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ÖZET 

BİODİZEL/DİZEL, MİNERAL YAĞ VE ÇÖZGENLERİN 

İKİLİ VE ÜÇLÜ KARIŞIMLARININ KEMOMETRİK 

YAKLAŞIMLA NİCEL TAYİNİ 

YILMAZ, Aslıhan 

Yüksek Lisans Tezi, Kimya Anabilim Dalı 

Tez Danışmanı: Doç. Dr. Hasan ERTAŞ 

İkinci Tez Danışmanı : Prof. Dr. Celal DURAN 

Mayıs 2019, 44 sayfa 

Enerji Piyasası Düzenleme Kurumu’nun getirmiş olduğu düzenleme ile 

günümüzde dizel yakıtına en az % 0,5 (V/V) oranında biyodizelin 

harmanlanması zorunlu hale gelmiştir. Ayrıca, biyodizel, mineral yağ ve 

çözgen karışımları standart akaryakıt kalitesine benzetilerek araçlarda 

kullanılması, yakıtlarda sahteciliğe yol açmıştır. Gerek yakıtların gerekse 

mineral yağlar gibi maddelerin yapısının karmaşık olmasından ötürü, 

karışımların eş zamanlı tayinleri bilinen kromatografik yöntemlerle pahalı ve 

zaman alıcıdır. Kromatografik analizlerin aksine, daha hızlı, daha az örnek 

gerektiren spektroskopik teknikler ile kemometrik tekniklerin birleştirilmesi 

kompleks karışımların analizi için avantaj sağlamaktadır.  

Bu tez çalışmasında dizel/biyodizel, mineral yağ ve çözücünün ikili ve 

üçlü karışımlarının tayinine yönelik yöntem  geliştirilmeye çalışılmıştır. 

Hazırlanan karışımların Fourier Dönüşümlü Kızıl Ötesi (FTIR) spektrometresi 

ile spektrumları alındı ve spektral verilere, kısmi en küçük kareler yöntemi 

(KEK) uygulandı. Kalibrasyon ve validasyon sonuçlarına bakıldığında KEK 

yöntemi, biyodizel/dizel, mineral yağ ve çözücü karışımlarının eş zamanlı 

analizine olanak tanımaktadır.  

Anahtar sözcükler: Kısmi en küçük kareler yöntemi, biyodizel, mineral 

yağ, FTIR
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ABSTRACT 

QUANTITATIVE DETERMINATION OF BINARY 

AND TERNARY OF BIODIESEL/DIESEL, 

MINERAL OIL AND SOLVENT MIXTURE WITH 

CHEMOMETRIC APPROACH 

YILMAZ, Aslıhan 

MSc in Chemistry 

Supervisor: Assoc. Prof. Dr. Hasan ERTAŞ 

Co-Supervisor: Prof. Dr. Celal DURAN 

Mayıs 2019, 44  pages 

In 2018, with the regulation introduced by the Energy Market Regulatory 

Authority, it has become obligatory to blend biodiesel at least 0.5 % (V / V) to 

diesel fuel. In addition, simulating standard fuel quality the use of biodiesel, 

mineral oil and solvent mixtures in the vehicles has led to counterfeiting of fuels. 

Because both structure of the fuels and the mineral oils are complex, 

simultaneous determinations of the mixtures are expensive and time consuming 

by known chromatographic methods. In contrast to chromatographic analyzes, 

combining chemometric techniques with faster, lesser sample spectroscopic 

techniques is advantageous for the analysis of complex mixtures.  

In this thesis, it was aimed to develop the method for the determination of 

the binary and ternary mixtures of diesel / biodiesel, mineral oil and solvent. The 

spectra of the prepared mixtures with Fourier Transform Infrared (FTIR) 

spectrometry were taken and the partial least squares method (PLS) was applied 

to the spectral data. The PLS method allows simultaneous analysis of biodiesel 

/ diesel, mineral oil and solvent mixtures, based on calibration and validation 

results. 

Keywords: Partial least square, biodiesel, mineral oil, FTIR 
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PREFACE 

 

Due to the technological improvements instrumental analysis technics 

have gained vital importance, nowadays. Especially, so low level analyte 

amounts can be determined in complex structured matrices. However, before 

instrumental analysis there are many steps such as sampling, preparation and 

selecting suitable method. Chemometric methods, which contributes chemical 

science, have developed with the knowledge of statistic, math and computer 

sciences. These methods allow us mathematical analysis of signals come from 

equipment, before and after chemical analysis. Beyond the classical methods, 

using with the spectrometric technics provides an opportunity to determine 

without need preparing sample. Thus means time, money and energy saving. 

In this paper, Partial Least Square Algorithm, which allows multivariable 

statistics analysis, is implemented on chemical data come from Fourier 

Transform Infrared Spectroscopy- Attenuated Total Reflectance (FTIR-ATR) 

spectrometry and is tried to improve quantitative analyze method for complex 

compounds such as biodiesel, diesel and mineral oil. 

In introduction part consists fuels and fraud of it, analysis sample on this 

field and basic of chemometrics. In procedure part shows data sets for preparing 

of samples synthetically. Finally, in findings and results is showed sample 

analysis, data collection and chemometric analysis and explained some 

suggestions according to findings.  

Lastly, my advice to one who wants to study in chemometric, should learn 

fundamental statistic and linear algebra. 

 

İZMİR  

15/05/2019 

         Aslıhan YILMAZ 
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1. INTRODUCTION 

1.1 Basic Definition of Fuels 

Fossil fuels are originated from the decayed and fossilized remains of plants 

and animals that lived millions of years ago. Fuels can be divided by their physical 

properties and can also be classified as the natural and artificial fuels. Natural solid 

fuels are wood, coal, etc. and their secondary products are coke and charcoal. 

Petroleum is the primary liquid fuel and its derivatives include diesel (gasoil), 

gasoline, kerosene, naphtha and ethanol. Natural gas constitutes another class of 

fuel and its secondary products are hydrogen, propane, methane, etc. (Chaudhuri, 

2011).  

Petroleum is probably the most important substances in modern society since 

it is extensively used as fuel to satisfy the demands of an energy-dependent 

civilization and also provides raw materials for the industry. The petroleum is 

derived from the Latin petra and oleum words meaning rock oil and refers to 

hydrocarbons that occur widely in the sedimentary rocks.  

Petroleum is a naturally occurring mixture of hydrocarbons in a liquid state, 

which may also include compounds of sulfur, nitrogen, oxygen and some metals 

(ASTM, 2012). Raw petroleum, also known as crude oil, is a mixture of light, 

simple hydrocarbons such as methane, ethane, propane, butane, and pentane, along 

with other paraffinic, naphthenic, and aromatic hydrocarbons which are the main 

ingredients of organic industry. A number of products including solvents, 

lubricating oil, asphalts, coke and waxes are derived from refining crude oil. 

