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COMMUNITY DETECTION IN SOCIAL NETWORKS USING PARALLEL 
CLIQUE-FINDING ANTS 

SUMMARY 

Constantly increasing popularity of Internet attracted people to share and collaborate 
more information with the rest of the world. This phenomenon motivated many 
disciplines to expand their research areas onto social networks which are also 
constantly growing parallel to the advent of Internet. The growth of the social 
networks with help of Internet also led research areas to search of community 
structures to be established on those networks. Community structures can be 
established depending on the interactions between the network elements and the 
detection of those structures became popular in the last years. 

The basis of community detection, the community structure, can be defined with the 
density of interaction in between the network members of the corresponding 
network. In graph theory, networks are represented with graphs, where the network 
members are nodes/vertices and the interactions in between them are the edges of the 
graph. Thus, the definition of community can be formed as follows:  a group of 
nodes which possess higher density of edges in between and lower density of edges 
going other nodes out of that group can be named as community. 

There are many community detection methods emerged with the popularity of the 
subject. The popular ones can be named as hierarchical clustering, spectral bisection 
and fast greedy community detection method based on modularity maximization. 
The modularity is a quality assessment parameter proposed for community detection 
and its widely used on aforesaid community detection tools as an indicator of 
clustering quailty.  

Inspite the fact that there is a lot of improvement on the community detection 
methods (i.e. on time complexity), they still suffer from high computational costs and 
ineligible scalability on large-scale network graphs. In this thesis study, we propose a 
novel method to reduce the graph to a maintainable size while preserving its quality 
based on modularity. With the algorithm we propose, the community detection tools 
will be less affected from the scalability and computational cost problem on large-
scale social networks. 

As the basis of our reducing algorithm, we used the clique scheme which can be 
shown as the basic structure of a community on network graphs, along with clans and 
plexes. The clique is the fully connected subgraph where the almost fully connected 
subgraph is named as quasi-clique in graph theory. In the thesis study, we accept the 
quasi-cliques as the basis of communities and try to find all possible quasi-cliques in 
the network graph with an nature inspired optimization tool: Ant Colony 
Optimization (ACO). The Ant Colony Optimization technique uses ants to search the 
optimum solution in a given problem. They use pheromones to favor the overall 
optimum solution each iteration and lay the pheromones on the solution path for ants 
to follow the path on the next iterations. Ants search for all possible quasi-cliques in 
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their journey on the graph to construct the best solution which leads to better 
reducement with minimum quality loss. 

The steps of our proposed algorithm are defined as follows: 

1. Depending on the size of the network graph, especially on large-scale graphs 
due to concerns on computational cost, a snowball sampling method is 
applied to whole graph to create subgraphs on the original graph. Each 
subgraph will be handled by threads in parallel for further processing. 

2. ACO models are run on each snowball thread in parallel. The used ACO 
models in the process are Ant Colony System (ACS), Max-Min Ant System 
(MMAS) and Rank-based Ant System (RAS). The ants on find the best 
collection of quasi-cliques one each subgraph. The cliques are intended to be 
fully connected, however, regarding the relaxation threshold defined for our 
thesis study, the connectedness of the clique can be relaxed upto a threshold, 
which will in return allow to collect quasi-cliques on the journey. The best 
ant is than chosen with the highest total score gained, depending on its clique 
collection’s quality. 

3. As the clique collection found by the ants intersect a node in between each 
clique of the collection, it should be fixed. This problem is called overlapping 
and its fixed right after the ACO step results with a clique collection. The 
shared nodes are assigned to clique with higher number of nodes that shares 
it. 

4. The fixed cliques are transformed into a single node, called clique-node, 
which will be used with other clique-nodes and unassigned nodes in graph 
transformation phase. In this phase, the exisiting edges are removed and new 
edges are created to connect new nodes of the reduced graph, with assigned 
weight values based on a weighting scheme derived from the concept of 
edge-betweenness. 

5. On the last phase, newly emerged reduced graph is processed with a fast 
greedy community detection method and the results are compared with the 
original graph’s results. 

We run our experiments on several medium-scale and large-scale social network 
graphs as well as some benchmarking datasets. The experiments produced results on 
number of cliques found, total score achieved, number of nodes and edges in the 
reduced graph, number of communities found, overall modularity of the graph and 
Davies-Bouldin Index value of the graph. The results of the experiments show that 
the ACO models do not differ significantly on clique quality and the overall solution 
quality. Modularity values seems to be preserved on the reduced graph compared to 
the original graph, while Davies-Bouldin Index, which is used as a cluster validty 
tool,  also validated the results of clustering on reduced graph and the original graph. 
In addition, we monitored a reducement of 50% on nodes and edges on the original 
graph, which will led to a improvement of time complexity O(E.VlogV) of the used 
fast greedy algorithm to O((E.V/4)log(V/2)), when used with our preprocessing. 

Consequently, we recommend the use of each ACO models in the process to 
optimize the computational costs and scalability of the any community detection 
method used with the preprocessing algorithm proposed in this thesis. 
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SOSYAL AĞLARDA TAM BAĞLI ALT ÇİZGE ARAYAN PARALEL 
KARINCALAR İLE TOPLULUK BULMA 

ÖZET 

İnternet ağının sürekli artan popülaritesiyle birlikte, insanlar daha çok bilgiyi ağ 
üzerinden dünyanın geri kalanıyla paylaşmaya ve geliştirmeye başladılar. Bu 
fenomen birçok farklı disiplini, İnternetin gelişimine eşzamanlı ve sürekli bir şekilde 
büyüyen sosyal ağlar üzerinde araştırma faaliyetlerini genişletmeye yüreklendirdi. 
İnternetin yardımıyla sosyal ağların büyümesi araştırma alanlarını bu ağ çizgeleri 
üzerinde topluluk yapısı aramaya yöneltti. Ağ elemanları arasında oluşan/varolan 
etkileşimlere dayalı olan topluluk yapıları ve bunların tespiti, son yıllarda popüler 
olmaya başladı. 

Topluluk arama yöntemlerinin temeltaşı, topluluk yapısı, verilen ağ çizgesinde 
bulunan ağ elemanları arasındaki etkileşimin yoğunluğu ile tanımlanabilir. Çizge 
teorisinde ağ yapıları çizge ile temsil edilir; ağ elemanları düğüme, elemanlar 
arasındaki etkileşim/yakınlık göstergesi ise ilgili iki düğüm arasındaki ayrıta karşılık 
düşer. Bununla ilintili olarak çizgelerdeki topluluk yapıları şu şekilde tanımlanabilir: 
birbirileri arasındaki ayrıt sayısı gruba dahil olmayan diğer ayrıtların sayısına göre 
fazla olan düğüm grupları topluluk olarak adlandırılır. 

Konunun popülerliğinin artmasıyla birlikte birçok topluluk bulma algoritması ortaya 
çıkmıştır. Bunlardan popüler olanları, aşamalı kümeleme, spektral bölümleme ve 
birimsellik enbüyütme prensibi ile çalışan hızlı aç gözlü topluluk bulma 
algoritmasıdır. Birimsellik, topluluk bulma yöntemi için önerilen bir kalite analizi 
aracıdır ve birçok topluluk bulma algoritması tarafından kümeleme kalitesini ölçmek 
için kullanılır.  

Topluluk bulma algoritmalarındaki birçok yapılan iyileştirmeye (örn. zaman 
karmaşıklığı)  rağmen, bu algoirtmalar işlem maaliyetleri ve büyük ölçekli ağ 
çizgeleri üzerinde ölçeklendirilme sorunu yüzünden olumsuz yönde etkilenmektedir. 
Bu tez çalışmasında, eldeki çizgeyi ölçeklenebilir bir boyuta indirgeyebilen ve bu 
indigeme sonucunda birimselliğe dayanan kalite analizinden minimum kayıpla çıkan 
bir yöntem önerilmektedir. Önerilen bu yöntem ile topluluk algoritmaları, işlem 
maaliyetleri ve ölçeklendirilşme sorunundan daha az etkilenecektir. 

Önerdiğimiz algoritmanın temeli olarak, klanlar ve pleksler gibi, ağ çizgelerindeki 
toplulukların yapıtaşı olarak kabul edilen tam bağlı alt çizgeler kullanılmıştır. Tam 
bağlı alt çizge (hizip), bütün düğümleri arasında en az bir ayrıt olan düğüm 
kümelerine denir. Aralarında ayrıt olmayan düğüm çifti sayısının genele oranla çok 
çok az olduğu alt çizgelere ise yarı-bağlı alt çizgeler adı verilir. Bu tez çalışmasında    
yarı-bağlı alt çizgeler topluluk yapılarının yapıtaşı olarak ele alındı ve çizgelerdeki 
bütün olası yar-bağlı alt çizgelerin, doğal esinli bir eniyileştirme aracı olarak Karınca 
Kolonisi Eniyileştirmesi yöntemi, bulunması amaçlandı. Karınca Kolonisi 
Eniyileştirmesi tekniği, karıncaları kullanarak problem üzerindeki en iyi sonucu 
bulmaya çalışır. Karıncalar en iyi yöntemi belirlemede yön gösterici olması için her 
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çzöüm üretme adımında feromon salgılarlar ve bu feromonu problemde ürettikleri 
çözüm yolu üstüne, bir sonraki adımda başka karıncalar tarafından izlenebilmesi için 
bırakırlar Karıncalar çizge üzerindeki olası bütün yarı-bağlı alt çizgeleri bulup en iyi 
çözümü üreterek, çizge üzerinde minimum kalite kaybı ile indirgeme yapmaya 
çalışırlar. 

Önerilen algoritmanın adımları aşağıdaki sıralanmıştır: 

1. Çalışılan ağ çizgesinin boyutuna bağlı olarak, özellikle büyük ölçekli 
çizgelerde doğabilecek işlem maaliyeti sorununa önlem amaçlı, çizgeyi daha 
küçük alt çizgelere bölümlendirmek için kartopu örneklemesi yapılır. Oluşan 
her alt çizge üzerinde, bir sonraki adımlar için biriryle paralel işleçler çalışır.  

2. Oluşturulan her kartopu işlecinde Karınca Kolonisi Eniyileştirmesi modelleri 
çalışır. Bu adımda kullanılan yöntemler sırasıyla Karınca Kolonisi Sistemi, 
Ençok-Enaz Karınca Sistemi ve Rütbe-bazlı Karınca Sistemi’dir. Karıncalar 
her alt çizgede en iyi yarı-bağlı alt çizge listesini oluşturmaya çalışırlar. 
Çizgelerin tam bağlı olması amaçlanır, fakat bu tez çalışmasında önerilen bir 
eşik değeri ile çizgede belli oranda ayrıtın eksik olmasına izin verilir ve işlem 
boyunca yarı-bağlı alt çizgeler de listeye eklenir. Çözüm listesindeki tam 
veya yarı-bağlı alt çizgelerin kalitesine bağlı olarak en iyi puana sahip 
karınca, en iyi karınca seçilir. 

3. En iyi karıncalar tarafından oluşturulan alt çizge listesindeki çizgeler, işlemin 
doğası gereği bir düğümü paylaşırlar. Bu sorun üstüste binme olarak 
adlandırılabilir ve bu aşamada düzeltilir. Düzeltme işleminde paylaşılan 
düğüm en çok düğüme sahip olan ve bu düğümü paylaşan alt çizgeye verilir. 

4. Düzeltilen alt çizgeler tek bir düğüm haline dönüştürülür; diğer düğüm 
grupları ve atanmamış düğümlerle birlikte çizge dönüştürme işleminde 
kullanılacak bu yeni düğüme çizge-düğüm denir. Bu adımda, işlenmemiş ana 
çizgedeki tüm ayrıtlar silinir ve ayrıt-arasındalık kavramından esinlenerek 
belirlenen ağırlık değeri ile çizge-düğüm ve atanamamış düğümler arasında 
yeni ayrıtlar yaratılır.  

5. Son adımda yeni oluışturulan indirgenmiş çizge, bir hızlı aç gözlü topluluk 
bulma algoritması ile işlenir; sonuçlar işlenmemiş çizgenin sonuçları ile 
karşılaştırılır. 

