09 12.16 1243 13.16 13.43
) 0.2 11.99 12.00 11.95 12.24 11.99 12.00
Les Miserables
03 11.90 12.09 12.99 13.00 12.03 12.16
0.4 13.79 15.00 16.66 17.53 12.41 13.18
0.5 10.64 10.95 12.84 13.35 11.42 12.17
0 27.86 28.13 24.92 2527 21.04 2135
0.1 25.11 25.48 22.98 2321 2825 28.74
0.2 20.71 20.88 2271 22.88 18.83 18.96
Football
0.3 18.90 19.09 19.67 19.92 20.60 20.79
0.4 15.71 15.88 18.79 19.20 18.90 19.09
0.5 19.04 19.35 18.78 19.01 17.52 18.07
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Table 5.5: Lower and upper bounds of number of cliques found with 95%
confidence interval (part2)

ACS MMAS RAS

Datasets Threshold
ower upper | lower upper | lower upper

0 504.43 504.96 506.76 507.43 52232 523.67
0.1 511.82 512,57 537.14 538.05 52325 523.94
02 517.36 518.03 506.03 506.76 522.65 52334
EPA
03 487.90 488.69 503.49 504.70 500.44 501.15
04 176037 176242 172661 172918 171332 1714.87
0.5 129012 129147  1291.94 129265 128820  1289.59
0 22934 23025 242.59 243.60 230.05 231.14
0.1 226.83 228.16 233.06 233.93 236.89 237.90
. 02 223.14 224.05 218.05 219.14 21839 220.00
Political Blogs
03 21338 214.61 214.99 216.00 207.58 20821
04 333.50 347.09 368.36 372.43 364.16 370.43
0.5 29233 293.46 292.93 294.06 299.47 301.52
0 1606.12  1607.27 159509 159670 159843  1600.37
0.1 1605.84 160695  1607.55  1608.84 160461  1606.38
. 02 160976 1610.83  1599.28  1600.11 1607.08  1608.32
Power Grid

03 1587.36  1588.63  1581.92  1583.07  1569.93  1571.66
04 134513 1347.86  1361.85  1363.94  1350.75  1352.04
0.5 132748 132931 132064 132295 132177  1323.82
0 3549.92 355147 356928 357171  3621.05  3622.94
0.1 354548 354731  3542.14  3544.65 354520  3547.59
02 3378.49  3381.10  3454.07 345692  3409.90  3411.29

FolDoc
03 325135 3253.04 321525  3218.54 326219  3264.40
04 3512.63 351576  3550.16  3554.03 357172 357427
0.5 312197  3123.62  3117.67 311912 307859  3081.00
0 304723 304876 305733 3059.06  3074.04  3075.95
0.1 3045.68 304692  3073.13 307546  3070.16  3072.04
o 02 300150 3002.69  3007.67  3009.52  3025.83  3028.16

Scientific
03 295259 2953.40  2952.68 295431  2966.86 296834
04 330145 330274 333047 333152 331529  3317.90
0.5 2932.60 293419  2931.46  2932.93  2932.68  2934.51

Table 5.5 and 5.6 show the achieved scores for datasets on each ACO model (ACS,
MMAS, RAS). The lower and upper bounds of the achieved score with 95%
confidence interval are given in the table for each defined threshold value. The

threshold values vary from 0 to 0.5.

When we analyze Table 5.5 and 5.6, the results indicate no significant differences for

smaller datasets with smaller values of threshold. While the results are relatively
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near, MMAS achieves little bit higher scores compared two other two. The reason for
the corresponding good results on MMAS is the ability of MMAS to come up with
better solution near to optimum values for short time intervals. The execution times
of ACO trials grow in parallel as the size of the network dataset grows. ACS results
in better solution with minor exceptions on some datasets. This is normal as ACS
results in better solution for long time intervals in ACO trials. However, there is no
significance difference to be named for ACS, MMAS and RAS for different datasets
with different distributions. On the other side, if the threshold value increases, which
results in the next node availability in the graph, the RAS model achieves better
scores. The RAS model gives oppotunity to runner-up ants to lay their pheromones
according to their solution quality, along with the best ant. This approach helps the
model to balance the pheromone amount laid on the solution path, eventually
preventing ants to be stuck at locally optimum values. Thus, when the availability of

next node increase combine with RAS model, higher scores are achieved.

