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Dağıtık sistemler, şeffaflık, açıklık, güvenilirlik, performans ve 
ölçeklenebilirlik içeren, ortak hedefleri başarabilmek için iş birliği içinde çalışan, 
otonom birbirine bağlı hesaplama elemanlarının toplamıdır. Dağıtık bir sistem, 
başlangıçta herhangi bir yasal olmayan durumdan başlamasına rağmen sınırlı 
zamanda yasal duruma kavuşursa ve dışsal bir müdahale olmadığı sürece öyle 
kalmaya devam ederse öz-kararlıdır. Kablosuz geçici ve sensör ağları (KGSA), 
herhangi bir altyapının yardımı olmaksızın binlerce kablosuz kendi kendine 
organize sensör düğümlerinden oluşan dağıtık ağlardır ve askeri gözetim, acil 
durum operasyonu, akıllı şehir, çevre bilimi ve hassas tarım gibi birçok gerçek 
dünya uygulaması için kullanılır. 

Hakimiyet problemleri KGSA’lar gibi dağıtık sistemler için enerji etkinliği 
ve hata toleransı sağlamak için yaygın olarak kullanılır. Bunların uzantıları olan 
kapasite kısıtlı versiyonları ek olarak yük dengelemesi de sağlar. Bu tezde, 
bağımsız küme, hâkim küme ve bağlı hâkim küme kapasite kısıtlı hakimiyet 
problemleri için 3 dağıtık öz-kararlı algoritma önerdik. Bunların hepsi yakınsama 
ve kapalılık yönünden kanıtlandı. Ayrıca, test yatakları ile IRIS düğümler ve 
benzetimlerle TOSSIM üzerinde uygulandılar. 

Anahtar sözcükler: Kapasite kısıtlı bağımsız küme, kapasite kısıtlı hâkim 
küme, kapasite kısıtlı bağlı hâkim küme, öz-kararlılık, dağıtık algoritmalar 
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ABSTRACT 

A STUDY ON THE ALGORITHMS FOR CAPACITATED 

DOMINATION PROBLEMS 

ARAPOĞLU, Özkan 

PhD in International Computer Department 

Supervisor: Assoc. Prof. Dr. Orhan DAĞDEVİREN 

August 2019, 90 pages 

Distributed systems are a collection of autonomous interconnected 
computing elements that cooperate to achieve common goals which include 
transparency, openness, reliability, performance, and scalability. A distributed 
system is self-stabilizing if it converges a legitimate state notwithstanding starting 
initially from any illegitimate state and stays so without any external intervention. 
Wireless ad hoc and sensor networks (WASNs) are distributed networks that 
consist of thousands of wireless self-organized sensor nodes without the aid of 
predefined infrastructure, and they are used for many real-world applications such 
as military surveillance, emergency operation, smart city, environmental science, 
and precision agriculture.  

Domination problems are widely used to provide energy efficiency and fault 
tolerance for distributed systems such as WASNs. The capacitated versions which 
are extensions of them additionally provide load balancing. In this thesis, we 
propose three distributed self-stabilizing algorithms for capacitated domination 
problems which are independent set, dominating set, and connected dominating 
set. All of them are proven in terms of convergence and closure. Moreover, they 
are implemented on IRIS motes through testbeds and on TOSSIM through 
simulations. 

Keywords: Capacitated independent set, capacitated dominating set, 
capacitated connected dominating set, self-stabilization, distributed algorithms
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1. INTRODUCTION 

A distributed system is a collection of autonomous computational nodes 
over a communication network that cooperates to accomplish common tasks. It 
supports the sharing of resources, distribution transparency, openness, and 
scalability for utilization. The importance of distributed systems is increasing day 
by day in our lives due to the recent technological improvements. The popular 
distributed system platforms are the Internet of the Things (IoT), grids, clouds, 
mobile ad hoc networks, and wireless ad hoc and sensor networks (WASNs). 
Design of algorithms for these systems called the distributed algorithms has 
become an excellent research area of computer science, engineering, applied 
mathematics, and other disciplines since they cope with difficult and complicated 
problems than the sequential algorithms.  

WASNs are distributed networks that consist of thousands of wireless self-
organized sensor nodes without a predefined infrastructure. WASNs are used for 
many real-world applications such as military surveillance, emergency operation, 
smart city, environmental science, and precision agriculture (Rashid and Rehmani, 
2016; Jain et al., 2017; Ramson et al., 2017; Henry and Adamchuk, 2019). 
Scalability, fault tolerance, node deployment, and power management are some of 
the fundamental challenges in WASNs (Erciyes 2013). A sensor node consists of 
a sensor, microcontroller, memory, transceiver, and a battery. It has sense, 
communicating, and data processing functionalities. All the data collected by the 
sensor nodes are forwarded to a base station called a sink node (base station). The 
stored energy of the sensor nodes is meaningfully important due to a sensor node 
has generally non-rechargeable battery and restricted communication range in 
WASNs. The most energy is consumed by transceivers in order to send and 
receive messages between the sensor nodes. Therefore, a multi-hop 
communication approach is widely used due to support energy efficiency and load 
balancing in WASNs (Akyildiz et al., 2007; Singh and Sharma, 2015; Rostami et 
al., 2018).  

The management and monitoring of the distributed systems are more 
complicated since they can be much larger and failed due to faults such as 
hardware malfunction, battery drain, and link failure. Fault tolerance is the ability 
to maintain desirable services without any interruption even though faults occur. It 
is classified as masking and non-masking. The masking fault tolerance supports 
the system service always available where the non-masking fault tolerance accepts 
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a temporary inaccessible approach to the system service for a limited time. Self-
stabilization is a non-masking fault tolerance approach. A distributed system is 
self-stabilizing if it reaches a legitimate state in a finite time and stays so without 
any external intervention despite starting from an arbitrary state (Dijkstra, 1974). 

Domination problems which are independent set, dominating set, and 
connected dominating set are widely used to provide energy efficiency and fault 
tolerance for distributed systems such as WASNs. WASNs are widely modeled 
with unit disk graphs (UDGs) 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) where 𝑉𝑉 and 𝐸𝐸 denote the set of nodes 
and the set of edges, respectively. Two nodes are neighbors if the Euclidean 
distance between these nodes is lower than the transmission range (𝑇𝑇𝑟𝑟) of them 
(Clark et al, 1990). An example of WASN is presented in Figure 1.1. A subset 
𝑆𝑆 of 𝑉𝑉 is an independent set if there are no neighbor nodes in 𝑆𝑆. The size of an 
independent set represents the number of nodes that it includes. A maximum 
independent set is the largest independent set. A maximal independent set (MIS) 
is an independent set which cannot be enlarged anymore. A dominating set (DS) 
of nodes 𝐷𝐷 is a subset of 𝑉𝑉 whose every node is either a member of 𝐷𝐷 or a 
neighbor to a member of 𝐷𝐷. A connected dominating set (CDS) is a DS which 
induces a connected subgraph of 𝐺𝐺. Finding MIS, DS, and CDS of a graph is 
widely used for many important applications such as clustering, routing, data 
aggregation, topology control, and building other graph structures. 

 

Figure 1.1 An example of WASN. 

Sink

Dominator

Dominatee

WASN
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A capacitated MIS (CapMIS), capacitated DS (CapDS), and capacitated 
CDS (CapCDS) problems are extensions of MIS, DS, and CDS problems, 
respectively.  If a node is in CapMIS, CapDS or CapCDS, it is called a dominator. 
Otherwise, it is a dominatee. Each dominator node 𝑢𝑢 ∈  𝑉𝑉 has a capacity 𝑐𝑐𝑢𝑢 that 
determines the number of nodes it may dominate for these capacitated domination 
problems. The capacity is said to be hard if the dominatees of a dominator node is 
certainly limited according to its capacity. Otherwise, it is soft. On the other hand, 
the capacity of a dominator can be uniform or non-uniform. If each node in the 
graph can have a different (resp. same) capacity it is called non-uniform (resp. 
uniform). Non-uniform capacity is very appropriate for heterogeneous networks 
where uniform capacity is useful for homogeneous networks. Some dominators 
can cover a large number of dominatees, and the residual energy of them are 
consumed inefficiently. Thus, designing distributed self-stabilizing CapMIS, 
CapDS, and CapCDS algorithms are significantly important for energy efficiency, 
fault tolerance, and load balancing in WASNs in order to enhance the network 
lifetime. 