Popüler kıyaslama verikümeleri ile orta ve büyük ölçekli sosyal ağ verikümeleri 
üzerinde testlerimizi koştuk. Testlerimizin ürettiği, karşılaştırma için kullanılan 
değerler, toplam tam veya yarı-bağlı alt çizge sayısı, toplam puan, indirgenen 
çizgedeki düğüm ve ayrıt sayısı, toplam topluluk sayısı, genel birimsellik ve Davies-
Bouldin İndeksi’dir. Sonuçlar, tüm Karınca Kolonisi Eniyileştirme modellerinin, 
bulunan tam veya yarı-bağlı alt çizge ve genel çözüm kalitesinde biribirine yakın 
olduğuna işaret etmektedir. Çizge indirgenmesi sonrasında hesaplanan birimesllik 
değerlerine göre kalitenin korunduğu gözlenmiş ve Davies-Bouldin İndeksi’ne göre 
de kümeleme kalitesi açısından da en alt seviyede kayıp olduğu doğrulamıştır. 
Bunlara ek olarak, çizge üzerinde düğüm ve ayrıt sayısı bkaımında %50’ye varan bir 
azaltılma gözlemlenmiş, bu sonucun da, önerilen önişleme yöntemiyle beraber 
kullanıldığında, O(E.VlogV)  zaman karmaşıklığına sahip topluluk bulma 
algoritmasının karmaşıklığını O((E.V/4)log(V/2)) değerine indirdiği hesaplanmıştır.  

Sonuç olarak, bu tez çalışmasında sunulan önişleme yönteminin, kullanılacak 
herhangi bir topluluk bulma yönteminin, işlem maaliyetleri ve ölçeklendirilme 
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sorunun en aza indirgenmesi adına, bahsi geçen 3 Karınca Kolonisi Eniyileme 
yöntemlerinden biri seçilerek, ilgili topluluk bulma yöntemi ile beraber 
kullanılmasını tavsiye ederiz. 



  xxii



 1

1.  INTRODUCTION 

The continuous growth of Internet, which makes information using/sharing and 

collaborating easier for people, also allows the attractiveness of social networks as a 

research topic in many different disciplines grow in parallel. Depending on the 

frequency/density of interactions/similarities between each network members, 

community structures might be established in those social networks. Detection of 

these community structures is a popular research topic.  

The definition of community in a social network, from computer science perspective, 

can be given as follows.  Nodes/vertices represent the members of a given network 

while edges in between the nodes represent the relevance/interaction/similarity 

between the corresponding nodes. With regards to latter definition of network graph, 

communities are defined as the group of nodes with higher density of edges in 

between, when compared to the outward edges (edges from the community nodes to 

the outer nodes which reside out of that community) [1].  A term, proposed in the 

context of community detection on network graphs by Girvan and Newman [2], the 

modularity is the density indicator of whole communities in a given network, used as 

a quality metric.  

There are many variants proposed for community detection, which use different 

approaches such as greedy approaches [3], or hierarchical clustering on the given 

social network [4].  However, large-scale social networks cause scalability problems 

related to increasing computational costs when these community detection methods 

are used. The computational complexity of these community detection methods 

comes from these two parameters: number of nodes and number of edges in the 

given network. In this thesis work, we propose a novel method which enables those 

community detection methods to process effectively on large-scale social networks. 

The proposed method reduces the size of the network, which reduces the execution 

times of the community detection methods on large-scale networks which improves 

methods’ scalability while preserving the solution quality. 
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In our approach, the base element that forms communities, cliques, are used to detect 

community structures. Clique, a graph theory concept, can be defined as a fully 

connected subgraph, whereas an almost fully connected clique is named as a quasi-

clique. In [5], quasi-cliques are accepted as the basis of communities. Ant Colony 

Optimization (ACO) techniques are used in literature [6] to search for cliques in a 

given graph. We used a modified version of an ACO based maximum clique search 

algorithm [6] to find the quasi-cliques of all possible sizes in the given graph. 

Overlapping cliques (cliques which share node with other cliques) are corrected after 

ACO step. The resulting cliques, named metanodes or clique-nodes in this study, are 

used in graph transformation step. Graph transformation step is required to shrink the 

original network graph to a manageable size for community detection methods. In 

this step, connections between the individual nodes belonging to each clique are used 

to form new edges between clique-nodes. At the last step, a traditional community 

detection method [7] is used on the transformed graph for community detection. The 

aforementioned approach is implemented and the experiments are run on benchmark 

social networks commonly used to compare results of community detection 

approaches [8]. We use the snowball sampling method [9], which is a technique to 

create samples starting from a random instance and growing like a snowball by 

adding the neighbors of that instance to the pile, to generate these subgraphs and we 

run the ACO-based clique finding technique on each one in parallel, which allowed 

us to run our experiments for larger-scale social networks, which is also used in [10]. 

This thesis is structured as follows: first, in Section 2, we give a problem definition 

for community detection on given networks and we present related work in social 

networks and community detection. Following with Section 3, we explain the ACO 

technique and give details about the two ACO variants we use in this study, namely 

the Ant Colony System (ACS), the Max-Min Ant System (MMAS) and the Rank-

based Ant System (RAS). Then, we present our proposed approach to find quasi-

cliques in a graph for community detection in Section 4. Section 5 shows our 

experimental results and our analysis of these results. Finally, Section 6 concludes 

the paper and provides directions for possible future work. 
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2.  COMMUNITY DETECTION PROBLEM 

2.1 Problem Definition 

The community detection problem on social networks, while considering many 

definitions proposed in the literature, can be defined and formulated as follows: 

Nodes or vertices are represented with set V while edges in between those vertices, 

which show the pair wise connections between the individuals 

(similarities/relevancies between two individuals), are represented with set E. Graph 

G=<V, E> is a model of a social network. With the given graph definition, a 

community can be defined as a subgraph in a network graph that has a higher density 

of edges in between its members and a lower density of edges from its members to 

those outside the subgraph. 

 

Figure 2.1 : Community definition 

 

The social network graph is represented by an adjacency matrix M of NxN where N is 

the number of nodes in the corresponding graph. An adjacency matrix cell Mij is the 

indicator to an edge between the nodes i and j of the graph. The value of the cell will 

be 0 if there is no connection (no similarities or interaction) between the 

corresponding nodes; the value will be 1 or a positive real value depending on the 

unweighted or weighted edges on the corresponding network graph. The problem of 
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community detection is to find k number of communities in a given network graph, 

such that each community satisfies Eq. (2.1): 

{ }Nlkji
bb

ba

lkkl

Kk Kl
kl

Ki Kj
ij

,...,2,1,,,
,
∈

=

∑∑>∑∑
∈ ∉∈ ∈

        (2.1) 

where aij is the similarity (a relation/relevance indicator value in real number form) 

value of an edge in the community K and bkl is the similarity value of an edge to the 

outside of that community K. 

 

Figure 2.2 : An example community structure 

Essentially, the community detection problem is a type of clustering problem. 

However, types of the network data used in the problem lead to significant 

differences. In the original clustering problem, a similarity or distance matrix for the 

given network data is enough to apply clustering methods (i.e. k-means, hierarchical 

or spectral clustering). On the other hand, discrete network data (i.e. biological or 

social networks) are different from the above menitoned network data; they are 
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large-scaled compared to the other types (real-world data and commonly have a 

power law degree distribution),  and contains data patterns to be detected by graph 

algorithms (i.e. cliques). As a result, the community detection problem is based on 

different parameters when compared to original clustering, which can be named as 

edge-betweenness, network modularity and so on. 

2.2 Related Literature 

Cohesive groups like cliques, clans or plexes, can be the definition of communities. 

There are many approaches in literature which use those cohesive groups as the basis 

of their detection method. Among those approaches, Donetti and Munoz proposed a 

hierarchical clustering approach, based on detection of larger communities using 

Laplacian eigenvectors as a similarity measure on a given network graph [4]. The 

essence of the approach lies on the division operation used to establish communities, 

while the vectors are re-calculated as long as the division operation continues. 

Despite the fact that the initial number of communities on the given graph is not 

required by the method, the termination condition for the division process cannot be 

optimized to come up with the best clustering result on the corresponding graph. 

The Network Modularity term, proposed by Girvan and Newman [11], is introduced 

by a divisive approach structured on elimination of edges from the network graph 

based on the betweenness values. The betweenness used here is based on edge 

betweenness where weights are assigned to edges, which are stationed on the shortest 

path between pairs of nodes. The edge betweenness value increases in parallel with 

the number of shortest paths on that edge. “Q”, the network modularity, is the ratio 

of in-community edges to the randomly chosen edges on a network subgraph. 

Network Modularity, Q, takes on values in between 0 and 1. The value depends on 

the clustering measure on the given graph. A close to 1 value means the communities 

in the graph have fewer connections to the outside of that cluster when compared to 

its inward connections; likewise, a close to 0 value means the opposite. An optimized 

Q value helps to find a better division on a given network graph, although the 

performance loss on large-scale network graphs is still a drawback for the proposed 

algorithm. Considering the performance of corresponding method, Radicchi 

proposed a similar edge clustering algorithm with better performance [12]. 
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A more enhanced, fast greedy clustering method, based on modularity maximization, 

is proposed by Clauset, Newman and Moore [3]. Clustering continues by merging 

nodes with maximum ∆Q and stops when ∆Q results are negative. Although Wakita 

and Tsurumi [7] came up with an optimized version of this method, there are still 

concerns on performance and solution quality for large-scale graphs. 

A different clustering algorithm, proposed by Palla et al. [13], uses cliques as a basis 

of the detection similar to the approach in this thesis. In the approach, called k-clique 

percolation, an edge probability equation is proposed to find a suitable k value for 

the k-cliques to be created. Once a suitable value is found, a giant component is 

searched by attaching k-cliques one-by-one. The algorithm is said to be successful 

with better performance on overlapping community detection on Erdos-Rényi (ER) 

random graphs. 

As the popularity of community detection increases, different approaches are being 

proposed. Nature inspired approaches are also used in this manner. A genetic 

algorithm proposed by Pizzuti can be given as an example [14]. The algorithm uses a 

fitness function for the diversification of node groups and establishes communities. 

ACO techniques are also used for community detection. The study of Liu et al. [15] 

proposes an ant clustering technique based on Enron’s mail network communities. In 

the preliminary study of the thesis, described in [8] and [10], we also used an ACO 

technique. However, unlike in [14], ACO is not used for clustering. We used ACO to 

determine cliques, which will then be used as vertices in a reduced graph. A regular 

clustering based community detection algorithm is then applied on this reduced 

graph. By doing this, we aimed to overcome the performance loss of community 

detection methods on large-scale networks. For optimization of the study and 

structuring of the thesis, we further modified our approach to work in parallel on 

subgraphs of the original network graph as in [10], which were created using 

snowball sampling. We also modified the algorithm to search for quasi-cliques, 

which will be described in detail in Section 4. 

There are also similar graph reducing studies called as “graph coarsening”, which is 

a part of “Multi-level Graph Partitioning”. Their main process is based on 3 sub-

processes: coarsening, partitioning and un-coarsening. A detailed comparison on the 

schemes which Multi-level Graph Partitioning use is given in [16], as well as an 

evolutionary approach proposed in [17]. Even though the coarsening part is similar, 
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the approach is not fully applicable to our algorithm as it mostly works on graphs 

with weights on both edges and nodes. Following to that, the partitioning is based on 

balanced partitions on the graphs, unlike community detection which is based on 

clustering in search for a common trait. 
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3.  ANT COLONY OPTIMIZATION  

ACO, one of the most commonly used swarm intelligence techniques in literature, is 

based on the behavior of real ants. ACO was first introduced by Marco Dorigo in his 

PhD thesis [18]. In the real world, ants (initially) wander randomly, and upon finding 

food return to their colony, while laying down a special chemical called the 

pheromone. This is used to communicate with other ants. If other ants come across a 

path with pheromones on it, they are likely to follow the trail, returning and 

reinforcing it if they also find food along the same path. 

The basic ACO algorithm is given below. An ACO iteration consists of the solution 

construction and pheromone update stages. In each iteration, each ant in the colony 

constructs a complete solution. Ants start from random nodes and move on the 

construction graph by visiting neighboring nodes at each step. 