Table 5.6: Lower and upper bounds of achieved score with 95% confidence interval

(partl)
ACS MMAS RAS
Datasets Threshold
lower upper lower upper lower  upper
0 1011.62 1018.77 1078.84 1082.15 1049.19 1058.80
0.1 1006.05 1013.14 1081.47 1085.52 1034.60 1052.39
0.2 1177.88 1191.91 1202.70 1215.29 1144.27 1170.32
Karate
03 1470.97 1499.22 1543.95 1564.04 1529.06 1546.53
0.4 235130 2491.69 2296.63 242376 2401.71 2578.08
0.5 4030.66 4376.53 3635.82 395037 416072 440747
0 569.85 576.94 593.40 596.79 581.31 584.08
0.1 577.75 580.04 588.45 592.94 581.80 584.59
0.2 568.06 572.93 588.66 592.53 574.06 579.73
Chesapeake
0.3 674.50 680.69 674.09 676.30 661.76 666.43
0.4 1753.54 1790.85 1805.09 1848.51 1793.99 1826.80
0.5 282791 2945.88 2855.98 2938.81 2905.02 3009.97
0 32538.16 32599.84 13796.27 1387333 1338947 1352473
0.1 4771564 4774976 10878.74 1120726 1283898  13388.42
Les 0.2 59956.07 60625.93 23754.17 23824.03  20653.18  21039.22
Miserables 03 17747.86 17924.54 13081.39 13163.61  40827.98  41019.82
0.4 6210030 6253290  125007.10  125757.10  34206.17  34664.03
0.5 10210230 124672.10 12741850 149901.10  50887.31 _ 51190.49
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Table 5.7: Lower and upper bounds of achieved score with 95% confidence interval

(part2)
ACS MMAS RAS
Datasets  Threshold
ower upper lower upper lower upper
0 35110.20 35355.40 35563.38 36742.02 37655.78 38009.42
0.1 21715.01 21834.19 42201.26 43092.54 26031.99 2617521
02 40095.42 40247.58 25531.72 25645.48 77739.50 79585.90
Football
03 54070.79 54790.81 50920.19 51399.01 72705.30 73445.50
0.4 139679.80  141619.40  103123.80  103829.20 131397.20 133465.80
0.5 11121070 113352.30 91181.25 92636.35 128761.60 131682.20
0 4307.21 4308.38 4301.88 4302.91 4313.97 4315.42
0.1 4337.03 433836 4313.70 4315.29 4356.73 4358.06
0.2 4323.49 4324.70 4323.87 4325.12 433271 4333.88
EPA 03 4409.66 4412.13 4426.73 4428.26 4413.12 4416.87
0.4 10190.45 10202.95 10061.26 10079.74 10092.41 10105.39
0.5 17913.25 17934.75 17826.08 17860.52 17887.17 17920.43
0 13147.62 13804.18 12939.80 14153.20 12764.35 13402.65
0.1 26579.08 27399.92 49747 81 50165.99 21282.45 22827.95
Political 02 35965.87 37397.73 28192.96 29069.04 21334.69 2238131
Blogs 03 11532240 118012.80 55876740 56349640 184024.90 190005.90
0.4 31872010 32498290  781842.00  788547.60 220731.40 223620.80
0.5 593288.70 60316590  491413.00 49888620  1144048.00  1159505.00
0 4790.30 4792.69 4610.53 4611.86 4720.18 4722.61
0.1 4763 .44 4761.75 4649.09 4650.70 4673.85 4674.94
Power 0.2 4658.56 4659.83 4651.30 4654.09 5453.37 5485.62
Grid 03 4736.13 4739.47 4872.34 4875.26 4965.49 4970.70
0.4 9920.90 9955.09 9928.39 9945.00 9958.55 9968.24
0.5 15915.04 15944.76 15713.18 15729.42 16090.17 16118.83
0 16566.22 16618.38 16599.90 16619.70 16412.70 16446.70
0.1 16207.62 16223.38 16133.58 16163.22 16368.92 16377.88
02 19384.80 19444.80 19407.28 19446.72 19092.19 19126.21
FolDoc
03 22025.27 22111.73 24589.99 24668.21 23941.37 24018.03
04 40498.10 40626.30 40688.51 40999.69 4027824 40540.16
0.5 58242.92 58438.48 60981.79 61120.41 62540.87 62648.93
0 43776.08 44018.52 54318.81 55085.59 4578336 46026.04
0.1 47305.46 47830.34 45318.65 45508.15 47752.06 47952.94
02 47406.22 47614.78 48116.12 48377.28 4443583 44861.77
Scientific
03 46889.79 4717741 4849221 48993.99 58608.97 59334.23
0.4 92276.90 93149.10 70894.36 71443 .44 74646.15 76009.45
05 93313.46 93727.34 92569.69 92775.11 202292.20 202715.80

