EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

(DOKTORA TEZİ)

KANSER TEDAVİSİNDE KULLANILAN İLAÇLARIN BİYOMOLEKÜLLER İLE ETKİLEŞİMİNİN MOLEKÜLER MODELLEME YOLU İLE İNCELENMESİ

Esra ŞAHİN AKDENİZ

Tez Danışmanı : Doç. Dr. Cenk SELÇUKİ

Biyokimya Anabilim Dalı

Sunuş Tarihi : 10.06.2016

Bornova-İZMİR 2016

Esra ŞAHİN AKDENİZ tarafından doktora tezi olarak sunulan "Kanser Tedavisinde Kullanılan İlaçların Biyomoleküller ile Etkileşiminin Moleküler Modelleme Yolu ile İncelenmesi" başlıklı bu çalışma E.Ü. Lisansüstü Eğitim ve Öğretim Yönetmeliği ile E.Ü. Fen Bilimleri Enstitüsü Eğitim ve Öğretim Yönergesi'nin ilgili hükümleri uyarınca tarafımızdan değerlendirilerek savunmaya değer bulunmuş ve 10.06.2016 tarihinde yapılan tez savunma sınavında aday oybirliği/oyçokluğu ile başarılı bulunmuştur.

Jüri Üyeleri:

İmza

Jüri Başkanı	: Doç. Dr. Cenk SELÇUKİ
Raportör Üye	: Prof. Dr. Figen ZİHNİOĞLU
Üye	: Prof. Dr. Suna TİMUR
Üye	: Prof. Dr. Serhan SAKARYA
Üye	: Doç. Dr. Ayşe DİNÇER

EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ETİK KURALLARA UYGUNLUK BEYANI

EÜ Lisansüstü Eğitim ve Öğretim Yönetmeliğinin ilgili hükümleri uyarınca Doktora Tezi olarak sunduğum "Kanser Tedavisinde Kullanılan İlaçların Biyomoleküller ile Etkileşiminin Moleküler Modelleme Yolu ile İncelenmesi" başlıklı bu tezin kendi çalışmam olduğunu, sunduğum tüm sonuç, doküman, bilgi ve belgeleri bizzat ve bu tez çalışması kapsamında elde ettiğimi, bu tez çalışmasıyla elde edilmeyen bütün bilgi ve yorumlara atıf yaptığımı ve bunları kaynaklar listesinde usulüne uygun olarak verdiğimi, tez çalışması ve yazımı sırasında patent ve telif haklarını ihlal edici bir davranışımın olmadığını, bu tezin herhangi bir bölümünü bu üniversite veya diğer bir üniversitede başka bir tez çalışması içinde sunmadığımı, bu tezin planlanmasından yazımına kadar bütün safhalarda bilimsel etik kurallarına uygun olarak davrandığımı ve aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul edeceğimi beyan ederim.

10 / 06 / 2016

Esra ŞAHİN AKDENİZ

ÖZET

KANSER TEDAVİSİNDE KULLANILAN İLAÇLARIN BİYOMOLEKÜLLER İLE ETKİLEŞİMİNİN MOLEKÜLER MODELLEME YOLU İLE İNCELENMESİ

ŞAHİN AKDENİZ, Esra

Doktora Tezi, Biyokimya Anabilim Dalı Tez Danışmanı: Doç. Dr. Cenk SELÇUKİ Haziran 2016, 165 sayfa

Anti-tümör aktivitesi olan antrasiklin antibiyotik doksorubisin ve glikopeptid antibiyotik bleomisin, sırasıyla *Streptomyces peucetius* ve *Streptomyces verticillus* bakterileri tarafından üretilir. Bu ilaçlarla genetik yapılar arasındaki etkileşim ve DNA iterkalasyonuyla ilgili detaylar tartışmalı konulardır. Bu nedenle, doksorubisinin ve bleomisinin bithizole kuyruğunun nükleobazlarla etkileşimi kuantum mekaniksel yöntemlerle çalışılmıştır.

amaçla, doksorubisin bleomisinin bithiazole domaininin Bu ve konformasyonel analizleri Spartan 08 programı ile yapıldı ve doksorubisin için 422, bleomisin için 798 konformer bulundu. Yapılar için en uygun konformeri bulmak üzere Spartan 08 programı ile optimizasyon analizleri ve en kararlı yapıyı bulabilmek için geometri optimizasyonları yapıldı. Her bir konformer için geometri optimizasyonları ve frekans analizleri yoğunluk fonksiyoneli teorisi ile, B3LYP/6-31G** düzeyinde, Gaussian 09 programı kullanılarak yapıldı. Yapılan geometri optimizasyolarında, bithiazole domaininin yapısı başlangıçtaki 3 boyutlu yapısından farklı bulunduğu için daha ileri analizler yapılmamıştır. En kararlı 20 doksorubisin konformeri ve nükleobaz tautomerleri @B97XD/6-31G** düzeyinde yeniden optimize edildi ve birbirleri ile etkileşimleri yine aynı düzeyde analiz edildi. Etkileşim geometrilerinin çiziminde Discovery Studio 3.5 Client programı kullanıldı. Doksorubisin ve nükleobaz tautomerlerinin yapısı ve birbirleri ile etkileşimleri, çözücü (su) etkisinde de çalışılmış, doksorubisin ve nükleobazların, doksorubisinin tetrasiklik bölgesinden birbirleriyle etkileşerek hidrojen bağları oluşturdukları bulunmuştur.

Anahtar sözcükler: Doksorubisin, bleomisin, nükelobazlar, moleküler modelleme, yoğunluk fonksiyoneli teorisi.

ABSTRACT

INVESTIGATION OF INTERACTIONS OF DRUGS USED IN CANCER TREATMENT WITH BIOMOLECULES BY MOLECULAR MODELING

ŞAHİN AKDENİZ, Esra

PhD in Biochemistry Supervisor: Assoc. Prof. Dr. Cenk SELÇUKİ June 2016, 165 pages

An antracycline antibiotic doxorubicin and a glycopeptide antibiotic bleomycin with anti-tumor activity are produced by the bacterium *Streptomyces peucetius* and *Streptomyces verticillus*, respectively. The interactions between these drugs and genetic material and the details of the intercalation with DNA have been controversial issues. Thus, the interaction of doxorubicin and bithiazole tail of bleomycin with nucleobases were studied by quantum mechanical methods.

For this purpose, conformational analyses of doxorubicin and bithiazole domain of bleomycin were performed with Spartan 08 software and 422 conformers for doxorubicin and 798 conformers for bleomycin were determined, respectively. In order to determine the most stable conformer, optimizations with Spartan 08 software were performed. Geometry optimizations and frequency analyses were performed for each conformer using density functional theory (DFT) at B3LYP/6-31G** level using Gaussian 09 software. Since the structure of bithiazole domain was different from initial 3D structure, further analyses were not performed. The most stable 20 conformers of doxorubicin and nucleobase tautomers were optimized again with @B97XD/6-31G** level and their interactions were also analysed at the same level. The Discovery Studio 3.5 Client programme was used to draw the initial and final structures of interaction geometries. The effect of solvent (water) on the structure of doxorubicin, nucleobase tatutomers and interactions of them were also studied and it was found that doxorubicin and nuclobases were interact each other at the tetracyclic reagion of doxorubicin and form hydrogen bonds.

Keywords: Doxorubicin, bleomycin, nuclobases, molecular modelling, density functional theory.

TEŞEKKÜR

Bu çalışma boyunca bilgisine başvurduğum, her konuda desteğini esirgemeyen danışmanım sayın Doç. Dr. Cenk Selçuki'ye, önerileriyle tezimin şekillenmesinde önemli katkıları olan tez izleme kurulu üyelerim sayın Prof. Dr. Suna Timur ve sayın Prof. Dr. Serhan Sakarya'ya ve tez jüri üyelerim sayın Prof. Dr. Figen Zihnioğlu ve sayın Doç. Dr. Ayşe Dinçer'e özel bir teşekkürü borç bilirim. Ayrıca çalışmam boyunca bilgi alışverişinde bulunduğum, yardımlarını ve arkadaşlıklarını esirgemeyen, Cemal Köprülüoğlu, Saltuk Eyrilmez, Ersin Gündeğer, Başak Turan, Gülin Ürgenç Türkay, Azadeh Manzarzadeh, Yahya Yasin Yılmaz ve Selçuki Research Grup'taki tüm arkadaşlarıma teşekkür ederim. Bu çalışma sırasında görevli olduğum İzmir Yüksek Teknoloji Enstitüsü'nde bana destek veren hocalarım sayın Prof. Dr. Ahmet Koç ve sayın Doç. Dr. Hüseyin Çağlar Karakaya'ya ve çalışma arkadaşlarım, Yeast Lab. üyelerine teşekkür ederim. Son olarak, hayatımın her alanında bana verdikleri destek ve sevgiyle her an yanımda olan annem Mualla Şahin, babam Ali Adnan Şahin ve kardeşim Ece Şahin'e, tanıdığım günden beri hayatımı daha mutlu ve anlamlı kılan hayat arkadaşım, eşim Rahmi Emre Akdeniz'e en özel teşekkürlerimi sunarım.

İÇİNDEKİLER

ÖZETvii
ABSTRACT ix
TEŞEKKÜRxi
ŞEKİLLER DİZİNİ xvii
ÇİZELGELER DİZİNİ xxi
SİMGELER VE KISALTMALAR DİZİNİ xxv
1. GİRİŞ1
1.1. Kanserin Tarihsel Gelişimi 1
1.2. Kanser Nedir?
1.3. Kanser Nasıl Oluşur? 4
1.4. Kanser Tedavisinde Genel Yaklaşımlar
1.4.1. Cerrahi uygulamalar6
1.4.2. Radyoterapi (ışın tedavisi)7
1.4.3. Kemoterapi
1.4.4. Hedefe yönelik tedavi9
1.4.5. Hormon tedavisi
1.4.6. İmmunoterapi 11

İÇİNDEKİLER (devam)

1.5.	Kemoterapi İlaçları
1.5.1.	Alkilleyici ajanlar14
1.5.2.	Antimetabolitler15
1.5.3.	Anti-tümör antibiyotikler16
1.5.4.	Topoizomeraz inhibitörleri17
1.5.5.	Mikrotübül inhibitörleri18
1.5.6.	Hormon agonistleri ve antagonistleri18
1.5.7.	Diğer kemoterapi ilaçları19
1.6.	Antrasiklinler ve Etki Mekanizmaları19
1.6.1.	Doksorubisin20
1.6.2.	Doksorubisinin etkileri21
1.7. Mekar	Glikopeptidden Türetilmiş Anti-tümör Antibiyotikler ve Etki nizmaları
1.7.1.	Bleomisin24
1.7.2.	Bleomisinin etkileri25
2. N	1ETODOLOJİ
2.1.	Moleküler Modelleme

İÇİNDEKİLER (devam)

2.2. Kuantum Mekanik
2.2.1. Yoğunluk fonksiyoneli teorisi (density functional theory)
2.2.2. B3LYP yöntemi (Becke'nin üç parametreli değişim fonksiyonu(B3) ile Lee-Yang-Parr korelasyon fonksiyoneli)
2.2.3. ωB97XD yöntemi
2.3. Baz Seti
2.4. Moleküler Mekanik
2.5. Geometri Optimizasyonu
2.6. Hesapsal Kimya Programları
2.6.1. Spartan 08
2.6.2. Gaussian 09
2.6.3. Discovery Studio 3.5 Client
3. BULGULAR VE TARTIŞMA
3.1. Doksorubisin
3.1.1. Gaz fazında doksorubisin konformerleri ve nükleobaz tautomerleri için optimizasyon analizi sonuçları
3.1.2. Doksorubisin ve nükleobazların etkileşimleri

İÇİNDEKİLER (devam)

3.1.3. Çözücü su etkisinde doksorubisin konformerleri ve nükleobaz	
tautomerleri için optimizasyon analizi sonuçları112	2
214 Cärävä av etkisinde deltaerakisin ve näklesker etkilesimleri 12	0
5.1.4. Çozucu su etkisinde doksorudisili ve nukleodaz etkneşilineri	9
3.2. Bleomisin	2
3.2.1. Bleomisin konformerleri için optimizasyon analizi sonuçları142	2
4. SONUÇLAR149	9
KAYNAKLAR DİZİNİ153	3
ÖZGEÇMİŞ163	3
EKLER	

ŞEKİLLER DİZİNİ

<u>Şekil</u>	Say	<u>rfa</u>
1.1.	Normal ve kanserli hücreler (Cancer Research UK, 2015)	2
1.2.	Bazı alkilleyici ajanların kimyasal yapıları.	15
1.3.	Bazı antimetabolitlerin kimyasal yapıları	15
1.4.	Bazı anti-tümör antibiyotiklerin kimyasal yapıları.	16
1.5.	Bazı topoizomeraz inhibitörlerinin kimyasal yapıları	17
1.6.	Bazı mikrotübül inhibitörlerinin kimyasal yapıları	18
1.7.	Bazı hormon agonistleri ve antagonistlerinin kimyasal yapıları	19
1.8.	L-asparaginaz ve bortezomibin kimyasal yapıları.	19
1.9.	Doksorubisin ve daunorubisinin kimyasal yapıları	21
1.10.	Bleomisinin kimyasal yapısı (Liu et al., 2010; Chow et al., 2008)	24
3.1.	Doksorubisinin 3 boyutlu yapısı.	37
3.2. sonuçl	B3LYP/6-31G** seviyesinde yapılan optimizasyon analizi arına göre en düşük enerjili doksorubisin konformerleri	38
3.3. sonuçl	ωB97XD/6-31G** seviyesinde yapılan optimizasyon analizi arına göre en düşük enerjili doksorubisin konformerleri	42
3.4.	Adenin tautomerleri.	46
3.5.	Sitozin tautomerleri	49
3.6.	Guanin tautomerleri.	51

xviii

ŞEKİLLER DİZİNİ (devam)

<u>Şekil</u>		<u>Sayfa</u>
3.7.	Hipoksantin tautomerleri.	53
3.8.	Timin tautomerleri	55
3.9.	Urasil tautomerleri	58
3.10. ilk ha	Dox-1 ve A-1 yapılarının birbirleri ile etkileşiminin gaz fazındaki lleri ve optimizasyon analizi sonrasındaki konumları.	60
3.11. sonra	Dox-1 ve A-1 yapıların sudaki ilk halleri ve optimizasyon analizi sındaki konumları.	66
3.12. ilk ha	Dox-1 ve C-1 yapılarının birbirleri ile etkileşiminin gaz fazındaki lleri ve optimizasyon analizi sonrasındaki konumları.	68
3.13. sonra	Dox-1 ve C-1 yapıların sudaki ilk halleri ve optimizasyon analizi sındaki konumları.	75
3.14. analizi	Dox-1 ve G-1 yapıların gaz fazındaki ilk halleri ve optimizasyon sonrasındaki konumları.	78
3.15. sonra	Dox-1 ve G-1 yapıların sudaki ilk halleri ve optimizasyon analizi sındaki konumları.	84
3.16. analiz	Dox-1 ve H-1 yapıların gaz fazındaki ilk halleri ve optimizasyon zi sonrasındaki konumları.	86
3.17. sonra	Dox-1 ve H-1 yapıların sudaki ilk halleri ve optimizasyon analizi sındaki konumları.	92
3.18. sonra	Dox-1 ve T-1 yapıların ilk halleri ve optimizasyon analizi sındaki konumları.	94

ŞEKİLLER DİZİNİ (devam)

<u>Şekil</u>		<u>Sayfa</u>
3.19. sonras	Dox-1 ve T-1 yapıların sudaki ilk halleri ve optimizasyon analizi sındaki konumları	100
3.20. analiz	Dox-1 ve U-1 yapıların gaz fazındaki ilk halleri ve optimizasyon i sonrasındaki konumları.	103
3.21. sonras	Dox-1 ve U-1 yapıların sudaki ilk halleri ve optimizasyon analizi sındaki konumları	109
3.22. optimi konfor	Çözücü su etkisinde B3LYP/6-31G** seviyesinde yapılan izasyon analizi sonucuna göre en düşük enerjili doksorubisin rmerleri.	113
3.23. optimi konfor	Çözücü su etkisinde @B97XD/6-31G** seviyesinde yapılan izasyon analizi sonucuna göre en düşük enerjili doksorubisin rmerleri.	114
3.24.	Çözücü su etkisinde Adenin tautomerleri.	116
3.25.	Çözücü su etkisinde Sitozin tautomerleri	119
3.26.	Çözücü su etkisinde Guanin tautomerleri.	120
3.27.	Çözücü su etkisinde Hipoksantin tautomerleri	122
3.28.	Çözücü su etkisinde Timin tautomerleri.	124
3.29.	Çözücü su etkisinde Urasil tautomerleri	127
3.30. analiz	wDox-2 ve wA-1 yapıların sudaki ilk halleri ve optimizasyon i sonrasındaki konumları	129

ŞEKİLLER DİZİNİ (devam)

<u>Şekil</u>	Sa	<u>yfa</u>	
3.31. analizi	wDox-2 ve wC-1 yapıların sudaki ilk halleri ve optimizasyon sonrasındaki konumları.	132	
3.32. analizi	wDox-2 ve wG-1 yapıların sudaki ilk halleri ve optimizasyon sonrasındaki konumları.	134	
3.33. analizi	wDox-2 ve wH-2 yapıların sudaki ilk halleri ve optimizasyon sonrasındaki konumları.	136	
3.34. analizi	wDox-2 ve wT-1 yapıların sudaki ilk halleri ve optimizasyon sonrasındaki konumları.	138	
3.35. analizi	wDox-2 ve wU-1 yapıların sudaki ilk halleri ve optimizasyon sonrasındaki konumları.	140	
3.36.	Bleomisinin 3 boyutlu yapısı.	142	
3.37.	Bithiazole domainin 3 boyutlu yapısı	143	
3.38.	En düşük enerjili bleomisin konformerleri.	143	

ÇİZELGELER DİZİNİ

<u>Cizelge</u> <u>Sayf</u>	<u>fa</u>
3.1. En düşük enerjili doksorubisin konformerlerinin B3LYP/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları	41
3.2. En düşük enerjili doksorubisin konformerlerinin @B97XD/6-31G** seviyesinde yapılan optimizasyon analizlerinden elde edilen enerji ve dipol moment değerleri.	45
3.3. Adenin için ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.	48
3.4. Sitozin için ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.	50
3.5. Guanin için ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.	52
3.6. Hipoksantin için ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.	54
3.7. Timin için ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.	57
3.8. Urasil için ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.	59
 Gaz fazında Dox-1 ve A-1 olası etkileşimlerinin ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları. 	65
 3.10. Çözücü su etkisinde Dox-1 ve A-1 olası etkileşimlerinin ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları. 	67

ÇİZELGELER DİZİNİ (devam)

Çizelge <u>Sayfa</u>	
3.11. Gaz fazında Dox-1 ve C-1 olası etkileşimlerinin DB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans nesaplamaları sonuçları	
3.12. Çözücü su etkisinde Dox-1 ve C-1 olası etkileşimlerinin DB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans nesaplamaları sonuçları	
3.13. Gaz fazında Dox-1 ve G-1 olası etkileşimlerinin DB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans nesaplamaları sonuçları	
3.14. Çözücü su etkisinde Dox-1 ve G-1 olası etkileşimlerinin DB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans nesaplamaları sonuçları	
3.15. Gaz fazında Dox-1 ve H-1 olası etkileşimlerinin DB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans nesaplamaları sonuçları	
3.16. Çözücü su etkisinde Dox-1 ve H-1 olası etkileşimlerinin DB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans nesaplamaları sonuçları	
3.17. Gaz fazında Dox-1 ve T-1 olası etkileşimlerinin DB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans nesaplamaları sonuçları	
3.18. Çözücü su etkisinde Dox-1 ve T-1 olası etkileşimlerinin DB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans nesaplamaları sonuçları	

xxiii

ÇİZELGELER DİZİNİ (devam)

<u>Çizelge</u> <u>Sayfa</u>
 3.19. Gaz fazında Dox-1 ve U-1 olası etkileşimlerinin ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
 3.20. Çözücü su etkisinde Dox-1 ve U-1 olası etkileşimlerinin ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.21. Doksorubisin konformerlerinin çözücü su etkisinde B3LYP/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.22. Doksorubisin konformerlerinin çözücü su etkisinde ωB97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.23. Adenin için çözücü su etkisinde ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.24. Sitozin için çözücü su etkisinde ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.25. Guanin için çözücü su etkisinde ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.26. Hipoksantin için çözücü su etkisinde ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.27. Timin için çözücü su etkisinde ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.28. Urasil için çözücü su etkisinde ωB97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları

xxiv

ÇİZELGELER DİZİNİ (devam)

<u>Çizelge</u> <u>Sayfa</u>
3.29. wDox-2 ve wA-1 olası etkileşimlerinin ωB97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.30. wDox-2 ve wC-1 olası etkileşimlerinin ωB97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.31. wDox-2 ve wG-1 olası etkileşimlerinin ωB97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.32. wDox-2 ve wH-2 olası etkileşimlerinin ωB97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.33. wDox-2 ve wT-1 olası etkileşimlerinin ωB97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.34. wDox-2 ve wU-1 olası etkileşimlerinin ωB97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları
3.35. En düşük enerjili bleomisin konformerlerinin B3LYP/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları

SİMGELER VE KISALTMALAR DİZİNİ

Simgeler	Açıklama
μ	Dipol moment (Debye)
6-31G**	Ağır atomlarda (hidrojen olmayan atomlar) ve hidrojen atomunda polarize fonksiyonlu bölünmüş valans çift zeta baz seti
Å	Angström
Е	Enerji (Hartree)
E(ZPE) _{REL}	Sıfır noktası enerjisiyle düzenlenmiş relatif enerji (kcal/mol)
E _{REL}	Relatif enerji (kcal/mol)
Ν	Atom sayısı
р	Bağımsız koordinatlar
π-π etkileşim	pi-pi etkileşim
<u>Kısaltmalar</u>	
А	Adenin
B3LYP	Becke'nin üç parametreli değişim fonksiyonu ile Lee-Yang-Parr korelasyon fonksiyoneli
Blm	Belomisin
С	Sitozin
DFT	Yoğunluk fonksiyoneli teorisi
DNA	Deoksiribonükleik asit

SİMGELER VE KISALTMALAR DİZİNİ (devam)

<u>Kısaltmalar</u>

Dox	Doksorubisin
Dox-A	Doksorubisin-adenin etkileşimi
Dox-C	Doksorubisin-sitozin etkileşimi
Dox-G	Doksorubisin-guanin etkileşimi
Dox-H	Doksorubisin-hipoksantin etkileşimi
Dox-T	Doksorubisin-timin etkileşimi
Dox-U	Doksorubisin-urasil etkileşimi
G	Guanin
H bağı	Hidrojen bağı
Н	Hipoksantin
HF	Hartree-Fock yöntemi
MMFF	Moleküler mekanik kuvvet alanı
PES	Potansiyel enerji yüzeyi
RNA	Ribonükleik asit
Т	Timin
U	Urasil
wA	Çözücü su etkisinde adenin tautomeri

xxvi

xxvii

SİMGELER VE KISALTMALAR DİZİNİ (devam)

<u>Kısaltmalar</u>

wC	Çözücü su etkisinde sitozin tautomeri
wDox	Çözücü su etkisinde doksorubisin konformeri
wG	Çözücü su etkisinde guanin tautomeri
wT	Çözücü su etkisinde timin tautomeri
wU	Çözücü su etkisinde urasil tautomeri
ZPE	Sıfır noktası titreşim enerjisi
ωB97XD	Ampirik dağılım içeren uzun menzil düzeltilmiş fonsiyonel

KANSER TEDAVİSİNDE KULLANILAN İLAÇLARIN BİYOMOLEKÜLLER İLE ETKİLEŞİMİNİN MOLEKÜLER MODELLEME YOLU İLE İNCELENMESİ

1. GİRİŞ

Kemoterapi, kanser tedavilerinin en önemli aşamalarından biridir. Kemoterapi ilaçları, nasıl çalıştıklarına, kimyasal yapılarına ve diğer ilaçlarla etkileşimlerine göre gruplara ayrılır. Bu çalışmada kemoterapide sıklıkla kullanılan anti-tümör antibiyotiklerden doksorubisin ve bleomisinin nükleobazlar ile etkileşiminin incelenmesi hedeflenmiştir. Anti-tümör antibiyotikler, normal antibiyotikler gibi enfeksiyonların tedavisinde kullanılmaz, kanserli hücrelerin DNA'larını etkileyerek büyümelerini ve çoğalmalarını engellerler. Bu amaçla, kemoterapi sırasında kullanılan ilaçların canlı organizmaya etkilerini önceden belirleyebilmek için, anti-tümör antibiyotiklerin etkilediği nükleik asitlerin yapı taşları olan nükleobazlar ile aralarındaki olası etkileşimler moleküler modelleme yöntemleri ile incelenmiştir.

1.1. Kanserin Tarihsel Gelişimi

Mısır papirüsleri, Babil çivi yazısı tabletleri, eski Hint yazmaları bize tarih boyunca kanserin var olduğunu göstermektedir. Fosilleşmiş kemik örnekleri ve Mısır mumyaları, malign tümörlerin varlığının yüzyıllar öncesine dayandığının en somut kanıtıdır (Sigerist, 1932). Kanser kelimesi kullanılmasa da, kanserin en eski tanımına Mısır'da M.Ö. 3000 yılına tarihlenen Edwin Smith Papirüsü olarak bilinen travma cerrahisi ile ilgili bir Mısır kitabında rastlanmaktadır (American Cancer Society, 2015a). M.Ö 15. yüzyılda yazılmış olan Ebers Papirüsünde, tümörden bahsedilmiş ve tümörlere dokunulmaması gerektiği, tedavinin ölümcül olabileceği belirtilmiştir (Joachim, 1890; Sigerist'ten, 1932).

Kanser terimi ilk defa Hipokrat (M.Ö. 460-370) tarafından ülser oluşturan ve oluşturmayan tümörleri tanımlamak için kullanılan "carcinos" ve "carcinoma" terimlerinden türemiştir. Yunanca'da bu terimler yengeç anlamına gelmektedir ve büyük ihtimalle tümörlerin parmak benzeri çıkıntılarından dolayı yengece benzetildiği için bu terimler kullanılmıştır. Romalı hekim Celsus (M.Ö. 28-50)

Yunanca terimi, Latince yengecin karşılığı olan "cancer" olarak çevirmiştir (American Cancer Society, 2015a).

Galen'in çalışmalarında (M.S. 2. yüzyıl), kanser ve diğer tümörler üzerine yüzlerce metnin yanı sıra tümörler üzerine özel bir monograf vardır. Hipokrat'ın görüşlerini geliştiren ve sistematize eden Galen'e göre, insan vücudunda 4 vücut sıvısı vardır ve insanın sağlıklı olması bu sıvıların arasındaki dengeye bağlıdır. Bunlar kan, balgam, sarı ve kara safra olmakla birlikte, kanserden kara safra sorumludur. Galen'e göre, kara safranın baskın olduğu insanlar, fizyolojik olarak tümör oluşumuna daha eğilimlidir. Tümör oluşumundan vücut sıvılarındaki dengesizlik sorumlu olduğu için, Galen kanser hastalarının tedavisi için diyet programı uygulamıştır (Sigerist, 1932).

Yüzyıllar boyunca yapılan kanser araştırmaları sonucunda, kanserin tanımı ve etyolojisi hakkında daha fazla bilgi sahibi oldukça, tedavi yöntemlerinde de birçok gelişme görülmüştür. Bugün hala kanserin tedavisinde kesin sonuçlardan bahsetmek mümkün olmadığından, kanser araştırmaları günümüzde de önemini korumaktadır.

1.2. Kanser Nedir?

Kanser, birbiriyle ilişkili hastalıklar grubunun genel adıdır. Kanserin birçok türü olmasına rağmen, tüm kanserler hücrelerin kontrolsüzce büyümesi sonucu oluşur. Vücudumuz yüz milyonlarca hücreden oluşur ve kanser bir hücre ya da küçük bir grup hücrenin değişime uğramasıyla başlar (Şekil 1.1). Kanser insan vücudunun herhangi bir yerinde, hücrelerin durmadan bölünmesi ve etrafindaki dokulara yayılmasıyla oluşur (American Cancer Society, 2015b; National Cancer Institute, 2015; Cancer Research UK, 2015).

Şekil 1.1. Normal ve kanserli hücreler (Cancer Research UK, 2015).

Kanser hücreleri ve normal hücreler benzer hücre sikluslarına sahip olmalarına rağmen, kanser hücreleri ile normal hücreler arasındaki önemli farklardan biri, kanser hücrelerinin daha az özelleşmiş hücreler olmasıdır. Normal hücreler özel fonksiyonlara sahip birçok farklı hücre tipine erişirken, kanser hücreleri bu gelişimi göstermez. Normal hücrelerin aksine, kanser hücrelerinin durmadan bölünmeye devam etmesinin bir sebebi de budur. Bunun yanı sıra, kanserli hücreler normalde hücre bölünmesini durdurmak için ya da organizmanın gereksiz hücrelerden kurtulmak için kullandığı apoptoz ve programlanmış hücre ölümü gibi yolaklara hücreyi yönlendiren sinyallere cevap vermez (National Cancer Institute, 2015).

Hücreler anormalleştikçe, yaşlı ve hasarlı hücreler ölüme gitmek yerine yaşamaya ve çoğalmaya devam ederler. Organizmanın ihtiyacı olmayan bu eksta hücreler durmadan bölünmeye devam ederek tümörleri oluştururlar. Tümörler iyi huylu (benign) ya da kötü huylu (malign) olabilirler.

İyi huylu (benign) tümörler: İyi huylu tümörler, normal hücrelere çok benzeyen hücrelerden oluşurlar. Sınırları belirgin kitlelerdir, vücudun diğer bölümlerine ve yakınındaki dokulara yayılmazlar, genellikle yavaş büyürler. Çoğunlukla cerrahi yöntemlerle çıkarılabilirler ve yeniden oluşmazlar. Ancak iyi huylu tümörler bazen çok büyük olabilirler, organlara baskı yapabilirler ve vücudun çalışmasını etkileyecek hormonlar salgılayabilirler. Bu gibi durumlarda ve özellikle beyindeki benign tümörler, vücudun diğer bölümlerindeki benign tümörlerden farklı olarak ölümcül olabilirler.

Kötü huylu (malign) tümörler: Kötü huylu tümörler kanserli hücrelerden oluşur. Sınırları belirsizdir, çevresindeki dokulara yayılırlar. Hızlı büyürler ve vücudun diğer bölgelerine kan ya da lenf sistemiyle yayılarak ikincil tümörleri oluşturabilirler. Kötü huylu tümörlerin vücudun diğer kısımlarına sıçramasına metastaz denir (National Cancer Institute, 2015; Cancer Research UK, 2015).

Dünya Sağlık Örgütü'ne (WHO) bağlı bir kuruluş olan Uluslararası Kanser Araştırmaları Ajansı (IARC), GLOBOCAN 2012 verilerine göre; dünya da her yıl 14,1 milyon insana kanser tanısı konulmakta ve 8,2 milyonu kanserden ölmektedir. Ayrıca dünya da 5 yıl içerisinde tanı konulmuş 32,6 milyon kanser hastası bulunmaktadır (International Agency for Research on Cancer, 2015). Türkiye'de ise her yıl 150-200 bin kişiye kanser tanısı konuyor ve kanserle yaşayan 350 bin hasta var. Türkiye kanser istatistiklerine bakıldığında, kanserde her yıl yüzde 1-2 artış olduğu gözlemlenmektedir.

1.3. Kanser Nasıl Oluşur?

Araştırmacılar kansere kimyasalların, radyasyonun, virüslerin ve bazen de aileden gelen genlerin neden olduğunu bilmektedirler. DNA ve genler hakkında bilinenler arttıkça, kimyasalların ve radyasyonun DNA hasarına neden olarak ya da virüsler tarafından organizmaya yeni DNA sekanslarının girmesiyle kanserin oluştuğu görülmüştür (American Cancer Society, 2015b). Genetik bilgilerin saklanmasındaki hayati önemine rağmen, DNA molekülü sınırlı bir kimyasal kararlılığa sahiptir ve kendiliğinden gelişen hasarlara maruz kalır. DNA'nın doğasında olan kararsızlık hem avantaj hem de bir tehdit oluşturur. DNA lezyonları replikasyon ve transkripsiyon gibi önemli hücresel prosesleri bloke edebilir, genom kararsızlığına ve gen ekspresyonunun bozulmasına neden olur. Lezyonlar mutajenik olabilirler ve genomun kodlama kapasitesini değiştirebilirler. Bu da kanser, nörodejeneratif hastalıklar ve biyolojik yaslanma gibi tahrip edici hastalıklara ve genom kararsızlığıyla ilgili durumlara yol açabilir. Genetik materyaldeki hasar tüm organizmalar için bir tehdittir. Bu tehdidi etkisiz hale getirmek için hücreler, baz eşleşmesini veya DNA yapısını etkileyen DNA lezyonlarını düzenleyen bir seri karmaşık DNA tamir yolakları geliştirir. Günümüzde bu yolakların moleküler mekanizmasını, büyük oranda Lindahl, Modrich ve Sancar'ın bu alanda yaptıkları öncü çalışmalar sayesinde detaylı bir sekilde bilmekteyiz (Lahue et al., 1989; Lindahl, 1974; Sancar and Rupp, 1983). Yaptıkları sistemik calışmalar sayesinde, canlı hücre fonksiyonlarının anlaşılmasının yanı sıra birçok kalıtsal hastalığın moleküler nedenleri hakkında bilgi sağlamış, kanserin gelişimi ve yaşlanmanın arkasındaki mekanizmaların anlaşılmasında belirleyici katkıları olmuştur. Bu nedenle İsveç Kraliyet Bilimler Akademisi, 2015 Kimya Nobel ödülünü "DNA tamirinde mekanistik çalışmalar"ı için Tomas Lindahl, Paul Modrich ve Aziz Sancar'a vermiştir (The Nobel Prize in Chemistry 2015, 2015).

Kansere neden olan karsinojenlerin çoğu genetik hasara (mutasyona) neden olur. Normal hücreler DNA'larındaki değişiklikten ötürü kanserli hücrelere dönüşürler. Kalıtsal olarak ya da kendiliğinden mutasyona uğramış hücrelerden oluşan hücreler anormal hücre gruplarının oluşmasına neden olur. Çünkü normal hücrelerde DNA hasarı olduğu zaman, hücre hasarı tamir eder ya da ölür. Kanser hücrelerinde ise DNA hasarı tamir edilmez ve bunun sonucunda olması gerektiği gibi hücre ölüme gitmez. Bunu yerine hücre bölünmeye devam eder ve organizmanın ihtiyacı olmayan, hasarlı DNA içeren hücreler oluşturmaya devam eder (American Cancer Society, 2015b).

Kansere neden olan genetik değişiklikler 3 ana tip geni etkileme eğilimindedirler. Bu genler, protoonkogenler, tümör baskılayıcı genler ve DNA tamir genleridir.

Protoonkogenler, normal hücre büyümesi ve bölünmesinde rol alırlar. Fakat bu genler bir şekilde değişime uğrarsa ya da normalden daha aktif olursa, kansere neden olan genlere (onkogenler) dönüşebilir. Bu genler hücrelerin kontrolsüz olarak büyümelerine ve kanser hücrelerine dönüşmesine sebep olur (National Cancer Institute, 2015). Onkogenler hücreleri dönüştürebilen ya da hayvanlarda kanseri tetikleyen bir protein kodlayan herhangi bir gendir. Bilinen onkogenlerin küçük bir kısmı hariç hepsi hücresel büyüme kontrol yolaklarında görev alan proteinleri kodlayan normal hücresel genlerden (protoonkogenler) oluşmuştur. Örneğin *ras* geni, hücre içi sinyal transdüksiyon proteinini kodlayan bir gendir ve mutant *ras^D* geni aşırı ve kontrolsüz büyümeyi destekleyen sinyal oluşmasına neden olan onkoproteini kodlayan bir onkogendir (Lodish et al., 2000).

Tümör baskılayıcı genler de hücre büyümesi ve bölünmesinin kontrolünde görev alır. Tümör baskılayıcı genleri değişime uğramış hücreler kontrolsüz bir şekilde bölünemeye devam edebilir (National Cancer Institute, 2015). Tümör baskılayıcı genler genel olarak hücre proliferasyonunu engelleyen proteinleri kodlarlar. Tümör baskılayıcı genler tarafından kodlanan proteinler; hücre siklusunun belirli aşamalarında ilerlemeyi inhibe eden ya da düzenleyen p16 siklin kinaz inhibitörü gibi hücre içi proteinler; hücre proliferasyonunu engelleyen hormon reseptörleri (örneğin tümör kaynaklı büyüme faktörü β); eğer DNA hasarlı ya da kromozomlar normal değilse hücre döngüsünü durduracak olan checkpoint kontrol proteinleri; apoptozu teşvik eden proteinler; DNA onarımında rol alan enzimlerdir (Lodish et al., 2000).

DNA tamir genleri, hasarlı DNA'nın tamirinde rol alır. Bu genlerinde mutasyon olan hücreler diğer genlerinde ilave mutasyonlar geliştirme eğilimindedir. Bu mutasyonlarla birlikte hücreler kanserli hücrelere dönüşebilir (National Cancer Institute, 2015). Etkili DNA tamiri kansersiz yaşamın temelidir. DNA tamir genlerindeki mutasyonlar; nükleotid eksizyon tamiri geni mutasyonları, mismatch (yanlış eşleşme) tamiri genlerini etkileyen mutasyonlar, DNA crosslink (çapraz bağ) tamiri geni mutasyonları ve diğer birçokları kalıtsal kanser sendromlarının sebebidir. Genetik mutasyonlara alternatif olarak, epigenetik gen inaktivasyon mekanizmaları DNA tamir genlerini etkileyerek, DNA tamir sisteminin inaktive olmasına ya da etkinliğinin azalmasına neden olabilir. DNA tamir genlerinin inaktivasyonu genomik stabiliteyi azaltarak diğer önemli gen lokuslarının genetik anormalliklerine neden olur. Buda kanserin başlamasında ve/veya ilerlemesinde önemli bir etkendir (Lahtz and Pfeifer, 2011).

1.4. Kanser Tedavisinde Genel Yaklaşımlar

Kanser tedavisinde kullanılan yöntemler son kırk yıldır önemli ölçüde değişmektedir. Cerrahi ve radyoterapinin tümör büyümesiyle savaşta kullanılan tek etkili yöntem olduğu çağ sona erdi. Erken tanı, sağlık hizmetlerine ulaşım ve tedavi yöntemlerindeki gelişmeler, kanser hayatta kalım oranında belirgin ölçüde ilerleme sağlamaktadır (Urruticoechea et al., 2010).

1.4.1. Cerrahi uygulamalar

Antik çağlarda kanserin cerrahi olarak çıkarıldıktan sonra genellikle tekrar edeceği bilinirdi. Romalı hekim Celsus "Eksizyon sonrası, skar oluşmuş olsa dahi, yine de hastalık yeniden oluşmuştur" demiştir. Galen, kanser tanısı alan hastaları tedavi edilemez olarak nitelendirmiştir. Kanserin tedavi edilemez olduğu inancı belirli bir ölçüde 21. yüzyılda bile devam etmekteydi. Galen, eğer tümör erken evrede tamamen çıkartılabilirse, meme kanserinde cerrahi tedavinin mümkün olduğunu belirtmiştir (American Cancer Society, 2015b).

Kanser tedavisinde kullanılabilir ilk yöntem cerrahi olmuştur. 1809 yılında, Ephraim McDowell yumurtalık tümörünü anestezi kullanmadan çıkarmıştır. Amerika'da yapılan bu ilk abdominal ameliyat, tümör kitlelerinin cerrahi yöntemler ile tedavi edilebileceğine de kanıt sağlamıştır (DeVita and Rosenberg, 2012). Kanser cerrahisinde en ses getiren ameliyat, 1894 yılında William Halsted tarafından radikal mastektomi ile meme kanserinde yapılmıştır (Halsted, 1894; DeVita and Rosenberg'ten, 2012). Halsted tüm kanser hücrelerini çıkartmak için etrafındaki tüm dokulara, eğer tutulum varsa humerus kemiğinin başı da dahil olmak üzere, en blok rezeksiyonunu (bütünüyle çıkarma) önermiştir. En blok rezeksiyonu "kanser operasyonu" olarak bilinmeye başlamıştır ve sınırlı kanıtlar kullanımını desteklese de, diğer bütün kanserlerin çıkarılmasında kullanılmıştır (DeVita and Rosenberg, 2012).

Cerrahi lokalize primer tümörler ve ilişkili bölgesel lenfatik dokular için en etkili tedavi yöntemidir. Kanser cerrahisindeki kısıtlamaların anlaşılmasında metastaz anahtar elementtir. Bunun sonucunda, cerrahi operasyondan sonra vücudun diğer bölgelerine yayılmış olan hücrelerin yok edilebilmesi için sistemik tedaviler geliştirilmeye başlanmıştır. 1920'lerde radyoterapinin, 1940'lardan sonra da kemoterapinin geliştirilmesiyle kanser cerrahisi konservatif hale gelmiştir. Böylece birçok kanser türünün tedavisinde tahrip edici operasyonlar daha az kullanılmaya başlanmıştır. Günümüzde bu sistemik tedaviler cerrahiden önce kullanılabilmektedir (Urruticoechea et al., 2010; American Cancer Society, 2015b).

1.4.2. Radyoterapi (ışın tedavisi)

Radyoterapi çağı 1895'te Roentgen'in (Roentgen, 1896; DeVita and Rosenberg'ten, 2012) X-ışınlarını keşfetmesiyle başladı ve 1898'de radyumun Pierre ve Marie Curie (Curie et al., 1898; DeVita and Rosenberg'ten, 2012) tarafından bulunmasıyla hızlandı. 1928'de kafa ve boyun kanserlerinin fraksiyone radyoterapi ile tedavi edildiği gösterilmiş ve bu alanda milat olmuştur (Coutard, 1932; DeVita and Rosenberg'ten, 2012).

Radyoterapinin tek başına kullanımı -eksternal ışın ve/veya brakiterapi- baş ve boyun tümörlerinin erken evresi, prostat kanseri ve erken evre Hodgkin lenfoma gibi birçok tümör tipi için tedavi edici bir yaklaşımdır. Radyoterapinin cerrahi ve/veya kemoterapi ile birlikte kullanımı daha yaygındır. Operasyon öncesi radyoterapi günümüzde, rektal ve özofagus kanserleri gibi sınırlı tümör lokasyonlarında kullanılırken, operasyon sonrası radyoterapi meme, merkezi sinir sistemi tümörleri ve diğerlerini de içeren birçok tümör lokasyonunda kullanılmaktadır. Operasyon esnasında radyoterapi, cerrahi sırasında bir elektronlarla ya da düşük enerjili fotonlarla tek ve geniş bir fraksiyon halinde verilmesi ara sıra kullanılan bir yöntemdir. Kemoradyoterapi yaklaşımlarının, lokal kontrolü geliştirdiği ve mikrometastatik hastalıkları kökünden yok ettiği gösterilmiştir. Radyoterapi lokal ve/veya metastatik tümörlerde hızlı ve etkin palyasyon sağlayan önemli bir tedavi yöntemidir (Urruticoechea et al., 2010).

1.4.3. Kemoterapi

Kanser tedavisinde en önemli aşamalardan biri olan kemoterapi, özellikle çoğalan hücrelere karşı seçici öldürücü etkileri olan, doğal veya sentetik kimyasal, biyolojik ajanlar ve hormonlarla yapılan bir tedavi şeklidir. 20. yüzyılın başında Paul Ehrlich'in çalışmaları sayesinde kanserin tedavisi için kimyasallar geliştirilmiştir. O zamanlar Avrupa'daki en ölümcül ve yaygın hastalık olan frenginin tedavisinde kullanılan ilk antibakteriyel ilacı (Salvarsan) bulmuş ve bağışıklık alanında yaptığı çalışmaların tanınmasıyla (Elie Metchnikoff ile birlikte) Nobel ödülünü almıştır. Farklı disiplinlerde birçok başarısı olmasına rağmen, Paul Ehrlich'in adı Salvarsan ve çığır açan çalışmaları sayesinde kemoterapinin doğuşuyla bağdaştırılmaktadır (Kaufmann, 2008; Bosch and Rosich, 2008; DeVita and Rosenberg, 2012).

Yaklasık olarak yüz yıldır kanserin sistemik tedavisi için yaygın olarak sitotoksik kemoterapötikler kullanılmaktadır. Bu ilaçların birçoğu, hızla çoğalan hücreleri öldürmek ya da engellemek için dizayn edilmiş, DNA hasarına sebep olan maddelerdir (Urruticoechea et al., 2010). İkinci Dünya Savaşı sırasında kullanılan hardal gazından daha etkili bir ajan bulmak ve koruyucu önlemler geliştirebilmek için yapılan çalışmalarda, azotlu hardal gazının kansere karşı kullanılabileceği bulundu. Bu ajan kendisine benzeyen fakat daha etkili alkilleyici ajanlara model olmuştur. Alkilleyici ajanlar, hızlı büyüyen kanser hücrelerinin DNA'larını bozarak öldürürler (American Cancer Society, 2015b). 1943 yılında azotlu hardal gazının lenfomaların tedavisinde kullanılmasından sonra (Goodman et al., 1946; DeVita and Rosenberg'ten, 2012), 1948 yılında Farber (Farber et al., 1948; DeVita and Rosenberg'ten, 2012), folik asit antagonisti olan aminopterinin çocukluk dönemi lösemisinde geçici remisyon sağladığını göstermiştir. Aminopterin, DNA replikasyonunda kritik öneme sahip bir kimyasal reaksiyonu durdurur. Bu ilaç kanser tedavisinde bugün de sıklıkla kullanılan metotreksatın atasıdır. O tarihten itibaren hücre büyümesinde ve replikasyonda farklı işlevleri durduran ilaçlar keşfedilmiş ve kemoterapi çağı başlamıştır (American Cancer Society, 2015b).