Algorithm 1 Basic ACO Outline 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 

set ACO parameters 
initialize pheromone levels 
while stopping criteria not met do 
      for each ant k do 
            select random initial node 
            repeat 
                  select next node based on decision policy 
            until complete solution achieved 
      end for 
      update pheromone levels 
end while 

 

An ant k chooses the best neighbor with a probability of q0. Otherwise, the next 

visited node is determined using a stochastic local decision policy based on the 

current pheromone levels τij and heuristic information ηij between the current node 

and its neighbors with a probability pk
ij as calculated in Eq. (3.1); where α and β are 

integer values to define powers of pheromone levels and heuristic information, Nk
i is 

the neighborhood of nodes for ant k’s journey. 
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Pheromone trails are modified when all ants have constructed a solution. First, the 

pheromone values are evaporated by a constant factor on all edges. Then, pheromone 

values are increased on the edges the ants have visited during their solution 

construction. Pheromone evaporation and pheromone update by the ants are 

implemented as given in Eq. (3.2) and Eq. (3.3) respectively, 

ijij τρτ )1( −←  (3.2) 

∑
=

∆+←
m

k

k
ijijij

1
τττ  (3.3) 

where 0 < ρ ≤ 1 and ∆τk
ij is the amount of pheromone deposited by ant k. 

ACO has been applied successfully to many combinatorial optimization problems, 

such as routing problems, assignment problems, scheduling and sequencing problems 

and subset problems, etc. Ant System (AS) is the first implementation of ACO 

algorithms, and has been the basis for many ACO variants. There are many 

successful AS variants in literature. Among the most commonly used variants, the 

elitist AS, rank-based AS, the MAX-MIN AS (MMAS), the ant colony system 

(ACS), the best-worst AS, the approximate nondeterministic tree search, and the 

hyper-cube framework can be mentioned [19]. MMAS and ACS are shown to be 

good both in solution quality and also in solution speed for the example cases in [19]. 

Therefore, we also use them in this study. In addition to above variants, RAS is also 

used in our study to observe the differences with MMAS. MMAS, RAS and ACS are 

among the approaches which can be considered as direct variants of AS, since they 

both use the basic AS framework. The main differences between AS and these 

variants are in the pheromone update and pheromone management details. The AS 

algorithm implements the basic ACO procedure detailed above. The following 

paragraphs explain the differences between the selected ACO variants and AS. For 

further details see [19]. 
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3.1 The Ant Colony System (ACS) 

The ACS [19] differs from AS in three main points:  

• First, a pseudo-random proportional action choice rule is used, which allows 

the exploitation of the ants’ search experience. 

• Secondly, pheromone evaporation and deposit is applied to the edges of the 

best-so-far solutions.  

• Finally, a local pheromone update, which includes evaporation, is applied 

each time an ant passes through the corresponding edge. This favors 

exploration over exploitation.  

 

At the end of each iteration in ACS, the pheromone trails are again updated similar to 

in AS, but the pheromone trail updates, both evaporation and new pheromone 

deposit, are implemented only for the edges belonging to the best-so-far solution. 

3.2 The MAX-MIN Ant System (MMAS) 

The MAX-MIN Ant System (MMAS) [19] has four major differences from AS:  

• First, the pheromone update is allowed for the iteration-best, that is the ant 

with the best solution for that iteration, or best-so-far ant, that is the ant with 

the best solution for all iterations, throughout the runs.  

• Secondly, pheromone limits in an interval [τmin, τmax] is defined to prevent 

stagnation on local optimum.  

• Thirdly, edges are initialized with upper pheromone limits to favor 

exploration over exploitation in the beginning of the run.  

• Finally, the pheromone trails are reinitialized when the solution does not 

improve for a number of iterations or stagnation occurs.  

Pheromones are deposited on the edges according to the equations as given for AS 

above. The difference is that the ant which is allowed to add pheromone may be 

either the best-so-far or the iteration-best ant. Commonly in MMAS 
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implementations, both the iteration-best and the best-so-far update rules are used 

alternatively. 

3.3 The Rank-Based Ant System (RAS) 

Rank-based Ant System (RAS) [19] is an improved version of the original Ant System 

(AS). The amount of the pheromone, which selected ants deposit on the trail, 

decreases over time with respect to their ranks of their solution. The ranks are 

decided after the solutions are ordered by their solution quality. Each ant deposits its 

pheromone according to their weight related with rank r. In each iteration, the best-

so-far ant and the remaining (w-1) best ant deposit their pheromones. The r-th best 

ant will have a weight max (0, w-r), while the best-so-far ant’s weight is w. Eq. (3.4) is the 

pheromone deposit rule for RAS, where Sr denotes the solution cost for r-th best ant. 
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3.4 ACO for the Maximum Clique Problem 

For the maximum clique version of ACO, each ant is placed on a random node of the 

given graph G=<V, E> where V is the set of nodes and E is the set of edges between 

them. Ants lay pheromones on the edges of the cliques they find through their walk. 

Ants are forced to visit a node only once in their journey, by keeping a tabu list for 

each ant. This list contains all the nodes in the ant's trajectory until it gets stuck or it 

finds a feasible solution. In such a case, the ant restarts its journey per request and its 

tabu list is reset. Each ant chooses its next node based on the probabilistic state 

transition rule, given in the previous subsection that uses pheromone values and 

heuristic information as components. Also note that nodes are chosen by the ant if 

they establish a clique with nodes the ant visited: next node to be selected should 

have connections with all nodes in the clique the ant has created. After each ant 

applies the same rules and creates a solution, pheromone update is performed, based 

on the used ACO variant. The pheromones are deposited on the edges of the found 

cliques. For further details on the ACO for Maximum Clique problem, please refer to 

[6]. 
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4.  COMMUNITY DETECTION USING ACO 

In [8], we proposed an ACO-based technique for community detection. In this thesis, 

we improve our approach through the below steps.  

1. Given network graph is divided into subgraphs through snowball sampling 

method. 

2. ACO techniques are applied in parallel to each snowball sample in the search 

of quasi-cliques. 

3. Overlapping cliques are fixed. 

4. Fixed subgraphs with non-overlapping cliques are combined and transformed 

into a graph smaller than the original graph. The graph re-creation is based on 

the concept of betweenness, to construct new edges for the graph. 

5. The resulting, transformed graph is processed with a community detection 

algorithm to find possible community structures in. 

In the preliminary study, we used the above steps to reduce the network graph, using 

ACO to search for fully connected cliques. As an enhancement on the protoype 

version of the algorithm, we modified the search dynamics and the reconstuction 

phase as well as parallelization of the method. We are able to reduce  the size of the 

network even more, through relaxing the fully connected clique search constraint and 

modification to search for quasi-cliques. Through sampling and then parallelization, 

we are able to search on the original network in parallel. This increases the 

scalability of our proposed approach. 

4.1 Snowball Sampling for Creating Subgraphs 

In the preliminary study, ants traversed the whole graph to search for cliques.  As an 

improvement to shorten the execution times on large-scale network graphs, a 

sampling method is performed on the whole graph to create subgraphs which then 

allowed us to use ACO techniques on each of the subgraphs in parallel. 
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First, the number of parallel ACO threads to be run on the network graph is 

determined with respect to the size of the corresponding graph. The decided value is 

given as a parameter to our method. Snowball sampling is performed on the given 

graph to create subgraphs for each of the threads. Each snowball agent is placed on a 

random node in the graph and it walks on the graph by adding neighbor nodes, until 

the snowball can’t grow any more. Then each snowball becomes a subgraph on 

which an ACO thread executes. In the process, if the snowball has fewer nodes then 

the threshold limit, which is chosen as the number of ants, then the snowball is 

discarded and started again while there are available unvisited nodes in the graph. 

The snowball sampling algorithm is shown below. 

Algorithm 2 Snowball Sampling 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 

initialization of snowball sample memory 
while there is an unfinished snowball do 
      for snowball thread t do 
           if snowball is not successful then 
                select random initial node 
           if there is a node available then 
                select next connected and unvisited node 
                add selected node and the edges 
           else 
                if number of nodes in snowball is above threshold then 
                    mark snowball successful 
               else 
                    mark snowball not successful 
                    release acquired nodes and edges 
      end for 
end while 

4.2 Ant Colony Optimization for Finding Quasi-Cliques 

4.2.1 Clique Finding Approach 

The Maximum Clique Finding Problem is the basis of the ACO aided search for 

quasi-cliques in our solution. The original ACO based approach for the mentioned 

problem is proposed by Fenet and Solnon [6], which uses an ACO variant, MMAS. 

In the original approach, ants try to find the possible maximum clique in the given 

network graph. In our approach, ants try to find all quasi-cliques on their path as well 

as the possible maximum clique. An ant moves along its way while constructing its 

cliques and starts a new clique when there is no eligible neighbor node left to add to 
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the current clique. In this approach, ACS and RAS are also used as ACO variants 

besides MMAS. 

Different from the preliminary work on clique search, the search mechanism is 

relaxed with a threshold value for connectivity. Quasi-cliques, which are actually 

almost fully connected subgraphs, are dependent on that threshold value defined for 

connectivity. An ant will try to find cliques on its way but it may also allow quasi-

cliques which satisfy the beforementioned threshold value. During the journey of the 

ant, the next candidate node can be added to the current clique to form a quasi-clique 

if the ratio is below the threshold value, which can be defined as the ratio of 

unconnected nodes against the next node to number of nodes in the current clique. 

4.2.2 Pheromone Trails and Heuristic Information 

Ants decide to move on the next eligible node in their journey. The selection of the 

next node depends on 3 parameters. The node must be unvisited, which is controlled 

by a tabu list deployed to each ant. The second and the third parameters are the 

pheromone level and the heuristic information, which will be described in this 

section. 

In the solution, pheromones are deposited on the edges of the given network graph. 

Thus, the pheromone levels are represented with a two dimensional array, whose 

cells are mapped to the edges of the graph. The pheromone level on an edge can be 

symbolised as τij. Higher pheromone levels on the edges attract ants to move through 

them to add the nodes terminating on the corresponding edges. Higher pheromone 

leves indicate the possibility of finding better cliques are on the trail. The amount of 

pheromone laid on the edges are proportional to the quality of the solution. 

Pheromones are initialized on the edges at the beginning of the process. The 

pheromone levels are set to the same value for each ant, but the differentiation is 

achieved by the addition of the heuristic information to the selection process. The 

heuristic information, ηij, is the average of the degrees of the candidate nodes for 

ants’ choice on the journey. Ants use both heuristic information and pheromone 

combined together, to select the next best node to construct a series of quasi-cliques. 

The combined value for the pheromone is called the total information and is defined 

as ταij . ηβij , where α and β are the constants to adjust the weights of pheromone level 

and heuristic information. 
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A popular neighborhood tour is executed beforehand for pheromone initialization. 

The tour creates a popular neighborhood list. Each row in the list corresponds to a 

selected node and the columns correspond to the nodes connected to that node, sorted 

in decreasing order of degrees of the nodes. This popular neighborhood list is used in 

the heuristic approach for each node in the sub-graph. The pheromone limits differ 

for each ACO variant. The following equations show the pheromone initialization for 

each model. The equations (4.1), (4.2) and (4.3) are for ACS, MMAS and RAS 

respectively.  

pn_tour().ninitial =τ  (4.1) 
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pn_tour().ρτ =initial  (4.3) 

Pheromone limits are directly related to the number of ants used in the solution for 

the τmin value and the best-so-far ant’s score achieved at the “popular neighborhood” 

tour for the τmax value (τinitial value for ACS and RAS). The pheromone levels on all 

edges are set to the τmax value to favor exploration in the beginning of the run. The 

function pn_tour() returns the total score gained by the scout ant’s clique collection 

constructed on the “popular neighborhood” tour, n is the number of nodes in the 

graph and ρ is the evaporation rate. The pheromone constants n and (2n)-1 are chosen 

as in TSP problems. 

The pheromone is globally distributed on the edges of the cliques found by the ants 

and the amount is dependent on the solution quality defined as the score of ant. A 

scoring system evaluates the score achieved by an ant, based on the cliques it has 

found so far, as shown in (4.4) 
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where Cl is the current clique found by the ant and nbCliques is the number of 

cliques found by the current ant. vertices() and edges() functions give the number of 
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vertices and edges in the current clique accordingly. Following that, the pheromone 

difference can be calculated as in (4.5). 