The lower and upper bounds of the number of communities found on the reduced

graphs of datasets with 95% confidence interval along with the number of
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communities found on the original graphs are presented on Table 5.8, 5.9 and 5.10.
The number of communities data is retrieved from the community detection tool
used in our proposed algorithm. The results of the fast greedy method, explained in
Section 4, provide the number of communities found in the original graph , the graph
without preprocessing proposed in this thesis, and the reduced graph. The results in
the table show that the ACO models, again, do not possess any significant difference
on the number of comunities found. The difference on the community count is
obtained with the change of threshold value. Once the threshold limit is incremented,
the next availability increases. As a result, the size of constructed quasi-cliques also
increases. This explains the construction of bigger clique-nodes and the decrease in

the number of communities.

Table 5.8: Lower and upper bounds of number of communities found with 95%
confidence interval (partl)

ACS MMAS RAS
Datasets Threshold
lower upper | lower upper | lower upper
0 3.99 4.00 3.99 4.00 3.99 4.00
0.1 3.99 4.00 3.99 4.00 3.99 4.00
0.2 3.71 3.88 3.99 4.00 3.99 4.00
Karate
0.3 3.83 3.96 3.99 4.00 3.83 3.96
0.4 2.83 2.96 2.49 2.70 2.90 3.09
0.5 2.20 2.39 2.20 2.39 211 2.28
0 3.39 3.60 2.99 3.00 2.99 3.00
0.1 3.11 3.28 3.03 3.16 3.03 3.16
0.2 311 3.28 2.71 2.88 3.11 3.28
Chesapeake
0.3 226 253 2.60 2.79 2.83 2.96
0.4 3.03 3.16 3.11 3.28 2.83 2.96
0.5 2.29 2.50 2.29 2.50 229 2.50
0 5.99 6.00 5.99 6.00 6.71 6.88
0.1 6.99 7.00 6.71 6.88 5.03 5.16
) 0.2 499 5.00 5.53 5.86 5.56 5.83
Les Miserables
0.3 471 4.88 4381 5.18 5.49 5.70
0.4 5.39 5.60 3.98 421 5.67 5.92
0.5 4.46 4.73 429 4.50 5.16 5.43
0 5.81 6.18 6.71 6.88 6.83 6.96
0.1 7.11 7.28 5.83 5.96 6.29 6.50
0.2 6.60 6.79 7.43 7.76 5.78 6.01
Football
0.3 6.39 6.60 6.83 6.96 7.03 7.16
0.4 5.98 6.21 5.49 5.70 5.75 6.04
0.5 5.46 5.73 5.16 5.43 420 439
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Table 5.9: Lower and upper bounds of number of communities found with 95%
confidence interval (part2)

ACS MMAS RAS

Datasets Threshold
ower upper | lower upper | lower upper

0 53639 537.20 53327 534.12 535.80 536.39
0.1 537.82 538.77 533.09 533.70 536.66 537.13
02 53439 535.20 536.70 537.29 534.94 535.45
EPA
03 532.15 532.84 535.48 536.11 537.28 537.71
04 534.18 534.61 536.55 537.44 534.23 534.96
0.5 532.39 532.60 532.43 533.16 532.99 533.40
0 274.92 27527 272.90 273.09 275.09 275.50
0.1 273.72 274.07 275.83 27636 274.98 27521
. 02 275.56 275.83 276.16 276.63 27420 27439
Political Blogs
03 275.11 275.48 275.43 275.76 275.30 275.89
04 27238 27281 275.09 275.90 274.97 275.42
0.5 272.56 272.83 27521 275.58 273.90 274.09
0 40.49 41.10 41.89 42.50 41.03 41.56
0.1 38.99 39.40 39.33 39.86 42.03 42.56
. 02 40.19 40.80 44.66 45.13 40.72 4147
Power Grid

03 40.12 40.87 40.11 40.68 4155 42.04
04 4735 48.44 42.81 4378 49.06 50.13
0.5 47.16 47.83 49.60 50.79 47.49 48.70
0 4533 45.86 44.73 45.46 44.79 45.60
0.1 44.65 4534 43.61 4438 4579 46.60
02 45.43 45.96 42.42 42.97 44.20 44.79