Kanser hücreleri ve normal hücreler arasındaki en önemli fark, benzer hücre döngülerine sahip olmalarına rağmen, kanser hücrelerinde proliferasyonu frenleyen mekanizmanın bulunmamasıdır. Tümör hücrelerinin, pozitif düzenleyici sinyal bağımsızlığı, büyüme engelleyici sinyallere yanıt vermeme, limitsiz proliferasyon, apoptoza direnç, anjiyogenez ile besin ve oksijen alabilme
kapasitesi, etrafındaki hücreleri istila etme ve metastaz oluşturma yeteneği gibi özellikleri hakkında bilgilerimizin artması, tedavi yöntemlerinin geliştirilmesinde çok önemlidir (Urruticoechea et al., 2010). Bu nedenle kemoterapötik ajanlar genellikle hücreler proliferatif dönemdeyken etkilidirler ve hızlı çoğalan hücreleri etkilerler. Ancak bu ajanlar sadece kanserli hücreleri değil, kemik iliği, gonadlar, gastrointestinal kanal, deri gibi hızlı çoğalan dokuları da etkilerler.

Yıllar içinde, kemoterapi ilaçları birçok kanserli hastanın tedavisinde kullanılmıştır. Kemoterapi ile Hodgkin lenfoma ve çocukluk dönemi akut lenfoblastik lösemi hastalarının çoğunda uzun dönem remisyon, hatta iyileşme gözlemlenmiştir. Diğer birçok kanser türünde de kemoterapi ile tam bir iyileşme olmasa bile kontrol sağlanabilmektedir. Günümüzde kemoterapinin aktivitesini arttırmak ve yan etkilerini azaltabilmek için birçok yöntem mevcuttur. Bunlar;

- Yeni ilaçlar, yeni ilaç kombinasyonları ve yeni uygulama tekniklerinin araştırılması,
- Yan etkileri azaltabilmek için, kanser hücrelerine daha spesifik hedef ilaç (lipozomal terapi ve monoklonal antikor terapisi gibi) yaklaşımları,
- Koloni-stimüle edici faktörler, kemoprotektif ajanlar, bulantı ve kusmayı engelleyen anti-emetikler gibi yan etkileri azaltıcı ilaçlar;
- Çoklu ilaç direncini yenmek için kullanılan ajanlardır (American Cancer Society, 2015b).

Kanser hücrelerinin kendi mikroortamlarına (fibroblastlar, damarlar, makrofajlar, lenfositler gibi) duydukları gereksinimin anlaşılması yeni terapötik stratejilerin kapısını araladı.

1.4.4. Hedefe yönelik tedavi

Kanser hücrelerinde bu mikroortamların değişime uğradığı bulunmuş ve araştırmacıların kanser hücrelerindeki bu moleküler bozuklukları tamir etmek için yola çıkmasıyla "hedefe yönelik tedavi" çağı başlamıştır (Urruticoechea et al., 2010). 1990'ların sonuna kadar kanser tedavisinde kullanılan ilaçların tümü (hormon tedavisi hariç) hücreler DNA replikasyonu ve bölünme sürecindeyken hücreleri öldürmekteydi. Kanser hücreleri üzerinde daha büyük etkileri olan bu kemoterapi ilaçları aynı zamanda normal hücreleri de öldürmekteydi. Hedefe yönelik tedaviler, büyüme, bölünme, kanser hücrelerinin yayılması süreçlerinin kontrolünün yanı sıra kanser hücrelerinin doğal olarak ölümüne (normal hücrelerin hasara uğradığı ya da yaşlandığı zaman yaptığı gibi) sebep olan sinyalleri etkileyerek tedavi sağlamaktadır (American Cancer Society, 2015b).

2006 yılında Druker ve arkadaşları (Druker et al., 2006; DeVita and Rosenberg'ten, 2012) imatinib ilacının kronik miyeloid lösemide kendine özgü bir moleküler anormalliğe hedeflenmiş etkinliğini göstermişlerdir. Bu çalışma, belirli kanser türlerine özgü spesifik moleküler anormallikleri hedefleyen tedavilerin, kanseri kontrol edilebilir kronik hastalıklara dönüştürülebileceğini kanıtlamıştır. O zamandan beri kemoterapi hedefe yönelik tedaviye dönüşmeye başlamış, literatürde spesifik moleküler hedefleri inhibe eden ilaçlara yönelik çalışmalar ağırlık kazanmıştır (DeVita and Rosenberg, 2012).

Büyüme faktörleri, sinyal molekülleri, hücre döngüsü proteinleri, apoptoz modülatörleri ve anjiyojenezi teşvik eden moleküller, bu tedavide kullanılan hedeflerdir. Şimdilerde özel moleküler hedeflemenin klinik kullanımına elverişli iki temel yaklaşım vardır. Bunlar terapötik monoklonal antikorlar (tümörün büyüme faktörünü tüketir ya da büyüme faktörü ve reseptör arasındaki etkileşimi bloke eder) ve büyüme sinyalinin transdüksiyonunda ve bunun iletilmesinde belirli aşamaları hedefleyen küçük moleküllü ajanlardır (Urruticoechea et al., 2010).

1.4.5. Hormon tedavisi

19. yüzyılda yapılan bir buluş, meme kanserini önlemede ve tedavi etmede kullanılan önemli bir metodun ortaya çıkmasına zemin hazırlamıştır. Beatson'un (Beatson, 1896; Urruticoechea et al.'dan, 2010) bulgularından sonra meme kanserinin hormonal bağımlılığı hastalığın tedavisinde kullanıldı. Yaptığı çalışmalarda ooforektomi ile yumurtalığı çıkarılmış meme kanseri hastalarında iyileşme gözlemlemiştir. Kadın yumurtalık hormonu östrojenin meme kanseri üzerindeki uyarıcı etkisini, hormon keşfedilmeden önce bulmuştur. Beatson'un çalışmaları, günümüzde meme kanserinin tedavisinde ve önlenmesinde kullanılan hormon tedavisi (tamoksifen ve aromataz inhibitörleri gibi) için temel oluşturmuştur (American Cancer Society, 2015b).

Beatson'un keşfinden yarım yüzyıl sonra, Charles Huggins, testisler çıkarıldıktan sonra metastatik prostat kanserinde önemli bir gerileme gözlemlemiştir. Daha sonra prostat kanserinin etkin tedavisi için erkeklik hormonlarını bloke eden ilaçlar bulunmuştur (American Cancer Society, 2015b).

Meme ve prostat kanserleri hormon bağımlı bez epiteli kökenini paylaşmakta ve bu sırasıyla östrojen ve androjen reseptör hücrelerinin proliferatif avantajının yanı sıra hormon bağımlılığı yüksek olan kanserin bu alt tiplerindeki yavaş ilerleme oranın önemini desteklemektedir. Meme kanserine benzer olarak prostat kanserinin endokrin manipülasyonun da iki strateji kullanılabilir. Bunlar, anti-androjenler ile periferik hormonal blokaj ve gonadotropin salgılatıcı hormon (LHRH; luteinising-hormone releasing hormone) ile merkezi endokrin ablasyonudur (Urruticoechea et al., 2010).

1.4.6. İmmunoterapi

Bağışıklık sisteminin virüsler, bakteriler, parazitler gibi patojenlere karşı koruma sağlamadaki önemi bilinmektedir. Buna karşın, bağışıklık sisteminin birinci görevinin kanseri önlemek olup olmadığı, uzun süredir bir tartışma konusudur. 50 yıldır yapılan çalışmalar sonucunda, bağışıklık sistemimizin bizi sadece bulaşıcı ve bize ait olmayan hücrelerden (patojen) değil, bize ait olan malign (kanser) hücrelere karşı da koruduğu gösterilmiştir. Doğuştan (doğal öldürücü hücreler ve makrofajlar) ve adaptif (T ve B hücreleri) bağışıklık sistemlerine mensup birçok hücre tipi kanser kontrolünde görev almaktadır (Corthay, 2014).

Bağışıklık sistemi, tümörlerin, normal dokulara zarar vermeden, spesifik olarak yok edilmesinde ve kanserin yeniden oluşumunun engellenmesinde büyük bir potansiyele sahiptir. Bağışıklık sisteminin tümöre spesifik cevabı, tümör antijenlerini tanımasına dayanmaktadır. Virüsler tarafından oluşan tümörlerdeki viral proteinlerin, onkogenlerden ya da diğer genlerden oluşan mutasyona uğramış proteinlerin, tüm tümörlerde bulunan mutasyona uğramamış fakat anormal olarak eksprese edilmiş proteinlerin, immün gözetim için iyi antijenler ve iyi hedefler oldukları bulunmuştur (Finn, 2012).

Kanser hücrelerinin biyolojisinin daha iyi anlaşılması, hücre büyümesinin kontrolünde organizmanın kullandığı doğal sinyalleri taklit eden biyolojik ajanların geliştirilmesine olanak sağlamıştır. Klinik çalışmalar, biyolojik terapi, biyoterapi ya da immunoterapi denilen bu tedavi yönteminin birçok kanser türünde etkili olduğunu göstermiştir. Interferonlar, interlökinler ve diğer sitokinler

gibi vücudumuzda doğal olarak bulunan biyolojik ajanlar, laboratuvar ortamında yapılarak hastalara verilip, doğal bağışıklık sistemini etkileyerek ya da taklit ederek doğal immün yanıtı sağlayabilirler (American Cancer Society, 2015b).

1975 yılında Köhler ve Milstein, bağışıklık kazandırılmış farelerin normal B hücreleri ile kültürü yapılmış miyeloma hücrelerinin birleştirerek antikor üretmişlerdir (Köhler and Milstein, 1975; DeVita and Rosenberg'ten, 2012). Tek bir spesifikliği olan antikorların büyük miktarlarda üretilebilmesi kanser için terapötik antikorların geliştirilmesine olanak sağlamıştır (DeVita and Rosenberg, 2012). Kanser hücreleri tarafından eksprese edilen spesifik antijenleri direk olarak hedef alan monoklonal antikorlar immünoterapötik ajanlardır. Monoklonal antikorların birçoğu, Amerikan Gıda ve İlaç Kurumu (FDA; Food and Drug Administration) tarafından farklı kanser türlerinin standart tedavisinde kullanılmak üzere onaylanmıştır. Örneğin trastuzumab meme kanseri, rituximab B-hücreli lenfoma tedavisinde kullanılmaktadır (Finn, 2012).

İnterlökin-2 uygulamasından sonra metastatik melanom ve böbrek kanserlerinde devamlı regresyon 1985 yılında tanımlanmasıyla, immün invazif metastatik hastalıkların regresyonuna neden manipülasyonların, olabileceği ilk defa açıkça gösterilmiştir (Rosenberg et al., 1985; DeVita and Rosenberg'ten, 2012). İnterlökin-2 metastatik böbrek kanseri tedavisi için 1992'de, metastatik melanom tedavisi için 1998'de onay almıştır. İpilimumab gibi immünomodülatör ajanların (Hodi et al., 2010; DeVita and Rosenberg'ten, 2012) ve hücre transferi terapilerinin geliştirilmesi (Rosenberg et al., 1988, Dudley et al., 2002; DeVita and Rosenberg'ten, 2012), kanser tedavisinde genetik olarak tasarlanmış lenfosit kullanımı (Morgan et al., 2006; DeVita and Rosenberg'ten, 2012), immunoterapinin kanser regresyonuna neden olduğuna ilave kanıtlardır.

1.5. Kemoterapi İlaçları

Kemoterapi birçok kanser türünün tedavisinde kullanılmaktadır. Günümüzde 100'den fazla kemoterapi ilacı yalnız başına ya da diğer ilaçlarla veya tedavilerle birlikte kullanılmaktadır. Kemoterapi ilaçları kimyasal yapılarına, nasıl çalıştıklarına, diğer ilaçlarla etkileşimlerine ve yan etkilerine göre çeşitli gruplara ayrılırlar. İlaçların çalışma mekanizmalarının bilinmesi, yan etkilerinin öngörülmesinde ve eğer birden fazla ilaç kullanılacaksa doktorların hangi ilaçların birlikte daha iyi çalışacaklarını ve hastaya bu ilaçların nasıl verileceğini planlamada önemlidir (American Cancer Society, 2016). Hücre döngüsü, hücrenin büyümesi ve iki yavru hücreye bölünmesiyle son bulan sıralı bir olaylar döngüsüdür. Normal hücreler büyüyüp, bölünüp, kontrollü bir şekilde ölürken, bu prosesler bozulup, hücreler kontrolsüz bir şekilde bölünmeye devam ederse kanser oluşur (Morgan, 2003). Hücre döngüsü hücrenin normal yaşam döngüsüdür ve hem normal hücreler hem de kanser hücreleri yeni hücreler oluşturabilmek için aynı steplerden geçerler (American Cancer Society, 2016). Kanser hücrelerini öldürmek üzere planlanmış ilaçlar, aynı hücre döngüsüne sahip oldukları için normal hücreleri de etkilemektedir (Morgan, 2003). Yan etkilerin azaltılabilmesi için, hücre döngüsünün ve ilaçların bu döngünün neresinde hücreyi etkilediklerini bilmek önemlidir.

Hücre döngüsüne giren bir hücre birbirinin aynı iki yeni hücre oluşturur. Eğer yeni hücrelere ihtiyaç varsa, ilk hücreden oluşan bu yeni hücrelerin her biri yeniden hücre döngüsüne girer. Hücre döngüsü 5 fazdan oluşur, bunlar;

G0 fazı (dinlenme evresi): Hücre henüz bölünmeye başlamamıştır. Hücreler yaşamlarının büyük bir kısmını bu fazda geçirirler. Hücre tipine bağlı olarak bu fazın uzunluğu birkaç saat ile birkaç yıl arasında değişebilir. Hücreler bölüne sinyali aldıklarında G1 fazına geçerler.

G1 fazı: Bu fazda hücreler daha fazla protein yaparlar ve büyürler. Böylece oluşacak yeni hücreler normal boyutta olacaktır. Bu faz 18 ila 30 saat arasında sürer.

S fazı: Genetik kodu içeren kromozomlar kopyalanır. Böylece oluşan iki yeni hücre de aynı DNA'ya sahip olur. Bu faz 18 ila 20 saat arasında sürer.

G2 fazı: Hücre DNA'sını kontrol eder ve iki hücreye bölünmek için hazır hale gelir. Bu faz 2 ila 10 saat arasında sürer.

M fazı (mitoz): Hücre, iki yeni hücreye bölünür. Bu faz 30 ila 60 dakika arasında sürer.

Birçok kemoterapi ilacı aktif olarak bölünen (G0 fazında olmayan hücreler) hücreleri etkiler. Bazı ilaçlar spesifik olarak hücre döngüsünün belli fazındaki hücrelere saldırır (örneğin, M ya da S fazındaki hücreleri etkileyen ilaçlar gibi) (American Cancer Society, 2016). Antimetabolitler S fazında aktifken, diğer bir faz spesifik bileşik olan vinka alkaloidleri, hücreler M fazının metafaz evresindeyken etkisini gösterir (Morgan, 2003).

1.5.1. Alkilleyici ajanlar

Alkilleyici ajanlar alkil karbon gruplarını çeşitli biyolojik moleküllere transfer eden ve böylece bu moleküllerin yapılarını ve fonksiyonlarını bozan reaktif kimyasallardır. Kemoterapötik alkilleyici ajanlar, DNA üzerinde çeşitli sitotoksik ve mutajenik eklentileri indükler. Alkilleyici ajanlar tarafından indüklenen bu eklentiler, DNA replikasyonu ve transkripsiyonu gibi temel biyolojik prosesleri durdurarak hücre ölümüne neden olur (Fu et al., 2012).

Kemoterapide kullanılan alkilleyici ajanlar, her iki DNA zincirine bağlanarak, DNA duplikasyonunu ve böylece mitozu engeller. Radyasyonun hem bölünen hem de dinlenme evresindeki hücrelerde yarattığı tahribata benzer etkiyi gösterir (Morgan, 2003). Bu ilaçlar hücre döngüsünün her fazında etkili olabilir (faz spesifik değildir) ve lösemi, lenfoma, Hodgkin lenfoma, mültipl myelom, sarkoma, akciğer, meme ve yumurtalık kanseri gibi pek çok farklı kanser çeşidinin tedavisinde kullanılmaktadır (American Cancer Society, 2016).

Bu ilaçlar DNA hasarına yol açtığı için, uzun vadede kemik iliği hasarına yol açabilir ve enderde olsa akut lösemiye neden olabilir. Alkilleyici ajan kullanımıyla oluşabilecek lösemi riski doz-bağımlıdır. Düşük dozda bu risk azdır, ancak kullanılan toplam ilaç miktarı arttıkça riskte artar (American Cancer Society, 2016).

Alkilleyici ajanlar; azotlu hardallar (mekloretamin, klorambusil, siklofosfamit, ifosfamit ve melfalan; Şekil 1.2), nitrozoüreler (streptozosin, karmustin (BCNU) ve lomustin), alkil sülfonatlar (busulfan), triazinler (dakarbazin (DTIC) ve temozolomid), etileniminler (thiotepa ve altretamin (hexamethylmelamin)) gibi gruplardan oluşur (American Cancer Society, 2016).

Şekil 1.2. Bazı alkilleyici ajanların kimyasal yapıları.

1.5.2. Antimetabolitler

Antimetabolitler, DNA ve RNA sentezinde önemli olan enzimleri bloke ederek ya da DNA ve RNA'nın yapı taşlarının yerine geçerek yanlış mesaj oluşturulmasını sağlar. Böylece DNA ve RNA sentezi inhibe olur. Bu ajanlar genellikle hücreler S fazındayken etkilerini gösterir (Morgan, 2003). Antimetabolitler lösemi, meme, yumurtalık ve bağırsak yolu kanserlerinin yanı sıra diğer birçok kanser türünün tedavisinde de kullanılmaktadır (American Cancer Society, 2016).

Antimetabolitlere örnek olarak, 5-fluorourasil, 6-merkaptopürin, kapesitabin, sitarabin, floxuridin, fludarabin, gemsitabin, hidroksiüre, metotreksat, pemetrexed verilebilir (Şekil 1.3).

Şekil 1.3. Bazı antimetabolitlerin kimyasal yapıları.

1.5.3. Anti-tümör antibiyotikler

Bu ilaçlar, enfeksiyonları iyileştirmek için kullanılan antibiyotiklerden farklıdır. Kanser hücrelerinin DNA'sını değiştirerek, büyümesini ve çoğalmasını engellerler ve birçok kanser türünün tedavisinde kullanılırlar (American Cancer Society, 2016).

Anti-tümör antibiyotikler ortak kökenleri mikrobiyal kültürlerin fermentasyon ürünleri olan, heterojen bir antineoplastik ajanlar grubudur (Sekil 1.4). Anti-tümör antibiyotiklerin çalışma mekanizması değişkenlik gösterir. Aktinomisinler, (mitramisin ve kromomisin A3) DNA'ya bağlanıp, DNA bağımlı RNA sentezini inhibe ederken, antrasiklin antibiyotikler, (daunorubisin (daunomisin), doksorubisin, idarubisin ve epirubusin) baz çiftlerinin arasına girerek RNA ve DNA sentezini inhibe ederler. Bleomisin bir peptidtir ve serbest radikaller oluşturarak DNA zincirlerinde kırılmalara neden olur. Streptonigrin, mitomisin-C ve porfimisin için ise alkilasyon, baskın etki mekanizmasıdır. Antitümör antibiyotikler etkilerini genellikle DNA ile etkileşime girerek gösterirler (Carter et al., 2012). Bazıları özellikle S ve M fazında etkili olsa da, bu ilaçların çoğu hücre döngüsü faz spesifik değildir (Morgan, 2003).

Şekil 1.4. Bazı anti-tümör antibiyotiklerin kimyasal yapıları.

1.5.4. Topoizomeraz inhibitörleri

Bu ilaçlar S fazında DNA kopyalanması sırasında, DNA zincirlerinin birbirinden ayrılmasını sağlayan topoizomeraz enzimlerine engel olarak etkilerini gösterirler. Topoizomeraz inhibitörleri bazı lösemilerde, akciğer, yumurtalık, sindirim sistemi ve diğer kanser türlerinin tedavisinde kullanılır. Topoizomeraz inhibitörleri etkiledikleri enzim tipine göre gruplandırılırlar (American Cancer Society, 2016).

Topoizomeraz I inhibitörleri: Topoizomeraz I enzimleri, transkripsiyon, replikasyon ve kromatin yeniden yapılanmasıyla oluşturulan DNA süper sarmalının (DNA supercoiling) gevşetilmesi için gerekli temel enzimlerdir. Topoizomerazlar, özellikle kırılma reaksiyonları sırasında topoizomeraz I inhibitörlerine duyarlıdır. Topoizomeraz I DNA zincirlerini birbirinden ayırırken kanser ilaçları tarafından tutulabilir. Kamptotesin, tek hücresel hedefi topoizomeraz I olan doğal bir bileşiktir (Şekil 1.5). İki kamptotesin türevinin kullanımı, (yumurtalık ve akciğer kanseri için topotekan ve kolorektal kanser için irinotekan) Amerikan Gıda ve İlaç Kurumu (FDA; Food and Drug Administration) tarafından onaylanmıştır (Pommier, 2006).

Topoizomeraz II inhibitörleri: Topoizomeraz II'nin DNA replikasyonu, transkripsiyonu ve kromozom ayrımı gibi birçok önemli fonksiyonu vardır. Topoizomeraz II'nin biyolojik fonksiyonları genomik bütünlüğü sağlayabilmek için önemli olsa da, topoizomeraz II'ye müdahale edebilmek ve enzim aracılı DNA hasarına yol açabilmek kanser kemoterapisinde etkili bir stratejidir (Nitiss, 2009). Topoizomeraz II, epipodofilotoksinlerden etoposid, teniposid, anti-tümör antibiyotiklerden mitoksantron (Şekil 1.5) ve antrasiklin antibiyotiklerden doksorubisin gibi birçok önemli kanser ilacının hedefidir (Nitiss, 2009; American Cancer Society, 2016).

Şekil 1.5. Bazı topoizomeraz inhibitörlerinin kimyasal yapıları.

1.5.5. Mikrotübül inhibitörleri

Vinka bitki alkaloidleri ve diğer doğal bileşiklerden üretilen bu ilaçlar hücre döngüsü faz spesifiktir. Sitotoksik etkilerini metafaz evresinde mikrotübüler proteinlere bağlanarak ve böylece mitozu durdurarak gösterirler. Hücre bölünme yeteneğini kaybeder ve ölür. Mikrotübüler proteinler sinir dokuları için temel gereksinim olduğu için, sitotoksik terapinin diğer yan etkilerinin yanı sıra, mikrotübül inhibitörleri sinir zedelenmelerine ve paresteziye (karıncalanma hissi) yol açabilir (Morgan, 2003).

Mikrotübül inhibitörleri, meme ve akciğer kanserleri, miyeloma, lenfoma ve lösemi gibi çeşitli kanser türlerinin tedavisinde kullanılırlar. Bu ilaçlara örnek olarak; taksanlar (paklitaksel, dosetaksel), epotilonlar (iksabepilon), vinka alkaloidler (vinblastin, vinkristin ve vinorelbin) ve estramustin verilebilir (American Cancer Society, 2016; Şekil 1.6).

Şekil 1.6. Bazı mikrotübül inhibitörlerinin kimyasal yapıları.

1.5.6. Hormon agonistleri ve antagonistleri

Bazı tümörler hormona bağımlı ya da hormona duyarlıdır. Bu nedenle, tedavilerinde zıt yönlü etki eden hormonlar ve hormon antagonistleri kullanılır. Kortikosteroidler, birçok kanser türünün olduğu gibi diğer hastalıkların tedavisinde de kullanılan doğal hormonlar ya da hormon benzeri ilaçlardır. Kortikosteroidler kemoterapinin yan etkisi olan bulantı ve kusmayı önlemek için de sıklıkla kullanılır. Ayrıca, kemoterapiye karşı oluşabilecek ciddi alerjik reaksiyonları önlemek için de bu ilaçlar kemoterapi öncesi kullanılır. Prednizon, metilprednizolon ve deksametazon kortikosteroidlere örnektir (American Cancer Society, 2016; Şekil 1.7).

Şekil 1.7. Bazı hormon agonistleri ve antagonistlerinin kimyasal yapıları.

1.5.7. Diğer kemoterapi ilaçları

Bu ilaçlar diğer kategorideki ilaçlardan nispeten farklı bir yolla etkilerini gösterirler ve diğer kategorilerin hiçbirine tam olarak uymazlar. L-asparaginaz bu grupta yer almaktadır ve Escherichia coli veya Erwinia kültürlerinden elde edilen bir enzimdir. Blastik hücrelerde DNA ve RNA sentezini inhibe eder. Bu gruba diğer bir örnekte proteozom inhibitörü olan bortezomibdir (American Cancer Society, 2016; Şekil 1.8).

Şekil 1.8. L-asparaginaz ve bortezomibin kimyasal yapıları.

1.6. Antrasiklinler ve Etki Mekanizmaları

Antrasiklinler, kanser tedavisinde kullanılan ilaçlar içinde şimdiye kadar geliştirilen en etkili ilaçlardır (Weiss, 1992; Minotti et al.'dan, 2004). İlk antrasiklinler, 1960'ların başında pigment üreten *Streptomyces peucetius* bakterisinden izole edilmiş olan doksorubisin ve daunorubisindir. 2000'ler den itibaren, pirarubisin, aklarubisin, mitoksantron, doksorubisinin yarı sentetik türevi

olan epirubisin ve daunorubisinin analoğu olan idarubisin gibi yeni antrasiklinler bulunmuştur (Minotti et al., 2004).

Yaygın klinik kullanımına rağmen, antrasiklinlerin kanser hücreleri üzerindeki etki mekanizması hala tartışma konusudur (Minotti et al., 2004). Antrasiklinlerin etki mekanizmaları şu şekilde özetlenebilir;

- 1. DNA enterkalasyonu, makromoleküllerin sentezini inhibe eder;
- 2. Serbest radikaller oluşturarak DNA hasarına ya da lipid peroksidasyonuna neden olur;
- 3. DNA'ya bağlanır ve alkilasyona neden olur;
- 4. DNA çapraz bağlanması yaparak replikasyon ve transkripsiyonu durdurur;
- 5. DNA'nın açılmasını ya da DNA zincirlerinin ayrılmasını ve helikaz aktivitesini engeller;
- 6. Direk olarak membrana etkisi vardır;
- 7. Topoizomeraz II'yi inhibe ederek DNA hasarını başlatır;
- 8. Topoizomeraz II inhibisyonuna cevaben apoptozu başlatır (Gewirtz, 1999; Minotti et al.'dan, 2004).

Dilate kardiyomiyopati ve konjestif kalp yetmezliği kümülatif antrasiklin dozajına bağlı olarak tedavinin tamamlanmasından itibaren 1 yıl içinde ortaya çıkar, ancak çok sonra ortaya çıkan kardiyak disfonksiyon da gösterilmiştir (Steinherz et al., 1991; Minotti et al.'dan, 2004). Antrasikline bağlı kardiyomiyopati hastalarının endomiyokard biyopsi sonuçları, miyofibrillerin yok olduğunu, sarkoplazmik retikulumun genişlediğini, sitoplazmik vakuolizasyon varlığını, mitokondrilerde şişme ve lizozom sayısında artma olduğunu göstermiştir (Minotti et al., 2004).

Halihazırda onaylanmış olan antrasiklinlerin etkinliğini ve kardiyak güvenliğini arttırmak için iki strateji üzerinde çalışılmaktadır. Bunlar tümör hedefli formülasyonların ve yeni analogların geliştirilmesidir (Minotti et al., 2004).

1.6.1. Doksorubisin

Antrasiklin grubunun bir üyesi olan doksorubisin, 1967 yılında, Farmitalia Araştırma Laboratuvarlarında *Streptomyces peucetius* bakterisinin mutant bir

suşundan izole edilmiştir (Arcamone et al., 1967; Bonadonna et al.'dan; 1969). Doksorubisin ile daunorubisinin kimyasal yapıları arasındaki tek fark asetil radikali üzerindeki bir hidrojen atomunun, doksorubisinde hidroksil grubuyla yer değiştirmiş olmasıdır (Bonadonna et al.; 1969; Şekil 1.9).

Şekil 1.9. Doksorubisin ve daunorubisinin kimyasal yapıları.

Yaygın kullanılan bir anti-kanser ilaç olan doksorubisin, lenfoma, ürogenital, tiroid, meme ve mide kanserleri, yumuşak doku sarkomaları, çocukluk dönemi solid tümörler gibi çok çeşitli kanser tiplerinin kemoterapisinde sıklıkla kullanılmaktadır (Minotti et al., 2004; Goodman et al., 2005).

Doksorubisin için mide bulantısı, kusma, ateş gibi (Bonadonna et al., 1970; Carvalho et al.'dan, 2013) birçok yan etki dışında, önemli bir oranda kariyovasküler yan etkiler de (hipotansiyon, tasikardi, aritmiler ve sonucta konjestif kalp yetmezliği) tanımlanmıştır (Singal and Iliskovic, 1998; Carvalho et al.'dan, 2013). Hayati tehlike arz eden kardiyomiyopatiye yol açabilecek doksorubisinin kardiyak yan etkilerini açıklayabilmek için birçok hipotez ortaya konmuştur. Bunlardan en çok çalışılanı doksorubisin molekülünün mitokondriyal kompleks I tarafından daha reaktif olan semikinona aktivasyonudur. Buda oksidatif stresin artmasına neden olmaktadır (Carvalho et al., 2013). Doksorubisinin yol açtığı kardiyotoksisitenin potansiyel mekanizmasını anlayabilmek ve bu yan etkileri önleyebilmek için doksorubisinin etki mekanizmasını bilmek önemlidir.

1.6.2. Doksorubisinin etkileri

Doksorubisinin etki mekanizması komplike ve hala tam olarak aydınlatılamamış olsa da, en yaygın kanı DNA'nın arasına girerek (DNA enterkalasyonu), genomik DNA'nın replikasyon ve transkripsiyonunu engelleyip kanser hücrelerinin ölümüne yol açtığı şeklindedir (Tewey et al., 1984). Araya girme reaksiyonu düzlemsel aromatik ya da heteroaromatik halka sistemleri içeren küçük moleküllerin, komşu DNA baz çiftlerinin arasına girmesi sürecidir. Bu nedenle, araya girme reaksiyonu komşu baz çiftlerin birbirlerinden ayrılmalarına ve DNA çift sarmalının kısmı açılmasına, böylelikle şeker-fosfat yapısının dönme açısı ve bükülmelerinde değişikliğe yol açar (Airoldi et al., 2014).

Doksorubisinin DNA etkileşimi, enterkalasyon yoluyla olur ve buda makromolekül biyosentezini inhibe eder. DNA enterkalasyonu, topoizomeraz II enziminin ilerlemesini engelleyerek, transkripsiyon için DNA süper sarmalının gevşemesine neden olur. Doksorubisin, replikasyon için DNA zincirini kırdıktan sonra topoizomeraz II kompleksini sabitler, DNA çift sarmalının yeniden bir araya gelmesini engelleyerek replikasyon prosesini durdurur (Fornari et al., 1994; Momparler et al., 1976). Doksorubisinin en etkili tedavi mekanizması, diğer antrasiklinlerde olduğu gibi DNA enterkalasyonu sonucu topoizomeraz II üzerindeki etkisi olsa da; serbest radikaller oluşturması, DNA katım bileşikleri (DNA adducts) ve formaldehit bağımlı sarmallar arası çapraz bağ oluşturması diğer etki mekanizmaları arasında sayılabilir (Saffi et al., 2010).

Antrasiklinlerin, alternatif pürin-pirimidin sekanslarına daha güçlü bağlandığı daha önceki çalışmalarda gösterilmiştir (Chaires et al., 1983; Chen et al., 1985) ve AT baz çiftine göre, GC baz çifti bağlanmada daha tercih edilir olduğu bulunmuştur (Chaires et al., 1983). Detaylı yapı bilgileri araya girme reaksiyonunun antrakinon zincirinin iki komşu baz ciftinin arasına sıkıştırılmasıyla meydana geldiğini göstermektedir. Doksorubisin ve genetik materyal arasındaki etkileşim hakkında çok sayıda yayın olmasına rağmen, bu konudaki detaylar hala net değildir. Bu çalışmaların çoğunda doksorubisinin GC baz çifti ile etkileşimi tercih ettiği, AT baz çifti ile az ya da hiç etkileşim olmadığı gösterilmiştir. Airoldi ve arkadaşlarının (Airoldi et al., 2014) yaptığı çalışmada, doksorubisinin GC ve AT bölgelerine karşı ayırt edilemeyen bir afinitesi olduğu, ancak iki durumdaki etkileşimin birbirinden bir şekilde farklı olduğu gösterilmistir. Bu çalışmada yapılan moleküler mekanik hesaplamalara göre, doksorubisinin enterkalasyon kompleksi ile d(GCGCGCGCGC)₂ arasındaki direk hidrojen bağı (H bağı) uzunluğu, d(ATATATATAT)₂ ile arasındaki direk H bağı uzunluğundan daha fazla olduğu bulunmustur. Böyle bir sonuç tek basına değerlendirildiğinde, ilacın araya girme reaksiyonunda GC dekanükleotidine AT dekanükleotidinden daha yüksek afiniteye sahip olduğu söylenebilir. Bu sonuç antrasiklinlerin AT baz çiftine oranla GC baz çiftine bağlanmayı tercih ettiklerini söyleyen literatürle uyumludur (Chaires et al., 1983).

Bu çalışmada doksorubisinin DNA ile etkileşiminin gözlemlenebilmesi ve olası yan etkilerin azaltılabilmesi için oluşturulabilecek yeni formülasyonlara fikir vermesi için, doksorubisin ile DNA ve RNA nükleobazlarının etkileşimi moleküler modelleme yöntemleri ile incelendi.

1.7. Glikopeptidden Türetilmiş Anti-tümör Antibiyotikler ve Etki Mekanizmaları

Glikopeptidden türetilmiş anti-tümör antibiyotikler bakır şelatlar olarak *Streptomyces* türü bakterilerin kültürlerinden izole edilirler. Aktivitesini metal iyon kofaktörü varlığında kromozomal DNA'ya verdiği hasarla gösterir (Andrushko V. and Andrushko N., 2013).

Bleomisinler, talisomisinler, phleomisin ve zorbamisin glikopeptidden türetilmiş anti-tümör antibiyotiklerden bleomisin ailesinin üyeleridir (Rudolf et al., 2015). Bleomisinler, lenfomalar, baş ve boyun kanserleri ve germ hücreli tümörlere karşı etkili anti-tümör aktivitesi olan glikopeptid antibiyotiklerdir (Chen and Stubbe, 2005).

Bleomisin ailesinin üyeleri aynı çekirdek yapıyı paylaşırken, şeker grupları ve pozitif yüklü kuyruk kısımlarındaki farklılıklarla birbirlerinden ayrılırlar (Chen and Stubbe, 2005). Bleomisinler, talisomisinler, phleomisin ve zorbamisin yapısal ve fonksiyonel olarak benzer glikopeptidlerdir (Rudolf et al., 2015). Bleomisinler, talisomisinler, phleomisin aynı disakkarit yapıya sahipken, zorbamisinin kendine özgü disakkarit grubu vardır. Talisomisinlerin ise bağlayıcı bölgesinde ek bir şeker grubu vardır. Ancak, metal bağlanma domainleri ailenin tüm üyelerinde tam olarak korunmuştur (Coughlin et al., 2014).

Bleomisin ailesi glikopeptid antibiyotikler, sekans spesifik, metal bağımlı bir şekilde DNA çift sarmalının ve RNA'nın bazı üçüncül yapılarının oksidatif bölünmesine neden olur (Rudolf et al., 2015). Kemoterapi ilaçlarının çoğu etkilerini DNA'ya kovalent bir şekilde bağlanarak DNA deformasyonuna ya da replikasyonunu engelleyerek hücresel bir tepkiye ve sonuç olarak hücre ölümüne neden olarak gösterir. DNA'yı hedef alan kemoterapi ilaçları genel olarak minör oyuğa bağlananlar ve sarmalın arasına girenler olmak üzere 2'ye ayrılabilir. Bleomisin hem sarmalın arasına girerek hem de minör oyuğa bağlanarak kombine bir etki gösterir (Tse and Boger, 2004).

1.7.1. Bleomisin

Bleomisin, *Streptomyces verticillus* bakterisi tarafından üretilen, anti-tümör aktivitesi olan bir glikopeptid antibiyotiktir. İlk kez 1966 yılında Hamao Umezawa ve arkadaşları tarafından keşfedilmiş (Umezawa et al., 1966) ve bu tarihten itibaren bleomsinler, lenfomalar, baş ve boyun kanserleri ve germ hücreli tümörlere karşı kombinasyon kemoterapi protokollerinin önemli bir parçası olmuştur.

Bleomisinin yapısı başlıca 4 domainden oluşur (Şekil 1.10). Metalbağlanma domaini minör oyuğa bağlanır ve oksijen aktivasyonunu takiben DNA'dan hidrojen ayrılmasından sorumludur. Bithiazole kuyruk kısmi araya girme reaksiyonu gösterir ve C-terminal sülfonyum altbirimi majör oyuk ile etkileşim içindedir. Bu iki domain DNA bağlanmasından sorumludur. Bağlayıcı bölge DNA ayrılmasında önemli bir role sahiptir (Stubbe et al., 1996). Karbonhidrat domaini ise bleomisinin hücreyi tanıması ve hücreye alınımı ve metal iyon koordinasyonundan sorumlu olduğu düşünülmektedir (Galm et al., 2005). Phleomisin, pleomisin, bleomisin A2 ve bleomisin B2 gibi doğal bleomisinlerin birçoğu bithiazole kuyruk kısmında farklılık gösterir (Tanaka, 1977). Klinik olarak uygulanan formu, Bleonoxane, pozitif yüklü kuyruk kısmı farklı olan iki farklı bleomisin formundan (yaklaşık %60 bleomisin A₂ ve %30 bleomisin B₂) ve diğer minör bileşenlerden oluşur (Chen and Stubbe, 2005).

Şekil 1.10. Bleomisinin kimyasal yapısı (Liu et al., 2010; Chow et al., 2008).

1.7.2. Bleomisinin etkileri

Kanser ilaçlarının çoğu etkilerini DNA'ya kovalent bir şekilde bağlanarak ve böylece DNA deformasyonuna ya da replikasyonu engelleyerek gösterir. Antitümör antibiyotikler birçok aromatik halka içerir ve DNA'nın minör oyuğuna yüksek sekans seçimli olarak, kovalent bir şekilde bağlanarak etkilerini ortaya koyarlar (Tewey et al., 1984; Airoldi et al., 2014).

Bleomisinin etki mekanizması tam olarak bilinmemekle birlikte, mevcut kanıtlar başlıca etki şeklinin DNA sentezinin inhibisyonu olduğunu ve RNA ve protein sentezi inhibisyonunun da olabileceğini göstermiştir. Bleomisinlerin sitotoksik ve mutajenik etkilerini spesifik kofaktörler (bir geçiş metali, oksijen ve tek elektron indirgeyici) sayesinde tek-sarmal ve çift-sarmal DNA hasarı yapabilme özellikleri ile gösterebildikleri düşünülmektedir (Chen and Stubbe, 2005).

Bleomisin biyolojik etkilerini, oksijen varlığında, sekans seçici, metal bağımlı DNA ve RNA oksidatif bölünmesine neden olarak gösterdiği düşünülür (Galm et al., 2005). Bleomisinlerin metalleri şelate edici özelliği sayesinde oksidatif bir süreçle DNA kopmasına neden olurlar. DNA-bleomisin-Fe²⁺ kompleksi DNA-bleomisin-Fe³⁺'e dönüşünce (aktif bleomisin) serbestleşen elektronlar süperoksit ve hidroksit radikalleri oluştururlar. Bleomisinlerin primidin kısımlarındaki N3 ve N4-amino grupları 5' guanine-primidin kesim bölgesindeki N3 ve N2-amino gruplarına bağlanarak DNA kesiminin sekans spesifitesini tanımladığı düşünülmektedir. Bleomisinin primidin kısımı bithiazole kuyruk ile beraber DNA bağlanmasından sorumludur (Hecht, 2000).

Şimdiye kadar bleomisin ile ilgili yapılan spektroskopik çalışmalar ve bleomisinin kristal yapısı için oluşturulan modeller çoğunlukla metal bağlanma kısmının fonksiyonunu öngörmek için kullanıldı. Çalışılan model sistemlerin kristal yapıları oluşturulurken bithiazole kuyruk ve karbonhidrat domaini çıkarılıp (Kumar et al., 2006), bakır (Dhar et al., 2004; Lehman, 2004), kobalt (Liu et al., 2010; Palwai and Eriksson, 2011; Goodwin et al., 2008) ve demir (Palwai and Eriksson, 2011) gibi metallerin bağlanma geometrileri incelendi. Ancak DNA bağlanmasında önemli rolü olduğu düşünülen bithiazole domaini ile ilgili yapılmış çok fazla çalışma yoktur. Bu çalışmada bleomisinin DNA ile etkileşiminin gözlemlenebilmesi için, bithiazole domaininin geometri optimizasyonları kuantum mekaniksel yöntemler kullanılarak yapıldı.

2. METODOLOJÍ

Doksorubisin ve bleomisinin DNA ve RNA nükelobazlarıyla etkileşiminin incelendiği metotlar bu bölümde açıklanacaktır.

2.1. Moleküler Modelleme

Moleküler modelleme, model oluşturma ve hesaplama yoluyla moleküllerin yapısını ve fonksiyonunu inceleyen bir bilim dalıdır. Hesaplamalar, ab initio ve yarı ampirik kuantum mekanik, ampirik (moleküler) mekanik, moleküler dinamik, Monte Carlo, serbest enerji ve çözünme yöntemleri, yapı/aktivite ilişkileri, kimyasal/biyokimyasal bilgi ve veri tabanları ve diğer birçok kullanılan prosedürü kapsar. Bu modeller kompleks hücresel ortamların son derece basitleştirilmiş versiyonunu temsil etmesine rağmen, kolay kontrol edilebilir nicel araçlara dayalı sistemik çalışmalar, diğer türlü gözlemlenmesi zor olan modelleri ayırt etmede ve kavramada yardımcı olabilirler (Schlick, 2010).

Hesapsal yaklaşımlarla ilgili sorular, biyolojik sistemlerin kendileri gibi ilginç ve karmaşıktır. Küçük bir biyopolimer alt biriminin denge yapısını anlamaktan, proteinler ve nükleik asitlerde H bağı oluşumu enerjilerine, protein katlanması kinetiğinden, supramoleküler agregatların karmaşık işleyeşine kadar farklı sorulara cevap ararlar. Modelleme; yapısal, dinamik, termodinamik modelleri sistematik olarak keşfetmek, hipotezler geliştirmek ve test etmek, deneysel verileri genişletmek ve yorumlamak, moleküler yapı, esneklik ve fonksiyonu yöneten temel yasaları daha iyi anlamak için bir yol göstericidir (Schlick, 2010).

Moleküler modelleme yöntemleri günümüzde rutin olarak inorganik, biyolojik ve polimerik sistemlerin yapısını, dinamiklerini, yüzey özelliklerini ve termodinamiklerini araştırmak için kullanılmaktadır. Moleküler modelleme kullanılarak yapılan biyolojik aktivite araştırmaları, protein katlanması, enzim katalizi, protein stabilitesi, biyomoleküler fonksiyon ile ilişkili konformasyonel değişiklikler ve proteinlerin, DNA ve membran komplekslerinin moleküler tanımlanması olarak tanımlanabilir (Leach, 2001).

Hesaplama yöntemleri, karşılaştırmalı veya homoloji modellemesi, fonksiyonel bölge konumu, proteinlerin ligand bağlanma karakterizasyonu, protein bağlanma bölgelerine küçük moleküllerin yerleştirilmesi (docking), protein-protein yerleştirme (docking) ve moleküler dinamik simülasyonları gibi alanlarda giderek daha önemli hale gelmiştir (Yunta, 2012).

2.2. Kuantum Mekanik

Genel olarak daha geçerli olan ve bilgisayarda uygulanabilir (bu sayede zahmetli elle hesaplamayı ortadan kaldıran) kuantum mekanik tekniklerinin geliştirilmesi, kuantum mekaniğin gerçek moleküler sistemler üzerindeki hesaplamalarda kullanılabilir olduğunu göstermektedir. Kuantum mekanik, hesaplamada açıkça elektronları tasvir etmektedir ve bu nedenle, elektronik dağılıma bağlı olan özellikleri ve özellikle bağ kırılımı ve bağ oluşumu içeren kimyasal reaksiyonları incelemek mümkündür (Leach, 2001).

Kuantum mekaniği ile ilgili her türlü tartışmanın başlangıç noktası Schrödinger eşitliğidir (Leach, 2001). Kuantum mekanik yöntemler, Schrödinger eşitliğinin çözümüne dayanmaktadır. Bu temel yaklaşım, 3 boyutlu yapılar, moleküler enerjiler ve birçok bununla ilişkili özellikler; atomların ve moleküllerin elektronik ve nükleer yapıları gibi temel fizik prensiplerine dayanarak hesaplanabileceği için ilgi çekicidir (Schlick, 2010). Kuantum mekaniksel yöntemlerle, bir molekülün enerjisi, elektron ve çekirdek arasındaki etkileşimleri hesaplayan Schrödinger eşitliği ile ifade edilir.