In this thesis, we propose distributed self-stabilizing algorithms for CapMIS, 
CapDS, and CapCDS problems. All algorithms are theoretically proved in terms 
of closure and convergence (Dolev, 2000). Then we tested practically their 
performance on testbeds with IRIS motes and on simulations with a discrete event 
simulator TOSSIM. Simple, connected, undirected, and randomly generated UDG 
topologies are used with various node counts and densities. Although the system 
randomly starts from an illegal state, the proposed algorithms construct always a 
CapMIS, CapDS or CapCDS when the system is stabilized. All proposed 
algorithms showed significant performance by providing energy efficiency, 
scalability, and load-balancing in order to prolong the network lifetime. 

1.1 Contribution 

General contribution of the thesis is as follows: 

• We propose the first distributed self-stabilizing soft capacitated MIS 
algorithm. It stabilizes at most �5𝑛𝑛

2

6
+ 3𝑛𝑛� moves under an unfair 

distributed scheduler where a move is changing of the local state in an 
atomic step. The proposed algorithm is called ACapMIS and has seven rules 
which are in priority order. It is theoretically proved in terms of 
convergence and closure. 
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• We propose the first distributed self-stabilizing hard capacitated DS 
algorithm. It constructs a 6-approximation CapDS at most � 5𝑛𝑛

2

3
+ 6𝑛𝑛� 

moves for UDGs under an unfair distributed scheduler where a move is 
changing of the local state in an atomic step. The proposed algorithm 
called ACapDS consists of eight rules which are in priority order. 

 
• We present the first distributed self-stabilizing hard capacitated CDS 

algorithm. We suppose that a CDS is constructed by a distributed self-
stabilizing algorithm (Kamei et al., 2016) before. Our algorithm converts 
a CDS structure to CapCDS. It can easily be composed with a distributed 
self-stabilizing CDS algorithm by using a hierarchical collateral 
composition technique (Datta et al., 2013). The proposed algorithm is 
called ACapCDS and consists of six rules which are in priority order. It 
stabilizes at most �𝑛𝑛

2

3
+ 2𝑛𝑛� moves under an unfair distributed scheduler. 

To the best of our knowledge, all proposed algorithms in this thesis are the 
first distributed self-stabilizing algorithms for CapMIS, CapDS, and CapCDS 
problems in the literature. 

1.2 Outline of the Thesis 

This thesis is organized as follows: 

• Chapter 2 is dedicated to the concept of self-stabilization which includes 
information about communication models, self-stabilizing algorithm 
design, schedulers, complexity measures, and composition techniques. 
 

• Chapter 3 presents the capacitated domination problems that are 
CapMIS, CapDS, and CapCDS. We give formal definitions, examples, 
and related works of the problems. 

 
• Chapters 4, 5, and 6 present the first distributed self-stabilizing 

algorithms for CapMIS, CapDS, and CapCDS problems. The theoretical 
analysis and performance evaluations of them are given in detail in terms 
of closure and convergence. 

 
• Finally, Chapter 7 concludes all the results of this thesis, and it gives 

some remarks and directions for further research. 
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2. SELF-STABILIZATION 

2.1 Introduction 

Constructing efficient distributed systems is tremendously desirable due to it 
performs well in realistic systems. Providing reliability, availability, and 
maintainability is considerably important in distributed systems. Reliability 
directly affects both availability and maintainability. The distributed systems are 
exposed to various kinds of faults such as hardware malfunction, battery drain, 
and link failure. These faults can occur at any time. Thus, designing a reliable 
distributed system is significantly important to cope with these faults to maintain a 
properly working system. 

The faults in distributed systems are classified into three categories in terms 
of localization in time (Tixeuil, 2009). These are transient, permanent, and 
intermittent faults. If faults temporarily strike the system, and then the system 
goes to execution which these faults no longer occur, it is called transient faults. If 
faults strike the system execution permanently, it is called permanent faults. The 
last one called intermittent faults strikes the system at any moment in the 
execution. Fault tolerance is the capability of a distributed system to maintain 
properly desirable services without any interruption regardless of faults. The 
occurrence of faults can cause the system to reach an arbitrary state. A self-
stabilization is a non-masking approach which shows the occurrence of faults to 
the observer and firstly introduced by Dijkstra (1974). An algorithm is self-
stabilizing if it automatically recovers the system to a legitimate state in a finite 
time despite it initially starts from an arbitrary state, and it stays so without any 
external intervention. Self-stabilizing algorithms typically run in the background 
and never terminate. This property supports an adaptive fault tolerance which is 
more suitable for WASNs. A self-stabilizing algorithm must satisfy closure and 
convergence properties (Dolev, 2000) which are used to prove theoretically it. 
These properties follow as: 

• Convergence: The system reaches a safe configuration in a finite time 
regardless of starting from any arbitrary configuration if no further faults 
occur during the stabilization. 
 

• Closure: Once the system reaches a safe configuration, it stays so without 
any external interventions. 
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2.2 Communication Models 

Communication is the heart of the distributed systems in which nodes 
cooperate to accomplish common tasks. Each node can only communicate with 
other adjacent nodes called neighbors within a one-hop distance. There are mainly 
three types of communication model for distributed self-stabilizing systems 
(Dolev, 2000). 

1. Shared-memory model: A node in the system can read the local variables 
of its neighbors, but it can only change its variables in an atomic step. 

 
2. Read/write atomicity model: A node can either read the local variables of 

its neighbors or update its local variable in an atomic step. Although the 
design is easier in the shared-memory model, this model is more realistic. 

 
3. Message passing model: In this model, the neighboring nodes 

communicate with each other by sending and receiving messages which 
contain their local variables. A node can either send or receive a message 
in an atomic step.  

Message passing model is more complicated than the other two models due 
to delay and message corruption by communicating. But it is more realistic for 
wireless networks. Moreover, there are two types of message passing model as 
synchronous and asynchronous.  

1. Synchronous model: In the synchronous model, each node has a local 
clock which is exactly in sync with each other and execute in a lock-step 
called round. Messages are communicated in rounds. Each node can send 
only one message, and it is taken by all its neighbors in a round. It is not 
practical since realistic applications are subjected to various kinds of 
failures. 
 

2. Asynchronous model: A system is asynchronous if there is no fixed 
upper bound on the message transmission delay between nodes. It is 
assumed that the messages are eventually delivered after unknown 
delays. Internet is a good example of an asynchronous model. This type 
of model is more suitable for real word applications since it does not 
require any strong assumptions on time and message order.  
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2.3 Self-stabilizing Algorithm Design 

A distributed system can be represented by an undirected graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) 
where 𝑉𝑉 is the set of nodes and 𝐸𝐸 is the set of edges. Two nodes 𝑢𝑢 and 𝑣𝑣 are 
neighbors if and only if (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸. 𝑁𝑁𝑣𝑣 denotes the set of neighbors of node 𝑣𝑣. 
Formally, 𝑁𝑁𝑣𝑣 = {𝑢𝑢 ∈ 𝑉𝑉|(𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸}. Each node has a set of local variables. 

Definition 2.1 (State). Each node 𝑣𝑣 has a set of local variables called state. 
The state of node 𝑣𝑣 is represented by 𝑆𝑆𝑣𝑣 ∈ 𝑃𝑃, where 𝑃𝑃 is all its possible states. 

Definition 2.2 (Configuration). A configuration 𝜆𝜆 of a graph 𝐺𝐺 consists of a 
tuple of all local states of the nodes 𝜆𝜆 = (𝑆𝑆1,𝑆𝑆2, … , 𝑆𝑆𝑛𝑛 ). Γ denotes the set of all 
configurations. 

Definition 2.3 (Self-stabilization). A system is self-stabilizing with respect to 
𝛬𝛬 such that 𝛬𝛬 ⊂ 𝛤𝛤 if and only if it satisfies the convergence and closure 
properties. 

Definition 2.4 (Legitimate configuration). Any configuration 𝜆𝜆 ∈ 𝛬𝛬 
represents a legitimate configuration. 

Definition 2.5 (Execution). An execution 𝑒𝑒 of an algorithm is a maximal 
sequence of configuration 𝑒𝑒 = {𝜆𝜆1,𝜆𝜆2, … , 𝜆𝜆𝑖𝑖 , … 𝜆𝜆𝑚𝑚} such that each configuration 
𝜆𝜆𝑖𝑖+1 is the next configuration of 𝜆𝜆𝑖𝑖 in an atomic step.  

