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ÖZET

ALZHEİMER HASTALIĞININ FMRI VERİSİNİN
SINIFLANDIRILMASINA DAYALI TANISI

OĞUZ, Kaya

Doktora Tezi, Uluslararası Bilgisayar Anabilim Dalı
Tez Danışmanı: Doç. Dr. Muhammet Gökhan CİNSDİKİCİ

İkinci Danışmanı: Prof. Dr. Tayfun DALBASTI
Ağustos 2016, 88 sayfa

Alzheimer Hastalığı en sık rastlanan demans türlerinden biridir. Bu tezde has-
talığın erken tespiti için, işlevsel manyetik rezonans görüntüleme verilerinin uygun
olarak sınıflandırılması hedeflenmiştir. Alzheimer Hastalığının temelinde sinirler-
deki sinyal iletişiminin aksaması vardır. Bu aksamadan etkilenen beyin bölgelerini
hedefleyen işlevsel görevler belirlenmiştir. İşlevsel çekimde görevi yapan farklı de-
nek grupları arasında farklılıklar çıkması beklenmektedir. Etkinlikleri tespit edebi-
lecek beş adet özgün yöntem önerilmiştir. Bu yöntemlerden üç tanesi anlık etkinlik
tespiti yapmakta, diğer ikisi ise bütün deneyin verilerini kullanmaktadır. Yöntem-
lerde kararlı regresyon yöntemi kullanılarak dinlenme anındaki değerlerin regresyon
doğrusu çıkartılmış ve bu doğruya olan uzaklıklar yeni bir metrik olarak kullanıl-
mıştır. Etkinlik dışında, Alzheimer Hastalığını tespit etmede kullanılabilecek işlev-
sel bağlantısallık yöntemleri incelenmiştir. Varsayılan durum ağı, dinlenme anında
beynin belirli bölgelerinin zamansal olarak korelasyon gösteren yerlerinden oluşur.
Bu ağdaki bölgeler Alzheimer Hastalarında daha az korelasyon göstermektedir. De-
neklere ait verilerin hem etkinlik, hem de işlevsel bağlantısallık bilgileri LVQ ve
yapay sinir ağları ile sınıflandırılmıştır. Kullanılan üç veri setinde etkinlik verileri
ile %98, fonksiyonel bağlantısallık ile de %90 başarı elde edilmiştir.

Anahtar sözcükler: İşlevsel manyetik rezonans görüntüleme, etkinlik tespiti,
işlevsel bağlantısallık, varsayılan durum ağı, veri sınıflandırılması, Alzheimer Has-
talığı
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ABSTRACT

THE DIAGNOSIS OF ALZHEIMER’S DISEASE BASED ON THE
CLASSIFICATION OF FMRI DATA

OĞUZ, Kaya

PhD in International Computer Department
Supervisor: Assoc. Prof. Dr. Muhammet Gökhan CİNSDİKİCİ

Co-Supervisor: Prof. Dr. Tayfun DALBASTI
August 2016, 88 pages

Alzheimer’s Disease is the most common form of dementia. This thesis aims
to use functional magnetic resonance imaging data classification to diagnose the
disease. One of the main causes for Alzheimer’s Disease is synaptic failure. An
fMRI experiment that targets the brain regions that are affected by this failure has
been developed. Differences are expected to emerge between the subjects in different
groups. Five novel methods has been proposed to locate the activations. Three of
these can detect an activation instantaneously, while the other two use the complete
experiment data. The methods use robust regression to find the regression line for
the resting state and use the distance to this line as a new metric. Besides activation
information, functional connectivity methods has been researched which can be used
to detect the Alzheimer’s Disease. When the brain is at rest, the temporal correlations
between specific regions form a network called the default mode network. There is
a decrease in correlation in subjects with Alzheimer’s Disease. The activations and
functional connectivity features has been classified with LVQ and artificial neural
networks. In the three data sets used, a success of 98% has been reached for the
activation features, and 90% has been reached for functional connectivity.

Keywords: Functional magnetic resonance imaging, activation detection, func-
tional connectivity, default mode network, data classification, Alzheimer’s Disease
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1. INTRODUCTION

This interdisciplinary study presents a framework for classifying functional
magnetic resonance imaging (fMRI) data among subjects with Alzheimer’s Disease
(AD), subjects with mild cognitive impairment (MCI) and healthy subjects. While
the framework firmly rests on computational methods, the nature of the diseases, the
data format and its acquisition plays a significant role. Therefore, it is imperative
that they are briefly introduced before the discussion of the framework.

1.1 Alzheimer’s Disease

Alzheimer’s Disease is the most common form of dementia that slowly strips
off the subject’s mental capabilities due to synaptic dysfunctions (Weiner et al.,
2015; Querfurth and LaFerla, 2010). The disease starts with loss of short term mem-
ory, and, as it progresses, leaves the subject unable to attend daily tasks as simple as
eating in its final stages. According to the World Alzheimer Report 2015, published
by Alzheimer’s Disease International, there are over 45 million people living with
AD, and this number is expected to reach 130 million by the year 2050 (Prince et
al., 2015).

The main cause of AD is hypothesized to be the suppression of basic synaptic
transmissions because of the accumulation of uncleared peptides in the synapses.
Peptides are natural products of metabolism that are short chains of amino acid
monomers with covalent bonds. The peptide of type Aβ42 is also known to be toxic
to the cells, resulting in inflammation that leads to energy failure (Querfurth and
LaFerla, 2010).

The synaptic failure can also be seen in patients with mild cognitive impair-
ment. The studies report a 10 to 15 percent rate of conversion from MCI to AD
which makes MCI a valid target for research, as it can be considered a precursor to
AD (Janoutová et al., 2015; Brück et al., 2013).

The study by Querfurth and LaFerla (2010) lists the aforementioned hypothe-
sis and others, such as mitochondrial dysfunction, and discusses the proposed treat-
ments to each cause. Teipel et al. (2015) mention the usage of different modalities
of medical imaging, such as magnetic resonance and positron emission tomography
(PET), so that the accumulation of the peptides can be captured. On the other hand, a
recent survey remarks that the research interest has turned to early diagnosis rather
than treatment since the clinical trials on stopping the disease have failed, hence
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Figure 1.1. The net magnetization,
−→
M , precessing around the magnetic field,

−→
B , at Larmor Fre-

quency, f . The net magnetization can be decomposed into the longitudinal and transverse
vectors, shown in red and blue, respectively.

creating a “treatment versus prevention dilemma” (Deak et al., 2016).

The impact of the disease on both the subjects and the subjects’ families creates
an urgency to develop methods to diagnose, slow and stop the disease.

1.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a very common tool used in both re-
search and clinical medical imaging. It works on the intrinsic angular momentum
of atomic nuclei called the “spin”. Spins behave like compass needles and have a
magnetization of their own. While it is not possible to measure the magnetization
of a single proton, it is possible to measure the net magnetization,

−→
M , of all protons

in a volume (Lindquist, 2014).

When there is no magnetic field, each spin has a different magnetic moment
orientation, which in total sums up to a net magnetization of zero. Under the effect of
a large magnetic field,

−→
B , the spins align and create a net magnetization which can

be decomposed into two vectors; one parallel and one orthogonal to the magnetic
field. These components are called longitudinal and transverse vectors, as shown in
Figure 1.1.

It is known in quantum mechanics that a spin in a magnetic field precesses in
that field with Larmor Frequency, defined by the Equation 1.1, as follows (Brown
et al., 2014).
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(a) Coronal slice of a
subject

(b) Sagittal slice of a subject (c) Axial slice of a
subject

Figure 1.2. Slices from anatomical planes; coronal, sagittal and axial. The images are taken from
Ege University MR Database.

f = γB (1.1)

The equation states that the frequency of the spin is proportional to the magni-
tude of the magnetic field and the gyromagnetic ratio, γ. This ratio is 42.58 MHz/T
for hydrogen, hence, for a 3 Tesla MRI scanner, the frequency is around 127 MHz
(Deichmann, 2009).

If an external pulse with the exact Larmor Frequency is sent when the spins
are in alignment, they are tipped over and a transverse magnetization is created,
while the longitudinal magnetization is lost. This process is called excitation. Once
the external pulse is removed, the spins will try to return to equilibrium; transverse
magnetization starts to disappear, while the longitudinal grows back to its original
state (Lindquist, 2014). The precession of the spins produce a signal that can be
captured by a receiver coil.

The time for the longitudinal magnetization to come to equilibrium is de-
scribed by a time constant called T1. This constant is called T2 for the transversal
magnetization. These values are the relaxation times. The time to excite the spins
is called the repetition time, or TR for short. The time to start data acquisition after
excitation is called echo time, and is shown as TE. The measured signal is approx-
imately M0(1 − e−TR/T1)e−TE/T2 where it is possible to put emphasize of tissue
properties T1 and T2 by changing the repetition time and the echo time (Lindquist,
2014).

The images acquired by T1 and T2 relaxation times are used for structural
view of the tissues. For functional MRI, T2* is used. It is the combined effect of
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Figure 1.3. Voxels are acquired slice by slice and form the final volume, as shown in Lindquist (2014)

T2 and local inhomogeneities that are used to enable functional MRI.

These steps are the basic idea behind the magnetic resonance imaging. How-
ever, the important contribution has come from Lauterbur and Mansfield in 1973
when they proposed to vary the magnetic field spatially, hence generating signals
with different Larmor Frequencies (Brown et al., 2014). In order to introduce the
third dimension, this process is done within a slice of interest, and is repeated along
the axis orthogonal to the slice. Naturally, the names for these axes come from the
anatomical planes; axial, sagittal and coronal planes. The slices for each plane can
be seen in Figure 1.2. While any plane can be used to acquire a series of slices, axial
plane is a common preference.

The acquisition of the net magnetization is done in these varying magnetic
fields of unit volumes. Each unit volume is called a voxel, short for volume element,
akin to its two dimensional equivalent, pixel. The MRI acquisition is done slice by
slice on the selected anatomical plane, and when it is done, these unit volumes form
the three dimensional volume as can be seen in Figure 1.3 (Lindquist, 2014). Voxels
enable the viewer to analyze the volume in other planes as well. For example, in
Figure 1.3 the acquisition is done along the axial plane. However, if a sagittal slice
is desired, the voxels along the coronal and axial slices for that sagittal slice can
be viewed as a two dimensional image. The MRI viewers use the three anatomical
planes to display the three dimensional data as in Figure 1.2.
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1.3 Functional MRI

The nerve cells in the brain may or may not respond to a given stimulus accord-
ing to the impulses that they receive. If they respond by firing an impulse, an elec-
trical and chemical signal is transferred to a connecting neuron via their synapses.
Sending this signal requires energy, and energy is generated at the mitochondria
using the oxygen carried by the hemoglobin molecules in the blood.

The hemoglobin molecules with oxygen are called oxyhemoglobin, and those
without oxygen are called deoxyhemoglobin. The absence or presence of oxygen in
blood affects the magnetic field in the vicinity because oxyhemoglobin is diamag-
netic, whereas deoxyhemoglobin is paramagnetic. These inhomogeneities can be
captured by an MRI scanner using the T2* relaxation time, which form the basis for
the functional MRI. This contrast in the MRI scanners used to capture the changes in
oxygen levels is called blood level oxygen dependent (BOLD) (Deichmann, 2009).

1.3.1 Hemodynamic Response Function

When a stimulus is presented, oxygen is delivered by the blood flow to the
regions responsible for handling it. This creates an increase in the BOLD signal. As
the neurons use oxygen to fire, the oxygen concentration drops to previous levels,
hence does the BOLD signal. This response to stimulus is called the hemodynamic
response and its change in time is called the hemodynamic response function (HRF).

In order to capture the HRF, functional images have to be taken at regular time
intervals. This brings physical constraints on the MRI device because the time for
aligning spins with the magnetic field and their relaxation times limit the intervals
that a new complete scan of the brain can be performed. A typical repetition time
used in fMRI is two or three seconds.

Hemodynamic response function can be observed by empirical studies for
voxels in well-studied regions such as primary visual and primary motor cortices
(Glover, 1999; Handwerker et al., 2004). These studies show that the response func-
tion starts peaking after a few seconds of the stimulus and reaches its largest value
around six seconds. This is followed by a decline where a post undershoot can be
observed. The signal returns to its previous levels in about fifteen to twenty seconds.
The latency to start peaking, the peak magnitude, the undershoot and other attributes
may vary from subject to subject and even from region to region in a single subject
because of the density of neurons in the voxels, as well as the structure of blood
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Figure 1.4. Hemodynamic response function as the difference of two gamma functions as defined in
Equation 1.2 where A1 = 6, A2 = 1, τ1 = 4, τ2 = 4, δ1 = 0, δ2 = 6 and C = 0.

vessels. However, the shape of the response is consistent and is usually modeled
as the difference of two parametrized gamma functions, as shown in Equation 1.2
where x(t) is the gamma function, A1 is the peak magnitude, A2 is the depth of the
undershoot, τ1 and τ2 are the width, and δ1 and δ2 are the latency values of the peak
and undershoot, respectively (Handwerker et al., 2004). A sample HRF is plotted
in Figure 1.4, where the peak and the post undershoot can be observed.
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1.3.2 fMRI Experiments

The challenge in fMRI is that the brain is always active and in order to bestow
a function to a particular brain region, the functional images should be captured
in a carefully crafted and executed experiment. These experiments contain tasks
that the subjects are asked to perform. One of these tasks contains the sought brain
function, usually called active task, whereas another one, usually called baseline,
does not. Although it sounds simple, designing experiments that reveal the sought
brain functions can be a daunting task.

As a simple example, consider locating the motor functions in the brain, as



7

Baseline Active Baseline Active

Time

Figure 1.5. A simple fMRI experiment containing a baseline and an active task alternating. The bars
under the tasks show the instances when a complete brain scan starts.

shown in Figure 1.5. The active task is tapping fingers for a period of time. For the
baseline task, the user might just stay still. As these tasks alternate for two times
as shown in Figure 1.5, a complete brain scan is done at instances defined by the
repetition time, TR, shown by the bars under the tasks in the figure. These tasks are
repeated until enough data is acquired for fMRI data analysis.

As a slightly harder example, consider locating the regions in the brain re-
sponsible when we see someone that we know. In this case, the active task requires
the subject to look at photographs of very famous people. The baseline for this ex-
periment should contain everything in the active task but the functions that work
when we see someone that we know. So, the baseline can not be doing nothing, or
it can not be looking at photos of random objects, but to photos of people that the
subject does not know. Even for this slightly harder example, these photographs
may not work because the faces in the photographs may resemble people that the
subject knows.

These two experiments are examples of block design. Experiments with the
block design contain tasks that have clearly defined durations that are run in succes-
sion, where each run is called a trial. The experiment may contain more than one
task, but each trial contains the same tasks, repeating as many times as required.
Another type of fMRI scan is the “resting state”, where the subject simply lies with-
out doing any task. The data from this type of experiment is mostly the analysis of
functional connectivity among different brain regions.

Block designs may cause habituation in the brain when the subject gets used
to the task so much that the regions cease to respond to the stimuli. To overcome
this problem, the task may be programmed to be event-driven, where the tasks may
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have varying durations and the switching between tasks may also be random. These
type of experiments require careful planning, logging, and analysis.

It should also be noted that the tasks should be carefully executed; that is, the
time when the stimulus are shown has to be known, both for block and event-driven
designs. For the simple experiment example above, where the motor functions are
sought, the subject can be cued in to tap fingers by the MR operator. However, more
complicated experiments have to be programmed so that they are synchronized with
the functional MRI scans as the experiment runs. The software should also be aware
of the MRI device and its pulses as it starts a new complete brain scan. It should
also be able to log the stimuli presented to the subject and the subject’s responses to
the task, since they can be used in fMRI analysis once the experiment is complete.

In order to successfully execute such an experiment, both hardware and soft-
ware requirements should be met. The MRI device is controlled by the operator
using the MRI software on a computer. Using this software, the operator can set
the modalities of the scan, as well as its duration. The fMRI experiments are run by
another computer, which contains an extra set of synchronization hardware with the
MRI device. The hardware set up includes goggles, headphones and controllers with
buttons so that the user can view the experiment, hear commands and respond to the
experiment using the buttons on the controllers. All of these devices are MRI com-
patible and does not produce noise and other artifacts around the scanned area. The
main component of the synchronization hardware is the so-called SyncBox, which
helps the synchronization with the MRI device. The software makes use of the syn-
chronization hardware by checking its synchronization signals, using its goggles as
an additional display and reading its input from the controllers during the execution
of the experiment.

Figure 1.6 shows the hardware and software set up at the 3 Tesla MRI unit
at Ege University. The unit is made up of two rooms. The MRI device is installed
in one of the rooms. This is the room where the subjects are scanned. The MRI-
compatible goggles, headphones and controllers are also in this room and they are
used by the subject during the experiment execution. The goggles are mounted on
the head coil and are adjustable to the subject’s eye sight. The controllers have two
buttons for each hand, one for thumbs, and one for the index fingers.

The other room is called the control room and it contains the main computer
for controlling the MRI device, so that the modality of the scan and its parameters,
such as repetition time, TR, and echo time, TE, can be set. Naturally, the MR device
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Figure 1.6. fMRI experiment execution setup at the 3 Tesla MR device in Ege University.

is connected to this computer. The device is also connected to the SyncBox, along
with the goggles, headphones and the controllers. The SyncBox is connected to an-
other computer, which is called the fMRI Control Computer, where the programmed
experiment runs on the Presentation software.

The Presentation software is a commercial product developed at a company
called NeuroBehavioral Systems (NBS) located in San Francisco, USA, for devel-
oping custom fMRI experiments (www.neurobs.com). It has built-in support for
synchronizing with the MR device, a logging system and a programming language
similar to JavaScript. It can present stimuli at a specific instant or at a specific pulse
signal from the MRI device.