FolDoc
03 44.33 4546 43.88 4451 46.77 4742
04 31.77 32.42 32.14 33.05 33.66 34.53
0.5 2537 26.02 2520 25.79 2572 2627
0 2556.56  2557.83 255875 256024  2557.12 255847
0.1 2548.62 255037  2555.09 255691  2556.19  2557.60
o 02 254772 254947  2556.89 255891 255235  2553.64

Scientific
03 2551.58  2552.81  2555.62  2557.18 255472 255627
04 254295  2544.04 254634 254825 254513 254626
0.5 2540.01  2541.18 254695 254804 253623  2537.16

Table 5.10: Number of communities on the original graphs
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In Table 5.11 and 5.12, the number of nodes and edges of the reduced graphs for
each dataset, after being processd by ACO, is listed. The reduced nodes are the total
of clique nodes plus the unassigned nodes and the reduced edges are the newly
emerged edges with relevance/similarity weight obtained after the transformation
phase. The original node and edge count for each dataset is also provided in the

tables for comparison.

Table 5.11: Number of nodes and edges in the reduced graphs (partl)

Original
Gri " ACS MMAS RAS
Datasets ——21@P1 | Threshold
node edge node edge | node edge [ node edge
0 22 30 23 35 22 31
0.1 2 30 23 35 2 31
02 21 29 22 32 21 29
Karate 34 78
03 19 26 20 26 19 27
0.4 18 26 19 27 19 27
0.5 17 19 18 20 18 18
0 21 43 21 42 21 43
0.1 21 43 21 43 21 44
02 21 43 21 43 21 43
Chesapeake 34 72
03 21 41 21 4 21 39
04 17 25 17 26 14 23
0.5 14 18 14 20 14 20
0 40 56 39 65 39 65
0.1 40 74 39 55 37 59
L 02 37 56 38 60 37 55
Les 77 254
Miserables 03 37 48 36 57 37 49
0.4 33 37 34 53 34 51
0.5 33 39 32 32 34 47
0 48 228 41 191 39 193
0.1 37 181 40 205 45 222
02 35 166 40 190 39 192
Football 115 616
03 33 168 37 183 29 134
0.4 26 122 28 131 28 135
0.5 27 136 30 145 25 137
0 4204 7890 4186 7886 4190 7886
0.1 4180 7896 4187 7867 4206 7945
02 4177 7888 4206 7919 4190 7882
EPA 4772 8695
03 4161 7788 4149 7668 4144 7742
0.4 2662 5819 2664 5809 2677 5836
0.5 2060 5046 2083 5011 2093 5032
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Table 5.12: Number of nodes and edges in the reduced graphs (part2)

Oé‘rill?fl ACS MMAS RAS
Datasets Threshold
node edge node edge [node edge | node edge
0 1149 9287 1132 9173 1145 9345
0.1 1135 8902 1132 8757 1151 9601
Political 490 19090 0.2 1125 7905 1141 8204 1132 7719
Blogs 0.3 1073 6377 1091 6773 1095 7139
0.4 904 6017 870 5755 889 5502
0.5 684 4455 690 4396 736 4901
0 3119 4283 3122 4285 3127 4294
0.1 3141 4305 3118 4272 3132 4290
Power Jou1 cso8 0.2 3131 4288 3122 4275 3109 4275
Grid 03 3074 4195 3095 4210 309 4221
0.4 2592 3624 2587 3620 2607 3658
0.5 2099 3014 2115 3043 2107 3031
0 7257 56094 7220 55998 7226 56099
0.1 7278 55906 7234 55880 7282 55838
FolDoc 335 120238 0.2 6902 53552 6936 53567 6967 54008
03 6434 50541 6378 49938 6377 50110
0.4 5158 49020 5232 49501 5190 49520
0.5 4278 47735 4317 47512 4277 47553
0 8522 14017 8511 13965 8499 14037
0.1 8484 14006 8474 14033 8464 1396l
Scientific sire 700 0.2 8411 13532 8388 13287 8377 13508
0.3 8147 12664 8113 12679 8140 12607
0.4 7177 11637 7150 11414 7200 11538
0.5 6344 10051 6340 10176 6383 10145

The 3 ACO models do not show any significant differences on reducement like in
number of cliques, total score achieved and the number of communities found. The
results are inversely proportional to the number of cliques found by the models on
each threshold value. As the threshold value increases, the number of created cliques
increase, evantually the number of reduced node and edge count decreases. The
observation is meaningful as the size of the cliques ( number of node and edges
which constructs the clique) has direct effect on the reducement. The main aim of the
thesis is achieved as the the reducement rate on nodes and edges is nearly 50% for all
the datasets, increasing to 60% - 65% on thresholds with value of 0.5. The

reducement directly decreases the computational costs of the community detection
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method used, however, the solution quality loss should be discussed. The quality

results of the experiments are mentioned and discussed on Section 5.3.