1))(score(1)( −−=∆ kk antantτ  (4.5)

The pheromone update procedures differ according to the ACO version used in the 

process. There are  update procedures mentioned here: global update, weigthed 

global update and local update. 

Algorithm 3 Global Pheromone Update 
1: 
2: 
3: 

 
4: 
5: 
6: 
7: 

for each ant k do 
      for each clique Cl do 
            for each edge ij do 
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            end for 
      end for 
end for 

In Algorithm 3, global pheromone update can be seen. The amount of pheromone 

added to the trails is determined by the solution quality shown in (4.6). It can be seen 

from the equation that cliques with higher number of vertices get more pheromone 

compared to other cliques. m_vertices() function in (4.6) gives the number of nodes 

in the maximum clique found so far. 
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Algorithm 4 Weighted Global Pheromone Update 
1: 
2: 
3: 

 
4: 
5: 
6: 
7: 

for each ant k do 
      for each clique Cl do 
            for each edge ij do 
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            end for 
      end for 
end for 

In the weighted version of global pheromone update, shown in Algorithm 4, the 

weights are used to differ selected ants when laying pheromones. This procedure is 

used in RAS to determine pheromone deposits, depending on the rank of the ant. 
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The local pheromone update algorithm, which is described in Algorithm 5, is only 

used in ACS and allows every ant to deposit its pheromones. The parameters ξ and 

τinitial, where 0<ξ<1 and τinitial is the initial pheromone on the edge is used. Whether 

the ant creates the best solution or not, the pheromone is deposited on the edge for 

both feasible and infeasible solutions. 

Algorithm 5 Local Pheromone Update 
1: 
2: 
3: 
4: 
5: 
6: 
7: 

for each ant k do 
      for each clique Cl do 
            for each edge ij do 
                  ξξ τττ ⋅+−⋅← initialijij )1(  
            end for 
      end for 
end for 

The differences in pheromone update procedures between ACO variants used in this 

thesis are described in the following subsections. 

4.2.2.1 The pheromone update of ACS 
 

In the ACS pheromone update process, shown in Algorithm 6, only the best-so-far 

ant is allowed to deposit its pheromones on the edges of its clique series. Evaporation 

is implemented at the same time of accumulation. Local pheromone update, shown in 

Algorithm 5, is still used for every ant. 

Algorithm 6 ACS Pheromone Update 
1: 
2: 
3: 

 
4: 
5: 
6: 
7: 

for each ant k do 
      for each clique Cl do 
            for each edge ij do 
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            end for 
      end for 
end for 

 
4.2.2.2 The pheromone update of MMAS 
 

In the MMAS pheromone update process, shown in Algorithm 7, the best-so-far, 

iteration-best ants are alternatively allowed to deposit pheromones on the edges of 

their clique series. Iteration-best ant is the best ant for a specific iteration, where 

best-so-far ant has the best solution of all iterations so far. There is one major 

difference between the original MMAS model and the model in our work: restarting 
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for ants depending on a branching factor is not used in our solution. Thus, the 

diversity of solutions is not a problem and restart-best ant is not used in this process. 

In Algorithm 7, u_gb is used to select iteration-best and best-so-far ant alternatively 

throughout the algorithm. The value is chosen as 1, as restart-best ant is omitted. 

Algorithm 7 MMAS Pheromone Update 
1: 
2: 
3: 
4: 
5: 
 

if iteration % u_gb do 
      Global Pheromone Update for iteration-best ant 
else 
      Global Pheromone Update for best-so-far ant       
end if 

 
4.2.2.3 The pheromone update of RAS 
 

Algorithm 8 shows the pheromone update procedure of RAS. In RAS, a number of 

selected ants from a ranked list are allowed to deposit their pheromones, along with 

the best-so-far ant. The weight, wich will be used in the weighted global update 

procedure, is determined respectively to their ranks in the list. The best-so-far ant 

will have w value as weight, where rth ranked ant will have w-r value as weight. 

Algorithm 8 RAS Pheromone Update 
1: 
2: 
3: 

 

for each ant k that has rank ≤ w do 
      Weighted Global Pheromone Update  
end for 

 

Overall flow for the update procedure is shown in Algorithm 9. Each ant finishes its 

trail, comes up with a solution and pheromone update procedure is processed 

afterwards. 

Algorithm 9 Pheromone Update 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 

for each ACO method do 
      evaporate pheromones except for ACS 
      call  the update procedure of the selected ACO method 
end for 
if MMAS then 
      check pheromone limits on the trails 
end if 
for each ACO method do 
      compute total pheromone as ταij . ηβij 
end for 
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First, evaporation takes place on the edges with pheromones. Selected pheromone 

update procedure is run after evaporation step. Before the last step, if the ACO 

variant is MMAS, the pheromone limits on the edges are checked and corrected if 

there is an exceeded value. Pheromone trails are updated with the total information, 

defined as ταij . ηβij. 

4.2.3 Solution Construction 

The journey of each ant is limited with a tabu list; ants can not move to previously 

visited nodes. Ants will use the degrees of the nodes in the neighborhood of the 

current node as the heuristic information along with the pheromone trails on the 

edges. This information helps to choose the node with the maximum degree and the 

information becomes active depending on the pseudo-random proportional action 

choice rule. The construction steps are shown in Algorithm 10. 

Algorithm 10 Solution Construction 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

for each ant k do 
      place ant on a random node 
end for 
while step < n-1 do 
      step++      
      for each ant k do 
            move to next eligible node 
            if ACS then 
                 local acs pheromone update  
            end if 
      end for 
end while 
for each ant k do 
      pheromone trail update 
end for 

Ants can traverse all the nodes in the subgraph and if they get stuck along the 

journey (if they could not find any eligible node to add to thier trajectory), they are 

killed. Search continues until all ants are killed.  

Selection of the next eligible node depends on the pheromone and heuristic 

information of the edge tied to that node. A probability ratio is used to determine 

dominance of pheromone and heuristic information; the selection decision is 

implemented with a pseudo-random proportional action choice rule. In this rule, 

shown in Algorithm 11, each eligible node is assigned a probability proportional 

value and ordered in an array. Cumulative probability value is calculated and the 
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random node is selected after exceeding a defined probability parameter. The 

feasibilty of the node is defined by two parameters. If the node is unvisited and if the 

threshold value is not exceeded when the node is added, then the node can be 

selected for that ant to move. If there are more than one feasible candidate node, then 

the one with higher total information is chosen. 

Algorithm 11 Solution Construction 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 

prob_sum = 0 
current_node = c 
for each candidate node i do 
      if not feasible then 
            prob_ptr[i] = 0 
      else 
            prob_ptr[i] = total_information[c][i] 
            prob_sum += prob_ptr[i] 
      end if 
      if prob_sum == 0 then 
            choose best eligible node without total information 
      else 
            select a random node in prob_sum 
            calculate the score of ant 
      end if 
end for 

4.3 Fixing Overlapping Cliques 

The resulting cliques, created by the best-so-far ants in each snowball piles, are 

naturally overlapping with at most one node. Traversing ants stop the constructed 

clique once they get stuck, and start a new one from the last node they are at. 

Eventually, a visited node in a previously created clique will be another clique’s 

initial node. 

Fixing overlapping cliques is easy, as shared nodes between these cliques are 

detected. When two overlapping cliques are found, the shared node is added to the 

clique with the higher number of nodes and is deleted from the other. The details of 

this operation are explained in the first and second steps of Figure 4.1. Resulting 

cliques will have no shared nodes after this operation. 

4.4 Transforming the Graph 

After fixing the overlapping cliques, resulting cliques will be used to transform a 

new graph from the original one. The resulting non-overlapping cliques will be used 
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as meta-nodes, called  clique-nodes, to form a new graph which is smaller then the 

original. The number of edges and the number of nodes are reduced in the 

transforming process. With the reduced network graph, it will be possible to use a 

community detection algorithm in the next phase of the method. 

The edges in the reduced graph will have weigths as they are actually merged edges 

into one edge for each node in the new graph; therefore, their weigth values should 

be re-calculated. The equation for the new edge weights is given in (4.7). Edge 

weight calculation is needed for the edges from clique-nodes to clique-nodes. The 

intra-community edge values of the cliques are also used in this equation. 

∑ ∑∑∑

∑ ∑

∈ ∈ ∈∈

∈ ∈=

k l lk

k l
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ypr
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ymn

Ci Cj
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kle
),min(

 (4.7) 

In (4.7), xij is the relevance value of the edges between the clique-nodes while ymn 

and ypr represent the relevance values of the intra-community edges of the clique-

nodes Ck and Cl. The edge weight ekl of the newly formed edge between the clique-

nodes or between a clique-node and an existing node is the result of the above 

equation. Higher values of edge weights mean a higher similarity. 

In the ACO step, each thread provides a solution constructed from a set of quasi-

cliques.After the overlap fixing step, the outputs of all threads are gathered and 

combined to find the whole set of quasi-cliques. The leftover nodes, which are not a 

member of any quasi-clique, are considered as nodes again in the new graph, while 

each quasi-clique is formed as clique-node. Then, we calculate the weights of the 

new edges in between the clique-nodes as well as the edges in between non-clique 

nodes with the created clique-nodes. The edges in between nodes which are not a 

member of any clique will also be preserved with their initial relevance values and 

are added to the new reduced graph. 

4.5 Using a Community Detection Algorithm 

The reduced graph with new edges and nodes (formed from original nodes and 

clique-nodes) is processed with a commonly used community detection method in 

the last step of the algorithm. Among the variants of community membership 

detection methods, the one which is able to process edge weights is chosen. The edge 
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weights determine the strength of the relevance/similarity values between newly 

formed nodes in the reduced graph. The greedy method proposed in [7] is used to 

calculate modularity differences between the original graph and the reduced graph. 

Clique overlapping steps (I and II) with graph transformation step (III) is shown in 

Figure 4.1. (I) and (II) illustrate the detection of a node shared by two cliques after 

which it is assigned to the clique with more nodes and removed from the other; (III) 

shows the resulting clique-nodes with the edge weight calculated between them as 

shown in (II). 

 

Figure 4.1 : Illustration of clique-node formation 
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5.  EXPERIMENTAL STUDY 

5.1 Experimental Setup 

The proposed algorithm is coded in the C language and we used the iGraph [20] C 

library for the last step. For all of our experiments, we used a single PC (4GHz quad 

core processor with 16GBytes of main memory). 

In the experiments, for each dataset, we first run iGraph on the whole (unreduced) 

graph and then on the graph reduced using our approach. We evaluate our results 

based on the number of communities detected, the node and the edge count reduction 

amounts, the Davies-Bouldin index values calculated as in [21] and the modularity 

values (Q) calculated using the iGraph community detection implementation. 

5.1.1 Datasets 

We used 9 network graphs for our experiments. The first 4 are the popular network 

grpahs used for benhcmarking in community detection area. The rest of the network 

graphs are used for performance testing and they are significantly large-scale in size. 

The information of the network graphs are given below, including the number of 

edge and node number of corresponding graphs. Following datasets are retrieved 

from [22,23,24]. 

5.1.1.1 Zachary’s Karate Club 
Social network of friendships between 34 members of a karate club at a US 

university in the 1970 [25]. The graph has 34 nodes and 78 edges. In the original 

data, 2 community groups are introduced. 

5.1.1.2 Chesapeake Bay Food Web 

A food web of lifeforms on Chesapeake Bay [26,27]. The graph consists of 34 nodes 

and 72 edges. In the original reports, 3 community groups are introduced. 

5.1.1.3 Les Miserables 

A social network graph for the characters played in the novel “Les Miserables” [28]. 

The edges show 2 character, each of which are represented with a node, are seen in 

the same scene. It consists of 77 characters and 254 connections. 
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5.1.1.4 American College Football 

Network of American football games between Division IA colleges during regular 

season Fall 2000 [29]. The number of teams (nodes) is 115 and the number of 

matches played (edges) is 616. The reports say that there are 12 groups for the teams. 