A self-stabilizing algorithm is generally written a collection of rule sets 
formed as “<label> if <predicate> then <statement>” in a priority order. A 
predicate is a Boolean expression that may be true or false depending on the 
values of its variables. If the predicate of any rule is satisfied, it is called enabled. 
A node is called privileged if at least one of its rules is enabled. If privileged node 
𝑣𝑣 executes the statement part of the rule, the local state 𝑆𝑆𝑣𝑣 of node 𝑣𝑣 is updated 
and this is called a move. If there is more than one enabled node of a privileged 
node, it can execute only one rule which has the highest priority. If all nodes in 
the system use the same program, it is called uniform. Otherwise, it is called a 
semi-uniform. If the nodes have a unique identifier in the system, this network is 
called id-based where an anonymous network has no identifiers. All algorithms 
discussed in this thesis are uniform and use an asynchronous message passing 
model on id-based networks. 
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2.4 Schedulers 

The union of the local states of all nodes is called a global state, which can 
be either legitimate or illegitimate in distributed systems. There may exist more 
than one privileged node in any global state. A scheduler (daemon) is a virtual 
entity, which is assumed to select privileged nodes to decide which one will make 
a move. Only selected nodes make a move in an atomic step by a scheduler. In a 
distributed system, multiple selected privileged nodes can move simultaneously. 
Schedulers have an important role in calculating simply worst-case time 
complexity. Thus, the choice of a scheduler is tremendously important in 
designing of self-stabilizing algorithms. A good taxonomy for schedulers is 
presented by Dubois and Tixeuil (2011). The descriptions of the three schedulers 
are as follows: 

1. Central scheduler: A central scheduler selects only one privileged node in 
an atomic step. Thus, it is not suitable for distributed systems. 
 

2. Synchronous (Fully distributed) scheduler: A synchronous scheduler 
selects all privileged nodes in an atomic step. Therefore, it can be 
preferable for distributed homogeneous networks.  

 
3. Distributed scheduler: A distributed scheduler selects a non-empty subset 

of the privileged nodes in an atomic step. This type of scheduler includes 
both central and synchronous scheduler. It is more suitable for realistic 
applications running on distributed heterogeneous networks. 

It is easier to develop and analyze a distributed self-stabilizing algorithm 
running under a central scheduler, but the central scheduler is against the nature of 
the distributed systems since it forces the system control centralized and does not 
allow concurrent moves. Even if a synchronous scheduler allows the selected 
privileged nodes to move simultaneously, it causes a lot of overhead on the 
distributed systems by forcing synchrony. Moreover, it restricts the scalability of 
the network. Schedulers can be classified according to a fairness notion that 
represents the possibility of being selected node to make a move while being 
privileged. A (weakly) fair scheduler eventually selects a continuously privileged 
node while being privileged. An unfair scheduler may never select a continuously 
privileged node while there is at least one privileged node in the system except it. 
All algorithms proposed in this thesis run under an unfair distributed scheduler. 
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2.5 Complexity Measures 

Complexity measures of self-stabilizing algorithms demonstrate the 
performance of them. The most common complexities are time complexity, space 
complexity, and message complexity. A node can read the local states of its 
neighbors, it checks the predicate of its rules, then it updates its local state by a 
move if it is privileged and selected by a scheduler in an atomic step in the 
asynchronous message passing, we used in this work. 

Definition 2.6 (Move). A local state transition of a node 𝑣𝑣 from state 𝑆𝑆𝑣𝑣 to 
𝑆𝑆𝑣𝑣′  after the execution of a privileged node selected by a scheduler is called a 
move.  

Definition 2.7 (Step). A step is a tuple (𝜆𝜆, 𝜆𝜆′), where 𝜆𝜆′ is the next 
configuration of 𝜆𝜆 after the privilege nodes in 𝜆𝜆 make a move simultaneously. 

Definition 2.8 (Round). A round is a minimal sequence of steps in which 
each privileged node has a chance to move at the beginning of the round without 
affected by the move of its neighbors. 

Definition 2.9 (Time Complexity). The time complexity of a self-stabilizing 
algorithm is the maximum number of moves, steps or rounds of the nodes from 
initially any arbitrary configuration to a legitimate configuration. 

The time complexity of a self-stabilizing algorithm can be measured in 
terms of the maximum number of rounds, the maximum number of steps or the 
maximum number of moves. Moves complexity has an upper bound of steps and 
rounds complexity, and there is generally a correlation formed |𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑| ≤
|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠| ≤ |𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚| between them. Besides, we can say that steps complexity is 
equivalent to moves complexity under a central scheduler, which selects one 
privileged node per step, and the rounds complexity is equivalent to steps 
complexity under a synchronous scheduler since a round contains only one step.  

Most of the energy is consumed by the transceiver of a sensor node in order 
to send or receive a message in WASNs. A node broadcasts its current state to its 
neighbors when it moves. Reducing move count prolongs the lifetime of WASNs. 
Thus, move complexity is more suitable for self-stabilizing algorithms since it 
strongly demonstrates the efficiency of them.  
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2.6 Composition Techniques 

Various composition techniques are often used to simplify the designing, 
analyzing, and proving the correctness of self-stabilizing algorithms (Tel, 2001). 
The most common use of them is collateral composition (Herman, 1992), fair 
composition (Dolev, 2000), conditional composition (Datta, 2000), and 
hierarchical collateral composition (Datta, 2013). Some complicated problems 
such as graph problems can be solved while composing at least two self-
stabilizing algorithms. Suppose that 𝐴𝐴1 and 𝐴𝐴2 are two different self-stabilizing 
algorithms. Additionally, 𝑃𝑃1 and 𝑃𝑃2 are predicates over the variables of 𝐴𝐴1 and 𝐴𝐴2. 
The definitions of the composition techniques are below in detail. 

Definition 2.10 (Collateral composition). The collateral composition of 𝐴𝐴1 
and 𝐴𝐴2 denoted 𝐴𝐴2𝑜𝑜𝐴𝐴1 contains all local variables of 𝐴𝐴1 ∪ 𝐴𝐴2 where 𝐴𝐴2 read the 
variables of 𝐴𝐴1 but 𝐴𝐴1 does not. In collateral composition, both algorithms run 
concurrently where 𝐴𝐴2 uses the output of 𝐴𝐴1. When both algorithms are enabled 
at the same step, one or the other algorithm is executed nondeterministically. 

Definition 2.11 (Fair execution). An execution 𝐹𝐹𝑒𝑒 of 𝐴𝐴2𝑜𝑜𝐴𝐴1 is fair according 
to 𝐴𝐴𝑖𝑖(𝑖𝑖 ∈ {1,2}) if one of the following conditions is valid: 

1. 𝐹𝐹𝑒𝑒 is finite. 
 

2. 𝐹𝐹𝑒𝑒 boundlessly contains many steps of 𝐴𝐴𝑖𝑖. 

Definition 2.12 (Fair composition). The composition of 𝐴𝐴2𝑜𝑜𝐴𝐴1 is fair 
according to 𝐴𝐴𝑖𝑖(𝑖𝑖 ∈ {1,2}) if any execution of 𝐴𝐴2𝑜𝑜𝐴𝐴1 is fair according to 𝐴𝐴𝑖𝑖. 𝑃𝑃2 
will be constructed by 𝐴𝐴2 after 𝑃𝑃1 will be constructed by 𝐴𝐴1. 𝐴𝐴2𝑜𝑜𝐴𝐴1 stabilizes to 
𝑃𝑃2, if the following conditions are valid: 

1. 𝐴𝐴1 stabilizes to 𝑃𝑃1. 
 

2. 𝐴𝐴2 stabilizes to 𝑃𝑃2. 
 
3. Once 𝑃𝑃1 is true 𝐴𝐴1 cannot change its variables while being read by 𝐴𝐴2. 
 
4. The composition is fair according to both 𝐴𝐴1 and 𝐴𝐴2. 
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Definition 2.12 (Conditional composition). A conditional composition of 𝐴𝐴1 
and 𝐴𝐴2 represented 𝐴𝐴2𝑜𝑜|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴1. It satisfies the following four conditions: 

1. 𝐴𝐴2𝑜𝑜|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴1 contains all local variables of 𝐴𝐴1 ∪ 𝐴𝐴2. 
 

2. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a subset of the predicates of 𝐴𝐴1. 
 
3. Each predicate 𝑝𝑝2 of 𝐴𝐴2 is formed as 𝑝𝑝1 ∧ 𝑝𝑝2 𝑜𝑜𝑜𝑜 ¬𝑝𝑝1 ∧ 𝑝𝑝2 where 𝑝𝑝1 is a 

Boolean expression using 𝐴𝐴1 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 
 
4. If at least one rule of both 𝐴𝐴1 and 𝐴𝐴2 are enabled at the same step, 𝐴𝐴1 

moves after 𝐴𝐴2 since 𝐴𝐴2 uses the output of 𝐴𝐴1.  