The experiments are executed as follows. The subject is first introduced to
the task before going into the MR room and learns all that is required to complete
the task. Once inside the scanner, the subject is scanned structurally before the
fMRI task. This structural image is required for the analysis, but it also helps the
operator and the radiologist to check for any pathological conditions of the subject.
After the structural scan, the subject is informed that the fMRI task will start. The
Presentation software is started from the fMRI Control Computer and the experiment
is loaded. The execution code for the experiments always wait for the first MRI pulse
to arrive, so the subject can see the “Ready” sign at the goggles. Once the subject
confirms this, the scan is started from the MR Control Computer and as soon as the
first MRI pulse is received, the Presentation software starts running the experiment.
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Therefore, the scans and the experiment is always synchronized, and it is possible
to know which stimuli is shown at any time.

Once the experiment is complete, a log file is also saved which contains the
pulses, stimuli, subject responses and other events that occurred during the experi-
ment. The scans are saved by the MR Control Computer in a standard data format,
called DICOM (Digital Imaging and Communications in Medicine). The experi-
ment data is now ready to be analyzed.

1.3.3 fMRI Analysis

An fMRI experiment consists of many brain volumes for a single subject. Usu-
ally, there are more than one group of subjects, so that the responses in the brain can
be compared between these groups. Both of these requirements bring forth a set of
challenges.

Subjects, being human, can not stay still for long periods of time. Even if
they force themselves not to move, there would be involuntary movements because
of their physiological functions, such as breathing. Therefore, the scanned head
volumes must be spatially aligned before the analysis.

Another challenge is that every subject has a different head shape. If activa-
tions between two groups will be compared, a point in the three dimensional volume
has to be the same point in all of the subject’s data. A standard space is required to
register all of these brain volumes.

All of these steps are called the preprocessing of fMRI data. Once it is com-
plete, there are different approaches to analyze the data and locate the activations,
which will be discussed in the upcoming chapters, since this dissertation also pro-
poses new methods.

1.3.4 Preprocessing of fMRI Data

The preprocessing of the data is done using the SPM12 software, named after
the Statistical Parametric Maps (SPM) approach that it uses. It is available from
http://www.fil.ion.ucl.ac.uk/spm/.

Taking the first scan in the series as the reference volume, SPM12 realigns
the remaining volumes of the subject using a least squares approach and a rigid
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body transformation (Friston et al., 1995a). The SPM12 manual mentions the re-
slicing of the volume so that every volume matches the reference volume voxel by
voxel (Ashburner et al., 2014). This step also creates a mean image that contains
the average value for each voxel, that will be used in the co-registration step.

Since the brain is scanned slice by slice as shown in Figure 1.3, the acquisition
time for one slice is not the same with other slices. SPM12 adjusts the signals by
shifting the sines that make them up to an earlier or a later moment in time (Ash-
burner et al., 2014).

Once the slices are spatially and temporally aligned and synchronized, SPM12
registers the structural scan of the subject to the mean image of the fMRI scans.
Since both images use different modalities, a mutual information approach is used
(Collignon et al., 1995).

An important part of preprocessing is segmentation, where the brain is sepa-
rated from its surrounding tissues. SPM12 segments and saves the white and gray
matter in the structural image of the subject using the tissue probability maps (Ash-
burner and Friston, 2005).

During segmentation, the structural image is also normalized to a global stan-
dard space. There are two standard spaces for locating brain regions independently
from size and shape. One of them is Talairach coordinates (Talairach and Tournoux,
1988). Although still in use, Talairach standard space is largely replaced by the
standard space originated at the Montreal Neurological Institute and Hospital, called
MNI space (Evans et al., 1993). SPM12 normalizes the structural image to the MNI
space and outputs a deformation field file, so that this normalization can be applied
to functional images, as well (Ashburner et al., 2014).

The normalization of functional scans is done by using the deformation field
created at the segmentation step. After this step, all of the functional images become
registered to the MNI space. The final step in preprocessing is the smoothing of the
volume. SPM12 convolves the image volumes with a Gaussian kernel in order to
suppress noise and other effects due to residual differences during the previous steps
(Ashburner et al., 2014).
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Resting State for 300 seconds

Blank Encode Encode Encode Encode Encode Encode ×4

Resting State for 180 seconds

Blank Face Face Face Face Face Face ×4

Blank Name Name Name Name Name Name ×4

6 + 1 sec.

30 sec. 42 sec.

Figure 1.7. The fMRI Experiment Structure, developed by the Psychiatry Department. The experi-
ment includes a resting state in the beginning and between the first and the second tasks.
The experiment is 22 and a half minutes long, acquiring 448 full brain scans for each
subject.

1.4 AD FMRI Experiment

The fMRI experiment is designed by the SoCAT research group in the Depart-
ment of Psychiatry at the Ege University School of Medicine, in order to highlight
the differences between the subject groups. The experiment contains three distinct
tasks and two resting state scans.

In resting state scans, the subjects are not asked to do anything but to lay
resting, similar to a structural scan. The subject is asked to just relax and not to think
anything in particular. The resting state scans are used to correlate different brain
regions. In their study, Raichle et al. (2001) show that certain brain regions work in
correlation as the subject is in a resting state, and this correlation is weakened if the
subject is asked to perform another task. In order to study the subjects further in other
aspects such as connectivity, the resting state is also included in the experiment.

The faces used in the photographs are taken from the study by Ebner et al.
(2010). The study contains 171 faces of young, middle-aged and older men and
women, where each face has two sets of six facial expressions. From this set, 36
neutral faces are chosen and given Turkish names according to their age range, us-
ing the most commonly used names in Turkey, provided by the statistical study of
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(a) The encoding task
screen. The name of
the face is shown at the
bottom of the screen.
The subject is asked
the gender of the face
and expected to push
the button in the left or
right hand, correctly.

(b) The face recognition
task screen. The sub-
ject is expected to re-
member if the face was
shown during the en-
coding task.

(c) The name recognition
task screen. The sub-
ject is expected to re-
member the name of
the face correctly.

Figure 1.8. Sample screens from encoding, face recognition and name recognition tasks in the AD
fMRI Experiment.

General Directorate of Civil Registration and Nationality (Nüfus ve Vatandaşlık İş-
leri Genel Müdürlüğü, 2012). Among these 36 faces, 24 of them are used in the
encoding task. They are shown in a random order for each subject, in sets of six
faces, as the structure of the experiment implies.

As can be seen structurally in Figure 1.7, the experiment starts with the resting
state scan for five minutes. As soon as it finishes, the first task begins. The structure
for the tasks is the same for every task. They all start with thirty seconds of a blank
screen, with a white plus sign (+) in the center, which helps the subject to focus.
Then, the subject is shown a photograph for six seconds, and the task is performed
here. It is followed by a one second of blank screen with a white plus sign in the
center, again. The subject is shown six photographs in succession, then it is repeated
four times in total.

The first task is called the “Encoding” task, and it is used to register faces to the
subject’s memory, so that they can be queried in other tasks. During the six seconds
where the subject is shown a photograph, the name of the person is shown at the
bottom of the screen. Since six seconds is a lot of time to encode the name and the
face, the subject is given another task during this six seconds: correct identification
of the gender of the person in the photograph. If the person in the photograph is a
man, they use the left hand button, or if the person is a woman, the right hand button
is used. This simple task makes it more challenging for the subject to encode the
photograph and the name. A sample screen can be seen in Figure 1.8.a.

After the encoding task, there is another resting state scan that takes three
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minutes. This resting state is also used to better challenge the memory encoding of
the subject.

The second task is called “Face Recognition.” The 12 remaining faces that
were not used in the encoding tasks, and 12 faces from the encoding tasks are ran-
domly queried with the phrases “Familiar” and “Not Familiar” on the left and right
hand side of the photographs. The subject is expected to remember if the face was
shown during the encoding task. A sample screen can be seen in Figure 1.8.b.

The final task is called “Name Recognition.” This task asks the subject the
name of the face that was shown in the encoding task. An alternative name is dis-
played on either left or right hand side of the screen, and the subject is expected to
remember the name. A sample screen can be seen in Figure 1.8.c.

The encoding, face recognition and name recognition takes 4×(30+42) = 288

seconds each. In total, the experiment takes 300+(3×288)+180 = 1344 seconds,
which is roughly 22 minutes and a half. The TR time for the experiment is 3 seconds,
which results in 448 full brain scans. Even though the tasks have random elements,
they are still made up of blocks, and therefore are of block design.

1.5 Classification Framework

Now that the nature of the diseases and the data that will be used for classifi-
cation are briefly introduced, the framework should be discussed concisely.

A broad view of the work flow can be seen in Figure 1.9. The work flow starts
with the fMRI experiment. As aforementioned in section 1.3.2, fMRI experiments
must be carefully designed to locate the activations responsible for brain functions.
One of the first symptoms of both AD and MCI is the short term memory loss, as was
discussed in section 1.1. The experiment is designed kindly by the Psychiatry De-
partment as detailed in section 1.4 so that the brain regions responsible for short term
memory can be compared among the three groups of subjects; the Alzheimer’s Dis-
ease (AD) group, the mild cognitive impairment (MCI) group, and healthy subjects
(HS). In order to test the framework before the real data arrives, a set of synthetic
data generation methods are implemented, as well.

Although classifiers can use the preprocessed subject data, the large size of the
fMRI data, and the few number of samples compared to the size, enforces features
to be extracted. These features are representations of the subject data, which are
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fMRI Experiment

Real Data
AD, MCI, HS

Preprocessing Synthetic Data

Connectivity Analysis Activation Detection

Classifier

Figure 1.9. A broad view of the work flow. The data is either collected from an fMRI experiment, or
generated synthetically simulating the experiment. The real data has to be preprocessed.
Then the activation or functional connectivity features are extracted and they are passed
to the supervised classifier.

smaller in size, while maintaining as much information as possible. The thesis uses
both activations and functional connectivity analysis to extract features that will
bring forth differences among the subject groups.

The real data can be a block design experiment, where activations are sought,
or it can be a resting state scan, where the subject simply lies without doing anything.
While the activations are sought in the first type, the second one requires a functional
connectivity analysis. Both of these features are then fed into the classifier.

The synthetic data, on the other hand, is generated according to an experiment
structure, and contains activations only. The results from this set is only evaluated
with activation detection methods.

1.6 Organization Of The Thesis

The thesis continues with the literature review of activation detection meth-
ods, fMRI data classification methods, functional connectivity approaches, and the
default mode network. The third chapter contains novel contributions to activation
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analysis. The different approaches to synthetic data generation is also mentioned
in this chapter. Chapter 4 discusses the classification of fMRI data using learning
vector quantization and multilayer feedforward artificial neural networks. The the-
sis concludes with Chapter 5 where the evaluation and remarks about the methods,
their results and the future work are discussed.
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2. LITERATURE REVIEW

This section reviews the existing approaches to activation detection, fMRI
data classification, and functional connectivity.

2.1 Activation Detection

The initial purpose in using the BOLD contrast to capture the hemodynamic
response was to measure regional neural activity (Ogawa et al., 1990). As soon as
it has become available, several approaches has been proposed to detect the acti-
vations. Some of these were already been in use with other medical imaging tech-
niques, such as positron emission tomography (PET).

2.1.1 Early Approaches

One of the earliest approaches is the subtraction method which has been evalu-
ated by a typical finger tapping experiment (Bandettini et al., 1993). The experiment
consists of functional images taken at two second intervals where the subjects are
asked to tap their right hand fingers to their thumbs for eight images and immediately
asked switch to left hand fingers for the following eight images.

In the subtraction method the center voxels of the left and right motor cortices
are chosen as reference points. The instance of the brain captured at the peak value
of the left reference voxel is subtracted from the instance of the brain captured for
the right reference voxel. In the resulting image, maximum negative values indicate
the brain activity for the right hand tapping task, and the maximum positive values
indicate the activity for the left hand task.

The second approach in the same study uses the mean value for each task,
instead of the peak value of the reference points. The image quality improves, but
both approaches suffer from an artifact in the sagittal sinus region of the brain.

The study also discusses the cross correlation approach. In order to correlate
the signals with the experiment, the experiment is represented by a square wave
function, also known as the boxcar function. In the boxcar function, the instances
with the sought function is marked with the value of 1, whereas other instances are
marked with 0. This reference signal has the same size as the voxel signals. For
each voxel, the dot product of the voxel signal and the reference boxcar signal is
computed. Higher correlation values produce brighter voxels in the resulting image,
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which shows activity belonging to the sought brain function. The value 0.7, which
corresponds to the cosine of α = 45 degrees between two signals is chosen as a
typical threshold to accept a voxel as active.

Another method proposed in the study uses the BOLD signal of an exemplar
voxel from the expected activation area as a reference signal, instead of the boxcar
signal. This method is extended by using the average BOLD signal of the expected
area, as well.

The experiment data is also analyzed in the frequency domain. The spectral
density versus frequency plots of the center voxels from both motor cortices of the
brain reveals relatively similar constant frequency of the activity.

2.1.2 Statistical Parametric Maps

Statistical parametric maps (SPM) were previously developed to analyze PET
images, but are introduced for analyzing fMRI data in Friston et al. (1994). The
idea behind SPM is to obtain a series of values that will be thresholded via statistical
methods with a predefined significance value, such as p = 0.05, to locate activated
voxels.

In the initial study, Friston et al. (1994) use a similar technique to Bandettini
et al. (1993) where statistical maps are produced by using cross-correlation between
sensory input and hemodynamic responses. A more comprehensive approach that
use the general linear model (GLM) to create the statistical parametric maps is pro-
posed in their next study (Friston et al., 1995b).

The general linear model rests on the following equation,

Y = Xβ + e (2.1)

whereY is a matrix that contains BOLD values of voxels in each of its columns,
X contains variables that effect the experiment in each of its columns. The β matrix
will be estimated by GLM and will show how much each of the variables affect the
received signal. The e is used as an error, assumed to be independent and identically
normally distributed.

The X matrix is also called a design matrix and is generally used to represent
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the experiment structure. For a simple block design experiment, the effects are tasks,
such as movement and visual tasks, and they are represented by the columns. The
rows represent each scan in the experiment with regular intervals, such as TR=3.
For the rows, or the scans, that are in the movement task, the related column is set as
1, and the remaining columns are set to 0. Similarly, for rows, or scans, that are in
the visual task, the related column is set as 1, and the remaining columns are set to
0. A simple block experiment of six scans, where the first three are movement and
the last three are visual tasks, the GLM Equation in 2.1 can be extended as follows
for a single voxel, v;
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(2.2)

where v1...6 represent the BOLD value for the voxel acquired at regular inter-
vals, the first column of X matrix represents the movement task, and the second
column represents the visual task.

Once the estimated β̂ matrix is computed by the ordinary least squares method,
a contrast vector c, such as cT = [ 1 −1 ] can be used to get results for different
effects. A value of 1 is positive activation, a value of -1 is negative activation, and a
value of 0 completely removes the effect from the results. Table 2.1 shows a set of
contrast vectors that can be used to query the results for the simple block experiment
designed above, and gives a possible list of queries that can be answered (Woolrich
et al., 2009).

The t statistic in Equation 2.3 is computed for each voxel in the brain.

t =
cT β̂√

var(cT β̂)
(2.3)

To get a statistically significant result, this value is compared to a previously
defined p value. In cases where there are too many results, such as this, the possibil-
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Table 2.1. The questions that can be answered by the simple block design experiment where a move-
ment and a visual task is involved (Woolrich et al., 2009).

Contrast Meaning

[ 1 0 ] Where is there significant movement activation?
[ 0 1 ] Where is there significant visual activation?
[ −1 0 ] Where is there significant negative movement activation?
[ 0 −1 ] Where is there significant negative visual activation?
[ 1 −1 ] Where is there movement activation significantly greater

than visual activation?
[ −1 1 ] Where is there visual activation significantly greater than

movement activation?
[ 1 1 ] Where is there significant activation averaged across both

conditions?

ity to get a greater t value than expected increases. To overcome this problem, the
values are corrected by family-wise error (FWE). To do so, the expected p value is
divided by the number of voxels and the result is used to get the t distribution value.

Figure 2.1 shows the SPM results for an early version of the Alzheimer ex-
periment, where the resting states were not yet included. The middle right shows
the design matrix as a gray/white graphic where the thirty seconds of blank screens
followed by photographs for each task, encoding, face recognition and name recog-
nition can be seen. On top of the design matrix, the selected contrast [ −1 1 ] is shown
as a bar chart, which asks the question “Where is there encoding activation signif-
icantly greater than the blank screen?” On the left of the design matrix and the
contrast chart, the activation results are displayed in anatomical cross sections in
gray-level. The darker tones shows statistically more significant activations. In or-
der to improve visual inspection, the results can be rendered on the MNI standard
template, as can be seen in the colored images on the right. The significance value
is p = 0.05 with FWE correction.

The general linear model in statistical parametric maps approach is imple-
mented in the software with the same name, SPM, and is the most commonly used
solution in detecting activations in both research and clinical analysis.



21

Figure 2.1. The SPM results for one of the early Alzheimer experiment tests. The results are shown
in top left anatomical cross sections. The contrast vector bar chart and the design matrix
graphic can be seen in middle right. The results are also rendered on the MNI standard
template to improve visual inspection.

2.1.3 Other Approaches

Xiong et al. (1996) evaluates several techniques for fMRI activations. Using
synthetic images, both parametric and non-parametric statistical tests are assessed.
As a result, independent t-test and cross correlation coefficient comes out on top of
other tests such as Mann-Whitney and Wilcoxon signed rank test.