Crude petroleum has minimal value but when refined it provides high-value 

liquid fuels, solvents, lubricants, and many other products. According to American 

Petroleum Institute (API) gravity, crude oil is referred as light, medium or heavy 

depending on its sulfur content. API gravity of light crude oil is greater than 40, 

while it is within 15-40 for medium and less than 15 for heavy crude oil 

(Vempatapu and Kanaujia, 2017). Since it is a mixture of compounds with a wide 

range of boiling points, petroleum can be separated in the refinery systems.  

The fuels obtained from all the refining streams are required to comply with 

certain regulatory requirements. Among them, gasoline and diesel are the 

automotive fuels which are extensively used for transportation.  
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Gasoline is a mixture of aliphatic and aromatic hydrocarbons in a range of 

C4-C12 with the boiling range of 30-225oC. Its composition depends on the origin 

of the crude oil. Diesel fuel is generally used in the agricultural equipment, 

automobiles and public transport. Its composition is similar to gasoline only the 

carbon numbers are higher, typically within the range of C10-C19. The boiling 

points of the components vary in the range of 180-370oC.  

Biodiesel is considered as an alternative fuel for industry by the 

Environmental Protection Agency (EPA) and the American Society of Testing and 

Materials (ASTM) and it is becoming more popular since it is produced from 

renewable resources (Bağcıoğlu, 2011). It can be produced from animal fat and 

vegetable oil combined with an alcohol in the presence of a homogeneous catalyst.  

Biodiesel contains the mono alkyl esters of long chain fatty acids derived 

from renewable lipid sources. In addition, petroleum diesel is a mixture of 

hydrocarbon molecules which is derived from crude oil and barely contains oxygen 

while biodiesel includes up to 10-12% weight of oxygen which allocates complete 

combustion diminishing hydrocarbon and carbon monoxide emission. But, high 

oxygen content results in nitrogen oxides (NOx) emissions (Agarwal et al., 2006). 

Biodiesel is commonly used as blends with conventional mineral diesel fuel 

since its physical and chemical properties are similar to petro diesel (Pimentel et 

al., 2006). In France, for example, biodiesel is marketed in a volume fraction of 5% 

in petro diesel blends while in the US, energy legislation has mandated the use of at 

least a volume fraction of 2% (Foglia et al., 2005) along with 0.5% volume fraction 

proposed in Turkey (EPDK, 2017).  

Mineral oil is a distillation by-product of petroleum and this colorless oil is 

used in medicine as a laxative and as an emollient (Viswanathan, 2016). In 

addition to personal care products mineral oil is nevertheless used in illegal 

adulteration of fuel. 

White spirit is a solvent including complex hydrocarbon mixtures with 

various components (C7-C14), mostly aliphatic and aromatic hydrocarbons with a 

distillation range of 150-215°C (Lam, 1992). White spirit is also used for 

adulteration in fuel as a thinner to obtain same viscosity with original fuel. 
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1.2. Adulteration in Fuel 

Because of the great variation in prices, increased fuel prices and regular tax 

payments, liquids fuels are probably one of the most forged products. Consumer 

who intensely uses fuel especially in agriculture and transportation sectors has 

used mineral oil contained illegal addition substance such as solvents, unlicensed 

production of biodiesel/diesel and do not comply with corresponding standard 

requirements and caused very dangerous problems when they consumed. 

It is clear that consumption of fraud mineral oil for fuel leads to vehicle 

fires, explosions, accidents and fatality due to mineral oil being flammable. This 

situation establishes a risk in terms of safety concerns. On the other hand, using 

fraud fuel would lead to loss in tax revenue and illegal profit resulted from tax-

evasion. Additionally, forged products can be made either by mixing recycled or 

discarded residual oils with solvents such as white spirit, toluene, hexane, thinner 

which are used as paint thinner in dying industry or base and vegetable oils with 

solvents to give the similar viscosity to diesel (KMO, 2014).  

According to 2010 data of Ministry of Environment and Urbanization 

published by Petroleum Industry Association (PETDER), 44.873 tons of residual 

mineral oil was collected in Turkey and the rest of the oil, which is about 205.127 

tones, was not recorded (PETDER, 2011). Similarly, 2015 Annual Report has 

indicated that there is a significant gap in Turkey between the quantity of mineral 

oil supplied to the market and amount consumed. This difference reflects that 

large amount of mineral oil might have been used to adulteration of the fuel.  

Another concern in adulteration is the addition of raw fatty oil to the 

biodiesel blends. The use of raw vegetable oils can cause carbon deposition, 

injector blocking, and incomplete combustion because of their high viscosities, 

low volatilities, and polyunsaturated character, as well as its gum formation 

characteristic because of oxidation and polymerization (Soares et al., 2008).  

Due to possibility of addition of this inexpensive raw material in excess than 

the legally prescribed amounts, it is necessary that diesel/biodiesel blends must be 

correctly determined according to quality standards and regulations. Physical-

chemistry studies of the properties of diesel mixtures with pure vegetable oils with 

grades that range up to 5% (w/w) were already addressed by the literature 

(Oliveira et al., 2007).  



4 

Considering the difficulties to work with rather complex matrices, it is 

crucial to develop a fast, reliable and practical method for the determination of 

adulteration of fuels with mineral oil and solvents. 

1.3. Analysis Methods Used in Adulteration 

Owing to complexity of the composition of fossil fuels and their products, 

fuel adulteration has been extensively studied by a number of researchers. 

Standard methods accepted today are ISO, EN, and ASTM covering various 

parameters for testing of fuels. Although, these methods are applied to monitor 

adulteration of gasoline and diesel fuels, there is not any test specifically designed 

to measure the adulteration of petroleum products. 

The quality assurance (QA) and control (QC) procedures are crucial in 

monitoring and ensuring the quality of the fuels. Table 1.1 lists the regulatory 

standards related to the QA/QC of finished petroleum fuels. In addition, some 

non-standard and laboratory developed methods in accordance with the required 

applicable norms are also being used in the industry.  

Table 1.1 Regulatory standards related to the QA/QC of petroleum fuels 

Parameter Standard 

Cetane number ISO 5165, EN 15195, EN 16444, ASTM D6 

Cetane index ISO 4264, ASTM D976 

Density ISO 3675, ISO 12185 

Aromaticity/PAHs EN 12916, ASTM D1319 

Sulfur content ISO 20846 

Flash point ISO 2719, ASTM D93 

Kinematic viscosity ASTM D445, ISO 3104 

 

In the petroleum test laboratories, all these methods must have been 

developed and proficiency testing programs have to be applied. Any deviation in 

the test results is taken into account as an indication for a change in the 

composition and may be considered as the adulteration. Primary evidence of the 

adulteration in gasoline is obtained from physico-chemical tests including the 

density, distillation, octane number and vapor pressure (Vempatapu et al., 2017). 
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However; these tests ought to be confirmed with data obtained from 

spectroscopic and chromatographic techniques. There are few reports concerning 

high performance liquid chromatography (HPLC) methods for adulteration. A 

former study describes a HPLC-UV method for the determination of kerosene in 

gasoline (Dhole and Ghosal, 1995). Another HPLC-UV method coupled with 

chemometric classification and multivariate calibration was reported for the 

detection of triacylglycerols used for diesel adulteration with vegetable oils 

(Brandao et al., 2012). 