5.3 Discussion

Parallel to our expectations from the proposed algorithm to reduce the network
graphs to maintainable sizes for benefit of community detection methods, we
recommend 3 of the ACO models implemented in our approach. Our experiments
show that all of these models can be used to reduce the nodes and edges in the graph
to half of the original counts, thus improving the time complexity proportional to
O((E.V/4)log(V/2)). 3 ACO models achieved relatively similar solutions on the
number of cliques but the achieved scores differ according to the size of the datasets.
For smaller datasets, which are run in short time intervals, MMAS achieves better
scores. On the other, for larger datasets, as the time interval becomes longer, RAS
performed better scores. Thus, the selection of the ACO model can be determined

according to the size of the network graph datasets.

For the discussion part, the quality of the solution obtained after our proposed
algortihm for graph reduction, we will compare the results obtained with the
algorihtm and the original graph results based on 2 different quality metrics
described in the following paragraphs. For all tables, please note that, the original
graph values are the values obtained by running the community detection tool on the
graphs without our algorithm for graph reduction used. With the given original
values and the values gathered after graph reduction, we can easily compare the

quality preservation after processing of our proposed algorithm.

The result of the experiments show enough success on graph reducement. However,
the solution quality of the community detection phase should also be examined, as
we expect minimum loss on solution quality. The quality of the community detection
can be examined upon the modularity values of the corresponding graph upon
clustering. The lower and upper bounds of modularity values of datasets with 95%
confidence interval are given in Table 5.13 and 5.14. The modularity values on the

original graph is given in Table 5.15.
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Table 5.13: Lower and upper bounds of modularity with 95% confidence interval
(partl)

ACS MMAS RAS

Datasets Threshold
lower  upper | lower upper | lower  upper

0 0403668  0.410332 0.39804 040196  0.395844  0.400156
0.1 0399864  0.406136 039704 0.40096 0.38706 0.39294
02 0.38608 039392  0.385804  0.386196 0.38808 0.39592
Karate

03 0396472 0403528 0399236 0402764 0391628 0394372
0.4 0289536 0.322464 0246968 0283032 0306044  0.329956
0.5 0.09012 0.10188  0.076376  0.093624 _ 0.079552  0.094448
0 0363594 0370456 0368484 0374257  0.370424 037777
0.1 0359424 0367278 0375561 0381441  0.373377 0.3807
02 0377898  0.384653 0370549  0.376753 037596  0.382324

Chesapeake
03 0365736 0370234 0356602 0362689  0.349382  0.356945
0.4 0300855 0328691  0.333466 0361747 0374658 0.4024
0.5 0297826 0321366  0.323444  0.337916  0.320561  0.342002
0 0.638811  0.639987  0.578865 05975  0.547841  0.560576
0.1 0442979 0443501 0417137  0.440845 046379 0.496151
Les 02 0466709 0475588 0457867 0469113 0486531  0.501696
Miserables 03 0392185 0399825 0312035  0.330312 048452 0.509144
04 0397604 0430341 0463968 0483985  0.423805 0.43927
0.5 0387872 0417188 0.395346 0418262 0.480524  0.497963
0 0479047 0487018  0.538556  0.543395 053432 0.536756
0.1 0.514104 0.51786 05059 0511917 0512358  0.517921
0.2 0487301 0490546  0.536632  0.538472 0495765  0.502629

Football

03 0497268 0501619 0527284  0.529606 052492 0.529472
0.4 047927  0.487343 046103 0469732 0439355  0.444249
0.5 0398788 0.408032 044322 0459421 0388 0.395726
0 0655148  0.656654  0.659214  0.660303  0.657543  0.658944
0.1 0.650361  0.651513  0.649785  0.651283  0.650028  0.651821
02 0.65506  0.656264  0.645407  0.646928  0.651573  0.653353
EPA 0.3 0.653479  0.654301  0.648111  0.649215  0.652919  0.654783
04 0.628884  0.630954  0.634913  0.637114  0.639949  0.641498
0.5 0.613145  0.614351  0.621439  0.623293 0.62556  0.626871
0 0416568 0417939 0407844 0410276 0410532  0.411698
0.1 0410276 0411071 0414424 0416258 0409612 0411369
Political 02 0.409352 0.41055 04071 0409603  0.419938  0.420768
Blogs 03 0405487 0408619 0402022 0403066 0388147 0392349
0.4 0387313 0388752 0362308  0.365102 038478  0.386595
0.5 0377516 0378623 0375751 0.378204  0.385587 0.38666
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Table 5.14: Lower and upper bounds of modularity with 95% confidence interval