Descombes et al. (1998) use Markov Random Fields as a preprocessing step
of SPM analysis where the noise in functional MR images are reduced with an edge
preserving approach. Ardekani et al. (1999) claim that Fourier series of a boxcar
function should contain a secondary harmonic component besides the odd harmon-
ics, so, the system should not be modeled with linear time-invariant (LTI) system
models. They assume that a periodic input signal should output a periodic response
and they further assume that the system is low pass in which the system can be
modeled as a truncated Fourier series with unknown Fourier coefficients. The vox-
els are assumed to be activated if their value is above the significant threshold in an
F statistic.

Singh et al. (1999) propose a technique that can handle not just “on” and “off”
but multiple conditions. The authors emphasize that SPM also supports multiple
conditions since the underlying GLM approach is a general solution. However,
they argue that the computational complexity of GLM reduces the possibility of
a real-time approach. The study includes an experiment with three conditions that
are left hand movement, right hand movement and no movement that produce their
respective images. A logic based true-false analysis is applied to these images.
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Feilner et al. (2000) use t-tests in the wavelet domain to find the activated
voxels. Since the temporal information is lost in the frequency domain processing,
von Tscharner and Thulborn (2001) propose a method in which analysis of non-
orthogonal wavelets are used.

In another approach, Sanguineti et al. (2000) use mixtures of Gaussians to find
the activations instead of boxcar function which does not require the explicit model
of the activation model.

Lukic et al. (2001) model the activations using circular spatial basis functions
and then use reversible-jump Markov-chain Monte-Carlo procedures to estimate ac-
tivated regions. Thirion and Faugeras (2001) focus on the causality between the
given stimuli and the voxel responses where the BOLD signal is modeled by Markov
chain. They use t-test as an activation measure.

Thompson et al. (2002) use Space-time Adaptive Processing (STAP) algo-
rithm to find the activations. STAP is an algorithm that is designed for sensor array
processing. Since the algorithm handles spatial and temporal data as a spatiotempo-
ral set, the activations can be found both in spatial and frequency domains, similar
to the study by Noh and Solo (2006).

Hossein-Zadeh et al. (2003) propose a filter that increases the activation sig-
nal whereas reduces noise and nuisance components. The problem is solved as an
eigenproblem and the authors use the largest eigenvalues in the statistical tests which
will define the activated regions. The authors report that finding the optimum size
of the filter requires further investigation.

Deshmukh et al. (2004) find activations by searching periodicity in the BOLD
signal of experiments with two state designs. Roche et al. (2004) use the extended
Kalman filter to fit the BOLD signals of fMRI experiments to a general linear model.
Being an incremental algorithm they propose a method to compute activations for
each scan. The implementation is kept at the prototype level and authors report that
more engineering is required for real-time conditions.

Other studies can be briefly summarized as follows. Tzikas et al. (2004)
present a method to find activations in a two-state experiment with a Bayesian ap-
proach based on the Relevance Vector Machine. Noh and Solo (2006) detect acti-
vations spatiotemporally, based on a noise model which is spatially and temporally
correlated. In another study, Akhbari et al. (2010) first compute the sources of func-
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tional MR images using independent component analysis (ICA). In order to select
the most meaningful sources, they use criterion based on the entropy of the BOLD
values. In a more recent attempt to detect the activations, Lian et al. (2014) em-
phasize the difference in temporal activation patterns in different parts of the brain.
To handle different patterns in various regions they develop a Bayesian magnitude
change point model around cortical landmarks.

2.2 Classification Of FMRI Data

Classification is the process of finding the correct values for the parameters
of a function that will map an input data set to its true class. This function is usu-
ally called a classifier. Using a set of correctly labeled data, called the training set,
the parameters of the function are updated until the change becomes as small as a
predefined ε value, or until the set is exhausted.

Classification of fMRI data has been applied in many scenarios with various
methods. Although this section will bring forth the approaches used in Alzheimer’s
Disease, other influential papers are also discussed.

The idea that the BOLD signals of the voxels can yield information about
different states of brain, or can be used as a mind reader (Cox and Savoy, 2003), or
a lie detector (Haynes and Rees, 2006) comes a bit later than the activation analysis
studies.

One of the earliest studies is done by Haxby et al. (2001), where the authors
wanted to find out if the voxels in the ventral temporal cortex respond differently to
different objects. To do so, they have studied six subjects as they viewed pictures
of faces, cats, houses, chairs, scissors, shoes, bottles and non-sense control images.
These categories had two sets, called evens and odds, which are used for within-
category and between-category correlations. They have found out that they could
match the data that belong to the same category. In a follow up study, Hanson et
al. (2004) used an artificial neural network (ANN) and achieved a success rate of
82.5%.

In their initial study, Pereira et al. (2001), work on a set of sentences that are
either ambiguous or unambiguous. First, the activated voxels are determined using
a voxel-wise t-test comparison, then the data that belongs to these voxels are cate-
gorized using an artificial neural network with a single sigmoidal hidden unit, and a
linear kernel support vector machine (SVM). The data is represented as the BOLD
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values for each sentence, captured for 16 scans during and after the sentence is pre-
sented to the subject. The results yielded a 82% success for NN and, 77% success
for SVM. The analysis is extended in a follow study, this time using Gaussian naïve
Bayes classifier (GNB) (Mitchell et al., 2003).

Cox and Savoy (2003) use linear discriminant analysis and support vector ma-
chines to classify fMRI data coming from several sessions where pictures of differ-
ent categories were shown to four subjects. In order to select a subset of voxels, they
have used two approaches; one set is chosen by analysis of variance (ANOVA) meth-
ods, where voxels that vary significantly across other categories, and another set is
chosen by correlation analysis with a single boxcar predictor. To classify the data,
a standard linear discriminant classifier (LDC), a support vector machine classifier
for linear classification, and k(k − 1)/2 pairwise binary classifiers for multi-class
classification, where k represents the number of classes, are used. The results show
that voxels chosen with analysis of variance perform better, with values from 58%
to 97% for different subjects, whereas the classification with voxels chosen by cor-
relation scored at most %55. Among the classifiers, linear SVM outperforms others,
whereas LDC has the worst performance.

Tripoliti et al. (2008) use Random Forests algorithm on selected features of
fMRI data and other subject features such as demographics, head motion, behav-
ioral data, volumetric measures, activation patterns and hemodynamic modeling to
classify Alzheimer’s Disease. The prediction is done by the votes of many decision
trees that make up the Random Forest. They have used modifications from other
studies to improve the Random Forest algorithm and achieved an accuracy rate of
88%.

Random Forests is one of many ensemble methods that works on subsets of a
large data set and makes the prediction according to the votes of these sub-classifiers.
Kuncheva and Rodríguez (2010) compares 18 classifiers that contain both individ-
ual and ensemble methods using the data set in the study by Haxby et al. (2001).
The individual methods in the comparison are linear discriminant classifier, logistic
classifier, support vector machines, decision trees, Naïve Bayes, nearest neighbor
and multilayer perceptron or neural networks. The ensemble methods include bag-
ging, AdaBoost, random subspace, random forest, rotation forest and random ora-
cle. Methods such as bagging, AdaBoost and Random Subspace are implemented
both as a decision tree ensemble and an SVM ensemble. The authors remark that
ensemble classifiers are not universally better than SVM. They also mention that
complexity of ensemble classifiers are more complex, but not by much compared
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to single classifiers. Another study by Yu et al. (2015) where they propose a hybrid
adaptive ensemble classifier argues that different subspaces in the ensemble have
varying degrees of importance which may affect the result.

Similar studies where decoding of brain activity has been applied success-
fully outside of AD classification are as follows. Haynes and Rees (2005) use lin-
ear discriminant analysis, Kamitani and Tong (2005) use support vector machines
to decode the orientation of the stimulus. Thirion et al. (2006) use support vec-
tor machines to infer the visual content of images from brain activation patterns.
Mourão-Miranda et al. (2005) use support vector machines to classify brain states
and compare it to Fisher Linear Discriminant classifier. Douglas et al. (2011) com-
pare classification methods such as K-Star, Naïve Bayes, support vector machines,
C4.5 decision trees, AdaBoost and Random Forests to decode fMRI data where sub-
jects were shown statements with different categories. Although the authors remark
that there is no single classifier that is universally best, Random Forest classifier has
the highest overall correct classification, closely followed by AdaBoost.

2.3 Functional Connectivity

The brain is a complex structure and activation detection is not the only in-
formation that can be extracted from the fMRI data. Even though a region can be
bound to a function with activation detection, complicated tasks require spatially
remote regions to work together without an anatomical connection. The temporal
correlation between the signals of two or more such regions is called “functional
connectivity” (Friston et al., 1993). The recent studies have started to concentrate
on the networks that are formed by the functional connectivity in the brain.

There are several approaches to extract the functional connectivity and Li et
al. (2009) has summarized them in a fairly recent survey. Figure 2.2 is based on their
categorization with new studies added under the clustering and independent compo-
nent analysis branches. The survey discriminates the methods under two categories;
Model-based and Data-driven. Model-based approaches require knowledge about
the fMRI task, or brain regions to analyze. The data-driven methods do not assume
anything about the data and try to deduce information either by decomposing the
data or clustering it.

The most common approach to detect the temporal correlations is the cross
correlation analysis. It is popular because it is simple, computationally fast and easy
to implement. Being a model-based approach, this method requires a predefined
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Figure 2.2. Functional connectivity methods. This categorization is extended from Li et al. (2009).

region of interest that is called a seed. Since this region will contain many voxels,
the average BOLD signal is computed and it is used as one of the signals in the
correlation equation given in Equation 2.4 for two signals X and Y where Cov is
the covariance of two signals and σX and σY are the standard deviations of named
signals.

Corr(X,Y ) =
Cov(X, Y )

σXσY

(2.4)

The other signal that will be correlated can be the BOLD signal for any voxel in
the brain, where a functional connectivity is sought. In this case it is called region-
to-voxel analysis. The signal can also be cross correlated against the average of
another region, which in this case it is called region-to-region analysis.

The technique has been applied to fMRI data for the first time in the study by
Cao and Worsley (1999), where they take correlations of the signals at various lags,
shown in Equation 2.4 as µ. Since computing at every lag would be computationally
expensive, the analysis is almost always done with zero lag.

The result of the correlation analysis will always result in a value between
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[−1, 1], so a certain threshold value is defined. Two BOLD signals are considered
functionally connected if the correlation is above this threshold value.

Other model-based methods include the coherence analysis and the statisti-
cal parametric mapping. Coherence analysis is cross correlation in the frequency
domain, introduced by Sun et al. (2004). Although the purpose of SPM is to find
activations using a design matrix, it is abused by setting an average of a seed as a
covariate of interest to find regions similar to the seed (Greicius et al., 2003).

Data-driven methods are branched into decomposition and clustering algo-
rithms. Both of these approaches contain popular methods that have been in use for
other problems.

Principal component analysis (PCA) is a widely used decomposition method.
For a signal in Rn space, PCA extracts n components that are orthogonal, and an
eigenvalue for each component which shows how much it contributes to the overall
information of the data. In PCA, it is common to discard components with low
contributions, and reduce the data while maintaining the information. Friston et al.
(1993) were first to apply PCA in functional connectivity analysis.

While PCA tries to find orthogonal components, independent component anal-
ysis tries to find components with statistical independence (Hyvärinen and Oja,
2000). It is possible to decompose the data spatially or temporally, which are named
sICA and tICA, respectively. In addition to both of these approaches, Beckmann and
Smith (2004) introduced probabilistic ICA, where they assume that BOLD signals
are generated by statistically independent non-Gaussian sources. Recently, Wang et
al. (2013) introduced sparse approximation coefficients to ICA.

The other data-driven set of methods is the clustering of fMRI data. Cluster-
ing algorithms separate the data into a set of clusters according to some similarity
criteria. Golay et al. (1998) applied the fuzzy c-means (FCA) analysis to fMRI data
with two distance metrics based on Pearson’s correlation coefficient. Cordes et al.
(2002) used hierarchical clustering with a distance metric based on the combination
of correlation analysis and frequency decomposition. Ren et al. (2014) proposed
an approach where they combine sparsity with affinity propagation clustering. Re-
cently, sub-space clustering methods have been applied to fMRI data as well (Liu et
al., 2015; Tang et al., 2015).
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2.4 Medical Imaging And Alzheimer’s Disease

The main purpose of the thesis is the diagnosis of AD using the data coming
from an fMRI scan. Although the activation detection, classification and functional
connectivity methods have been reviewed so far, they would not help if there is no
difference in the BOLD signals of healthy subjects and subjects with AD. For that
regard, the literature review would be incomplete without mentioning the following
valuable research.

As mentioned earlier, the main cause for AD is suppression of synaptic trans-
mission (Querfurth and LaFerla, 2010; Selkoe, 2002). Scheff et al. (2007) studied
the postmortem autopsy brain tissues from hippocampal CA1 subfield of mild AD,
MCI and healthy subjects. The study has found out that subjects with mild AD
had %55 percent fewer synapses than the two other groups, whereas subjects with
MCI had %18 percent fewer synapses. Wenk (2006) lists the following regions as
affected from synaptic failure; the temporal and parietal lobes, restricted regions
within frontal cortex and hippocampus. The study also mentions reduction of activ-
ity in cerebral cortex and hippocampus.

Raichle et al. (2001) has investigated the decreases in regional brain activity
even when the subject is lying quietly and found out that during resting, some re-
gions of the brain start to work in correlation. This network of regions has been
named as the “default mode network” (DMN). Further studies showed that, as the
subject rests, the BOLD signals from the regions Posterior cingulate cortex (PCC)
and medial prefrontal cortex (mPFC) show increased functional correlation (Gre-
icius et al., 2003). If a task is given, the correlations start to decrease, and a network
dedicated to the given task starts to emerge.

After its inception, the DMN has become a popular research topic. Buck-
ner et al. (2008) lists the regions and their brain areas in Broadmann numbering
(Brodmann, 1909) in Table 2.2 as the core regions associated with the default mode
network. The study also states that the medial prefrontal cortex and posterior cin-
gulate/retosplenial cortex have the highest correlation in resting state default mode
network activity.

The study by Greicius et al. (2004) showed that default mode network activ-
ity can distinguish subjects with AD from healthy subjects, because the functional
connectivity of the default mode network is disrupted when AD is present, followed
by other studies claiming the similar outcomes (Rombouts et al., 2005; Wang et al.,
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Table 2.2. The table is from Buckner et al. (2008) and lists the core regions in the default mode
network. The Lateral temporal cortex is not listed because the paper lists it as the most
tentative region for humans. The Hippocampal formation includes the entorhinal cortex
(EC) and surrounding cortex, such as parahippocampal cortex. The brain area labels cor-
respond to the original numbering by Broadmann (1909).

Region Included Brain Areas

Ventral medial prefrontal cortex 24, 10 m/10 r/10 p, 32ac
Posterior cingulate/retosplenial cortex 29/30, 23/31
Inferior parietal lobule 39, 40
Dorsal medial prefrontal cortex 24, 32ac, 10p, 9
Hippocampal formation Hippocampus proper, EC, PH

2007; Sorg et al., 2007).
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3. ROBUST ACTIVATION DETECTION METHODS

This chapter discusses the novel approaches developed for detecting activa-
tions in a block design fMRI experiment. These methods are developed using a
two-state block design experiment as a test-bed with synthetic and real fMRI data.

The data generation and the proposed methods are all implemented in MAT-
LAB (MATLAB Student version 2016a, http://www.mathworks.com).

3.1 Definitions Of An FMRI Experiment

Let an fMRI experiment take T time to complete. At every time instance ti

of T , a volume Vi of the brain is acquired by the MRI device. This volume is made
up of voxels denoted by v(a,s,c)i where a stands for axial, s stands for sagittal and c

stands for coronal planes.

Since these volumes are acquired at regular time intervals, r, let there will be
n = T/r number of instances, V1...n. Each voxel will have n number of BOLD
signal values, bi, which make up the BOLD signal as indicated in Equation 3.1.

va,s,c = (b1, . . . , bi, . . . , bn) (3.1)

In Equation 3.1 i is the time index captured at r intervals. This shows that a
voxel v(a,s,c)i for an instance i has the BOLD intensity value bi and these b values
make up the whole volume Vi.

The resulting data set is denoted by F and is defined as in Equation 3.2.

F = {V1, V2, . . . , Vn} (3.2)

3.1.1 Experiment Structure

The proposed methods are tested with the data coming from a two-state block
experiment acquired by the 3 Tesla MR device in Ege University. One of the states
is always “no activity”, also called “resting”, while the other state is an activity that
is either “finger tapping” or “word generation”. The former task is related to motor
regions of the brain, while the latter makes the speech center active. Although the
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Resting state block Active state block

No activity
30 seconds
10 scans

Finger tapping or word generation
30 seconds

10 scans

Figure 3.1. The experiment consists of two alternating states; no activity, which acts as a baseline;
and activity, which is either finger tapping or word generation. Both states are 30 seconds
long, which is captured in 10 scans where the scan interval is r = 3. These states are
repeated three times which results in T = 180 seconds or n = 60 scans per subject.

activities change, the structure of the experiments is always the same.

As can be seen in Figure 3.1, experiment is divided into 30 seconds of blocks.
It starts with the resting state block, followed by active state block. The complete
experiment is composed of three runs of resting followed by active state blocks,
which adds up to T = 180 seconds.

The images are acquired in r = 3 seconds of intervals. During each of these
intervals, a complete brain volume Vi is acquired, resulting in n = 60 continuous
BOLD values for each voxel in the brain. The final data set F contains volumes
V1...60.