Schrödinger dalga denklemi moleküler sistem içindeki elektron ve çekirdeklerin hareketlerini tanımlar (Schlick, 2010). Moleküller üzerinde kuantum mekanik hesaplamalar için ab initio ve yarı ampirik (semiempirical) olmak üzere iki farklı yaklaşım vardır. Ab initio yöntemler Schrödinger denklemini parametrelerde hiçbir ampirik düzenleme yapmadan çözer. Yarı ampirik yöntemler ise parametreleri deneysel gerçekliklerle uyumlu olması için model sistemlere göre ayarlar. Bazı integral terimleri yok sayarak, hesaplamayı yalınlaştırırken, deneysel verilerle uyum içinde hesaplamalar yapmak için parametreler ampirik düzenlemelere dayandırılır. Her iki yöntem de "model" kimyayı açıklamaya çalışır (Kollman, 1987).

2.2.1. Yoğunluk fonksiyoneli teorisi (density functional theory)

Yoğunluk fonksiyoneli teorisi (density functional theory, DFT) ab initio metodlarının değişik bir biçimi olarak formüle edilmiştir. Değişim, korelasyon fonksiyonelleri elektron korelasyon enerjisini temsil etmek için kullanılır. DFT yöntemleri, elektronik sistemin temel tanımlayıcısı olarak, elektron yoğunluğu işlevinin kullanımına dayanmaktadır. DFT'de elektronik dalga fonksiyonu tek bir temel hal dalga fonksiyonuyla, elektron yoğunluğu orbital yoğunluklarının karelerinin toplamıyla temsil edilir (Schlick, 2010).

En yaygın ab initio hesabı olan Hartree-Fock (HF) yöntemi ile kıyaslandığında, DFT, N elektronlu bir sistemde bireysel olarak elektronların hareketleriyle ilgilenmez. HF teorisinde multi elektron dalga fonksiyonları N tane tek-elektron dalga fonksiyonlarından oluşmuş (N, bir moleküldeki elektron sayısını ifade eder) Slater determinantı olarak ifade edilir. DFT'de de tek-elektron fonksiyonları dikkate alınır, ancak HF teorisi tüm N-elektron dalga fonksiyonlarını hesaplarken, DFT sadece toplam elektronik enerji ve tüm elektronik yoğunluk dağılımını hesaplamayı denemektedir. DFT'nin altında yatan temel fikir, toplam elektronik enerji ve toplam elektronik yoğunluk arasında bir ilişki olduğudur (Leach, 2001).

DFT metotları genel olarak doğruluk ve hesaplama gereksinimleri açısından özellikle büyük sistemler için iyi bir kombinasyon sunar. DFT metotları geleneksel ab initio metotlarıyla kıyaslandığında hesapsal olarak daha verimlidir (Schlick, 2010). Biyomoleküller gibi büyük moleküller, katlanmaları ve aktiviteleri için metallere ihtiyaç duyarlar. Geleneksel ab initio metotları, özellikle geçiş metali içeren sistemlerde iyi sonuçlar vermezken, DFT metotları bu tarz sistemlerin modellenmesinde sıklıkla kullanılmaktadır.

2.2.2. B3LYP yöntemi (Becke'nin üç parametreli değişim fonksiyonu (B3) ile Lee-Yang-Parr korelasyon fonksiyoneli)

DFT yöntemi 1970'lerden beri katı hal fiziği hesaplamalarında çok popülerdir. Ancak 1990'lardan itibaren DFT'de kullanılan yaklaşımlar, daha iyi değişim ve korelasyon etkileşim modelleri için işlendiğide, kuantum kimya hesaplamalarında yeteri kadar kesin sonuçlar vermediği düşünülmeye başlanmıştır. Hesaplama yükü, HF ve türevi kompleks birçok elektron dalga fonksiyonuna dayanan geleneksel yöntemlerle kıyaslandığında oldukça düşüktür (Becke, 1993).

Hibrid fonksiyoneller, DFT'de değişim-korelasyon enerji fonksiyonellerinde, HF teorisinde, diğer kaynaklardan (ab initio ya da deneysel) bir miktar değişim içeren bir grup yaklaşımdır. Bu hibrid fonksiyonlerden en yaygın olarak kullanılanı Becke'nin üç parametreli değişim fonksiyonu ile Lee-Yang-Parr korelasyon fonksiyoneli (B3LYP) dir (Becke, 1993). Ağırlıklı olarak HF değişim ile DFT değişim ve korelasyon fonksiyonellerinin karışımını temsil eden bu HF/DFT hibrid fonksiyonellerinin daha kesin sonuçlar verdiği bulunmuştur (Hertwig and Koch, 1997). Bu hibrid fonksiyonelde değişim enerjisi, Becke'nin değişim fonksiyoneliyle HF teorisinin gerçek enerjisinin birleşimidir.

2.2.3. ωB97XD yöntemi

 ω B97XD, ampirik dağılım içeren uzun mesafeli (long range) düzeltilmiş fonsiyoneldir. Değişim fonksiyonellerinin Coulomb olmayan kısımları çok hızlı bir şekilde tükendiği ve uzun mesafelerde yanlış sonuçlar vererek, yüksek orbitallere elektron uyarımlarının modellenmesi için elverişsiz olduğundan, ω B97XD yöntemi ortaya çıkmıştır (Chai and Head-Gordon, 2008).

 ω B97XD, parametrik bir fonksiyonel olduğu için, iyi bilinen ampirik dağılımla düzeltilmiş DFT fonksiyonelleri (B97-D, B3LYP-D, ve BLYP-D) ve uzun mesafeli düzeltilmiş hibrid fonksiyoneller ile (ω B97X ve ω B97), ileri atomizasyon enerjileri, reaksiyon enerjileri, kovalent olmayan etkileşim enerjileri, denge geometrileri, uyarılmış hal yük transferi açısından kıyaslanmıştır. Sonuçlar, genel performans açısından bu DFT fonksiyonelinin daha iyi sonuçlar verdiğini göstermiştir. ω B97XD, termokimya, kinetik ve kovalent olmayan etkileşimlerde tatmin edici bir hassasiyette sonuçlar vermiştir. Yapılan testler, kovalent olmayan sistemler için ω B97XD'nin diğer ampirik dağılımla düzeltilmiş yoğunluk fonksiyonellerine kıyasla az bir iyileşme gösterirken, kovalent sistemler ve kinetik çalışmalarda belirgin olarak daha iyi performans gösterdiği görülmüştür (Chai and Head-Gordon, 2008).

DFT ile optimize edilmiş geometrilerin doğruluğunun validasyonu incelendiğinde, tüm yapı ve seçilen uzaklıklar hesaplamaya dahil edilerek, en iyi performansın diğerlerine göre küçük istatistiksel hatalar ile ω B97XD metoduyla elde edildiği bulunmuştur (Minenkov et al., 2012). Bu nedenle, bu çalışmada

B3LYP yöntemi ile yapılan optimizasyon analizleri sonuçlarına göre düşük enerjili konformerler birde ωB97XD yöntemiyle optimize edilmiştir.

2.3. Baz Seti

Moleküler dalga fonksiyonları için baz seti, bilgisayar programlarında kayıtlı katsayı ve üstlerin setleriyle temsil edilmektedir. Bağlantılı hesaplanmış integraller, daha sonra atom çiftlerinin dalga fonksiyonları arasındaki etkileşime (köşegen dışı elementler), ve her atomun kendisiyle olan etkileşimine (köşegen elementler) dayanarak Hamilton matrisi formüle etmek için kullanılır. Moleküler orbitallerin ön tahmini elde edilir ve minimum hal elektronik enerji için Schrödinger denklemi açık bir şekilde çözülür (Schlick, 2010).

Kullanılan moleküler orbitallerin kalitesi ve dolayısıyla hesaplanan moleküler özelliklerin doğruluğu, atomik orbitallerin sayısı ve baz setinin kalitesine bağlıdır. Elektronik enerji genellikle elektronların hareketleri arasındaki korelasyonu göz ardı eder, fakat bazı korelasyon etkilerinin dahil olması ab initio sonuçlarının kalitesini arttırabilir (Schlick, 2010).

Gaussian 09 gibi tipik bir hesapsal kimya paket programı veritabanında birçok baz seti bulunmaktadır. Diğer yandan, bazı baz setleri belirli uygulamalar için iyiyken, diğerleri yeterli olmayabilir ya da hesapsal olarak maliyetli olabilir. Baz seti büyüdükçe, hesaplama maliyeti artar ve bu orantı doğrusal değildir. Bu nedenle yapılacak hesaplama için baz seti seçimi önemlidir (Hinchliffe, 2008).

Bu çalışmada 6-31G** baz seti kullanılmıştır. Nobel ödüllü John Pople tarafından geliştirilmiş ve Gaussian grubu programlar tarafından popüler olmuştur. Pople'nin bölünmüş valans (split-valance) çift zeta baz setine 6-31G adı verilir. Çekirdek orbital 6 Gaussiandan oluşan sınırlı Gaussian tipi orbitalerlerdir ve valans iki orbitalle tanımlanır; bunlar, 3 Gaussiandan ve bir tek Gaussiandan oluşan bir sınırlı Gaussian tipi orbitaldir. Polarize baz fonksiyonu kullanımı yıldız (*) ile ifade edilir. Dolayısıyla, 6-31G* (ya da 6-31G(d)), ağır atomlarda (hidrojen olmayan atomlar) polarize fonksiyonlu 6-31G baz seti, 6-31G** (ya da 6-31G(d,p)), 6-31G* baz setine ilave olarak hidrojen atomunda polarize fonksiyon anlamına gelir. 6-31G** baz seti özellikle hidrojenin bağlantı atomu olduğu durumlarda kullanışlıdır (Leach, 2001).

2.4. Moleküler Mekanik

Alternatif bir yaklaşım olan moleküler mekanik, kuvvet alanı ya da potansiyel enerji metodu olarak da ifade edilir. Çekirdeklerle ilgili olarak potansiyel enerjiye Born-Oppenheimer yaklaşımı, moleküler mekanikte hedef fonksiyon olarak hayal edilebilir. Elektronlar bu potansiyelin örtülü değişkenleri olarak kabul edilebilir. Ancak, kuantum mekaniğin aksine, bu potansiyel fonksiyonun ampirik olarak değerlendirilmesi gerekmektedir (Schlick, 2010).

Moleküler mekaniği destekleyen prensip, moleküler geometrileri ve enerjileri tanımlamak için kümülatif fiziksel kuvvetlerin kullanılıyor olmasıdır. Sonuçta elde edilen uzamsal konformasyon, toplam iç enerjiyi en aza indirmek için geometrinin doğal bir şekilde düzenlemesidir. Molekül, çekirdek çevresinde toplanan (atomlar) ve yaylar ile bağlanan (bağlar) kitleler olarak kabul edilir ve molekül içi ve moleküller arası kuvvetlere yanıt olarak, molekül bu bağlar etrafında uzanır, kıvrılır ve döner. Moleküler sistemin mekanik yoğunluk olarak bu basit tanımı, genellikle "klasik" sistem ile ilişkilidir. Bu klasik mekanik tanımlaması, bağ-kırılımı dışında, moleküler yapılar ve prosesleri tanımlamak için genellikle iyi çalışır (Schlick, 2010).

Moleküler mekanik metodlar, klasik fizik kanunlarının basit formülasyonlarına dayandığından ve kuvvet alanlarını deneysel verilerle birleştirilmesi sonucu hesapsal olarak hızlıdır. Bu nedenle de büyük moleküllerin hesaplanmasında tercih edilen bir yöntemdir. Ancak, elektronik etkileri hesaba katmadığı için mekanik bağ yapmayan etkileşimleri belirleyemez ve bu nedenle molleküllerin reaktivitesi ve kimyasal reaksiyon çalışmaları için uygun değildir.

2.5. Geometri Optimizasyonu

Geometri optimizasyonu, minimum enerjili stabil moleküler konfigürasyonu bulmak için yapılır. N sayıda atoma sahip, doğrusal olmayan bir molekül için p=3N-6 titreşim serbestlik derecesi vardır ve p bağımsız koordinatları (q_1 , q_2 ,..., q_p) tarafından tanımlanmalıdır ve geometri optimizasyonunda ilk bakışta her biri farklı olmalıdır. Bu koordinatlar genellikle modelleme paket programlarında Z-matris kullanılarak tanımlanır ve bağ uzunlukları, bağ açıları ve dihedral açılar gibi valans tanımlayıcıları açısından bir moleküler geometri oluşturmaya imkan verir (Hinchliffe, 2008). Grafiksel kullanıcı arayüzü kullanılarak oluşturulan molekül geometrileri, kararlı olmayan bir yapıdadır. Geometri optimizasyonu, dengede olmayan bu yapının geomerik parametrelerini (bağ uzunlukları, bağ açıları ve dihedral açılar) değiştirerek, sistemin enerjisini minimum hale getirir, böylece molekülün kararlı yapısını bulmasını sağlar. Geometri optimizasyonu esnasında, molekülün konformasyonunun değişmesi ve oluşan geometriye karşılık gelen molekülün toplam enerjisi, o molekülün potansiyel enerji yüzeyini (Potential Energy Surface, PES) oluşturur.

Genel olarak, geometri optimizasyonunda moleküler potansiyel enerji fonksiyonları bağlamında birçok olası yanlışlıklar vardır. Bu nedenle, minimizasyon sonucunda mümkün olduğunca güvenilir sonuçlar elde edebilmek için aşağıdaki önlemlerin alınması gerekir.

- 1. *Birden fazla başlangıç noktası kullanın.* Metodun belli bir başlangıç noktasından minimuma yaklaşamaması ya da yakınlardaki minimum olmayan sabit bir noktaya yaklaşması olasılığı her zaman vardır.
- 2. *Farklı algoritmalardan sonuçları karşılaştırın.* Çoğu zaman, bir metot istediğin çözümü elde etmekte başarısız olabilir ya da çok yavaş minimuma yaklaşır. Aynı potansiyel enerji yüzeyinde başka bir referans hesaplama sonuçları değerlendirmede yardımcı olur.
- 3. *Mümkün oldukça farklı kuvvet alanlarından sonuçları karşılaştırın.* Herhangi bir paket programı tarafından bulunan lokal minimum, sadece kuvvet alanının kendisi kadar iyidir.
- Mümkün olduğunda solüsyon özdeğerlerini (eigenvalues) kontrol edin. Hesaplanan minimumun anlamı belirsizse, buna karşılık gelen özdeğer sorunu bulmada yardımcı olabilir.
- 5. Bağlı olmayan eşik ya da uygun olmayan fiziksel modellerin neden olduğu sahte minimuma dikkat edin. Sahte minimum değerlerin farkına varmanın bir yolu aynı yapı için hesaplanan diğer minimumlara göre (farklı başlangıç noktalarından ya da minimumlardan elde edilen) büyük enerji farklılıklarına dikkat etmektir (Schlick, 2010).

2.6. Hesapsal Kimya Programları

Bu çalışmada yapılan hesaplamalar için kullanılan temel hesapsal kimya programları bu bölümde açıklanmıştır.

2.6.1. Spartan 08

Spartan 08 moleküler modelleme ve hesapsal kimya çalışmalarında kullanılan bir bilgisayar paket programıdır. Spartan 08, organik, biyoorganik, inorganik, ve organometalik kimyayı, moleküler mekanik ve kuantum kimyasal hesaplamalarla keşfetmek, bu hesaplamaların sonuçlarını bir dizi grafiksel modele taşımak için kullanılan bir araçtır (Spartan, 2008).

Bu program, kullanım kolaylığı sayesinde moleküllerin özelliklerinin belirlenmesinde öncelikli olarak kullanılır ancak, kuantum mekanik hesaplamalarda göreceli olarak daha yavaştır. Bu nedenle, bu çalışmada doksorubisin ve bleomisinin konformasyon analizini yapmak için Spartan 08 programı kullanıldı. Moleküler mekanik yöntemi, moleküler mekanik kuvvet alanı (molecular mechanics force field, MMFF) kullanılarak ilaçların konformer analizi yapıldı.

2.6.2. Gaussian 09

Gaussian 09 moleküler modelleme ve hesapsal kimya çalışmalarında kullanılan diğer bir bilgisayar paket programıdır. Kuantum mekaniğin temel yasalarından başlayarak, Gaussian 09 kimyasal olarak geniş bir yelpazede, enerjileri, moleküler yapıları, titreşim frekanslarını ve moleküllerin ve reaksiyonların moleküler özelliklerini öngörür. Gaussian 09 modelleri hem stabil hem de deneysel olarak gözlenmesi zor veya imkansız olan (kısa ömürlü ara yapılar ve geçiş yapıları gibi) bileşiklere uygulanabilir (Frisch et al., 2009).

Gaussian 09 programıyla, orta halli bir bilgisayar donanımıyla bile, daha büyük sistemler ve daha karmaşık problemler modellenebilir. Bu çalışmada, doksorubisin ve bleomisin konformerleri ve adenin, sitozin guanin, hipoksantin, timin ve urasil nükleobazları ve tautomerleri için yapılan geometri optimizasyonları, en düşük enerjili yapılar için optimizasyon ve frekans hesaplamaları Gaussian 09 programı ile yoğunluk fonksiyoneli teorisi (density functional theory, DFT) kullanılarak yapıldı. En kararlı doksorubisin konformeri ve nükleobaz tautomerleri arasındaki etkileşimi gözlemlemek için, yapılar olası etkileşim yerlerine yerleştirilerek, optimizasyon analizleri hem gaz fazında hem de çözücü su etkisinde yine Gaussian 09 programı kullanılarak yapıldı.

2.6.3. Discovery Studio 3.5 Client

Discovery Studio yaşam bilimlerine moleküler dizaynlar için çözümler sunan hesapsal kimyacılar ve hasapsal biyologlar için tasarlanmış bir bilgisayar paket programıdır. Protein modelleme ve ilaç dizaynı araştırmaları için birleştirilmiş, kullanımı kolay, güçlü bir grafik arayüz programıdır. Bu çalışmada, yapıların optimizasyondan önceki ve sonraki halleri Discovery Studio 3.5 Client programı kullanılarak çizildi.

3. BULGULAR VE TARTIŞMA

Bu bölümde, doksorubisin ve bleomisin için yapılan konformer analizleri, geometri optimizasyonları ve doksorubisin ile nüklobaz tautomerleri arasındaki etkileşimi gözlemleyebilmek için yapılan optimizasyon analizlerinin sonuçları verilmiştir.

3.1. Doksorubisin

Doksorubisinin etki mekanizmasından dolayı, normal dokuların yüksek konsantrasyonlarda doksorubisine maruz kalması sağlıklı hücrelere ciddi hasarlar vermektedir. Klinik terapide en ciddi toksisite, hayati tehlike oluşturan, kalp yetersizliğine neden olan kardiyomiyopatidir (Singal and Iliskovic, 1998). Doksorubisinin hedeflenmeyen hücrelere vereceği zararların ortadan kaldırılabilmesi için, etki mekanizmasını anlamak önemlidir. Bu nedenle, DNA ve RNA nükleobazları ile doksorubisin etkileşimi moleküler modelleme yöntemi ile incelenmiştir.

3.1.1. Gaz fazında doksorubisin konformerleri ve nükleobaz tautomerleri için optimizasyon analizi sonuçları

3.1.1.1. <u>Gaz fazında doksorubisin konformerleri için optimizasyon</u> <u>analizi sonuçları</u>

Doksorubisin ile nükleobaz etkileşimlerini incelemek, doksorubisinin hangi nükleobazlarla ne şekilde etkileşime girdiğini gösterebilmek amacıyla, öncelikle doksorubisinin 3 boyutlu yapısı <u>http://www.drugbank.ca</u> sitesinden alınarak, konformasyon analizi yapılmak üzere Spartan 08 programı ile çalıştırıldı (Şekil 3.1).

Şekil 3.1. Doksorubisinin 3 boyutlu yapısı.

Doksorubisin için en uygun konformeri bulmak üzere Spartan 08 programı ile optimizasyon analizi yapıldı. Tamamlanan optimizasyon analizinden çıkan 422 adet konformer Ek 1'de gösterilmiştir. Bu konformerler için yapılması gereken optimizasyon analizi Gaussian 09 programı ile DFT yöntemi, B3LYP metodu, 6-31G** baz seti kullanılarak yapıldı. Bu konformerlerin içinde en kararlı yani en düşük enerjili yapı, DFT ile yapılan hesaplamada her bir konformerin enerji ve dipol moment değerlerine bakılarak Dox-383 numaralı konformer (Dox-1) olarak tanımlandı. En düşük enerjili yapılar Şekil 3.2'de, bu yapılar için yapılan optimizasyon ve frekans hesaplamaları Çizelge 3.1'de gösterilmiştir.

Şekil 3.2. B3LYP/6-31G** seviyesinde yapılan optimizasyon analizi sonuçlarına göre en düşük enerjili doksorubisin konformerleri.

Dox-7

Dox-8

Dox-9

Dox-10

Dox-11

Dox-12

Dox-13

Dox-14

Şekil 3.2. Şekil 3.2 devam ediyor.

Dox-16

Dox-19

Dox-20

Konformer No	Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-383	Dox-1	-1928,6032906	0,542847	-1928,0604436	7,59	0,00	0,00
Dox-326	Dox-2	-1928,6032401	0,542910	-1928,0603301	7,31	0,03	0,07
Dox-387	Dox-3	-1928,6032257	0,543816	-1928,0594097	5,20	0,04	0,65
Dox-388	Dox-4	-1928,6030707	0,543770	-1928,0593007	6,30	0,14	0,72
Dox-291	Dox-5	-1928,6022513	0,543728	-1928,0585233	4,34	0,65	1,21
Dox-338	Dox-6	-1928,6014765	0,543492	-1928,0579845	4,51	1,14	1,54
Dox-206	Dox-7	-1928,5982274	0,542113	-1928,0561144	6,29	3,18	2,72
Dox-114	Dox-8	-1928,5959713	0,542681	-1928,0532903	5,67	4,59	4,49
Dox-161	Dox-9	-1928,5952950	0,542120	-1928,0531750	7,15	5,02	4,56
Dox-030	Dox-10	-1928,5952083	0,542792	-1928,0524163	6,61	5,07	5,04
Dox-103	Dox-11	-1928,5950638	0,542721	-1928,0523428	6,99	5,16	5,08
Dox-249	Dox-12	-1928,5940059	0,542877	-1928,0511289	8,40	5,83	5,85
Dox-284	Dox-13	-1928,5937228	0,542968	-1928,0507548	5,79	6,00	6,08
Dox-213	Dox-14	-1928,5929091	0,542274	-1928,0506351	6,40	6,51	6,15
Dox-066	Dox-15	-1928,5928067	0,542300	-1928,0505067	7,36	6,58	6,24
Dox-069	Dox-16	-1928,5927162	0,542356	-1928,0503602	8,18	6,64	6,33
Dox-099	Dox-17	-1928,5939207	0,543776	-1928,0501447	5,27	5,88	6,46
Dox-282	Dox-18	-1928,5927575	0,542903	-1928,0498545	8,43	6,61	6,64
Dox-104	Dox-19	-1928,5934519	0,543698	-1928,0497539	7,08	6,17	6,71
Dox-368	Dox-20	-1928,5914647	0,542294	-1928,0491707	6,20	7,42	7,07

Çizelge 3.1. En düşük enerjili doksorubisin konformerlerinin B3LYP/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Dox-1, yaptığı hidrojen bağları sayesinde en düşük enerjiye sahip konformer olarak en kararlı yapıdadır. Enerji olarak Dox-1'e çok yakın olan Dox-2 konformerinde de aynı bölgelerdeki ve neredeyse aynı uzunluktaki hidrojen bağları bulunmasına rağmen, metoksi grubunun duruş yönünden dolayı Dox-1 daha kararlı bulunmuştur. Ayrıca optimizasyon analizi yapılan diğer konformerlere baktığımızda, bazı konformerlerin Dox-1'den daha fazla H bağı yaptığı halde sterik etkileşimlerden dolayı kararlılık sıralamasında daha alt sıralarda olduğu görülmüştür. Örneğin Dox-4, 4 tane H bağı yapmasına rağmen, sterik etkileşimler ve metoksi grubunun yönünden dolayı Dox-1'e göre daha az kararlıdır. Dox-19'a bakacak olursak 6 tane H bağı ve Dox-1 ile aynı yönde metoksi grubuna sahipken, yüksek sterik etkileşimlerden dolayı kararlılık sıralamasında sonlarda yer almaktadır.

DFT ile optimize edilmiş geometrilerin doğruluğunun validasyonunu inceleyen bir çalışmada (Minenkov et al., 2012), tüm yapı ve seçilen uzaklıklar hesaplamaya dahil edildiğinde, en iyi performansın diğerlerine göre küçük istatistiksel hatalar ile ω B97XD metoduyla elde edildiği bulunmuştur. Bu nedenle, daha önce B3LYP/6-31G** seviyesinde optimizasyon analizlerini gerçekleştirdiğimiz ve buna göre en düşük enerjili olan 20 doksorubisin konformerini bir kez de ω B97XD/6-31G** seviyesinde optimize ettik. Bu konformerlerin enerji ve dipol moment değerleri Çizelge 3.2'de gösterilmiştir. Çizelge 3.2'de de görüldüğü üzere en düşük enerjili (en kararlı) konformer Dox-383 nolu konformer (Dox-1) olarak tespit edilmiştir (Şekil 3.3).

Şekil 3.3. ωB97XD/6-31G** seviyesinde yapılan optimizasyon analizi sonuçlarına göre en düşük enerjili doksorubisin konformerleri.

Dox-7

Dox-8

Dox-9

Dox-10

Dox-11

Dox-12

Dox-13

Dox-14

Şekil 3.3. Şekil 3.3 devam ediyor.

Dox-15

Dox-16

Dox-17

Dox-18

Dox-19

Dox-20

Şekil 3.3. Şekil 3.3 devam ediyor.
seviyesinde yapılan optimizasyon analizlerinden elde edilen enerji ve dipol moment değerleri.							
Konformer No	Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-383	Dox-1	-1928,038733	0,552220	-1927,486513	7,90	0,00	0,01
Dox-326	Dox-2	-1928,038631	0,552108	-1927,486523	7,59	0,06	0,00
Dox-387	Dox-3	-1928,038617	0,552328	-1927,486289	5,81	0,07	0,15

-1927,485438

-1927,485315

-1927,483664

-1927,482260

-1927,476935

-1927,477460

-1927,477352

-1927,476589

-1927,477757

-1927,477063

-1927,476125

-1927,475874

-1927,476033

-1927,475213

-1927,474900

-1927,475012

-1927,470567

6,82

4,44

4,61

6,65

5,29

5,85

8,82

7,26

7,38

5,99

8,71

6,80

7,11

6,23

7,38

8,11

5,01

0,12

0,20

1,25

3,22

5,40

5,59

5,62

5,77

5,79

5,95

6,58

7,07

7,12

7,52

7,64

7,66

10,31

0,68

0,76

1,79

2,67

6,02

5,69

5,75

6,23 5,50

5,94

6,52

6,68

6,58

7,10

7,29

7,22

10,01

0,553102

0,553100

0,553080

0,551346

0,553185

0,552366

0,552419

0,552944

0,551744

0,552183

0,552115

0,551589

0,551358

0,551530

0,551662

0,551510

0,551735

Dox-388

Dox-291

Dox-338

Dox-206

Dox-099

Dox-114

Dox-249

Dox-104

Dox-161

Dox-284

Dox-282

Dox-030

Dox-103

Dox-213

Dox-066

Dox-069

Dox-368

Dox-4

Dox-5

Dox-6

Dox-7

Dox-8

Dox-9

Dox-10

Dox-11

Dox-12

Dox-13

Dox-14

Dox-15

Dox-16

Dox-17

Dox-18

Dox-19

Dox-20

-1928,038540

-1928,038415

-1928,036744

-1928,033606

-1928,030120

-1928,029826

-1928,029771

-1928,029533

-1928,029501

-1928,029246

-1928,028240

-1928,027463

-1928,027391

-1928,026743

-1928,026562

-1928,026522

-1928,022302

Çizelge 3.2. En düşük enerjili doksorubisin konformerlerinin @B97XD/6-31G**

wB97XD/6-31G** seviyesinde yapılan optimizasyon analizi sonuçlarına
göre yine yaptığı kısa bağ uzunlukları ve duruş yönünden dolayı Dox-1 en kararlı
konformer olarak bulunmuştur. Kararlılık sıralamasında ilk 9 yapı aynı sırada olsa
da sonlara doğru sıralamanın değişmesinin nedeni, farklı seviyede yapılan
optimizasyon analizlerinde, yapının etkileşime maruz kalan bağ uzunlukları ve
bağ açılarında değişiklikler olmasıdır. Her iki seviyede de en kararlı yapının aynı
çıkması, doksorubisin ile nükleobaz etkileşimlerini incelemek için yapılacak
analizlerde Dox-1 konformerini kullanmamızı işaret etmektedir.

3.1.1.2. <u>Gaz fazında nükleobaz tautomerleri için optimizasyon analizi</u> <u>sonuçları</u>

Adenin, sitozin, guanin, hipoksantin, timin ve urasil nükleobazları ve tautomerleri için ω B97XD metodu 6-31G** baz seti kullanılarak optimizasyon ve frekans hesaplamaları yapıldı (Çizelge 3.3-3.8). Kararlılıklarına göre sıralan nükleobaz tautomerlerinden (Şekil 3.4-3.9), en düşük enerjili yapılar, doksorubisin ile etkileşimleri ölçülmek üzere seçildi.

Şekil 3.4. Adenin tautomerleri.

A-7

A-8

A-9

A-10

A-11

Şekil 3.4. Şekil 3.4 devam ediyor.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
A-1	-467,1780974	0,113511	-467,0645864	2,40	0,00	0,00
A-2	-467,1644991	0,113888	-467,0506111	6,91	8,53	8,77
A-3	-467,1630221	0,114118	-467,0489041	4,29	9,46	9,84
A-4	-467,1584621	0,114806	-467,0436561	3,75	12,32	13,13
A-5	-467,1507026	0,114331	-467,0363716	3,66	17,19	17,71
A-6	-467,1505247	0,114340	-467,0361847	3,22	17,30	17,82
A-7	-467,1491777	0,114400	-467,0347777	2,66	18,15	18,71
A-8	-467,1472292	0,114193	-467,0330362	4,62	19,37	19,80
A-9	-467,1458030	0,113944	-467,0318590	8,71	20,27	20,54
A-10	-467,1375553	0,113895	-467,0236603	4,65	25,44	25,68
A-11	-467,1265160	0,113009	-467,0135070	9,32	32,37	32,05
A-12	-467,1264987	0,113197	-467,0133017	9,79	32,38	32,18

Çizelge 3.3. Adenin için ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Serbest primidinler ve pürinler zayıf bazik bileşiklerdir ve serbest olarak bulunan bu bazlar pH'a bağlı olarak iki veya daha fazla tautomerik formda bulunabilirler. A-1 tautomerinin, altıgen primidin halkasındaki elektronların rezonans olarak bulunduğu, beşli imidazol halkasında azot ile karbon atomlarının çift bağ yaptığı yapı diğerlerine kıyasla en düşük enerjili yapıdır. Bu yapı DNA sarmalında bulunan adenin bazı ile uyumludur.

C-1

C-2

C-3

C-5

Şekil 3.5. Sitozin tautomerleri.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
C-1	-394,8129314	0,099496	-394,7134354	6,52	0,09	0,00
C-2	-394,8130693	0,099767	-394,7133023	3,32	0,00	0,08
C-3	-394,8118134	0,099725	-394,7120884	4,88	0,79	0,85
C-4	-394,8111645	0,100952	-394,7102125	4,70	1,20	2,02
C-5	-394,8081878	0,100763	-394,7074248	2,37	3,06	3,77

Çizelge 3.4. Sitozin için ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Tek halkalı olan sitozin tautomerlerinin enerji değerleri birbirine yakın olsa da, C-1 yapısı DNA sarmalında bulunan sitozin bazı ile uyumlu ve optimizasyon analizi sonuçlarına göre en kararlı yapıdır. Sitozin tek halkalı baz olduğu için çift bağların yapı içerisindeki yer değişimi adenin gibi büyük enerji farklarına neden olmamıştır.

G-1

G-2

G-3

G-4

G-6

G-7

G-8

Şekil 3.6. Guanin tautomerleri.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
G-1	-542,3919070	0,117979	-542,2739280	6,87	0,00	0,00
G-2	-542,3915590	0,118007	-542,2735520	2,42	0,22	0,24
G-3	-542,3910114	0,118975	-542,2720364	3,12	0,56	1,19
G-4	-542,3899861	0,118277	-542,2717091	3,44	1,21	1,39
G-5	-542,3851086	0,118002	-542,2671066	3,90	4,27	4,28
G-6	-542,3838366	0,119119	-542,2647176	2,64	5,06	5,78
G-7	-542,3836064	0,119055	-542,2645514	3,86	5,21	5,88
G-8	-542,3823141	0,118883	-542,2634311	4,54	6,02	6,59

Çizelge 3.5. Guanin için ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

En kararlı yapıların karbonil grubu içerenler olduğu, buna karşın hidroksil grubu içeren tautomerlerin de beklendenden daha kararlı olduğu ama G-5'ten sonraki taurtomerlerin enerjilerinin oldukça yüksek olduğu görülmüştür. Amin gruplarının NH gruplarına dönüşmesi yapıyı oldukça kararsız hale getirmektedir. Aynı zamanda kararlılık sıralamasında H atomlarının yeri de önemlidir. En kararlı bulunan guanin tautomerinin yapısı DNA sarmalında bulunan guanin bazı ile uyumludur.

H-2

H-3

H-4

H-5

H-6

H-7

H-8

Şekil 3.7. Hipoksantin tautomerleri.

Şekil 3.7. Şekil 3.7 devam ediyor

Çizelge 3.6.	Hipoksantin	için	ωB97XD/6-31G**	*seviyesinde	yapılan	optimizasyon	ve
frekans hesap	olamaları sonu	çları.					

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
H-1	-487,0376620	0,102205	-486,9354570	1,84	0,00	0,00
H-2	-487,0369146	0,102135	-486,9347796	5,16	0,47	0,43
H-3	-487,0314082	0,102079	-486,9293292	2,39	3,92	3,85
H-4	-487,0294700	0,102058	-486,9274120	4,64	5,14	5,05
H-5	-487,0266872	0,101832	-486,9248552	5,18	6,89	6,65
H-6	-487,0251462	0,101942	-486,9232042	4,73	7,85	7,69
H-7	-487,0139672	0,102305	-486,9116622	3,32	14,87	14,93
H-8	-487,0124689	0,100868	-486,9116009	6,74	15,81	14,97
H-9	-487,0115398	0,102051	-486,9094888	5,78	16,39	16,30
H-10	-486,9789573	0,101620	-486,8773373	7,42	36,84	36,47

Hipoksantin bu haliyle DNA ve RNA yapısına girmez, ancak pürin nükleotidlerinin sentezinde ve yıkımında önemli bir ara üründür. Karbonil grubu içeren H-1 tautomerinin en karalı yapı olarak bulunmuştur. Yapılarda karbonil grubu yerine hidroksil grubunun olması tautomerin daha yüksek enerjiye sahip olduğunu göstermiştir. H-6 ve H-10 tautomerlerinde karbonil grubu bulunmasına rağmen kararlılık sıralamasında alt sıralarda yer almalarının nedeni H atomlarının yapıdaki yeridir.

T-1

T-2

T-4

T-5

T-6

T-8

Şekil 3.8. Timin tautomerleri.

T-9

T-10

T-12

T-11

T-13

Şekil 3.8. Şekil 3.8 devam ediyor

56

 Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
 T-1	-454,0051393	0,116725	-453,8884143	4,20	0,00	0,00
T-2	-453,9865095	0,116445	-453,8700645	2,77	11,69	11,51
T-3	-453,9833479	0,116560	-453,8667879	5,05	13,67	13,57
T-4	-453,9828266	0,116516	-453,8663106	1,45	14,00	13,87
T-5	-453,9808254	0,116347	-453,8644784	2,85	15,26	15,02
T-6	-453,9732766	0,116009	-453,8572676	5,98	19,99	19,54
T-7	-453,9734443	0,116270	-453,8571743	4,38	19,89	19,60
T-8	-453,9727142	0,115545	-453,8571692	2,14	20,35	19,61
T-9	-453,9733878	0,116259	-453,8571288	4,09	19,92	19,63
T-10	-453,9709868	0,116076	-453,8549108	8,00	21,43	21,02
T-11	-453,9670476	0,115512	-453,8515356	7,48	23,90	23,14
T-12	-453,9617048	0,114997	-453,8467078	6,23	27,26	26,17
T-13	-453,9555778	0,114560	-453,8410178	8,72	31,10	29,74

Çizelge 3.7. Timin için ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

İki karbonil grubu içeren T-1 tautomeri en kararlı yapı olarak bulunmuştur. Diğer tautomerlere baktığımızda bir karbonil bir hidroksil grubu yada iki hidroksil grubu olduğunu görüyoruz. Bu durum yapılar arasında çok büyük enerji farkları olduğunu ve T-1 tautomerinin diğerlerine kıyasla büyük farkla en kararlı yapı olduğunu enerji değerlerine bakarak söyleyebiliriz. T-1 tautomeri DNA sarmalında bulunan timin bazı ile uyumludur.

U-2

U-3

U-6

U-5

U-7

U-8

Şekil 3.9. Urasil tautomerleri.

U-9

Şekil 3.9. Şekil 3.9 devam ediyor.

E ZPE Үарі E+ZPE E(ZPE)_{REL} E_{REL} μ (Debye) (kcal/mol) (Hartree) (Hartree) (Hartree) (kcal/mol) U-1 -414,6934018 0,088620 -414,6047818 4,32 0,00 0,00 U-2 -414,6746273 0,088406 -414,5862213 3,25 11,78 11,65 U-3 -414,6730356 0,088390 -414,5846456 4,74 12,78 12,64 U-4 -414,6722446 0,088554 -414,5836906 1,09 13,28 13,23 U-5 -414,6703061 0,088453 -414,5818531 2,54 14,49 14,39 0,088237 U-6 -414,6633278 -414,5750908 3,97 18,87 18,63 U-7 -414,6632926 0,088211 -414,5750816 3,69 18,89 18,64 U-8 -414,6604673 0,087988 -414,5724793 6,39 20,67 20,27 -414,6580390 U-9 0,087580 -414,5704590 7,19 22,19 21,54

Çizelge 3.8. Urasil için ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Urasil tautomerlerine baktığımızda iki karbonil grubu içeren U-1 tautomerinin diğerlerine kıyasla büyük farkla en kararlı yapı olduğunu görüyoruz. Diğer tautomerlere baktığımızda bir karbonil bir hidroksil grubu yada iki hidroksil grubu olduğunu, bunun kararlılığı etkilediğini söyleyebiliriz. U-1 tautomeri RNA'da bulunan urasil bazı ile uyumludur.

3.1.2. Doksorubisin ve nükleobazların etkileşimleri

3.1.2.1. Gaz fazında doksorubisin ve adenin etkileşimleri

Dox-1 doksorubisin konformeri ve A-1 adenin tautomerinin etkileşimini gözlemleyebilmek için, Dox-1 ve A-1 olası etkileşim yerlerine yerleştirilerek, yapıların Gaussian 09 programı ile DFT yöntemi, ωB97XD metodu, 6-31G** baz seti kullanılarak optimizasyon analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.10). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.9'da gösterilmiştir.

Şekil 3.10. Dox-1 ve A-1 yapılarının birbirleri ile etkileşiminin gaz fazındaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-A-3 ilk yapı

Dox-A-3 son yapı

Dox-A-5 ilk yapı

Dox-A-5 son yapı

Şekil 3.10. Şekil 3.10 devam ediyor

Dox-A-6 ilk yapı

Dox-A-6 son yapı

Dox-A-7 ilk yapı

Dox-A-7 son yapı

Dox-A-8 ilk yapı

Dox-A-8 son yapı

Şekil 3.10. Şekil 3.10 devam ediyor

Dox-A-9 ilk yapı

Dox-A-10 ilk yapı

Dox-A-10 son yapı

Dox-A-11 ilk yapı

Şekil 3.10. Şekil 3.10 devam ediyor

Dox-A-14 son yapı

Şekil 3.10. Şekil 3.10 devam ediyor

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-A-1	-2395,2580467	0,668261	-2394,5897857	6,79	0,00	0,00
Dox-A-6	-2395,2544453	0,668168	-2394,5862773	4,52	2,26	2,20
Dox-A-3	-2395,2511687	0,668005	-2394,5831637	8,78	4,32	4,16
Dox-A-2	-2395,2509943	0,668284	-2394,5827103	7,13	4,43	4,44
Dox-A-5	-2395,2515316	0,669503	-2394,5820286	6,00	4,09	4,87
Dox-A-13	-2395,2460570	0,668789	-2394,5772680	7,55	7,52	7,85
Dox-A-14	-2395,2458925	0,668651	-2394,5772415	10,12	7,63	7,87
Dox-A-7	-2395,2459472	0,669671	-2394,5762762	6,72	7,59	8,48
Dox-A-4	-2395,2415669	0,667397	-2394,5741699	6,37	10,34	9,80
Dox-A-10	-2395,2407359	0,667859	-2394,5728769	9,31	10,86	10,61
Dox-A-9	-2395,2393543	0,668581	-2394,5707733	10,48	11,73	11,93
Dox-A-8	-2395,2344662	0,668610	-2394,5658562	6,22	14,80	15,02
Dox-A-11	-2395,2308860	0,667266	-2394,5636200	6,80	17,04	16,42
Dox-A-12	-2395,2281616	0,666766	-2394,5613956	6,49	18,75	17,82

Çizelge 3.9. Gaz fazında Dox-1 ve A-1 olası etkileşimlerinin ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Olası etkileşim yerlerine yerleştirilen en kararlı doksorubisin konformeri ile en kararlı adenin tautomerinin Dox-A-1 yapısında güçlü hidrojen bağları yaparak en düşük enerjili yapı olduğu bulunmuştur. Bazı yapılarda Dox-1 ile A-1 hiç H bağı yapmazken, Dox-A-14'te doksorubisin ile adenin arasında üç H bağı olmasına rağmen sterik etkileşimler yapının daha az kararlı bulunmasına neden olmuştur. Ayrıca, Dox-A-1'de görülen π - π etkileşimler, doksorubisin ile adeninin güçlü bir etkileşimde olduklarının göstergesidir.

3.1.2.2. Cözücü su etkisinde doksorubisin ve adenin etkileşimleri

Gaz fazında yapılan bu analizler bize doksorubisin ile adenin nükleobazı arasındaki etkileşim hakkında fikir versede, normal şartlarda bu etkileşimlerin hücre içerisinde olduğu düşünüldüğünde, çözücü su etkisinde de bu analizlerin yapılmasına ve sonuçların karşılaştırılmasına karar verildi. Gaz fazındaki etkileşimlerini görmek için, Dox-1 doksorubisin konformeri ve A-1 adenin tautomerinin, olası etkileşim yerlerine yerleştirilip yapılan analiz sonucunda en kararlı olduğu bulunan ilk 5 yapının (Dox-A-1, Dox-A-6, Dox-A-3, Dox-A-2, Dox-A-5) çözücü su etkisinde Gaussian 09 programı ile DFT yöntemi, ωB97XD metodu, 6-31G** baz seti kullanılarak optimizasyon analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.11). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.10'da gösterilmiştir.

Şekil 3.11. Dox-1 ve A-1 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-A-5 ilk yapı

Dox-A-5 son yapı

Dox-A-6 ilk yapı

Dox-A-6 son yapı

Şekil 3.11. Şekil 3.11 devam ediyor.

Çizelge 3.10. Çözücü su etkisinde Dox-1 ve A-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-A-1	-2395,2893063	0,666935	-2394,6223713	8,20	0,00	0,00
Dox-A-6	-2395,2823312	0,666521	-2394,6158102	6,13	4,38	4,12
Dox-A-2	-2395,2812839	0,666824	-2394,6144599	8,31	5,03	4,96
Dox-A-3	-2395,2803214	0,665930	-2394,6143914	13,34	5,64	5,01
Dox-A-5	-2395,2776978	0,666946	-2394,6107518	6,72	7,28	7,29

Gaz fazında ve çözücü su varlığında Dox-A-1 en kararlı yapı olarak belirlendi. Gaz fazındaki en kararlı 4 yapı suda da benzer yapılar gösterdikleri için kararlılık sıralaması değişmedi. Dox-A-3 yapısı gaz fazında doksorubisin ile H bağı yaparken (Şekil 3.10), suda nükleobazın duruş yününden dolayı H bağı yapımamakta (Şekil 3.11) ve gaz fazına göre daha az kararlı yapıya dönüşmektedir.

3.1.2.3. Gaz fazında doksorubisin ve sitozin etkileşimleri

Dox-1 doksorubisin konformeri ve C-1 sitozin tautomerinin etkileşimini gözlemleyebilmek için, Dox-1 ve C-1 olası etkileşim yerlerine yerleştirilerek, yapıların aynı metodla optimizasyon analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.12). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.11'de gösterilmiştir.

Şekil 3.12. Dox-1 ve C-1 yapılarının birbirleri ile etkileşiminin gaz fazındaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-C-3 ilk yapı

Dox-C-3 son yapı

Dox-C-5 ilk yapı

Dox-C-5 son yapı

Şekil 3.12. Şekil 3.12 devam ediyor.