Gas chromatography (GC) coupled with flame ionization detector (FID) is 

commonly used for detailed hydrocarbon analysis, in particular. Adulteration of 

gasoline samples with organic solvents has been investigated by comparing the 

physico-chemical parameters with the data from GC-FID system and hierarchical 

clusters analysis has been employed for improving the detection of the type and 

relative proportion of solvent (Wiedemann et al., 2005). 

Although the solvent adulteration in gasoline is difficult to detect due to its 

presence in unadulterated gasoline, their presence can be easily monitored through 

disproportionate analysis by GC-FID (Vempatapu et al., 2017). Detailed 

hydrocarbon analyzer (DHA) was designed for straight-run hydrocarbon fractions 

using single 100 m long capillary column (Blomberg et al., 2002).  

Recently, two-dimensional gas chromatography (GC-GC) has been popular 

for the petroleum analysis due to the improved resolution. A detailed 

characterization of gasoline samples adulterated with solvents or kerosene has 

been accomplished via using GC-GC-FID system (Degodoy et al., 2008).  

However, there a few chromatographic methods developed for adulteration 

of diesel samples probably due to the increased complexity of the sample as it 

contains much more hydrocarbons isomers from various classes (Vempatapu et 

al., 2017). On the other hand, gas chromatography coupled to mass spectrometry 

becomes a powerful tool for petroleum analysis. In addition, chemometrics has 

been utilized for identifying the adulteration in conjunction with GC-MS.  

Alberici et al. have proposed a method for detecting adulteration in gasoline, 

diesel and biodiesel which is free of sample preparation steps (2010). The 

technique was termed “easy ambient sonic-spray ionization mass spectrometry” 

and suitable for hyphenation and onsite analysis.  
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Another application of this method was reported for fingerprinting of 

gasoline, kerosene and diesel samples where the aromatic compounds containing 

nitrogen have been considered as the markers for the sample (Haddad et al., 

2012). The admixtures of gasoline/kerosene and gasoline/diesel have been 

characterized with great accuracy.  

In the emission or fluorescence spectroscopy, the analyte concentration has 

been determined by using intensity of emission in visible region. Applications 

also include the synchronous fluorescence spectroscopy (SFS) to characterize the 

fuels and lubricants (Parta et al., 2002) and for adulteration studies have been 

conducted to detect the kerosene in commercial automotive fuels (Taksande et al., 

2006). The SFS analysis has also be combined with multivariate calibration to 

detect adulterant in diesel (Corgozinho et al., 2008). 

The use of nuclear magnetic resonance spectroscopy (NMR) in fuel analysis 

was reviewed by Silva et al. (2011). The standard methods, ASTM D5292 and 

ASTM D4808, include high and low-resolution NMR, provide compositional 

information but, it can also be used for the adulteration studies. Structural 

information can be also obtained by Fourier transform infrared spectroscopy 

(FTIR) (Gallignani et al., 1993). The standard methods used in diesel adulteration 

have been summarized in Figure 1.1. 

 

Figure 1.1. The standard methods used in diesel adulteration (Vempatapu et al., 2017). 
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In the analysis of fuel samples like gasoline and diesel, generally vibrational 

spectroscopic techniques such as infrared (IR) and near infrared (NIR) are used in 

combined with multivariate analysis (Oliveira et al., 2007). These techniques are 

more popular since they provide a fast and practical way for an accurate analysis 

without any sample pretreatment step. A few reports can also be encountered 

recently for the analysis of biodiesel.  

Gasoline is usually adulterated with naphtha, kerosene, diesel and other 

cheap solvents (Vempatapu et al., 2017). The detection of this adulteration is a 

difficult task since the solvents used for forging purposes are also the natural 

components of the gasoline. Therefore, it requires a huge effort to reveal the 

composition profile of the samples for further comparison with unadultereated 

gasoline to detect the adulteration. A fast and reliable method to screen the 

gasoline samples can be accomplished with the aid of multivariate chemometric 

techniques combined with IR (Teixeira et al., 2008).  

Near infrared (NIR) measurements have also been coupled with multivariate 

classification methods for the adulteration studies (Al-Ghoutia et al., 2008; 

Balabin et al., 2010; Khanmohammadi et al., 2012). Table 1.2 summarizes the 

methods based on infrared measurements for adulteration studies. 

Table 1.2 Analytical methods based on infrared measurements for adulteration studies 

Sample Type/ Adulterant Technique Data Analysis References 

Diesel/biodiesel 

blends/Vegetable oil 

FTIR and  

FT-Raman 

PLS, PCR, ANN Oliviera et al., 

2007 

Gasoline/ diesel oil, kerosene, 

turpentine spirit or thinner 

FTIR MLR Teixeira et al., 

2008 

Super motor gasoline/ regular 

motor gasoline 

NIR MLR Al-Ghoutia et al., 

2008 

Classification of refinery or 

process type gasoline 

NIR LDA, QDA, RDA, 

SIMCA, PLS, KNN, 

SVM, PNN, ANN-MLP 

Balabin et al., 

2010 

Diesel /Soybean and Corn 

Biodiesel blends 

FTIR and 

IRMS 

PCA, HCA, SVM Santos et all., 

2017 

High quality engine oil / Lower 

quality engine oil 

 

VIS-NIR PCA and PLS Srata et all., 2019 

 

*PLS: Partial least square regression, PCR: Principal component regression, ANN: Artificial neural network, MLR: 

Multivariate linear regression, LDA: Linear discriminant analysis, QDA: Quadratic discriminant analysis, RDA: 

Regularized discriminant analysis, SIMCA: soft independent modeling of class analogy, KNN: K-nearest neighbor, SVM: 
support vector machines, PNN: probabilistic neural network, MLP: multilayer perceptron HCA: hierarchical clustering 

analysis. 
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1.4. The Aim of the Thesis 

Fuel adulteration is a serious problem in many countries and therefore, 

development of a method for detecting any adulteration in fuels was considered to 

be main task. However, it is difficult to analyze with traditional methods since 

biodiesel, diesel and mineral oil have long chain hydrocarbon derivatives with 

similar chemical structure. Chromatographic methods are both costly and time 

consuming since they require sample pretreatment. On the other hand, 

spectroscopic methods can be coupled with chemometrics to analyze complex 

mixtures in spite of overlapping peaks obtained. These techniques provide us a 

rapid fuel authentication and quality control.  

The aim of this thesis is to develop a simple, fast, efficient and inexpensive 

analytical method to certify the quality and authenticity of the fuels. Likewise, a 

new chemometric method using alternative analytical techniques to screen the 

presence of solvent, mineral oil and biodiesel in fraud fuel samples becomes 

indispensable and recommended for routine applications in quality-control 

monitoring programs, which is the objective of this research. Next section gives 

the basic information on chemometry and infrared spectroscopic analysis. 