Definition 2.13 (Hierarchical Collateral Composition). A hierarchical 
collateral composition is denoted by 𝐴𝐴2𝑜𝑜𝐴𝐴1 and 𝐴𝐴2 uses the outputs of 𝐴𝐴1. It 
satisfies the following three conditions. 

1. 𝐴𝐴2𝑜𝑜𝐴𝐴1 contains all local variables of 𝐴𝐴1 ∪ 𝐴𝐴2.  
 

2. 𝐴𝐴2𝑜𝑜𝐴𝐴1 contains all rules of 𝐴𝐴1 ∪ 𝐴𝐴2. 
 
3. Each rule 𝑃𝑃𝑖𝑖 → 𝑆𝑆𝑖𝑖 of 𝐴𝐴2 is formed by ¬𝐶𝐶 ∧ 𝑃𝑃𝑖𝑖 → 𝑆𝑆𝑖𝑖 where C is the 

disjunction of all predicates of rules in 𝐴𝐴1. 

In order to clarify the composition technique, we can give an example to 
solve a CDS problem. Suppose that 𝐴𝐴1 is a self-stabilizing DS algorithm, and 𝐴𝐴2 
is a self-stabilizing Steiner tree algorithm. Moreover, 𝑃𝑃1 and 𝑃𝑃2 are predicates 
over the variables of 𝐴𝐴1 and 𝐴𝐴2. If the dominator nodes in DS constructed by 𝐴𝐴1 is 
given 𝐴𝐴2 as an input, we can construct a self-stabilizing CDS algorithm by using a 
composition technique. Suppose that we use hierarchical collateral composition 
technique. In this case, 𝐴𝐴2𝑜𝑜𝐴𝐴1 has all variables of both 𝐴𝐴1 and 𝐴𝐴2. 𝐴𝐴2 uses outputs 
(dominators in DS) of 𝐴𝐴1 as inputs but vice versa is not true. The rules of 𝐴𝐴2 is 
formed by ¬𝑃𝑃1 ∧ 𝑃𝑃2 → 𝑆𝑆2 where 𝑆𝑆2 is the statement of rules in 𝐴𝐴2. This means 
that if 𝐴𝐴1 has not an enabled rule in a step, 𝐴𝐴2 can check its rules whether they are 
enabled or not. When 𝐴𝐴1 is stabilized, 𝐴𝐴2 can be in an arbitrary state. When both 
𝐴𝐴1 and 𝐴𝐴2 are stabilized, a CDS is constructed. The time complexity of the 
composed self-stabilizing CDS algorithm is roughly measured by the sum of 
maximum rounds, steps or moves the complexity of 𝐴𝐴1 and 𝐴𝐴2.  
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3. CAPACITATED DOMINATION PROBLEMS 

3.1 Capacitated Maximal Independent Set 

3.1.1 Independent set problem 

Clustering is a routing method that aims to block redundant data 
transmission and aims to optimize the usage of energy by forming a group of 
nodes called clusters. Each cluster has a cluster head (CH) which is responsible 
for the data aggregation, processing, and transmission. The other nodes in a 
cluster are called cluster member nodes (CMs) which collect and send the data to 
its CH. Generally, CHs consume more energy than CMs due to their relay task in 
the network. Hence, designing an efficient cluster head selection algorithm is 
significantly important for WASNs. 

An independent set of an undirected graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) is a subset of nodes in 
which no two nodes have an edge of 𝐺𝐺 where 𝑉𝑉 is the set of nodes and 𝐸𝐸 is the set 
of edges. If the size of nodes in IS is the largest, it is called a maximum 
independent set. Finding the maximum independent set problem is NP-hard. An 
IS is an MIS if it cannot be enlarged anymore. Designing an MIS algorithm for 
WASNs is very important, and it is widely used for clustering (Basagni, 2001, 
Alzoubi et al., 2003), routing, data aggregation, topology control, and building 
other graph structures. The nodes in MIS denote CHs, and the others denote CMs 
of clusters. 

Define 3.1 (Independent Set). An independent set (IS) for a given graph 
𝐺𝐺(𝑉𝑉,𝐸𝐸) is a subset 𝑆𝑆 ⊆ 𝑉𝑉 such that there exists no node adjacent in 𝑆𝑆.  

Define 3.2 (Maximal Independent Set). A maximal independent set (MIS) is 
an IS if no node can be added into IS without breaking independence. An MIS of 
maximum cardinality is called maximum. 

In Figure 3.1, an example of IS, MIS, and maximum IS is demonstrated. 
The black nodes denote the dominator nodes in IS, and the white nodes denote 
dominatee nodes out of IS. As illustrated in Figure 3.1.a, nodes 1 and 5 are in IS 
because they are not adjacent nodes. An MIS is shown in Figure 3.1.b since nodes 
1 and 2 are in IS, they are not adjacent, and moreover the IS is not enlarged. 
Figure 3.1.c presents a maximum IS which has the maximum cardinality. 
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Figure 3.1 An example of a) IS b) MIS c) Maximum IS. 

3.1.2 Capacitated maximal independent set problem 

The capacitated MIS (CapMIS) problem is an extension of MIS in which 
each node 𝑢𝑢 ∈ 𝑉𝑉 has a capacity 𝑐𝑐𝑢𝑢 that determines the number of nodes it may 
dominate. The capacity is said to be hard if the dominatees of a dominator node in 
MIS is certainly limited according to its capacity. Otherwise, it is soft. Each node 
in (resp. out of) an MIS is denoted a dominator (resp. dominatee). Some 
dominators can cover a large number of dominatees, and the residual energy of 
them are consumed inefficiently. Thus, designing a CapMIS algorithm is 
significantly important for energy efficiency and load balancing in WASNs. 

Definition 3.3 (Capacitated Maximal Independent Set). A capacitated 
maximal independent set (CapMIS) of a graph 𝐺𝐺 is an MIS such that each node in 
MIS has a capacity which is the number of nodes it may dominate. 

An example of CapMIS is demonstrated in Figure 3.2. The black nodes 
denote dominators in CapMIS, the white nodes denote dominatees out of CapMIS 
and have a dominator, and the grey nodes denote dominatees out of CapMIS and 
have a temporary dominator. The edge of the arrows shows the dominator node of 
a dominatee. In Figure 3.2.a, the capacity is non-uniform and equal to 3 and 2 for 
nodes 1 and 3 which are dominators, respectively. The dominator of nodes 2, 5, 
and 6 is 1. The dominator of nodes 4 and 7 is 3. This is a hard CapMIS since the 
capacity of the dominators does not overflow, and all dominatees has a dominator. 
As given in Figure 3.2.b, the capacity of nodes 1 and 3 is equal to 2. In this case, 
node 6 must select a temporary dominator which is either 1 or 3 since the capacity 
of nodes 1 and 3 are full if the selection policy of nodes 1 and 6 is a priority of 
minimum degree. This is a soft CapMIS since at least one dominator node must 
temporarily dominate a dominatee node until it chooses a permanent dominator. 
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 Figure 3.2 An example of a) Hard CapMIS b) Soft CapMIS. 

3.1.3 Related work 

The problem of computing an MIS has been studied by many researchers 
for decades because it is extensively used to solve many fundamental issues such 
as choosing CHs in clustering, capturing the essential challenge of symmetry 
breaking, building other graph structures. The algorithms are generally classified 
into two types which are central and distributed. The proposed central algorithms 
are more than distributed algorithms in the literature. Additionally, self-stabilizing 
central and distributed versions of MIS are very limited. 

Karp and Wigderson (1985) gave a parallel MIS algorithm of which time 
complexity is 𝑂𝑂((𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)4) using 𝑂𝑂((𝑛𝑛/(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙))3) processors in 1985. Alon et al. 
(1986) described a simple randomized MIS algorithm of which expected running 
time is 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) with 𝑂𝑂(|𝐸𝐸|𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚) processors where 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum degree 
in the graph. Luby (1986) proposed two simple parallel MIS algorithms based on 
Monte Carlo algorithms. Goldberg and Spencer (1987) presented the first 
deterministic parallel algorithm for the MIS problem with 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙4𝑛𝑛) running time. 
A parallel randomized algorithm for finding MIS in linear hypergraphs is 
presented by Luczak and Szymanska (1997). Blelloch et al. (2012) showed that 
the dependence length of the sequential greedy MIS algorithm is polylogarithmic 
𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙2𝑛𝑛) with a high probability for any graph. Fischer and Noever (2018) 
proved a high probability upper bound of 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) on the round complexity of 
(Blelloch et al., 2012) in general graphs. These algorithms are not suitable for 
distributed networks such as WASNs since they are centralized. 