Dox-C-6 ilk yapı

Dox-C-6 son yapı

Dox-C-8 ilk yapı

Dox-C-8 son yapı

Dox-C-9 ilk yapı

Dox-C-9 son yapı

Dox-C-10 ilk yapı

Dox-C-10 son yapı

Dox-C-11 ilk yapı

Dox-C-11 son yapı

Şekil 3.12. Şekil 3.12 devam ediyor.

Dox-C-15 ilk yapı

Dox-C-15 son yapı

Dox-C-17 ilk yapı

Dox-C-17 son yapı

Dox-C-18 ilk yapı

Dox-C-18 son yapı

Çizelge 3.11. Gaz fazında Dox-1 ve C-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-C-15	-2322,8939144	0,655618	-2322,2382964	11,13	0,00	0,00
Dox-C-17	-2322,8931619	0,655033	-2322,2381289	12,99	0,47	0,11
Dox-C-18	-2322,8857539	0,654242	-2322,2315119	8,81	5,12	4,26
Dox-C-6	-2322,8839578	0,653958	-2322,2299998	4,12	6,25	5,21
Dox-C-10	-2322,8851265	0,655322	-2322,2298045	4,39	5,51	5,33
Dox-C-16	-2322,8842075	0,654521	-2322,2296865	4,30	6,09	5,40
Dox-C-1	-2322,8842078	0,654530	-2322,2296778	4,29	6,09	5,41
Dox-C-2	-2322,8839760	0,654533	-2322,2294430	6,41	6,24	5,56
Dox-C-5	-2322,8808154	0,654339	-2322,2264764	2,81	8,22	7,42
Dox-C-14	-2322,8793819	0,654295	-2322,2250869	12,71	9,12	8,29
Dox-C-9	-2322,8795926	0,654861	-2322,2247316	10,33	8,99	8,51
Dox-C-3	-2322,8785223	0,654637	-2322,2238853	9,39	9,66	9,04
Dox-C-7	-2322,8795111	0,656109	-2322,2234021	1,67	9,04	9,35
Dox-C-4	-2322,8762397	0,654476	-2322,2217637	2,29	11,09	10,37
Dox-C-11	-2322,8739502	0,654144	-2322,2198062	7,38	12,53	11,60
Dox-C-8	-2322,8724162	0,653373	-2322,2190432	2,63	13,49	12,08
Dox-C-12	-2322,8720366	0,653649	-2322,2183876	16,64	13,73	12,49
Dox-C-13	-2322,8678508	0,654100	-2322,2137508	10,03	16,36	15,40

Dox-1 doksorubisin konformeri ve C-1 sitozin tautomerinin etkileşimlerine baktığımızda, Dox-C-15 en kararlı yapı olarak bulunmuştur. Doksorubisinin sitozin ile iki güçlü H bağı yapması ve sitozinin duruş yönünden ötürü π - π etkileşimler, doksorubisinin tetrasiklik yapısında kıvrılmaya neden olmuş ve aralarındaki kuvvetli etkileşimi görmemize olanak sağlamıştır. Diğer yapılara baktığımızda, Dox-C-15'e en yakın enerji düzeyine sahip yapının Dox-C-17 olduğunu, bunun da yine iki güçlü H bağı ve doksorubisin ile sitozin arasındaki π - π etkileşimlerin etkisiyle olduğunu görüyoruz. Sitozinin duruş yönünden dolayı Dox-C-15 daha kararlı bulunmuştur. Ayrıca Dox-C-9 ve Dox-C-14 yapılarında doksorubisin ile sitozin arasında ikiden fazla H bağı olmasına rağmen kararlılık sıralamasında daha alt sıralarda yer almalarının nedeni, sterik etkileşimlerdir.

3.1.2.4. Cözücü su etkisinde doksorubisin ve sitozin etkileşimleri

Gaz fazında yapılan bu analizler bize doksorubisin ile sitozin nükleobazı arasındaki etkileşim hakkında fikir versede, normal şartlarda bu etkileşimlerin hücre içerisinde olduğu düşünüldüğünde, çözücü su etkisinde de bu analizlerin yapılmasına ve sonuçların karşılaştırılmasına karar verildi. Gaz fazındaki etkileşimlerini görmek için, Dox-1 doksorubisin konformeri ve C-1 sitozin tautomerinin, olası etkileşim yerlerine yerleştirilip yapılan analiz sonucunda en kararlı olduğu bulunan ilk 5 yapının (Dox-C-15, Dox-C-17, Dox-C-18, Dox-C-6, Dox-C-10) çözücü su etkisinde aynı metodla optimizasyon analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.13). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.12'de gösterilmiştir.

Dox-C-1 ilk yapı

Dox-C-1 son yapı

Şekil 3.13. Dox-1 ve C-1 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-C-10 ilk yapı

Dox-C-10 son yapı

Dox-C-18 ilk yapı

Dox-C-18 son yapı

Şekil 3.13. Şekil 3.13 devam ediyor.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debve)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-C-17	-2322,9294412	0,653861	-2322,2755802	18,41	0,00	0,00
Dox-C-15	-2322,9265229	0,654274	-2322,2722489	14,68	1,83	2,09
Dox-C-1	-2322,9215955	0,653704	-2322,2678915	6,06	4,92	4,82
Dox-C-18	-2322,9205466	0,652820	-2322,2677266	11,84	5,58	4,93
Dox-C-10	-2322,9051889	0,651990	-2322,2531989	6,57	15,22	14,04

Çizelge 3.12. Çözücü su etkisinde Dox-1 ve C-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Gaz fazında en kararlı yapı Dox-C-15 iken, çözücü su varlığında Dox-C-17 en kararlı yapı olarak belirlendi. Çözücü etkisinde Dox-C-17'nin daha kararlı bulunması, aynı yapının gaz fazına göre daha kısa ve kararlı H bağları oluşturması ile açıklanabilir. Dox-C-15'de ise çözücü su varlığında bazı H bağları kısalırken bazıları uzadı ve bu nedenle yapının kararlılık sırası değişti. Ayrıca dipol moment değerlerine bakacak olursak, bu yapıda dipol moment gaza göre arttı, bu nedenle relatif enerji farkı gaza göre arttı ve kararlılık sıralaması değişti. Dox-C-10 ile en kararlı yapı arasındaki relatif enerji farkı gazda azken suda farkın çok artması yapıdaki değişimle de gözlemlenebilir. Gazda moleküller daha rahat hareket edebildiği için kararlı bir yapıya doğru molekülün değişimi daha kolay olurken, suda hareket kısıtlandığı için relatif enerji farkı arttı. Gazda Dox-C-10 için ilk yapı ve optimizasyon sonrasındaki yapı karşılaştırıldığında yapının çok değiştiği en kararlı yapı olan Dox-C-15'e benzediği Şekil 3.12'de gösterilmiştir. Suda moleküllerin hareketleri kısıtlandığı için ilk yapı ile son yapı arasında bu kadar büyük bir fark gözlenmemiştir (Şekil 3.13). Dox-C-14'ün dipol moment değeri (12,71 D) gazda en kararlı yapı olan Dox-C-15'e yakın olmasına rağmen (11,13 D), enerjideki farklılıktan dolayı relatif enerji farkına göre $(E(ZPE)_{REL})$ daha kararsız görünüyor.

3.1.2.5. Gaz fazında doksorubisin ve guanin etkileşimleri

Dox-1 doksorubisin konformeri ve G-1 guanin tautomerinin etkileşimini gözlemleyebilmek için, Dox-1 ve G-1 olası etkileşim yerlerine yerleştirilerek, yapıların optimizasyon aynı metodla analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.14). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.13'de gösterilmiştir.

Şekil 3.14. Dox-1 ve G-1 yapıların gaz fazındaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-G-3 ilk yapı

Dox-G-3 son yapı

Dox-G-5 ilk yapı

Dox-G-5 son yapı

Şekil 3.14. Şekil 3.14 devam ediyor.

Dox-G-8 son yapı

Şekil 3.14. Şekil 3.14 devam ediyor.

Dox-G-9 ilk yapı

Dox-G-10 son yapı

Dox-G-9 son yapı

Dox-G-10 ilk yapı

Dox-G-11 ilk yapı

Şekil 3.14. Şekil 3.14 devam ediyor.

Dox-G-12 ilk yapı

Dox-G-12 son yapı

Dox-G-13 ilk yapı

Dox-G-13 son yapı

Dox-G-14 ilk yapı

Dox-G-14 son yapı

Şekil 3.14. Şekil 3.14 devam ediyor.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-G-3	-2470,4829614	0,674420	-2469,8085414	12,81	0,00	0,00
Dox-G-1	-2470,4757680	0,674245	-2469,8015230	10,29	4,51	4,40
Dox-G-13	-2470,4716414	0,673910	-2469,7977314	5,61	7,10	6,78
Dox-G-6	-2470,4695572	0,673884	-2469,7956732	7,70	8,41	8,07
Dox-G-5	-2470,4690849	0,673628	-2469,7954569	8,19	8,71	8,21
Dox-G-7	-2470,4601265	0,673295	-2469,7868315	6,78	14,33	13,62
Dox-G-4	-2470,4593191	0,672550	-2469,7867691	8,46	14,84	13,66
Dox-G-8	-2470,4600097	0,674468	-2469,7855417	6,12	14,40	14,43
Dox-G-9	-2470,4568970	0,673098	-2469,7837990	11,95	16,36	15,53
Dox-G-2	-2470,4542855	0,671488	-2469,7827975	13,62	17,99	16,15
Dox-G-14	-2470,4533630	0,672679	-2469,7806840	11,41	18,57	17,48
Dox-G-10	-2470,4508436	0,671575	-2469,7792686	10,21	20,15	18,37
Dox-G-11	-2470,4454176	0,671392	-2469,7740256	6,98	23,56	21,66
Dox-G-12	-2470,4451946	0,672436	-2469,7727586	17,44	23,70	22,45

Çizelge 3.13. Gaz fazında Dox-1 ve G-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Doksorubisin ile guanin arasındaki etkileşimlere baktığımızda, guaninin doksorubisin ile üç H bağı yaptığı ve π - π etkileşimlerle daha stabil hale gelen Dox-G-3 yapısı en düşük enerjili yapı olarak bulundu. Diğer yapılara göre sayıca daha fazla H bağı içeren bu yapı aynı zamanda guaninin duruş yönü nedeniyle de doksorubisin ile güçlü etkileşim içerisindedir. Sitozinle de doksorubisin arasında kuvvetli etkileşimler olduğunu göstermiştik (Şekil 3.12 ve Çizelge 3.11). Bu etkileşimler bize guanin ile sitozinin GC baz çifti yapmak yerine doksorubisin ile etkileşerek, doksorubisinin DNA sarmalının arasına girme reaksiyonunu gerçekleştirdiğinin bir göstergesi sayılabilir.

3.1.2.6. Cözücü su etkisinde doksorubisin ve guanin etkileşimleri

Gaz fazında yapılan bu analizler bize doksorubisin ile guanin nükleobazı arasındaki etkileşim hakkında fikir versede, normal şartlarda bu etkileşimlerin hücre içerisinde olduğu düşünüldüğünde, çözücü su etkisinde de bu analizlerin yapılmasına ve sonuçların karşılaştırılmasına karar verildi. Gaz fazındaki etkileşimlerini görmek için, Dox-1 doksorubisin konformeri ve G-1 guanin tautomerinin, olası etkileşim yerlerine yerleştirilip yapılan analiz sonucunda en kararlı olduğu bulunan ilk 5 yapının (Dox-G-3, Dox-G-1, Dox-G-13, Dox-G-6, Dox-G-5) çözücü su etkisinde aynı metodla optimizasyon analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery

Studio 3.5 Client programı ile çizildi (Şekil 3.15). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.14'de gösterilmiştir.

Dox-G-5 ilk yapı

Dox-G-5 son yapı

Şekil 3.15. Dox-1 ve G-1 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Şekil 3.15. Şekil 3.15 devam ediyor.

Çizelge 3.14. Çözücü su etkisinde Dox-1 ve G-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарı	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-G-1	-2470,5129646	0,671399	-2469,8415656	14,99	0,00	0,00
Dox-G-13	-2470,5124282	0,672619	-2469,8398092	6,85	0,34	1,10
Dox-G-5	-2470,5074164	0,672208	-2469,8352084	12,72	3,48	3,99
Dox-G-6	-2470,5039744	0,670996	-2469,8329784	11,35	5,64	5,39
Dox-G-3	-2470,5036680	0,671548	-2469,8321200	17,94	5,83	5,93

Gaz fazında en kararlı yapı Dox-G-3 iken, çözücü su varlığında Dox-G-1 en kararlı yapı olarak belirlendi. Dox-G-3 suda farklı bir yapıya dönüştüğü için kararlılık sıralaması değişti. Dox-G-3 gazdaki son yapı, Dox-G-1 ve Dox-G-13'den (Şekil 3.14) farklı olarak nüklebazın duruş yönünden dolayı en kararlı yapı olarak belirlendi. Suda ise yapı tamamen değişip, nükleobaz doksorubisin molekülünün alt kısmına geldiği için (Şekil 3.15), kararlılığı değişti.

3.1.2.7. Gaz fazında doksorubisin ve hipoksantin etkileşimleri

Dox-1 doksorubisin konformeri ve H-1 hipoksantin tautomerinin etkileşimini gözlemleyebilmek için, Dox-1 ve H-1 olası etkileşim yerlerine yerleştirilerek, yapıların aynı metodla optimizasyon analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.16). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.15'de gösterilmiştir.

Şekil 3.16. Dox-1 ve H-1 yapıların gaz fazındaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-H-3 ilk yapı

Dox-H-3 son yapı

Dox-H-5 ilk yapı

Dox-H-5 son yapı

Şekil 3.16. Şekil 3.16 devam ediyor.

Dox-H-6 ilk yapı

Dox-H-6 son yapı

Dox-H-8 ilk yapı

Dox-H-9 ilk yapı

Dox-H-9 son yapı

Dox-H-11 ilk yapı

Dox-H-11 son yapı

Şekil 3.16. Şekil 3.16 devam ediyor.

Dox-H-14 ilk yapı

Dox-H-14 son yapı

Şekil 3.16. Şekil 3.16 devam ediyor

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-H-2	-2415,1094548	0,655615	-2414,4538398	6,80	0,00	0,00
Dox-H-1	-2415,1094541	0,655659	-2414,4537951	6,80	0,00	0,03
Dox-H-6	-2415,1089648	0,655488	-2414,4534768	9,73	0,31	0,23
Dox-H-4	-2415,1089652	0,655491	-2414,4534742	9,73	0,31	0,23
Dox-H-8	-2415,1052440	0,656872	-2414,4483720	9,31	2,64	3,43
Dox-H-14	-2415,1032137	0,655927	-2414,4472867	6,89	3,92	4,11
Dox-H-5	-2415,1018984	0,655373	-2414,4465254	7,87	4,74	4,59
Dox-H-7	-2415,1023500	0,656479	-2414,4458710	6,54	4,46	5,00
Dox-H-3	-2415,1001501	0,655608	-2414,4445421	7,56	5,84	5,83
Dox-H-10	-2415,0950859	0,656000	-2414,4390859	6,47	9,02	9,26
Dox-H-9	-2415,0950819	0,656028	-2414,4390539	6,49	9,02	9,28
Dox-H-12	-2415,0877841	0,655501	-2414,4322831	12,20	13,60	13,53
Dox-H-13	-2415,0851876	0,655412	-2414,4297756	12,26	15,23	15,10
Dox-H-11	-2415,0845833	0,655044	-2414,4295393	7,28	15,61	15,25

Çizelge 3.15. Gaz fazında Dox-1 ve H-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Dox-1 ile H-1 arasındaki etkileşimlere bakıldığında, Dox-H-2 yapısı en kararlı yapı olarak bulundu. Doksorubisin ile hipoksantin arasındaki H bağı ve π - π etkileşimler bu sonucun çıkmasında etkilidir. Dox-H-2 ile Dox-H-1 yapısına bakıldığında neredeyse aynı uzunlukta H bağı ve moleküllerin duruş yönü, enerji değerlerinin birbirine çok yakın çıkmasına neden olmuştur. Bu iki yapı arasında, hipoksantin ile doksorubisin arasındaki H bağı uzunluğundaki 0.001A°'luk fark, Dox-H-2'yi Dox-H-1'den daha kararlı yapmıştır. Diğer yapılara baktığımızda doksorubisin ile H bağı yapmış olsa da, hipoksantinin duruş yönü yapının kararlılığını etkilemiştir. Dox-H-14'te moleküller arasındaki üç H bağına rağmen, sterik etkileşimlerin etkisiyle kararlılık sıralamasında daha alt sıralarda yer almıştır.

3.1.2.8. Cözücü su etkisinde doksorubisin ve hipoksantin etkileşimleri

Gaz fazında yapılan bu analizler bize doksorubisin ile hipoksantin nükleobazı arasındaki etkileşim hakkında fikir versede, normal şartlarda bu etkileşimlerin hücre içerisinde olduğu düşünüldüğünde, çözücü su etkisinde de bu analizlerin yapılmasına ve sonuçların karşılaştırılmasına karar verildi. Gaz fazındaki etkileşimlerini görmek için, Dox-1 doksorubisin konformeri ve H-1 hipoksantin tautomerinin, olası etkileşim yerlerine yerleştirilip yapılan analiz sonucunda en kararlı olduğu bulunan ilk 5 yapının (Dox-H-2, Dox-H-6, Dox-H-8,

Dox-H-14, Dox-H-5; Dox-H-2 ile Dox-H-1 ve Dox-H-4 ile Dox-H-6 optimizasyon analizi sonucunda aynı yapıya dönüştüğünden 4. ve 5. en kararlı yapı olarak Dox-H-14 ve Dox-H-5 çözücü su etkisinde çalışıldı) çözücü su etkisinde aynı metodla optimizasyon analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.17). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.16'da gösterilmiştir.

Dox-H-5 ilk yapı

Dox-H-5 son yapı

Şekil 3.17. Dox-1 ve H-1 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-H-14 ilk yapı

Şekil 3.17. Şekil 3.17 devam ediyor.

Dox-H-14 son yap

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-H-2	-2415,1458747	0,655102	-2414,4907727	9,61	0,00	0,00
Dox-H-6	-2415,1449317	0,655093	-2414,4898387	12,27	0,59	0,59
Dox-H-5	-2415,1421059	0,654558	-2414,4875479	11,02	2,36	2,02
Dox-H-8	-2415,1394870	0,655119	-2414,4843680	12,16	4,01	4,02
Dox-H-14	-2415,1386860	0,654705	-2414,4839810	8,83	4,51	4,26

Çizelge 3.16. Çözücü su etkisinde Dox-1 ve H-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Gaz fazında ve çözücü su varlığında en kararlı yapı Dox-H-2 olarak belirlendi. Her iki fazda da Dox-H-2 en kararlı yapı olarak bulunsa da, gaz fazında doksorubisin ile hipoksantin arasındaki H bağı, dipol moment değerinin sudakine göre daha düşük çıkmasına neden olmuştur. Diğer yapılar çözücü su varlığında da benzer yapılara gösterdikleri için sıralamada çok büyük bir değişiklik olmadı. Suda Dox-H-8'de H bağı uzunluğu arttığı ve Dox-H-14'de H bağı sayısı gaz fazındakine göre azaldığı için, Dox-H-5 bu yapılardan daha kararlı hale geldi.

3.1.2.9. Gaz fazında doksorubisin ve timin etkileşimleri

Dox-1 doksorubisin konformeri ve T-1 timin tautomerinin etkileşimini gözlemleyebilmek için, Dox-1 ve T-1 olası etkileşim yerlerine yerleştirilerek, yapıların optimizasyon analizleri aynı metodla yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.18). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.17'de gösterilmiştir.

Dox-T-1 ilk yapı

Dox-T-1 son yapı

Şekil 3.18. Dox-1 ve T-1 yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-T-2 ilk yapı

Dox-T-2 son yapı

Dox-T-4 ilk yapı

Dox-T-4 son yapı

Şekil 3.18. Şekil 3.18 devam ediyor.

Dox-T-5 ilk yapı

Dox-T-5 son yapı

Dox-T-6 ilk yapı

Dox-T-6 son yapı

Dox-T-7 ilk yapı

Dox-T-7 son yapı

Şekil 3.18. Şekil 3.18 devam ediyor.

Dox-T-8 ilk yapı

Dox-T-8 son yapı

Dox-T-9 ilk yapı

Dox-T-9 son yapı

Dox-T-10 son yapı

Dox-T-11 ilk yapı

Dox-T-11 son yapı

Dox-T-12 ilk yapı

Dox-T-12 son yapı

Dox-T-13 ilk yapı

Dox-T-13 son yapı

Şekil 3.18. Şekil 3.18 devam ediyor.

Dox-T-14 ilk yapı

Dox-T-14 son yapı

Şekil 3.18. Şekil 3.18 devam ediyor.

Çizelge 3.17. Gaz fazında Dox-1 ve T-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-T-2	-2382,0894025	0,671209	-2381,4181935	11,99	0,00	0,00
Dox-T-1	-2382,0772422	0,670988	-2381,4062542	10,76	7,63	7,49
Dox-T-4	-2382,0769066	0,671109	-2381,4057976	4,67	7,84	7,78
Dox-T-6	-2382,0769067	0,671127	-2381,4057797	4,67	7,84	7,79
Dox-T-5	-2382,0750523	0,670650	-2381,4044023	7,98	9,00	8,65
Dox-T-12	-2382,0705728	0,670908	-2381,3996648	4,37	11,82	11,63
Dox-T-3	-2382,0698704	0,670677	-2381,3991934	4,35	12,26	11,92
Dox-T-13	-2382,0684112	0,670336	-2381,3980752	11,06	13,17	12,62
Dox-T-10	-2382,0688186	0,670959	-2381,3978596	5,57	12,92	12,76
Dox-T-14	-2382,0657784	0,670971	-2381,3948074	10,03	14,82	14,67
Dox-T-9	-2382,0647312	0,671272	-2381,3934592	9,34	15,48	15,52
Dox-T-7	-2382,0631875	0,670219	-2381,3929685	8,20	16,45	15,83
Dox-T-8	-2382,0631893	0,670551	-2381,3926383	8,20	16,45	16,04
Dox-T-11	-2382,0614473	0,669772	-2381,3916753	7,17	17,54	16,64

Dox-1 doksorubisin konformeri ve T-1 timin tautomerinin etkileşimlerine baktığımızda, üç H bağı ve timinin duruş yönünden dolayı moleküller arasındaki π - π etkileşimler, Dox-T-2 yapısının en kararlı yapı olarak bulunmasını sağlamıştır. Ayrıca doksorubisinin tetrasiklik yapısında kıvrılmaya neden olan bu yapı doksorubisin ile timin arasındaki kuvvetli etkileşimi görmemize olanak sağlamıştır. Diğer yapılara göre sayıca daha fazla H bağı içeren bu yapı aynı zamanda timinin duruş yönü nedeniyle de doksorubisin ile güçlü etkileşim içerisindedir. Dox-T-13 yapısı Dox-T-2 ile aynı H bağı sayısına sahip olsa da Dox-T-13'teki sterik etkileşimler yapının kararlılık sıralamasında daha alt sıralarda yer almasına neden olmuştur. Adeninle de doksorubisin arasında kuvvetli etkileşimler olduğunu göstermiştik (Şekil 3.10 ve Çizelge 3.9). Bu etkileşimler bize adenin ile timinin AT baz çifti yapmak yerine doksorubisin ile etkileşerek, doksorubisinin DNA sarmalının arasına girme reaksiyonunu gerçekleştirdiğinin bir göstergesi olabilir.

3.1.2.10. Cözücü su etkisinde doksorubisin ve timin etkileşimleri

Gaz fazında yapılan bu analizler bize doksorubisin ile timin nükleobazı arasındaki etkileşim hakkında fikir versede, normal şartlarda bu etkileşimlerin hücre içerisinde olduğu düşünüldüğünde, çözücü su etkisinde de bu analizlerin yapılmasına ve sonuçların karşılaştırılmasına karar verildi. Gaz fazındaki etkileşimlerini görmek için, Dox-1 doksorubisin konformeri ve T-1 timin tautomerinin, olası etkileşim yerlerine yerleştirilip yapılan analiz sonucunda en kararlı olduğu bulunan ilk 5 yapının (Dox-T-2, Dox-T-1, Dox-T-4, Dox-T-6, Dox-T-5) çözücü su etkisinde aynı metodla optimizasyon analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.19). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.18'da gösterilmiştir.

Dox-T-1 ilk yapı

Dox-T-1 son yapı

Şekil 3.19. Dox-1 ve T-1 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-T-2 ilk yapı

Dox-T-2 son yapı

Dox-T-5 ilk yapı

Dox-T-5 son yapı

Şekil 3.19. Şekil 3.19 devam ediyor.

Dox-T-6 ilk yapı

Dox-T-6 son yapı

Şekil 3.19. Şekil 3.19 devam ediyor.

Çizelge 3.18. Çözücü su etkisinde Dox-1 ve T-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарı	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-T-2	-2382,1174260	0,669943	-2381,4474830	15,55	0,00	0,00
Dox-T-1	-2382,1174259	0,669954	-2381,4474719	15,55	0,00	0,01
Dox-T-5	-2382,1067941	0,669316	-2381,4374781	11,45	6,67	6,28
Dox-T-4	-2382,1031381	0,669190	-2381,4339481	6,34	8,97	8,49
Dox-T-6	-2382,0974784	0,669029	-2381,4284494	9,13	12,52	11,94

Gaz fazında ve çözücü su varlığında Dox-T-2 en kararlı yapı olarak belirlendi. Dox-T-1 suda Dox-T-2 yapısıyla aynı yapıya gittiği için daha kararlı hale geldi. Çizelge 3.18'de iki yapının aynı olduğu gösterilmiştir. Kararlılık sıralamasındaki değişikliğin nedeni, Dox-T-4 ve Dox-T-6 yapılarının gazda nüklebazın yön değiştirebilmesidir. Bu yön değişikliği nükleobaz ile doksorubisin arasında H bağı oluşmasına ve daha kararlı bir yapıya dönüşmesine olanak sağlamıştır. Ancak suda nüklebaz dönemediği için Dox-T-4 ve Dox-T-6 yapıları Dox-T-5 yapısına göre daha kararsız hale geldi (Şekil 3.18 ve Şekil 3.19).

3.1.2.11. Gaz fazında doksorubisin ve urasil etkileşimleri

Dox-1 doksorubisin konformeri ve U-1 urasil tautomerinin etkileşimini gözlemleyebilmek için, Dox-1 ve U-1 olası etkileşim yerlerine yerleştirilerek, yapıların optimizasyon analizleri aynı metodla yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.20). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.19'da gösterilmiştir.

Dox-U-2 ilk yapı

Dox-U-2 son yapı

Şekil 3.20. Dox-1 ve U-1 yapıların gaz fazındaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-U-3 son yapı

Dox-U-5 ilk yapı

Dox-U-5 son yapı

Şekil 3.20. Şekil 3.20 devam ediyor.

Şekil 3.20. Şekil 3.20 devam ediyor.

Dox-U-8 ilk yapı

Dox-U-8 son yapı

21

105

Dox-U-10 son yapı

Dox-U-11 ilk yapı

Dox-U-11 son yapı

Şekil 3.20. Şekil 3.20 devam ediyor.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-U-2	-2342,7742509	0,643224	-2342,1310269	12,13	0,00	0,00
Dox-U-1	-2342,7622823	0,642668	-2342,1196143	10,94	7,51	7,16
Dox-U-14	-2342,7615759	0,642353	-2342,1192229	7,99	7,95	7,41
Dox-U-6	-2342,7582754	0,641849	-2342,1164264	9,82	10,02	9,16
Dox-U-12	-2342,7574435	0,642663	-2342,1147805	6,37	10,55	10,19
Dox-U-13	-2342,7566868	0,642979	-2342,1137078	9,15	11,02	10,87
Dox-U-9	-2342,7573208	0,643927	-2342,1133938	5,35	10,62	11,06
Dox-U-10	-2342,7573219	0,643996	-2342,1133259	5,35	10,62	11,11
Dox-U-3	-2342,7538622	0,641967	-2342,1118952	9,61	12,79	12,01
Dox-U-5	-2342,7534949	0,641954	-2342,1115409	7,28	13,02	12,23
Dox-U-4	-2342,7523057	0,641690	-2342,1106157	5,59	13,77	12,81
Dox-U-8	-2342,7517290	0,642332	-2342,1093970	5,55	14,13	13,57
Dox-U-7	-2342,7516709	0,642739	-2342,1089319	5,55	14,17	13,86
Dox-U-11	-2342,7497109	0,642079	-2342,1076319	6,78	15,40	14,68

Çizelge 3.19. Gaz fazında Dox-1 ve U-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Doksorubisin ile urasil arsındaki etkileşim, doksorubisin ile timin arasındaki etkileşime benzer şekilde, üç H bağı ve urasilin duruş yönünden dolayı moleküller arasındaki π - π etkileşimler sayesinde Dox-U-2 yapısı en kararlı yapı olarak bulunmuştur. Doksorubisinin tetrasiklik yapısında kıvrılmaya neden olan bu yapı doksorubisin ile urasil arasındaki kuvvetli etkileşimi göstermiştir. RNA'da timin yerine adenin ile baz çifti yapan urasilin doksorubisin ile yaptığı kuvvetli etkileşim, AU baz çiftinin bozularak, doksorubisinin RNA'nın bazı üçüncül yapılarının oksidatif bölünmesiyle RNA hasarına da neden olduğunu göstermektedir.

3.1.2.12. Cözücü su etkisinde doksorubisin ve urasil etkileşimleri

Gaz fazında yapılan bu analizler bize doksorubisin ile urasil nükleobazı arasındaki etkileşim hakkında fikir versede, normal şartlarda bu etkileşimlerin hücre içerisinde olduğu düşünüldüğünde, çözücü su etkisinde de bu analizlerin yapılmasına ve sonuçların karşılaştırılmasına karar verildi. Gaz fazındaki etkileşimlerini görmek için, Dox-1 doksorubisin konformeri ve U-1 urasil tautomerinin, olası etkileşim yerlerine yerleştirilip yapılan analiz sonucunda en kararlı olduğu bulunan ilk 5 yapının (Dox-U-2, Dox-U-1, Dox-U-14, Dox-U-6, Dox-U-12) çözücü su etkisinde aynı metodla optimizasyon analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.21). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.20'de gösterilmiştir.

Dox-U-2 ilk yapı

Dox-U-2 son yapı

Şekil 3.21. Dox-1 ve U-1 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-U-6 ilk yapı

Dox-U-6 son yapı

Şekil 3.21. Şekil 3.21 devam ediyor.

Yapı E (Hartree)		ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-U-2	-2342,8027442	0,641741	-2342,1610032	15,99	0,00	0,00
Dox-U-1	-2342,7951170	0,641740	-2342,1533770	15,25	4,79	4,79
Dox-U-6	-2342,7926990	0,640392	-2342,1523070	13,21	6,30	5,46
Dox-U-12	-2342,7875661	0,640575	-2342,1469911	5,63	9,52	8,79
Dox-U-14	-2342.7843303	0,640204	-2342,1213719	14,11	25,83	24,87

Çizelge 3.20. Çözücü su etkisinde Dox-1 ve U-1 olası etkileşimlerinin ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Gaz fazında ve çözücü su varlığında Dox-U-2 en kararlı yapı olarak belirlendi. Gaz fazındaki en kararlı 4 yapı suda da benzer yapılar gösterdikleri için kararlılık sıralaması çok değişmedi. Ancak çözücü su varlığında Dox-U-14'de nükleobazın yönü değişemediği için gaz fazındakine göre daha kararsız hale geldi. Dox-U-14 yapısında, nükleobaz gaz fazında daha rahat hareket edebildiği için doksorubisin molekülünün üstünden alt kısmına doğru hareket edip daha kararlı bir yapı oluşturabilirken (Şekil 3.20), çözücü su varlığında nükleobaz doksorubisin molekülünün üst kısmında kalmıştır (Şekil 3.21).

3.1.3. Çözücü su etkisinde doksorubisin konformerleri ve nükleobaz tautomerleri için optimizasyon analizi sonuçları

Doksorubisin ve nükleobazlar arasındaki etkileşimleri gözlemlemek için, gaz fazında en kararlı olduğu bulunan doksorubisin konformeri (Dox-1) ve nüklobaz tautomerleri (A-1, C-1, G-1, H-1, T-1 ve U-1) olası etkileşim yerlerine yerleştirilerek gaz fazında ve çözücü su etkisinde optimizasyon analizleri yapıldı. Yapılar gaz fazında daha rahat hareket ederken, çözücü su etkisinde hareketleri kısıtlandı ve bazı nüklobazlarda kararlılık sıralaması değişirken, diğerlerinde yapılarda ve oluşturdukları H bağı uzunluklarında ya da sayılarında değişiklik gözlendi. Bu nedenle doksorubisin konformerlerinin ve nüklobaz tautomerlerinin de kararlılık sıralamasına çözücü su etkisinde de bakılmasına karar verildi. Bu konformerleri diğerlerinden ayırmak için isimlendirmelerin başında "w" ("water" anlamında) harfi kullanıldı.

3.1.3.1. <u>Çözücü su etkisinde doksorubisin konformerleri için</u> optimizasyon analizi sonuçları

Doksorubisin konformerlerinden gaz fazında en kararlı olduğu bulunan ilk 5 yapının çözücü su etkisinde B3LYP/6-31G** ve ωB97XD/6-31G** seviyelerinde optimizasyon analizleri yapıldı. B3LYP/6-31G** seviyesinde yapılan optimizasyon analizi sonucuna göre Dox-1 yine en kararlı yapı olarak bulunurken (wDox-1; Şekil 3.22), ωB97XD/6-31G** seviyesinde yapılan optimizasyon analizi sonucuna göre Dox-2 (wDox-2; Şekil 3.23) en kararlı yapı olarak bulundu (Çizelge 3.21 ve Çizelge 3.22).

wDox-1

wDox-2

wDox-5

Şekil 3.22. Çözücü su etkisinde B3LYP/6-31G** seviyesinde yapılan optimizasyon analizi sonucuna göre en düşük enerjili doksorubisin konformerleri.

Çizelge	3.21.	Doksorubisin	konformerlerinin	çözücü	su	etkisinde	B3LYP/6-31G**
seviyesin	ide yap	oılan optimizasy	on ve frekans hesa	plamalar	1 sor	nuçları.	

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
wDox-1	-1928,6246914	0,541490	-1928,0832014	9,47	0,01	0,00
wDox-2	-1928,6247003	0,541520	-1928,0831803	9,05	0,00	0,01
wDox-3	-1928,6243154	0,542301	-1928,0820144	6,98	0,24	0,74
wDox-4	-1928,6243027	0,542311	-1928,0819917	8,37	0,25	0,76
wDox-5	-1928,6225337	0,542247	-1928,0802867	5,55	1,36	1,83

Şekil 3.23. Çözücü su etkisinde ω B97XD/6-31G** seviyesinde yapılan optimizasyon analizi sonucuna göre en düşük enerjili doksorubisin konformerleri.

wDox-5

Şekil 3.23. Şekil 3.23 devam ediyor.

Çizelge 3.22. Doksorubisin konformerlerinin çözücü su etkisinde ω B97XD/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
wDox-2	-1928,0607105	0,550719	-1927,5099915	9,42	0,02	0,00
wDox-1	-1928,0607386	0,551126	-1927,5096126	9,90	0,00	0,24
wDox-3	-1928,0604027	0,551385	-1927,5090177	7,71	0,21	0,61
wDox-4	-1928,0605317	0,551826	-1927,5087057	8,99	0,13	0,81
wDox-5	-1928,0591705	0,551744	-1927,5074265	5,56	0,98	1,61

Doksorubisin konformerlerinin çözücü su etkisinde B3LYP/6-31G** seviyesindeki optimizasyon analizi sonuçları, bize yine yaptığı güçlü H bağları sayesinde wDox-1'i en kararlı yapı olarak göstermiştir. wDox-2'nin benzer H bağlarına rağmen metoksi grubunun yönü wDox-1'in daha kararlı çıkmasına neden olurken, ωB97XD/6-31G** seviyesinde yapılan analize göre, metoksi grubunun yönüne rağmen 0.001Å'luk H bağındaki kısalma wDox-2'yi wDox-1'den daha kararlı bulmamıza neden olmuştur.

3.1.3.2. <u>Çözücü su etkisinde nükleobaz tautomerleri için optimizasyon</u> <u>analizi sonuçları</u>

Nükleobazlar ve tautomerlerinin çözücü su etkisinde en kararlı yapılarını bulabilmek için, daha önce gaz fazında ω B97XD metodu ile yapılan optimizasyon analizleri çözücü su etkisinde de tekrarlandı. Adenin, sitozin, guanin, hipoksantin, timin ve urasil nükleobazları için ω B97XD metodu 6-31G** baz seti kullanılarak optimizasyon ve frekans hesaplamaları yapıldı (Çizelge 3.23-3.28). Bu yapılardan en kararlı olan wA-1, wC-1, wG-1, wH-2, wT-1 ve wU-1 tautomerleri (Şekil 3.24-3.29), doksorubisin ile etkileşimleri ölçülmek üzere seçildi.

Şekil 3.24. Çözücü su etkisinde Adenin tautomerleri.

wA-5

wA-7

wA-6

wA-11

wA-10

wA-12

Şekil 3.24. Şekil 3.24 devam ediyor.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
wA-1	-467,1922748	0,113374	-467,0789008	3,22	0,00	0,00
wA-2	-467,1874751	0,113732	-467,0737431	9,85	3,01	3,24
wA-3	-467,1817352	0,114114	-467,0676212	5,89	6,61	7,08
wA-9	-467,1762555	0,113381	-467,0628745	12,90	10,05	10,06
wA-4	-467,1756082	0,114849	-467,0607592	5,19	10,46	11,38
wA-6	-467,1724379	0,114731	-467,0577069	4,32	12,45	13,30
wA-5	-467,1718446	0,114720	-467,0571246	4,82	12,82	13,66
wA-8	-467,1714928	0,114633	-467,0568598	6,28	13,04	13,83
wA-7	-467,1666438	0,114528	-467,0521158	4,05	16,08	16,81
wA-10	-467,1626623	0,114406	-467,0482563	6,28	18,58	19,23
wA-11	-467,1585833	0,114170	-467,0444133	13,15	21,14	21,64
wA-12	-467,1583039	0,114394	-467,0439099	13,66	21,32	21,96

Çizelge 3.23. Adenin için çözücü su etkisinde ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

wC-1

wC-3

wC-4

wC-5

Şekil 3.25. Çözücü su etkisinde Sitozin tautomerleri.

Çizelge 3.24. Sitozin için çözücü su etkisinde ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
wC-1	-394,8348105	0,099911	-394,7348995	8,77	0,00	0,00
wC-2	-394,8256325	0,099435	-394,7261975	4,44	5,76	5,46
wC-3	-394,8254358	0,099427	-394,7260088	6,37	5,88	5,58
wC-4	-394,8262775	0,100952	-394,7253255	6,05	5,35	6,01
wC-5	-394,8241586	0,100805	-394,7233536	3,25	6,68	7,25

wG-1

wG-2

wG-3

wG-4

wG-5

wG-6

wG-7

wG-8

Şekil 3.26. Çözücü su etkisinde Guanin tautomerleri.

Үарı	E (Hantmaa)	ZPE	E+ZPE	μ (Dahara)	E _{REL}	E(ZPE) _{REL}
	(Hartree)	(Hartree)	(Hartree)	(Debye)	(Kcai/mol)	(Kcal/mol)
wG-1	-542,4179070	0,117956	-542,2999510	9,12	0,00	0,00
wG-2	-542,4157369	0,118048	-542,2976889	3,32	1,36	1,42
wG-8	-542,4086502	0,118659	-542,2899912	6,75	5,81	6,25
wG-3	-542,4080391	0,118699	-542,2893401	3,92	6,19	6,66
wG-4	-542,4064428	0,118753	-542,2876898	4,67	7,19	7,69
wG-5	-542,4041088	0,117793	-542,2863158	5,43	8,66	8,56
wG-7	-542,4027218	0,118933	-542,2837888	5,05	9,53	10,14
wG-6	-542,4024849	0,118860	-542,2836249	3,51	9,68	10,24

Çizelge 3.25. Guanin için çözücü su etkisinde ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

wH-2

wH-3

wH-4

wH-5

wH-6

wH-7

Şekil 3.27. Şekil 3.27 devam ediyor.

Çizelge 3.26. Hipoksantin için çözücü su etkisinde ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debve)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
wH-2	-487,0581413	0,102357	-486,9557843	6,93	0,00	0,00
wH-1	-487,0575322	0,102420	-486,9551122	2,49	0,38	0,42
wH-6	-487,0478676	0,102225	-486,9456426	6,52	6,45	6,36
wH-3	-487,0460710	0,102018	-486,9440530	3,20	7,57	7,36
wH-4	-487,0444223	0,101994	-486,9424283	6,02	8,61	8,38
wH-5	-487,0438403	0,101927	-486,9419133	7,00	8,97	8,70
wH-8	-487,0379428	0,101558	-486,9363848	9,13	12,67	12,17
wH-9	-487,0321533	0,102134	-486,9300193	7,78	16,31	16,17
wH-7	-487,0316682	0,102237	-486,9294312	4,53	16,61	16,54
wH-10	-487,0053483	0,102279	-486,9030693	10,03	33,13	33,08

wT-3

wT-4

wT-5

wT-6

wT-7

wT-8

Şekil 3.28. Çözücü su etkisinde Timin tautomerleri.

wT-9

wT-10

wT-11

wT-12

Şekil 3.28. Şekil 3.28 devam ediyor.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debve)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
wT-1	-454,0197982	0,115532	-453,9042662	5,55	0,00	0,000
wT-3	-454,0005096	0,116471	-453,8840386	6,77	12,10	12,693
wT-2	-453,9978104	0,116052	-453,8817584	3,79	13,80	14,124
wT-10	-453,9950874	0,116250	-453,8788374	10,50	15,51	15,957
wT-8	-453,9925452	0,116207	-453,8763382	8,42	17,10	17,525
wT-4	-453,9919136	0,115970	-453,8759436	1,91	17,50	17,773
wT-5	-453,9913803	0,115907	-453,8754733	3,67	17,83	18,068
wT-9	-453,9909608	0,115671	-453,8752898	3,00	18,10	18,183
wT-11	-453,9876042	0,115394	-453,8722102	10,15	20,20	20,115
wT-6	-453,9877758	0,115947	-453,8718288	5,61	20,09	20,355
wT-7	-453,9875082	0,115951	-453,8715572	5,36	20,26	20,525
wT-13	-453,9849827	0,115706	-453,8692767	11,96	21,85	21,956
wT-12	-453,9846365	0,115532	-453,8691045	8,51	22,06	22,064

Çizelge 3.27. Timin için çözücü su etkisinde ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

wU-3

wU-4

wU-7

wU-8

wU-9

Şekil 3.29. Şekil 3.29 devam ediyor.

Çizelge 3.28. Urasil için çözücü su etkisinde ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарı	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
wU-1	-414,7088675	0,088550	-414,6203175	5,67	0,00	0,00
wU-3	-414,6903656	0,088390	-414,6019756	6,36	11,61	11,51
wU-2	-414,6865711	0,088116	-414,5984551	4,33	13,99	13,72
wU-4	-414,6813771	0,088066	-414,5933111	1,44	17,25	16,95
wU-8	-414,6808710	0,088035	-414,5928360	8,82	17,57	17,24
wU-5	-414,6808463	0,088046	-414,5928003	3,28	17,58	17,27
wU-9	-414,6790322	0,087894	-414,5911382	9,70	18,72	18,31
wU-6	-414,6780460	0,088142	-414,5899040	5,09	19,34	19,08
wU-7	-414,6777635	0,088006	-414,5897575	4,84	19,52	19,18

Nükleobaz tautomerleri çözücü su etkisinde de benzer sonuçlar vermiş, wA-1, wC-1, wG-1, wH-2, wT-1 ve wU-1 tautomerleri en kararlı yapılar olarak bulunmuştur. Hipoksantin dışında tüm kararlı nükleobazlar gaz fazındakiyle aynıdır. Gaz fazında da H-1 ile H-2 tautomerleri enerji açısından birbirine çok

yakın bulunmuş, çözücü su etkisinde wH-2, wH-1'den daha kararlı olmuştur. H atomlarının konumu çözücü su etkisinde wH-2'nin daha kararlı çıkmasına neden olmuştur.

3.1.4. Çözücü su etkisinde doksorubisin ve nükleobaz etkileşimleri

Çözücü su etkisinde ω B97XD/6-31G** seviyesinde yapılan optimizasyon analizi sonuçlarına göre en kararlı doksorubisin konformeri wDox-2, en kararlı nükleobaz tautomerleri ise wA-1, wC-1, wG-1, wH-2, wT-1 ve wU-1 olarak bulunmuştur. Doxorubisin ile nükleobazların etkileşimlerini çözücü etkisinde gözlemleyebilmek için, gaz fazında en kararlı bulunan ilk 5 olası etkileşim yeri belirlenerek, wDox-2 ve nükleobazlar bu konumlara yerleştirildi. Yapıların Gaussian 09 programı ile DFT yöntemi, ω B97XD metodu, 6-31G** baz seti kullanılarak çözücü su etkisinde optimizasyon analizleri yapıldı. Yapıların ilk halleri ve optimizasyon analizi sonrasındaki konumları Discovery Studio 3.5 Client programı ile çizildi (Şekil 3.30-3.35). Bu yapıların enerji, dipol moment değerleri ve frekans hesaplamaları Çizelge 3.29-3.34'de gösterilmiştir.