In the finger tapping experiment the subjects are asked to tap their index fin-
gers and thumbs rapidly. The tapping is self-paced. The subjects are cued to start
or to stop tapping their fingers by the operator.

In the word generation experiment, the subjects are shown a letter and are
asked to generate words that start with that letter. For each activity block, three
different letters are shown where each letter stays on the screen for 10 seconds. The
subject will be shown 9 different letters in total. The experiment is programmed in
the Presentation software (Version 16, www.neurobs.com).
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3.2 Synthetic FMRI Data

Besides the real fMRI data, a set of synthetic fMRI data is also generated to test
the proposed methods. The advantage of using artificial functional images is that the
activated voxels are known beforehand, which green-lights a method to test it with
real functional data on the condition that it can successfully detect the activations.

When synthetic data is selected for preliminary evaluation, a new problem
arises about how the artificial signals are generated to successfully simulate real
life data. It is vital to learn the nature of the fMRI signals to create almost identical
synthetic samples. A real fMRI data contains the BOLD signal and noises generated
by the MRI device and the subject’s physiological functions such as breathing and
cardiac fluctuations.

The generation of HRF has been discussed in detail in Section 1.3.1. The
shape of the HRF is modeled as the difference of two gamma functions as given
in Equation 1.2. Using the magnitude, width and latency parameters, it is possible
to generate varying hemodynamic responses that can emulate different subjects and
regions.

The noise is going to be discussed in Section 3.2.1. How synthetic data is
generated will be given in Section 3.2.2. Hybridizing the real data with synthetic
activations is going to be discussed in Section 3.2.3.

3.2.1 Noise

Functional images contain noise from both the device and the subject. This
proves to be a challenge for both acquisition, where the tasks have to be repeated, and
the analysis (Ou et al., 2010). The noise coming from the device can be estimated
using the voxels that does not contain any living tissue. The only signal received
from these empty voxels are the noise that is coming from the MRI device. If this
signal is inspected in the frequency domain, the spectral information about the noise
can be obtained. The noise can be removed from the functional data by spectral
subtraction, or can be added to synthetic data.

One of the most important features of functional imaging is that it captures
living tissues without any harm to the subject. However, living organisms cause
physiological noise by cardiac and respiratory fluctuations. It is possible to generate
similar noise for cardiac and respiratory fluctuations (Handwerker et al., 2004).
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Table 3.1. HRF generated by different parameters. HRF varies from subject to subject and from
region to region for a single subject. In order to include a wide range of types, the listed
HRFs are generated with parameters as indicated.

HRF A1 A2 τ1 τ2 δ1 δ2 C

HRF 1 6 1 4 4 0 6 0
HRF 2 6 3 3 4 0 6 0
HRF 3 2 1 12 14 0 6 0
HRF 4 8 3 3 4 0 6 0
HRF 5 6 1 9 12 0 6 0
HRF 6 6 1 7 15 0 6 0
HRF 7 3 1 8 12 3 10 0
HRF 8 6 1 8 12 4 14 0
HRF 9 12 1 2 4 0 6 0
HRF 10 5 3 4 7 0 6 0

3.2.2 Approach 1: Generating Synthetic Data

The synthetic data uses the identical two-state experiment structure as the real
fMRI data. Both states are 30 seconds long, which is supposed to be captured in 10
scans where the scan interval is r = 3 seconds. These states are repeated 3 times
which results in T = 180 seconds or n = 60 scans. The initial state is a “no activity”
or “resting” state where it is assumed that there is no neural activity. This state is
followed by the “active” state where neural activity is expected.

The HRF varies from subject to subject and from region to region for a single
subject as aforementioned. In order to include a wide range of types, 10 HRFs are
generated with parameters as indicated Table 3.1.

The studies, specially (Glover, 1999) and (Handwerker et al., 2004), try to find
out the parameters of the canonical HRF using the subject’s observed responses. In
this process, the parameters of the canonical HRF model fit to the sum of two gamma
functions with the largest and smallest residuals across subjects and regions.

The generated HRFs can be seen in Figure 3.2 and in more detail in Appendix
1. Some of these HRFs have higher magnitudes, some have higher latency values
and some have a larger width for the peak.

Figure 3.3 shows the synthetic data generation for one of the ten HRFs. The
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(a) HRFs with a 0.1 seconds sampling rate. (b) The normalized HRFs with a 0.1 seconds
sampling rate.

Figure 3.2. The resulting HRFs from Table 3.1, sampled at 0.1 seconds.

first step is to obtain a single mid-axial slice from one of the real fMRI experiments.
This slice serves as a base for the synthetic data. It is duplicated as many as the
number of acquisitions in T = 180 seconds, which in this case is n = 60, which can
be seen in Figure 3.3.a. For each voxel in the slice, the BOLD values are constant
and equal to the initial value.

Figure 3.3.b shows the selection of a set of 16 voxels and their 8-connected
neighbors as synthetic active voxels. The selected voxel coordinates are also saved
in a variable so that they can be used in receiver operating characteristics (ROC)
analysis. These selected voxels are shown as black squares in the figure. For each
of these voxels, a boxcar function is generated as in Equation 3.3 where t shows the
instance in the experiment, active set contains the instances for the active state and
resting set contains the instances for the resting state.

s(t) =

 1 if t ∈ active

0 if t ∈ resting
(3.3)

This signal is called s and it is convolved with the selected HRF signal, h, in
Figure 3.3.c. The convolution operation gives an expected activation signal g that
can be seen in Figure 3.3.d.

g = (s ∗ h)(t) =
∫ t

0

s(τ)h(t− τ)dτ (3.4)

If the voxel is not an active voxel, its values are not changed.
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Figure 3.3. (a) shows the mid-axial slice in time instances t1 to tn. (b) shows the selected activated
voxels and their 8-connected neighbours in black. For each of the selected active voxels,
a box-car function is created and this function is convolved with HRF 8, as can be seen in
(c). The result of the convolution is shown in (d) and finally, noise is added to the voxel
values, as can be seen in (e).

The final step is to add noise to all voxels in the data set. As mentioned earlier,
the noise in the fMRI data comes from the equipment and the subject. The reported
values for signal noise ratio (SNR) values range from 0.35 to 203.6 (Welvaert and
Rosseel, 2013). In their study, (Parrish et al., 2000), report the SNR as 14 for a 1.5
Tesla MR device. The SNR is expected to be higher for a 3 Tesla MR device. In
our study, we projected our efforts to lower SNR values so that the proposed method
could detect activations even in more challenging data sets. Therefore noise is added
to the synthetic data so that the resulting data sets would have the chosen SNR values
of 3, 5, 10, 15 and 20.

The important aspect of adding noise to existing signal is to set the SNR cor-
rectly in the synthetic data. SNR values are expressed in decibels and as the name
suggests, they are the ratio of the power of the signal, Psignal, to the power of the
noise, Pnoise as shown in

SNRdB = 10 log10

(
Psignal

Pnoise

)
(3.5)

The noise in the fMRI is generally modeled as a Gaussian (Welvaert and
Rosseel, 2014). When adding noise to the synthetic data that will match the tar-
geted SNR value, the power of the random Gaussian noise can be computed with
Equation 3.5, since the SNR is known and the power of the signal can be computed
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(a) Time versus voxel intensity plot of
real BOLD signal of a voxel.

(b) Time versus percentage change plot of
the expected signal g, convolved with
HRF 3.

(c) Time versus voxel intensity plot of the
signal for real BOLD signal after ap-
plying the changes in g

Figure 3.4. The synthetic activations are formed by applying the percentage of changes in the ex-
pected signal g to the real BOLD signal.

using the existing signal. This power value of the noise is used as a magnitude to the
randomly generated numbers from the standard Gaussian distribution. A resulting
sample signal with noise can be seen in Figure 3.3.e.

This procedure is repeated with a new unaltered slice for each of the HRFs.

3.2.3 Approach 2: Synthetic Activations on Real Data

This approach creates synthetic activations using the resting state signals of
the real fMRI data. The experiment structure is used identically in Approach 2; the
resting state blocks are followed by active state blocks. The synthetic activations on
the active state blocks are generated using the data from the resting state blocks and
the HRFs given in the Table 3.1. In order not to affect the statistical results, the base
signal for an active state block is chosen as the following resting state block, rather
than the preceding one.

Instead of mid-axial slice duplication used in Approach 1, this approach saves
mid-axial slices from each resting state of the real fMRI instances. The boxcar signal
s is once again convolved with one of the HRFs, h, with the Equation 3.4 to form
the signal g that denotes the expected change. The same voxels in Approach 1 and
their 8-connected neighbors are once again selected and the expected changes in g

are applied to their BOLD signals to form the synthetic activations, as can be seen
in Figure 3.4. Remaining voxels retain their original real BOLD signals.

This approach removes the need to generate artificial noise since it is already
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embedded in the real BOLD signal.

3.3 Proposed Methods

The experiment data, whether real or synthetic (Approach 1 and 2), contains
n number of brain volumes, denoted by V , acquired in regular r intervals in time,
where each volume is made up of unit volumes called voxels. The voxel BOLD
values, bi, captured at each instance i, form the signal v as shown in Equation 3.6.

v = (b1, ..., bi, ..., bn) (3.6)

The experiment data contains two states; resting and active. These states al-
ternate in blocks during acquisitions as mentioned earlier.

For each voxel, the states can be denoted separately in two sequences. The b

values belonging to resting state are a sequence called R and b values belonging to
active state are another sequence called A. Clearly, because of the structure of the
experiment, both of these sequences have n/2 elements. It should also be noted that
each sequence contains three blocks of a state, where each block has n/6 elements.

Let k denote the index value of the sequence blocks. For instance, Rk=3 in-
dicates third resting state block in resting state sequence, R. In the same manner,
Ak=2 indicates the second active state block in the active state sequence, A.

3.3.1 Instantaneous Activation Method

Activation analyses are almost always done offline, over the complete set of
images. However, there may be cases where activation information needs to be
queried at a specific instant, ti. The goal in the instantaneous activation method
(IAM) is to estimate if there is an activation at time ti using the values in its preceding
resting state block.

Let the queried time ti belong to the block k of the sequence A, and let the
preceding resting block be denoted by Rk. The IAM method asserts that the BOLD
value at ti should have the same statistical characteristics of Rk if it is not activated.
The similarity is based on the confidence interval (CI) estimate for the mean of the
values in sequence Rk. The accepted definition of the confidence interval equation
is computed by the Equation 3.7;
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CI = E ±
t(p/2,n−1)S√

(n/6)
(3.7)

where E is the mean and S is the sample standard deviation of values in se-
quence Rk (Montgomery and Runger, 2011). The variable t denotes the t-statistic
for a given significance level in this equation. The half of the p significance value
and the degrees of freedom (n− 1) are used for the t value lookup table.

Equation 3.7 yields an upper, CIu, and a lower boundary, CIl for the mean
estimate. The BOLD signal is expected to increase if there is an activation, therefore
for any value b acquired in a specific time ti in an active state block, the activation
is decided by the following function;

factivation(b) =

 true if b > CIu,

false if b ≤ CIu
(3.8)

The reliability of the confidence interval rests on the significance value p.
Therefore, it is advised to apply a family wise error correction before the t value
table lookup is performed, to improve the reliability of the results.

IAM is a novel approach that introduces the application of confidence intervals
to instantaneous activation analysis.

3.3.2 Instantaneous Activation Method using Past Resting Blocks

The number of samples in the IAM method affects the confidence interval es-
timate and the method can further be improved by including samples from previous
resting state blocks. In Instantaneous Activation Method using Past Resting Blocks
(IAMP), all the previous resting state blocks are used to estimate the activation for
a voxel at time ti.

Let the activation sought for ti belong to the active state block k in sequence
A. For a voxel, let BOLD values from the beginning to the preceding resting state
block be denoted by Rk.

Similar to IAM method, the IAMP method asserts that the BOLD value at ti
should have the same statistical characteristics of Rk if it is not activated. The simi-
larity is based on the confidence interval (CI) estimate for the mean of the values in
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sequence Rk. The number of elements for Rk increases for IAMP method, therefore
the equation is updated as follows;

CI = E ±
t(p/2,n−1)S√

kn/6
(3.9)

The rest of the steps are identical with the IAM method, where the upper CI
boundary, CIu, is used with the factivation(b) function in Equation 3.8 to decide if a
voxel is activated at an instant or not.

As in IAM, IAMP has the contribution of confidence interval application to
instantaneous activation analysis. Since it makes use of the confidence intervals,
the reliability of the interval depends on the significance value p and a family wise
error correction is advised before the t value table lookup.

3.3.3 Task Activation Method

The Task Activation Method (TAM) uses the R sequence values and A se-
quence values to find the activated voxels in the experiment. Two sequences of a
voxel are compared using a two-sample t-test, similar to the study by (Constable et
al., 1993). The null hypothesis is that both of these sequences come from the same
distribution and if it can be rejected for a predefined significance level, the voxel in
question is considered active.

The t-statistic value can be calculated by the following equation;

t =
µ0 − µ1√
σ2
0

n/2
+

σ2
1

n/2

(3.10)

where µ0 is the mean for the values in R sequence and µ1 is the mean for the
values in A sequence. Similarly σ2

0 and σ2
1 are the variances for the values in R se-

quence and A sequence, respectively. Both of the time series have the same number
of elements, n/2 and this value is used for each of them in the equation. The proba-
bility level of the t-statistic is denoted by t in this equation and it is compared with
the significance value, p. The voxel is considered active if the t-statistic probability
is smaller. Hence, the function to decide activation is as follows;



40

factivation(t) =

 true if t ≤ p,

false if t > p
(3.11)

3.3.4 Instantaneous Robust Regression Distance Method

A novel approach is proposed in the Instantaneous Robust Regression Dis-
tance Method (IRRD) to estimate activations by using robust regression on the rest-
ing state block.

Consider Figure 3.5 where the preceding resting state block values are shown
in red and the active state values are shown in blue for a voxel from sample real
fMRI data. Let fline(t) = Xβ+ε denote the regression line for the resting state block
where β denotes the slope and ε denotes the y-intercept of the line. The values β

and ε is computed by the iteratively re-weighted least squares method with bi-square
weighting function, so that the influence of the outliers are minimized (Fritsch et al.,
2012). The resulting line is shown in green in Figure 3.5.

At instance ti, the basic unit that IRRD works on is the vertical distance be-
tween the voxel BOLD value, bi and its projection on the robust regression line,
fline(ti). The distances for the resting state block compose the DistR vector, while
the distances for the active state block form the DistA vector. IRRD decides on the
activation of the voxel for instance ti with the values in these vectors, instead of the
BOLD values as in IAM.

The IRRD method asserts that the distance to the regression line at time ti

should be similar to the distances in sequence DistR, if the voxel is not activated.
The similarity is based on the confidence interval estimate for the mean distance
in the sequence. Equation 3.7 yields two boundaries, CIu and CIl for the mean
estimate. The distance to the robust regression line, d, is expected to increase if
there is an activation, as defined by the following function;

factivation(d) =

 true if d > CIu,

false if d ≤ CIu
(3.12)

This novel approach introduces a new metric that is not bound by the voxel
intensities.
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Figure 3.5. This figure shows the first resting state block in red, followed by the immediate active
block in blue for a voxel from real fMRI data. The green regression line is computed
by the resting state block values. Instead of using voxel intensities, the distance to this
regression line, shown in black, is used for the IRRD and TRRD methods.

3.3.5 Task Robust Regression Distance Method

The Task Linear Regression Distance Method (TRRD) makes use of the IRRD
approach to compare the distances in resting and active states, similar to the TAM.

Let the regression line for all of the values in sequence R be defined by the
function fline(x) = Xβ + ε. The slope β and the y-intercept ε is computed by
the iteratively re-weighted least squares method with bi-square weighting function,
minimizing the influence of the outliers.

For each BOLD value in both sequencesR andA, the distance to the robust re-
gression line in the y-direction is calculated, similar to the IRRD method. These dis-
tances, denoted by variable d, are saved in sequences DistR and DistA, respectively.
TRRD method compares these two sequences using a two-sample t-test where the
t-statistic is calculated with Equation 3.10. The null hypothesis is that both of these
sequences come from the same distribution and if the hypothesis can be rejected
for a predefined significance level, p, the voxel is considered active. Hence, the
function to decide activation is the same as factivation(t) in Equation 3.11.

Similar to the IRRD, this novel approach introduces a new metric that is not
bound by the voxel intensities.
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3.3.6 Correlation Method

As previously stated, correlation has been used earlier to find the activated
voxels in an fMRI experiment (Bandettini et al., 1993; Friston et al., 1994; Xiong et
al., 1996; Singh et al., 1999). One of the earliest approaches to find the activations
are done by correlating the fMRI signal for a voxel with a box-car function. While
the box-car proves to be adequate, it can be improved by convolving it with the
canonical HRF.

As in synthetic data generation, a boxcar function is generated as follows;

s(t) =

 1 if t ∈ active

0 if t ∈ resting
(3.13)

where t shows the instances acquired in time. The function returns 1 for in-
stances that belong to active state and 0 for the instances that belong to resting state.
This s vector is convolved with the canonical HRF signal, h. The convolution op-
eration gives an expected activation signal g;

g = (s ∗ h)(t) =
∫ t

0

s(τ)h(t− τ)dτ (3.14)

If the BOLD signal of a voxel is similar to this vector, then it is considered
active. The similarity is based on the correlation between the expected vector, and
the voxel BOLD signal. It is computed by the following equation;

c =
cov(g, s)
σgσs

(3.15)

where g represents the expected vector, s represents the voxel BOLD signal, σg

and σs represent the standard deviations of these signals. The cov is the covariance
function. The activated voxels are expected to have values close to 1. The voxel is
considered active if its c value is above a selected threshold value. A common value
of 0.7 has been chosen for this threshold as practiced in the study by (Bandettini et
al., 1993).
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3.4 Results

For the synthetic data sets generated by Approaches 1 and 2, as discussed
in sections 3.2.2 and 3.2.3, the coordinates and the activation information of the
selected voxels and their neighbors are known. Therefore it is possible to compare
the activation coordinates with the fully automatic activation results of the proposed
methods.