(part2)
ACS MMAS RAS
Datasets Threshold
lower  upper | lower upper | lower  upper
0 0927824 0928401  0.929622 093007 0928828  0.929091
0.1 092987 0930274 0929017 0929306 0928129  0.928598
_ 0.2 0926943 0927741 0930796 0931176 0928429  0.928806
Power Grid
03 0928749 092912 0928452 0928927  0.927953 0.92849
0.4 093058 0930888 0931072 0931632 0931706  0.932234
0.5 0.926314 0926817 0.925925 0926492 0.927348 _ 0.927843
0 0.574478 0575031  0.574717 057535 0.572347 0573078
0.1 0.572312  0.57274 0.57223 0.57278  0.573881  0.574378
0.2 0572631 0573155  0.569872 0570548  0.571532  0.572041
FolDoc
03 0574742 0575142 0573252 0574017  0.575475  0.575965
0.4 0477 0477795 0474694 0475217 0477279  0.47789
0.5 0418211 0418969 0.410420 0411059 041864 0419673
0 0.851548  0.852266  0.850099  0.850614  0.850301  0.850809
0.1 0.852626  0.852891 0.85416  0.854822  0.852482  0.853119
. 0.2 0.852017  0.852553  0.853703 0.85411  0.852203  0.852655
Scientific
03 0.854317 0854733 0.845571 0846211  0.850461  0.851144
0.4 0.838334  0.839024 0831376  0.831953  0.836184  0.83728
0.5 0.820714 082139 0.823044 _ 0.823349 _ 0.826819  0.827587
Table 5.15: Modularity values on the original graphs
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Modularity [ 0380671 0410783 0547220 0549741 _ 0.619769 0427749 _ 0.934977 0397325 _ 0.563875

As described in the previous sections, the modularity value can be used as a quailty

measure to validate the results of a clustering/community detection. The results of

modularity falls in an interval between -1 to 1. For a totally random clustering, the

result will be closer to 0. For better clustering, the result will be close to 1, while the

result decreases to -1 if the clustering is not good. Compared to the modularity values

of the original graph, the 3 ACO models achieve almost the same quality with the

original graph and even better results are achieved for some datasets. This

observation means that the loss on solution quality upon reducement is at minimum.
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When we further analyze the modularity results, we can see that the increasing
threshold values affect the modularity values negatively. Higher threshold values
allow bigger quasi-cliques to be constructed, however, this relexation may result in a
false clustering as once a node is assigned to a clique-node, that node is forced to be
in the same cluster with the other nodes in that clique-node. The decrease rate does

not change for each ACO model but it differs on some network graph datasets.

The drastic decrease in some datasets, parallel to increase in threshold values, can be
explained with the effect degree distribution of the network graph on the community
detection method. As stated in [2], the social network graphs tend to possess a degree
distribution which fits Power Law. Other random network graphs can possess
Normal distribution or Poisson distribution. We should examine if the degree
distribution of a network affects the modularity values. For instance, two different

degree distribution of two network datasets are given in Figure 5.6 and 5.7.
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Figure 5.6 : Degree distribution of FolDoc dataset
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Figure 5.7 : Degree distribution of Scientific Collaboration dataset
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With a quick observation from the figures of degree distribution, we can see that
FolDoc data is formed in Poisson distribution while Scientific Collaboration network
data nearly fits the Power Law. The modularity decrease in Scientific data is smaller
compared to FolDoc, as the Power Law distribution allows more successful cliques
to be found in the network graph and those cliques are more likely to be
communities. In short, the increase in threshold allows bigger cliques and the
decrease in the solution quailty is smaller as the better cliques are achieved on Power
Law distributions. The decrease is smaller in graphs which fit Power law (i.e. Power
Grid data) and bigger in graphs which do not (i.e. Les Miserables data). The rest of

the degree distribution graps are provided in the Appendix section of this thesis.

Even though the results are satisfying, it is more appropriate to validate the results
with another clustering validation metric, such as Davies-Bouldin Index [36]. The
lower and upper bounds of Davies-Bouldin Index (DBI) with 95% confidence
interval are given in Table 5.16 and 5.17, along with the Davies-Bouldin Index

values for the original graph given in Table 5.18 for comparison.