Kuhn et al. (2005) proposed a deterministic distributed algorithm that 
computes an MIS on bounded growth graphs in 𝑂𝑂 (𝑙𝑙𝑙𝑙𝑙𝑙∆. 𝑙𝑙𝑙𝑙𝑙𝑙∗𝑛𝑛) time where 𝑛𝑛 
and ∆ represent the number of nodes and the maximal degree of the graph, 
respectively. Schneider and Wattenhofer (2008) presented a distributed MIS 
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algorithm of which time complexity is 𝑂𝑂 (𝑙𝑙𝑙𝑙𝑙𝑙∗𝑛𝑛) on growth-bounded graphs and 
this bound is tight proven by (Linial, 1992). A distributed MIS algorithm is 
proposed and it achieves the optimal efficiency of 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) expected time in 
(Scott et al., 2013). Ghaffari (2017) presented a randomized distributed algorithm 
providing a near-optimal local complexity for MIS via all-to-all communication. 
These distributed MIS algorithms are not self-stabilizing and they cannot provide 
fault-tolerance for unreliable platforms such as WASNs. 

Guellati and Kheddouci (2010) presented a considerable survey on self-
stabilizing algorithms for independence, domination, coloring, and matching in 
graphs. The first self-stabilizing MIS algorithm was introduced by Shukla et al. 
(1995). Hedetniemi et al. (2003) proposed a self-stabilizing MIS algorithm as 
similar to a self-stabilizing algorithm proposed by (Shukla et al.,1995). Lin and 
Huang (2003) gave an MIS algorithm, and it is an improvement of (Shukla et al., 
1995). Shi et al. (2004) proposed a self-stabilizing algorithm for the (1-MIS) 
problem. All these self-stabilizing algorithms work under a central scheduler. 

A distributed self-stabilizing MIS algorithm was introduced by Ikeda et al. 
(2002), and it stabilizes at most 𝑂𝑂(𝑛𝑛2) moves. Then, Goddard et al. (2003) 
proposed a distributed self-stabilizing MIS algorithm which stabilizes at most 
𝑂𝑂(𝑛𝑛2) moves in 𝑂𝑂(𝑛𝑛) rounds. Both algorithms run under a fully distributed 
scheduler. Turau (2007) described a distributed self-stabilizing MIS algorithm 
stabilizes at most 𝑚𝑚𝑚𝑚𝑚𝑚{3𝑛𝑛 − 5, 2𝑛𝑛} moves under an unfair distributed scheduler. 
Recently, Arapoglu et al. (2019) designed a distributed self-stabilizing MIS 
algorithm, and it stabilizes at most 𝑚𝑚𝑚𝑚𝑚𝑚{3𝑛𝑛 − 6, 2𝑛𝑛 − 1} moves under a fully 
distributed scheduler.  

Mentioned works do not consider on capacitated MIS problem, even if there 
are slightly distributed or centralized algorithms (not self-stabilizing) with soft or 
hard capacity for dominating set (Kuhn and Moscibroda, 2010; Shang and 
Whang, 2011; Kao et al., 2011; Cygan et al., 2011; Pradhan, 2012; Potluri and 
Singh, 2013; Liedloff et al., 2014; Kao et al., 2015; Li et al., 2017) and vertex 
cover (Chuzhoy and Naor, 2002; Guha et al., 2003; Gandhi et al., 2006; Kao et al., 
2019) problems which are closely related with MIS problem in the literature. 
Designing a self-stabilizing CapMIS algorithm is rather difficult since no node in 
CapMIS is adjacent. To the best of our knowledge, there is no self-stabilizing 
CapMIS algorithm in the literature.  Thus, we think that the proposed algorithm in 
this thesis is the first distributed self-stabilizing CapMIS algorithm.  
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3.2 Capacitated Dominating Set 

3.2.1 Dominating set problem 

Energy-efficient and fault-tolerant construction of dominating sets (DSs) on 
WASNs is one of the vital tasks which provide clustering, data aggregation, 
topology control, and routing. A DS is a subset of nodes in a graph 𝐺𝐺(𝐸𝐸,𝑉𝑉) such 
that each node in DS is either a member of DS or a neighbor to a member of DS. 
It is a popular structure for WASNs (Thai and Du, 2006; Yang et al., 2012). 
Additionally, an MIS is a DS. The main difference between DS and MIS, 
dominator nodes can be adjacent in DS, but it cannot be allowed in MIS. 

Definition 3.4 (Dominating set). A dominating set (DS) is a subset 𝑆𝑆 ⊆ 𝑉𝑉 of 
a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) in which each node 𝑣𝑣 ∉ 𝑆𝑆 is adjacent to at least one node 𝑢𝑢 ∈ 𝑆𝑆. 
Formally, 𝑆𝑆 = {𝑣𝑣 ∈ 𝑉𝑉: ∀ 𝑡𝑡 ∈ 𝑉𝑉 − 𝑆𝑆:∃ 𝑢𝑢 ∈ 𝑆𝑆: (𝑢𝑢, 𝑡𝑡) ∈ 𝐸𝐸}.  

Definition 3.5 (Minimal dominating set). A DS is minimal if it is not 
contained in any other DS of 𝐺𝐺. A DS is minimum if it has the smallest cardinality 
among all possible dominating sets of 𝐺𝐺. Finding minimum DS is NP-hard 
problem where minimal DS can be solved in polynomial time. 

An example of CapDS is presented in Figure 3.3. The black nodes denote 
dominators in CapDS, the white nodes denote dominatees out of DS. In Figure 
3.3.a, dominator nodes 1, 2, and 7 construct a minimal DS on a simple, connected 
and undirected graph since the other nodes have at least one dominator in their 
neighborhood. On the other side, Figure 3.3.b shows a minimum DS which is 
formed by nodes 4 and 7. In a graph, there may exist more than one minimum DS 
such that all of them has the same cardinality even if they contain different nodes. 

 
Figure 3.3 An example of a) Minimal DS b) Minimum DS. 
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3.2.2 Capacitated dominating set problem 

A capacitated DS (CapDS) is a subset of nodes (𝑆𝑆 ⊆ 𝑉𝑉) where 𝑆𝑆 is a DS, 
each non-dominator (dominatee) is assigned to a dominator, and a dominator 
cannot be matched with more than a predefined capacity (𝑐𝑐) of dominatees. 
Obviously, the problem is to minimize set 𝑆𝑆, and it is NP-hard (Garey and 
Johnson, 1979). Design of a CapDS algorithm is especially a very important issue 
for energy-efficient clustering and load-balancing in WASNs where cluster sizes 
are bounded by a capacity value. 

Definition 3.6 (Capacitated dominating set). A capacitated dominating set 
CapDS of a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) is a DS denoted by 𝑆𝑆 such that each node in DS has a 
capacity which is the number of nodes it may dominate where V is the set of nodes 
and E is the set of edges. Let 𝑉𝑉/𝑆𝑆 → 𝑆𝑆 be a mapping function which maps a 
dominatee node to a dominator. Formally, a CapDS is defined as 𝑆𝑆 = {𝑣𝑣 ∈
𝑆𝑆: |{𝑢𝑢 ∈ 𝑉𝑉 − 𝑆𝑆:𝑚𝑚(𝑢𝑢) = 𝑣𝑣}| ≤ 𝑐𝑐} where 𝑐𝑐 is a capacity. 

An example of CapDS is shown in Figure 3.4. Suppose that the capacity of 
each node is uniform and equal to 2. The black nodes denote dominators in 
CapDS and the white nodes denote dominatees out of CapDS. The edge of the 
arrows shows the dominator node of a dominatee. Otherwise, it has not chosen its 
dominator yet. Nodes 1, 5, and 8 constructs a CapDS. The dominator of node 3 
and 7 is node 5, the dominator of nodes 2 and 6 is node 8, and the dominator of 
node 4 is node 1. Each dominatee has a dominator node, and the capacity of the 
dominator nodes does not overflow. Nodes 5 and 8 have full capacity except node 
1. The system is stabilized since CapDS is constructed, and each neighbor of 
CapDS has exactly one dominator. 

 
Figure 3.4 An example of CapDS. 
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3.2.3 Related work 

Constructing dominating sets is a well-known problem has been studied by 
various researchers for decades. Kao and Liao (2007) described the (soft) 
capacitated domination problem with demand constraints such that it is to find a 
DS of minimum cardinality satisfying both the capacity and demand constraints. 
They presented a linear time 3

2
 – approximation algorithm for the unsplittable 

demand model and a pseudo-polynomial time algorithm for the splittable demand 
model. Dom et al. (2008) made an attempt to understand the behavior of the 
capacitated DS from the perspective of parameterized complexity. They showed 
that CapDS is 𝑊𝑊[1] − ℎ𝑎𝑎𝑎𝑎𝑎𝑎 when parameterized by both treewidth and solution 
size 𝑘𝑘 of the CapDS. Then, Bodlaender et al. (2009) presented that planar CapDS 
which is the first bidimensional problem is 𝑊𝑊[1] − ℎ𝑎𝑎𝑎𝑎𝑎𝑎 by resolving an open 
problem of Dom et al. (2008).  