5.1.1.5 EPA 

This graph was constructed by expanding a 200-page response set to a search engine 

query, as in the hub/authority algorithm [30]. The data is about the pages linking to 

www.epa.gov. It consists of 4,772 nodes and 8,695 edges. 

5.1.1.6 Political Blogs 

Political blogosphere Feb. 2005, compiled by Lada Adamic and Natalie Glance [31]. 

Links between blogs were automatically extracted from a crawl of the front page of 

the blog. It consists of 1,490 nodes and 19,090 edges. 

5.1.1.7 Power Grid 

An undirected, unweighted network representing the topology of the Western States 

Power Grid of the United States [32]. Data compiled by D. Watts and S. Strogatz. It 

consists of 4,941 nodes and 6,598 edges. 

5.1.1.8 Free Online Dictionary of Computing 

FOLDOC is a searchable dictionary of acronyms, jargon, programming languages, 

tools, architecture, operating systems, networking, theory, conventions, standards, 

mathematics, telecoms, electronics, institutions, companies, projects, products, 

history, in fact anything to do with computing [33,34]. The graph contains 13,356 

words (edges) and 120,238 cross-references (edges). 

5.1.1.9 Scientific Collaborations 

Coauthorship network of scientists working on network theory and experiment, as 

compiled by M. Newman in May 2006 [35]. The graph contains 15,179 authors 

(nodes) and 79,934 coauthorship connections (edges). 

5.1.2 Parameter Settings 

Parameters which are specific to our algorithm and the ACO techniques used in our 

implementation are shown in this section, where m is the number of ants and q0 is 

the psuedo-random proportional action choice parameter used in calculating the 

heuristic. The threshold value is used for quasi-cliques; it defines the acceptable 

unconnected node ratio for the next node to be added to the constructed clique. We 
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performed initial experimentation to determine the ACO parameters given in the 

table that provided the best performance. In ACS we used ξ = 0.1 for the local 

pheromone update. For each of the datasets, we executed the algorithms 10 times 

with each run scheduled to complete in 15 seconds or 100 iterations, whichever 

occurs first. We used American College Football dataset and MMAS model, which 

provides better results compared to other variants, to tune our parameters.  

First, we used the dataset to optimize the time based on the constructed cliques and 

achieved score for our proposed algorithm. The time is selected where the highest 

score with lower nuber of cliques, which means more successful cliques are 

constructed according to the proposal of the algorithm in Section 4. Figure 5.1 shows 

the effect of time interval to the number of cliques found and the achieved score. 

According to the figure, 15 seconds is enough to have optimum values as no valuable 

contribution is monitored beyond 15 seconds. 

Time values are dependent on the CPU times of the computers we used in our 

experiments. According to that, the values in seconds may be changed in computers 

with different CPU speeds, however, the step counts will be similar to the graph we 

obtained. The seconds between 0-60 seconds are quantized to 12 samples; in faster 

CPU speeds, for instance max 30 seconds wil be quantized to 12 and the result will 

be same as the one we produced (i.e. 7.5 seconds time in faster CPU will be equal to 

the one we found on our computer will lower CPU speed with 15 seconds ). 

 

Figure 5.1 : Effect of maximum allowed time on cliques&score 
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Next, the effect of number of ants to the number of cliques and achieved score is 

investigated. In Figure 5.2, it is clearly seen that after number of ants is beyond 10 

ants, the quality of the cliques found are decreased significantly, according to the 

degrading score. The reason behind this decrease is the amount of pheromones 

deposited on the edges. As the number of solution is limited by 100, which is also the 

iteration count given as the termination condition, each ant finds only 1 solution 

when the number of ants is given as 100. In that condition, the anst will not be able 

to use pheromone matrices as the termination condition is met. As an outcome, the 

amount of pheromone usage increases asthe number of ants decreases. The best 

results are achieved when the number of ants are chosen as 5, where the ants find 20 

solution supported with the pheromone matrix.  

 

Figure 5.2 : Effect of number of ants used on cliques&score 

The weights of pheromone information and the heuristic information used on the 

total pheromone matrix of the process are represented with α and β. α=0 means the 

choice of the node with highest heuristic information while β=0 means only 

pheromone information for the next node is used, which is explained on Section 3. 

The parameter tweaking is based on the values higher than 0 for those 2 parameters. 

In Table 5.1 and 5.2, the number of cliques found and the achieved scores are listed 

according to the varying values of α and β. The tests are done with the integer values 

of α and β, upto α=3 and β=4. The best results are obtained using α=2 and β=2.  
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Table 5.1: Effect of α and β on number of cliques found 

β α 
0 1 2 3 4 

0 17.8 17.1 17.2 17 17 
1 16.7 17.2 16.8 17.4 16.7 
2 16.9 16.3 16.4 16.7 17.1 
3 17.4 17.1 17 16.8 17.2 

 

Table 5.2: Effect of α and β on achieved score 

β α 
0 1 2 3 4 

0 187.47 185.27 184.23 192.79 200.54 
1 231.32 227.97 230.09 227.83 230.12 
2 229.28 230.28 236.61 234.50 230.31 
3 231.50 230.47 232.15 232.14 234.36 

 

 

Figure 5.3 : Effect of q0 on cliques&score 

In the next step, the effect of q0 is tested using the example dataset. The q0 value is a 

probability threshold to determine the next move of the ants. For the values below 

the threshold value q0, the edge with the best pheromone information is chosen, 

while for the rest of the values above q0, which can be defined as 1-q0, the pseudo-

random proportional choice rule is applied. The details are covered in Section 3. The 

q0 value brings randomness to the number of cliques found ans score achieved 

beyond 0.3. The best results in score is achieved on 0.1 and 0.7, however, 0.1 is 

selected as the number of cliques should be lower, which indicates better cliques are 



 30

found. Higher values might provide diversity in the search space, however, it 

affected our proposed algorithm negatively.  

The effect of ρ0 is also tested. The results of the varying ρ0 values are shown in 

Figure 5.4. According to the figure, ρ0 is chosen as 0.1, where the best results are 

obtained. 

 

Figure 5.4 : Effect of ρ0 on cliques&score 

As the next step, the number of ranks used in RAS, shown as w, is determined. The 

results are shown in Figure 5.5. The maximum number of ranks is chosen as 2 

according to the figure below. 

 

Figure 5.5 : Effect of w on cliques&score for RAS model 

Branching factor is not used for MMAS approach. It actually brings diversity in the 

search space, however, as the ants traverse all the nodes in the search space by 

default, the branching factor is omitted for the MMAS model. 
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The number of threads used on datasets for subgraph sampling via Snowball 

Sampling method is determined manually according to the size (node+edge) of the 

corresponding dataset. As the size of the dataset grows, an appropriate number of 

threads are assigned to run on the dataset and divide the graph into that number of 

snowball samples. Following that rule, no multiple threads are run in smaller dataset. 

The number of snowball threads used in the process for each dataset is given in Table 

5.3. 

Table 5.3: Number of threads used on datasets 

Datasets 

K
arate 

C
hesapeake 

B
a y

Les 
M

iserables

Football 

EPA
 

PolB
logs 

Pow
er G

rid 

FolD
oc 

Scientific 

Threads 1 1 3 5 10 10 10 20 20 

 

In addition to our parameter optimization test run on Football data, we also tested our 

parameters on a bigger data for validation: Scientific Collaboration data. The results 

we obtained are nearly same with the results obtained on Football data, with some 

minor exceptions on q0 and α/β tests. We will be using the parameters which we 

optimized on Football data, you can further analyze the results we found on 

Scientific Collaboration data in the Appendix section. 

5.2 Experimental Results 

We present the experimental results in Tables 5.4 to Table 5.11. Table 5.3 and 5.4 

show the overall reduced cliques for datasets on each ACO model (ACS, MMAS, 

RAS). We run the ACO techniques for 10 times for each execution and calculate the 

results over 10 execution. The tables contain the best results of each ACO model, 

according to the threshold value used in the datasets. 

With the lower-upper bounds of the confidence interval for number of reduced 

cliques with confidence level of 95% for the given datasets, there are no signifcant 

differences between ACS, MMAS and RAS along with the change on the threshold 

value. According to the relaxing of the threshold value, the number of cliques found 

per dataset with any of the ACO models decrease eventually. As the threshold value 
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increases, the next node availability in the graph increases because required number 

of edges per node decreases and the cliques can grow bigger with the availability of 

new nodes. Another answer to insignificant difference between the ACO models on 

the number of cliques is the randomness of the starting point of clique generation. As 

a result of the random starting point of clique construction, possible bigger cliques 

can be scattered into many smaller cliques, thus resulting in more but smaller cliques 

found by the clique-finding ant. The results of the cliques found is more meaningful 

with the addition of achieved scores. 

Table 5.4: Lower and upper bounds of number of cliques found with 95% 
confidence interval (part1) 

ACS MMAS RAS 
Datasets Threshold 

lower upper lower upper lower upper 

0 6.20 6.39 5.49 5.70 5.90 6.09 

0.1 6.29 6.50 5.60 5.79 6.11 6.28 

0.2 5.78 6.01 5.99 6.00 5.86 6.13 

0.3 5.49 5.70 5.29 5.50 4.83 4.96 

0.4 8.50 9.29 8.14 9.05 8.37 9.22 

Karate 

0.5 6.68 7.31 5.64 6.35 5.58 6.41 

0 10.39 10.60 10.11 10.28 10.13 10.46 

0.1 10.20 10.39 10.39 10.60 10.16 10.43 

0.2 10.11 10.28 10.07 10.32 10.20 10.39 

0.3 9.98 10.21 10.43 10.76 9.90 10.09 

0.4 8.04 8.35 8.16 8.63 7.83 8.36 

Chesapeake 

0.5 7.83 7.96 7.04 7.35 7.33 7.66 

0 13.99 14.00 13.29 13.50 11.39 11.60 

0.1 10.90 11.09 12.16 12.43 13.16 13.43 

0.2 11.99 12.00 11.95 12.24 11.99 12.00 

0.3 11.90 12.09 12.99 13.00 12.03 12.16 

0.4 13.79 15.00 16.66 17.53 12.41 13.18 

Les Miserables 

0.5 10.64 10.95 12.84 13.35 11.42 12.17 

0 27.86 28.13 24.92 25.27 21.04 21.35 

0.1 25.11 25.48 22.98 23.21 28.25 28.74 

0.2 20.71 20.88 22.71 22.88 18.83 18.96 

0.3 18.90 19.09 19.67 19.92 20.60 20.79 

0.4 15.71 15.88 18.79 19.20 18.90 19.09 

Football 

0.5 19.04 19.35 18.78 19.01 17.52 18.07 
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Table 5.5: Lower and upper bounds of number of cliques found with 95% 
confidence interval (part2) 

ACS MMAS RAS 
Datasets Threshold

lower upper lower upper lower upper 

0 504.43 504.96 506.76 507.43 522.32 523.67 

0.1 511.82 512.57 537.14 538.05 523.25 523.94 

0.2 517.36 518.03 506.03 506.76 522.65 523.34 

0.3 487.90 488.69 503.49 504.70 500.44 501.15 

0.4 1760.37 1762.42 1726.61 1729.18 1713.32 1714.87 

EPA 

0.5 1290.12 1291.47 1291.94 1292.65 1288.20 1289.59 

0 229.34 230.25 242.59 243.60 230.05 231.14 

0.1 226.83 228.16 233.06 233.93 236.89 237.90 

0.2 223.14 224.05 218.05 219.14 218.39 220.00 

0.3 213.38 214.61 214.99 216.00 207.58 208.21 

0.4 333.50 347.09 368.36 372.43 364.16 370.43 

Political Blogs 

0.5 292.33 293.46 292.93 294.06 299.47 301.52 

0 1606.12 1607.27 1595.09 1596.70 1598.43 1600.37 

0.1 1605.84 1606.95 1607.55 1608.84 1604.61 1606.38 

0.2 1609.76 1610.83 1599.28 1600.11 1607.08 1608.32 

0.3 1587.36 1588.63 1581.92 1583.07 1569.93 1571.66 

0.4 1345.13 1347.86 1361.85 1363.94 1350.75 1352.04 

Power Grid 

0.5 1327.48 1329.31 1320.64 1322.95 1321.77 1323.82 

0 3549.92 3551.47 3569.28 3571.71 3621.05 3622.94 

0.1 3545.48 3547.31 3542.14 3544.65 3545.20 3547.59 

0.2 3378.49 3381.10 3454.07 3456.92 3409.90 3411.29 

0.3 3251.35 3253.04 3215.25 3218.54 3262.19 3264.40 

0.4 3512.63 3515.76 3550.16 3554.03 3571.72 3574.27 

FolDoc 

0.5 3121.97 3123.62 3117.67 3119.12 3078.59 3081.00 

0 3047.23 3048.76 3057.33 3059.06 3074.04 3075.95 

0.1 3045.68 3046.92 3073.13 3075.46 3070.16 3072.04 

0.2 3001.50 3002.69 3007.67 3009.52 3025.83 3028.16 

0.3 2952.59 2953.40 2952.68 2954.31 2966.86 2968.34 

0.4 3301.45 3302.74 3330.47 3331.52 3315.29 3317.90 

Scientific 

0.5 2932.60 2934.19 2931.46 2932.93 2932.68 2934.51 

 

Table 5.5 and 5.6 show the achieved scores for datasets on each ACO model (ACS, 

MMAS, RAS). The lower and upper bounds of the achieved score with 95% 

confidence interval are given in the table for each defined threshold value. The 

threshold values vary from 0 to 0.5. 