1.5. Overview of Chemometric Analysis 

In 1971, the term “kemometri” in Swedish was first coined a Swedish 

professor Svante World and in English it is equivalent to “chemometrics” (Kiralj 

et al., 2006). The International Chemometrics Society was founded afterwards by 

S. Wold and Bruce Kowalski two pioneer scientist in the field. Over the last two 

decades, chemometrics has opened many alternatives for analytical method 

improvement along with development of various software programs and high-

dimensional hyphenated apparatus. Today, chemometrics has an important place 

in analytical chemistry. 

Chemometrics is a potent tool for complicated chemical structures such as 

petroleum products analyzed by optical spectroscopy. By definition, 

chemometrics is an interdisplinary application by using of mathematical and 

statistical methods combined with useful information from chemical analysis 

through powerful software tools. Chemometric analysis has also included 

handling, interpreting and processing of chemical data to providing the maximum 

amount of chemical information (Khanmohammadi et al., 2012).  
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The application of various chemometric techniques usually involves 

quantification, classification or discrimination so called multivariate methods by 

using data measured from a number of samples. The objective of these 

multivariate data analysis is to find out all the variations by revealing relationships 

between the samples and variables in the data matrix and to compose new latent 

variables. By this means, a mathematical model is set up by multivariate data 

analysis with known samples. Finally, unknown samples can be predicted by the 

proposed model. This method is schematically described in Figure 1.2. 

 

Figure 1.2 Contexts of Chemometrics (Brereton et al., 2018) 

In this context, chemometrics take part analytical chemistry in terms of 

design of experiments, calibration and signal processing. Also, chemometrics 

include more complex calculations not calculated with calculator. Along with 

developing computer science, many software such as Minitab, Matlab and PLS 

Toolbox are used to make the chemometric calculations (Brereton et al., 2018).  
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In mixture of one or more compound, the analysis of these compounds both 

without pretreatment and simultaneously analysis is one of the basic problem in 

analytical chemistry and others branches. Although for the analysis of mixed 

samples spectroscopic and chromatographic techniques have been used, these 

techniques are not adequate to for very low quantities and in some situations, 

multiple component interaction of analytes with each other. Therefore, the 

sensitivity of the methods and accuracy of the results are tried to be increased by 

subjecting the data obtained from the classical analytical devices to various 

mathematical algorithms. Basic information about multivariate calibration 

techniques are given below. 

1.5.1 Principles of the Multivariate Calibration 

In analytical chemistry, several applications are associated with a 

mathematical model giving relationship between properties of sample and 

instrumental signals. To determine this relationship, we need calibration and 

prediction. Therefore, the samples are prepared at various concentration levels of 

certain chemical contents and their instrument responses are recorded. Then the 

model is used to predict concentration of unknown sample.  

The main objective of a chemometrics model is to the estimation of 

parameter from a limited number of measurements. Since the measurements are 

costly, the reduced number of experiment is desired. While the responses to be 

estimation are referring to dependent variables, concentration levels are called 

independent variables (Brereton et al., 2018). In the present thesis, the responses 

are the absorbance values obtained via FTIR spectra corresponding to 

concentration levels of a series of fuel blends.  

During calibration, a correlation of the measured concentrations of sample 

and the system property is searched and generally, one response taken from 

instrument is correlated to concentration of the only one component in a sample 

which is called as univariate calibration (Bağcıoğlu, 2011). For example, in 

chromatographic or spectroscopic studies absorption at a wavelength or a peak 

area is related with the concentration of one component in a sample. This 

relationship is expressed with a mathematical model as below; 

Y = X · b        (1-1) 
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In this expression, classic calibration or inverse calibration can be if the 

model is linear. When instrumental signal is a function of concentration in classic 

calibration, concentration is a function of instrumental signal in inverse 

calibration. Therefore, in Eq. 1-1, Y is the vector of absorbance at single 

wavelength and X is a vector of concentration of one component in a number of 

samples. This situation is valid at classical calibration technique. In inverse 

calibration technique, this formula is vice versa. That is, as the spectral signal is 

written into X-vector form in rows, the corresponding component concentration is 

written into Y-vector form in rows. The scaler “b” is often called “regression 

coefficient” or “b-coefficient”, which are estimated with X and Y parameters, and 

can be calculated by the least square procedure the following equation where the 

XT is the transpose of the concentration vector. 

�̂� = (XT X)-1 ·XT ·Y       (1-2) 

After determining b, prediction is performed for the unknown samples. In 

the case of single component, it is enough to assess only one signal point. But, in 

the analysis of two or multi component system is needed to more than one signal 

points. The technique that correlated multiple responses of instrument to 

properties of a sample is known as multivariate calibration (Conzen, 2006). The 

aim of multivariate calibration techniques is to develop a model for the 

determination of mixture component with acquired signals from various 

instrument types. Multivariate calibration has several advantages over univariate 

calibration; 

 It allows for the simultaneous analysis of all components in a mixture 

quickly and in an economic way using a single spectrum. 

 If there are either outliers or the presence of unknown interfering 

components in the sample, they may cause wrong prediction of the quantity. 

Multivariate calibration can recognize this outlier or interference and overcome 

this challenge without any need for sample preparation step. Selecting more 

variables by multivariate calibration minimizes the time and effort spent during 

the eliminating of the interferences (Bağcıoğlu, 2011). 

 Instrumental signal from the concentration data can include noise. When 

multiple signal measurements are received, uncertainty in of the results is reduced. 

In multivariate calibration techniques is used either classical calibration or 

inverse calibration technique. Additionally, it can be apply the full spectrum. 

Therefore, vectors become matrix. 



12 

Multivariate calibration methods contain such as Classical least square 

(CLS), Inverse least square (ILS), Principal component analysis (PCA) and Partial 

least square (PLS) algorithms. We choose PLS calibration method, which is so 

effective on analyzing collinearity data, in this study.  

1.5.2 Partial Least Square (PLS)  

Unlike traditional calibration, it models both structure of X and of Y. To 

perform analysis with PLS for a mixture both data structures must be correlated 

with each other. It can apply to data which are strongly collinear, noisy, and a lot 

of X-variables, and also simultaneously model various response variables (Wold, 

2001). PLS originally was introduced about 1975 by Herman Wold in the field of 

econometrics for modelling chains of matrices. It called path model (Wold, 1982) 

Around 1980, Svante Wold and Harald Martens has modified the ordinary PLS 

model due to reason ordinary model was difficult to apply data from science and 

technology which is a calibration technique for relating two data matrices, 

dependent (Y) and independent (X) variables, by a multivariate model. 

In PLS, measurements are taken from a large number of samples and data 

matrices including response and concentrations is written for mathematical 

representation and their eigenvectors called factors or principal component are 

generated. These eigenvectors contain all information about analyzed system and 

they be used for calibration and prediction instead of original spectra. Actually, 

the eigenvectors obtained are the linear combination of the original variables, 

representing the degree of variation of the maximum variation in the data set. 