Kuhn and Moscibroda (2010) proposed the first distributed algorithm for the 
minimum CapDS problem. This work became a pioneer for the distributed CapDS 
algorithms in the literature. Kao and Chen (2010) gave exact fixed-parameter 
tractable algorithms when parameterized by treewidth and the maximum capacity 
of the nodes. Shang and Wang (2011) proposed an approximation algorithm for 
the minimum CapDS problem. This central algorithm is a good starting point to 
understand clearly CapDS problem. Cygan et al. (2011) proposed an algorithm 
that solves CapDS exactly in 𝑂𝑂(1,89𝑛𝑛) time. Potluri and Singh (2013) presented a 
heuristic algorithm and a couple of its variants for the minimum CapDS problem. 
They claimed that the heuristic algorithm works for both uniform and non-
uniform capacity graphs. Additionally, it has better performance than its variants. 
Kao et al. (2015) presented a good survey on capacitated domination on problem 
complexity and approximation algorithms. Liedloff et al. (2014) solved minimum 
CapDS problem in 𝑂𝑂∗(1.8463𝑛𝑛) time by using dynamic programming over 
subsets. Then, Backer (2016) proposed a polynomial-time approximation scheme 
for CapDS in unweighted planar graphs when the maximum capacity and 
maximum demand are bounded. A local search algorithm to solve CapDS is 
proposed by Li et al. (2017).  

As mentioned above, there are less distributed algorithms for CapDS 
problem than centralized algorithms. However, studying on CapDS problem is 
going on from past to present. To the best of our knowledge, there is no a self-
stabilizing central or distributed algorithm for CapDS problem.  
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3.3 Capacitated Connected Dominating Set 

3.3.1 Connected dominating set problem 

In WASNs, there is no fixed physical backbone. They contain sensor nodes 
which have limited power, memory, and computational capacities act as a router, 
mainly use a broadcast communication paradigm, and the data of the entire sensor 
network can be collected by a sink node. In order to cope with the scalability and 
energy efficiency of a WASN, it is necessary to construct a virtual backbone. A 
connected dominating set (CDS) is a DS which induces a connected subgraph of a 
graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) where 𝑉𝑉 denotes the set of nodes and 𝐸𝐸 denotes the set of edges. A 
virtual backbone of a WASN can be formed by a CDS (Kim et al., 2009). 
However, the construction of a minimum CDS is NP-hard (Clark et al., 1990) 
where a minimal CDS problem is solvable in polynomial time. Each node in 
(resp. out of) the CDS is called dominator (dominatee). 

Definition 3.7 (Connected Dominating Set). A connected dominating set 
(CDS) of a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) is a DS 𝑆𝑆 ⊆ 𝑉𝑉, which induces a connected subgraph 
𝐺𝐺(𝑆𝑆). A CDS is minimal if any proper subset of minimal CDS is not a CDS. A 
CDS is minimum if it has the smallest cardinality among all possible CDSs of 𝐺𝐺. 

An example of CDS is presented in Figure 3.5. The black nodes denote 
dominators in CDS, the white nodes denote dominatees out of CDS. In Figure 
3.5.a, dominator nodes 2, 3, and 7 construct a minimal CDS on a simple, 
connected and undirected graph since the other nodes have at least one dominator 
in their neighborhood, and the dominators are connected. As shown in Figure 
3.5.b, a minimum CDS is formed by nodes 3 and 7.  

 
Figure 3.5 An example of a) Minimal CDS b) Minimum CDS. 
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3.3.2 Capacitated connected dominating set problem 

As we mentioned above, a CDS is generally used to construct a virtual 
backbone in order to cope with the scalability and energy efficiency in WASNs. 
Although a CDS has an important role as a virtual backbone in WASN, some 
dominators can cover a large number of dominatees. Thus, it is obviously shown 
that there is no load balancing for a classical CDS problem. Alternatively, we can 
say a dominator 𝑣𝑣 inefficiently consumes energy, another node 𝑢𝑢 may not 
consume more energy since it has a few dominatees where 𝑣𝑣 has a lot of 
dominatees given service by dominators. So, it is desirable to construct a CapCDS 
in order to provide load balancing, scalability, and energy efficiency which 
prolong the lifetime in WASNs. 

Definition 3.8 (Capacitated connected dominating set). A capacitated 
connected dominating set CapCDS of a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) is a CDS 𝑆𝑆 ⊆ 𝑉𝑉 such that 
each node in 𝑆𝑆 has a capacity 𝑐𝑐 which denotes the number of nodes it can 
dominate where 𝑉𝑉 is the set nodes and 𝐸𝐸 is the set of edges of graph 𝐺𝐺. 

In Figure 3.6, an example of CapCDS is presented. Suppose that the 
capacity of each node is non-uniform. A non-uniform capacity is more suitable for 
heterogeneous networks. The black nodes denote dominators in CapCDS, and the 
white nodes denote dominatees out of CapCDS. The edge of the arrows shows the 
dominator node of a dominatee. There are nine nodes which have a unique id 
from 1 to 9 increasing by 1. The capacity of 2, 7, and 8 are 3, 4, and 2, 
respectively. The dominator of nodes 5 and 9 is node 2, the dominator of nodes 3 
and 6 is node 7, and the dominator of nodes 1 and 4 is node 8. The capacities of 2 
and 7 are not full where the capacity of node 8 is full.  

 
Figure 3.6 An example of CapCDS. 
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A dominatee node becomes a self-dominator when the capacity of all its 
neighbors are full. A self-dominator in CapCDS dominates only itself. This 
property of it is the difference between a dominator and a self-dominator. In 
Figure 3.7, an example of CapCDS with a self-dominator is shown. Nodes 1, 4, 6, 
and 8 construct a CapCDS but the only node 4 is a self-dominator since the 
capacity of node 1 is full. Node 2, 3, 5, 7, and 9 have a dominator, and the edge of 
the arrows shows their dominator.  

 

Figure 3.7 An example of CapCDS with a self-dominator. 

3.3.3 Related work 

Many researchers have studied on CDS problem since Ephremides et al. 
(Ephremides,1987) proposed the idea of using a CDS as a virtual backbone. CDS 
construction algorithms are generally classified into centralized and distributed. 
The literature has comprehensive surveys on CDS construction algorithms such as 
(Liu et al., 2010; Yu et al., 2013; Vijayasharmila, 2015; Vinayagam, 2016). 

Guha and Khuller (1998), proposed two heuristic centralized CDS 
construction algorithms. Ruan et al. (2004) proposed a 1-phase greedy algorithm. 
The centralized algorithms are not suitable for decentralized networks such as 
WASNs. There exists many distributed algorithms such as (Wan et al., 2004; Gao 
et al., 2005; Funke et al., 2006; Cheng et al., 2006; Min et al., 2006; Raei et al., 
2008; Gao and Zhang, 2012, Dhawan et al., 2014; Surendran and Vijayan, 2015; 
Jallu et al., 2017; Mohanty et al., 2017, Luo et al., 2018) in the literature. 
Mentioned works do not obviously consider fault tolerance and lack self-
stabilization.  

Jain and Gupta (2005) present a self-stabilizing distributed CDS algorithm 
which stabilizes a system at most 𝑂𝑂(𝑛𝑛2) moves where 𝑛𝑛 is the number of nodes. 
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Additionally, they assume that a node can read its neighbor information within a 
3-hop distance and change variables within a 2-hop distance from it. This 
assumption is not efficient for self-stabilizing algorithms in WASNs. Then Kamei 
and Kakugawa (2007) proposed a self-stabilizing distributed approximation 
algorithm for finding the minimum CDS. The approximation ratio of the 
algorithm is at most 8�𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 + 1�, and its time complexity is 𝑂𝑂(𝑛𝑛2) moves for 
UDGs where 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 is a minimum CDS. However, it has not a safe convergence 
property which is suitable for dynamic networks. They improved (Kamei et al., 
2007) and gave a self-stabilizing distributed 7.6-approximation algorithm (Kamei 
et al., 2008) with safe convergence for the minimum CDS in UDGs. Unlike (Jain, 
2005; Kamei et al., 2007; Kamei et al., 2008) work, Goddard and Srimani (2010) 
allow anonymous nodes and proposed two anonymous self-stabilizing distributed 
algorithms for CDS in a network graph. In (Kamei et al., 2012), Kamei and 
Kakugawa designed a self-stabilizing distributed 6-approximation minimum CDS 
algorithm with safe convergence in UDGs. They give a strong assumption for 
(Kamei et al., 2012) that each node executes the algorithm in the same step in 
parallel synchronously mentioned in (Herman, 2000). Then Kamei et al. (2016) 
proposed an asynchronous self-stabilizing distributed (6 + 𝜀𝜀)-approximation 
algorithm for the minimum CDS with safe convergence in UDGs. All these 
algorithms (Kamei et al., 2007; Kamei et al., 2008; Kamet et al., 2012; Kamei et 
al., 2016) are based on the strategy of Marathe et al.’s (1995) algorithm. 