Dox-A-2w ilk yapı

Dox-A-2w son yapı

Dox-A-6w son yapı

Şekil 3.30. Şekil 3.30 devam ediyor.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-A-1w	-2395,2906733	0,667606	-2394,6230673	6,63	0,00	0,00
Dox-A-2w	-2395,2819088	0,667381	-2394,6145278	7,86	5,50	5,36
Dox-A-6w	-2395,2785794	0,666798	-2394,6117814	6,61	7,59	7,08
Dox-A-5w	-2395,2759268	0,666736	-2394,6091908	6,73	9,25	8,71
Dox-A-3w	-2395,2748237	0,666737	-2394,6080867	12,86	9,95	9,40

Çizelge 3.29. wDox-2 ve wA-1 olası etkileşimlerinin ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Çözücü su varlığında Dox-A-1w en kararlı yapı olarak bulundu. Gaz fazında en kararlı bulunan yapılardan yola çıkılarak yapılan analizlere göre, gaz fazında da en kararlı olan yapı (Dox-A-1) ile aynı yapı kararlı olarak bulundu. Doksorubisin ile adenin arasındaki H bağları ve adeninin duruş yönünden dolayı oluşturduğu π - π etkileşim, Dox-A-1w yapısının en düşük enerjili yapı olarak bulunmasında etkilidir. Diğer 4 yapıda hem Dox-1 ile çözücü su etkisinde en kararlı bulunan yapı wDox-2 arasındaki yapı farkından, hemde suda moleküllerin hareketleri ksıtlandığından dolayı sıralamada değişiklik gözlenmiştir.

Şekil 3.31. wDox-2 ve wC-1 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Şekil 3.31. Şekil 3.31 devam ediyor.

Çizelge 3.30. wDox-2 ve wC-1 olası etkileşimlerinin ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-C-18w	-2322,9274296	0,653607	-2322,2738226	6,26	0,00	0,00
Dox-C-15w	-2322,9237283	0,653569	-2322,2701593	9,91	2,32	2,30
Dox-C-17w	-2322,9206365	0,654235	-2322,2664015	15,04	4,26	4,66
Dox-C-6w	-2322,9164646	0,652797	-2322,2636676	12,34	6,88	6,37
Dox-C-10w	-2322,9105385	0,653045	-2322,2574935	17,47	10,60	10,25

Çözücü su varlığında Dox-C-18w en kararlı yapı olarak bulundu. Gaz fazında en kararlı bulunan yapılardan yola çıkılarak yapılan analizlere göre, gaz fazında en kararlı olan yapıdan (Dox-C-15) farklı bir yapı suda kararlı bulundu. Gaz fazında kararlılık sıralaması olarak 3. sırada bulunan yapının çözücü su etkisinde en kararlı olarak bulunması, optimizasyon analizi sonucunda yapının Dox-C-15'e benzer bir yapı oluşturmasıyla ilgilidir. Ayrıca dipol moment değerinin diğer yapılara göre daha düşük olması da, yapının kararlılığını artırmada bir etken olabileceğini söyleyebiliriz. Büyük moleküler dipol momenti olan konformerlerin genellikle daha az kararlı olduğu gözlenmiştir. Bu özellik çözücü etkisinde önemlidir, çünkü büyük dipol momentin anlamı daha az kararlı konformerin daha güçlü çözünmesidir. Hatta bazen çözelti içinde kararlılık sıralaması tam tersine dönebilir. Bu, yerel dipol momentlerin göreli yönelimleriyle ilgili bir durumdur (Perrin and Young, 1995). Ancak diğer yapılarla da karşılaştıracak olursak, H bağları ve moleküllerin duruş yönünden dolayı oluşturdukları π - π etkileşimler, kararlılığı etkileyen en önemli faktörlerdir.

Dox-G-5w ilk yapı

Dox-G-5w son yapı

Şekil 3.32. wDox-2 ve wG-1 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-G-13w ilk yapı

Dox-G-13w son yapı

Şekil 3.32. Şekil 3.32 devam ediyor.

Çizelge 3.31. wDox-2 ve wG-1 olası etkileşimlerinin ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-G-13w	-2470,5097049	0,671966	-2469,8377389	11,30	0,14	0,00
Dox-G-1w	-2470,5099249	0,672421	-2469,8375039	15,65	0,00	0,15
Dox-G-5w	-2470,5071272	0,672163	-2469,8349642	15,50	1,76	1,74
Dox-G-6w	-2470,5036295	0,671493	-2469,8321365	10,58	3,95	3,52
Dox-G-3w	-2470,4893969	0,670990	-2469,8184069	16,67	12,88	12,13

Çözücü su varlığında Dox-G-13w en kararlı yapı olarak bulundu. Gaz fazında en kararlı bulunan yapılardan yola çıkılarak yapılan analizlere göre, gaz fazında en kararlı olan yapı Dox-G-3, çözücü etkisinde kararlılık sıralamasında en son sıraya geriledi. Gaz fazında Dox-G-3 yapısı, nüklobazın hareketiyle doksorubisinin üst kısmına gelirken, suda hareket kısıtlandığından dolayı nüklobaz çok fazla hareket edememiş ve Dox-G-3w diğer yapılara göre daha az kararlı bir yapıya dönüşmüştür. Dox-G-13w yapısında, nükleobaz doksorubisinin üst kısmına gelerek, H bağı oluşturduğu ve doksorubisin ile π - π etkileşim içinde olduğundan en kararlı yapı olarak bulunmuştur. Aynı şekilde Dox-G-1w yapısıda oluşturduğu H bağından dolayı diğer bir kararlı yapı olarak tespit edilmiştir.


```
Dox-H-2w ilk yapı
```

Dox-H-2w son yapı

Dox-H-6w ilk yapı

Dox-H-6w son yapı

Şekil 3.33. wDox-2 ve wH-2 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-H-14w ilk yapı

Dox-H-14w son yapı

Şekil 3.33. Şekil 3.33 devam ediyor.

Çizelge 3.32. wDox-2 ve wH-2 olası etkileşimlerinin ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-H-2w	-2415,1557820	0,655191	-2414,5005910	14,95	0,00	0,00
Dox-H-5w	-2415,1440347	0,654650	-2414,4893847	13,13	7,37	7,03
Dox-H-6w	-2415,1407214	0,654937	-2414,4857844	8,04	9,45	9,29
Dox-H-8w	-2415,1403178	0,655587	-2414,4847308	3,89	9,70	9,95
Dox-H-14w	-2415,1361755	0,654791	-2414,4813845	7,51	12,30	12,05

Çözücü su varlığında Dox-H-2w en kararlı yapı olarak bulundu. Gaz fazında en kararlı bulunan yapılardan yola çıkılarak yapılan analizlere göre, gaz fazında da en kararlı olan yapı (Dox-H-2), suda kararlı olarak belirlendi. Suda hem en kararlı doksorubisin konformeri (wDox-2) hem de en kararlı hipoksantin tautomeri (wH-2) değişse de, optimizasyon analizi sonucunda en kararlı yapı, nükleobaz ve doksorubisinin birbirlerine karşı pozisyonları ve aralarındaki H bağları sayesinde yine Dox-H-2w oldu.

Dox-T-1w ilk yapı

Dox-T-1w son yapı

1.65 1.55 1

Dox-T-4w ilk yapı

Dox-T-4w son yapı

Şekil 3.34. wDox-2 ve wT-1 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Dox-T-5w ilk yapı

Dox-T-5w son yapı

Şekil 3.34. Şekil 3.34 devam ediyor.

Çizelge 3.33. wDox-2 ve wT-1 olası etkileşimlerinin @B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-T-2w	-2382,1183591	0,670589	-2381,4477701	14,24	0,00	0,00
Dox-T-1w	-2382,1063027	0,668731	-2381,4375717	14,52	7,57	6,40
Dox-T-5w	-2382,1055205	0,668739	-2381,4367815	14,81	8,06	6,90
Dox-T-6w	-2382,1040972	0,669744	-2381,4343532	15,22	8,95	8,42
Dox-T-4w	-2382,0995659	0,668999	-2381,4305669	14,02	11,79	10,80

Çözücü su varlığında Dox-T-2w yaptığı iki kuvvetli H bağı ve timinin duruş yönünden dolayı doksorubisin ile π - π etkileşimde bulunduğundan en kararlı yapı olarak belirlendi. Gaz fazında en kararlı bulunan yapılardan yola çıkılarak yapılan analizlere göre, gaz fazında da en kararlı olan yapı (Dox-T-2) ile aynı yapı kararlı olarak bulundu. Diğer 4 yapıya da baktığımızda, sıralamada çok değişiklik olmasa da, Dox-T-4'te nükleobaz doksorubisin ile H bağı yaptığından, gaz fazında daha kararlı bir yapıyken, çözücü su etkisinde, moleküllerin hareketleri kısıtlandığından H bağı yapamamış ve sıralamada en sona gerilemiştir.

Dox-U-6w ilk yapı

Dox-U-6w son yapı

Şekil 3.35. wDox-2 ve wU-1 yapıların sudaki ilk halleri ve optimizasyon analizi sonrasındaki konumları.

Şekil 3.35. Şekil 3.35 devam ediyor.

Çizelge 3.34. wDox-2 ve wU-1 olası etkileşimlerinin ω B97XD/6-31G**seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Dox-U-2w	-2342,8041442	0,641413	-2342,1627312	14,52	0,00	0,00
Dox-U-1w	-2342,7949167	0,641227	-2342,1536897	14,16	5,79	5,67
Dox-U-14w	-2342,7926996	0,641944	-2342,1507556	13,28	7,18	7,51
Dox-U-6w	-2342,7889717	0,641002	-2342,1479697	11,48	9,52	9,26
Dox-U-12w	-2342,7856547	0,640517	-2342,1451377	6,90	11,60	11,04

Diğer nükleobazlardaki gibi H bağları ve π - π etkileşimler sayesinde, çözücü su varlığında Dox-U-2w en kararlı yapı olarak bulundu. Gaz fazında en kararlı bulunan yapılardan yola çıkılarak yapılan analizlere göre, gaz fazında da en kararlı olan yapı (Dox-U-2) ile aynı yapı kararlı olarak bulundu. Diğer 4 yapıda da sıralamada değişiklik olmadı. Ancak Dox-U-14 yapısı gaz fazında nükleobazın hareketine izin vererek, doksorubisinin alt kısmına giderken, optimizasyon analizi sonucunda, Dox-U-14w daha farklı bir yapıya dönüşmüş ve nükleobaz doksorubisinin üst kısmında kalarak H bağı yapmıştır. Son yapılar farklı geometrilere dönüşse de kararlılık sıralamasında değişiklik olmamıştır.

3.2. Bleomisin

Germinatif tümörler ve Hodkin's lenfoma gibi tedavi edilebilir hastalıklarda kullanılan bir kemoterapi ajanı olan bleomisinin en önemli yan etkisi pulmoner toksisitedir. Bleomisin tedavisi olan hastaların yüzde 10'unda hayati risk içeren pulmoner toksisite gözlenmektedir (Reinert et al., 2013). Bleomisinin DNA bağlanma domaninin karşısında bulunan metal bağlanma domainine bleomisinin temel kofaktörü olan demir bağlandığında, serbest radikaller oluşturur ve böylece bleomisin sitotoksik etkilerini gösterir. Bu serbest radikaller tek ve çift sarmal DNA kırıkları oluşturarak hücre ölümüne neden olur (Burger et al., 1981). Bunun yanı sıra, bleomisinin tüm hücresel RNA'ların oksidatif bozulmasına da aracılık ettiği bilinmektedir (Chen and Stubbe, 2005). Bu nedenle, bleomisinin yan etkilerini ortadan kaldırabilmek amacıyla DNA ve RNA ile yaptığı etkileşimin bilinmesi önemlidir. Bu çalışmada, bleomisinin DNA bağlanma domaini olan bithiazole domaini moleküler modelleme yöntemleriyle incelenmiştir.

3.2.1. Bleomisin konformerleri için optimizasyon analizi sonuçları

DNA bağlanmasında önemli rolü olduğu düşünülen bithiazole domainini, DNA ile yaptığı etkileşimi kuantum mekaniksel yöntemleri kullanarak incelemek amacıyla, bleomisinin 3 boyutlu yapısı <u>http://www.drugbank.ca</u> sitesinden alınarak, konformasyon analizi yapılmak üzere Spartan 08 programı ile çalıştırıldı (Şekil 3.36).

Şekil 3.36. Bleomisinin 3 boyutlu yapısı.

Bleomisinin bithiazole domainini ile çalışılacağı için, Spartan 08 programı ile bleomisinin sadece bithiazole domainini kalacak şekilde diğer bölgeleri kesildi (Şekil 3.37).

Şekil 3.37. Bithiazole domainin 3 boyutlu yapısı.

Elde edilen bithiazole domaini için en uygun konformeri bulmak için Spartan 08 programı ile optimizasyon analizi yapıldı. Tamamlanan optimizasyon analizinden çıkan 798 adet konformer Ek 2'de verilmiştir. Bu konformerler için yapılması gereken optimizasyon analizi Gaussian 09 programı ile DFT yöntemi, B3LYP metodu, 6-31G** baz seti kullanılarak yapıldı. Bu konformerlerin içinde en kararlı yani en düşük enerjili yapı, DFT ile yapılan hesaplamada her bir konformerin enerji ve dipol moment değerlerine bakılarak Blm-183 numaralı konformer (Blm-1) olarak tanımlandı. En düşük enerjili yapılar Şekil 3.38'de, bu yapılar için yapılan optimizasyon ve frekans hesaplamaları Çizelge 3.35'de gösterilmiştir.

Şekil 3.38. En düşük enerjili bleomisin konformerleri.

Blm-3

Blm-4

Blm-6

Blm-7

Blm-8

Blm-9

Blm-10

Blm-11

Blm-12

Blm-13

Şekil 3.38. Şekil 3.38 devam ediyor.

Blm-15

Blm-16

Blm-18

Blm-19

Blm-20

Konformer No	Үарі	E (Hartree)	ZPE (Hartree)	E+ZPE (Hartree)	μ (Debye)	E _{REL} (kcal/mol)	E(ZPE) _{REL} (kcal/mol)
Blm-183	Blm-1	-2435,9613950	0,493074	-2435,468321	13,37	0,00	0,00
Blm-261	Blm-2	-2435,9422030	0,494602	-2435,447601	12,31	12,04	13,00
Blm-234	Blm-3	-2435,9365869	0,494158	-2435,442429	4,36	15,57	16,25
Blm-699	Blm-4	-2435,9359520	0,493905	-2435,442047	9,65	15,97	16,49
Blm-317	Blm-5	-2435,9352040	0,493332	-2435,441872	8,33	16,44	16,60
Blm-442	Blm-6	-2435,9363901	0,494632	-2435,441758	8,49	15,69	16,67
Blm-043	Blm-7	-2435,9350891	0,493980	-2435,441109	5,95	16,51	17,08
Blm-262	Blm-8	-2435,9341908	0,493734	-2435,440457	17,15	17,07	17,49
Blm-273	Blm-9	-2435,9348059	0,494399	-2435,440407	7,74	16,68	17,52
Blm-082	Blm-10	-2435,9342934	0,493961	-2435,440332	4,27	17,01	17,56
Blm-040	Blm-11	-2435,9342938	0,493962	-2435,440332	4,28	17,01	17,56
Blm-362	Blm-12	-2435,9342070	0,493895	-2435,440312	13,59	17,06	17,58
Blm-429	Blm-13	-2435,9338738	0,493923	-2435,439951	13,48	17,27	17,80
Blm-030	Blm-14	-2435,9336175	0,493802	-2435,439816	13,95	17,43	17,89
Blm-281	Blm-15	-2435,9329645	0,493963	-2435,439002	4,04	17,84	18,40
Blm-054	Blm-16	-2435,9326744	0,493693	-2435,438981	6,98	18,02	18,41
Blm-180	Blm-17	-2435,9326553	0,493746	-2435,438909	7,64	18,03	18,46
Blm-651	Blm-18	-2435,9329228	0,494525	-2435,438398	5,76	17,87	18,78
Blm-563	Blm-19	-2435,9329227	0,494594	-2435,438329	5,77	17,87	18,82
Blm-578	Blm-20	-2435,9326111	0,494551	-2435,438060	7,88	18,06	18,99

Çizelge 3.35. En düşük enerjili bleomisin konformerlerinin B3LYP/6-31G** seviyesinde yapılan optimizasyon ve frekans hesaplamaları sonuçları.

Bleomisinin büyük bir molekül olduğu için ve hesapsal olarak tüm yapının çalışılması zaman açısından maliyetli olacağından, sadece bithiazole domainin çalışılmasına karar verilmişti. Bleomisinin sadece bithiazole domaininin geometri optimizasyonları yapıldığından, bu domainin başlangıçtaki 3 boyutlu yapısından farklı bir yapıya dönüştüğü gözlenmiştir. Geometri optimazsyonu boyunca yapı en düşük enerjili konformasyonu bulabilmek için değişebilir. Fakat bu değişim yapının orijinal formundan farklı bir yapıya dönüşmesine neden olduğu için, yapılacak ileri düzeydeki hesaplamaların bleomisin için tutarlı olmayacağı düşünüldü. Bu nedenle daha ileri hesaplamalar yapılmasından vazgeçildi.

4. SONUÇLAR

Önemli bir antrasiklin antibiyotik olan doksorubisinin DNA'ya bağlanabilen karmaşık özellikleri henüz tam olarak anlaşılamamış ve bu nedenle de yoğun tartışmaların ve birçok çalışmanın hedefi olmuştur (Perez-Arnaiz et al., 2014). Günümüzde, doksorubisinin DNA'ya bağlanmasının ana özelliklerinin, doksorubisinin biyolojik etki kökeninden kaynaklandığı kabul edilmektedir (Minotti et al., 2004; Perez-Arnaiz et al.'dan, 2014). Doksorubisinin çift sarmal DNA ile etkileşimi, her bir bileşenin oynadığı rol ile belirlenir. İlacın DNA sarmalının arasına girmesiyle polinükleotid yapısını bozar ve bu da DNA replikasyonu ve transkripsiyonu ile ilgili enzimlerin inhibe olmasıyla sonuçlanır. Tetrasiklik bölgesinin, DNA baz çiftlerinin arasına girmesinden dolayı doksorubisin yıllardır interkalasyon ajanı olarak kabul edilmektedir (Aubel-Sadron and Londos-Gangliardi, 1984; Perez-Arnaiz et al.'dan, 2014).

DNA ile etkileşimi sonucunda kemoterapatik etkisini gösterdiği düşünülen doksorubisinin, nükleobazlarla ne şekilde etkileşime girdiğini gözlemlemek önemlidir. Bu amaçla, bu çalışmada moleküler modelleme yöntemleri kullanılarak doksorubisin ve nükleobaz etkileşimleri aydınlatılmaya çalışılmıştır. Öncelikle, doksorubisinin 3 boyutlu yapısının Spartan 08 programı ile konformasyon analizi yapılmış ve 422 adet konformer bulunmuştur. Bu konformerlerden en kararlı olan yapıyı bulabilmek ve nükleobazlarla etkileşim hesaplamalarında kullanabilmek üzere, Gaussian 09 programı, DFT yöntemi, B3LYP metodu, 6-31G** baz seti kullanılarak optimizasyon analizleri yapıldı. Yapılardan en karalı olan 20 tanesinin optimizasyon analizleri, daha küçük istatistiksel hatalar ile daha doğru hesaplamalar yaptığı bilinen ω B97XD metodu ile tekrarlandı. Her iki metoda göre de Dox-383 nolu konformer (Dox-1) en kararlı yapı olarak tespit edildi.

Adenin, sitozin, guanin, hipoksantin, timin ve urasil nükleobaz tautomerleri için de Gaussian 09 programı, DFT yöntemi, ω B97XD metodu, 6-31G** baz seti kullanılarak optimizasyon analizleri yapıldı. En kararlı (en düşük enerjili) tautomerler (A-1, C-1, G-1, H-1, T-1, U-1), Dox-1 ile etkileşimleri gözlenmek üzere olası etkileşim yerlerine yerleştirildi. Oluşturulan bu yapıların da aynı seviyede optimizasyon analizleri yapılarak, doksorubisin ile nükleobazlar arasındaki etkileşim, yaptıkları bağlar ve optimizasyon analizi sonucunda ortaya çıkan yapısal değişiklikler incelendi.

Dox-A-1, Doc-C-15, Dox-G-3, Dox-H-2, Dox-T-2, Dox-U-2 en kararlı yapılar olarak hesaplandı. Bu yapılara baktığımızda, hepsinde nükleobazın doksorubisinin üst kısmından yaklaşarak H bağı yaptığı, π - π etkileşimlere neden doksorubisinin tetrasiklik yapısında bükülmeye neden olarak, olduğu gözlenmiştir. Bu analizlerin gaz fazında yapıldığı ve normal hücre içerisinde çözücü etkisinde olacağı düşünülerek, en kararlı olduğu bulunan ilk 5 yapının optimizasyon analizleri çözücü su varlığında da tekrarlandı. Bu hesaplamalar sonucunda Dox-A-1, Doc-C-17, Dox-G-1, Dox-H-2, Dox-T-2, Dox-U-2 en kararlı yapılar olarak hesaplandı. Sitozin ve guanin nükleobazları hariç diğer nükleobazlarda etkileşimin en kararlı olduğu yapılar gaz fazındaki ile aynı çıktı. Ancak ilk yapılar ve optimizasyon analizi sonrasındaki yapılar karşılaştırıldığında, suda moleküllerin hareketlerinin kısıtlandığı ve gaz fazına kıyasla yapının ilk hali ile son hali arasında daha küçük değişiklikler olduğu saptandı. Gaz fazından farklı yapılar sitozin ve guanin etkileşimleri için çözücü su etkisinde daha kararlı bulunsa da, bu yapılarda da nükleobazın doksorubisinin üst kısmından H bağı yaparak etkileşime girdiği açıkça görülmektedir. Hipoksantin nükleobazı için aynı yapı gaz ve su fazında kararlı olarak bulunmasına rağmen, suda hipoksantin ile doksorubisin arasında bir H bağı bulunmamaktadır. Buna rağmen bu yapının en kararlı olarak bulunması, sadece H bağının değil, nükleobazın yerinin ve π - π etkileşimlerin de yapının enerjsisi üzerinde önemli etkisinin olduğunu bize göstermektedir.

Gaz fazında ve çözücü su varlığında, nükleobaz ve doksorubisin etkileşimlerini gösteren yapılarda kararlılık sıralamasının ve optimizasyon analizi sonrasındaki yapılarda farklılıkların görülmesi, doksorubisin konformerleri ve nükleobaz tautomerlerinin de cözücü su etkisinde optimizasyon analizlerini tekrar etmemizin gerekli olabileceğini gösterdi. Bu amaçla, gaz fazında en kararlı olduğu bulunan ilk 5 doksorubisin konformerinin, çözücü su etkisinde B3LYP/6-31G** ωB97XD/6-31G** seviyelerinde optimizasyon ve analizleri vapıldı. B3LYP/6-31G** seviyesinde Dox-383 nolu konformer (Dox-1) yine en kararlı vapı olarak bulunurken (wDox-1), ωB97XD/6-31G** seviyesinde Dox-326 nolu konformerin (Dox-2; wDox-2) en kararlı yapı olarak bulunması çözücü su etkisinde de doksorubisin konformerlerinin kararlılık sıralamasına bakılmasının önemini ortaya koymustur. Nükleobaz tautomerlerinin cözücü su etkisinde ωB97XD metodu ile yapılan optimizasyon analizi sonuçlarına göre en kararlı tautomerler wA-1, wC-1, wG-1, wH-2, wT-1 ve wU-1 olarak bulundu.

Çözücü su etkisinde en kararlı olduğu bulunan wDox-2 doksorubisin konformeri ve wA-1, wC-1, wG-1, wH-2, wT-1 ve wU-1 nükleobaz tautomerleri, gaz fazında en kararlı olan ilk 5 olası etkileşim yerine yerleştirilerek, Gaussian 09 programı ile DFT yöntemi, ω B97XD metodu, 6-31G** baz seti kullanılarak çözücü su etkisinde optimizasyon analizleri yapıldı. Hesaplamalara göre, Dox-A-1w, Doc-C-18w, Dox-G-13w, Dox-H-2w, Dox-T-2w, Dox-U-2w en kararlı doksorubisin, nükleobaz etkileşim yapıları olarak bulundu. Bu yapılarda da yine nükleobazların doksorubisinin üst kısmından H bağı yaptığı ve doksorubisin ile nükleobazların π - π etkileşim içinde olduğu dikkat çekmektedir. Sitozin ve guanin nükleobazları hariç diğer nükleobazlarda etkileşimin en kararlı olduğu yapılar gaz fazındaki ile aynı olduğu görülmektedir.

Doğal bir antibiyotik olan bleomisin, hücresel metal iyon ve oksijen varlığında, oksidatif DNA kırığına aracılık edebilir ve bunun bleomisinin antitümör aktivitesine büyük katkısı olduğuna inanılmaktadır (Kross et al., 1982; Burger, 1998; Hecht, 2000; Chen and Stubbe, 2005). Bleomisinin metal bağlanma bölgesi, metal iyonlarını koordine ederek metalobleomisin olusumunu sağlar ve böylece oksijenle reaksiyona girerek DNA'dan hidrojen atomu ayrılmasına aracılık eder ve kademeli olarak DNA kırılmasını başlatır (Burger, 1998; Loeb et al., 1998; Hecht, 2000; Neese et al., 2000; Chen and Stubbe, 2005; Decker et al., 2006). Bleomisin hem tek sarmal hem de çift sarmal DNA kırıklarına yol açar. Çift sarmal DNA kırıkları gözlemlenen sitotoksik etkilere ana katkıyı yaptığı ileri sürülmektedir. Şimdiye kadar bleomisin en iyi çalışılmış DNA kırığına yol açan bir antibiyotik olsa da mekanizma ve fonksiyon olarak hala tam olarak anlaşılamamıştır (Loeb et al., 1998; Neese et al., 2000; Decker et al., 2006; Goodwin et al., 2008; Bozeman et al., 2012; Li et al.'dan, 2014). Bleomisinin etki mekanizmasını daha iyi anlayabilmek için metal bağlanma domaininin farklı sentetik taklitleri dizayn edilmiş ve sentezlenmiş ve ilk defa Li ve arkadaşlarının yaptığı çalışmada, hücre içinde sentetik bleomisin taklidinin verimli bir şekilde çekirdek DNA kırıklarına yol açtığı gösterilmiştir (Li et al., 2014).

Bleomisinin metal bağlanma domaini ile ilgili çok sayıda çalışma olması, bleomisinin tüm yapısının kuantum mekanik çalışmaları için zaman açısından maliyetli olması, bizi DNA bağlanmasında önemli rolü olduğu düşünülen DNA bağlanma domaninin nükleobazlarla etkileşimini araştırmaya yöneltmiştir. Bu amaçla bleomisinin 3 boyutlu yapısı Spartan 08 programı ile sadece DNA bağlanma domaini kalacak şekilde kesildi ve konformasyon analizleri yapıldı. Analizler sonucunda 798 adet konformer bulunmuştur. En kararlı olan yapıyı bulabilmek ve nükleobazlarla etkileşim hesaplamalarında kullanabilmek üzere, Gaussian 09 programı, DFT yöntemi, B3LYP metodu, 6-31G** baz seti kullanılarak optimizasyon analizleri yapıldı. En kararlı bleomisin konformeri Blm-183 nolu konformer (Blm-1) olarak tespit edildi. Yapılardan en karalı olan 20 tanesinin şekillerine bakıldığında, başlangıçtaki yapıdan çok farklı yapılara dönüştüğü gözlenmiştir. Bleomisinin sadece DNA bağlanma domani için optimizasyon analizleri yapıldığından, orijinal yapıdaki domainden çok farklı yapılar ortaya çıkmıştır. Geometri optimizasyonu sırasında yapıların en düşük enerjili hale gelebilmek için değişmeleri normaldır. Ancak bu değişim orijinal yapıdan çok farklı bir yapıya dönüşmesine neden olduğundan, bu yapıyla yapılacak ileri hesaplamalar bleomisin hakkında bize doğru bir fikir veremeyecektir. Bu nedenle DNA bağlanma domaininin nükleaobazlarla etkileşimine bakılamamıştır.
KAYNAKLAR DİZİNİ

Airoldi M., Barone G., Gennaro G., Giuliani A.M., Giustini M. and Hager M.H., 2014, Interaction of doxorubicin with polynucleotides. A spectroscopic study, *Biochemistry*, 53:2197-2207pp.

American Cancer Society, "Chemotherapy Drugs: How They Work", http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/ch emotherapy/chemotherapyprinciplesanindepthdiscussionofthetechniquesanditsroleintreatment/chemotherapyprinciples-types-of-chemo-drugs (Erişim tarihi: 3 Ocak 2016)

- American Cancer Society, "The History of Cancer", <u>http://www.cancer.org/cancer/cancerbasics/thehistoryofcancer/the-history-of-cancer-what-is-cancer</u> (Erişim tarihi: 3 Aralık 2015a)
- American Cancer Society, "What is Cancer", <u>http://www.cancer.org/cancer/cancerbasics/what-is-cancer (Erişim tarihi: 7</u> Aralık 2015b)
- Andrushko V. and Andrushko N., 2013, Stereoselective Synthesis of Drugs and Natural Products, 2 Volume Set, John Wiley & Sons, Hoboken, 82p.
- Arcamone F., Cassineffi G., Di Marco A. and Gaetani M., 1967, Patent Application Farmitalia Research Laboratories 251 NSA.
- Aubel-Sadron G. and Londos-Gagliardi D., 1984, Daunorubicin and doxorubicin, antracycline antibiotics, a physicochemical and biological review, *Biochimie*, 66:333-352pp.
- **Beatson G.**, 1896, On the treatment of inoperable cases of carcinoma of the mamma: Suggestions for a new method of treatment, with illustrative cases, *Lancet*, 2:104-107pp.
- **Becke A.D.**, 1993, Density-functional thermochemistry. III. The role of exact exchange, *The Journal of Chemical Physics*, 98:5648-5652pp.
- Bonadonna G., Monfardini S., De Lena M., Fossati-Bellani F. and Beretta G., 1970, Phase I and preliminary phase II evaluation of adriamycin (NSC 123127), *Cancer Research*, 30(10):2572-2582pp.
- Bonadonna G., Monfardinit S., De Lena M., Fossati-Bellani F., 1969, Clinical evaluation of adriamycin, a new antitumour antibiotic, *British Medical Journal*, 3:503-506pp.

- **Bosch F. and Rosich L.**, 2008, The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his nobel prize, *Pharmacology*, 82:171-179pp.
- Bozeman T.C., Nanjunda R., Tang C., Liu Y., Segerman Z.J., Zaleski P.A., Wilson W.D. and Hecht S.M., 2012, Dynamics of bleomycin interaction with a strongly bound hairpin DNA substrate, and implications for cleavage of the bound DNA, *Journal of the American Chemical Society*, 134:17842-17845pp.
- **Burger R.M.**, 1998, Cleavage of nucleic acids by bleomycin, *Chemical Reviews*, 98:1153-1170pp.
- Burger R.M., Peisach J. and Horwitz S.B., 1981, Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA, *The Journal of Biological Chemistry*, 256(22):11636-11644pp.
- Cancer Research UK, "What is Cancer", <u>http://www.cancerresearchuk.org/about-cancer/what-is-cancer</u> (Erişim tarihi: 7 Aralık 2015)
- Carter S.K., Umezawa H., Douros, J. and Sakurai Y., 2012, Antitumor antibiotics, Springer Science & Business Media.
- Carvalho F.S., Burgeiro A., Garcia R., Moreno A.J., Carvalho R.A. and Oliveira P.J., 2014, Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy, *Medicinal Research Reviews*, 34(1):106-135pp.
- Chai J. and Head-Gordon M., 2008, Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. *Physical Chemistry Chemical Physics*, 10:6615-6620pp.
- Chaires J.B., Dattagupta N.D. and Crothers D.M., 1983, Binding of daunomycin to calf thymus nucleosomes, *Biochemistry*, 22(2):284-292pp.
- Chen J. and Stubbe J., 2005, Bleomycins: towards better therapeutics, *Nature Reviews Cancer*, 5:102-112pp.
- **Chen K., Gresh N. and Pullman B.**, 1985, A theoretical investigation on the sequence selective binding of daunomycin to double-stranded polynucleotides, *Journal of Biomolecular Structure and Dynamics*, 3(3):445-466pp.

- Chow M.S., Liu L.V. and Solomon E.I., 2008, Further insights into the mechanism of the reaction of activated bleomycin with DNA, *Proceedings* of the National Academy of Sciences, 105(36): 13241-13245pp.
- **Corthay A.**, 2014, Does the immune system naturally protect against cancer?, *Frontiers in immunology*, 5(197): 1-8pp.
- Coughlin J.M., Rudolf J.D., Wendt-Pienkowski E., Wang L., Unsin C., Galm U., Yang D., Tao M. and Shen B., 2014, BlmB and TlmB provide resistance to the bleomycin family of antitumor antibiotics by N-acetylating metal-free bleomycin, tallysomycin, phleomycin, and zorbamycin, *Biochemistry*, 53:6901-6909pp.
- **Coutard H.**, 1932, Roentgen therapy of epitheliomas of the tonsillar region, hypopharynx, and larynx from 1920 to 1926, *American Journal of Roentgenology*, 28:313-331pp.
- Curie P., Curie M. and Bémont G., 1898, On a new, strongly radioactive substance contained in pitchblende, CR (East Lansing,Mich), 127:1215-1217pp.
- Decker A., Chow M.S., Kemsley J.N., Lehnert N. and Solomon E.I., 2006, Direct hydrogen-atom abstraction by activated bleomycin: An experimental and computational study, *Journal of the American Chemical Society*, 128:4719-4733pp.
- **DeVita, V.T. and Rosenberg, S.A.**, 2012, Two hundred years of cancer research, *The New England Journal of Medicine*, 366:2207-2214pp.
- **Dhar S., Nethaji M. and Chakravarty A.R.**, 2004, Synthetic analogue approach for the functional domains of copper(II) bleomycins and its DNA cleavage activity, *Dalton Transactions*, 24:4180-4184pp.
- Druker B.J., Guilhot F., O'Brien S.G., Gathmann I., Kantarjian H., Gattermann N., Deininger M.W., Silver R.T., Goldman J.M., Stone R.M., Cervantes F., Hochhaus A., Powell B.L., Gabrilove J.L., Rousselot P., Reiffers J., Cornelissen J.J., Hughes T., Agis H., Fischer T., Verhoef G., Shepherd J., Saglio G., Gratwohl A., Nielsen J.L., Radich J.P., Simonsson B., Taylor K., Baccarani M., So C., Letvak L., Larson R.A. and IRIS Investigators, 2006, Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia, *The New England Journal of Medicine*, 355:2408-2417pp.

- Dudley M.E., Wunderlich J.R., Robbins P.F., Yang J.C., Hwu P., Schwartzentruber D.J., Topalian S.L., Sherry R., Restifo N.P., Hubicki A.M., Robinson M.R., Raffeld M., Duray P., Seipp C.A., Rogers-Freezer L., Morton K.E., Mavroukakis S.A., White D.E., Rosenberg S.A., 2002, Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, *Science*, 298:850-854pp.
- Farber S., Diamond L.K., Mercer R.D., Sylvester R.F. and Wolff J.A., 1948, Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin), *The New England Journal of Medicine*, 238:787-793pp.
- **Finn O.J.**, 2012, Immuno-oncology: understanding the function and dysfunction of the immune system in cancer, *Annals of Oncology*, 23(8):viii6-viii9pp.
- Fornari F.A., Randolph J.K., Yalowich J.C., Ritke M.K. and Gewirtz D.A., 1994, Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells, *Molecular Pharmacology*, 45(4):649-656pp.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J. and Fox D.J., 2009, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT.
- Fu D., Calvo J.A. and Samson L.D., 2012, Balancing repair and tolerance of DNA damage caused by alkylating agents, *Nature Reviews*, 12:104-120pp.

- Galm U., Hager M.H., Van Lanen S.G., Ju J., Thorson J.S. and Shen B., 2005, Antitumor antibiotics: bleomycin, ene-diynes, and mitomycin, *Chemical Reviews*, 105:739-758pp.
- **Gewirtz D.A.**, 1999, A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin, *Biochemical Pharmacology*, 57:727-741pp.
- Goodman L.S., Wintrobe M.M., Dameshek W., Goodman M.J., Gilman A. and McLennan M.T., 1946, Nitrogen mustard therapy: use of methylbis(beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia, and certain allied and miscellaneous disorders, *The Journal of the American Medical Association*, 105:475-476pp.
- Goodman S., Gilman A., Brunton L., Lazo J. and Parker K., 2005, Goodman&Gilman's the Pharmacological Basis of Therapeutics, McGraw-Hill, New York.
- Goodwin K.D., Lewis M.A, Long E.C. and Georgiadis M.M., 2008, Crystal structure of DNA-bound Co(III)_bleomycin B2:Insights on intercalation and minor groove binding, *Proceedings of the National Academy of Sciences*, 105:5052-5056pp.
- Halsted WS., 1894, The results of operations for the cure of cancer of the breast performed at the Johns Hopkins Hospital from June, 1889, to January, 1894, *Annals of Surgery*, 20:497-555pp.
- Hecht S.M., 2000, Bleomycin: new perspectives on the mechanism of action, *Journal of Natural Products*, 63:158-168pp.
- Hertwig R.H. and Koch W., 1997, On the parameterization of the local correlation functional. What is Becke-3-LYP?, *Chemical Physics Letters*, 268:345-351pp.
- **Hinchliffe A.**, 2008, Molecular modelling for beginners, 2nd edition, JohnWiley & Sons Ltd, United Kingdom.

- Hodi F.S., O'Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R., Robert C., Schadendorf D., Hassel J.C., Akerley W., van den Eertwegh A.J., Lutzky J., Lorigan P., Vaubel J.M., Linette G.P., Hogg D., Ottensmeier C.H., Lebbe C., Peschel C., Quirt I., Clark J.I., Wolchok J.D., Weber J.S., Tian J., Yellin M.J., Nichol G.M., Hoos A. and Urba W.J., 2010, Improved survival with ipilimumab in patients with metastatic melanoma, *The New England Journal of Medicine*, 363:711-273pp. [Erratum, *N Engl J Med*, 2010;363:1290.]
- International Agency for Research on Cancer, "GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalance Worldwide in 2012", <u>http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx</u> (Erişim_tarihi: 10 Aralık 2015)
- Joachim H., 1890, Papyrus Ebers, Berlin, 193p.
- Kaufmann S.H.E. and Ehrlich P., 2008, Founder of chemotherapy, *Nature Reviews Drug Discovery*, 7:373p.
- Kollman P., 1987, Molecular modeling, Annual Review of Physical Chemistry, 38:303-316pp.
- Köhler G. and Milstein C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, *Nature*, 256:495-497pp.
- Kross J., Henner W.D., Hecht S.M. and Haseltine W.A., 1982, Specificity of deoxyribonucleic acid cleavage by bleomycin, phleomycin, and tallysomycin, *Biochemistry*, 21:4310-4318pp.
- Kumar D., Hirao H., Shaik S. and Kozlowski P.M., 2006, Proton-shuffle mechanism of O-O activation for formation of a high-valent oxo-iron species of bleomycin, *Journal of the American Chemical Society*, 128:16148-16158pp.
- Lahue R.S, Au K.G. and Modrich P., 1989 DNA Mismatch correction in a defined system, *Science*, 245(4914):160-164pp.
- Lahtz C. and Pfeifer G.P., 2011, Epigenetic changes of DNA repair genes in cancer, *Journal of Molecular Cell Biology*, 3:51-58pp.
- Leach A.R., 2001, Molecular Modeling Principles and Applications, Second edition, Pearson Education Limited, England.

- Lehmann T.E., 2004, Structural study of copper(I)-bleomycin, *Journal of Biological Inorganic Chemistry*, 9:323-334pp.
- Li Q., van der Wijst M.G.P., Kazemier H. G., Rots M. G., and Roelfes G., 2014, Efficient nuclear DNA cleavage in human cancer cells by synthetic bleomycin mimics, ACS Chemical Biology, 9:1044-1051pp.
- **Lindahl T.**, 1974, An N-glycosidase from escherichia coli that releases free uracil from DNA containing deaminated cystosine residues, *Proceedings of the National Academy of Sciences*, 71(9):3649-3653pp.
- Liu L.V., Bell C.B. 3rd, Wong S.D., Wilson S.A., Kwak Y., Chow M.S., Zhao J., Hodgson K.O., Hedman B. and Solomon E.I., 2010, Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods, *Proceedings of the National Academy of Sciences*, 107:22419-22424pp.
- Lodish H., Berk A., Zipursky S.L., Matsudaira P., Baltimore D. and Darnell J., 2000, Molecular Cell Biology, 4th edition, W. H. Freeman, New York.
- Loeb K.E., Zaleski J.M., Hess C.D., Hecht S.M. and Solomon E.I., 1998, Spectroscopic investigation of the metal ligation and reactivity of the ferrous active sites of bleomycin and bleomycin derivatives, *Journal of the American Chemical Society*, 120:1249-1259pp.
- Minenkov Y., Singstad A., Occhipinti G. and Jensen V.R., 2012, The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase, *Dalton Transactions*, 41(18):5526-5541pp.
- Minotti G., Menna P., Salvatorelli E., Cairo G. and Gianni L., 2004, Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity, *Pharmacological Reviews*, 56:185-229pp.
- Momparler R.L., Karon M., Siegel S.E. and Avila F., 1976, Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells, *Cancer Research*, 36(8):2891-2895pp.
- **Morgan G.**, 2003, Chemotherapy and the cell cycle, *Cancer Nursing Practice*, 2(1):27-30pp.

- Morgan R.A., Dudley M.E., Wunderlich J.R., Hughes M.S., Yang J.C., Sherry R.M., Royal R.E., Topalian S.L., Kammula U.S., Restifo N.P., Zheng Z., Nahvi A., de Vries C.R., Rogers-Freezer L.J., Mavroukakis S.A., Rosenberg S.A., 2006, Cancer regression in patients after transfer of genetically engineered lymphocytes, *Science*, 314:126-129pp.
- **National Cancer Institute**, "What is Cancer", <u>http://www.cancer.gov/about-</u> <u>cancer/what-is-cancer</u> (Erişim tarihi: 7 Aralık 2015)
- Neese F., Zaleski J.M., Zaleski K.L. and Solomon E.I., 2000, Electronic structure of activated bleomycin: Oxygen intermediates in heme versus non-heme iron, *Journal of the American Chemical Society*, 122:11703-11724pp.
- Nitiss J.L., 2009, Targeting DNA topoisomerase II in cancer chemotherapy, *Nature Reviews*, 9:338-350pp.
- **Palwai V.R. and Eriksson L.A.**, 2011, Molecular dynamics simulations exploring the interaction between DNA and metalated bleomycin, *Journal of Biophysical Chemistry*, 2:170-182pp.
- Pérez-Arnaiz C., Busto N., Leal J.M. and García B., 2014, New insights into the mechanism of the DNA/doxorubicin interaction, *The Journal of Physical Chemistry B*, 118(5):1288-1295pp.
- **Perrin C.L. and Young D.B.**, 1995, Is the isomer with the largest dipole moment always the least stable?, *Tetrahedron Letters*, 36(40):7185-7188pp.
- **Pommier Y.**, 2006, Topoisomerase I inhibitors: camptothecins and beyond, *Nature Reviews*, 6:789-802pp.
- Reinert T., Baldotto C.S.R., Nunes F.A.P. and Scheliga A.A.S., 2013, Bleomycin-induced lung injury, *Journal of Cancer Research*, 480608.
- **Roentgen K.**, 1896, On a new kind of rays. (Arthur Stanton, trans.), *Nature*, 53:274-276pp.
- Rosenberg S.A., Lotze M.T., Muul L.M., Leitman S., Chang A.E., Ettinghausen S.E., Matory Y.L., Skibber J.M., Shiloni E., Vetto J.T., Seipp C.A., Simpson C. and Reichert C., 1985, Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer, *The New England Journal of Medicine*, 313:1485-1492pp.

- Rosenberg S.A., Packard B.S., Aebersold P.M., Solomon D., Topalian S.L., Toy S.T., Simon P., Lotze M.T., Yang J.C., Seipp C.A., Simpson C., Carter C., Bock S., Schwartzentruber D., Wei J.P. and White D.E., 1988, Use of tumor infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma: preliminary report, *The New England Journal of Medicine*, 319:1676-1680pp.
- Rudolf J.D., Bigelow L., Chang C., Cuff M.E., Lohman J.R., Chang C.Y., Ma M., Yang D., Clancy S., Babnigg G., Joachimiak A., Phillips G.N. and Shen B., 2015, Crystal structure of the zorbamycin-binding protein zbma, the primary self-resistance element in streptomyces flavoviridis ATCC21892, *Biochemistry*, 54:6842-6851pp.
- Saffi J., Agnolettoa M.H., Guechevaa T.N., Batista L.F.Z., Carvalhod H., Henriquesa J.A.P., Stary A., Menck C.F.M. and Sarasin A., 2010, Effect of the anti-neoplastic drug doxorubicin on XPD-mutated DNA repairdeficient human cells, *DNA Repair*, 9:40-47pp.
- Sancar A. and Rupp W.D., 1983, A novel repair enzyme: UVRABC excision nuclease of escherichia coli cuts a DNA strand on both sides of the damaged region, *Cell*, 33(1):249-260pp.
- Schlick T., 2010, Molecular Modeling and Simulation An Interdisciplinary Guide, 2nd edition, Springer, New York, Dordrecht, Heidelberg, London.
- Sigerist H.E., 1932, The historical development of the pathology and therapy of cancer, *Bulletin of the New York Academy of Medicine*, 8(11):642-653pp.
- Singal P.K. and Iliskovic N., 1998, Doxorubicin-induced cardiomyopathy, *New England Journal of Medicine*, 339(13):900-905pp.
- Spartan 08, 2008, Wavefunction Inc., Irvine, CA.
- Steinherz L.J., Steinherz P.G., Tan C.T.C., Heller G. and Murphy L., 1991, Cardiac toxicity 4 to 20 years after completing anthracycline therapy, *The Journal of the American Medical Association*, 266:1672-1677pp.
- Stubbe J.A., Kozarich J.W., Wu W. and Vanderwall D.E., 1996, Bleomycins: A structural model for specificity, binding, and double strand cleavage, *Accounts of Chemical Research*, 29:322-330pp.
- Tanaka W., 1977, Development of new bleomycins with potential clinical utility, *Japanese Journal of Antibiotics*, 30:41-48pp.