Basically, the estimation performance of the proposed methods can be un-
veiled with the help of a binary classifier. Thus, receiver operating characteristic
(ROC) analysis is utilized as such for this study. In the light of the ROC curve anal-
ysis results, the results for which methods perform best under which conditions are
discussed in detail in the following sections.

The results are further discussed using peak signal-to-noise ratio (PSNR) mea-
surements for perceptual visual quality. To compute PSNR, two images are created;
one from the original fMRI images that has been used to generate the synthetic data
in Approaches 1 and 2, the other one is from each instance of the active block of the
synthetic data. The maximum PSNR values from the active state instances are used
to represent the method.

Following the synthetic experiment results, the methods are executed for real
fMRI experiment data, and are compared against the commonly used SPM method.

3.4.1 Receiver Operating Characteristics

The ROC analysis is used to evaluate the performance of methods with the
synthetic datasets where the activations are known beforehand. The analysis is done
using a ROC curve which plots the true positive rate (TPR) of the results against the
false positive rate (FPR) (Zou et al., 2007; Lasko et al., 2005).

The true positive rate is the rate of correctly identified active voxels. This
value is also called sensitivity. The false positive rate is the rate of voxels erro-
neously identified as active. It is also referred as 1 − specificity. Both of these
values are in the range [0,1].

The true positive and false positive rates are computed gradually for the whole
range of the threshold variables. Since the p-value represents the probability, its
range is taken between [0,1] and incremented with a step-size of 0.01. The c value
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stands for the correlation between two signals, therefore its range is between [-1,1]
with intervals of 0.01.

The plotted ROC curves show the accuracy of the methods for classifying the
voxels as active or inactive. A good classifier gets a high true positive rate and a low
false positive rate, which results in values close to the point (0,1). If the ROC curve
is the sensitivity = 1 − specificity, or the y = x line, it means that the classifier
decides on the activations with random chance (Zou et al., 2007). Any curve above
this line are considered successful classifiers, which can decide on the activations
better than random chance.

Although the position of the curve relative to the sensitivity = 1− specificity
line is a common measure, every problem has its own sensitivity and specificity ex-
pectations (Lasko et al., 2005). In the following sections, the results of the methods
with combinations of SNR values and different HRFs are given as ROC curve plots
and ROC area under the curve (AUC) tables. The difficulties in methods, errors
and performance evaluations are also discussed in detail for real fMRI data and the
synthetic data generated by Approach 1 and 2.

3.4.2 ROC Curve Construction for Instantaneous Methods

The instantaneous methods, IAM, IAMP and IRRD, use the confidence in-
terval for the mean of the resting state blocks, prior to the active state blocks. The
threshold value for the confidence interval is the p-value, which in return affects the
t-statistic, denoted by t value, as shown in Equation 3.7.

As the name suggests, the confidence interval returns a range about the mean
value, which is bound to the t-statistic. However, in our methods, we only mark the
voxels that have a greater value than the upper confidence bound, CIu, as shown
in Equation 3.8. Thus, even in the case when p = 1 where all voxels should be
considered active, there remains voxels that are not marked so.

The other approach is to mark voxels that are not within the confidence interval
as active, including the voxel values where the value is less than the lower confi-
dence bound (b < CIl). Clearly, this contradicts with the canonical HRF where the
voxel intensity value is expected to increase when there is an activation. Therefore,
the ROC curves for these methods have low false positive rates, even in the high
p-values. To make the visual and numerical comparison easier, the values (0, 0) and
(1, 1) are included when plotting these curves. Theoretically, when p = 0, none of
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(a) ROC Curves for IAM at SNR=5, using
the both confidence bounds.

(b) ROC Curves for IAM at SNR=5, us-
ing only the upper confidence bound.

Figure 3.6. ROC Curves with both confidence bounds and only the upper confidence bound when
SNR=5.

the voxels should be considered active, therefore the point (0, 0) is included. Simi-
larly, when p = 1, all of the voxels should be considered active, so the point (1,1) is
also included. The area under the curve values tables 3.2, 3.3, 3.5 and those in the
Appendix are also computed with these points included.

In order to supply a visual comparison, the ROC curves for IAM method when
SNR=5 are given in Figure 3.6. If both boundaries are used, and the BOLD values
outside these boundaries are considered active, the ROC curves are plotted as ex-
pected, as can be seen in Figure 3.6.a. As mentioned, this approach causes a con-
tradiction with the HRF, so the approach in Figure 3.6.b is used, where the results
with only the upper confidence interval bound are drawn with the points (0,0) and
(1,1) included.

3.4.3 On the Results for the Correlation Method

For synthetic data generated by Approaches 1 and 2, combinations of SNR
values and different HRFs are evaluated for the complete range of threshold values.
The ROC curve plots and AUC tables are given in tables and figures in the following
sub-sections. Also, the PSNR values for each method with varying SNR values and
different HRFs are detailed in the tables. The following is an important remark when
considering and evaluating the given tables.

The correlation method uses the expected signal, g, generated by convolv-
ing the canonical HRF with the square wave function of experiment design as in
Equation 3.4. In other words, the BOLD signal, such as in Figure 3.3.d, and the
synthetically generated activations, such as in Figure 3.3.e depend on the same ac-
tivation pattern. Therefore the results for the correlation method produce higher
values which are not used for comparison but for evaluating relative performance
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Table 3.2. Area Under the ROC Curve for Synthetic Data Created by Approach 1

HRFS IAM(*) IAMP(*) TAM IRRD (*) TRRD Correlation(**)

HRF 1 0,8652 0,7972 0,9687 0,8566 0,9674 0,969
HRF 2 0,6421 0,6684 0,9603 0,6383 0,9605 0,9686
HRF 3 0,7233 0,6482 0,918 0,7129 0,9177 0,9671
HRF 4 0,8451 0,7912 0,9671 0,8332 0,9671 0,969
HRF 5 0,8301 0,716 0,9674 0,8202 0,9671 0,969
HRF 6 0,8502 0,7576 0,9674 0,8307 0,9674 0,969
HRF 7 0,7927 0,7012 0,966 0,7859 0,9666 0,969
HRF 8 0,8526 0,6831 0,9658 0,8402 0,9655 0,969
HRF 9 0,8717 0,8019 0,9668 0,8643 0,9668 0,969
HRF 10 0,754 0,7568 0,9662 0,7432 0,9659 0,969

(*) Please refer to Section 3.4.2 for details on instantaneous methods.
(**) Please refer to Section 3.4.3 for details on Correlation method.

of other methods.

3.4.4 Results on the Synthetic Data Generated by Approach 1

The following analyses are done on the synthetic data generated in the Section
3.2.2 using combinations of varying SNR values and different HRFs. The results
are given in the tables and figures that follow. The importance of sections 3.4.2 and
3.4.3 for the subtle but vital details on the generation of these tables should once
again be emphasized.

The areas under the curves are computed for each HRF and SNR combination
and given in the table in Appendix 2, showing the maximum values in bold text
for each HRF. A brief version of this table, where only the maximum values are
listed for an HRF, is given in Figure 3.2. As it can be deduced from this brief table,
the results are consistent with the HRF variations. The task based methods, TAM
and TRRD, perform better compared to the instantaneous methods, even though
the instantaneous methods are capable of finding the activations. This shows that
they are not as good as other methods to locate activations. However, it should be
emphasized that, the purpose in instantaneous methods is to locate activations to
stimuli at specific instants, rather than taking the complete experiment into account.
Therefore, the instantaneous methods show their worth in yielding results that show
us how the activations in brain regions change temporally as the experiment is being
executed.
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Table 3.3. Area Under the ROC Curve for All HRFs in Synthetic Data Created by Approach 1

Method SNR 3 SNR 5 SNR 10 SNR 15 SNR 20

IAM(*) 0,6124 0,634 0,7017 0,7615 0,8019
IAMP(*) 0,5963 0,6128 0,6721 0,711 0,732
TAM 0,7127 0,7719 0,8794 0,9368 0,9609
IRRD(*) 0,6072 0,6289 0,6951 0,7534 0,7926
TRRD 0,7127 0,7719 0,8795 0,9368 0,9608

Correlation(**) 0,8515 0,8822 0,9403 0,9619 0,9688

(*) Please refer to Section 3.4.2 for details.
(**) Please refer to Section 3.4.3 for details.

The figures in Appendix 4 show the ROC plots for the instantaneous methods
IAM, IAMP and IRRD, and the figures in Appendix 5 show the ROC plots for TAM,
TRRD and Correlation. The figures include plots for the lowest SNR value, SNR=3,
and highest SNR=20 for comparison. The mid-ranges, where SNR is 5, 10 and 15
are left out to save space, but their results are available in the table in Appendix 2.
The plots show that as the SNR increases, the data contains less noise, which results
in better results, as expected. If the proposed methods can identify active voxels
even when SNR is as low as 3, then they can be considered successful. Indeed, the
plots show that instantaneous methods are able to locate these activations, since they
are above the sensitivity = 1− specificity line.

The table 3.3 shows the combined results of all HRFs for AUC values. In
the table, bold text shows the highest value among the methods. As mentioned
earlier, HRFs can change from subject to subject, and even from region to region
in a single subject. The combined results give another perspective to evaluate these
methods, as if all of these HRFs happen at different regions in a single subject. The
table shows that the methods TAM and TRRD have fairly close results, confirming
the conclusion that these methods are good alternatives to find activations in fMRI
experiments. The table also reflects the expected increase in the results as the SNR
increases, as it was in the HRF-wise analysis.

While the ROC curve plots for all methods when SNR=3 and SNR=20 are
given in Appendices 4 and 5, Figure 3.7 shows all methods in one plot, at the same
SNR values. The plot when SNR=3 shows that, even when there is a lot of noise,
the methods are capable of finding activations.
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(a) ROC Curves of all methods at SNR=3 (b) ROC Curves of all methods at
SNR=20

Figure 3.7. ROC Curves with all HRFs for SNR=3 and SNR=20

Table 3.4. PSNR Values for All HRFs in Synthetic Data Created by Approach 1

Method SNR 3 SNR 5 SNR 10 SNR 15 SNR 20

IAM 8.5723 8.7958 9.3488 9.7625 10.0847
IAMP 6.3018 6.5557 6.9775 7.1528 8.0015
TAM 20.0818 19.8751 19.3489 20.6003 23.321
IRRD 8.2224 8.2825 8.595 8.9654 9.3583
TRRD 20.0757 19.8589 19.3729 20.5623 23.3153

Correlation(*) 23.6819 23.7353 26.5129 27.883 29.5002

(*) Please refer to Section 3.4.3 for details.

In the table in Appendix 3, the maximum PSNR values are given for every
combination of SNR values and different HRFs. The maximum PSNR value for
each HRF is shown in bold text. The PSNR values show how much of the activa-
tions are successfully identified; the higher the PSNR value, the more activations
are found.

As with ROC curves, Table 3.4 shows the combined results of all HRFs for
PSNR values. Similar to the HRF-based table, the methods TAM and TRRD have
high PSNR values as they do have high AUC values. These methods can be regarded
as successful methods that can be alternatives to established methods such as SPM.

3.4.5 Results on the Synthetic Data Generated by Approach 2

The following analyses are done on the synthetic activations on real data,
which were generated in the Section 3.2.3. Since the subjects are anonymous, their
data has been identified with codes KAMUEGE205, KAMUEGE305, KAMUEGE320
and KAMUEGE505. As the data includes synthetic activations on real data, there
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Table 3.5. Area Under the ROC Curve for All HRFs in Synthetic Data Created by Approach 2

Method Subject 1 Subject 2 Subject 3 Subject 4

IAM(*) 0,851 0,8072 0,8292 0,8373
IAMP(*) 0,7339 0,7001 0,7129 0,6816
TAM 0,928 0,9637 0,9186 0,9449
IRRD(*) 0,8348 0,7964 0,8161 0,8181
TRRD 0,9117 0,9596 0,9189 0,9302

Correlation(**) 0,9677 0,9942 0,9908 0,9849

(*) Please refer to Section 3.4.2 for details.
(**) Please refer to Section 3.4.3 for details.

(a) ROC Curves of all methods for Sub-
ject KAMUEGE205

(b) ROC Curves of all methods for Sub-
ject KAMUEGE505

Figure 3.8. ROC Curves with all HRFs for KAMUEGE205, KAMUEGE505

are no different SNR levels. Therefore, results for different subjects are provided
for comparison and evaluation. The importance of sections 3.4.2 and 3.4.3 should
once again be reminded for the subtle but vital details on the generation of the tables
that are given.

The area under the curves are computed for each combination and are given in
the table in Appendix 6, showing the maximum values in bold text for each Subject.
Since the data does not have different SNR levels, the results are fairly close to each
other, showing the consistency in the methods. The task related methods, TAM and
TRRD, perform better. However in this data set, they perform considerably better
than the synthetic data generated by Approach 1. This is likely because the noise
in the data generated by Approach 2 only has the original noise from the real fMRI
data. The results for all HRFs are given in Table 3.5. Similar to the first approach
TAM and TRRD fair very close to each other.

The ROC plots for these combined results is shown in Figure 3.8. The in-
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Table 3.6. PSNR Values for All HRFs in Synthetic Data Created by Approach 2

Method Subject 1 Subject 2 Subject 3 Subject 4

IAM 11.107 10.7141 9.5908 11.0631
IAMP 8.1117 8.4917 8.2989 8.1247
TAM 17.1575 16.9513 14.5624 15.9465
IRRD 9.893 9.8263 9.0945 9.4809
TRRD 15.32 16.9105 14.5764 15.0163

Correlation (*) 27.137 22.3865 22.666 22.8744

(*) Please refer to Section 3.4.3 for details.

stantaneous methods, similar to the results in Approach 1, are able to identify active
voxels in all of the subjects, as they are above the sensitivity = 1− specificity line.
The ROC plots of HRFs for all methods are given in Appendix 8.

In the table in Appendix 7, the maximum PSNR values are given for every
combination of SNR values and different HRFs. Table 3.6 show the combined re-
sults for all HRFs of PSNR values. In these tables the maximum PSNR value for
each subject is shown in bold text. The PSNR values show how much of the acti-
vations are successfully identified; the higher the PSNR value, the more activations
are found. Similar to the results for the data set generated by Approach 1, the meth-
ods TAM and TRRD have high PSNR values and high AUC values as can be seen
in the tables. These methods can be regarded as successful methods that can be
alternatives to established methods such as SPM.

As both the tables and the figure show for both approaches, the methods TAM
and TRRD perform very close to each other, once again confirming our conclusion in
the previous tables that, these methods are good alternatives for finding activations
in fMRI experiments.

3.4.6 Results on the Real fMRI Data

The results for the real experiments are compared visually with the SPM method
which is implemented in the SPM12 software (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12/). The results for the SPM are thresholded with a FWE
corrected p-value of 0.05. The voxels that are classified as active by the SPM are
compared visually with all of the methods as in (Faisan et al., 2005).
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(a) Results for SPM with a FWE corrected
p = 0.05

(b) Results for TRRD with a FWE corrected
p = 0.05

Figure 3.9. Comparison of SPM and TRRD for subject KAMUEGE305 with a FWE corrected p =
0.05.

Proposed methods that use the statistical p value for thresholding are executed
with the same FWE corrected value as SPM, p = 0.05. For the correlation method
in this study, a threshold of c = 0.7 is used.

The activations detected by SPM and the proposed methods for the subject
KAMUEGE305 can be seen in the figures in Appendix 9. The instantaneous meth-
ods, such as IAM, IAMP and IRRD, have an activation map for each of the scans
for the active state block. The third instance in the active state block is chosen to be
shown in the Figure, since the BOLD value is expected to increase.

In the instantaneous methods, the activations at each instance of the active
state block are identified. The relevant information extracted with the instantaneous
methods will not be accessible to methods such as SPM, TAM and TRDD where
the complete experiment data is used. Even though the area under the curves for
instantaneous methods in ROC analysis are less than other methods, they provide an
opportunity to observe the activations in the various brain regions instantly. Another
contribution of these methods is to causally represent the active brain regions in
consequent instances.

The results show that TAM and TRRD yield similar but more scrutinized re-
sults compared to SPM, as can be seen in Figure 3.9. When the methods are com-
pared among themselves, the ones that use the distance to robust regression line,
such as IRRD and TRRD, have results closer to the SPM than their counterparts
IAM, IAMP and TAM. These better results are possibly caused by the new distance
metric introduced by these methods. Finally, the results for the correlation method
are also consistent with SPM, despite correlation being a much simpler approach.

3.5 Conclusion

The ROC analyses show that the instantaneous methods are capable of finding
the activations, but are not as good as other methods where the complete experiment
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data is used. However, instantaneous methods are good for locating activations to
a stimulus at a specific instant, rather than the complete experiment. These acti-
vations, which may include relevant and important information may otherwise be
statistically lost when the complete experiment is taken into account. The instanta-
neous methods provide the temporal flow of the activations which may yield more
information. The relevant information extracted with the instantaneous methods
will not be accessible to methods such as SPM, TAM and TRDD where the com-
plete experiment data is used. Another contribution of these methods is to causally
represent the active brain regions in consequent instances.