Table 5.16: Lower and upper bounds of Davies-Bouldin Index with 95% confidence
interval (partl)

ACS MMAS RAS

Datasets Threshold
lower  upper | lower  upper | lower  upper

0 0449864 0456136 0459804 0460196 0454452 0459548
0.1 0.44508 045292 0457236 0460764 0462628  0.465372
0.2 0433472 0440528 0445804 0446196 0446668  0.453332
Karate

03 0439276 0446724 0.4491 0.4589 0.45608 0.46392
0.4 0435256 0440744 0427572 0444428 0440492 0.449508
0.5 0390492 0399508 0337281  0.462719  0.387668  0.394332
0 0470387 0476809 0468414 0473206 0486313  0.489321
0.1 0488398 0.494249 047338 0.478062 0.47565  0.480205
0.2 0482527 0486803 0453152 0465468  0.469201 0.47459

Chesapeake
03 0420479 0437776 0.441646 045661  0.444643  0.452867
0.4 0433023 0448135 0462936 0477055  0.457877 0.47193
0.5 0429082 0455745 0420116 0.442693 0425643 0.448803
0 0.537748 053784 0563839 0564867 0443641  0.449631
0.1 0467322 0469814 0473297 0477897  0.569767  0.585481
Les 0.2 0541820 0542819  0.541324 054742 0.518085  0.536971
Miserables 03 0.568507  0.573933 049362 0510295 0513879  0.529239
0.4 0.556303  0.568563  0.551825  0.566048  0.515349  0.525677
0.5 0479857 0493807 0496164 0518421 0419072 0.426501
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Table 5.17: Lower and upper bounds of Davies-Bouldin Index with 95% confidence
interval (part2)

ACS MMAS RAS

Datasets Threshold
lower  upper | lower  upper | lower  upper

0 0438681 0464885 0416184 0430706  0.387548 0.39866
0.1 0348668 0362458 0410034 0431495 0421287 0438921
02 0408351 0432444 0333596 0350448 0441532  0.459489
Football
03 0418327 0436601 0334979  0.352395 030346  0.307379
0.4 0470012 0.484645 0450499 0466039  0.415251 0.43945
0.5 0.481567 050038  0.489562  0.516293  0.526652  0.534466
0 0.051359  0.052505  0.046064  0.047314  0.050398  0.051407
0.1 0052927  0.054306  0.046199  0.047188 005174  0.052449
02 0.047981  0.049184 0051557  0.052331 0047727  0.048465
EPA 03 0.044806  0.045972  0.049854  0.050883  0.052727  0.053528
0.4 0.049518  0.050588  0.054355  0.055731  0.051571  0.052886
0.5 0.046237  0.047073  0.046355  0.047145  0.046733  0.047839
0 0011909 0012392 0013099  0.013577 0012886  0.013306
0.1 0.011884  0.012345  0.015604  0.016819 0.01466  0.015685
Political 02 0.013049 0013614 0016836  0.017753 001154  0.012149
Blogs 03 0.016756 001777 0027143 0028113  0.027374  0.028901
0.4 0.014334  0.015457 0.03167  0.033823  0.032682  0.034214
0.5 0.0132 001394  0.025559  0.026961  0.022198  0.022821
0 0.943697  0.944923 0.94224 094384 0943128  0.944857
0.1 0.948375 0.94909 0.94058 0943123 0942102  0.943296
0.2 0.938706 0941796  0.944489 0.94573 0940711  0.943312
Power Grid
03 0942101 0943525 0946115 09482904 0945443  0.946921
0.4 0927025 0932236 0942336 0945531 0925923  0.931505
05 0917491 0919755 0908852 0911865  0.924913  0.927497
0 0953799 0954955 0951363 0953009 0953062  0.954237
0.1 0950573 0952453 0952143 0953235 0952146  0.953362
02 0.953492 095457 0952801 0953577 0953284  0.954142
FolDoc

03 0955596 0.956183 0954872  0.955497  0.952808  0.954076
04 0955086  0.955409  0.955326 095599 0954981  0.955711
0.5 0.949521  0.950153  0.950311  0.951073 0.9495  0.950608
0 0.032967  0.033249  0.033096 0.03353 003222 0.032589
0.1 0.030065  0.030587 003217 0.032599  0.031958  0.032338
02 0.030278  0.030794 0.03282  0.033388  0.031868  0.032245