- Tewey K.M., Rowe T.C, Yang L., Halligan B.D. and Liu L.F., 1984, Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II, *Science*, 226(4673):466-468pp.
- The Nobel Prize in Chemistry 2015, "Mechanistic studies of DNA repair", <u>https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2015/advance</u> <u>d-chemistryprize2015.pdf</u> (Erişim tarihi: 7 Ekim 2015)
- **Tse W.C. and Boger D.L.**, 2004, Sequence-selective DNA recognition: Natural products and nature's lessons, *Chemical Biology*, 11:1607-1617pp.
- Umezawa H., Maeda K., Takeuchi T., Okami Y., 1966, New antibiotics, bleomycin A and B, *The Journal of Antibiotics*, 19:200-209pp.
- Urruticoechea A., Alemany R., Balart J., Villanueva A., Viñals F. and Capellá G., 2010, Recent advances in cancer therapy: an overview, *Current Pharmaceutical Design*, 16(1):3-10pp.
- Weiss R.B., 1992, The anthracyclines: will we ever find a better doxorubicin?, *Seminars in Oncology*, 19:670-686pp.
- Yunta M.J.R., 2012, Using Molecular Modelling to Study Interactions Between Molecules with Biological Activity, Computer and Information Science Numerical Analysis and Scientific Computing Bioinformatics, book edited by Horacio Pérez-Sánchez, CC BY 3.0 license.

ÖZGEÇMİŞ

Ad/Soyad: Esra ŞAHİN AKDENİZ

Doğum Yeri/Tarihi: İstanbul / 06.11.1983

Uyruğu: TC

Cinsiyet: Bayan

Medeni Hali: Evli

e-mail: sahinesra83@gmail.com

EĞİTİM BİLGİLERİ

c-man. sammesia	uos e ginan.	com						
EĞİTİM BİLG	İLERİ							
<u>Doktora</u>	2010-2016	2010-2016 Biyokimya Bölümü, Ege Üniversitesi, İzmir						
<u>Ön Lisans</u>	2012-2015 Üniversites	2012-2015 Kültürel Miras ve Turizm Bölümü, Anadolu İniversitesi Açıköğretim Fakültesi, Eskişehir						
<u>Yüksek Lisans</u>	2006-2008 Ankara	2006-2008 Biyokimya Bölümü, Orta Doğu Teknik Üniversitesi, Ankara						
<u>Lisans</u>	2001-2006 Ankara	2001-2006 Biyoloji Bölümü, Orta Doğu Teknik Üniversitesi, Ankara						
<u>Lise</u>	1998-2001	Fen Biliml	eri, Seyra	anbağl	arı Süper Lise	si, Ankara		
İŞ TECRÜBEL	ERİ							
Aralık 2010-hale	en -	İzmir Yüksek Teknoloji Enstitüsü, Moleküler Biyoloji ve Genetik Bölümü, Uzman						
<u>Mayıs 2008-Ara</u>	Omega Araştırma Organizasyon Eğitim Danışmanlık Ltd. Şti.,Tıbbi Yazar							
<u>Temmuz-Ağusto</u>	Gülhane Bölümü, S	Askeri Stajyer	Тıр	Akademisi,	Farmakoloji			

YAYINLAR ve BİLDİRİLER

<u>Doktora tezi</u> Esra Şahin Akdeniz. "Kanser Tedavisinde Kullanılan İlaçların Biyomoleküller ile Etkileşiminin Moleküler Modelleme Yolu ile İncelenmesi" Ege Üniversitesi, Haziran 2016.

<u>Poster sunumu</u> Esra Şahin, Cenk Selçuki. "Investigation of Doxorubicin with Adenine and Thymine Nucleobases by Molecular Modeling" IV. Uluslararası Moleküler Biyoloji Kongresi, 27-29 Kasım 2015 Ankara, Türkiye.

<u>Poster sunumu</u> Esra Şahin, Cenk Selçuki. "Investigation of Interactions between Doxorubicin and Nucleobases by Molecular Modeling" III. Uluslararası Moleküler Biyoloji Kongresi, 10-12 Eylül 2014, İzmir, Türkiye.

<u>Poster sunumu</u> Esra Şahin, Cenk Selçuki. "Investigation of Interactions between Anti-Tumor Antibiotics and Biomolecules by Molecular Modeling" FEBS-EMBO 2014, 30Ağustos-4Eylül 2014, Paris, Fransa.

<u>Poster sunumu</u> Esra Şahin, Cenk Selçuki. "Bleomisinin Biyomoleküller ile Etkileşiminin Moleküler Modelleme Yolu İle İncelenmesi" XXV. Ulusal Biyokimya Kongresi, 3-6 Eylül 2013, İzmir, Türkiye.

<u>Bilimsel Makale</u> Can Demirdöğen B, Şahin E, Türkanoğlu Özçelik A, Bek S, Demirkaya Ş, Adali O. Apolipoprotein A5 polymorphisms in Turkish population: association with serum lipid profile and risk of ischemic stroke. Mol Biol Rep. 2012, 39(12):10459-68. doi: 10.1007/s11033-012-1926-z.

<u>Poster sunumu</u> Esra Şahin, Birsen Can Demirdöğen, Semai Bek, Şeref Demirkaya, Orhan Adalı. "Association analysis of -1131T/C polymorphism of apolipoprotein A5 gene in ischemic stroke" 16. Balkan Klinik Laboratuvar Federasyonu (BCLF) Kongresi. 16-18 Ekim 2008 Atina, Yunanistan.

<u>Yüksek lisans tezi</u> Esra Şahin. "Apolipoprotein A5 genetic polymorphisms in Turkish population and the risk of ischemic stroke" Middle East Technical University, Eylül 2008.

<u>Poster sunumu</u> Esra Şahin, Birsen Can Demirdöğen, Semai Bek, Şeref Demirkaya, Orhan Adalı. "The c.553G>T polymorphism of apolipoprotein A5

gene is not a risk factor of ischemic stroke in Turkish population" EMBO Genç Bilim İnsanları Forumu, İstanbul, 20-22 Şubat 2008.

<u>Poster sunumu</u> Esra Şahin, Birsen Can Demirdöğen, Semai Bek, Şeref Demirkaya, Emel Arınç, Orhan Adalı. "The relationship between the c.553G>T polymorphism of apolipoprotein A5 gene and the risk of ischemic stroke in Turkish population" 15. Balkan Klinik Laboratuvar Federasyonu (BCLF) Kongresi. 4-7 Ekim 2007 Antalya, Türkiye.

Poster sunumu Birsen Can Demirdöğen, Aysun Türkanoğlu, Çiğdem Kalın, Esra Şahin, Emel Arınç, Orhan Adalı. "A comparative study on human serum paraoxonase 1 and arylesterase: effects of of metals on enzyme activity" 31. Avrupa Biyokimya Dernekleri Federasyonu (FEBS) Biyokimya Kongresi, Sağlıkta ve Hastalıkta Biyomoleküller. 24-29 Haziran 2006. İstanbul, Türkiye.

ÖDÜLLER

2008 IFCC/Roche Seyahat Bursu Ödülü 2006-2007 ODTÜ Yüksek Lisans Ders Performans Ödülü 2006-2008 TÜBİTAK Yurtiçi Yüksek Lisans Bursu 2004-2008 ODTÜ Yüksek Şeref Belgesi 2002-2004 ODTÜ Şeref Belgesi

EKLER

Ek 1 Relatif Enerji Değerlerine Göre Sıralanmış Doksorubisin Konformerleri

Ek 2 Relatif Enerji Değerlerine Göre Sıralanmış Bleomisin Konformerleri

Konform	er No Yanı	E	Ергі	
		(Hartree)	(kcal/mol)	(Debye)
Dox-3	83 Dox-1	-1928,6032906	0,00	7,59
Dox-4	08 Dox-1	-1928,6032906	0,00	7,59
Dox-3	24 Dox-1	-1928,6032905	0,00	7,59
Dox-3	26 Dox-2	-1928,6032401	0,03	7,31
Dox-3	87 Dox-3	-1928,6032257	0,04	5,20
Dox-3	88 Dox-4	-1928,6030707	0,14	6,30
Dox-29	91 Dox-5	-1928,6022513	0,65	4,34
Dox-3.	38 Dox-6	-1928,6014765	1,14	4,51
Dox-20	06 Dox-7	-1928,5982274	3,18	6,29
Dox-3.	33 Dox-7	-1928,5982274	3,18	6,29
Dox-1	14 Dox-8	-1928,5959713	4,59	5,67
Dox-1	61 Dox-9	-1928,5952950	5,02	7,15
Dox-0.	30 Dox-10	-1928,5952083	5,07	6,61
Dox-1	00 Dox-10	-1928,5952083	5,07	6,61
Dox-1	03 Dox-11	-1928,5950638	5,16	6,99
Dox-24	49 Dox-12	-1928,5940059	5,83	8,40
Dox-2	67 Dox-12	-1928,5940059	5,83	8,40
Dox-3	18 Dox-12	-1928,5940059	5,83	8,40
Dox-3	19 Dox-12	-1928,5940059	5.83	8.40
Dox-2	83 Dox-12	-1928,5940058	5,83	8,39
Dox-0	99 Dox-13	-1928,5939207	5,88	5,27
Dox-1	39 Dox-13	-1928,5939207	5,88	5,27
Dox-2	84 Dox-14	-1928,5937228	6,00	5,79
Dox-1	04 Dox-15	-1928.5934519	6.17	7.08
Dox-2	13 Dox-16	-1928,5929091	6,51	6,40
Dox-0	66 Dox-17	-1928,5928067	6,58	7.36
Dox-0	97 Dox-17	-1928,5928067	6,58	7,35
Dox-1	06 Dox-17	-1928,5928067	6,58	7.36
Dox-12	23 Dox-17	-1928,5928067	6,58	7,36
Dox-2	71 Dox-17	-1928,5928007	6,58	7,01
Dox-2	82 Dox-18	-1928,5927575	6,61	8,43
Dox-0	69 Dox-19	-1928,5927162	6,64	8,18
Dox-1	09 Dox-19	-1928,5927162	6,64	8,18
Dox-3	68 Dox-20	-1928,5914647	7,42	6,20
Dox-32	29 Dox-21	-1928,5912240	7,57	4,00
Dox-0	58 Dox-22	-1928,5911628	7,61	4,75
Dox-0	83 Dox-23	-1928,5907812	7,85	5,19
Dox-12	27 Dox-23	-1928,5907812	7,85	5,19
Dox-0	86 Dox-24	-1928,5907404	7,88	6,85
Dox-2	58 Dox-24	-1928,5907404	7,88	6,85
Dox-12	24 Dox-24	-1928,5907403	7,88	6,85
Dox-0	89 Dox-25	-1928,5906274	7,95	7,74
Dox-4	07 Dox-26	-1928,5896133	8,58	7,74
Dox-4	14 Dox-26	-1928,5896133	8,58	7,74
Dox-3	09 Dox-27	-1928,5889995	8,97	6,28
Dox-4	10 Dox-28	-1928,5889828	8.98	5,37
Dox-2	87 Dox-29	-1928,5889368	9,01	3,80
Dox-2	15 Dox-30	-1928,5876102	9.84	2,63
Dox-2	66 Dox-31	-1928,5871603	10,12	7,88

Ek 1. Relatif enerji değerlerine göre sıralanmış doksorubisin konformerleri.

_

Konformer No	Үарі	E (Hartree)	E _{REL} (kcal/mol)	μ (Debve
Dox-053	Dox-32	-1928,5870290	10,20	4.29
Dox-279	Dox-33	-1928.5860650	10.81	7.63
Dox-369	Dox-34	-1928.5860519	10.82	3.21
Dox-244	Dox-35	-1928 5849217	11 53	5 65
Dox-165	Dox 35	-1928 5846005	11,55	6 47
Dox-166	Dox-36	-1928 5846005	11,73	6.48
Dox-230	Dox-36	-1928 5846005	11,73	6.47
Dox-250	Dox-30	-1928 5845967	11,73	3 63
Dox-200	Dox-37	-1928,5845967	11,73	3,63
Dox-303	Dox-38	-1928,5845560	11,75	7.01
Dox 222	Dox 30	-1928,5842575	11,70	7,01
Dox 270	Dox 30	-1928,5842575	11,94	4,41
Dox-270	Dox-39	-1928,3842374	11,94	4,41
Dox-224	Dox-40	-1928,3842088	11,97	4,89
D0x-321	Dox-40	-1928,5842088	11,97	4,89
Dox-261	Dox-41	-1928,5839466	12,14	6,67
Dox-334	Dox-41	-1928,5839465	12,14	6,67
Dox-343	Dox-42	-1928,5839015	12,17	5,40
Dox-229	Dox-43	-1928,5837091	12,29	7,91
Dox-033	Dox-44	-1928,5836609	12,32	4,55
Dox-115	Dox-44	-1928,5836609	12,32	4,55
Dox-137	Dox-44	-1928,5836609	12,32	4,55
Dox-141	Dox-44	-1928,5836608	12,32	4,55
Dox-035	Dox-45	-1928,5835180	12,41	5,05
Dox-117	Dox-45	-1928,5835180	12,41	5,05
Dox-277	Dox-46	-1928,5834333	12,46	5,76
Dox-041	Dox-47	-1928,5832486	12,58	6,68
Dox-265	Dox-48	-1928,5824394	13,08	4,78
Dox-136	Dox-49	-1928,5819523	13,39	3,47
Dox-108	Dox-50	-1928,5815851	13,62	4,63
Dox-076	Dox-51	-1928,5814053	13,73	6,22
Dox-118	Dox-52	-1928,5813232	13,78	6,06
Dox-322	Dox-53	-1928,5809957	13,99	5,34
Dox-294	Dox-54	-1928,5807554	14,14	9,31
Dox-377	Dox-55	-1928,5807499	14,14	4,62
Dox-346	Dox-56	-1928,5806874	14,18	4,67
Dox-373	Dox-57	-1928,5802061	14,49	3,30
Dox-384	Dox-58	-1928.5798048	14.74	5.67
Dox-362	Dox-59	-1928.5793820	15.00	5,99
Dox-313	Dox-60	-1928 5792053	15,00	2.81
Dox-130	Dox-61	-1928 5791378	15,16	3.07
Dox 158	Dox 61	-1928,5791378	15,16	3,07
Dox 120	Dox 62	1028 5780275	15,10	5.06
Dua-420 Doy 208	Dov 62	-1720,5709275	15,29	3,00 1 01
DUX-300	Dox-03	-1720,3700131	15,40	4,94
Dox-091	Dox-64	-1928,5785790	15,51	5,94
Dox-131	Dox-65	-1928,5785374	15,53	4,58
Dox-311	Dox-65	-1928,5785374	15,53	4,58
Dox-252	Dox-66	-1928,5784506	15,59	3,46
Dox-264	Dox-67	-1928,5784303	15,60	5,30
Dox-236	Dox-68	-1928,5783511	15,65	2,85

Ek 1. Relatif enerji değerlerine göre sıralanmış doksorubisin konformerleri (devam ediyor).

V P NI.	V.	Б	F	
Komormer No	х арі	E (Hartroo)	E _{REL}	μ (Dobvo)
Dox-297	Doy_68	-1928 5783510	15 65	2.85
Dox-254	Dox-60	-1928,5785510	15,05	2,65
Dox-116	Dox-69	-1928,5782503	15,71	4,04
Dox-110 Dox-194	Dox-0)	-1928,5782116	15,71	4,04
Dox-194	Dox-70	-1928,5780556	15,74	2 82
Dox-272	Dox-72	-1928 5780297	15,81	2,02
Dox-272	Dox 72	-1928 5780262	15,85	1 73
Dox-296	Dox-72	-1928 5779579	15,00	2.88
Dox-216	Dox-73	-1928 5779446	15,90	2,00
Dox-198	Dox-74	-1928 5778914	15,94	5.15
Dox-188	Dox-75	-1928 5776898	16.06	5 29
Dox-189	Dox-75	-1928 5776693	16.08	2.61
Dox-049	Dox 70	-1928 5774919	16,00	2,01
Dox-049	Dox-77	-1928 5774339	16.23	3,67
Dox-192	Dox-78	-1928,5774338	16.23	3,67
Dox-1/2 Dox-363	Dox-70	-1928,5773273	16,29	2.76
Dox-204	Dox-80	-1928,5773275	16.31	2,70
Dox-204	Dox-80	-1928,5772977	16 31	3,40
Dox-275	Dox-80	-1928,5772977	16 31	3,40
Dox-293	Dox-80	-1928,5772544	16 34	3,40 4 45
Dox-162	Dox-87	-1928,5771386	16.41	-, <i>5</i> 5 39
Dox-102	Dox-83	-1928 5771284	16.42	2 27
Dox-380	Dox-83	-1928 5771230	16,42	2,27
Dox-415	Dox-84	-1928 5770141	16,49	4 85
Dox-093	Dox-85	-1928 5767903	16.63	4 64
Dox-400	Dox-86	-1928 5766461	16,03	3.07
Dox-226	Dox-86	-1928 5766409	16,72	3,07
Dox-156	Dox -87	-1928 5765332	16,72	3 64
Dox-150	Dox-88	-1928,5764962	16.81	3.08
Dox-372	Dox-89	-1928 5764319	16,81	5 77
Dox-325	Dox-90	-1928 5761808	17.01	3 51
Dox-155	Dox-91	-1928.5760035	17,12	2,60
Dox-394	Dox-92	-1928.5758648	17,21	0.92
Dox-390	Dox-93	-1928.5751243	17,67	3.39
Dox-382	Dox-94	-1928.5750340	17,73	4.60
Dox-422	Dox-95	-1928.5750003	17,75	2.34
Dox-421	Dox-96	-1928.5748194	17,87	3.20
Dox-182	Dox-96	-1928.5748067	17,87	3.58
Dox-268	Dox-97	-1928.5747879	17,89	1.57
Dox-257	Dox-97	-1928.5747734	17,89	2,15
Dox-389	Dox-98	-1928 5744411	18 10	4 75
Dox-151	Dox-99	-1928 5741235	18 30	2.94
Dox-403	Dox-100	-1928.5740462	18.35	5,16
Dox-375	Dox-100	-1928.5740461	18.35	5.16
Dox-370	Dox-100	-1928.5740369	18.36	3.16
Dox-328	Dox-101	-1928.5739501	18.41	3.31
Dox-374	Dox-102	-1928.5735227	18.68	5.22
Dox-323	Dox-103	-1928.5734894	18.70	3.45
Dox-181	Dox-103	-1928,5734893	18,70	3.45

Ek 1. Relatif enerji değerlerine göre sıralanmış doksorubisin konformerleri (devam ediyor).

Konformer No	Үарı	Ε	E _{REL}	μ
		(Hartree)	(kcal/mol)	(Debye)
Dox-418	Dox-104	-1928,5731671	18,90	5,19
Dox-095	Dox-105	-1928,5729533	19,04	4,35
Dox-391	Dox-106	-1928,5729395	19,05	1,60
Dox-007	Dox-107	-1928,5727267	19,18	5,93
Dox-010	Dox-108	-1928,5726811	19,21	7,40
Dox-075	Dox-108	-1928,5726811	19,21	7,40
Dox-228	Dox-109	-1928,5725926	19,26	7,30
Dox-006	Dox-110	-1928,5722864	19,46	6,11
Dox-039	Dox-110	-1928,5722864	19,46	6,11
Dox-179	Dox-110	-1928,5722864	19,46	6,11
Dox-008	Dox-111	-1928,5722413	19,48	7,58
Dox-057	Dox-111	-1928,5722413	19,48	7,58
Dox-371	Dox-112	-1928,5717615	19,78	5,49
Dox-087	Dox-113	-1928,5717343	19,80	4,91
Dox-239	Dox-114	-1928,5714029	20,01	5,07
Dox-021	Dox-115	-1928,5713153	20,06	6,52
Dox-054	Dox-116	-1928,5712833	20.08	5.14
Dox-078	Dox-116	-1928,5712831	20.09	5.14
Dox-246	Dox-117	-1928.5712337	20.12	5.37
Dox-079	Dox-118	-1928.5711005	20.20	6.19
Dox-081	Dox-119	-1928.5709430	20.30	3.16
Dox-119	Dox-119	-1928 5709430	20,30	3.16
Dox-195	Dox 119	-1928 5708579	20,35	5 79
Dox-195	Dox-120	-1928 5708378	20,35	6.75
Dox-133	Dox-121	-1928,5706574	20,30	6.29
Dox 286	Dox 122	1028 5706744	20,47	6.30
Dox 200	Dox 122	-1928,5706744	20,47	6.20
D0x-304	Dox 122	-1928,5706744	20,47	6.20
Dox-227	Dox-122	-1928,3700743	20,47	0,29
Dox-270	Dox-123	-1928,5705500	20,67	4,14
D0X-1/1	Dox-125	-1928,5703545	20,67	2,73
Dox-163	Dox-124	-1928,5702475	20,73	1,61
Dox-399	Dox-124	-1928,5702475	20,73	1,61
Dox-234	Dox-125	-1928,5702285	20,75	2,51
Dox-281	Dox-126	-1928,5699301	20,93	5,51
Dox-175	Dox-127	-1928,5699213	20,94	1,59
Dox-232	Dox-128	-1928,5698768	20,97	5,10
Dox-320	Dox-128	-1928,5698768	20,97	6,04
Dox-211	Dox-129	-1928,5693615	21,29	4,90
Dox-233	Dox-130	-1928,5692833	21,34	6,17
Dox-212	Dox-131	-1928,5691763	21,41	3,14
Dox-255	Dox-132	-1928,5689802	21,53	3,32
Dox-218	Dox-133	-1928,5688675	21,60	0,81
Dox-393	Dox-133	-1928,5688675	21,60	0,82
Dox-339	Dox-133	-1928,5688675	21,60	0,81
Dox-289	Dox-134	-1928,5684234	21,88	3,97
Dox-269	Dox-134	-1928,5684233	21,88	3,97
Dox-134	Dox-135	-1928,5683641	21,92	5,85
Dox-034	Dox-136	-1928,5682575	21,98	4,30
Dov-183	Dox-137	-1928.5680995	22.08	5.00

Ek 1. Relatif enerji değerlerine göre sıralanmış doksorubisin konformerleri (devam ediyor).

Konforma-Na	Van	F	Б	
Komormer No	r apt	E (Hortroo)	E _{REL}	μ (Debve)
Dox 026	Doy 127	1028 5680004	(KCal/III0I)	(Debye)
Dox-050	Dox-137	-1928,5080994	22,08	5,00
Dox 250	Dox 137	-1928,5080994	22,08	5,00
Dox-250	Dox 137	1028 5670120	22,08	3,00
Dox 386	Dox 130	-1928,5079139	22,20	3,40
Dox-360	Dox-139	-1920,5077449	22,31	1,19
Dox-345	Dox-140	-1926,5072114	22,04	3,02
Dox-290	Dox-141	1028 5664471	22,70	2,17
Dox-110	Dox-142	-1928,5004471	23,12	7,12
Dox 248	Dox 143	-1928,5001999	23,27	4,03
Dox-240	Dox-143	-1928,5001999	23,27	4,03
Dox-303	Dox-144	-1928,5000110	23,39	4,09
Dox-300	Dox-145	-1928,5057972	25,55	3,33
Dox-300	Dox-140	-1928,5050092	25,05	5,07
Dox-402	Dox-147	-1928,5054119	23,11	3,47
Dox-285	Dox-148	-1928,5053010	23,80	3,33
Dox-202	Dox-149	-1928,3033480	23,81	3,07
Dox-404	Dox-150	-1928,5050859	23,98	5,95
Dox-038	Dox-151	-1928,5648962	24,09	5,34
Dox-154	Dox-151	-1928,5648962	24,09	5,34
Dox-148	Dox-151	-1928,5648961	24,09	5,34
Dox-278	Dox-152	-1928,5648621	24,11	5,78
Dox-411	Dox-153	-1928,5645615	24,30	5,50
Dox-126	Dox-154	-1928,5643465	24,44	3,69
Dox-032	Dox-155	-1928,5643061	24,46	3,29
Dox-128	Dox-156	-1928,5640465	24,63	3,36
Dox-350	Dox-156	-1928,5640465	24,63	3,36
Dox-125	Dox-157	-1928,5639702	24,67	3,30
Dox-129	Dox-157	-1928,5639701	24,67	3,30
Dox-185	Dox-158	-1928,5639291	24,70	5,12
Dox-263	Dox-159	-1928,5638920	24,72	3,97
Dox-065	Dox-160	-1928,5637797	24,79	3,64
Dox-009	Dox-101	-1928,5030081	24,80	5,20
Dox-0/4	Dox-162	-1928,5636542	24,87	5,17
Dox-024	Dox-163	-1928,5634561	25,00	4,64
Dox-247	Dox-163	-1928,5634561	25,00	4,64
Dox-101	Dox-164	-1928,5634453	25,00	3,69
Dox-062	Dox-165	-1928,5634050	25,03	3,83
Dox-080	Dox-165	-1928,5634050	25,03	3,83
Dox-357	Dox-166	-1928,5633266	25,08	5,46
Dox-0/1	Dox-16/	-1928,5632945	25,10	5,41
Dox-416	Dox-168	-1928,5630757	25,24	5,12
Dox-023	Dox-169	-1928,5630103	25,28	4,98
Dox-10/	Dox-169	-1928,5030103	25,28	4,98
Dox-301	Dox-170	-1928,5628183	25,40	4,01
D0x-310	D0X-1/1	-1920,302/910	23,41	2,91
D0X-1/3	$\frac{D0x-1/2}{Dox 172}$	-1928,3020083	25,49	4,08
D0X-223	Dox 174	-1720,3020042	25,49	4,90
D0X-100	Dox-1/4	-1920,3020013	23,30	0,20
D0x-31/	D0X-1/5	-1920,3020124	23,33	3,61

Ek 1. Relatif enerji değerlerine göre sıralanmış doksorubisin konformerleri (devam ediyor).

Konformer No	Үарі	E (Hartree)	E _{REL} (kcal/mol)	μ (Debve
Dox-122	Dox-176	-1928.5625284	25.58	2.95
Dox-120	Dox-177	-1928,5624068	25.65	3.07
Dox-225	Dox-178	-1928,5623577	25.69	4.30
Dox-327	Dox-178	-1928 5623577	25,69	4 30
Dox-321	Dox-170	-1928,5619701	25,07	4 26
Dox-221 Dox-315	Dox-179	-1928 5619031	25,95	6.01
Dox-042	Dox-181	-1928,5617051	25,57	4 09
Dox-042	Dox-101 Dox-182	-1928,5615554	26,00	4,07
Dox 160	Dox 183	-1928,5613345	26,19	3.64
Dox-107	Dox-105	-1928,5613025	26,35	3,69
Dox 100	Dox 185	-1928,5015025	20,35	3,09
Dox-190	Dox 186	-1928,5005128	20,84	5,04
Dox-330	Dox-180	-1928,5604419	20,89	5,12
Dox-341	Dox-187	-1928,5598054	27,29	3,61
Dox-342	Dox-188	-1928,5594557	27,51	2,79
Dox-299	Dox-189	-1928,5592754	27,62	2,30
Dox-352	Dox-190	-1928,5589910	27,80	5,75
Dox-396	Dox-191	-1928,5588609	27,88	2,17
Dox-397	Dox-192	-1928,5588609	27,88	6,55
Dox-140	Dox-193	-1928,5588520	27,89	5,17
Dox-145	Dox-194	-1928,5587507	27,95	5,80
Dox-202	Dox-195	-1928,5586911	27,99	3,81
Dox-379	Dox-196	-1928,5586464	28,01	4,90
Dox-351	Dox-197	-1928,5585338	28,09	6,08
Dox-358	Dox-198	-1928,5584554	28,13	2,34
Dox-164	Dox-199	-1928,5584320	28,15	3,44
Dox-210	Dox-200	-1928,5582610	28,26	5,48
Dox-143	Dox-201	-1928,5582120	28,29	5,25
Dox-205	Dox-202	-1928,5581074	28,35	4,17
Dox-121	Dox-203	-1928,5578929	28,49	3,16
Dox-366	Dox-204	-1928,5577115	28,60	5,59
Dox-409	Dox-205	-1928,5576894	28,62	4,61
Dox-146	Dox-206	-1928,5574639	28,76	4,39
Dox-365	Dox-207	-1928,5572418	28,90	5,11
Dox-207	Dox-208	-1928,5570301	29.03	4.86
Dox-359	Dox-209	-1928.5570152	29.04	6.40
Dox-199	Dox-210	-1928.5570044	29.05	5.09
Dox-159	Dox-211	-1928.5569961	29.05	4.00
Dox-201	Dox-211 Dox-212	-1928 5569767	29,05	2.81
Dox-280	Dox-213	-1928 5569661	29,00	4 09
Dox-200	Dox-213	-1928 5567311	29,07	-,0) 2 8 2
Dua-022	Dux-214	1028 5567210	29,22	2,03
Dox 025	Dux-214 Dox 215	1028 5566555	29,22	2,03
Dux-025	Dux-215	-1920,3300333	29,20	5,49 1 50
D0X-020	D0x-210	-1920,3303043	29,30	4,58
Dox-295	Dox-217	-1928,5558186	29,79	2,59
Dox-336	Dox-218	-1928,5556923	29,87	2,70
Dox-045	Dox-219	-1928,5556899	29,87	1,40
Dox-314	Dox-220	-1928,5556413	29,90	3,08
Dox-029	Dox-221	-1928,5554431	30,02	4,19
Dox-013	Dox-221	-1928,5554429	30,02	4,19

Ek 1. Relatif enerji değerlerine göre sıralanmış doksorubisin konformerleri (devam ediyor).

	• •	F	Б	
Konformer No	y api	E (TT-stars)		μ
D000	D 444	(Hartree)	(Kcal/mol)	(Debye)
Dox-028	Dox-222	-1928,5551014	30,24	3,63
Dox-012	Dox-222	-1928,5551013	30,24	3,62
Dox-307	Dox-223	-1928,5549082	30,36	2,59
Dox-310	Dox-224	-1928,5547959	30,43	1,14
Dox-385	Dox-225	-1928,5546447	30,53	3,63
Dox-302	Dox-226	-1928,5543596	30,70	4,40
Dox-412	Dox-227	-1928,5541830	30,82	1,91
Dox-020	Dox-228	-1928,5533215	31,36	4,52
Dox-084	Dox-229	-1928,5530230	31,54	6,74
Dox-242	Dox-229	-1928,5530230	31,54	6,74
Dox-288	Dox-230	-1928,5527529	31,71	2,83
Dox-056	Dox-230	-1928,5527386	31,72	3,83
Dox-019	Dox-230	-1928,5527386	31,72	3,83
Dox-349	Dox-231	-1928,5526783	31,76	2,05
Dox-170	Dox-232	-1928,5525582	31,84	3,57
Dox-157	Dox-233	-1928,5524331	31,91	5,48
Dox-174	Dox-234	-1928,5524027	31,93	4,74
Dox-378	Dox-235	-1928,5523721	31,95	3,94
Dox-138	Dox-236	-1928,5523599	31,96	4,56
Dox-176	Dox-237	-1928,5523239	31,98	4,04
Dox-177	Dox-238	-1928,5521284	32,10	5,63
Dox-245	Dox-239	-1928,5520244	32,17	3,40
Dox-142	Dox-240	-1928,5519050	32,24	3,07
Dox-193	Dox-241	-1928,5518518	32,28	3,67
Dox-197	Dox-242	-1928,5517521	32,34	2,48
Dox-200	Dox-243	-1928,5516370	32,41	0,99
Dox-238	Dox-244	-1928,5515793	32,45	3,81
Dox-395	Dox-245	-1928,5509021	32,87	3,76
Dox-413	Dox-246	-1928,5507752	32,95	1,95
Dox-398	Dox-247	-1928,5498749	33,52	5,23
Dox-376	Dox-248	-1928,5497999	33,57	4,50
Dox-401	Dox-248	-1928,5497999	33,57	4,50
Dox-160	Dox-249	-1928,5496292	33,67	2,94
Dox-243	Dox-250	-1928,5494976	33,76	2,77
Dox-203	Dox-251	-1928,5494287	33,80	1,91
Dox-209	Dox-252	-1928,5491539	33,97	2,48
Dox-241	Dox-253	-1928,5490757	34,02	2,38
Dox-135	Dox-254	-1928,5488048	34,19	1,80
Dox-256	Dox-255	-1928,5484192	34,43	5,18
Dox-419	Dox-256	-1928,5483589	34,47	1,14
Dox-037	Dox-257	-1928,5474022	35,07	6,17
Dox-005	Dox-258	-1928,5473514	35,10	8,11
Dox-040	Dox-258	-1928,5473514	35,10	8,11
Dox-055	Dox-258	-1928,5473513	35,10	8,12
Dox-085	Dox-258	-1928,5473513	35,10	8,11
Dox-102	Dox-258	-1928,5473513	35,10	8,11
Dox-240	Dox-258	-1928,5473513	35,10	8,12
Dox-003	Dox-259	-1928,5473317	35,11	7,18
Dox-082	Dox-259	-1928,5473317	35,11	7,18

Ek 1. Relatif enerji değerlerine göre sıralanmış doksorubisin konformerleri (devam ediyor).

Konformer No	Үарı	E (Hartree)	E _{REL} (kcal/mol)	µ (Debve)
Dox-153	Dox-260	-1928,5473252	35.12	2.30
Dox-167	Dox-260	-1928,5473252	35.12	2.30
Dox-364	Dox-260	-1928.5473252	35.12	2,30
Dox-300	Dox-260	-1928 5473251	35.12	2,30
Dox-068	Dox 200	-1928 5470819	35.27	2,50
Dox-105	Dox 201 Dox-262	-1928 5468977	35,27	1.86
Dox-105	Dox-262	-1928,5468977	35 39	1,00
Dox-270	Dox-262	-1928 5468426	35,32	5.87
Dox-011 Dox-031	Dox-265	-1928,5466907	35 52	7.86
Dox-001	Dox-265	-1928 5466591	35,52	6.94
Dox 027	Dox-265	-1928,5466591	35,54	6.94
Dox 132	Dox 265	1028 5466501	35,54	6.04
Dox-132	Dox-205	-1928,5400591	35,54	6 79
Dox-044	Dox-200	-1928,3403044	55,05 25 71	0,78
Dox-092	Dox-20/	-1928,3403804	55,71 25,71	8,09
Dox-094	Dox-267	-1928,5463864	35,/1	8,69
Dox-0/7	Dox-268	-1928,5459694	35,97	6,24
Dox-392	Dox-269	-1928,5456670	36,16	3,20
Dox-220	Dox-270	-1928,5455384	36,24	5,23
Dox-231	Dox-270	-1928,5455384	36,24	5,23
Dox-186	Dox-271	-1928,5452801	36,40	6,67
Dox-208	Dox-271	-1928,5452801	36,40	6,67
Dox-237	Dox-271	-1928,5452801	36,40	6,67
Dox-274	Dox-271	-1928,5452801	36,40	6,67
Dox-292	Dox-271	-1928,5452801	36,40	6,67
Dox-337	Dox-272	-1928,5452143	36,44	2,99
Dox-048	Dox-273	-1928,5452059	36,45	4,50
Dox-051	Dox-274	-1928,5450203	36,57	5,56
Dox-149	Dox-275	-1928,5448743	36,66	3,59
Dox-184	Dox-276	-1928,5446943	36,77	2,21
Dox-312	Dox-277	-1928,5444704	36,91	2,94
Dox-367	Dox-278	-1928,5443903	36,96	4,02
Dox-070	Dox-279	-1928,5440969	37,14	5,32
Dox-381	Dox-280	-1928,5439554	37.23	3,37
Dox-217	Dox-281	-1928,5436249	37.44	7.10
Dox-344	Dox-282	-1928.5424970	38.15	5.62
Dox-219	Dox-283	-1928.5423314	38.25	2.93
Dox-361	Dox-284	-1928 5422525	38 30	<u>-</u> ,>0
Dox-405	Dox 204	-1928 5411029	39.02	5 15
Dox-417	Dox-286	-1928 5403501	39 50	6.48
Dox-088	Dox-287	-1928,5405501	40.36	5,40
Dox 222	Dox 200	-1720,3309049	40,50	9,00 9 7 9
Dux-352 Dox 016	Dux-200 Dox 280	1028 5285200	40,39	0,70
Dux-010	DUX-207	-1720,3303309	40,04	9,43
D0X-043	D0X-289	-1920,3383309	40,04	9,43
Dox-191	Dox-290	-1928,5382440	40,82	4,59
Dox-015	Dox-291	-1928,5378666	41,05	9,00
Dox-253	Dox-292	-1928,5375411	41,26	1,98
Dox-014	Dox-293	-1928,5372913	41,42	5,31
Dox-067	Dox-294	-1928,5369886	41,61	11,70
Dox-018	Dox-295	-1928,5369839	41,61	5,71

Ek 1. Relatif enerji değerlerine göre sıralanmış doksorubisin konformerleri (devam ediyor).

-	Konformer No	Үарі	Ε	E _{REL}	μ
<u> </u>			(Hartree)	(kcal/mol)	(Debye)
	Dox-090	Dox-296	-1928,5369707	41,62	4,85
	Dox-235	Dox-297	-1928,5369082	41,66	2,05
	Dox-050	Dox-298	-1928,5367416	41,76	9,42
	Dox-017	Dox-299	-1928,5366341	41,83	5,23
	Dox-096	Dox-299	-1928,5366341	41,83	5,23
	Dox-004	Dox-300	-1928,5365546	41,88	5,30
	Dox-052	Dox-300	-1928,5365546	41,88	5,30
	Dox-259	Dox-301	-1928,5363385	42,01	3,57
	Dox-001	Dox-302	-1928,5362623	42,06	4,29
	Dox-047	Dox-302	-1928,5362623	42,06	4,29
	Dox-251	Dox-302	-1928,5362623	42,06	4,29
	Dox-063	Dox-302	-1928,5362622	42,06	4,28
	Dox-073	Dox-302	-1928,5362619	42,06	4,29
	Dox-152	Dox-303	-1928,5356700	42,43	3,64
	Dox-347	Dox-304	-1928,5339999	43,48	8,65
	Dox-340	Dox-305	-1928,5327904	44,24	4,90
	Dox-112	Dox-306	-1928,5325887	44,37	7,71
	Dox-060	Dox-307	-1928,5324165	44,47	5,67
	Dox-180	Dox-308	-1928,5322302	44,59	1,79
	Dox-111	Dox-309	-1928,5320856	44,68	7,35
	Dox-059	Dox-310	-1928,5319343	44,78	5,44
	Dox-144	Dox-311	-1928,5314334	45,09	5,85
	Dox-356	Dox-312	-1928,5313195	45,16	7,41
	Dox-348	Dox-313	-1928,5312510	45,21	4,30
	Dox-406	Dox-314	-1928,5302814	45,81	3,16
	Dox-064	Dox-315	-1928,5268956	47,94	7,13
	Dox-072	Dox-316	-1928,5266346	48,10	7,09
	Dox-355	Dox-317	-1928,5225544	50,66	6,62
	Dox-354	Dox-318	-1928,5222198	50,87	6,10
-	Dox-353	Dox-319	-1928,5216547	51,23	6,47

Ek 1. Relatif enerji değerlerine göre sıralanmış doksorubisin konformerleri (devam ediyor).

Vonform	E	Е		Vonformon	F	Е	
Koniorii No	Hartree)	E _{REL}	μ (Debve)	No	E (Hartree)	E _{REL}	μ (Debve)
Dlm 19	2 2425 0612050		(Debye)	Dlm 609	2425 0282810	(Kcal/III0I)	(Debye)
Blm 26	3 -2433,9013930	12 043	13,37	Dill-000 Blm 361	-2433,9283819	20,710	14,07
Dini-20 Dim 22	1 -2435,9422030 4 2425 0265860	12,043	12,51	Dim-301	-2435,9281370	20,857	26.24
Dini-25 Dim 44	4 -2455,9505609 2 2425 0262001	15,507	4,50	Dill-419 Dim 076	-2455,9281585	20,809	20,34
D1111-44	2 -2455,9505901 0 2425 0250520	15,091	0,49	Dill-070	-2455,9280452	20,929	13,10
DIII-09	9 -2455,9559520	15,900	9,05	DIIII-140 Dl 200	-2435,9279895	20,962	0,41
DIM-51 Dlm 04	7 -2455,9552040 2 2425 0250801	16,435	8,33 5.05	DIII-390	-2435,9279343	20,997	11,45 0.14
DIM-04	3 -2455,9550891	16,507	5,95	Dim-425	-2435,9277970	21,085	8,14
BIM-08	3 -2435,9350891	16,507	5,95	BIM-6/5	-2435,9277243	21,129	14,49
DIM-27	5 -2455,9548059	16,085	7,74	DIM-758	-2435,9276862	21,155	12,92
BIM-31	0 -2435,9348058	16,685	1,74	BIM-069	-2435,9276078	21,202	5,22
BIM-04	0 -2435,9342938	17,006	4,28	BIM-284	-2435,9273929	21,337	3,72
BIM-08	2 -2435,9342934	17,007	4,27	BIM-11/	-2435,9272511	21,426	7,62
BIM-30	2 -2435,9342070	17,061	13,59	BIM-170	-2435,9271516	21,488	1,22
BIM-44	8 -2435,9342070	17,061	13,59	BIM-431	-2435,9271473	21,491	1,03
BIM-26	2 -2435,9341908	17,071	17,15	Bim-002	-2435,9271398	21,495	8,91
BIM-03	3 -2435,9341907	17,071	15,15	Blm-640	-2435,9271374	21,497	12,37
BIm-04	7 -2435,9341907	17,071	15,15	Blm-422	-2435,9269163	21,636	7,50
BIm-42	9 -2435,9338738	17,270	13,48	BIm-309	-2435,9268159	21,699	3,59
Blm-03	0 -2435,9336175	17,431	13,95	Blm-438	-2435,9264773	21,911	16,19
Blm-28	1 -2435,9329645	17,840	4,04	Blm-104	-2435,9264772	21,911	16,19
Blm-06	1 -2435,9329644	17,840	4,04	Blm-107	-2435,9264772	21,911	16,19
Blm-65	1 -2435,9329228	17,867	5,76	Blm-412	-2435,9264481	21,930	16,01
Blm-56	3 -2435,9329227	17,867	5,77	Blm-282	-2435,9262815	22,034	14,55
Blm-05	4 -2435,9326744	18,022	6,98	Blm-625	-2435,9262247	22,070	8,10
Blm-18	0 -2435,9326553	18,034	7,64	Blm-198	-2435,9261192	22,136	10,40
Blm-57	8 -2435,9326111	18,062	7,88	Blm-337	-2435,9260907	22,154	26,30
Blm-67	8 -2435,9326111	18,062	7,87	Blm-001	-2435,9260525	22,178	8,23
Blm-32	1 -2435,9325417	18,106	11,45	Blm-367	-2435,9260054	22,207	27,63
BIm-37	8 -2435,9323895	18,201	13,51	Blm-097	-2435,9260026	22,209	15,02
Blm-32	2 -2435,9322246	18,305	4,12	Blm-004	-2435,9259323	22,253	7,84
Blm-05	1 -2435,9319534	18,475	5,38	Blm-410	-2435,9258906	22,279	15,15
Blm-14	1 -2435,9319046	18,506	6,22	Blm-298	-2435,9258097	22,330	13,37
BIM-14	5 -2435,9319043	18,506	6,22	Blm-042	-2435,9257433	22,372	15,57
BIm-70	0 -2435,9316522	18,664	13,49	BIm-133	-2435,9257164	22,389	15,74
BIM-07	1 -2435,9314503	18,791	14,12	BIM-085	-2435,9256384	22,438	11,06
BIM-14	3 -2435,9314314	18,802	4,57	Blm-144	-2435,9256191	22,450	6,38
BIM-3/	2 -2435,9314121	18,815	6,09	BIM-4/3	-2435,9256190	22,450	0,38
BIM-04	9 -2435,9311138	19,002	10,02	BIM-064	-2435,9255988	22,462	4,91
BIM-14	u -2435,9306143	19,315	1,18	BIM-112 Blm-022	-2435,9255988	22,462	4,91
DIII-59	4 -2455,9504887	19,394	5,78	BIII-032	-2435,9255969	22,404	5,22
DIM-09	1 -2455,9504241 0 2425 0202422	19,435	8,10	DIII-721 Dlm 205	-2435,9254500	22,555	9,30
Dini-37	4 2425,9505455	19,465	0,30 10,20	Diiii-295 Dim 300	-2455,9254582	22,303	3,91
Dilli-27	4 -2455,9299250 7 -2455,9299250	19,749	674	Diiii-399	-2455,9254509	22,304	14,99
Blm 74	 -2433,7298310 2435,0208172 	19,000	0,74	Bin 245	-2433,723430/	22,304 22,622	14,99 23 56
Blm 70	2 -2433,72701/2 7 2/25 020/005	20.027	+,+5	Bim-343 Bim 774	-2433,7233204	22,000	23,30 7 27
Dilli-/2 Rim 22	<i>i</i> -2433,9294803 <i>5</i> 2425 0204707	20,027	15,24 8 74	DIII-//0 Blm 250	-2433,7232280 2435 0252225	22,093 22,600	1,57
Blm 04	6 2433,9294797	20,027	0,20 8.06	Bim-350 Bim 466	-2433,72322223	22,099 22,799	12,01 26.40
Blm 12	e 2433,7200494	20,340	0,00 8 04	Blm 555	-2433,7230090	22,102	20,49
Blm 04	a -2433,7280494 a 2435,0285259	20,548 20,626	0,00 11.06	Bin 199	-2433,7230890	22,182	20,50
Blm_00	6 _2433,7203238	20,020	16.44	Blm-738	-2433,7230078	22,103 22,783	9,50 9,58
Blm 00	$6 \frac{-2433,7204730}{2425,0204747}$	20,030	16.44	Bim 204	-2+33,7230010 2435 0250425	22,100	9,50 12.57
DIIII-09	u -2455,9284/4/	20,038	10,44	DIIII-394	-2455,9250425	22,012	15,57

Ek 2. Relatif enerji değerlerine göre sıralanmış bleomisin konformerleri.