From the above discussions, it is clear that the mentioned works are not 
capacitated. Bar-Ilan et al. (1993) presented centralized approximation algorithms 
for NP-hard capacitated network center allocation problems. Shang and Wang 
(2011) proposed a centralized approximation algorithm for CapCDS problem. 
They suppose that a CDS is constructed by (Li et al., 2005) before. Their 
algorithm is heuristic, and the approximation ratio of it is �(𝑘𝑘 − 1)/(𝑘𝑘 + 1)𝛼𝛼 +
2� where 𝛼𝛼 = 8 + 𝑙𝑙𝑙𝑙5 and 𝑘𝑘 is the capacity that is uniform for all dominators. 
Khuller et al. (2014) study partial and budgeted versions of the CDS problem. 
They proposed two centralized approximation algorithms, and they obtain 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙) 
and �1

3
�1 − 1

𝑒𝑒
�� −approximation ratio for the partial and budgeted versions of 

CDS problem where 𝑞𝑞 is the quota for the partial version. They claim that they 
generalize their problems to CapCDS and weighted profit CDS which are a type 
of submodular optimization problems. To the best of our knowledge, there is no 
self-stabilizing CapCDS algorithm in the literature. In this thesis, we propose the 
first distributed self-stabilizing algorithm running under an unfair distributed 
scheduler for fault-tolerant minimal CapCDS construction in WASNs. 
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4. A DISTRIBUTED SELF-STABILIZING ALGORITHM FOR 
CAPACITATED MAXIMAL INDEPENDENT SET 
PROBLEM 

4.1 Introduction 

WASNs are composed of a large number of wireless self-organized sensor 
nodes connected through a wireless decentralized distributed network without the 
aid of a predefined infrastructure. Fault-tolerance and power management are 
fundamental challenges in WASNs. A WASN is self-stabilizing if it can initially 
start at any state and obtain a legitimate state in a finite time without any external 
intervention. Self-stabilization is an important method for providing fault-
tolerance in WASNs. An MIS is extensively used for many important applications 
such as choosing cluster heads in clustering, building other graph structures in 
WASNs. The capacitated MIS (CapMIS) problem is an extension of MIS in 
which each node has a capacity that determines the number of nodes it may 
dominate. Designing a distributed CapMIS algorithm is significantly important in 
order to provide load balancing, scalability, and energy efficiency in WASNs. 

In this section, we propose a distributed self-stabilizing capacitated maximal 
independent set algorithm. It stabilizes an unstable system at most �5𝑛𝑛

2

6
+ 3𝑛𝑛� 

moves under an unfair distributed scheduler where 𝑛𝑛 is the number of nodes, and 
move is a transition of the local states over a node in an atomic step. The proposed 
algorithm is theoretically proved in terms of convergence and closure properties 
of self-stabilization. Then, we test the performance of it on IRIS motes with 
testbeds and on TOSSIM with simulations. Simple, connected and undirected 
UDG topologies are used, and they are generated randomly for testbeds and 
simulations. Various node counts from 50 to 250 increasing by 50 in each step, 
and various network densities which are sparse, medium, and dense UDG 
topologies are used. 

The remainder of this section is formed as follows. A system model is 
shown in Section 4.2. It demonstrates the predicates and the features of the 
environments in which the proposed algorithm runs and is tested. The design and 
analysis of the proposed algorithm are presented in Section 4.3. It explains the 
proposed algorithm in detail. In Section 4.4, the theoretical analysis of the 
proposed algorithm is given. The performance evaluations of the testbed 
experiments and the simulations are discussed in detail in Section 4.5.  
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4.2 System Model  

This section launches by describing the system model of a WASN with 
distributed sensor nodes. We assume that all wireless ad hoc and sensor nodes are 
randomly deployed in a 2-D area, and they have a uniform transmission range. 
For simplicity, we model a WASN as a UDG 𝐺𝐺(𝑉𝑉,𝐸𝐸) where 𝑉𝑉 is the set of nodes 
and 𝐸𝐸 is the set of edges. There exists an edge between any two nodes u and v if 
and only if the Euclidean distance between u and v is less than or equal to 𝑇𝑇𝑟𝑟. 𝑁𝑁𝑖𝑖 
denotes the neighbors of node 𝑖𝑖 and 𝑖𝑖𝑖𝑖𝑖𝑖 denotes the identifier of node 𝑖𝑖. In this 
work, we have made the following assumptions: 

1. Each node has a distinct id. 
 

2. The capacity of each node is non-uniform which is more suitable for real-
world applications modeled heterogenous networks. 

 
3. Communication links between nodes are bidirectional. 
 
4. All nodes are homogeneously equipped except the sink node. 
 
5. Each node knows its neighbors within its 𝑇𝑇𝑟𝑟. 
 
6. The proposed algorithm is uniform since each node has the same 

program. 
 
7. The rules of the proposed algorithm are executed atomically. 
 
8. An unfair distributed scheduler is used as a runtime scheduler. Thus, it 

can select any non-empty subset of the privileged nodes at each step, and 
the selected nodes can execute their rules simultaneously. 

 
9. Message passing model is used as a communication model. A node 

broadcasts its state if it moves, and the message is received by its 
neighbors within distance one-hop. 

 
10. If the topology changes due to nodes joining or leaving the network, a 

new CapMIS should be constructed since the algorithm is self-
stabilizing. 
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4.3 Proposed Algorithm 

In this section, we present a distributed self-stabilizing algorithm for 
capacitated MIS problem under an unfair distributed scheduler. The proposed 
algorithm (ACapMIS) is shown in Algorithm 4.1 and has seven rules. The rules are 
executed atomically in each step, and they are in priority order. ACapMIS uses two 
states, and Si denotes the state of node 𝑖𝑖. If a node 𝑖𝑖 is in MIS, 𝑆𝑆𝑖𝑖 is equal to IN. 
Otherwise, 𝑖𝑖 is out of MIS and 𝑆𝑆𝑖𝑖 = OUT. IN (resp. OUT) nodes are referred to as 
dominator (resp. dominatee). Each dominator node 𝑖𝑖 has a capacity called 𝑐𝑐𝑖𝑖. 
ACapMIS supports non-uniform capacity. So, 𝑐𝑐𝑖𝑖 is a variable. Each node has a 
unique id, and 𝑖𝑖𝑖𝑖𝑖𝑖 denotes the identifier of node 𝑖𝑖. 𝑁𝑁𝑖𝑖 denotes the neighbors of 
node 𝑖𝑖. Each dominatee has 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 variables which 
represent the dominator of node 𝑖𝑖, and the temporary dominator of node 𝑖𝑖, 
respectively. On the other hand, each dominator 𝑖𝑖 has a set of dominatees denoted 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖. 

In order to formally define the rules of ACapMIS, the macros shown in 
Algorithm 4.1 are needed. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 represents the empty space of 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 to fulfill its capacity. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 represents a neighbor IN 
node j which has the maximum size of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗 
represents the candidate dominatees which have OUT state, have not a dominator, 
and is not in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 represents the candidate 
dominators which have IN state, include node 𝑖𝑖 in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗, and 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗 is greater or equal than zero. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 (resp. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖) 
denotes the neighbor node which has the minimum (resp. maximum) id in 𝑁𝑁𝑖𝑖. If a 
dominatee has at least an IN neighbor, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 will be true. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  shows the 
IN neighbor of node 𝑖𝑖 which has the minimum id. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 is true if there is 
at least one IN neighbor of 𝑖𝑖 which id is lower than node 𝑖𝑖. The null value is 
shown ⊥. The symmetry is broken by minimum id for all local variables if it 
exists. 