All of the methods are good at finding locations even at low SNR values. As
the SNR value gets higher, the noise levels decrease and the methods perform better.
It is also important to note that all of the methods are sensitive to the magnitude of
the HRF. The instantaneous methods are sensitive to latency, since they try to find
the activations at every instance of the active state and a late peak decreases their
performance. The methods do as well as SPM on real data. The results, as can be
seen in the figures in Appendix 9, are consistent with the activations detected by
SPM.

The instantaneous methods have the advantage over current methods by keep-
ing the temporal activation information and paving a new way for real-time analyses
of fMRI data. The new metric introduced by the IRRD and TRRD methods produce
slightly more activations than their counterparts which highlights the improvement
over them.
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4. CLASSIFICATION OF FMRI DATA

This chapter discusses the data sets, feature extraction from these data sets,
data representation, classification methods, their application and the results.

The classification is done among three groups of subjects. The first group is
made up of the subjects with Alzheimer’s Disease. The second group contains the
subjects with mild cognitive impairment. The final group is formed by the healthy
subjects.

4.1 Data Sets

The data is still being collected at Ege University, so in order to develop and
test the methods three data sets have been used. The first set is totally synthetic,
similar to the data in activation detection methods. The second set comes from the
National fMRI Data Center (http://www.fmridc.org/). The final set comes from the
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. While the first
and the second data sets have activations of a simple task, the third data set contains
resting state fMRI data.

It should be noted that the data sets from the Ege University will have both
activations and the resting state data, therefore they can be used by both of the feature
extraction methods that will be discussed in this chapter.

4.1.1 Data Set 1: Synthetic Data

Synthetic data is generated by using the same steps in the “Approach 1” which
is detailed in section 3.2.2, with three distinct differences.

The first distinction is the number of HRFs. Instead of 10, the HRFs 1, 2, 4, 9
and 10 has been chosen from Table 3.1. The second distinction is using the complete
brain volume instead of a single slice for each HRF. The volume is the first complete
brain scan from one of the real data discussed in Section 3.1.1. For this set of data,
each voxel has been assigned to a random HRF, within the complete brain volume.
This also leads up to 26-connected voxels, instead of 8-connected voxels for a single
slice.

Finally, the voxel coordinates are not set as fixed. Instead, three volumes have
been defined for three different groups. The volume boundaries are given in Table
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Table 4.1. Volume boundaries for three different groups. The synthetic data is generated by choosing
random voxels among these defined boundaries. Each group contains 10 from its own
region, random number of 1 to 6 voxels from each of two other groups, and 5 random
voxels from the whole brain.

Sagittal Axial Coronal

AD 8− 17, 38− 47 23− 38 23− 38

MCI 18− 32 43− 58 23− 38

Healthy 16− 38 13− 28 13− 28

4.1. Random voxels has been chosen from these volumes to form a list of random
activated voxels for each subject. They are selected as follows. For a subject that
belongs to a particular group, 10 voxels are randomly selected from the volume
defined for that group. From the two other groups, a random number of voxels,
between 1 to 6, are chosen for each. Finally, 5 voxels are selected randomly from the
complete brain volume. These steps create synthetic fMRI data that have a degree
of similarity between the synthetic subjects within the group, but they also have
similarity with other groups, which will challenge the classification methods.

For each group, 500 randomly generated synthetic data is generated, which
sums up to a total of 1500 subjects.

4.1.2 Data Set 2: Motor Task Data Set

Buckner et al. (2000) recruited 41 participants, of which 14 were young adults,
14 were non-demented older adults and 13 were demented older adults to qualify the
age-related changes in hemodynamic responses. The subjects underwent an fMRI
task which was based on an earlier study (Dale and Buckner, 1997). The experiment
involves the simple motor task of pushing a button when a visual stimulus is given.

The data has been submitted to National fMRI Data Center with accession
number 2-2000-1118w. Thanks to the submission, it has been used as real data for
many studies such as the study by Greicius et al. (2004) where they have found out
that the DMN activity distinguishes AD. More recently, it has been used with en-
semble classifiers by Armananzas et al. (2016), where the authors left out 14 young
adults to avoid bias in the results due to age differences. Following the same flow
of thought, the young adults were left out in this thesis study as well.

The female / male ratio in the non-demented group is 9/5. The mean age
for this group is 74.9. The demented group has a female / male ratio of 7/6 and a
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mean age of 77.2. The subjects are evaluated with the recruitment and assessment
procedures of Washington University Alzheimer’s Disease Research Center (Berg
et al., 1998). A Clinical Demential Rating (CDR) rating of 0 indicates no dementia,
where a value of 0.5 and 1 indicate very mild and mild dementia (Morris, 1993).
The demented group contains subjects with a CDR value of 0.5 or 1, and the non-
demented group contains subjects with a CDR value of 0.

The data includes four sessions of the experiment for each subject, except
there are three for subject 36. The TR value is 2.68 and the visual stimulus events
are saved in a separate text file. A session takes 15 runs of the task, where each run
has 8 complete volume scans. The complete session includes 128 scans. However,
the first and last 4 are non-task stabilization scans and are discarded in the analysis.

The sensory-motor task in the data set has minimum cognitive requirements
and Greicius et al. (2004) claims that the default mode network connectivity would
not be disrupted. Therefore, this set can also be used for functional connectivity
analysis of the DMN.

4.1.3 Data Set 3: ADNI Resting State Data Set

This data set were obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other biological markers, and clin-
ical and neuropsychological assessment can be combined to measure the progres-
sion of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The
database grows and is used by many researchers around the world (Weiner et al.,
2013). For the interest of this thesis study, the data set contains structural and rest-
ing state functional MR images.

To comply with the group definitions, a set of healthy subjects, another set
of subjects with late MCI and a final set of subjects with AD has been downloaded
with both fMRI and structural data. The subject information can be seen in Table
4.2. The subjects have been attending sessions for more than once in bi-annual to
annual intervals.

The data includes resting state fMRI session, where the subjects are resting
with their eyes open for seven minutes with a TR value of 3, resulting in 140 brain
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Table 4.2. ADNI database subject information; the unique number of subjects, the total number of
sessions, female / male ratio, mean and standard deviation of age.

Unique Subjects F/M Sessions Mean Age Age Std. Dev.

AD 34 18/16 118 74.7 7.47

MCI 46 18/28 170 72.3 7.74

Healthy 52 30/22 195 75.09 6.37

volume scans. Some of the resting state sessions are doubled, but to maintain the
scan standard, only the first seven minutes of the experiment is used. Similar to the
second data set, the first and last 10 scans are discarded to avoid stabilization errors.

4.1.4 Preprocessing

Data Sets 2 and 3 are preprocessed using the SPM12 software, as detailed in
Section 1.3.4. Briefly, the volumes are realigned, time corrected, registered to a
global space (MNI) and smoothed. Data Set 1 uses a preprocessed fMRI volume as
a base.

4.2 Feature Extraction

The preprocessed volumes have a size of (53, 63, 52), which contains 173,628
voxels. Since each session has at least 120 captured volumes, the data grows close to
21 million points for each subject. The classification of such large data is unfeasible.
Feature extraction reduces the amount of the data while preserving information and
representing the data in a format that will be easier for a classifier to work with.

4.2.1 Activation Detection

The brain regions affected by the Alzheimer’s disease were mentioned in sec-
tion 2.4. Since the synaptic transmission in these regions are suppressed because
of the disease, the activations in those areas should help the classifier to distinguish
healthy subjects from the ones with the AD. However, the experiment should con-
tain tasks that will target these regions.

For the data sets 1 and 2, activated voxels are used as a feature. The synthetic
data set has different regions for subjects in different groups, and the motor task
in data set 2 contains voxels close to the affected regions. It should be noted that
the boundaries of the regions are not clear cut, nevertheless, activation detection is
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expected to work better with the Ege University data set.

The activation detection is done by the Task Robust Regression Distance Method,
which is detailed in Section 3.3.5. TRRD is chosen because it is an in-house method
which performed better than other proposed and evaluated methods.

4.2.2 Subtractive Clustering

Activated voxels can be used as the representation of the subject. However,
this data can be more characterized by finding the cluster centers of active voxels.

Clustering is an unsupervised pattern recognition algorithm where the data is
grouped according to some similarity measure. Widely used clustering algorithms
such as k-means or fuzzy c-means start with a fixed number of cluster centers. These
centers are mostly randomly initialized. Since the number of cluster centers are
manually set, and their initial values are randomly decided, the quality of the solution
may vary at each run. With a poor choice of cluster centers, or initial values, the
algorithm may fail to represent the data correctly. Additionally, with large data sets,
it is not easy to check the quality of initial values, or guess the correct number of
cluster centers.

To overcome this problem Chiu has proposed the subtractive clustering method
to estimate the initial number of cluster centers and their values (Chiu, 1994). The
algorithm is based on the Mountain Method by Yager and Filev (Yager and Filev,
1994).

The algorithm starts by considering every point in the data set as a potential
cluster center. The potential for every cluster center is computed by the Equation
4.1,

Pi =
n∑

j=1

exp(−α∥xi − xj∥2) (4.1)

where Pi represents the potential for data point i, n is the number of points,
and α = 1/r2a where ra is the radius which defines a neighborhood for which the
points outside will have less influence. As the equation shows, the potential is the
inverse of the sum of distances to all other points in the data. For a data point that
has many other points nearby, the potential will be high.
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Once the potential for each point is computed, the one with the highest po-
tential is chosen as the first cluster center, P1. Then, remaining potential values are
updated by subtracting an amount of the chosen potential value,

Pi ← Pi − P1exp(−β∥xi − xj∥2) (4.2)

where β = 4/r2b . The constant rb is important in deciding the neighborhood
radius that will have their potentials reduced greatly. The authors suggest a value of
rb = 1.5ra, which helps avoid cluster centers being too close to each other.

After the potential reduction, the points around P1 will have greatly reduced
potential. Among these new potential values, the point with the highest is chosen
as the second cluster center. The potentials are once again reduced, but this time
according to their distance to this cluster center.

This process continues until one of the following stopping conditions are met.
Chiu defines a lower and an upper threshold, denoted by ε and ε respectively. Let
the current highest potential be denoted by Pk. If Pk is greater than ε× P1 than the
data point is accepted as a cluster center and the process continues. If it is not, then
the process stops if Pk is less than ε× P1.

If the potential falls between the gray area defined by these values, then the
algorithm continues by checking if the data point is worth being accepted as a cluster
center by defining a minimum distance, dmin, as the shortest of the distances between
the data point and all other cluster centers. Chiu accepts the data point if dmin

ra
+ Pk

P1
≥

1, as he asserts that it is a good trade-off between having a sufficient potential and
being far from other cluster centers. On the contrary result, the next highest potential
is selected and test is repeated.

Although not a complete cure to the problem of initial number of clusters
and cluster center initialization problem, the ra value that the subtractive clustering
depends on, is easier to estimate than estimating number of clusters required, if the
nature of the data is well understood.

4.2.3 Connectivity Analysis

The resting state fMRI data does not contain any task-related activations, be-
cause it does not contain a task. Therefore, connectivity analysis can help to extract
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Figure 4.1. The mPFC and the PCC are shown in red and green, respectively. The masks are extracted
by WFU Pickatlas (version 3.0) and overlayed to the MNI standard template.

information out of it.

Functional connectivity, as detailed earlier in Section 2.3, looks for temporal
correlations in spatially remote regions of the brain. Although anatomically not
directly connected, these regions work in harmony to handle specific tasks. This led
Raichle et al. (2001) to discover the default mode network, which shows that brain
is always active, even when the subject is at rest.

The most common approach to test for connectivity is the correlation method
(Cao and Worsley, 1999). Following the studies that report on the regions for de-
fault mode network and AD, posterior cingulate cortex (PCC) and medial prefrontal
cortex (mPFC) are chosen as regions of interest (ROI) (Raichle et al., 2001; Greicius
et al., 2003; Buckner et al., 2008).

The selected ROI include the corresponding brain areas in Broadmann label-
ing, as shown in Table 2.2. In order to select only these voxels, binary masks have
been created using the WFU Pickatlas (version 3.0) software, which uses Talairach
Demon and includes atlases with Broadmann areas (Maldjian et al., 2003; Lancaster
et al., 2000). The masked regions can be seen in Figure 4.1. The red region shows
the mPFC and the green region shows the PCC.

Using the masks, only the voxel BOLD values in both of these regions are
considered. The mean signal for each region has been computed and the correlation
coefficient of this signal to all of the other voxels in the other region are computed,
as detailed in Equation 2.4 in Section 2.3. The threshold value has been set as 0.7.
The voxels that have a correlation coefficient greater than this threshold are accepted
as “correlated”.
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4.3 Classification Methods

The activation and functional connectivity data that belongs to three groups are
classified using Learning Vector Quantization 3 (LVQ) and artificial neural networks
(ANN).

4.3.1 Learning Vector Quantization 3

Kohonen introduced Learning Vector Quantization as a supervised pattern
classification method (Kohonen, 1989). As in many other supervised pattern clas-
sification approaches, LVQ requires a set of correctly labeled training data, a set of
reference or codebook vectors that represent a series of classes, and a disjoint set of
test data that is used to evaluate the trained classifier.

If the training data is made up of n vectors, the LVQ architecture contains m
number of nodes of the same vector size, each representing a class that is present
in the training data. The vectors for the nodes are called weights, and are denoted
with w1...m, and the training vectors are denoted by x1...n. The initialization of the
weights can be done randomly, or can be selected and removed from the training
data. Finally, let the correct class for the training data be denoted by t and the class
represented by the weight be denoted by c.

Once the variables are set as defined above, the algorithm repeats the following
steps for each training vector. The Euclidean distance between the training vector
and every other weight is computed, and the closest weight, wj , is determined. If
the class of the training vector, t is the same as the class cj that the weight belongs
to, then the weight is updated to get closer to the training vector with a learning rate
denoted by α, as shown in Equation 4.3. Otherwise, Equation 4.4 shows the update
of the weight as it is pushed further away with the same rate.

wj ← wj + α[ x− wj] (4.3)

wj ← wj − α[ x− wj] (4.4)

When all of the training vectors are completed, the learning rate is reduced.
Kohonen and other resources recommend a linear decreasing function (Kohonen,
1989; Fausett, 1994).
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The algorithm stops either when a predefined number of iterations are com-
pleted, or when the learning rate reaches a small value.

Kohonen introduced LVQ versions 2 and 2.1 in his following study (Koho-
nen, 1990). Instead of updating only the closest weight, these versions also update
the second-closest, also called the runner-up, too, albeit if several conditions are
satisfied.

In LVQ2, both the winner and the runner-up are updated if the following three
conditions are met. The first condition checks if the winner and the runner-up rep-
resent different classes. The second condition checks if the runner-up represents the
same class as the training vector.

The third condition defines a window to check if the distance from the training
vector to the winner and the runner-up are approximately the same. In order to
formally define the window, let yc show the weight closest to the training vector and
yr show the runner-up. Also, let dc be the distance between the training vector and
yc, and dr be the distance to yr. If the conditions dc

dr
> (1− ϵ) and dr

dc
> (1+ ϵ) hold,

then the training vector is said to be approximately same distance from both yc and
yr. Kohonen suggests a typical value of 0.35 for the ϵ variable.

If all of these conditions are met, then the weights, now denoted by yc and yr

are updated as follows.

yc ← yc − α[ x− yc] (4.5)

yr ← yr + α[x− yr] (4.6)

While LVQ2 differentiates between the winner and the runner-up weights if
they belong to the correct class or not, Kohonen further improves the algorithm
in the same study by allowing either of the two closest weights, now denoted by
yc1 and yc2, belong to the correct class (Kohonen, 1990). This modification, called
as LVQ2.1, still checks if the training vector falls in the window defined earlier.
However, the test becomes,
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min
[
dc1
dc2

,
dc2
dc1

]
> 1− ϵ (4.7)

max
[
dc1
dc2

,
dc2
dc1

]
< 1 + ϵ (4.8)

where, dc1 and dc2 represent the distance between the training vector and yc1

and yc2, respectively.

Assuming that yc1 belongs to the same class as the training vector and yc2 does
not, the weights are updated as follows.

yc1 ← yc1 + α[x− yc1] (4.9)

yc2 ← yc2 − α[x− yc2] (4.10)

Kohonen released a final improvement, named as LVQ3, where two closest
weights are allowed to learn if they satisfy the window condition,

min
[
dc1
dc2

,
dc2
dc1

]
> (1− ϵ)(1 + ϵ) (4.11)

where he suggest an ϵ value of 0.2 (Kohonen, 1992). The weight updates are
the same as LVQ2.1 if one of the closest weights belong to the same class as the
training vector, and the other does not. LVQ3 lets yc1 and yc2 to be updated if they
both belong to the same class as the training vector. The update is done with the
following equation,

yc ← yc + α× k × [x− yc] (4.12)

where Kohonen suggests a range between 0.1 and 0.5 for the multiplier k. This
final update ensures that weights continue to approximate the class definitions and
do not stray away if the learning continues.
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Figure 4.2. A multilayer, feedforward neural network trained by backpropagation. The training data
is fed forward, as shown with a blue top-down direction on the right, where each layer
sends its activation values to the next level. At the output layer, the outcome is compared
to the target pattern, and an error is computed. This error is backpropagated to the pre-
vious levels, updating the connection weights, as shown with a red bottom-up direction
on the right.

4.3.2 Artificial Neural Networks

Artificial neural networks work on the similar principles as the biological neu-
rons to learn about problems, the same way a nervous system, such as a brain, does.
Although it is interesting to use artificial neurons to distinguish the deficiencies
present in biological neurons for this thesis, they do not work exactly the same way.

Figure 4.2 shows a typical multilayered ANN architecture made up of an input
layer, a hidden layer and an output layer. The layers contains units, or perceptrons,
a structure similar to a biological neuron which acts as the basic processing element
(Rosenblatt, 1958). Each unit in a layer is connected by weighted edges to every
unit in the following layer.