Konformer	Е	Epfi		Konformer	Е	Epfi	п
No	(Hartree)	(kcal/mol)	(Debve)	No	(Hartree)	(kcal/mol)	(Debve)
Blm-682	-2435,9250375	22,815	8,91	Blm-191	-2435,9230652	24,052	9,61
Blm-297	-2435,9250305	22,819	13,12	Blm-768	-2435,9230480	24,063	13,37
Blm-005	-2435,9250291	22,820	10,27	Blm-387	-2435,9229034	24,154	13,88
Blm-077	-2435,9250290	22,820	10,27	Blm-239	-2435,9228481	24,189	9,15
Blm-020	-2435,9250289	22,820	10,27	Blm-021	-2435,9228455	24,190	13.08
Blm-467	-2435,9250221	22,824	2,24	Blm-050	-2435,9228271	24,202	9.66
Blm-655	-2435,9249598	22,863	9,47	Blm-251	-2435,9228173	24,208	5,34
Blm-320	-2435,9249181	22,890	5,85	Blm-479	-2435,9227900	24,225	11,10
Blm-012	-2435,9248654	22,923	10,46	Blm-507	-2435,9227900	24,225	11,10
Blm-015	-2435,9248636	22,924	10,46	Blm-596	-2435,9227900	24,225	11,10
Blm-028	-2435,9248626	22,924	10,46	Blm-465	-2435,9227792	24,232	10,94
Blm-029	-2435,9248536	22,930	7,11	Blm-035	-2435,9227524	24,249	6,19
Blm-003	-2435,9248535	22,930	7,11	Blm-130	-2435,9227223	24,267	12,68
Blm-008	-2435,9248535	22,930	7,10	Blm-301	-2435,9226606	24,306	7,82
Blm-647	-2435,9248165	22,953	10,12	Blm-464	-2435,9225495	24,376	23,92
Blm-026	-2435,9247865	22,972	8,12	Blm-659	-2435,9225120	24,399	4,43
Blm-243	-2435,9246784	23,040	9,54	Blm-287	-2435,9224990	24,408	11,05
Blm-267	-2435,9246783	23,040	9,54	Blm-432	-2435,9224888	24,414	28,36
Blm-356	-2435,9246783	23,040	9,54	Blm-120	-2435,9224446	24,442	12,43
Blm-182	-2435,9246746	23,042	18,10	Blm-034	-2435,9224444	24,442	12,43
Blm-039	-2435,9245549	23,118	8,05	Blm-200	-2435,9224444	24,442	12,43
Blm-474	-2435,9245481	23,122	15,09	Blm-246	-2435,9224444	24,442	12,43
Blm-113	-2435,9244772	23,166	4,16	Blm-391	-2435,9224107	24,463	28,38
Blm-354	-2435,9244756	23,167	13,34	Blm-645	-2435,9223696	24,489	8,87
Blm-074	-2435,9243410	23,252	25,52	Blm-277	-2435,9223486	24,502	6,92
Blm-132	-2435,9243408	23,252	25,51	Blm-428	-2435,9223343	24,511	10,47
Blm-009	-2435,9243028	23,276	9,66	Blm-586	-2435,9222649	24,555	7,46
Blm-014	-2435,9243027	23,276	9,66	Blm-482	-2435,9222039	24,593	7,77
Blm-027	-2435,9243027	23,276	9,66	Blm-436	-2435,9221722	24,613	23,60
Blm-373	-2435,9242202	23,328	31,51	Blm-006	-2435,9221477	24,628	7,21
Blm-025	-2435,9241511	23,371	7,23	Blm-424	-2435,9221039	24,656	14,26
Blm-415	-2435,9239669	23,486	24,72	Blm-613	-2435,9220699	24,677	6,74
Blm-488	-2435,9239301	23,510	11,76	Blm-007	-2435,9220159	24,711	8,88
Blm-786	-2435,9239269	23,512	9,90	Blm-192	-2435,9220149	24,711	9,11
Blm-176	-2435,9238505	23,560	12,18	Blm-247	-2435,9219457	24,755	7,73
Blm-403	-2435,9237152	23,644	5,65	Blm-225	-2435,9218917	24,789	4,57
Blm-290	-2435,9237114	23,647	8,58	Blm-053	-2435,9218702	24,802	7,12
Blm-393	-2435,9236903	23,660	27,43	Blm-090	-2435,9218214	24,833	7,41
Blm-634	-2435,9236009	23,716	3,98	Blm-197	-2435,9217931	24,851	11,51
Blm-121	-2435,9235844	23,727	10,11	Blm-031	-2435,9217930	24,851	11,51
Blm-125	-2435,9235841	23,727	10,10	Blm-670	-2435,9217248	24,893	12,00
Blm-481	-2435,9235840	23,727	10,10	Blm-250	-2435,9215866	24,980	14,42
Blm-245	-2435,9234071	23,838	9,60	Blm-508	-2435,9215834	24,982	5,80
Blm-797	-2435,9233899	23,849	3,81	Blm-536	-2435,9215407	25,009	10,37
BIm-509	-2435,9233248	23,889	7,24	Blm-278	-2435,9215134	25,026	20,49
Blm-308	-2435,9233236	23,890	5,77	Blm-100	-2435,9215080	25,029	20,81
BIm-629	-2435,9233236	23,890	5,77	BIm-065	-2435,9215078	25,030	14,40
BIm-052	-2435,9233104	23,898	10,48	BIm-106	-2435,92150/7	25,030	14,40
BIM-631	-2435,9233002	23,905	28,69	BIm-753	-2435,9214183	25,086	26,89
BIM-158	-2435,9231688	23,987	9,62	BIM-544	-2435,9214140	25,088	14,29
BIM-568	-2435,92316//	23,988	0,51	BIM-079	-2435,9213357	25,138	24,17
BIM-037	-2433,9231147	24,021	/,61	BIM-045	-2435,9213283	25,142	9,47

Ek 2. Relatif enerji değerlerine göre sıralanmış bleomisin konformerleri (devam ediyor).

Vanforman	F	F		Vanfannan	F	Б	
Konformer	E (Hartree)	E _{REL}	μ (Debve)	No	E (Hartree)	E _{REL}	μ (Debve)
Blm 445	2425 0212062	(Kcal/III01)	(Debye)	Rlm 275	2425 0100820	(Kcal/III01)	(Debye)
Blm-167	-2435,9212903	25,102	0.05	Blm-273 Blm-728	-2435,9190829	26,551	25,05
Dim-107	-2435,9212085	25,217	9,95	Dini-720 Dim 157	-2435,9190108	26,595	10,47
Dilli-105 Dim 104	-2455,9212065	25,210	9,94	Dill-157 Dim 450	-2435,9190107	20,393	10,47
Diiii-194	-2435,9210131	25,339	7.42	Dini-450	-2433,9189309	20,034	9,00
Dim-355 Dim 124	-2435,9209996	25,348	12.00	DIM-514	-2435,9189509	20,034	9,00
DIIII-134	-2435,9208720	25,428	13,09	DIIII- / /4	-2435,9189287	26,648	28,47
Dim-081	-2435,9207711	25,492	4,80	Dim-754	-2435,9189020	20,005	14,09
Bim-3/5	-2435,9207379	25,513	27,94	Bim-/14	-2435,9188874	26,674	10,23
BIM-363	-2435,9206937	25,540	7,53	Bim-017	-2435,9188118	26,721	9,58
Blm-582	-2435,9206509	25,567	3,14	Blm-449	-2435,9187808	26,741	10,23
Blm-564	-2435,9206505	25,568	3,14	Blm-331	-2435,9187697	26,748	10,65
Blm-218	-2435,9206329	25,579	8,92	Blm-451	-2435,918/328	26,771	5,89
Blm-293	-2435,9205778	25,613	12,42	Blm-199	-2435,9186530	26,821	13,64
Blm-392	-2435,9205523	25,629	26,38	Blm-575	-2435,9185417	26,891	24,08
Blm-433	-2435,9205523	25,629	26,38	Blm-405	-2435,9184630	26,940	6,48
Blm-447	-2435,9205523	25,629	26,38	Blm-081	-2435,9184612	26,941	6,32
Blm-439	-2435,9205406	25,637	6,50	Blm-023	-2435,9184515	26,947	11,11
Blm-213	-2435,9205326	25,642	11,23	Blm-657	-2435,9183956	26,983	7,35
Blm-163	-2435,9203972	25,727	9,45	Blm-725	-2435,9183048	27,040	9,28
Blm-202	-2435,9203972	25,727	9,45	Blm-304	-2435,9182685	27,062	9,31
Blm-265	-2435,9203923	25,730	9,10	Blm-314	-2435,9181137	27,159	10,59
Blm-253	-2435,9203462	25,759	19,99	Blm-300	-2435,9180762	27,183	9,68
Blm-129	-2435,9203255	25,772	12,14	Blm-177	-2435,9180139	27,222	10,30
Blm-733	-2435,9202571	25,814	7,40	Blm-491	-2435,9179821	27,242	8,20
Blm-761	-2435,9202494	25,819	27,85	Blm-103	-2435,9179101	27,287	10,55
Blm-323	-2435,9202323	25,830	10,66	Blm-368	-2435,9179025	27,292	10,40
Blm-036	-2435,9201043	25,910	9,00	Blm-272	-2435,9178780	27,307	24,56
Blm-260	-2435,9200977	25,914	7,69	Blm-667	-2435,9178602	27,319	29,73
Blm-241	-2435,9200976	25,915	7,69	Blm-469	-2435,9178387	27,332	7,67
Blm-398	-2435,9200530	25,942	7,23	Blm-737	-2435,9177389	27,395	25,15
Blm-502	-2435,9200039	25,973	7,04	Blm-487	-2435,9177162	27,409	12,69
Blm-147	-2435,9199117	26,031	10,78	Blm-694	-2435,9176844	27,429	7,51
Blm-511	-2435,9199008	26,038	4,60	Blm-683	-2435,9176840	27,429	7,51
Blm-078	-2435,9198388	26,077	25,07	Blm-781	-2435,9176831	27,430	7,51
Blm-606	-2435,9197464	26,135	6,24	Blm-539	-2435,9176744	27,435	18,11
Blm-124	-2435,9197120	26,156	17,31	Blm-701	-2435,9176290	27,464	27,86
Blm-254	-2435,9196352	26,205	20,33	Blm-310	-2435,9176244	27,466	24,77
Blm-795	-2435,9195596	26,252	11,79	Blm-397	-2435,9176222	27,468	30,00
Blm-328	-2435,9194717	26,307	9,25	Blm-740	-2435,9175309	27,525	7,69
Blm-092	-2435,9194716	26,307	9,25	Blm-708	-2435,9175169	27,534	6,59
Blm-332	-2435,9194607	26,314	17,03	Blm-414	-2435,9175116	27,537	12,91
Blm-389	-2435,9194417	26,326	26,37	Blm-425	-2435,9174737	27,561	10,26
Blm-417	-2435,9194417	26,326	26,37	Blm-285	-2435,9174675	27,565	26,86
Blm-374	-2435,9194084	26,347	29,37	Blm-159	-2435,9174633	27,568	9,59
Blm-759	-2435,9193858	26,361	8,31	Blm-098	-2435,9174360	27,585	7,38
Blm-669	-2435,9193302	26,396	8,61	Blm-038	-2435,9174352	27,585	8,72
Blm-726	-2435,9193165	26,405	5,46	Blm-046	-2435,9174350	27,585	8,72
Blm-690	-2435,9193162	26,405	11,73	Blm-276	-2435,9173986	27,608	19,92
Blm-286	-2435,9192280	26,460	10,06	Blm-547	-2435,9173787	27,621	6,67
Blm-515	-2435,9192235	26,463	7,08	Blm-288	-2435,9173006	27,670	27,02
Blm-303	-2435,9191571	26,505	22,36	Blm-796	-2435,9172839	27,680	11,42
Blm-676	-2435,9191286	26,523	7,92	Blm-713	-2435,9172834	27,680	11,43

Ek 2. Relatif enerji değerlerine göre sıralanmış bleomisin konformerleri (devam ediyor).

Konformer	Е	Epfi		Konformer	Е	Epfi	п
No	(Hartree)	(kcal/mol)	(Debve)	No	(Hartree)	(kcal/mol)	(Debve)
Blm-201	-2435,9172196	27,720	9.39	Blm-101	-2435,9153904	28,868	15,84
Blm-789	-2435,9170678	27,816	6,95	Blm-210	-2435,9153904	28,868	15,84
Blm-236	-2435,9170517	27,826	12,31	Blm-602	-2435,9153731	28,879	8,10
Blm-716	-2435,9170297	27,840	10,72	Blm-711	-2435,9153079	28,920	9,49
Blm-480	-2435,9170131	27,850	9,16	Blm-556	-2435,9153077	28,920	9,49
Blm-155	-2435,9169878	27,866	8,24	Blm-013	-2435,9152916	28,930	19,25
Blm-166	-2435,9169662	27,879	8,18	Blm-022	-2435,9152916	28,930	19,25
Blm-283	-2435,9169230	27,907	8,04	Blm-016	-2435,9152915	28,930	19,25
Blm-595	-2435,9168832	27,932	30,17	Blm-019	-2435,9152915	28,930	19,25
Blm-221	-2435,9168171	27,973	22,51	Blm-070	-2435,9152422	28,961	12,05
Blm-529	-2435,9167704	28,002	12,94	Blm-327	-2435,9152206	28,975	23,47
Blm-366	-2435,9167547	28,012	11,62	Blm-409	-2435,9151947	28,991	10,83
Blm-122	-2435,9167490	28,016	19,35	Blm-644	-2435,9151890	28,995	33,78
Blm-437	-2435,9167129	28,038	33,18	Blm-058	-2435,9151299	29,032	14,52
Blm-504	-2435,9166951	28,050	6,22	Blm-312	-2435,9150836	29,061	6,42
Blm-565	-2435,9166951	28,050	6,22	Blm-334	-2435,9150648	29,073	28,64
Blm-152	-2435,9166923	28,051	25,64	Blm-666	-2435,9150295	29,095	8,17
Blm-689	-2435,9165956	28,112	17,95	Blm-600	-2435,9150294	29,095	8,17
Blm-292	-2435,9165612	28,134	6,36	Blm-063	-2435,9149895	29,120	9,67
Blm-396	-2435,9165436	28,145	29,37	Blm-209	-2435,9149797	29,126	13,52
Blm-633	-2435,9165078	28,167	2,75	Blm-127	-2435,9149685	29,133	15,64
Blm-612	-2435,9164575	28,199	10,84	Blm-119	-2435,9149675	29,134	27,10
Blm-153	-2435,9164550	28,200	15,90	Blm-550	-2435,9149370	29,153	10,66
Blm-624	-2435,9164332	28,214	9,46	Blm-496	-2435,9149264	29,159	8,25
Blm-577	-2435,9164120	28,227	10,02	Blm-460	-2435,9149106	29,169	16,38
Blm-457	-2435,9164022	28,233	24,16	Blm-349	-2435,9148454	29,210	4,08
Blm-018	-2435,9162983	28,299	20,46	Blm-486	-2435,9148454	29,210	4,09
Blm-024	-2435,9162983	28,299	20,46	Blm-500	-2435,9147682	29,259	30,01
Blm-266	-2435,9162597	28,323	22,23	Blm-506	-2435,9147192	29,290	19,64
Blm-720	-2435,9162435	28,333	12,10	Blm-775	-2435,9146683	29,321	10,35
Blm-456	-2435,9162184	28,349	11,25	Blm-735	-2435,9145912	29,370	30,04
Blm-049	-2435,9162044	28,358	24,49	Blm-532	-2435,9145604	29,389	5,26
Blm-313	-2435,9161842	28,370	4,99	Blm-573	-2435,9145604	29,389	5,26
Blm-280	-2435,9161132	28,415	27,26	Blm-551	-2435,9145603	29,389	5,26
Blm-148	-2435,9161073	28,418	8,78	Blm-648	-2435,9143319	29,533	9,98
Blm-484	-2435,9160959	28,426	8,17	Blm-072	-2435,9143293	29,534	11,28
Blm-330	-2435,9160900	28,429	10,00	Blm-472	-2435,9143175	29,542	27,79
Blm-160	-2435,9160424	28,459	10,67	Blm-470	-2435,9143146	29,543	23,73
Blm-196	-2435,9159250	28,533	10,43	Blm-498	-2435,9142715	29,570	10,72
Blm-237	-2435,9159246	28,533	10,44	Blm-604	-2435,9141353	29,656	6,72
Blm-193	-2435,9159244	28,533	10,44	Blm-764	-2435,9141057	29,674	27,32
Blm-717	-2435,9158683	28,568	11,28	Blm-135	-2435,9140435	29,714	17,66
Blm-084	-2435,9158324	28,591	9,80	Blm-426	-2435,9140111	29,734	9,84
Blm-080	-2435,9157732	28,628	14,42	Blm-706	-2435,9139752	29,756	8,69
Blm-178	-2435,9157693	28,631	19,89	Blm-181	-2435,9139543	29,769	25,76
Blm-156	-2435,9157266	28,657	14,08	Blm-463	-2435,9139392	29,779	26,33
Blm-494	-2435,9157038	28,672	6,90	Blm-289	-2435,9139086	29,798	12,87
Blm-560	-2435,9156584	28,700	27,63	Blm-294	-2435,9138173	29,855	12,37
Blm-048	-2435,9155955	28,740	14,04	Blm-333	-2435,9136334	29,971	9,26
Blm-752	-2435,9155007	28,799	8,56	Blm-094	-2435,9136057	29,988	7,31
Blm-089	-2435,9154698	28,818	7,45	Blm-011	-2435,9135713	30,010	10,36
Blm-580	-2435,9154282	28,845	6,87	Blm-164	-2435,9135618	30,016	29,92

Ek 2. Relatif enerji değerlerine göre sıralanmış bleomisin konformerleri (devam ediyor).

Vare	E	Б		Vare	T.	г	
Konformer No	E (Hartree)	L _{REL} (kcal/mol)	μ (Debve)	Konformer No	또 (Hartree)	E _{REL} (kcal/mol)	μ (Debve)
Blm-118	-2435,9135617	30,016	29.92	Blm-230	-2435.9112995	31,435	8.27
Blm-512	-2435.9135536	30.021	10.65	Blm-518	-2435.9112077	31,493	28.44
Blm-186	-2435.9135535	30.021	10.64	Blm-454	-2435,9111158	31,551	26.94
Blm-190	-2435 9135270	30,021	9.81	Blm-073	-2435 9110858	31,570	6 36
Blm-139	-2435 9135194	30,030	7 50	Blm-592	-2435 9110787	31,576	8.26
Blm-137	-2435 9135194	30,042	7,50	Blm-693	-2435 9110767	31,601	15 90
Blm-174	-2435 9133563	30,042	22 70	Blm-495	-2435 9110198	31,601	28 75
Blm-318	-2435,9133305	30,149	10.08	Blm-510	-2435 9110198	31,611	28,75
Blm-499	-2435,9133170	30,102	31.79	Blm-279	-2435,9110198	31,616	20,75
Blm-605	2435,0132366	30,211	25.07	Blm-056	2435,9109034	31,650	10.85
Blm-557	-2435,9132200	30,220	8.02	Blm-461	-2435,9109380	31,658	11 14
Blm-643	-2435,9132204	30,230	31.76	Blm-010	-2435,9109449	31,658	11,14
Blm-751	2435,0131508	30,257	23.26	Blm-242	2435,9109440	31,050	5 15
Blm-416	2435,9131398	30,208	10.63	Blm-710	2435,9108137	31,740	2.64
Blm-708	2435,9131435	30,278	8 65	Blm-501	2435,91077168	31,707	4.02
Blm 566	2435,9131093	30,300	8,05	Blm 353	2435,9107408	31,782	4,92
Blm-228	2435,9130037	30,305	13 /1	Blm-173	2435,9107312	31,792	23.46
Blm 653	2435,9129722	30,380	8 86	Blm 226	2435,9105814	21,886	23,40
Blm 264	-2435,9129571	30,393	0,00	Dim-220	-2435,9105814	21,000	23,40
Dini-204	-2455,9128545	30,400	20.22	Dill-555	2425,9105033	21,934	52,09 20.28
Biiii-455 Bim 041	-2455,9126112	30,487	29,23	Dill-211 Blm 677	-2455,9105055	21,955	20,20
Diiii-041 Dim 211	-2455,9127612	30,300	0,01 5.05	Blm 050	-2455,9105055	21,955	20,29
Dim-311 Plm 462	-2455,9125805	30,028	5,95	Dini-059	-2455,9105052	21,955	20,20
Dim-402	-2435,9123704	30,038	10.29	Blm 561	-2435,9103032	31,933	20,29
Bim-705	-2435,9124602	30,707	10,58	Blm-361	-2435,9104840	31,947	25,97
Dim-749	-2455,9125745	30,701	20,05	Dill-400 Dim 785	-2455,9104100	31,994	20,35
Blm 562	-2455,9125050	30,804	23,75	Dill-765	-2435,9103385	32,039	0,92
Diiii-502 Dim 602	-2455,9122805	30,820	14,50	Dill-740 Dim 635	-2455,9105245	32,047	7,21
Dim-005	-2435,9122740	30,824	11,03	DIII-035 Dim 402	-2435,9101242	32,173	12.06
Diiii-545	-2455,9122087	30,827	4,00	Diiii-492 Dim 476	-2435,9100355	32,210	0.61
Blm 270	-2455,9122084	30,827	4,07	$\frac{DIIII-470}{DIIII}$	-2455,9100599	32,220	9,01
Dim-270	-2435,9122540	30,830	24.04	Dini-455 Dim 610	-2435,9098841	32,324	11.01
Blm 102	-2435,9122172	30,800	12.07	Bin-017 Bim 510	-2435,9098830	32,324	20.51
Blm-075	-2435,9122037	30,808	12,07	Blm-403	-2433,9098828	32,324	29,31
Blm 305	2435,9122030	30,808	2.45	Blm 201	2435,9098825	32,323	672
Blm 115	2435,9121834	30,881	2,45	Blm 731	2435,9098590	32,339	17.60
Blm-408	2435,9121821	30,882	3 78	Blm-541	2435,9098471	32,347	18.56
Blm-244	-2435,9121394	30,908	634	Blm-404	-2435,9098539	32,333	5 57
Blm-744	-2435,9121359	30,911	25 76	Blm-418	-2435,9097955	32,301	25.54
Blm-787	-2435,9120577	31,061	10.99	Blm-660	-2435,9097164	32,425	13.91
Blm-638	-2435,9118703	31,001	8 53	Blm-723	-2435,9097080	32,435	16.64
Blm-661	-2435,9118777	31,075	5.08	Blm-067	-2435,9090980	32,440	15,19
Blm-184	-2435,9110733	31,075	10.33	Blm-420	-2435,9093147	32,555	8 47
Blm-385	-2435,9117778	31,150	24.05	Blm-528	-2435 9093535	32,057	8.47
Blm-665	-2435 9117053	31,104	24,03	Blm-637	-2435 9093535	32,057	8 47
Blm-057	-2435 9116264	31 230	12 19	Blm-255	-2435 9092645	32,007	9.97
Blm-577	-2435 9115392	31 285	6 5 5	Blm-060	-2435 9091942	32,712	19.67
Blm-617	-2435 9115057	31 306	5 23	Blm-067	-2435 9091942	32,756	19,62
Blm-490	-2435 911/057	31 325	9.25	Blm-168	-2435 9091542	32,750	9,01
Blm-677	-2435 9114734	31,325	13 /3	Blm-513	-2435 9091374	32,780	28.40
Blm-671	-2435 9114200	31,356	32.02	Blm-336	-2435 9091332	32,794	20,40 8 7/
Blm-703	_2435 0113065	31,330	8 7 C	Bim-642	_2435,0091310	32,190	11.83
DIII-703	-2455,9115005	51,451	0,12	D1111-042	-2455,9090700	52,034	11,00

Ek 2. Relatif enerji değerlerine göre sıralanmış bleomisin konformerleri (devam ediyor).