When we analyze Table 5.5 and 5.6, the results indicate no significant differences for 

smaller datasets with smaller values of threshold. While the results are relatively 
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near, MMAS achieves little bit higher scores compared two other two. The reason for 

the corresponding good results on MMAS is the ability of MMAS to come up with 

better solution near to optimum values for short time intervals. The execution times 

of ACO trials grow in parallel as the size of the network dataset grows. ACS results 

in better solution with minor exceptions on some datasets. This is normal as ACS 

results in better solution for long time intervals in ACO trials. However, there is no 

significance difference to be named for ACS, MMAS and RAS for different datasets 

with different distributions. On the other side, if the threshold value increases, which 

results in the next node availability in the graph, the RAS model achieves better 

scores. The RAS model gives oppotunity to runner-up ants to lay their pheromones 

according to their solution quality, along with the best ant. This approach helps the 

model to balance the pheromone amount laid on the solution path, eventually 

preventing ants to be stuck at locally optimum values. Thus,  when the availability of 

next node increase combine with RAS model, higher scores are achieved. 

Table 5.6: Lower and upper bounds of achieved score with 95% confidence interval 
(part1) 

ACS MMAS RAS 
Datasets Threshold 

lower upper lower upper lower upper 

0 1011.62 1018.77 1078.84 1082.15 1049.19 1058.80 

0.1 1006.05 1013.14 1081.47 1085.52 1034.60 1052.39 

0.2 1177.88 1191.91 1202.70 1215.29 1144.27 1170.32 

0.3 1470.97 1499.22 1543.95 1564.04 1529.06 1546.53 

0.4 2351.30 2491.69 2296.63 2423.76 2401.71 2578.08 

Karate 

0.5 4030.66 4376.53 3635.82 3950.37 4160.72 4407.47 

0 569.85 576.94 593.40 596.79 581.31 584.08 

0.1 577.75 580.04 588.45 592.94 581.80 584.59 

0.2 568.06 572.93 588.66 592.53 574.06 579.73 

0.3 674.50 680.69 674.09 676.30 661.76 666.43 

0.4 1753.54 1790.85 1805.09 1848.51 1793.99 1826.80 

Chesapeake 

0.5 2827.91 2945.88 2855.98 2938.81 2905.02 3009.97 

0 32538.16 32599.84 13796.27 13873.33 13389.47 13524.73 

0.1 47715.64 47749.76 10878.74 11207.26 12838.98 13388.42 

0.2 59956.07 60625.93 23754.17 23824.03 20653.18 21039.22 

0.3 17747.86 17924.54 13081.39 13163.61 40827.98 41019.82 

0.4 62100.30 62532.90 125007.10 125757.10 34206.17 34664.03 

Les 
Miserables 

0.5 102102.30 124672.10 127418.50 149901.10 50887.31 51190.49 
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Table 5.7: Lower and upper bounds of achieved score with 95% confidence interval 
(part2) 

ACS MMAS RAS 
Datasets Threshold 

lower upper lower upper lower upper 

0 35110.20 35355.40 35563.38 36742.02 37655.78 38009.42 

0.1 21715.01 21834.19 42201.26 43092.54 26031.99 26175.21 

0.2 40095.42 40247.58 25531.72 25645.48 77739.50 79585.90 

0.3 54070.79 54790.81 50920.19 51399.01 72705.30 73445.50 

0.4 139679.80 141619.40 103123.80 103829.20 131397.20 133465.80 

Football 

0.5 111210.70 113352.30 91181.25 92636.35 128761.60 131682.20 

0 4307.21 4308.38 4301.88 4302.91 4313.97 4315.42 

0.1 4337.03 4338.36 4313.70 4315.29 4356.73 4358.06 

0.2 4323.49 4324.70 4323.87 4325.12 4332.71 4333.88 

0.3 4409.66 4412.13 4426.73 4428.26 4413.12 4416.87 

0.4 10190.45 10202.95 10061.26 10079.74 10092.41 10105.39 

EPA 

0.5 17913.25 17934.75 17826.08 17860.52 17887.17 17920.43 

0 13147.62 13804.18 12939.80 14153.20 12764.35 13402.65 

0.1 26579.08 27399.92 49747.81 50165.99 21282.45 22827.95 

0.2 35965.87 37397.73 28192.96 29069.04 21334.69 22381.31 

0.3 115322.40 118012.80 558767.40 563496.40 184024.90 190005.90 

0.4 318720.10 324982.90 781842.00 788547.60 220731.40 223620.80 

Political 
Blogs 

0.5 593288.70 603165.90 491413.00 498886.20 1144048.00 1159505.00 

0 4790.30 4792.69 4610.53 4611.86 4720.18 4722.61 

0.1 4763.44 4767.75 4649.09 4650.70 4673.85 4674.94 

0.2 4658.56 4659.83 4651.30 4654.09 5453.37 5485.62 

0.3 4736.13 4739.47 4872.34 4875.26 4965.49 4970.70 

0.4 9920.90 9955.09 9928.39 9945.00 9958.55 9968.24 

Power 
Grid 

0.5 15915.04 15944.76 15713.18 15729.42 16090.17 16118.83 

0 16566.22 16618.38 16599.90 16619.70 16412.70 16446.70 

0.1 16207.62 16223.38 16133.58 16163.22 16368.92 16377.88 

0.2 19384.80 19444.80 19407.28 19446.72 19092.19 19126.21 

0.3 22025.27 22111.73 24589.99 24668.21 23941.37 24018.03 

0.4 40498.10 40626.30 40688.51 40999.69 40278.24 40540.16 

FolDoc 

0.5 58242.92 58438.48 60981.79 61120.41 62540.87 62648.93 

0 43776.08 44018.52 54318.81 55085.59 45783.36 46026.04 

0.1 47305.46 47830.34 45318.65 45508.15 47752.06 47952.94 

0.2 47406.22 47614.78 48116.12 48377.28 44435.83 44861.77 

0.3 46889.79 47177.41 48492.21 48993.99 58608.97 59334.23 

0.4 92276.90 93149.10 70894.36 71443.44 74646.15 76009.45 

Scientific 

0.5 93313.46 93727.34 92569.69 92775.11 202292.20 202715.80 

 

The lower and upper bounds of the number of communities found on the reduced 

graphs of datasets with 95% confidence interval along with the number of 
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communities found on the original graphs are presented on Table 5.8, 5.9 and 5.10. 

The number of communities data is retrieved from the community detection tool 

used in our proposed algorithm. The results of the fast greedy method, explained in 

Section 4, provide the number of communities found in the original graph , the graph 

without preprocessing proposed in this thesis, and the reduced graph. The results in 

the table show that the ACO models, again, do not possess any significant difference 

on the number of comunities found. The difference on the community count is 

obtained with the change of threshold value. Once the threshold limit is incremented, 

the next availability increases. As a result, the size of constructed quasi-cliques also 

increases. This explains the construction of bigger clique-nodes and the decrease in 

the number of communities. 

Table 5.8: Lower and upper bounds of number of communities found with 95% 
confidence interval (part1) 

ACS MMAS RAS 
Datasets Threshold 

lower upper lower upper lower upper 

0 3.99 4.00 3.99 4.00 3.99 4.00 

0.1 3.99 4.00 3.99 4.00 3.99 4.00 

0.2 3.71 3.88 3.99 4.00 3.99 4.00 

0.3 3.83 3.96 3.99 4.00 3.83 3.96 

0.4 2.83 2.96 2.49 2.70 2.90 3.09 

Karate 

0.5 2.20 2.39 2.20 2.39 2.11 2.28 

0 3.39 3.60 2.99 3.00 2.99 3.00 

0.1 3.11 3.28 3.03 3.16 3.03 3.16 

0.2 3.11 3.28 2.71 2.88 3.11 3.28 

0.3 2.26 2.53 2.60 2.79 2.83 2.96 

0.4 3.03 3.16 3.11 3.28 2.83 2.96 

Chesapeake 

0.5 2.29 2.50 2.29 2.50 2.29 2.50 

0 5.99 6.00 5.99 6.00 6.71 6.88 

0.1 6.99 7.00 6.71 6.88 5.03 5.16 

0.2 4.99 5.00 5.53 5.86 5.56 5.83 

0.3 4.71 4.88 4.81 5.18 5.49 5.70 

0.4 5.39 5.60 3.98 4.21 5.67 5.92 

Les Miserables 

0.5 4.46 4.73 4.29 4.50 5.16 5.43 

0 5.81 6.18 6.71 6.88 6.83 6.96 

0.1 7.11 7.28 5.83 5.96 6.29 6.50 

0.2 6.60 6.79 7.43 7.76 5.78 6.01 

0.3 6.39 6.60 6.83 6.96 7.03 7.16 

0.4 5.98 6.21 5.49 5.70 5.75 6.04 

Football 

0.5 5.46 5.73 5.16 5.43 4.20 4.39 
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Table 5.9: Lower and upper bounds of number of communities found with 95% 
confidence interval (part2) 

ACS MMAS RAS 
Datasets Threshold

lower upper lower upper lower upper 

0 536.39 537.20 533.27 534.12 535.80 536.39 

0.1 537.82 538.77 533.09 533.70 536.66 537.13 

0.2 534.39 535.20 536.70 537.29 534.94 535.45 

0.3 532.15 532.84 535.48 536.11 537.28 537.71 

0.4 534.18 534.61 536.55 537.44 534.23 534.96 

EPA 

0.5 532.39 532.60 532.43 533.16 532.99 533.40 

0 274.92 275.27 272.90 273.09 275.09 275.50 

0.1 273.72 274.07 275.83 276.36 274.98 275.21 

0.2 275.56 275.83 276.16 276.63 274.20 274.39 

0.3 275.11 275.48 275.43 275.76 275.30 275.89 

0.4 272.38 272.81 275.09 275.90 274.97 275.42 

Political Blogs 

0.5 272.56 272.83 275.21 275.58 273.90 274.09 

0 40.49 41.10 41.89 42.50 41.03 41.56 

0.1 38.99 39.40 39.33 39.86 42.03 42.56 

0.2 40.19 40.80 44.66 45.13 40.72 41.47 

0.3 40.12 40.87 40.11 40.68 41.55 42.04 

0.4 47.35 48.44 42.81 43.78 49.06 50.13 

Power Grid 

0.5 47.16 47.83 49.60 50.79 47.49 48.70 

0 45.33 45.86 44.73 45.46 44.79 45.60 

0.1 44.65 45.34 43.61 44.38 45.79 46.60 

0.2 45.43 45.96 42.42 42.97 44.20 44.79 

0.3 44.33 45.46 43.88 44.51 46.77 47.42 

0.4 31.77 32.42 32.14 33.05 33.66 34.53 

FolDoc 

0.5 25.37 26.02 25.20 25.79 25.72 26.27 

0 2556.56 2557.83 2558.75 2560.24 2557.12 2558.47 

0.1 2548.62 2550.37 2555.09 2556.91 2556.19 2557.60 

0.2 2547.72 2549.47 2556.89 2558.91 2552.35 2553.64 

0.3 2551.58 2552.81 2555.62 2557.18 2554.72 2556.27 

0.4 2542.95 2544.04 2546.34 2548.25 2545.13 2546.26 

Scientific 

0.5 2540.01 2541.18 2546.95 2548.04 2536.23 2537.16 

 

Table 5.10: Number of communities on the original graphs 

Datasets 

K
arate 

C
hesapeake 

B
a y

Les 
M

iserables

Football 

EPA
 

PolB
logs 

Pow
er G

rid 

FolD
oc 

Scientific 

Communities 3 5 5 6 541 276 40 17 2574 
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In Table 5.11 and 5.12, the number of nodes and edges of the reduced graphs for 

each dataset, after being processd by ACO, is listed. The reduced nodes are the total 

of clique nodes plus the unassigned nodes and the reduced edges are the newly 

emerged edges with relevance/similarity weight obtained after the transformation 

phase. The original node and edge count for each dataset is also provided in the 

tables for comparison. 