Furthermore, new orthogonal variables which are not correlated each other are 

obtained. This process known as decomposition thereby number of variables in 

the large data set is reduced. 

In PLS, eigenvectors or principal components (PCs) generated from data 

matrices are sorted in descending order. Due to the first PC contains most of 

variations in data matrices and the rest PCs also contain the remaining variation it 

is important that most of the variance is explained by the least number of factors. 

This has a significant result for the assessment of the spectrum. The lower PCs 

mainly qualify the important changes in spectral structures, whereas the higher 

PCs represent the disturbing part of the instrumental noise. Thus, number of 

optimum PCs are of vital for the quality of PLS model.  
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If too few PC is selected, predictive power of the model may be insufficient. 

This is called as under fitting. If number of PCs is too large, this is resulted in 

overfitting. 

Mathematically, absorbance data matrix X and concentration data matrix Y 

is decomposed producing a matrix of scores, T, U and loadings P, Q, respectively. 

The model equation for PLS are given in Equations 1.3 and 1.4 for absorbance 

and concentration data matrix, respectively. 

X = T PT + E       (1-3) 

Y = U QT + F       (1-4) 

The aim of PLS is to model all the components comprising X and Y so that 

the X block residuals, E, and Y block residuals, F are roughly equal to zero. An 

inner relationship that links the score of the X block with the scores of the Y block 

is also established. 

U = T W       (1-5) 

Equation 1-5 is advanced by considering the related inner relationship. 

Latent vectors are calculated for both blocks separately and thus the inner relation 

is developed by exchanging the scores T and U with an iterative method. After the 

model calculated, combination of the equations 1-3, 1-4 and 1-5 give a matrix of 

PLS-calibration coefficients �̂� for each component in Y. 

�̂� = P (PT P)-1 W QT      (1-6) 

�̂� = X B        (1-7) 

By using Equations 1-6, Y-variables of new samples are predicted. T, U, W, 

P and C are calculated via a PLS-Calibration algorithm described. The score, T 

and U, include the information about samples and their similarities and or 

dissimilarities with regard to investigated system. For obtaining a good fit for 

predicted component of new sample PLS model validation is an important stage. 

Validation method allows to identification of outliers and especially permits the 

optimum number of PCs. The closeness between the value predicted by the model 

and the actual value indicates the precision of the model.  
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There are three figures of merit for assessment errors of estimated model. 

They are root mean square error of calibration (RMSEC), the root mean square 

cross validation (RMSECV) and the root mean square error of prediction 

(RMSEP). RMSECV gives an idea about the closeness between the concentration 

values estimated by calibration model and accepted true values for the calibration 

samples used to obtain the model parameters. 

RMSEC= = √
1

𝑚−2  
∑ (𝑦ᵢ − ŷᵢ)𝑚

𝑖=1                                                        (1-7) 

The best model is the one which has the lowest error in prediction. One of 

the validation types is cross validation which is used leave-one-out cross 

validation carried out by predicting m calibration models, where removed each of 

m calibration samples one by one. Namely, after a sample has been removed from 

the calibration data set, model has set up by remaining samples. Removed sample 

is analyzed in the model and calculated error of analysis for this sample. Until all 

calibration samples are removed from calibration data set once, this process is 

repeated and RMSECV is calculated. 

RMSECV = √
1

𝑚   
∑ (𝑦ᵢ − ŷᵢ)𝑚

𝑖=1      (1-8) 

To calculate RMSEP, the validation samples (test set) are prepared and 

analyzed independently from calibration sample. In the developed calibration 

model, the signal values of the validation samples are replaced and the 

concentration values are estimated. 

RMSEP = √
1

𝑚   
∑ (𝑦ᵢ − ŷᵢ)𝑚

𝑖=1       (1-9) 

The symbols in the above equations indicate that yi is accepted the true 

value, ŷi is concentration value estimated by model, m is a sample number for 

used calibration data set or validation data set and the notation i indicates the ith 

sample. 

1.5.3 Principles of the Infrared Spectroscopy (IR) Techniques 

IR Spectroscopy also known as Vibrational Spectroscopy is a branch of 

molecular spectroscopy examining interactions between electromagnetic radiation 

and matter. This technique deals with vibrational transition in the molecule.   
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Substance to be analyzed absorbe infrared radiation and vibrational or 

rotational energy states of molecules is excitation. As a result, spectrum given 

information about its functional groups is obtained. IR spectrum is a characteristic 

for each molecule because different functional groups absorb in different 

frequencies IR radiation.  

IR region consist of three region be part of Near Infrared Region (NIR), 

Middle Infrared Region (MIR), Far Infrared Region (FIR). Spectral region of MIR 

is divided into as functional region (4000-1500 cm-1) and fingerprint (1500-500 

cm-1) and all bands observed in fingerprint region are specific for the molecule. 

The structure of molecules is identified by considering the stretch bands in this 

region.  

Table 1.3 Regions of Infrared Spectroscopy (Skoog, 2016) 

Infrared Regions Range Wavelengths (ƛ, µm) Range Wavenumbers (v, cm-1) 

Near (NIR) 0.78 to 2.5 12800 to 4000 

Middle (MIR) 2.5 to 50 4000 to 200 

Far (FIR) 50 to 1000 200 to 10 

Most used 2.5 to 15 4000-670 

Another application of IR technique is quantitative analysis. The technique 

measures the absorption, transmission, or reflection of MIR radiation caused by 

the interaction of the dipole moment of the molecule with the IR radiation. 

Measured property, absorbance, is linearly correlated to the concentration of 

chemical compound. This absorption abides Beer Law, thus permitting 

quantitative information (Bunaciu et al., 2016). 

The signal generated by the detectors in the IR absorption spectrometers is 

generally weak probably due to poor resolution and therefore, the sensitivity is 

low. To improve the signal to noise ratio is necessary to take more than one 

measurement which costs a lots of time. The interferences setting which is called 

Michelson interferometer has been developed for solving this issue where the 

measurement results are collected as interferogram and mathematical Fourier 

transform formula are applied on the results to improve S/N ratio. This technique 

is called Fourier Transform IR spectrometer (FTIR) as given in Figure 1.3. 
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Figure 1.3 Instrumentation of FTIR Spectroscopy. 

FTIR spectroscopy can be coupled with various equipment such as 

attenuated total reflectance (ATR) used identification and quantification about 

several analytes. Recently, FTIR-ATR technique has become popular in analytical 

chemistry due to the no sample preparation and its robustness, reliability and 

quickness. The clearest advantage is that very few amount samples can be used in 

this technique and it is important for the green chemistry. 
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2. MATERIALS AND METHOD 

2.1 Instrumentation and Procedures  

Spectroscopic analysis with a chemometric approach of mixture of 

biodiesel, diesel, mineral oil and solvent was maintained by using a Perkin Elmer 

Spectrum One FTIR spectrometer equipped with Universal Attenuated Total 

Reflectance (UATR). Operational conditions and specification of instrumentation 

are given Table 2.1. 