Scientific
03 0031147 0031508  0.032191  0.032606 0031702  0.032102
0.4 0.029452  0.029751  0.030185  0.030741  0.029821  0.030184
05 0.028145  0.028506  0.030524  0.030854  0.027817  0.028142
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Table 5.18: Davies-Bouldin Index values on the original graphs
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DBI 0476318 0.450735  0.455000 _ 0.505774 _ 0.056011 _ 0.010015 _ 0.951465 0912712 _ 0.033027

There are many cluster validty metrics to be used, such as Silhouette validation,
Dunn’s Index and Davies-Bouldin Index [36]. In our experiments, we applied a
modified version of the Davies-Bouldin index, introduced in [37]. The index depends
on the values of the average diameter of the cluster and the average linkage between
clusters. The index is actually the maximum value of averages of dissimilarity
between a cluster with its most similar one, calculated with the aforementioned

parameters.

The smaller values of Davies-Bouldin Index indicate better clustering for graphs by
definition. The results of our experiments show that quality is preserved for each
dataset while the threshold values change, compared to the original DBI values. In
addition, the values are improving in some dataset, parallel to the threshold value
incremental. In some datasets, the results seem to be significantly lower compared to
other datasets. This can be explained with nodes without edges included for those
datasets. As the number of nodes without edges increases, the DBI value closes to 0
as if there is a good clustering. These nodes are determined as 1-noded clusters by
the community detection algorithm and it effects the DBI values in parallel.
Following that, the higher number of communities found for those datasets, shown in
Table 5.8, 5.9 and 5.10, can be explained with these unconnected nodes found on

those datasets.

DBI values along with the modularities prove that the quailty is almost preserved for
all dataset after our preprocessing. Thus, we recommend the usage of our algorithm

for graph simplification.
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6. CONCLUSION

Our main aim in this thesis is to reduce the size of the graph in order to be able to use
community detection methods effectively on large-scale social network data sets.
The quality of community detection methods is expected to be preserved while the
original graph is reduced to a maintainable size. The preprocessing algorithm that we
propose in this thesis for the community detection methods is an optimization

problem from this perspective and its being resolved with a nature based approach.

There are many community detection methods developed through the start of
researches on community detection on networks. The detection methods vary from
hierarchical clustering to spectral bisectioning. The modularity maximization,
namely the popular method for community detection, achieves good results in
smaller time complexity, such as O(E.ViogV) after several modifications on the
original algorithm. However, nearly all of these community detection methods suffer
from high computational costs and non-scalability on large-scale social networks,
even some of the methods are optimized to work on such networks. In this thesis, we
are proposing a preprocessing methods for those community detection methods
reduces the size of such networks without valauble information and solution quality

loss.

The number of nodes and edges in the original graph is reduced through the concept
of clique-nodes, which is implemented for our proposed algorithm. We used 3 ACO
techniques (ACS, MMAS and RAS) to discover clique-nodes, which are then used to
shrink the graph to a manageable size. The underlying motivation behind this
approach is the fact that cliques are the base elements of communities. Based on the
experimental results on various sized social networks, we may say that the execution
times of the community detection methods are decreased while the overall quality of
the solution is preserved. The results of the experiments show that the future
optimization of the process may result in better solutions for community detection on

very large-scale social networks.
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For further optimization on performance of our preprocessing approach, there are
some future directions which need to be pursued. For better parallelization, we will
implement our solution on an existing parallelized framework. We will also pursue
new parameters for ACO methods and investigate them (i.e. branching factor for
MMAS). We will also further optimize our code to decrease our algorithm’s own

execution times to work more efficiently.
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APPENDICES

APPENDIX A.1 : Parameter optimization results on Scientific Collaboration
network graph data

APPENDIX A.2 : Degree distribution graph for whole datasets used in the
experiments
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APPENDIX A.1
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Figure A.1 : Parameter optimization results for Scientific Collaboration data

Table A.1 : Effect of o and S on number of cliques found

B

* 0 1 2 3 4

0 3047.1 30074 2991.8 3003.4 3010
1 3010.9 3001.1 3004 2998.7 2990.7
2 3003.8 2999.1 3003.7 3004.4 3014.2
3 3003.9 3024.5 30189 3013.7 29994

Table A.2 : Effect of @ and f on achieved score

B

0

1

2

3

4

W N = O

48210.9
45563.1
48388.8
45518.3

48206.3 45379.3
56008.9 48210.9
46388.7 51619.9
45205.6 46816.9

42044.1
51377.9
42760.9
45449.8

51975.5
433222
50010.7
48123.1
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APPENDIX A.2
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Figure A.2 : Degree distribution graphs for network datasets
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