Table 5.11: Number of nodes and edges in the reduced graphs (part1) 

Original 
Graph ACS MMAS RAS 

Datasets 
node edge 

Threshold
node edge node edge node edge 

0 22 30 23 35 22 31 

0.1 22 30 23 35 22 31 

0.2 21 29 22 32 21 29 

0.3 19 26 20 26 19 27 

0.4 18 26 19 27 19 27 

Karate 34 78 

0.5 17 19 18 20 18 18 

0 21 43 21 42 21 43 

0.1 21 43 21 43 21 44 

0.2 21 43 21 43 21 43 

0.3 21 41 21 42 21 39 

0.4 17 25 17 26 14 23 

Chesapeake 34 72 

0.5 14   18 14 20 14 20  

0 40 56 39 65 39 65 

0.1 40 74 39 55 37 59 

0.2 37 56 38 60 37 55 

0.3 37 48 36 57 37 49 

0.4 33 37 34 53 34 51 

Les 
Miserables 

77 254 

0.5 33 39 32 32 34 47 

0 48 228 41 191 39 193 

0.1 37 181 40 205 45 222 

0.2 35 166 40 190 39 192 

0.3 33 168 37 183 29 134 

0.4 26 122 28 131 28 135 

Football 115 616 

0.5 27 136 30 145 25 137 

0 4204 7890 4186 7886 4190 7886 

0.1 4180 7896 4187 7867 4206 7945 

0.2 4177 7888 4206 7919 4190 7882 

0.3 4161 7788 4149 7668 4144 7742 

0.4 2662 5819 2664 5809 2677 5836 

EPA 4772 8695 

0.5 2060 5046 2083 5011 2093 5032 
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Table 5.12: Number of nodes and edges in the reduced graphs (part2) 

Original 
Graph ACS MMAS RAS 

Datasets 
node edge 

Threshold
node edge node edge node edge 

0 1149 9287 1132 9173 1145 9345 

0.1 1135 8902 1132 8757 1151 9601 

0.2 1125 7905 1141 8204 1132 7719 

0.3 1073 6377 1091 6773 1095 7139 

0.4 904 6017 870 5755 889 5502 

Political 
Blogs 

1490 19090 

0.5 684 4455 690 4396 736 4901 

0 3119 4283 3122 4285 3127 4294 

0.1 3141 4305 3118 4272 3132 4290 

0.2 3131 4288 3122 4275 3109 4275 

0.3 3074 4195 3095 4210 3099 4221 

0.4 2592 3624 2587 3620 2607 3658 

Power 
Grid 

4941 6598 

0.5 2099 3014 2115 3043 2107 3031 

0 7257 56094 7220 55998 7226 56099 

0.1 7278 55906 7234 55880 7282 55838 

0.2 6902 53552 6936 53567 6967 54008 

0.3 6434 50541 6378 49938 6377 50110 

0.4 5158 49029 5232 49501 5190 49520 

FolDoc 13356 120238 

0.5 4278 47735 4317 47512 4277 47553 

0 8522 14017 8511 13965 8499 14037 

0.1 8484 14006 8474 14033 8464 13961 

0.2 8411 13532 8388 13287 8377 13508 

0.3 8147 12664 8113 12679 8140 12607 

0.4 7177 11637 7150 11414 7200 11538 

Scientific 15179 79934 

0.5 6344 10051 6340 10176 6383 10145 

 

The 3 ACO models do not show any significant differences on reducement like in 

number of cliques, total score achieved and the number of communities found. The 

results are inversely proportional to the number of cliques found by the models on 

each threshold value. As the threshold value increases, the number of created cliques 

increase, evantually the number of reduced node and edge count decreases. The 

observation is meaningful as the size of the cliques ( number of node and edges 

which constructs the clique) has direct effect on the reducement. The main aim of the 

thesis is achieved as the the reducement rate on nodes and edges is nearly 50% for all 

the datasets, increasing to 60% - 65% on thresholds with value of 0.5. The 

reducement directly decreases the computational costs of the community detection 
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method used, however, the solution quality loss should be discussed. The quality 

results of the experiments are mentioned and discussed on Section 5.3. 

5.3 Discussion 

Parallel to our expectations from the proposed algorithm to reduce the network 

graphs to maintainable sizes for benefit of community detection methods, we 

recommend 3 of the ACO models implemented in our approach. Our experiments 

show that all of these models can be used to reduce the nodes and edges in the graph 

to half of the original counts, thus improving the time complexity proportional to 

O((E.V/4)log(V/2)). 3 ACO models achieved relatively similar solutions on the 

number of cliques but the achieved scores differ according to the size of the datasets. 

For smaller datasets, which are run in short time intervals, MMAS achieves better 

scores. On the other, for larger datasets, as the time interval becomes longer, RAS 

performed better scores. Thus, the selection of the ACO model can be determined 

according to the size of the network graph datasets.  

For the discussion part, the quality of the solution obtained after our proposed 

algortihm for graph reduction, we will compare the results obtained with the 

algorihtm and the original graph results based on 2 different quality metrics 

described in the following paragraphs. For all tables, please note that, the original 

graph values are the values obtained by running the community detection tool on the 

graphs without our algorithm for graph reduction used. With the given original 

values and the values gathered after graph reduction, we can easily compare the 

quality preservation after processing of our proposed algorithm. 

The result of the experiments show enough success on graph reducement. However, 

the solution quality of the community detection phase should also be examined, as 

we expect minimum loss on solution quality. The quality of the community detection 

can be examined upon the modularity values of the corresponding graph upon 

clustering. The lower and upper bounds of modularity values of datasets with 95% 

confidence interval are given in Table 5.13 and 5.14.  The modularity values on the 

original graph is given in Table 5.15.  
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Table 5.13: Lower and upper bounds of modularity with 95% confidence interval  
(part1) 

ACS MMAS RAS 
Datasets Threshold

lower upper lower upper lower upper 

0 0.403668 0.410332 0.39804 0.40196 0.395844 0.400156 

0.1 0.399864 0.406136 0.39704 0.40096 0.38706 0.39294 

0.2 0.38608 0.39392 0.385804 0.386196 0.38808 0.39592 

0.3 0.396472 0.403528 0.399236 0.402764 0.391628 0.394372 

0.4 0.289536 0.322464 0.246968 0.283032 0.306044 0.329956 

Karate 

0.5 0.09012 0.10188 0.076376 0.093624 0.079552 0.094448 

0 0.363594 0.370456 0.368484 0.374257 0.370424 0.37777 

0.1 0.359424 0.367278 0.375561 0.381441 0.373377 0.3807 

0.2 0.377898 0.384653 0.370549 0.376753 0.37596 0.382324 

0.3 0.365736 0.370234 0.356602 0.362689 0.349382 0.356945 

0.4 0.300855 0.328691 0.333466 0.361747 0.374658 0.4024 

Chesapeake 

0.5 0.297826 0.321366 0.323444 0.337916 0.320561 0.342002 

0 0.638811 0.639987 0.578865 0.5975 0.547841 0.560576 

0.1 0.442979 0.443501 0.417137 0.440845 0.46379 0.496151 

0.2 0.466709 0.475588 0.457867 0.469113 0.486531 0.501696 

0.3 0.392185 0.399825 0.312035 0.330312 0.48452 0.509144 

0.4 0.397604 0.430341 0.463968 0.483985 0.423805 0.43927 

Les 
Miserables 

0.5 0.387872 0.417188 0.395346 0.418262 0.480524 0.497963 

0 0.479047 0.487018 0.538556 0.543395 0.53432 0.536756 

0.1 0.514104 0.51786 0.5059 0.511917 0.512358 0.517921 

0.2 0.487301 0.490546 0.536632 0.538472 0.495765 0.502629 

0.3 0.497268 0.501619 0.527284 0.529606 0.52492 0.529472 

0.4 0.47927 0.487343 0.46103 0.469732 0.439355 0.444249 

Football 

0.5 0.398788 0.408032 0.44322 0.459421 0.388 0.395726 

0 0.655148 0.656654 0.659214 0.660303 0.657543 0.658944 

0.1 0.650361 0.651513 0.649785 0.651283 0.650028 0.651821 

0.2 0.65506 0.656264 0.645407 0.646928 0.651573 0.653353 

0.3 0.653479 0.654301 0.648111 0.649215 0.652919 0.654783 

0.4 0.628884 0.630954 0.634913 0.637114 0.639949 0.641498 

EPA 

0.5 0.613145 0.614351 0.621439 0.623293 0.62556 0.626871 

0 0.416568 0.417939 0.407844 0.410276 0.410532 0.411698 

0.1 0.410276 0.411071 0.414424 0.416258 0.409612 0.411369 

0.2 0.409352 0.41055 0.4071 0.409603 0.419938 0.420768 

0.3 0.405487 0.408619 0.402022 0.403066 0.388147 0.392349 

0.4 0.387313 0.388752 0.362308 0.365102 0.38478 0.386595 

Political 
Blogs 

0.5 0.377516 0.378623 0.375751 0.378204 0.385587 0.38666 
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Table 5.14: Lower and upper bounds of modularity with 95% confidence interval 
(part2) 

ACS MMAS RAS 
Datasets Threshold 

lower upper lower upper lower upper 

0 0.927824 0.928401 0.929622 0.93007 0.928828 0.929091 

0.1 0.92987 0.930274 0.929017 0.929306 0.928129 0.928598 

0.2 0.926943 0.927741 0.930796 0.931176 0.928429 0.928806 

0.3 0.928749 0.92912 0.928452 0.928927 0.927953 0.92849 

0.4 0.93058 0.930888 0.931072 0.931632 0.931706 0.932234 

Power Grid 

0.5 0.926314 0.926817 0.925925 0.926492 0.927348 0.927843 

0 0.574478 0.575031 0.574717 0.57535 0.572347 0.573078 

0.1 0.572312 0.57274 0.57223 0.57278 0.573881 0.574378 

0.2 0.572631 0.573155 0.569872 0.570548 0.571532 0.572041 

0.3 0.574742 0.575142 0.573252 0.574017 0.575475 0.575965 

0.4 0.477 0.477795 0.474694 0.475217 0.477279 0.47789 

FolDoc 

0.5 0.418211 0.418969 0.410429 0.411059 0.41864 0.419673 

0 0.851548 0.852266 0.850099 0.850614 0.850301 0.850809 

0.1 0.852626 0.852891 0.85416 0.854822 0.852482 0.853119 

0.2 0.852017 0.852553 0.853703 0.85411 0.852203 0.852655 

0.3 0.854317 0.854733 0.845571 0.846211 0.850461 0.851144 

0.4 0.838334 0.839024 0.831376 0.831953 0.836184 0.83728 

Scientific 

0.5 0.820714 0.82139 0.823044 0.823349 0.826819 0.827587 

 

Table 5.15: Modularity values on the original graphs 

Datasets 

K
arate 

C
hesapeake 

B
ay 

Les 
M

iserables 

Football 

EPA
 

PolB
logs 

Pow
er G

rid 

FolD
oc 

Scientific 

Modularity 0.380671 0.410783 0.547220 0.549741 0.619769 0.427749 0.934977 0.397325 0.563875 

 

As described in the previous sections, the modularity value can be used as a quailty 

measure to validate the results of a clustering/community detection. The results of 

modularity falls in an interval between -1 to 1. For a totally random clustering, the 

result will be closer to 0. For better clustering, the result will be close to 1, while the 

result decreases to -1 if the clustering is not good. Compared to the modularity values 

of the original graph, the 3 ACO models achieve almost the same quality with the 

original graph and even better results are achieved for some datasets. This 

observation means that the loss on solution quality upon reducement is at minimum. 
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When we further analyze the modularity results, we can see that the increasing 

threshold values affect the modularity values negatively. Higher threshold values 

allow bigger quasi-cliques to be constructed, however, this relexation may result in a 

false clustering as once a node is assigned to a clique-node, that node is forced to be 

in the same cluster with the other nodes in that clique-node. The decrease rate does 

not change for each ACO model but it differs on some network graph datasets.  