Table 2.1 Operational conditions and specification of FTIR-ATR  

Specification of FTIR-ATR 

Source MIR (8000-30) cm-1 

Beam splitter OptKBr 

Detector LiTaO3 

Interferometer Improved Michelson interferometer 

Accessory Universal ATR (Diamond/ZnSe Crystals) 

Operational conditions 

Spectral Region (Wavenumber) 4000-650 cm-1 

Spectral Resolution 4 cm-1 

Accumulation 4 Scans 

All FTIR spectra were recorded taking background before every 

measurement and at 23 ± 1 °C was studied. 

2.2 Chemical Reagents  

Diesel fuel was obtained from fuel service station in Trabzon, TURKEY. 

Mineral oil, biodiesel, toluene, hexane, xylene and white spirit was supplied from 

manufacturer in İzmir. Biodiesel has been obtained from EPDK licensed company 

and complies with TS EN 14214: 2012 + A1: 2014 standard. 
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2.3 Procedures 

2.3.1 Preparation of Binary Blends of Biodiesel and Diesel  

As issued by EPDK, the regulation about biodiesel mixing to diesel must 

have at least 0.5 % (V/V). Therefore, the working range of 0.00 % (V/V) to 10.00 

% (V/V) was chosen for the biodiesel. For this purpose, 50.0 mL of samples were 

prepared in a beaker by mixing biodiesel and diesel in definite proportions as 

given in Table 2.2. The blends were mixed with the magnetic bar to obtain a 

homogeneous mixture.  

Table 2.2 Percent Composition of Binary Blends of Biodiesel and Diesel  

Calibration Data Set Independent Validation Data Set 

No Biodiesel (v/v %) Diesel (v/v %) No Biodiesel (v/v %) Diesel (v/v %) 

1 0.00 100.00 1 0.25 99.75 

2 0.50 99.50 2 1.50 98.50 

3 1.00 99.00 3 3.00 97.00 

4 2.00 98.00 4 5.00 95.00 

5 4.00 96.00 5 7.00 93.00 

6 6.00 94.00 6 9.00 91.00 

7 8.00 92.00    

8 10.00 90.00    

2.3.2 Ternary Blends of Biodiesel, Mineral Oil and Solvent  

Ternary blends of biodiesel, mineral oil and solvent were prepared 

synthetically in order to analyze non-fuel products used as fuel. Mixture of 

toluene, xylene and hexane in equal mass percentages is used as a solvent. Ternary 

blends were prepared in various mass ratios to be 10.00 g of final mass. All 

ternary blend percentages are shown in Table 2.3 
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Table 2.3 Percentages of Ternary Blend of Biodiesel, Mineral Oil and Solvent 

Calibration Data Set 

No 
Biodiesel 

(w/w %) 

Mineral Oil 

(w/w %) 

Solvent 

(w/w %) 
No 

Biodiesel 

(w/w %) 

Mineral Oil 

(w/w %) 

Solvent 

(w/w %) 

1 0.53 88.41 11.05 21 18.35 63.28 18.37 

2 1.99 91.80 6.21 22 0.00 60.23 39.77 

3 5.05 87.75 7.20 23 0.00 80.15 19.85 

4 1.50 88.52 9.97 24 69.90 0.00 30.10 

5 11.02 74.18 14.81 25 29.56 70.44 0.00 

6 16.12 59.85 24.03 26 19.90 80.10 0.00 

7 20.12 63.75 16.12 27 15.07 84.93 0.00 

8 0.00 74.98 25.02 28 0.00 100.00 0.00 

9 0.00 69.72 30.28 29 100.00 0.00 0.00 

10 24.62 55.12 20.27 30 20.33 79.67 0.00 

11 27.76 34.01 38.23 Independent Validation Set 

12 35.27 25.53 39.20 1 2.08 91.56 6.36 

13 41.90 28.02 30.08 2 1.98 91.82 6.21 

14 29.76 34.46 35.78 3 7.99 82.05 9.96 

15 42.90 28.00 29.10 4 0.81 94.61 4.58 

16 14.84 69.82 15.34 5 21.82 61.75 16.44 

17 34.00 31.10 34.89 6 29.92 39.75 30.33 

18 37.86 29.97 32.17 7 42.55 51.95 5.50 

19 25.56 37.87 36.57 8 8.41 51.50 40.09 

20 43.01 43.99 12.99 9 59.79 20.21 20.00 

As shown in the Table 2.3, concentration of biodiesel was changed from 

0.00 % to 100 % (w/w), mineral oil from 0.00 % to 100 % (w/w), and solvent 

from 0.00 % to 40.09 % (w/w).  

2.3.2 Ternary Blends of Biodiesel, Mineral Oil and White Spirit  

White Spirit is one of the most commonly used as an adulterant therefore; it 

was used in this study in the preparation of ternary blends. All blends were 

prepared as described section 2.3.1 and the details were given in Table 2.4. 
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Table 2.4 Percentages of Ternary Blend of Biodiesel, Mineral Oil and White Spirit 

Calibration Data Set 

No 
Biodiesel 

(w/w %) 

Mineral Oil 

(w/w %) 

White Spirit 

(w/w %) 
No 

Biodiesel 

(w/w %) 

Mineral Oil 

(w/w %) 

White Spirit 

(w/w %) 

1 0.51 80.40 19.09 17 35.21 32.43 32.35 

2 2.17 91.61 6.22 18 47.83 26.02 26.15 

3 5.01 87.92 7.07 19 37.98 40.56 21.46 

4 1.55 88.37 10.08 20 25.92 37.11 36.97 

5 10.90 73.92 15.19 21 41.71 45.47 12.82 

6 16.05 59.65 24.30 22 18.30 63.32 18.39 

7 19.98 63.94 16.07 23 0.00 60.45 39.55 

8 0.00 74.64 25.36 24 0.00 79.62 20.38 

9 0.00 70.13 29.87 25 70.07 0.00 29.93 

10 24.60 54.87 20.53 26 29.94 70.06 0.00 

11 29.52 41.34 29.14 27 19.96 80.04 0.00 

12 36.07 24.09 39.85 28 15.11 84.89 0.00 

13 41.84 28.47 29.69 29 0.00 100.00 0.00 

14 28.78 34.84 36.38 30 0.00 0.00 100.00 

15 42.50 27.63 29.86 31 100.00 0.00 0.00 

16 14.75 68.92 16.33 32 20.30 79.70 0.00 

Independent Validation Data Set 

No 
Biodiesel 

(w/w %) 

Mineral Oil 

(w/w %) 

White Spirit 

(w/w %) 
No 

Biodiesel 

(w/w %) 

Mineral Oil 

(w/w %) 

White Spirit 

(w/w %) 

1 8.13 81.76 10.11 5 41.79 53.00 5.22 

2 0.85 94.83 4.32 6 8.50 50.74 40.76 

3 21.26 63.64 15.10 7 59.93 20.08 19.99 

4 29.94 40.02 30.04     
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The general procedure is given in Figure 2.1. IR Spectra of all prepared 

blends were recorded by FTIR-ATR. Their spectrum was exported to Excel 

program (MS Office 2016, Microsoft Corporation) in order to organize the data 

and draw plots. Calibration set and independent validation set were analyzed by 

Minitab 18.  