No (Hartree) (kcal/mol) (Debye) No (Hartree) (kcal/mol) (Debye) Bim-240 2435.909400 32.885 9.19 Bim-516 2435.904548 35.667 10.79 Bim-589 2435.9098015 32.903 9.04 Bim-202 2435.904545 35.602 23.81 Bim-689 2435.9088503 32.907 8.44 Bim-763 2435.904516 35.602 22.88 Bim-309 2435.9088503 32.907 8.44 Bim-66 2435.9043861 35.774 13.21 Bim-333 2435.9088182 32.992 4.51 Bim-677 2435.9043861 35.774 13.21 Bim-348 2435.9048181 32.993 4.51 Bim-677 2435.904216 35.889 7.03 Bim-644 2435.9048174 33.208 8.70 Bim-645 2435.904215 35.889 7.03 Bim-162 2435.904215 35.889 7.03 Bim-645 2435.903717 36.203 3.41 Bim-164 2435.904215 <th>Konformer</th> <th>E</th> <th>Eppi</th> <th></th> <th>Konformer</th> <th>E</th> <th>Ерег</th> <th></th>	Konformer	E	Eppi		Konformer	E	Ерег	
Bim-240 2435,909400 32,853 9,19 Bim-516 -2435,9046148 35,667 10,79 Bim-741 -2435,9089615 32,903 9,04 Bim-220 -2435,904629 22,38 Bim-680 -2435,9089615 32,903 9,04 Bim-220 -2435,904506 35,621 9,17 Bim-680 -2435,908893 32,970 5,81 Bim-676 -2435,904366 35,700 22,93 Bim-307 -2435,9088937 32,970 5,81 Bim-672 -2435,9043861 35,774 13,21 Bim-338 -2435,9084181 32,993 4,51 Bim-677 -2435,9043861 35,774 13,21 Bim-646 -2435,9047440 33,208 8,70 Bim-645 -2435,9040544 36,045 23,41 Bim-123 -2435,904740 33,208 8,70 Bim-421 -2435,9036794 36,045 23,41 Bim-232 -2435,9036794 36,045 23,41 Bim-172 -2435,9037947 36,173 10,10 Bim-232 -2435,9037947	No	(Hartree)	(kcal/mol)	(Debve)	No	(Hartree)	(kcal/mol)	(Debve)
Bim-741 -2435.9089888 32,885 8,28 Bim-722 -2435.909615 32,903 9,04 Bim-220 -2435.904615 35,602 22,83 Bim-689 -2435.9089113 32,999 32,10 Bim-766 -2435.9045165 35,602 22,88 Bim-307 -2435.9088573 32,967 8,44 Bim-688 -2435.904360 35,776 22,44 Bim-333 -2435.9088182 32,992 4,51 Bim-688 -2435.904380 35,774 13,21 Bim-333 -2435.908485 33,201 8,39 Bim-79 -2435.904480 35,860 16,12 Bim-644 -2435.904444 33,208 8,70 Bim-646 2435.904941 33,208 8,70 Bim-648 2435.9049474 33,402 2,33 Bim-718 -2435.903440 36,045 23,41 Bim-212 -2435.9034497 33,412 7,35 Bim-214 -2435.9037497 36,117 2,42 Bim-615 -2435.9034473 36,221 31,65 Bim-739 2435.9036717 36,	Blm-240	-2435,9090400	32.853	9.19	Blm-516	-2435.9047158	35,567	10.79
Bim-589 -2435,9089615 32,903 9,04 Bim-220 -2435,9045165 35,621 9,17 Bim-660 -2435,9085163 32,903 9,04 Bim-763 -2435,9045165 35,670 22,288 Bim-609 -2435,9085173 32,967 8,44 Bim-763 -2435,9044366 35,774 13,211 Bim-538 -2435,9081818 32,992 4,51 Bim-667 -2435,904488 35,8774 13,211 Bim-538 -2435,9045181 32,992 4,51 Bim-677 -2435,904488 35,889 7,03 Bim-64 -2435,9047441 33,208 8,70 Bim-545 -2435,9043541 36,045 23,41 Bim-12 -2435,9034474 33,208 8,70 Bim-718 -2435,903541 36,045 23,41 Bim-12 -2435,9034474 33,208 8,76 Bim-114 -2435,903541 36,021 24,42 Bim-165 -2435,9034747 33,439 8,58 Bim-718 -2435,903648 36,221 24,45 Bim-616	Blm-741	-2435,9089888	32,885	8,28	Blm-732	-2435,9046548	35,605	24,33
Bin-680 -2435.9089615 32,903 9,04 Bin-763 -2435.904503 35,702 22.88 Bin-607 -2435.9048933 32,907 S,81 Bin-108 -2435.904494 55,706 24.44 Bin-333 -2435.9088373 32,907 5,81 Bin-667 -2435.904360 35,774 13,21 Bin-333 -2435.9081818 32,992 4,51 Bin-79 -2435.9042488 35,860 16,12 Bin-16 -2435.9043455 33,201 8,39 Bin-79 -2435.904248 35,880 16,12 Bin-667 -2435.904740 33,208 8,70 Bin-668 -2435.903540 36,045 23,41 Bin-213 -2435.9035407 36,0173 10,10 Bin-223 -2435.9035407 36,171 10,10 Bin-223 -2435.9035473 35,828 7,33 Bin-147 -2435.903579 36,217 12,42 Bin-132 -2435.9035473 35,827 33,828 8,76 Bin-147 -2435.903579 36,217 12,42	Blm-589	-2435,9089615	32,903	9,04	Blm-220	-2435,9046292	35,621	9,17
Bim-307 -2435.9088713 32.957 8.14 Bim-763 -2435.9048503 55.700 22.93 Bim-649 -2435.9088537 32.967 8.14 Bim-688 -2435.9048860 35.774 13.21 Bim-333 -2435.9081812 32.992 4.51 Bim-607 -2435.9043860 35.774 13.21 Bim-538 -2435.9081812 32.993 4.51 Bim-607 -2435.9042163 35.889 7.03 Bim-644 -2435.9084740 33.208 8.70 Bim-545 -2435.904304 35.982 16.86 Bim-644 -2435.9082104 33.378 8.93 Bim-718 -2435.903717 36.217 22.42 Bim-164 -2435.9018797 33.42 7.35 Bim-479 -2435.9037017 36.217 22.42 Bim-615 -2435.90781063 33.43 8.58 Bim-141 -2435.903717 36.221 31.65 Bim-616 -2435.9078108 33.725 8.70 Bim-743 -2435.9036443 36.227 18.56 Bim-529	Blm-680	-2435,9089615	32,903	9,04	Blm-756	-2435,9045165	35,692	22,88
Bim-609 -2435,9088593 32,967 8,44 Bim-108 -2435,90439451 35,774 13,21 Bim-333 -2435,9088357 32,970 5,81 Bim-667 -2435,9043861 35,774 13,21 Bim-333 -2435,9081818 32,993 4,51 Bim-179 -2435,9042488 35,860 16,12 Bim-164 -2435,90481741 33,208 8,70 Bim-645 -2435,904374 36,045 23,41 Bim-213 -2435,9043740 33,208 8,70 Bim-646 -2435,904374 36,045 23,41 Bim-213 -2435,904244 33,378 B,33 Bim-718 -2435,903740 36,045 23,41 Bim-223 -2435,901360 33,439 S.88 Bim-114 -2435,903707 36,217 22,42 Bim-165 -2435,9078787 33,522 8,76 Bim-114 -2435,9036071 36,217 22,42 Bim-215 -2435,9078787 33,582 8,76 Bim-214 -2435,903677 36,217 22,42 S03776 36,217<	Blm-307	-2435,9088713	32,959	32,10	Blm-763	-2435,9045036	35,700	22,93
Bim-343 -2435.90888537 32.970 5.81 Bim-688 -2435.9043861 35.774 13.21 Bim-383 -2435.9088182 32.992 4.51 Bim-179 -2435.9043860 35.774 13.21 Bim-383 -2435.9084855 33.201 8.39 Bim-305 -2435.9042443 35.860 16.12 Bim-644 -2435.9084741 33.208 8.70 Bim-645 -2435.9043741 36.045 23.41 Bim-216 -2435.9082513 33.348 13.34 Bim-718 -2435.9037407 36.103 30.645 23.41 Bim-226 -2435.908103 33.348 8.88 Bim-718 -2435.9037497 36.177 2.242 Bim-615 -2435.9078787 33.582 8.76 Bim-114 -2435.9036443 36.237 18.56 Bim-299 -2435.907815 33.623 30.44 Bim-743 -2435.9036443 36.237 18.56 Bim-105 -2435.9071837 33,755 8.70 Bim-743 -2435.9036443 36.237 18.56	Blm-609	-2435,9088593	32,967	8,44	Blm-108	-2435,9044945	35,706	24,46
Blm-383 -2435.9088182 32.992 4.51 Blm-607 -2435.9043860 35.774 13.21 Blm-588 -2435.9088181 32.993 4.51 Blm-305 -2435.9042488 35.860 16.12 Blm-646 -2435.9084741 33.208 8.70 Blm-545 -2435.9040534 35.989 16.86 Blm-646 -2435.9084740 33.208 8.70 Blm-646 -2435.9039541 36.045 23.41 Blm-126 -2435.9081447 33.378 8.93 Blm-779 -2435.9037017 36.173 10.10 Blm-223 -2435.901630 33.439 8.58 Blm-174 -2435.9037017 36.217 22.42 Blm-165 -2435.9078787 33.522 8.76 Blm-174 -2435.9036443 36.237 18.56 Blm-273 -2435.907387 33.75 16.56 Blm-243 -2435.9036433 36.217 22.42 Blm-154 -2435.9073873 33.795 16.56 Blm-243 -2435.9034763 36.422 25.83 Blm-154<	Blm-343	-2435,9088537	32,970	5,81	Blm-688	-2435,9043861	35,774	13,21
Bim-538 -2435,9088181 32,993 4,51 Bim-179 -2435,9042488 35,860 16,12 Bim-116 -2435,9084855 33,201 8,39 Bim-305 -2435,904215 35,889 7,03 Bim-646 -2435,9084740 33,208 8,70 Bim-668 -2435,903541 36,045 23,41 Bim-123 -2435,908244 33,378 8,93 Bim-718 -2435,903740 36,045 23,41 Bim-123 -2435,9081497 33,412 7,35 Bim-412 -2435,9037078 36,217 24,22 Bim-161 -2435,9077878 33,582 8,76 Bim-162 -2435,907788 36,227 18,65 Bim-105 -2435,90778173 33,600 6,06 Bim-641 -2435,907371 36,227 18,56 Bim-152 -2435,9075161 33,725 8,70 Bim-739 -2435,907333 36,415 6,84 Bim-527 -2435,9073483 38,88 25,044 Bim-641 -2435,907333 36,415 6,84 Bim-539	Blm-383	-2435,9088182	32,992	4,51	Blm-607	-2435,9043860	35,774	13,21
Bim-116 -2435,9084855 33,201 8,39 Bim-305 -2435,9042015 35,889 7,03 Bim-644 -2435,9084741 33,208 8,70 Bim-545 -2435,904234 35,982 16,86 Bim-612 -2435,908244 33,378 8,93 Bim-718 -2435,9037497 36,117 10,10 Bim-216 -2435,9082044 33,378 8,93 Bim-779 -2435,9037497 36,217 22,42 Bim-165 -2435,9078787 33,582 8,76 Bim-114 -2435,9036788 36,2217 22,42 Bim-165 -2435,90781815 33,623 30,34 Bim-61 -2435,9036484 36,237 18,56 Bim-27 -2435,907510 33,725 8,70 Bim-743 -2435,9036484 36,227 36,262 9,97 Bim-527 -2435,907510 33,725 8,70 Bim-743 -2435,9036484 36,221 25,83 Bim-752 -2435,9074383 33,858 25,04 Bim-745 -2435,9033633 36,415 6,84 B	Blm-538	-2435,9088181	32,993	4,51	Blm-179	-2435,9042488	35,860	16,12
Bim-64 -2435.9084741 33.208 8.70 Bim-545 -2435.9040534 35.982 16.86 Bim-646 -2435.9082741 33.208 8.70 Bim-668 -2435.903541 30.045 23.41 Bim-123 -2435.9082131 33.348 13.34 Bim-717 -2435.9037497 36.173 10.10 Bim-223 -2435.9081063 33.412 7.35 Bim-411 -2435.903707 36.203 9.64 Bim-099 -2435.907878 33.582 8.76 Bim-117 -2435.903678 36.217 22.42 Bim-611 -2435.9078787 33.562 8.76 Bim-162 -2435.9036483 36.237 18.56 Bim-102 -2435.9075161 33.725 8.70 Bim-743 -2435.9036483 36.242 24.35 Bim-515 -2435.9075161 33.725 8.70 Bim-743 -2435.903333 36.415 6.84 Bim-324 -2435.9073433 38.88 25.04 Bim-641 -2435.903333 36.415 6.84 Bim-324	Blm-116	-2435,9084855	33,201	8,39	Blm-305	-2435,9042015	35,889	7,03
Bim-646 -2435.9084740 33.208 8,70 Bim-668 -2435.9039541 36.045 23.41 Bim-123 -2435.9082513 33.348 13.34 Bim-718 -2435.903740 36.045 23.41 Bim-223 -2435.9081063 33.442 7.35 Bim-421 -2435.9037078 36.217 22.42 Bim-165 -2435.9078787 33.582 8.76 Bim-114 -2435.9037788 36.217 22.42 Bim-165 -2435.90778135 33.623 30.34 Bim-641 -2435.9037618 36.237 18.56 Bim-299 -2435.9077510 33.725 8.70 Bim-543 -2435.903772 36.262 9.97 Bim-55 -2435.907510 33.725 8.60 Bim-243 -2435.9033633 36.415 6.84 Bim-352 -2435.9071329 33.848 5.33 Bim-454 -2435.9033633 36.614 36.69 Bim-339 -2435.9071387 34.018 13.86 Bim-451 -2435.9003633 36.614 36.69 Bim-339 </th <th>Blm-684</th> <th>-2435,9084741</th> <th>33,208</th> <th>8,70</th> <th>Blm-545</th> <th>-2435,9040534</th> <th>35,982</th> <th>16,86</th>	Blm-684	-2435,9084741	33,208	8,70	Blm-545	-2435,9040534	35,982	16,86
Bim-123 -2435,9082513 33,348 13,34 Bim-718 -2435,9039540 36,045 23,41 Bim-216 -2435,9082044 33,378 8,93 Bim-779 -2435,9037497 36,173 10,10 Bim-223 -2435,9081063 33,439 8,58 Bim-17 -2435,903717 36,221 31,65 Bim-611 -2435,907815 33,623 30,34 Bim-62 -2435,9036483 36,237 18,56 Bim-517 -2435,907721 33,680 6,06 Bim-641 -2435,9036483 36,237 18,56 Bim-527 -2435,907721 33,680 6,06 Bim-743 -2435,9036483 36,237 18,56 Bim-527 -2435,90715161 33,810 15,23 Bim-549 -2435,903476 63,42 2,83 Bim-527 -2435,9071397 33,875 5,33 Bim-452 -2435,903463 36,612 15,83 Bim-528 -2435,9071397 33,975 5,74 Bim-773 -2435,903643 36,621 8,68 Bim-529	Blm-646	-2435,9084740	33,208	8,70	Blm-668	-2435,9039541	36,045	23,41
Bim-216 -2435,9082044 33,378 8,93 Bim-779 -2435,9037497 36,173 10,10 Bim-223 -2435,9081063 33,412 7,35 Bim-421 -2435,9037017 36,203 9,64 Bim-165 -2435,907787 33,582 8,76 Bim-114 -2435,9036727 36,221 31,65 Bim-161 -2435,9078185 33,623 30,34 Bim-662 -2435,9036484 36,237 18,56 Bim-299 -2435,907510 33,725 87,6 Bim-743 -2435,9036071 36,269 24,55 Bim-755 -2435,907383 33,858 25,04 Bim-618 -2435,903633 36,641 26,82 28,83 Bim-152 -2435,9073493 33,878 5,33 Bim-624 -2435,9030817 36,502 15,83 Bim-339 -2435,9073497 33,675 35,74 Bim-773 -2435,9030817 36,614 33,69 Bim-339 -2435,9071393 34,046 32,41 Bim-611 -2435,902143 36,737 7,75	Blm-123	-2435,9082513	33,348	13,34	Blm-718	-2435,9039540	36,045	23,41
Bim-223 -2435,9081497 33,412 7,35 Bim-421 -2435,9037017 36,203 9,64 Bim-099 -2435,9078787 33,439 8,58 Bim-116 -2435,907877 36,221 31,65 Bim-611 -2435,9078787 33,623 30,34 Bim-64 -2435,9036484 36,221 31,65 Bim-105 -2435,907510 33,725 8,56 Bim-743 -2435,9036483 36,237 18,56 Bim-105 -2435,907510 33,725 8,56 Bim-743 -2435,9035972 36,269 24,55 Bim-55 -2435,9075397 33,795 16,56 Bim-549 -2435,903617 36,612 6,84 Bim-324 -2435,907389 33,875 5,33 Bim-618 -2435,9030362 36,621 8,68 Bim-154 -2435,907139 34,044 33,86 6,42 Bim-483 -2435,9030362 36,621 8,68 Bim-154 -2435,907139 34,044 32,85 Bim-611 -2435,9020160 36,857 8,52	Blm-216	-2435,9082044	33,378	8,93	Blm-779	-2435,9037497	36,173	10,10
Bim-099 -2435,9081063 33,439 8,58 Bim-187 -2435,9036728 36,217 22,42 Bim-165 -2435,9078787 33,582 8,76 Bim-141 -2435,9036723 36,221 31,65 Bim-611 -2435,9077221 33,680 6,06 Bim-642 -2435,9036478 36,237 18,56 Bim-527 -2435,907510 33,725 8,70 Bim-743 -2435,9036473 36,237 18,56 Bim-527 -2435,9075161 33,810 15,23 Bim-549 -2435,9034796 36,412 6,84 Bim-524 -2435,907329 33,887 5,33 Bim-548 -2435,9033633 36,415 6,84 Bim-524 -2435,907329 33,875 35,74 Bim-713 -2435,903362 36,614 33,69 Bim-524 -2435,9071837 34,018 13,86 Bim-111 -2435,9023610 36,614 36,69 Bim-524 -2435,9071837 34,018 13,05 Bim-713 -2435,9023610 36,87 8,52 Bim-524 <th>Blm-223</th> <th>-2435,9081497</th> <th>33,412</th> <th>7,35</th> <th>Blm-421</th> <th>-2435,9037017</th> <th>36,203</th> <th>9,64</th>	Blm-223	-2435,9081497	33,412	7,35	Blm-421	-2435,9037017	36,203	9,64
Bim-165 -2435,9078787 33,582 8,76 Bim-114 -2435,9036727 36,221 31,65 Bim-299 -2435,9078135 33,623 30,34 Bim-662 -2435,9036483 36,237 18,56 Bim-299 -2435,9076510 33,725 8,70 Bim-743 -2435,9036071 36,262 9,97 Bim-527 -2435,9075397 33,795 16,56 Bim-129 -2435,90336071 36,262 24,55 Bim-155 -2435,9073929 33,887 5,33 Bim-549 -2435,9033633 36,415 6,84 Bim-339 -2435,9072529 33,975 35,74 Bim-773 -2435,9030817 36,6592 15,83 Bim-454 -2435,9072447 33,980 6,42 Bim-473 -2435,9020817 36,73 7,75 Bim-504 -2435,9071930 34,046 32,41 Bim-6740 -2435,9022814 36,737 7,75 Bim-208 -2435,9070794 34,084 13,05 Bim-621 -2435,9022160 36,887 20,90 Bim-	Blm-099	-2435,9081063	33,439	8,58	Blm-187	-2435,9036798	36,217	22,42
Bim-611 -2435,9078135 33,623 30,34 Bim-622 -2435,9036484 36,237 18,56 Bim-299 -2435,9077221 33,680 6,06 Bim-641 -2435,9036073 36,227 18,56 Bim-105 -2435,907510 33,725 8,70 Bim-743 -2435,9035972 36,229 24,55 Bim-755 -2435,9075161 33,810 15,23 Bim-549 -2435,9033972 36,269 24,55 Bim-755 -2435,907161 33,810 15,23 Bim-549 -2435,9033972 36,269 24,55 Bim-754 -2435,9071837 33,878 5,33 Bim-541 -2435,9030466 36,614 33,69 Bim-339 -2435,9071837 34,018 13,86 Bim-111 -2435,90208511 36,737 7,75 Bim-248 -2435,9070794 34,046 32,41 Bim-621 -2435,9025061 36,887 8,52 Bim-342 -2435,9067243 34,181 8,59 Bim-750 -2435,9025063 36,932 15,17 Bim-5	Blm-165	-2435,9078787	33,582	8,76	Blm-114	-2435,9036727	36,221	31,65
Bim-299 -2435,9077221 33,680 6.06 Bim-641 -2435,9036483 36,237 18,56 Bim-105 -2435,907510 33,725 8,70 Bim-743 -2435,9036071 36,262 9,97 Bim-527 -2435,9075161 33,810 15,23 Bim-549 -2435,903633 36,412 25,83 Bim-515 -2435,907181 33,810 15,23 Bim-549 -2435,903633 36,415 6,84 Bim-524 -2435,9071827 33,975 35,74 Bim-512 -2435,903046 36,614 33,69 Bim-54 -2435,9071837 34,018 13,86 Bim-111 -2435,9020817 36,705 8,31 Bim-54 -2435,9071837 34,018 13,86 Bim-111 -2435,9026610 36,887 8,52 Bim-342 -2435,9070794 34,084 13,05 Bim-621 -2435,9026610 36,887 8,52 Bim-342 -2435,906090 34,190 11.04 Bim-565 -2435,902586 36,895 20,90 Bim-513	Blm-611	-2435,9078135	33,623	30,34	Blm-662	-2435,9036484	36,237	18,56
Bim-105 -2435,9076510 33,725 8,70 Bim-743 -2435,9036071 36,262 9,97 Bim-527 -2435,9075397 33,795 16,56 Bim-219 -2435,9035972 36,269 24,55 Bim-755 -2435,9075161 33,810 15,23 Bim-549 -2435,903633 36,412 25,83 Bim-195 -2435,907329 33,858 25,04 Bim-512 -2435,90366 36,614 33,69 Bim-534 -2435,9072447 33,980 6,42 Bim-483 -2435,90217 36,737 7,75 Bim-214 -2435,9071837 34,018 13,86 Bim-611 -2435,90217 36,737 7,75 Bim-210 -2435,9071930 34,046 32,41 Bim-621 -2435,902514 36,737 7,75 Bim-212 -2435,9070794 34,181 8,59 Bim-750 -2435,902516 36,895 20,90 Bim-628 -2435,9067254 34,306 9,48 Bim-444 -2435,9025765 36,992 16,74 Bim-717	Blm-299	-2435,9077221	33,680	6,06	Blm-641	-2435,9036483	36,237	18,56
Bim-527 -2435,9075397 33,795 16,56 Bim-219 -2435,9035972 36,269 24,55 Bim-755 -2435,9075161 33,810 15,23 Bim-549 -2435,903633 36,415 6,84 Bim-324 -2435,9073929 33,875 5,33 Bim-452 -2435,9030817 36,692 15,83 Bim-641 -2435,907229 33,975 35,74 Bim-773 -2435,903062 36,614 33,69 Bim-542 -2435,9071837 34,018 13,86 Bim-773 -2435,902017 36,705 8,31 Bim-468 -2435,9070794 34,084 13,05 Bim-621 -2435,902610 36,877 7,75 Bim-342 -2435,90070794 34,084 13,05 Bim-626 -2435,902610 36,888 23,77 Bim-777 -2435,906909 34,190 11,04 Bim-626 -2435,902576 36,909 26,74 Bim-780 -2435,906724 34,402 9,63 Bim-782 -2435,902576 36,992 26,74 Bim-781	Blm-105	-2435,9076510	33,725	8,70	Blm-743	-2435,9036071	36,262	9,97
Bim-755 -2435,9075161 33,810 15,23 Bim-549 -2435,9034796 36,342 25,83 Bim-195 -2435,907329 33,878 5,33 Bim-618 -2435,903633 36,415 6,84 Bim-324 -2435,907329 33,875 5,33 Bim-452 -2435,9030466 36,614 33,69 Bim-654 -2435,9072447 33,980 6,42 Bim-433 -2435,900362 36,614 33,69 Bim-154 -2435,9071390 34,046 32,41 Bim-691 -2435,902017 36,705 8,31 Bim-208 -2435,9070794 34,046 32,41 Bim-691 -2435,9028010 36,888 23,77 Bim-324 -2435,9069243 34,181 8,59 Bim-750 -2435,9028010 36,888 23,77 Bim-777 -2435,9069090 34,190 11,04 Bim-456 -2435,902586 36,895 20,90 Bim-780 -2435,906724 34,306 9,48 Bim-782 -2435,902183 37,011 6,30 Bim-344	Blm-527	-2435,9075397	33,795	16,56	Blm-219	-2435,9035972	36,269	24,55
Bim-195 -2435,9074383 33,858 25,04 Bim-618 -2435,903633 36,415 6,84 Bim-324 -2435,9073929 33,887 5,33 Bim-452 -2435,9030817 36,592 15,83 Bim-654 -2435,9072529 33,975 35,74 Bim-773 -2435,903062 36,614 33,699 Bim-339 -2435,9071837 34,018 13,86 Bim-111 -2435,902017 36,705 8,31 Bim-468 -2435,9071390 34,046 32,41 Bim-691 -2435,9028010 36,877 7,75 Bim-208 -2435,9069243 34,181 8,59 Bim-750 -2435,9028010 36,888 23,77 Bim-777 -2435,9067254 34,306 9,48 Bim-746 -2435,902906 36,895 20,90 Bim-780 -2435,9063647 34,306 9,48 Bim-344 -2435,902398 36,932 15,17 Bim-717 -2435,9063612 34,584 16,79 Bim-639 -2435,902148 37,116 6,30 Bim-175 <th>Blm-755</th> <th>-2435,9075161</th> <th>33,810</th> <th>15,23</th> <th>Blm-549</th> <th>-2435,9034796</th> <th>36,342</th> <th>25,83</th>	Blm-755	-2435,9075161	33,810	15,23	Blm-549	-2435,9034796	36,342	25,83
Bim-324 -2435,9073929 33,887 5,33 Bim-452 -2435,9030817 36,592 15,83 Bim-654 -2435,9072529 33,975 35,74 Bim-773 -2435,903062 36,614 33,69 Bim-339 -2435,9071837 34,018 13,86 Bim-483 -2435,902017 36,737 7,75 Bim-468 -2435,9071390 34,046 32,41 Bim-611 -2435,9028514 36,737 7,75 Bim-288 -2435,9070794 34,084 13,05 Bim-750 -2435,9026601 36,887 8,52 Bim-370 -2435,9069243 34,181 8,59 Bim-750 -2435,9026601 36,888 23,77 Bim-777 -2435,906724 34,402 9,63 Bim-782 -2435,9025986 36,992 26,74 Bim-780 -2435,9063647 34,532 10,70 Bim-128 -2435,902418 37,011 6,30 Bim-175 -2435,9062874 34,584 15,52 Bim-302 -2435,902143 37,114 5,90 Bim-212 <th>Blm-195</th> <th>-2435,9074383</th> <th>33,858</th> <th>25,04</th> <th>Blm-618</th> <th>-2435,9033633</th> <th>36,415</th> <th>6,84</th>	Blm-195	-2435,9074383	33,858	25,04	Blm-618	-2435,9033633	36,415	6,84
Bim-654 -2435,9072529 33,975 35,74 Bim-773 -2435,9030466 36,614 33,69 Bim-339 -2435,9072447 33,980 6,42 Bim-483 -2435,9030362 36,621 8,68 Bim-154 -2435,9071137 34,018 13,86 Bim-111 -2435,9029017 36,705 8,31 Bim-468 -2435,9071930 34,046 32,41 Bim-691 -2435,9028514 36,737 7,75 Bim-202 -2435,9070794 34,084 13,05 Bim-750 -2435,9026061 36,857 8,52 Bim-342 -2435,9067254 34,306 9,48 Bim-444 -2435,9025986 36,992 26,74 Bim-780 -2435,9063647 34,532 10,70 Bim-128 -2435,9025398 36,932 15,17 Bim-313 -2435,9063612 34,534 16,79 Bim-639 -2435,9024138 37,011 6,30 Bim-314 -2435,9062813 34,584 15,52 Bim-302 -2435,9021543 37,176 10,73 Bim-2	Blm-324	-2435,9073929	33,887	5,33	Blm-452	-2435,9030817	36,592	15,83
Bim-339 -2435,9072447 33,980 6,42 Bim-483 -2435,9030362 36,621 8,68 Bim-154 -2435,9071837 34,018 13,86 Bim-111 -2435,9029017 36,705 8,31 Bim-468 -2435,9071390 34,046 32,41 Bim-691 -2435,9026601 36,857 8,52 Bim-342 -2435,9069243 34,181 8,59 Bim-750 -2435,9026106 36,888 23,77 Bim-777 -2435,9067254 34,306 9,48 Bim-444 -2435,9025765 36,999 26,74 Bim-780 -2435,9065724 34,402 9,63 Bim-782 -2435,9025398 36,932 15,17 Bim-413 -2435,9063612 34,534 16,79 Bim-639 -2435,902143 37,011 6,30 Bim-175 -2435,9062874 34,584 15,52 Bim-302 -2435,902143 37,174 590 Bim-212 -2435,9062807 34,585 24,20 Bim-231 -2435,902146 37,262 15,90 Bim-348 <th>Blm-654</th> <th>-2435,9072529</th> <th>33,975</th> <th>35,74</th> <th>Blm-773</th> <th>-2435,9030466</th> <th>36,614</th> <th>33,69</th>	Blm-654	-2435,9072529	33,975	35,74	Blm-773	-2435,9030466	36,614	33,69
Bim-154 -2435,9071837 34,018 13,86 Bim-111 -2435,9029017 36,705 8,31 Bim-468 -2435,9071390 34,046 32,41 Bim-691 -2435,9028514 36,737 7,75 Bim-208 -2435,9070794 34,084 13,05 Bim-621 -2435,9026601 36,857 8,52 Bim-342 -2435,9069243 34,181 8,59 Bim-750 -2435,9026106 36,888 23,77 Bim-777 -2435,9067254 34,306 9,48 Bim-444 -2435,9025765 36,999 26,74 Bim-780 -2435,9063724 34,402 9,63 Bim-782 -2435,9025785 36,932 15,17 Bim-750 -2435,9025063 36,952 20,55 Bim-364 -2435,9063612 34,531 10,70 Bim-128 -2435,9024138 37,011 6,30 Bim-150 -2435,9062874 34,581 9,38 Bim-302 -2435,9021510 37,174 5,90 Bim-212 -2435,9062807 34,585 24,20 Bim-231 -2435,9021335 37,187 12,27 Bim-238 -2435,9062620	Blm-339	-2435,9072447	33,980	6,42	Blm-483	-2435,9030362	36,621	8,68
Bim-468 -2435,9071390 34,046 32,41 Bim-691 -2435,9028514 36,737 7,75 Bim-208 -2435,9070794 34,084 13,05 Bim-621 -2435,9026601 36,857 8,52 Bim-342 -2435,9069243 34,181 8,59 Bim-750 -2435,9026106 36,888 23,77 Bim-777 -2435,9067254 34,306 9,48 Bim-444 -2435,9025765 36,999 26,74 Bim-780 -2435,9063647 34,402 9,63 Bim-782 -2435,9025786 36,958 20,55 Bim-364 -2435,9063612 34,532 10,70 Bim-639 -2435,9024986 36,958 20,55 Bim-364 -2435,9062874 34,581 9,38 Bim-302 -2435,9021510 37,174 5,90 Bim-212 -2435,9062807 34,585 24,20 Bim-310 -2435,902135 37,187 12,27 Bim-233 -2435,90528460 34,888 23,72 Bim-319 -2435,901939 37,275 10,38 Bim-41	Blm-154	-2435,9071837	34,018	13,86	Blm-111	-2435,9029017	36,705	8,31
Bim-208 -2435,9070794 34,084 13,05 Bim-621 -2435,9026601 36,857 8,52 Bim-342 -2435,9069243 34,181 8,59 Bim-750 -2435,9026106 36,888 23,77 Bim-777 -2435,9069090 34,190 11,04 Bim-656 -2435,9025986 36,895 20,90 Bim-628 -2435,9067254 34,306 9,48 Bim-444 -2435,9025765 36,909 26,74 Bim-780 -2435,9065724 34,402 9,63 Bim-782 -2435,9025986 36,958 20,55 Bim-413 -2435,9063612 34,532 10,70 Bim-128 -2435,9024986 36,958 20,55 Bim-364 -2435,9062874 34,581 9,38 Bim-302 -2435,9021513 37,174 5,90 Bim-212 -2435,9062807 34,584 15,52 Bim-477 -2435,902146 37,126 10,73 Bim-302 -2435,902164 37,167 10,73 Bim-348 -2435,905460 34,888 23,72 Bim-319 -	Blm-468	-2435,9071390	34,046	32,41	Blm-691	-2435,9028514	36,737	7,75
Bim-342 -2435,9069243 34,181 8,59 Bim-750 -2435,9026106 36,888 23,77 Bim-777 -2435,9069090 34,190 11,04 Bim-656 -2435,9025986 36,895 20,90 Bim-628 -2435,9067254 34,306 9,48 Bim-444 -2435,9025765 36,909 26,74 Bim-780 -2435,9063647 34,532 10,70 Bim-782 -2435,9025398 36,932 15,17 Bim-413 -2435,9063612 34,532 10,70 Bim-38 -2435,9024138 37,011 6,30 Bim-175 -2435,9062874 34,581 9,38 Bim-302 -2435,9021513 37,174 5,90 Bim-388 -2435,9062807 34,585 24,20 Bim-231 -2435,9021510 37,176 10,73 Bim-348 -2435,9058460 34,858 23,72 Bim-319 -2435,902146 37,275 10,38 Bim-348 -2435,9058460 34,858 23,72 Bim-319 -2435,90146 37,275 10,38 Bim-41<	Blm-208	-2435,9070794	34,084	13,05	Blm-621	-2435,9026601	36,857	8,52
Bim-777-2435,906909034,19011,04Bim-656-2435,902598636,89520,90Bim-628-2435,906725434,3069,48Bim-444-2435,902576536,90926,74Bim-780-2435,906572434,4029,63Bim-782-2435,902539836,93215,17Bim-413-2435,906364734,53210,70Bim-128-2435,902498636,95820,55Bim-364-2435,906361234,53416,79Bim-639-2435,902413837,0116,30Bim-175-2435,906287434,5819,38Bim-302-2435,902154337,1745,90Bim-212-2435,906281334,58415,52Bim-477-2435,902154337,17610,73Bim-388-2435,906280734,58524,20Bim-231-2435,902135537,18712,27Bim-263-2435,905846034,85823,72Bim-319-2435,90214637,26215,90Bim-542-2435,905757634,9137,91Bim-742-2435,901993937,27510,38Bim-370-2435,905429735,1196,68Bim-485-2435,901848937,36630,25Bim-471-2435,90540435,13710,45Bim-459-2435,901693237,46315,42Bim-109-2435,90512735,25522,03Bim-441-2435,901624937,50617,98Bim-136-2435,905167835,28312,97Bim-443-2435,901579437,53522,17Bim-685-2435,9051678	Blm-342	-2435,9069243	34,181	8,59	Blm-750	-2435,9026106	36,888	23,77
Bim-628 -2435,9067254 34,306 9,48 Bim-444 -2435,9025765 36,909 26,74 Bim-780 -2435,9065724 34,402 9,63 Bim-782 -2435,9025398 36,932 15,17 Bim-413 -2435,9063647 34,532 10,70 Bim-128 -2435,9024986 36,958 20,55 Bim-364 -2435,9063612 34,534 16,79 Bim-639 -2435,9021438 37,011 6,30 Bim-175 -2435,9062874 34,581 9,38 Bim-302 -2435,9021543 37,174 5,90 Bim-212 -2435,9062807 34,585 24,20 Bim-231 -2435,9021335 37,187 12,27 Bim-542 -2435,9052620 34,585 24,20 Bim-742 -2435,902146 37,262 15,90 Bim-542 -2435,9058460 34,858 23,72 Bim-319 -2435,9019939 37,275 10,38 Bim-401 -2435,905848 34,959 7,82 Bim-171 -2435,9019715 37,289 13,96 Bim-37	Blm-777	-2435,9069090	34,190	11,04	Blm-656	-2435,9025986	36,895	20,90
Bim-780-2435,906572434,4029,63Bim-782-2435,902539836,93215,17Bim-413-2435,906364734,53210,70Bim-128-2435,902498636,95820,55Bim-364-2435,906361234,53416,79Bim-639-2435,902413837,0116,30Bim-175-2435,906287434,5819,38Bim-302-2435,902154337,1745,90Bim-212-2435,906281334,58415,52Bim-477-2435,902151037,17610,73Bim-388-2435,906280734,58524,20Bim-231-2435,90214637,26215,90Bim-542-2435,906262034,59612,24Bim-696-2435,90193937,27510,38Bim-348-2435,905846034,85823,72Bim-319-2435,901993937,27510,38Bim-348-2435,905757634,9137,91Bim-742-2435,901993937,27510,38Bim-370-2435,905429735,1196,68Bim-859-2435,90171537,28913,96Bim-249-2435,905429735,1196,68Bim-459-2435,901830037,37829,922Bim-044-2435,905429735,14512,24Bim-745-2435,901830037,37829,922Bim-249-2435,905429735,1196,68Bim-745-2435,901830037,37829,922Bim-244-2435,905429735,1196,68Bim-745-2435,901693237,46315,42Bim-109-2435,9052102 <td< th=""><th>Blm-628</th><th>-2435,9067254</th><th>34,306</th><th>9,48</th><th>Blm-444</th><th>-2435,9025765</th><th>36,909</th><th>26,74</th></td<>	Blm-628	-2435,9067254	34,306	9,48	Blm-444	-2435,9025765	36,909	26,74
Bim-413-2435,906364734,53210,70Bim-128-2435,902498636,95820,55Bim-364-2435,906361234,53416,79Bim-639-2435,902413837,0116,30Bim-175-2435,906287434,5819,38Bim-302-2435,902154337,1745,90Bim-212-2435,906281334,58415,52Bim-477-2435,902151037,17610,73Bim-388-2435,906280734,58524,20Bim-231-2435,902151037,18712,27Bim-263-2435,906262034,59612,24Bim-696-2435,90214637,26215,90Bim-542-2435,90546034,85823,72Bim-319-2435,9014637,26215,90Bim-348-2435,905757634,9137,91Bim-742-2435,901993937,27510,38Bim-370-2435,905429735,1196,68Bim-485-2435,90171537,28913,96Bim-370-2435,905429735,1196,68Bim-593-2435,901830037,37829,92Bim-109-2435,905429735,11512,24Bim-745-2435,90163237,46315,42Bim-109-2435,905212235,25522,03Bim-441-2435,901579437,53522,18Bim-136-2435,905167835,28312,97Bim-443-2435,901579437,53522,17Bim-685-2435,905167835,28312,97Bim-443-2435,901579437,53522,17Bim-685-2435,905167835	Blm-780	-2435,9065724	34,402	9,63	Blm-782	-2435,9025398	36,932	15,17
Bim-364-2435,906361234,53416,79Bim-639-2435,902413837,0116,30Bim-175-2435,906287434,5819,38Bim-302-2435,902154337,1745,90Bim-212-2435,906281334,58415,52Bim-477-2435,902151037,17610,73Bim-388-2435,906280734,58524,20Bim-231-2435,902133537,18712,27Bim-263-2435,906262034,59612,24Bim-696-2435,902014637,26215,90Bim-542-2435,905846034,85823,72Bim-319-2435,901993937,27510,38Bim-348-2435,905757634,9137,91Bim-742-2435,901993937,27510,38Bim-370-2435,905429735,1196,68Bim-711-2435,901971537,28913,96Bim-370-2435,905429735,1196,68Bim-593-2435,901848937,36630,25Bim-471-2435,905429735,1196,68Bim-459-2435,901830037,37829,92Bim-249-2435,905429735,14512,24Bim-745-2435,90163237,46315,42Bim-109-2435,905243835,23511,61Bim-376-2435,901624937,50617,98Bim-136-2435,905167835,28312,97Bim-443-2435,901579437,53522,17Bim-685-2435,905102735,32412,83Bim-558-2435,901342137,68426,66Bim-715-2435,9051027 <t< th=""><th>Blm-413</th><th>-2435,9063647</th><th>34,532</th><th>10,70</th><th>Blm-128</th><th>-2435,9024986</th><th>36,958</th><th>20,55</th></t<>	Blm-413	-2435,9063647	34,532	10,70	Blm-128	-2435,9024986	36,958	20,55
Bim-175-2435,906287434,5819,38Bim-302-2435,902154337,1745,90Bim-212-2435,906281334,58415,52Bim-477-2435,902151037,17610,73Bim-388-2435,906280734,58524,20Bim-231-2435,902133537,18712,27Bim-263-2435,906262034,59612,24Bim-696-2435,90214637,26215,90Bim-542-2435,905846034,85823,72Bim-319-2435,901993937,27510,38Bim-348-2435,905757634,9137,91Bim-742-2435,901993937,27510,38Bim-401-2435,905684834,9597,82Bim-171-2435,901971537,28913,96Bim-370-2435,905429735,1196,68Bim-593-2435,901848937,36630,255Bim-471-2435,905404435,13710,45Bim-459-2435,901830037,37829,92Bim-044-2435,905243835,23511,61Bim-376-2435,901693237,46315,42Bim-109-2435,905167835,28312,97Bim-443-2435,901579437,53522,18Bim-232-2435,905167835,28312,97Bim-443-2435,90137837,69910,78Bim-685-2435,905102735,32412,83Bim-558-2435,901317837,69910,78Bim-544-2435,905102735,32412,83Bim-578-2435,901317837,69910,78Bim-544-2435,9051027	Blm-364	-2435,9063612	34,534	16,79	Blm-639	-2435,9024138	37,011	6,30
Bim-212 -2435,9062813 34,584 15,52 Bim-477 -2435,9021510 37,176 10,73 Bim-388 -2435,9062807 34,585 24,20 Bim-231 -2435,9021335 37,187 12,27 Bim-263 -2435,9062620 34,596 12,24 Bim-696 -2435,9020146 37,262 15,90 Bim-542 -2435,9058460 34,858 23,72 Bim-319 -2435,9019939 37,275 10,38 Bim-542 -2435,9057576 34,913 7,91 Bim-742 -2435,9019939 37,275 10,38 Bim-401 -2435,9056848 34,959 7,82 Bim-171 -2435,9019715 37,289 13,96 Bim-370 -2435,9054297 35,119 6,68 Bim-593 -2435,9018300 37,378 29,92 Bim-471 -2435,9054297 35,137 10,45 Bim-459 -2435,9016932 37,463 15,42 Bim-044 -2435,9053873 35,145 12,24 Bim-745 -2435,9016932 37,463 15,42 Bim-109 -2435,9052438 35,235 11,61 Bim-376 -2435,9016932	Blm-175	-2435,9062874	34,581	9,38	Blm-302	-2435,9021543	37,174	5,90
Bim-388 -2435,9062807 34,585 24,20 Bim-231 -2435,9021335 37,187 12,27 Bim-263 -2435,9062620 34,596 12,24 Bim-696 -2435,9020146 37,262 15,90 Bim-542 -2435,9058460 34,858 23,72 Bim-319 -2435,9019939 37,275 10,38 Bim-348 -2435,9057576 34,913 7,91 Bim-742 -2435,9019939 37,275 10,38 Bim-401 -2435,9056848 34,959 7,82 Bim-171 -2435,9019715 37,289 13,96 Bim-370 -2435,9054297 35,119 6,68 Bim-485 -2435,9018489 37,366 30,25 Bim-471 -2435,9054297 35,119 6,68 Bim-593 -2435,9018300 37,378 29,92 Bim-249 -2435,905404 35,137 10,45 Bim-459 -2435,9017349 37,437 26,47 Bim-044 -2435,9052438 35,235 11,61 Bim-376 -2435,9016932 37,463 15,42 Bim-136 -2435,9052122 35,255 22,03 Bim-441 -2435,9015794	Blm-212	-2435,9062813	34,584	15,52	Blm-477	-2435,9021510	37,176	10,73
Bim-263-2435,906262034,59612,24Bim-696-2435,902014637,26215,90Bim-542-2435,905846034,85823,72Bim-319-2435,901993937,27510,38Bim-348-2435,905757634,9137,91Bim-742-2435,901993937,27510,38Bim-401-2435,905684834,9597,82Bim-171-2435,901971537,28913,96Bim-370-2435,905429735,1196,68Bim-485-2435,901848937,36630,25Bim-471-2435,905429735,1196,68Bim-593-2435,901830037,37829,92Bim-249-2435,905400435,13710,45Bim-459-2435,901734937,43726,47Bim-044-2435,905243835,14512,24Bim-745-2435,901693237,46315,42Bim-109-2435,905243835,23511,61Bim-376-2435,901624937,50617,98Bim-136-2435,905167835,28312,97Bim-443-2435,901579437,53522,17Bim-685-2435,90516535,3039,49Bim-535-2435,901317837,69910,78Bim-715-2435,905102735,32412,83Bim-558-2435,901317837,69910,78Bim-524-2435,905102735,32412,83Bim-578-2435,901317837,69910,78	Blm-388	-2435,9062807	34,585	24,20	Blm-231	-2435,9021335	37,187	12,27
Blm-542 -2435,9058460 34,858 23,72 Blm-319 -2435,9019939 37,275 10,38 Blm-348 -2435,9057576 34,913 7,91 Blm-742 -2435,9019939 37,275 10,38 Blm-401 -2435,9056848 34,959 7,82 Blm-171 -2435,9019715 37,289 13,96 Blm-370 -2435,9054297 35,119 6,68 Blm-485 -2435,9018489 37,366 30,25 Blm-471 -2435,9054297 35,119 6,68 Blm-593 -2435,9018300 37,378 29,92 Blm-249 -2435,9054004 35,137 10,45 Blm-459 -2435,9017349 37,437 26,47 Blm-044 -2435,9053873 35,145 12,24 Blm-745 -2435,9016932 37,463 15,42 Blm-109 -2435,9052438 35,235 11,61 Blm-376 -2435,9016932 37,506 17,98 Blm-136 -2435,9051678 35,283 12,97 Blm-443 -2435,9015794 37,535 22,17 Blm-685 -2435,9051678 35,303 9,49 Blm-535 -2435,901379	Blm-263	-2435,9062620	34,596	12,24	Blm-696	-2435,9020146	37,262	15,90
Blm-348 -2435,9057576 34,913 7,91 Blm-742 -2435,9019939 37,275 10,38 Blm-401 -2435,9056848 34,959 7,82 Blm-171 -2435,9019715 37,289 13,96 Blm-370 -2435,9054297 35,119 6,68 Blm-485 -2435,9018489 37,366 30,25 Blm-471 -2435,9054297 35,119 6,68 Blm-593 -2435,9018300 37,378 29,92 Blm-249 -2435,9054004 35,137 10,45 Blm-459 -2435,9017349 37,437 26,47 Blm-044 -2435,9052438 35,235 11,61 Blm-376 -2435,9016932 37,463 15,42 Blm-109 -2435,9052438 35,235 11,61 Blm-376 -2435,9016932 37,463 15,42 Blm-136 -2435,9052122 35,255 22,03 Blm-441 -2435,9015794 37,535 22,18 Blm-232 -2435,9051678 35,283 12,97 Blm-443 -2435,9015794 37,535 22,17 Blm-685 -2435,9051678 35,303 9,49 Blm-535 -2435,9013421	Blm-542	-2435,9058460	34,858	23,72	Blm-319	-2435,9019939	37,275	10,38
Bim-401 -2435,9056848 34,959 7,82 Bim-171 -2435,9019715 37,289 13,96 Bim-370 -2435,9054297 35,119 6,68 Bim-485 -2435,9018489 37,366 30,25 Bim-471 -2435,9054297 35,119 6,68 Bim-593 -2435,9018300 37,378 29,92 Bim-249 -2435,9054004 35,137 10,45 Bim-459 -2435,9017349 37,437 26,47 Bim-044 -2435,9052438 35,145 12,24 Bim-745 -2435,9016932 37,463 15,42 Bim-109 -2435,9052438 35,235 11,61 Bim-376 -2435,9016932 37,506 17,98 Bim-136 -2435,9052122 35,255 22,03 Bim-441 -2435,9015794 37,535 22,18 Bim-232 -2435,9051678 35,283 12,97 Bim-443 -2435,9015794 37,535 22,17 Bim-685 -2435,9051678 35,303 9,49 Bim-535 -2435,9013421 37,684 26,66 Bim-715 -2435,9051027 35,324 12,83 Bim-558 -2435,9013178	Blm-348	-2435,9057576	34,913	7,91	Blm-742	-2435,9019939	37,275	10,38
Bim-370 -2435,9054297 35,119 6,68 Bim-485 -2435,9018489 37,366 30,25 Bim-471 -2435,9054297 35,119 6,68 Bim-593 -2435,9018300 37,378 29,92 Bim-249 -2435,9054004 35,137 10,45 Bim-459 -2435,9017349 37,437 26,47 Bim-044 -2435,9053873 35,145 12,24 Bim-745 -2435,9016932 37,463 15,42 Bim-109 -2435,9052438 35,235 11,61 Bim-376 -2435,9016249 37,506 17,98 Bim-136 -2435,9052122 35,255 22,03 Bim-441 -2435,9015794 37,535 22,18 Bim-232 -2435,9051678 35,283 12,97 Bim-443 -2435,9015794 37,535 22,17 Bim-685 -2435,905165 35,303 9,49 Bim-535 -2435,9013421 37,684 26,66 Bim-715 -2435,9051027 35,324 12,83 Bim-558 -2435,9013178 37,699 10,78 Bim-524 -2435,901027 35,415 32,75 Bim-478 2435,9013174	Blm-401	-2435,9056848	34,959	7,82	Blm-171	-2435,9019715	37,289	13,96
Bim-471 -2435,9054297 35,119 6,68 Bim-593 -2435,9018300 37,378 29,92 Bim-249 -2435,9054004 35,137 10,45 Bim-459 -2435,9017349 37,437 26,47 Bim-044 -2435,9053873 35,145 12,24 Bim-745 -2435,9016932 37,463 15,42 Bim-109 -2435,9052438 35,235 11,61 Bim-376 -2435,9016249 37,506 17,98 Bim-136 -2435,9052122 35,255 22,03 Bim-441 -2435,9015794 37,535 22,18 Bim-232 -2435,9051678 35,283 12,97 Bim-443 -2435,9015794 37,535 22,17 Bim-685 -2435,905165 35,303 9,49 Bim-535 -2435,9013421 37,684 26,66 Bim-715 -2435,9051027 35,324 12,83 Bim-558 -2435,9013178 37,699 10,78 Bim-524 -2435,9049582 35,415 32,75 Bim-478 2435,9013174 37,690 87,699	Blm-370	-2435,9054297	35,119	6,68	Blm-485	-2435,9018489	37,366	30,25
Bim-249 -2435,9054004 35,137 10,45 Bim-459 -2435,9017349 37,437 26,47 Bim-044 -2435,9053873 35,145 12,24 Bim-745 -2435,9016932 37,463 15,42 Bim-109 -2435,9052438 35,235 11,61 Bim-376 -2435,9016249 37,506 17,98 Bim-136 -2435,9052122 35,255 22,03 Bim-441 -2435,9015794 37,535 22,18 Bim-232 -2435,9051678 35,283 12,97 Bim-443 -2435,9015794 37,535 22,17 Bim-685 -2435,9051678 35,303 9,49 Bim-535 -2435,9013421 37,684 26,66 Bim-715 -2435,9051027 35,324 12,83 Bim-558 -2435,9013178 37,699 10,78 Bim-524 -2435,9049582 35,415 32,75 Bim-478 2435,9013174 37,690 8,85	Blm-471	-2435,9054297	35,119	6,68	Blm-593	-2435,9018300	37,378	29,92
Bim-044 -2435,9053873 35,145 12,24 Bim-745 -2435,9016932 37,463 15,42 Bim-109 -2435,9052438 35,235 11,61 Bim-376 -2435,9016249 37,506 17,98 Bim-136 -2435,9052122 35,255 22,03 Bim-441 -2435,9015794 37,535 22,18 Bim-232 -2435,9051678 35,283 12,97 Bim-443 -2435,9015794 37,535 22,17 Bim-685 -2435,9051665 35,303 9,49 Bim-535 -2435,9013421 37,684 26,66 Bim-715 -2435,9051027 35,324 12,83 Bim-558 -2435,9013178 37,699 10,78 Bim-524 -2435,9049582 35,415 32,75 Bim-478 2435,9013174 37,690 8,85	Blm-249	-2435,9054004	35,137	10,45	BIm-459	-2435,9017349	37,437	26,47
Bim-109 -2435,9052438 35,235 11,61 Bim-376 -2435,9016249 37,506 17,98 Bim-136 -2435,9052122 35,255 22,03 Bim-441 -2435,9015794 37,535 22,18 Bim-232 -2435,9051678 35,283 12,97 Bim-443 -2435,9015794 37,535 22,17 Bim-685 -2435,9051365 35,303 9,49 Bim-535 -2435,9013421 37,684 26,666 Bim-715 -2435,9051027 35,324 12,83 Bim-558 -2435,9013178 37,699 10,78 Bim-524 -2435,9049582 35,415 32,75 Bim-478 2435,9013174 37,699 10,78	Blm-044	-2435,9053873	35,145	12,24	BIm-745	-2435,9016932	37,463	15,42
Bim-130 -2435,9052122 35,255 22,03 Bim-441 -2435,9015794 37,535 22,18 Bim-232 -2435,9051678 35,283 12,97 Bim-443 -2435,9015794 37,535 22,17 Bim-685 -2435,9051365 35,303 9,49 Bim-535 -2435,9013421 37,684 26,66 Bim-715 -2435,9051027 35,324 12,83 Bim-558 -2435,9013178 37,699 10,78 Bim-524 -2435,9049582 35,415 32,75 Bim-478 2435,9013174 37,699 9,85	BIm-109	-2435,9052438	35,235	11,61	BIm-376	-2435,9016249	37,506	17,98
Bim-252 -2435,9051678 35,283 12,97 Bim-443 -2435,9015794 37,535 22,17 Bim-685 -2435,9051365 35,303 9,49 Bim-535 -2435,9013421 37,684 26,66 Bim-715 -2435,9051027 35,324 12,83 Bim-558 -2435,9013178 37,699 10,78 Bim-524 -2435,9049582 35,415 32,75 Bim-478 2435,9013174 37,690 8,85	BIM-136	-2435,9052122	35,255 25,202	22,03	BIM-441	-2435,9015794	51,535	22,18
Dim-000 -2435,9051305 35,505 9,49 Bim-535 -2435,9013421 37,684 26,66 Bim-715 -2435,9051027 35,324 12,83 Bim-558 -2435,9013178 37,699 10,78 Bim-524 -2435,9049582 35,415 32,75 Bim-478 2435,9013174 37,699 9,85	BIm-232	-2435,9051678	35,283	12,97	BIm-443	-2435,9015794	37,535	22,17
DIIII- 713 -2455,9051027 55,524 12,65 BIIII-558 -2455,9015178 57,699 10,78 RIm-574 -2435,9049582 35,415 32,75 RIm-478 2435,9013174 37,600 9.95	DIM-085	-2433,9031363	33,303 25 224	9,49	DIM-535	-2455,9013421	37,084	20,00
	Blm-524	-2433,7031027	35,324	12,03	Blm_/79	-2433,9013178	37,099	2 25

Ek 2. Relatif enerji değerlerine göre sıralanmış bleomisin konformerleri (devam ediyor).

17 6	Б	Б		17 6	F	Б	
Konformer	E (Hartroo)	E _{REL}	μ (Dobvo)	Konformer	E (Hartroo)	E _{REL}	μ (Dobyo)
	(Hartree)	(KCal/III01)	(Debye)	Dlm 140	(Hartree)	(Kcal/III01)	(Debye)
Diiii-150 Dim 248	-2455,9015055	37,708	27,13	Dill-149 Dim 005	-2455,8970551	39,999	14.29
DIIII-248	-2435,9013032	37,708	27,14	DIII-095	-2435,8976471	40,002	14,38
BIM-131	-2435,9012001	37,773	10,00	BIM-458	-2435,8976297	40,013	5,29
BIM-110	-2435,9010004	37,898	9,87	BIM-704	-2435,8974582	40,121	15,97
BIm-088	-2435,9010003	37,898	9,87	Blm-360	-2435,8973082	40,215	19,02
BIM-521	-2435,9009695	37,918	17,90	BIM-636	-2435,8971327	40,325	8,47
BIm-172	-2435,9008893	37,968	11,48	BIM-351	-2435,8968751	40,487	12,/1
BIm-227	-2435,9008870	37,969	18,69	Blm-430	-2435,8967784	40,548	7,98
Blm-326	-2435,9008145	38,015	4,47	Blm-446	-2435,8967784	40,548	7,98
Blm-505	-2435,9006739	38,103	6,90	Blm-296	-2435,8966575	40,623	12,11
Blm-698	-2435,9005837	38,160	5,53	Blm-791	-2435,8965839	40,670	19,92
Blm-724	-2435,9004941	38,216	12,29	Blm-189	-2435,8965446	40,694	12,89
Blm-503	-2435,9004518	38,242	8,19	Blm-329	-2435,8965061	40,718	9,24
Blm-161	-2435,9004142	38,266	26,95	Blm-338	-2435,8964533	40,752	12,31
Blm-315	-2435,9004136	38,266	12,39	Blm-259	-2435,8964499	40,754	21,10
Blm-402	-2435,9004136	38,266	12,39	Blm-598	-2435,8964403	40,760	29,04
Blm-712	-2435,9002780	38,351	13,14	Blm-235	-2435,8961693	40,930	9,57
Blm-341	-2435,9001822	38,412	11,25	Blm-687	-2435,8961588	40,936	17,46
Blm-435	-2435,9000573	38,490	27,20	Blm-162	-2435,8960179	41,025	20,46
Blm-217	-2435,9000488	38,495	6,70	Blm-523	-2435,8959332	41,078	38,89
Blm-344	-2435,9000158	38,516	8,60	Blm-271	-2435,8957489	41,194	23,76
Blm-585	-2435,8999502	38,557	21,27	Blm-601	-2435,8957258	41,208	18,24
Blm-093	-2435,8998397	38,627	10,79	Blm-537	-2435,8957195	41,212	21,72
Blm-794	-2435,8998384	38,627	10,47	Blm-325	-2435,8956741	41,240	18,00
Blm-495	-2435,8997539	38,680	22,79	Blm-736	-2435,8955888	41,294	15,59
Blm-346	-2435,8995870	38,785	15,54	Blm-569	-2435,8954176	41,401	27,90
Blm-365	-2435,8995226	38,826	12,70	Blm-169	-2435,8953951	41,416	28,23
Blm-540	-2435,8994917	38,845	23,83	Blm-579	-2435,8953438	41,448	16,22
Blm-567	-2435,8994737	38,856	6,51	Blm-790	-2435,8952470	41,508	20,36
Blm-520	-2435,8994359	38,880	18,15	Blm-268	-2435,8951986	41,539	11,31
Blm-546	-2435,8993669	38,923	16,69	Blm-650	-2435,8951983	41,539	11,30
Blm-087	-2435,8990558	39,118	10,99	Blm-380	-2435,8951484	41,570	15,56
Blm-369	-2435,8990318	39,134	11,97	Blm-440	-2435,8951484	41,570	15,56
Blm-358	-2435,8990317	39,134	11,98	Blm-142	-2435,8949463	41,697	10,14
Blm-151	-2435,8990186	39,142	10,78	Blm-411	-2435,8948952	41,729	21,57
Blm-352	-2435,8989781	39,167	15,58	Blm-747	-2435,8948826	41,737	19,96
Blm-377	-2435,8989641	39,176	11,82	Blm-590	-2435,8948489	41,758	13,54
Blm-224	-2435,8988209	39,266	20,39	Blm-697	-2435,8948077	41,784	21,59
Blm-306	-2435,8987807	39,291	11,23	Blm-269	-2435,8947517	41,819	24,57
Blm-583	-2435,8987010	39,341	14,72	Blm-599	-2435,8947056	41,848	13,91
Blm-347	-2435,8986859	39,351	13,68	Blm-576	-2435,8946566	41,879	37,95
Blm-386	-2435,8986204	39,392	10,20	Blm-357	-2435,8946215	41,901	21,35
Blm-229	-2435,8985789	39,418	6,73	Blm-622	-2435,8945437	41,950	16,67
Blm-517	-2435,8985556	39,432	9,67	Blm-205	-2435,8945327	41,957	26,89
Blm-707	-2435,8984982	39,468	11,79	Blm-658	-2435,8945107	41,971	23,57
Blm-359	-2435,8983621	39,554	21,23	Blm-258	-2435,8942809	42,115	23,08
Blm-626	-2435,8983293	39,574	9,86	Blm-616	-2435,8941953	42,168	31,58
Blm-340	-2435,8982986	39,594	8,04	Blm-615	-2435,8941952	42,169	31,58
Blm-534	-2435,8982981	39,594	8,04	Blm-214	-2435,8941910	42,171	32,16
Blm-233	-2435,8982437	39,628	21,96	Blm-610	-2435,8941575	42,192	31,22
Blm-252	-2435,8980842	39,728	12,13	Blm-571	-2435,8941141	42,219	29,20
Blm-570	-2435,8978068	39,902	5,32	Blm-206	-2435,8940513	42,259	17,94

Ek 2. Relatif enerji değerlerine göre sıralanmış bleomisin konformerleri (devam ediyor).

Konformer	Ε	E _{REL}	μ	Konformer	Е	E _{REL}	μ
No	(Hartree)	(kcal/mol)	(Debye)	No	(Hartree)	(kcal/mol)	(Debye)
Blm-215	-2435,8940513	42,259	17,94	Blm-663	-2435,8914361	43,900	29,52
Blm-055	-2435,8940449	42,263	20,97	Blm-734	-2435,8914107	43,916	22,31
Blm-400	-2435,8940284	42,273	13,12	Blm-256	-2435,8912552	44,013	26,96
Blm-533	-2435,8939310	42,334	23,23	Blm-771	-2435,8910500	44,142	18,67
Blm-384	-2435,8939211	42,341	14,17	Blm-702	-2435,8907146	44,353	21,92
Blm-489	-2435,8939165	42,343	19,38	Blm-710	-2435,8906121	44,417	17,89
Blm-709	-2435,8938101	42,410	16,36	Blm-434	-2435,8904466	44,521	11,30
Blm-664	-2435,8936534	42,508	21,92	Blm-730	-2435,8903802	44,562	19,80
Blm-673	-2435,8936274	42,525	23,47	Blm-783	-2435,8902687	44,632	13,19
Blm-574	-2435,8936100	42,536	38,32	Blm-552	-2435,8896862	44,998	12,72
Blm-591	-2435,8935016	42,604	20,30	Blm-729	-2435,8893898	45,184	21,89
Blm-548	-2435,8934202	42,655	20,47	Blm-559	-2435,8890238	45,414	18,94
Blm-381	-2435,8933844	42,677	21,61	Blm-770	-2435,8882259	45,914	19,81
Blm-530	-2435,8933844	42,677	21,60	Blm-584	-2435,8879822	46,067	25,12
Blm-746	-2435,8932434	42,766	23,45	Blm-692	-2435,8879425	46,092	16,23
Blm-407	-2435,8932337	42,772	15,58	Blm-597	-2435,8875066	46,366	18,31
Blm-588	-2435,8931721	42,811	14,25	Blm-620	-2435,8873032	46,493	25,89
Blm-531	-2435,8931405	42,830	21,68	Blm-739	-2435,8871357	46,598	17,45
Blm-526	-2435,8931002	42,856	23,13	Blm-792	-2435,8869398	46,721	19,71
Blm-767	-2435,8930585	42,882	8,81	Blm-581	-2435,8858011	47,436	27,26
Blm-788	-2435,8930255	42,903	23,94	Blm-630	-2435,8854535	47,654	9,03
Blm-382	-2435,8929732	42,935	12,54	Blm-722	-2435,8845504	48,221	24,18
Blm-738	-2435,8928458	43,015	20,78	Blm-760	-2435,8832465	49,039	11,40
Blm-203	-2435,8926309	43,150	28,82	Blm-632	-2435,8831070	49,126	24,24
Blm-793	-2435,8925838	43,180	26,95	Blm-222	-2435,8816761	50,024	21,20
Blm-614	-2435,8922129	43,412	18,05	Blm-623	-2435,8815245	50,119	27,58
Blm-587	-2435,8922033	43,418	17,55	Blm-772	-2435,8793059	51,512	24,83
Blm-475	-2435,8920561	43,511	17,96	Blm-525	-2435,8791825	51,589	22,15
Blm-204	-2435,8919873	43,554	18,87	Blm-652	-2435,8789684	51,723	26,04
Blm-554	-2435,8919531	43,575	21,09	Blm-257	-2435,8784352	52,058	26,11
Blm-207	-2435,8916704	43,753	22,40	Blm-784	-2435,8757239	53,759	37,57
Blm-674	-2435,8915895	43,804	30,88	Blm-769	-2435,8741591	54,741	24,41
Blm-766	-2435,8915895	43,804	30,88	Blm-686	-2435,8718309	56,202	25,86
Blm-695	-2435,8915275	43,843	31,12	Blm-679	-2435,8677895	58,738	31,14
Blm-572	-2435,8914656	43,881	15,27	Blm-765	-2435,8676384	58,833	37,70

Ek 2. Relatif enerji değerlerine göre sıralanmış bleomisin konformerleri (devam ediyor).