The likeness of perceptron to a biological neuron is that it receives signals
from its inputs and sends a signal to its outputs. Every unit in the input layer starts
by sending a signal, since it is the first layer. This first signal is the training data and
it is received by every unit in the hidden layer.

A perceptron receives signals from all of its inputs and finds its activation
value, y, as a weighted sum of these signals. Assuming that the perceptron has m
connections, were each signal is denoted by s, and their weights are denoted by w,
the weighted sum is given as follows,
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Figure 4.3. An artificial neuron receives input from its connections (s1...m), finds their weighted
sums (

∑m
i=1 si × wi + w0) and passes it to its activation function, mostly chosen as the

sigmoid function. The figure is re-drawn to reflect the notation in the text from (Smith,
2003)

y =
m∑
i=1

wi × si + w0 (4.13)

where the w0 represents the intercept value (Alpaydin, 2010).

When a biological neuron receives signals from its connections, it either fires,
or it does not. The perceptron can be designed to behave similarly by applying a
threshold value to the activation value. However, the backpropagation algorithm,
which will be discussed shortly requires an activation function that is continuous,
differentiable and monotonically non-decreasing (Fausett, 1994). Therefore, the ac-
tivation function is mostly chosen as the sigmoid function, given in Equation 4.14,
which has the derivative given in Equation 4.15. Figure 4.3 gives a more zoomed
in view of the neuron, the weighted sum and the sigmoid function (Smith, 2003).

fa(x) =
1

1 + exp(−x)
(4.14)

fa
′ = fa(x)[1− fa(x)] (4.15)

The activation value calculated with the weighted sum in Equation 4.13 is set
as a parameter to the activation function fa and its result becomes the input for the
next layer. The hidden layer is the only layer in the architecture given in Figure 4.2
that both receives and sends a signal. The flow of data from the input layer to the
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output layer is called feedforward.

When a unit in the output layer finds its activation value, fa(y) a variable
defined as the error information term, denoted by δ is computed as follows,

δ = (t− fa(y))fa
′(y) (4.16)

where t represents the target pattern corresponding to the training data. The
unit then computes its weight correction term and its bias correction term. Both of
these terms are updated after all of the units in all of the layers compute their own
terms. The weight correction term is calculated by,

∆w = αδz (4.17)

where α is the learning rate, and z denotes the signal received from the asso-
ciated weight. The bias correction term is very similar,

∆w0 = αδ (4.18)

since it is the bias weight for the unit, and does not have any signal value like
the weights from the previous layer. The unit then sends the δ value to the previous
layer, where each unit, this time, use this value like an activation value and compute
the weighted sum of the error information term,

δ =
m∑
k=1

δk × wk (4.19)

where it is assumed that the unit has m connections. Similar to feedforward
process, the unit sends back its own error information term, until the input layer is
reached. This process is called the backpropagation of error. Once it is complete,
all of the weights, including the bias weights, are updated with the equation that
follows.

w ← w +∆w (4.20)
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The training of ANN is done with two disjoint sets, one for training and one
for validation. As the training continues, periodic tests are done to check the error
rate of the ANN. If the error rate starts increasing, or a predefined number of epochs
has been reached the training stops.

The underlying mathematical foundations of the backpropagation algorithm is
the gradient descent optimization (Fausett, 1994). Other approaches to increase the
learning speed has been proposed, such as the scaled conjugate gradient algorithm
(Møller, 1993).

4.4 Training Sets And Methods

The three data sets defined earlier are used to create training sets with different
properties.

The Data Set 1 is the synthetic data set and has activations in different regions
of the brain for subjects in different groups. The activations has been detected by
the TRRD method. Then, the cluster centers has been found using the subtractive
clustering method. However, as mentioned earlier, the brain has 173,628 voxels
and a feature vector of this size requires a similar size of training data. In order
to reduce the number of voxels, the brain has been divided into cubic volumes and
these volumes have been set as active, if they contain an active voxel. In order to
find the best size, the brain has been partitioned into 4, 5 and 6 voxel-cubic volumes,
reducing the feature vector size to 2912, 1573 and 891, respectively.

The same procedures has been applied to the Data Set 2; a real fMRI data set
from National fMRI Data Center, submitted by (Buckner et al., 2000). The activa-
tions are found using TRRD method, and the same volumetric partitioning has been
applied, yielding feature vectors of the same sizes, the data set has been registered
to MNI space in preprocessing. Contrary to other data sets, Data Set 2 contains
only two groups, the healthy and the demented, whereas the other groups have the
healthy, MCI and AD subjects.

Since the Data Set 2 contains a simple sensory-motor task that does not disrupt
the default mode network, it has been used in the functional connectivity of the
default mode network as well (Greicius et al., 2004). The Data Set 3 contains the
resting state data, which is best suitable for functional connectivity analysis, as well.

The regions mPFC and PCC has been defined as the most correlated regions



67

Table 4.3. Training data sets formed from Data Sets 1, 2 and 3. The activations are partitioned by
volumes of size 4, 5 and 6, while the resting state data is reduced by only considering the
voxels belonging to mPFC and PCC.

Training Set Based On Features Feature Vector Reduction

TS-1.4 Data Set 1 Activations 2912 43 volumes
TS-1.5 Data Set 1 Activations 1573 53 volumes
TS-1.6 Data Set 1 Activations 891 63 volumes
TS-2.4 Data Set 2 Activations 2912 43 volumes
TS-2.5 Data Set 2 Activations 1573 53 volumes
TS-2.6 Data Set 2 Activations 891 63 volumes
TS-2 Data Set 2 DMN Connectivity 1680 Masking
TS-3 Data Set 3 DMN Connectivity 1680 Masking

of the DMN (Raichle et al., 2001; Greicius et al., 2003; Buckner et al., 2008). For
the Data Sets 2 and 3, these regions has been masked and their voxels have been
extracted. Using the correlation coefficients for these two regions has reduced the
feature vector size from 173,628 voxels to 1680, where mPFC contains 1206 voxels,
and PCC contains 474.

Table 4.3 gives a brief list of the training set names, the data sets which they
are based on, the features used, and the reductions performed.

The LVQ3 algorithm has been implemented in MATLAB (MATLAB Student
version 2016a, http://www.mathworks.com). The results are cross-validated using
a 10-fold data partitioning. The performance has been evaluated as the percentage
of correctly identified test data. The average and the maximum values are saved for
evaluation. The training vector selection has been randomized to remove any bias
during training.

The MATLAB functions in the Neural Network Toolbox has been used to
create and train a multilayer feedforward neural network, with a scaled conjugate
gradient training algorithm. The number of hidden neurons can affect the perfor-
mance of a network. The training sets are tested with 10, 20 and 30 number of
hidden neurons.

The data partitioning is set as 80% for training, 10% for validation and 10% for
testing with random selection. The training for each set has been repeated 10 times
to compensate for any bias that can emerge. After each run the neural network has
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Table 4.4. Training results for LVQ3 algorithm. The algorithm is cross-validated using 10-fold data
partitioning. The average and maximum percent of correctly identified subjects are listed.

Training Set Feature Vector Unique Samples Mean Max

TS-1.4 2912 1500 84.93 88
TS-1.5 1573 1500 90.2 95.33
TS-1.6 891 1500 90.53 94
TS-2.4 2912 102 84.15 100
TS-2.5 1573 102 85.14 98.57
TS-2.6 891 102 89.43 98.57
TS-2 1680 103 86.7 87
TS-3 1680 439 86.86 88.1

been tested with the testing partition, and the percentage for the correctly identified
data has been recorded. Similar to the LVQ3 results, the average and the maximum
values are saved for evaluation.

4.5 Results

During the preprocessing and features extraction process some of the subjects
or some of their sessions were left out. 44 of the ADNI sessions were discarded due
to SPM having trouble structural data registration, leaving a set of 439 resting state
fMRI scans. The TRRD method were not able to find any significant activation for
one of the subjects in the second data set, and this session was also left out, leaving
the second data set with 102 subjects with activations. The subject’s resting state
analysis is kept, so the same set has 103 for functional connectivity analysis.

The results for the LVQ3 algorithm are listed in Table 4.4. For the training sets
that were partitioned with various sizes from the first data set, the average best score
belongs to the partitioning with volumes of 6. An average score of 90.53 percent is
also the best score on the table.

The training sets from the second data set also perform better with the volumes
of 6, almost as good as the first set. The functional connectivity on the default mode
network slightly underperformed when compared to activation analysis. However,
they are not so far apart. On the DMN’s defense, it can be said that it could have
performed better if the experiment did not include any task.

The results for the ANN are given in Table 4.5. Appendix 10 lists the complete
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Table 4.5. Training results for the ANN. The network has been trained 10 times with 10, 20 and 30
hidden units. The average and maximum percent of correctly identified subjects are listed.

Training Set Feature Vector Unique Samples Hidden Mean Max

TS-1.4 2912 1500 30 92.2533 98.8667
TS-1.5 1573 1500 30 98.44 99.1333
TS-1.6 891 1500 20 97.88 98.9333
TS-2.4 2912 102 30 94.8039 100
TS-2.5 1573 102 30 98.2157 100
TS-2.6 891 102 10 98.2353 100
TS-2 1680 103 20 90.2913 90.2913
TS-3 1680 439 10 90.3417 91,344

results, including the results for tests with other hidden units. The results show that
ANN performs better than the LVQ3 learning algorithm in all of the test configura-
tions.

For activation features in Data Sets 1 and 2, the ANN performs best on average
with 30 hidden units, and when the data is partitioned into volumes of size 5. This
partitioning size keeps the most information while keeping the feature size very close
to the number of samples.

The connectivity analysis for Data Sets 2 and 3 work best with 20 and 10
hidden units, respectively. The average score is above 90%. As with LVQ3, the
functional connectivity features in the second data set failed to surpass the activation
features.

Both of these results show that activations and functional connectivity pro-
vide valid features for classifying fMRI data. The second data set was the only one
where it was possible to compare both features. The features extracted using acti-
vation analysis perform better; however this data set has only two groups, and the
activations are not targeted on the regions that are affected by the AD.
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5. EVALUATION AND CONCLUSION

This concluding chapter includes a broad review of the thesis, the novel con-
tributions, discusses the results and explores possible future work.

5.1 Thesis Review

The thesis explores methods for classifying fMRI data in order to diagnose
the Alzheimer’s Disease which is one of the most common forms of dementia. As
the world-wide research continues to probe for possible biomarkers to detect the
disease as early as possible, this thesis humbly contributes with activation detection
and classification techniques. The purpose of the thesis is to classify the data among
subjects with Alzheimer’s Disease, subjects with mild cognitive impairment and
healthy subjects.

The AD is defined as a synaptic failure disease, which immediately brings
forth the activation failure in affected brain regions. In this regard, an fMRI exper-
iment is designed that will target activations on the affected regions of the brain.

The thesis first explores and evaluates the activation detection methods in the
literature, including the popular tools that depend on the general linear model. Five
novel methods have been proposed that can detect the activations in a more scruti-
nized way. The proposed methods are tested with three sets of data; a completely
synthetic data at different noise levels (Approach 1), a set with real fMRI resting
data with synthetic activations (Approach 2) and a set with real fMRI experiment
data from the Ege University MR database. All of the data sets have the same struc-
ture; a block design experiment that contains two states; “no activity” or “resting”
state, followed by an “activity” state. These blocks are repeated three times.

The applied hemodynamic response function is modeled as the difference of
two gamma functions. A set of 10 HRFs are generated by different parameters,
simulating different subjects and different areas within subjects.

The instantaneous methods, such as IAM, IAMP and IRRD, use the confi-
dence intervals on the mean of the resting state block values to decide on the acti-
vation of voxels at each instance. Methods that use the complete experiment data,
such as TAM and TRRD decide on the activation of voxels with a t-test on the values
of two states. Finally, correlation method uses the canonical HRF to measure the
similarity of the voxel to the expected block design.
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IRRD and TRRD methods use a new distance metric that is not bound by the
voxel intensities, while the instantaneous methods pave the way to analyze fMRI
images in a new perspective.

The results for the methods are evaluated by receiver operating characteristic
curves and PSNR values. They are also compared against the commonly used SPM
method.

The ROC analyses show that the instantaneous methods are capable of finding
the activations, but are not as good as other methods where the complete experiment
data is used. However, instantaneous methods are good for locating activations to
a stimulus at a specific instant, rather than the complete experiment. These acti-
vations, which may include relevant and important information may otherwise be
statistically lost when the complete experiment is taken into account. The instanta-
neous methods provide the temporal flow of the activations which may yield more
information. The relevant information extracted with the instantaneous methods
will not be accessible to methods such as SPM, TAM and TRDD where the com-
plete experiment data is used. Another contribution of these methods is to causally
represent the active brain regions in consequent instances.

All of the methods are good at finding locations even at low SNR values. As
the SNR value gets higher, the noise levels decrease and the methods perform better.
It is also important to note that all of the methods are sensitive to the magnitude of
the HRF. The instantaneous methods are sensitive to latency, since they try to find
the activations at every instance of the active state and a late peak decreases their
performance. The methods do as well as SPM on real data.

In order to classify the fMRI data, features should be extracted that will help
differentiate the subjects in different groups. While the activation detection is one
way to do it, the functional connectivity in the default mode network is also capa-
ble of distinguishing healthy subjects from the subjects with the AD (Greicius et
al., 2004). The methods used for functional connectivity analysis are reviewed and
correlation coefficient method is used to find correlations in the most functionally
connected regions in the default mode network, mPFC and PCC. The mean BOLD
signal that belongs to all of the voxels within a region is correlated with every voxel
in the other region. The voxel correlation values are used as a feature vector for each
subject.

The activation and functional connectivity features of the subjects are tested
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with three data sets. The first data set is synthetic, which contains activations in
different regions of the brain for subjects in different groups. The second data set
comes from a sensory-motor experiment. This set is used with both activation de-
tection features and the functional connectivity features, because the cognitive sim-
plicity of the sensory-motor experiment is not expected to disrupt the default mode
network. The final data set comes from the ADNI database which contains resting
state fMRI scans of subjects for three different groups.

Before the classification, the subtractive clustering method is used to find the
activation centers. Then the brain volumes are partitioned into volumes of size 4,
5 and 6. If a volume contains an active voxel, the volume is set active. After this
operation, the input vector has been reduced to a smaller, more manageable size.

As classifiers, learning vector quantization (LVQ3) and a multilayer feedfor-
ward artificial neural network (ANN) are chosen. The results show that ANN per-
forms better in classification process. Another important outcome shows that the
second data set, which is analysed both for activation detection and functional con-
nectivity, yielded better results in favor of activations.

The main outcome of the thesis is the novel contributions to the activation
analysis of fMRI data. The classification is successfully performed using two dif-
ferent approaches with variations of three data sets. While one of the data sets is
synthetic, the other two are real life fMRI data that are accessible online.

5.2 Future Work

The experiment described in detail in Section 1.4 is currently being executed
on volunteering subjects. It is part of the TUBITAK 1001 project 214S029, titled
“The comparison of neural components related with default mode, short-term mem-
ory store and recall of subjects diagnosed with mild cognitive impairment with early
Alzheimer’s Disease and their healthy siblings and controls.” The scans are expected
to be complete in one year. This data will be unique since it contains a task that tar-
gets affected brain regions and resting state data. The results from the different data
sets where the activation and resting state features show that the combination of
these features can yield better results. The future work will mostly contain the pro-
cessing of this data, and learn more about Alzheimer’s Disease as we will be able to
compare a subject’s DMN and activation maps.

The amount of data that results from a single subject is in the order of hundred
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of megabytes. The storage, preprocessing and analysis of this data can also take a
lot of time. One of the solutions to big data is to use parallel processing to analyze
it. The quickest way to get parallel processing is to use the GPU that is available on
almost every modern computer. The general processing on GPU is called GPGPU
and researchers have been working on redesigning programs so that they could work
in parallel (Eklund et al., 2012, 2013). Parallel computing can be applied to both
activation detection and functional connectivity where each voxel is handled sepa-
rately, without depending on others. The current trend topic, deep learning, can also
be used to extract information from the data (Hatakeyama et al., 2014).
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Appendix 1 Generated HRFs sampled at different rates

HRFs with a 0.1 seconds sampling rate.

HRFs with a 3 seconds sampling rate.



The normalized HRFs with a 0.1 seconds sampling rate.

The normalized HRFs with a 3 seconds sampling rate.