Calibration sets were used built for calibration model and the independent 

validation set were used to determine the predictive power of these model. To 

obtain optimum number of principal component was chosen leave one out cross 

validation and by using these components were attempt the model. After fitting 

model, independent validation set was predicted by model and RMSEP was 

calculated. 

 

 

 

 

 

 

Figure 2.1 Graphical representation of steps followed during study 

  

Multivariate Calibration – PLS 

Minitab 18 
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3. RESULTS AND DISCUSSION 

Biodiesel is emerged as an alternative fuel source. Since biodiesel has 

higher viscosity, flash point, density, and lower cold-filter plugging point than 

petro diesel, their binary blends are used. Hence, it is important of analysis that 

binary mixture. Here, we focused on to develop a method based on FTIR-ATR 

and PLS techniques to detect the amount of biodiesel in diesel. Then, ternary 

blends of biodiesel, mineral oil and solvent were determined quantitatively.  

3.1 Analysis of Binary and Ternary Blends of Biodiesel, Diesel, Mineral Oil, 

Solvent and White Spirit  

Initial studies were conducted to analyze binary mixture of biodiesel-diesel 

and the pure spectra of biodiesel and diesel are given in Figure 3.1. 

 

Figure 3.1 FTIR-ATR spectrum of pure form of biodiesel and diesel. 

As can be seen in Figure 3.1, biodiesel and diesel have different spectral 

features due to carbonyl peak belonging to biodiesel in 1741.83 cm-1 and 

differences in the fingerprint region. Therefore, the wavenumbers between 1800-

1692 cm-1 and 1327-940 cm-1 were chosen as the working range for calibration. 

Figure 3.2 shows the superimposed spectra of all blends.  

 

C=O stretch  
(1741.83 cm-1) 
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Figure 3.2 FTIR-ATR spectra of all binary blends of biodiesel-diesel 

As can be seen full spectrum, prepared blends in different percentage of 

biodiesel and diesel give rise to the variability especially in the region of 1800 -

1692 cm-1and 1327-940 cm-1 wavenumber. The peaks nearly overlap in the 

remainder region. These apparent variations are used for the chemometric model 

since they include qualitative information about amount of binary blends. 

Using concentration of binary blends and their absorbance value, 

multivariate calibration model was developed with PLS. Actual vs predicted 

concentration values were calculated by developed PLS model, which calibration 

data set and independent data set given Table 2.2, were shown in Figure 3.3.  

As shown from Figure 3.3, there is a good correlation between actual and 

predicted biodiesel because regression coefficients, R2, values of biodiesel and 

diesel is very close to 1 and this correlation is linear. Developed PLS models for 

biodiesel/diesel blends have high R2 values but this does not only the parameter 

evaluating predictive power of method. The methods of RMSEC and RMSEP 

values were also taken into consideration for the performance of model. In this 

context, we applied the PLS/FTIR-ATR model to independent test set for 

validation. 
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Figure 3.3 Actual versus predicted plot of a) biodiesel and b) diesel analyzed with PLS  

Statistical parameters for the PLS model are given in Table 3.1. 

Table 3.1 Statistical parameters of model developed with PLS-FTIR/ATR for biodiesel and diesel 

Working Spectral Region 1800-1692 cm-1 and 1327-940 cm-1 

Optimum PC Number 2 

 

 

Biodiesel (w/w %)  

 

Diesel (w/w %)  

R2 0.9992 0.9920 

RMSEP 0.29 0.29 

RMSEC 0.12 0.12 

y = 0.9992x + 0.0033

R² = 0.9992
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The data given in Table 3.1 indicates that the PLS models developed for 

both biodiesel and diesel have high R2 and low RMSEP values. In addition, 

RMSEC and RMSEP values were found to be satisfactory as they are close to 

each other. Figure 3.4 shows, residual values of biodiesel are within the error 

limits at 95 % confidence level. Hence, the model developed was proven to be 

well fitted for the quantitative determination of biodiesel in diesel/biodiesel of 

binary blends. 

 

Figure 3.4 PLS Residual Normal Plot of Biodiesel 

In the second part of experimental studies, ternary blends of biodiesel, 

mineral oil and solvent and first of all, FTIR spectra of all three components were 

recorded individually and given in Figure 3.5.  

 

Figure 3.5 FTIR-ATR spectrum of pure form of biodiesel, mineral oil and the solvent. 
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As shown in Figure 3.5, biodiesel, mineral oil and solvent nearly have same 

spectral properties. While biodiesel and mineral oil have almost identical 

absorbance values in the range of 3000-2800 cm-1, absorbance of solvent is lower. 

Furthermore, the carbonyl peak is apparently seen in 1741 cm-1.  

For PLS modelling, it is extremely important to choose spectral regions 

where each component in blend gives different stretching peak because of its 

ability to interpret source of variation. Thus, mixtures of different amounts of 

biodiesel mineral oil and solvent were prepared in order to the PLS modelling and 

the spectra of these mixtures were given in Figure 3.6.  

 

Figure 3.6 FTIR ATR spectra of all blends of biodiesel, mineral oil and solvent 

According to Figure 3.6, the variations in the peaks in the regions of 3000-

2850 cm-1 and 1800-500 cm-1 reflects the change in their concentrations. Since 

Minitab 18 program only allows the analysis of a certain number of variables, due 

to the limitations occurred in column number of the data sheet, we had to choose 

the number of variables which reflects the variability within the data. First of all, 

in 3000-2850 cm-1, 1750-1375 cm-1 and 750-630 cm-1 regions of wavenumber 

have been chosen to set up the PLS model. Principal component number which 

explains the variability above the 90% was found to be 4. In Figure 3.7 the 

calibration graphs drawn for calibration and validation data sets plotted against the 

actual values versus the predicted values. 
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Figure 3.7 a) Actual versus predicted plot of a) biodiesel, b) mineral oil and c) solvent analyzed 

with PLS at 3000-2850 cm-1, 1750-1375 cm-1 and 730-650 cm-1 
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As can be followed from Figure 3.7, the R2 values of biodiesel, mineral oil 

and solvent were found to be higher than 0.97 but, less than 0.999. Besides, the R2 

value of solvent was found to be higher than the other two components but, some 

of the data deviates from linearity. This indicates that R2 value alone is not 

satisfactory parameter for the evaluation of data. Therefore, RMSEC and RMSEP 

values should be included as tabulated in Table 3.2. 