The drastic decrease in some datasets, parallel to increase in threshold values, can be 

explained with the effect degree distribution of the network graph on the community 

detection method. As stated in [2], the social network graphs tend to possess a degree 

distribution which fits Power Law. Other random network graphs can possess 

Normal distribution or Poisson distribution. We should examine if the degree 

distribution of a network affects the modularity values. For instance, two different 

degree distribution of two network datasets are given in Figure 5.6 and 5.7. 

 

Figure 5.6 : Degree distribution of FolDoc dataset 

 

Figure 5.7 : Degree distribution of Scientific Collaboration dataset 
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With a quick observation from the figures of degree distribution, we can see that 

FolDoc data is formed in Poisson distribution while Scientific Collaboration network 

data nearly fits the Power Law. The modularity decrease in Scientific data is smaller 

compared to FolDoc, as the Power Law distribution allows more successful cliques 

to be found in the network graph and those cliques are more likely to be 

communities. In short, the increase in threshold allows bigger cliques and the 

decrease in the solution quailty is smaller as the better cliques are achieved on Power 

Law distributions. The decrease is smaller in graphs which fit Power law (i.e. Power 

Grid data) and bigger in graphs which do not (i.e. Les Miserables data). The rest of 

the degree distribution graps are provided in the Appendix section of this thesis. 

Even though  the results are satisfying, it is more appropriate to validate the results 

with another clustering validation metric, such as Davies-Bouldin Index [36]. The 

lower and upper bounds of Davies-Bouldin Index (DBI) with 95% confidence 

interval are given in Table 5.16 and 5.17, along with the Davies-Bouldin Index 

values for the original graph given in Table 5.18 for comparison.  

Table 5.16: Lower and upper bounds of Davies-Bouldin Index with 95% confidence 
interval (part1) 

ACS MMAS RAS 
Datasets Threshold 

lower upper lower upper lower upper 

0 0.449864 0.456136 0.459804 0.460196 0.454452 0.459548 

0.1 0.44508 0.45292 0.457236 0.460764 0.462628 0.465372 

0.2 0.433472 0.440528 0.445804 0.446196 0.446668 0.453332 

0.3 0.439276 0.446724 0.4491 0.4589 0.45608 0.46392 

0.4 0.435256 0.440744 0.427572 0.444428 0.440492 0.449508 

Karate 

0.5 0.390492 0.399508 0.337281 0.462719 0.387668 0.394332 

0 0.470387 0.476809 0.468414 0.473206 0.486313 0.489321 

0.1 0.488398 0.494249 0.47338 0.478062 0.47565 0.480205 

0.2 0.482527 0.486803 0.453152 0.465468 0.469201 0.47459 

0.3 0.420479 0.437776 0.441646 0.45661 0.444643 0.452867 

0.4 0.433023 0.448135 0.462936 0.477055 0.457877 0.47193 

Chesapeake 

0.5 0.429082 0.455745 0.420116 0.442693 0.425643 0.448803 

0 0.537748 0.53784 0.563839 0.564867 0.443641 0.449631 

0.1 0.467322 0.469814 0.473297 0.477897 0.569767 0.585481 

0.2 0.541829 0.542819 0.541324 0.54742 0.518085 0.536971 

0.3 0.568507 0.573933 0.49362 0.510295 0.513879 0.529239 

0.4 0.556303 0.568563 0.551825 0.566048 0.515349 0.525677 

Les 
Miserables 

0.5 0.479857 0.493807 0.496164 0.518421 0.419072 0.426501 
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Table 5.17: Lower and upper bounds of Davies-Bouldin Index with 95% confidence 
interval (part2) 

ACS MMAS RAS 
Datasets Threshold

lower upper lower upper lower upper 

0 0.438681 0.464885 0.416184 0.430706 0.387548 0.39866 

0.1 0.348668 0.362458 0.410034 0.431495 0.421287 0.438921 

0.2 0.408351 0.432444 0.333596 0.350448 0.441532 0.459489 

0.3 0.418327 0.436601 0.334979 0.352395 0.30346 0.307379 

0.4 0.470012 0.484645 0.450499 0.466039 0.415251 0.43945 

Football 

0.5 0.481567 0.50038 0.489562 0.516293 0.526652 0.534466 

0 0.051359 0.052505 0.046064 0.047314 0.050398 0.051407 

0.1 0.052927 0.054306 0.046199 0.047188 0.05174 0.052449 

0.2 0.047981 0.049184 0.051557 0.052331 0.047727 0.048465 

0.3 0.044806 0.045972 0.049854 0.050883 0.052727 0.053528 

0.4 0.049518 0.050588 0.054355 0.055731 0.051571 0.052886 

EPA 

0.5 0.046237 0.047073 0.046355 0.047145 0.046733 0.047839 

0 0.011909 0.012392 0.013099 0.013577 0.012886 0.013306 

0.1 0.011884 0.012345 0.015604 0.016819 0.01466 0.015685 

0.2 0.013049 0.013614 0.016836 0.017753 0.01154 0.012149 

0.3 0.016756 0.01777 0.027143 0.028113 0.027374 0.028901 

0.4 0.014334 0.015457 0.03167 0.033823 0.032682 0.034214 

Political 
Blogs 

0.5 0.0132 0.01394 0.025559 0.026961 0.022198 0.022821 

0 0.943697 0.944923 0.94224 0.94384 0.943128 0.944857 

0.1 0.948375 0.94909 0.94058 0.943123 0.942102 0.943296 

0.2 0.938706 0.941796 0.944489 0.94573 0.940711 0.943312 

0.3 0.942101 0.943525 0.946115 0.948294 0.945443 0.946921 

0.4 0.927025 0.932236 0.942336 0.945531 0.925923 0.931505 

Power Grid 

0.5 0.917491 0.919755 0.908852 0.911865 0.924913 0.927497 

0 0.953799 0.954955 0.951363 0.953009 0.953062 0.954237 

0.1 0.950573 0.952453 0.952143 0.953235 0.952146 0.953362 

0.2 0.953492 0.95457 0.952801 0.953577 0.953284 0.954142 

0.3 0.955596 0.956183 0.954872 0.955497 0.952808 0.954076 

0.4 0.955086 0.955409 0.955326 0.95599 0.954981 0.955711 

FolDoc 

0.5 0.949521 0.950153 0.950311 0.951073 0.9495 0.950608 

0 0.032967 0.033249 0.033096 0.03353 0.03222 0.032589 

0.1 0.030065 0.030587 0.03217 0.032599 0.031958 0.032338 

0.2 0.030278 0.030794 0.03282 0.033388 0.031868 0.032245 

0.3 0.031147 0.031508 0.032191 0.032606 0.031702 0.032102 

0.4 0.029452 0.029751 0.030185 0.030741 0.029821 0.030184 

Scientific 

0.5 0.028145 0.028506 0.030524 0.030854 0.027817 0.028142 
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Table 5.18: Davies-Bouldin Index values on the original graphs 

Datasets 

K
arate 

C
hesapeake 

B
ay 

Les 
M

iserables 

Football 

EPA
 

PolB
logs 

Pow
er G

rid 

FolD
oc 

Scientific 

DBI 0.476318 0.450735 0.455000 0.505774 0.056011 0.010015 0.951465 0.912712 0.033027 

 

There are many cluster validty metrics to be used, such as Silhouette validation, 

Dunn’s Index and Davies-Bouldin Index [36]. In our experiments, we applied a 

modified version of the Davies-Bouldin index, introduced in [37]. The index depends 

on the values of the average diameter of the cluster and the average linkage between 

clusters. The index is actually the maximum value of averages of dissimilarity 

between a cluster with its most similar one, calculated with the aforementioned 

parameters. 

The smaller values of Davies-Bouldin Index indicate better clustering for graphs by 

definition. The results of our experiments show that quality is preserved for each 

dataset while the threshold values change, compared to the original DBI values. In 

addition, the values are improving in some dataset, parallel to the threshold value 

incremental. In some datasets, the results seem to be significantly lower compared to 

other datasets. This can be explained with nodes without edges included for those 

datasets. As the number of nodes without edges increases, the DBI value closes to 0 

as if there is a good clustering. These nodes are determined as 1-noded clusters by 

the community detection algorithm and it effects the DBI values in parallel. 

Following that, the higher number of communities found for those datasets, shown in 

Table 5.8, 5.9 and 5.10, can be explained with these unconnected nodes found on 

those datasets. 

DBI values along with the modularities prove that the quailty is almost preserved for 

all dataset after our preprocessing. Thus, we recommend the usage of our algorithm 

for graph simplification. 
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6.  CONCLUSION 

Our main aim in this thesis is to reduce the size of the graph in order to be able to use 

community detection methods effectively on large-scale social network data sets. 

The quality of community detection methods is expected to be preserved while the 

original graph is reduced to a maintainable size. The preprocessing algorithm that we 

propose in this thesis for the community detection methods is an optimization 

problem from this perspective and its being resolved with a nature based approach. 

There are many community detection methods developed through the start of 

researches on community detection on networks. The detection methods vary from 

hierarchical clustering to spectral bisectioning. The modularity maximization, 

namely the popular method for community detection, achieves good results in 

smaller time complexity, such as O(E.VlogV) after several modifications on the 

original algorithm. However, nearly all of these community detection methods suffer 

from high computational costs and non-scalability on large-scale social networks, 

even some of the methods are optimized to work on such networks. In this thesis, we 

are proposing a preprocessing methods for those community detection methods 

reduces the size of such networks without valauble information and solution quality 

loss. 

The number of nodes and edges in the original graph is reduced through the concept 

of clique-nodes, which is implemented for our proposed algorithm. We used 3 ACO 

techniques (ACS, MMAS and RAS) to discover clique-nodes, which are then used to 

shrink the graph to a manageable size. The underlying motivation behind this 

approach is the fact that cliques are the base elements of communities. Based on the 

experimental results on various sized social networks, we may say that the execution 

times of the community detection methods are decreased while the overall quality of 

the solution is preserved. The results of the experiments show that the future 

optimization of the process may result in better solutions for community detection on 

very large-scale social networks. 
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For further optimization on performance of our preprocessing approach, there are 

some future directions which need to be pursued. For better parallelization, we will 

implement our solution on an existing parallelized framework. We will also pursue 

new parameters for ACO methods and investigate them (i.e. branching factor for 

MMAS). We will also further optimize our code to decrease our algorithm’s own 

execution times to work more efficiently. 
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APPENDIX A.1  

 
Figure A.1 : Parameter optimization results for Scientific Collaboration data 

Table A.1 : Effect of α and β on number of cliques found 

β α 
0 1 2 3 4 

0 3047.1 3007.4 2991.8 3003.4 3010 
1 3010.9 3001.1 3004 2998.7 2990.7 
2 3003.8 2999.1 3003.7 3004.4 3014.2 
3 3003.9 3024.5 3018.9 3013.7 2999.4 

 

Table A.2 : Effect of α and β on achieved score 

β α 
0 1 2 3 4 

0 48210.9 48206.3 45379.3 42044.1 51975.5 
1 45563.1 56008.9 48210.9 51377.9 43322.2 
2 48388.8 46388.7 51619.9 42760.9 50010.7 
3 45518.3 45205.6 46816.9 45449.8 48123.1 
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APPENDIX A.2  

 
Figure A.2 : Degree distribution graphs for network datasets 
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