Appendix 2 Area under the curve for synthetic data created by Approach 1

Method SNR HRF 1 HRF 2 HRF 3 HRF 4 HRF 5 HRF 6 HRF 7 HRF 8 HRF 9 HRF 10

IAM(*)

SNR 3 0,651 0,5341 0,5569 0,6074 0,6326 0,6563 0,5622 0,6506 0,7223 0,5499
SNR 5 0,6673 0,5505 0,5375 0,6304 0,6742 0,6828 0,5874 0,674 0,7648 0,5704
SNR 10 0,7636 0,5794 0,572 0,7222 0,7469 0,7719 0,653 0,7368 0,8499 0,6209
SNR 15 0,8501 0,6088 0,6299 0,7967 0,8126 0,8369 0,7291 0,8012 0,8717 0,6764
SNR 20 0,8652 0,6421 0,7233 0,8451 0,8301 0,8502 0,7927 0,8526 0,8646 0,754

IAMP(*)

SNR 3 0,6341 0,5628 0,5355 0,595 0,5997 0,6169 0,536 0,5981 0,7003 0,5845
SNR 5 0,6463 0,5606 0,5403 0,632 0,6125 0,645 0,5707 0,6039 0,7254 0,591
SNR 10 0,7341 0,5935 0,5713 0,7058 0,6695 0,7216 0,6131 0,6604 0,7989 0,6526
SNR 15 0,7862 0,6274 0,5992 0,7635 0,7144 0,7549 0,6718 0,6831 0,8019 0,708
SNR 20 0,7972 0,6684 0,6482 0,7912 0,716 0,7576 0,7012 0,681 0,8019 0,7568

TAM

SNR 3 0,8459 0,584 0,5335 0,748 0,7331 0,8103 0,5301 0,7231 0,9531 0,6717
SNR 5 0,892 0,6362 0,5237 0,8668 0,7911 0,9059 0,6321 0,7942 0,9662 0,7217
SNR 10 0,9626 0,7616 0,5887 0,9619 0,9312 0,9642 0,8083 0,9262 0,9662 0,921
SNR 15 0,9678 0,9145 0,7535 0,9668 0,9674 0,9665 0,9411 0,9638 0,9665 0,9632
SNR 20 0,9659 0,9603 0,918 0,9671 0,9662 0,9674 0,966 0,9658 0,9668 0,9662

IRRD(*)

SNR 3 0,6433 0,535 0,5537 0,5966 0,6256 0,6495 0,5593 0,641 0,7154 0,5524
SNR 5 0,66 0,5454 0,5341 0,6275 0,6661 0,6786 0,5887 0,6669 0,7535 0,5676
SNR 10 0,7493 0,5797 0,5691 0,7144 0,7425 0,7634 0,6484 0,7253 0,8402 0,6196
SNR 15 0,8381 0,6073 0,6268 0,7867 0,7957 0,8325 0,7165 0,7968 0,8643 0,6687
SNR 20 0,8566 0,6383 0,7129 0,8332 0,8202 0,8387 0,7859 0,8402 0,858 0,7432

TRRD

SNR 3 0,8457 0,5835 0,5324 0,7487 0,7331 0,8104 0,5301 0,7243 0,9531 0,6716
SNR 5 0,8914 0,6366 0,5238 0,8669 0,7915 0,9055 0,6313 0,7946 0,9663 0,7222
SNR 10 0,9629 0,762 0,5881 0,9617 0,9323 0,9639 0,8078 0,9269 0,9662 0,9216
SNR 15 0,9674 0,9143 0,7533 0,9671 0,9671 0,9665 0,9406 0,9643 0,9665 0,9631
SNR 20 0,9653 0,9605 0,9177 0,9671 0,9659 0,9674 0,9666 0,9655 0,9668 0,9659

Correlation(**)

SNR 3 0,9379 0,7259 0,6745 0,906 0,8991 0,9322 0,726 0,8747 0,9673 0,8668
SNR 5 0,9604 0,7833 0,6535 0,9384 0,9411 0,963 0,8064 0,9031 0,9689 0,9063
SNR 10 0,969 0,894 0,7956 0,9686 0,9683 0,969 0,9382 0,9641 0,969 0,9664
SNR 15 0,969 0,9608 0,9075 0,969 0,969 0,969 0,9677 0,9689 0,969 0,969
SNR 20 0,969 0,9686 0,9671 0,969 0,969 0,969 0,969 0,969 0,969 0,969

(*) Please refer to Section 3.4.2 for details on instantaneous methods.
(**) Please refer to Section 3.4.3 for details on Correlation method.



Appendix 3 PSNR values for synthetic data created by Approach 1

Method SNR HRF 1 HRF 2 HRF 3 HRF 4 HRF 5 HRF 6 HRF 7 HRF 8 HRF 9 HRF 10

IAM

SNR 3 8,8024 8,9517 8,9635 9,0602 8,9608 8,9795 8,9573 8,9153 8,8299 8,8763
SNR 5 8,9381 9,2495 9,1919 8,9987 9,0558 9,0987 9,2618 9,1437 8,8103 9,3248
SNR 10 9,6329 10,0942 9,9901 9,7071 9,8548 9,7099 9,8597 9,6335 9,8257 9,7518
SNR 15 10,0131 10,3771 10,2268 10,3876 10,2934 10,0662 10,2527 10,1919 9,939 10,4898
SNR 20 10,4427 10,7901 10,6859 10,3371 10,7499 10,5565 10,5887 10,6056 10,2727 10,9001

IAMP

SNR 3 6,663 6,7803 6,6654 6,7381 6,78 6,6779 6,5362 6,5771 6,2977 6,7078
SNR 5 6,8195 6,8649 6,9257 6,6367 6,7186 6,699 6,8612 7,0826 6,4029 7,1059
SNR 10 7,249 7,5313 7,5791 7,3832 7,2179 7,3832 7,6857 7,2889 6,9747 7,477
SNR 15 7,5856 8,0072 7,9573 7,7826 7,7793 7,4406 7,8642 7,8135 7,6625 8,0799
SNR 20 8,3437 8,4065 8,2479 8,2111 8,2585 8,4467 8,2443 8,3771 8,0355 8,3595

TAM

SNR 3 19,3306 18,2557 18,1475 18,8742 19,3936 19,0451 19,7026 20,2711 16,2557 19,2469
SNR 5 18,6808 19,7288 19,2461 19,5929 19,8041 18,3966 19,5384 20,6321 16,5101 19,8698
SNR 10 18,2857 21,1519 20,9292 19,2201 20,2486 19,0681 20,2636 20,4491 18,696 20,1667
SNR 15 22,6052 22,3548 21,0669 22,1118 21,9918 22,5038 21,223 21,4712 21,7609 21,2438
SNR 20 25,2065 23,4661 22,1031 26,1041 25,3674 25,6927 23,667 25,1948 25,608 25,6503

IRRD

SNR 3 8,3528 8,5924 8,5139 8,5233 8,3113 8,6138 8,5515 8,5571 8,5406 8,4937
SNR 5 8,6438 8,8208 8,7955 8,7208 8,5275 8,5204 8,7724 8,6353 8,2536 8,9916
SNR 10 9,0321 9,7219 9,5781 9,3181 9,5423 9,0023 9,3327 9,1014 9,0419 9,3753
SNR 15 9,3799 9,7385 9,9476 10,1508 9,7793 9,2745 9,979 9,5163 9,3601 9,7526
SNR 20 9,8569 10,0123 10,3229 9,9783 10,2481 9,8183 10,3337 9,7942 9,5839 10,5852

TRRD

SNR 3 19,1594 18,4102 18,0083 18,9124 19,4755 18,9009 19,7865 20,3509 16,2186 19,352
SNR 5 18,6808 19,6854 19,1654 19,7322 19,8039 18,5386 19,6074 20,4853 16,4289 19,8698
SNR 10 18,3794 21,1899 20,9452 19,2197 20,182 19,0118 20,408 20,4092 18,696 20,3295
SNR 15 22,5349 22,3264 20,911 22,2249 21,8931 22,5038 21,0685 21,5491 21,6547 21,2435
SNR 20 25,0406 23,5017 22,1115 26,1041 25,1538 25,6927 24,2475 24,8038 25,608 25,5152

Correlation(*)

SNR 3 22,1795 19,4476 18,893 20,3277 20,5613 21,2438 21,2358 22,2639 23,627 19,9105
SNR 5 21,8715 20,0505 20,2155 21,3949 22,5954 22,215 20,0933 22,9526 23,9077 20,7872
SNR 10 24,2544 22,0926 22,3572 23,0287 23,8744 24,7284 21,5907 23,794 26,3964 23,0971
SNR 15 26,5008 24,2312 22,4369 26,0648 27,1828 26,948 24,4087 27,4991 28,1658 25,103
SNR 20 28,5769 26,0696 24,4759 28,9629 29,0058 29,5034 27,7418 29,9985 30,0472 28,0499

(*) Please refer to Section 3.4.3 for details on Correlation method.



Appendix 4 ROC curves for instantaneous methods, Approach 1

ROC Curves of IAM for all HRFs at SNR=3.

ROC Curves of IAM for all HRFs at SNR=20.



ROC Curves of IAMP for all HRFs at SNR=3.

ROC Curves of IAMP for all HRFs at SNR=20.



ROC Curves of IRRD for all HRFs at SNR=3.

ROC Curves of IRRD for all HRFs at SNR=20.



Appendix 5 ROC curves for task based methods, Approach 1

ROC Curves of TAM for all HRFs at SNR=3.

ROC Curves of TAM for all HRFs at SNR=20.



ROC Curves of TRRD for all HRFs at SNR=3.

ROC Curves of TRRD for all HRFs at SNR=20.



ROC Curves of Correlation for all HRFs at SNR=3.

ROC Curves of Correlation for all HRFs at SNR=20.



Appendix 6 Area under the curve for synthetic data created by Approach 2

Method Subject HRF 1 HRF 2 HRF 3 HRF 4 HRF 5 HRF 6 HRF 7 HRF 8 HRF 9 HRF 10

IAM(*)

Subject 1 0,8516 0,7997 0,811 0,8514 0,8576 0,8656 0,855 0,9149 0,8516 0,8513
Subject 2 0,8078 0,7407 0,7787 0,8078 0,8141 0,8239 0,8145 0,8707 0,8078 0,8059
Subject 3 0,8315 0,7377 0,8012 0,8313 0,8424 0,853 0,8359 0,8975 0,8315 0,8295
Subject 4 0,8366 0,7875 0,7992 0,8366 0,8418 0,8546 0,8411 0,9031 0,8366 0,8359

IAMP(*)

Subject 1 0,7839 0,7262 0,6904 0,7839 0,7075 0,7541 0,6758 0,6491 0,7839 0,7839
Subject 2 0,7544 0,6898 0,6468 0,7544 0,6722 0,7175 0,6411 0,616 0,7544 0,754
Subject 3 0,7685 0,6985 0,6582 0,7685 0,6843 0,7339 0,6522 0,6275 0,7685 0,7684
Subject 4 0,7364 0,6569 0,6351 0,736 0,6531 0,6994 0,6283 0,5982 0,7363 0,7367

TAM

Subject 1 0,928 0,928 0,928 0,928 0,928 0,928 0,928 0,928 0,928 0,928
Subject 2 0,9637 0,9637 0,9636 0,9637 0,9637 0,9637 0,9637 0,9637 0,9637 0,9637
Subject 3 0,9186 0,9186 0,9186 0,9186 0,9186 0,9186 0,9186 0,9186 0,9186 0,9186
Subject 4 0,9449 0,9449 0,9449 0,9449 0,9449 0,9449 0,9449 0,9449 0,9449 0,9449

IRRD(*)

Subject 1 0,8354 0,7925 0,7949 0,8349 0,8424 0,85 0,8308 0,8968 0,8354 0,8349
Subject 2 0,7961 0,7278 0,7717 0,7961 0,8039 0,815 0,8059 0,8573 0,7961 0,7938
Subject 3 0,8194 0,7344 0,7834 0,8191 0,8288 0,8388 0,816 0,8838 0,8194 0,8178
Subject 4 0,8179 0,7739 0,7801 0,8175 0,8246 0,8358 0,8158 0,882 0,8179 0,8158

TRRD

Subject 1 0,9117 0,9117 0,9117 0,9117 0,9117 0,9117 0,9117 0,9117 0,9117 0,9117
Subject 2 0,9596 0,9596 0,9596 0,9596 0,9596 0,9596 0,9596 0,9596 0,9596 0,9596
Subject 3 0,9189 0,9189 0,9189 0,9189 0,9189 0,9189 0,9189 0,9189 0,9189 0,9189
Subject 4 0,9302 0,9302 0,9302 0,9302 0,9302 0,9302 0,9302 0,9302 0,9302 0,9302

Correlation(**)

Subject 1 0,9684 0,9628 0,9684 0,9684 0,9684 0,9684 0,9684 0,9676 0,9684 0,9684
Subject 2 0,9947 0,9907 0,9946 0,9947 0,9947 0,9947 0,9947 0,9938 0,9947 0,9947
Subject 3 0,9941 0,975 0,9913 0,9937 0,9933 0,9941 0,9921 0,9873 0,9941 0,9937
Subject 4 0,9881 0,9721 0,985 0,9875 0,9872 0,9881 0,9852 0,9808 0,9881 0,9875

(*) Please refer to Section 3.4.2 for details on instantaneous methods.
(**) Please refer to Section 3.4.3 for details on Correlation methods.



Appendix 7 PSNR values for synthetic data created by Approach 2

Method Subject HRF 1 HRF 2 HRF 3 HRF 4 HRF 5 HRF 6 HRF 7 HRF 8 HRF 9 HRF 10

IAM

Subject 1 11.1494 12.2153 11.8742 11.4571 11.2281 11.2592 11.5808 11.6923 11.1494 11.703
Subject 2 10.6265 10.4898 10.738 10.4898 10.7081 10.7512 10.9901 11.2592 10.6265 10.5217
Subject 3 10.3366 10.8785 11.185 10.9942 10.9185 11.0128 10.6921 11.0037 9.5884 11.1828
Subject 4 10.978 10.8307 11.0743 10.8307 11.0592 11.0859 11.3538 11.6401 10.978 10.9903

IAMP

Subject 1 8.1377 9.2266 8.9732 8.6349 8.7023 8.2699 8.6935 8.4723 8.1377 9.1331
Subject 2 8.4901 8.9144 9.1034 8.4061 8.6384 8.6827 8.6076 8.6704 8.4901 9.1034
Subject 3 8.2974 8.7494 8.8611 8.5786 8.3246 8.3291 8.6717 8.4019 8.2974 8.8611
Subject 4 8.1205 8.1548 8.1677 8.0436 8.1462 8.1504 8.1785 8.218 8.1205 8.3399

TAM

Subject 1 17.5874 17.6564 17.5874 17.5874 17.5874 17.5874 17.5874 17.3669 17.5874 17.5874
Subject 2 16.9539 16.9539 16.9279 16.9539 16.9539 16.9539 16.9539 16.9539 16.9539 16.9539
Subject 3 14.5624 14.8913 15.0163 14.6339 15.0163 14.9649 15.0163 15.0163 14.5624 14.9111
Subject 4 15.9465 16.0504 16.0132 15.9465 15.9465 15.9465 15.9465 15.9465 15.9465 16.0504

IRRD

Subject 1 10.543 11.8617 11.4282 11.0056 10.3326 10.2178 10.9294 10.3082 9.8995 11.2678
Subject 2 9.7475 10.0139 10.0585 9.6355 9.8584 9.8649 10.064 10.2571 9.7475 10.0493
Subject 3 9.9039 10.5837 10.8389 10.6389 10.4203 10.4533 10.3058 10.4505 9.0923 10.8368
Subject 4 9.5336 10.2672 10.3805 9.9655 9.6391 9.686 10.0099 9.9373 9.4169 10.3291

TRRD

Subject 1 15.7672 15.8434 15.7672 15.7672 15.7672 15.7672 15.7672 15.5383 15.7672 15.7672
Subject 2 16.9105 16.9105 16.9105 16.9105 16.9105 16.9105 16.9105 16.9105 16.9105 16.9105
Subject 3 14.5764 14.9046 15.0295 14.6477 15.0295 14.9784 15.0295 15.0295 14.5764 14.9246
Subject 4 15.0163 15.136 15.1006 15.0163 15.0163 15.0163 15.0163 15.0163 15.0163 15.136

Correlation(*)

Subject 1 26.4425 24.1656 25.3328 26.8508 26.9312 27.2751 25.5495 27.4428 27.4815 25.6615
Subject 2 20.4457 18.9714 19 20.8244 21.1285 21.7334 19.4853 21.7513 23.0022 19.8727
Subject 3 20.9872 19.2168 18.8965 21.3673 21.3387 21.5637 19.3998 22.1477 23.2397 20.1532
Subject 4 21.0079 19.4141 18.3107 21.3398 21.2799 21.6586 18.9088 21.9645 22.869 19.5437

(*) Please refer to Section 3.4.3 for details on Correlation method.



Appendix 8 ROC curves of HRFs for all methods, Approach 2

ROC Curves of IAM for all HRFs for Subject KAMUEGE205.

ROC Curves of IAMP for all HRFs for Subject KAMUEGE320.



ROC Curves of IRRD for all HRFs for Subject KAMUEGE320.

ROC Curves of TAM for all HRFs for Subject KAMUEGE305.



ROC Curves of TRRD for all HRFs for Subject KAMUEGE505.

ROC Curves of Correlation for all HRFs for Subject KAMUEGE320.



Appendix 9 Results for subject KAMUEGE305

Results for SPM with a FWE corrected p = 0.05.

Results for IAM with a FWE corrected p = 0.05.

Results for IAMP with a FWE corrected p = 0.05.

Results for TAM with a FWE corrected p = 0.05.

Results for IRRD with a FWE corrected p = 0.05.



Results for TRRD with a FWE corrected p = 0.05

Results for Correlation method with c = 0.7

.



Appendix 10 Training results for the ANN

Training Set Feature Vector Unique Samples Hidden Mean Max

TS-1.4 2912 1500

10 72.9667 98,8

20 91.4267 98,9333

30 92.2533 98,8667

TS-1.5 1573 1500

10 88.6133 99,0667

20 94.5067 99,0667

30 98.44 99,1333

TS-1.6 891 1500

10 96.8933 98,8667

20 97.88 98,9333

30 96.66 98,8

TS-2.4 2912 102

10 83.3333 100

20 83.9216 100

30 94.8039 100

TS-2.5 1573 102

10 86.4706 100

20 90.2941 100

30 98.2157 100

TS-2.6 891 102

10 98.2353 100

20 83.1373 100

30 90.6863 100

TS-2 1680 103

10 89.9029 90,2913

20 90.2913 90,2913

30 89.7087 90,2913

TS-3 1680 439

10 90.3417 91,344

20 89.5444 91,344

30 86.1276 91,344