Table 3.2 Statistical parameters of model developed with PLS-FTIR/ATR for biodiesel, mineral 

oil and solvent at 3000-2850 cm-1, 1750-1375 cm-1 and 730-650 cm-1 

Working Spectral 

Region  3000-2850 cm-1, 1750-1375 cm-1and 730-650 cm-1 

Optimum PC 

Number 4 

Biodiesel (w/w %) Mineral Oil (w/w %) Solvent ( w/w %) 

R2 0.9773 0.9868 0.9803 

RMSEC 3.34 3.11 1.86 

RMSEP 1.92 1.82 2.02 

 

According to the data presented in Table 3.2, for biodiesel and mineral oil 

components the RMSEC values were found to be high but not close to RMSEP 

values. This can be concluded as the region chosen does not represent the 

variability as desired.  Therefore, another region was chosen for further analysis.  

Since the wavelength ranges of 1750-1730 cm-1, 1550-1000 cm-1 and 800-

650 cm-1 reflect spectral variation, these regions used in new PLS modelling for 

quantitative analysis of blends. Ten principal components were found to be 

optimum for simultaneous determination of biodiesel, mineral oil and solvent. In 

this context, for the evaluation of the model, the plots of the calibration and 

validation data sets are given in Figure 3.8. 
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Figure 3.8 a) Actual versus predicted plot of a) biodiesel, b) mineral oil and c) solvent analyzed 

with PLS 
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In order to predict biodiesel, mineral oil and solvent content in blends, PLS 

model has given best results as shown in Figure 3.7. The regression coefficient, 

which gives the relationship between the actual values and the predicted values, is 

quite high and coefficient of biodiesel, mineral oil and solvent were found as 

0.9992, 0.9995, and 0.9992, respectively. Table 3.3 shows RMSEC of the model, 

R2, RMSEP for independent validation data set and optimum number of principal 

component (PC) for the PLS modelling. 

Table 3.3 Statistical parameter of model developed with PLS-FTIR/ATR for biodiesel, 

mineral oil and solvent. 

Working Spectral 

Region  1750-1730 cm-1, 1550-1000 cm-1and 800-650 cm-1 

Optimum PC 

Number 10 

Biodiesel (w/w %)    Mineral Oil (w/w %)     Solvent ( w/w %)      

R2 0.9992 0.9925 0.9992 

RMSEC 0.64 0.64 0.38 

RMSEP 1.29 1.04 1.83 

 

As can be followed from Table 3.3, the PLS model developed is applicable 

for the determine biodiesel, mineral oil and solvent content in blends. Plot of 

actual biodiesel, mineral oil and solvent values versus their PLS predicted 

concentration values support these results. The normal residual plot given in 

Figure 3.9 reveals that residuals values of biodiesel, mineral oil and solvent are 

within the error limits at 95% confidence level and no outlier observed. These 

results clearly display the adequacy of the model.  
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Figure 3.9 a) PLS Residual Normal Plot of a) Biodiesel, b) Mineral Oil and c) Solvent 
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Finally, ternary blends of biodiesel, mineral oil and white spirit were 

analyzed with FTIR-ATR. The spectra of their pure forms are shown in Figure 3.9 

 

Figure 3.10 FTIR-ATR spectrum of pure form of biodiesel, mineral oil and white spirit. 

As can be seen in Figure 3.10, each spectrum of biodiesel, mineral oil and 

white spirit have displayed high absorbance values around of 3000 and 2700 cm-1 

wavenumber and only biodiesel have absorbance peak around of 1741 cm-1. There 

are absorption peaks resulting from the biodiesel in the region of 1350-790 cm-1. 

Figure 3.11 displays the IR spectra of all the ternary mixtures at different 

variations recorded around 1330-900 cm-1 and 780-650 cm-1 wavenumber range. 

 

Figure 3.11 FTIR ATR spectrums of all blends of biodiesel, mineral oil and white spirit. 
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In addition, there are no absorption bands between 2600 and 2100 cm-1. 

Besides, peaks in 3100-2600 cm-1, 1600-1330 cm-1 and 1500-1330 cm-1 indicate 

overlapping bands indicating that univariate calibration techniques are 

insufficient. 

The regions of 1750-1730, 1550-1000 and 730-630 cm-1 wavenumbers were 

chosen to the simultaneous determination of biodiesel, mineral oil and white spirit 

in ternary blends. After recording the spectra of 39 samples as prepared for the 

PLS calibration model, the validation at these regions was made with FTIR-ATR 

and the results were loaded into the Minitab program.  

The number of principal component which are explained variations in the 

data set is obtained seven important variables. When the graphs in Figure 3.12 are 

examined, the variance which can be explained by the model with fewer new 

variables, are 99.89%, 99.87% and 99.77% for biodiesel, mineral oil and white 

spirit, respectively. 
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Figure 3.12 a) Actual versus predicted plot of a) biodiesel, b) mineral oil and c) white spirit 

analyzed with PLS 
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The parameters of model performance are given in Table 3.4 where RMSEC 

of each component in blends were found between 0.774 (w/w %) and 1.084    

(w/w %), RMSEP were found between %1.280 and 1.825. 

Table 3.4 Statistical parameter of model developed with PLS-FTIR/ATR for biodiesel, 

mineral oil and White Spirit. 

Working Spectral 

Region  
1750-1730 cm-1, 1550-1000 cm-1and 800-650 cm-1 

Optimum PC       

Number 7 

Biodiesel (w/w) Mineral Oil (w/w) White Spirit ( w/w) 

R2 0.9989 0.9977 0.9987 

RMSEC 0.77 1.05 0.92 

RMSEP 1.28 1.04 1.83 

It should be noted that the R2 values close to unity is not always an 

indication of the suitability of the model. Besides, in determining the adequacy of 

the model, the residuals must be examined. Hence, according to the Figure 3.13, 

standard residual values of biodiesel, mineral oil and white spirit are within the 

error limits at 95% confidence level and no outlier observed. These results prove 

that the model is well fitted.  
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Figure 3.13 a) PLS Residual Normal Plot of biodiesel, b) mineral oil and c) white spirit 
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4. CONCLUSION 

This work presents the combination of mid-infrared spectroscopy and 

chemometric technique used for rapid analyzing to detect diesel, biodiesel, 

mineral oil and solvent in binary or ternary blends. The PLS multivariate 

calibration model associated with FTIR-ATR spectral data was successfully 

applied for detection of biodiesel in diesel samples in the range from % 0 to % 10 

(v/v) at which 2% of biodiesel to diesel blend has been encouraged by government 

(EPDK). Hence, the developed method would allow to laboratories, particularly 

refinery one, for the determination of biodiesel blended in gasoil (diesel) with 

highly accurate and precise measurement at the 95 % CI level. This also conveys 

to the laboratories a good opportunity in terms of quickness, readiness of sample 

to analysis, less chemical consumption requirements and cost-effect per analysis 

compared to the traditional method like GC-FID. In addition, this coupled 

technique is well suited to analyzing to ternary blends of biodiesel, mineral oil, 

solvent and white spirit with a small error in an acceptable confidence level.  

The main advantage of using PLS is reducing to dimension of the data 

matrix and it take care most important variables explained maximum variance. 

Computational methods enable cost and saving time. Therefore, Combining 

FTIR-ATR with chemometrics can be used fuel adulteration with a good 

prediction level. 
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