ACapMIS has 7 rules (Rs) where R1, R2, R3, and R4 are executed by IN nodes 
(dominators), and the other rules are executed by OUT nodes (dominatees). R1 
and R7 are used to construct an MIS, and the other rules are given to provide the 
capacity constraint. If multiple rules are enabled in any configuration, the node 
executes the rule which has the highest rule number priority. An unfair distributed 
scheduler selects a non-empty subset of the privileged nodes in each step. The 
explanations of the rules are as follows: 
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Rule 1 (R1): If the state of node 𝑖𝑖 is IN, and 𝑖𝑖 has at least an IN neighbor of 
which 𝑖𝑖𝑖𝑖 is lower than 𝑖𝑖, it changes state to OUT, sets both 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 and 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 variables to null. This rule supports that any two IN nodes 
cannot be adjacent to construct an MIS. 

Rule 2 (R2): In the initial state, the capacity of an IN node 𝑖𝑖 can be 
overflow. In this situation, R2 is enabled. If 𝑖𝑖 executes R2, it excludes the 
dominatees from 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 until the capacity is not overflowed according to 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖. There is no rule to cause that the capacity is overflow again by R2. 

Rule 3 (R3): If the state of node 𝑖𝑖 is IN, the size of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is lower 
than 𝑐𝑐𝑖𝑖, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is not empty, 𝑖𝑖 adds the dominatees into 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 until 𝑐𝑐𝑖𝑖 is equal to the size of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 according to 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 
value of the dominatees. The first phase of a domination matching between a 
dominator and a dominatee starts by R3. 

Rule 4 (R4): If a dominator node 𝑖𝑖 with 𝑆𝑆𝑖𝑖 = IN has at least a dominatee 
node 𝑗𝑗 in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 which is not in 𝑁𝑁𝑖𝑖 or 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗  is not equal to 𝑖𝑖 and not 
equal to ⊥ or of which 𝑆𝑆𝑗𝑗 is IN, 𝑖𝑖 executes R4 to exclude 𝑗𝑗 nodes from 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖. A wrong domination match is prevented by R4. 

Rule 5 (R5): A dominatee node 𝑖𝑖 choose its dominator if 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is 
null, and there is at least one candidate dominator 𝑗𝑗 which includes 𝑖𝑖 in 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗. R5 completes the second phase of a domination matching after R3. 
If there is no candidate dominator in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖, and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 is 
null, 𝑖𝑖 chooses a temporary dominator 𝑗𝑗 from IN neighbors and sets 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 𝑗𝑗 according to 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖. If 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗 of any IN 
neighbor node 𝑗𝑗 is not null, it executes R3 and adds 𝑖𝑖 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 sooner or 
later. In this situation, 𝑖𝑖 chooses 𝑗𝑗 as a dominator and sets 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 as 
null. Otherwise, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is null, and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 is not null. Thus, R5 
supports a dominatee has a dominator permanently or temporarily when the 
system is stable by R5. 

Rule 6 (R6): If a dominatee node 𝑖𝑖 has a dominator j of which 𝑆𝑆𝑗𝑗 is OUT or 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 or 𝑁𝑁𝑗𝑗 does not include 𝑖𝑖, 𝑖𝑖 sets 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥ and 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥. If 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 is not null, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is not null 
or 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 is not an element of 𝑁𝑁𝑖𝑖 or the state of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 is 
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OUT, 𝑖𝑖 sets 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 =⊥. R6 prevents that a dominatee has not a wrong 
dominator or temporary dominator. 

Rule 7 (R7): If the state of a dominatee node 𝑖𝑖 is OUT, 𝑖𝑖 has not any IN 
neighbors and all neighbors with lower id than 𝑖𝑖𝑖𝑖𝑖𝑖 have a dominator or temporary 
dominator, 𝑖𝑖 changes the state to IN, enter CapMIS, and set 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = ∅. 
There is no rule to force 𝑖𝑖 to execute R1 again because its neighbors cannot enter 
CapMIS because they have an IN neighbor 𝑖𝑖. R1 and R7 support the construction 
of CapMIS together. 

 
An example execution of ACapMIS on a simple, connected and undirected 

UDG is presented in Figure 4.1. The initial configuration of the system is 
presented in Figure 4.1.a, and all nodes are privileged in the initial configuration. 
Each node has a unique id and a non-uniform capacity variable. There are two 
states of the nodes such that the state of black nodes is IN, and the state of white 
nodes are OUT. The edge of the arrows shows the dominator of a dominatee. 
ACapMIS runs in steps under an unfair distributed scheduler. For simplicity, we 
suppose that all privileged nodes are selected by the unfair distributed scheduler in 
the first two steps. The steps of ACapMIS follow as: 

Step 1. Nodes 1 and 4 execute R6 and set 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 variables as null. 
Node 2 executes R2 and exclude node 7 from 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 to prevent the 
capacity overflow. Since node 3 has not an IN neighbor and has the least id in its 
neighborhood, node 3 executes R7 and enters CapMIS by changing its state to IN. 
Node 5 executes R5 and set 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎5 = 2. Node 6 executes R3 and adds 5 
into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷6. Node 7 executes R1 and changes its state to OUT because it 
has an IN neighbor with lower id. 

Step 2. Node 1 executes R5 and sets 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 to node 2. Node 3 adds 
node 4 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3 by R3. Node 4 executes R5 and sets 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇4 = 3. Node 6 executes R4 and excludes node 5 from 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷6. Node 7 executes R5 and sets 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷7 = 6 since it is in 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷6. 

Step 3. In the third step, node 4 executes R5 and sets 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷4 = 3 and 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷4 =⊥. The system is stabilized, and a CapMIS is constructed by 
nodes 2, 3, and 6 after this move. All dominatees with OUT state nodes have a 
dominator and all dominator nodes with IN state share the dominatees according 
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to their capacity. Only dominator 2 has full capacity. The initial states of all nodes 
and convergence steps of ACapMIS in Figure 4.1 are illustrated in Table 4.1. The 
stabilized system configuration is shown in Figure 4.1.b 

 

 Figure 4.1 An example operation of ACapMIS algorithm a) Initial state b) Stabilized state. 

Table 4.1 Convergence steps of ACapMIS in Figure 4.1. 

 Initial States Step 1 Step 2 Step 3 

Node 1 

𝑆𝑆1 = 𝑂𝑂𝑂𝑂𝑂𝑂 
𝑐𝑐1 = 2 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 = 7 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1 =⊥ 

R6 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 =⊥ 

R5 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 = 2 

 
 

Node 2 
𝑆𝑆2 = 𝐼𝐼𝐼𝐼 
𝑐𝑐2 = 2 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 = {1,5,7} 

R2 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 = {1,5}   

Node 3 

𝑆𝑆3 = 𝑂𝑂𝑂𝑂𝑂𝑂 
𝑐𝑐3 = 3 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3 =⊥ 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3 =⊥ 

R7 
𝑆𝑆3 = 𝐼𝐼𝐼𝐼 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3 = {} 

R3 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3 = {4}  

Node 4 

𝑆𝑆4 = 𝑂𝑂𝑂𝑂𝑂𝑂 
𝑐𝑐4 = 2 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷4 = 5 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇4 =⊥ 

R6 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷4 =⊥ 

R5 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇4 = 3 

R5 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷4 = 3 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇4 =⊥ 

Node 5 

𝑆𝑆5 = 𝑂𝑂𝑂𝑂𝑂𝑂 
𝑐𝑐5 =3 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷5 =⊥ 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇5 =⊥ 

R5 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷5 = 2   

Node 6 
𝑆𝑆6 = 𝐼𝐼𝐼𝐼 
𝑐𝑐6 = 4 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷6 = {7} 

R3 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷6 = {5,7} 

R4 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷6 = {7}  

Node 7 
𝑆𝑆7 = 𝐼𝐼𝐼𝐼 
𝑐𝑐7 = 1 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷7 = {} 

R1 
𝑆𝑆7 = 𝑂𝑂𝑂𝑂𝑂𝑂 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷7 =⊥ 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇7 =⊥ 

R5 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷7 = 6 
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Algorithm 4.1 ACapMIS 

Inputs. 
𝑖𝑖𝑖𝑖𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝑁𝑁𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝑐𝑐𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 

Variables. 
𝑆𝑆𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 

Macros. 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖: �𝑐𝑐𝑖𝑖 − |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖|�. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖: {𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝑂𝑂𝑂𝑂𝑂𝑂 ∧ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 =⊥∧ 𝑗𝑗 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖}. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖: {𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 ∧ 𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ∧ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗 ≥ 0}. 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖: 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 ∧  ∀𝑡𝑡 ∈ 𝑁𝑁𝑖𝑖(𝑆𝑆𝑡𝑡 = 𝐼𝐼𝐼𝐼 ∧  𝑗𝑗 ≠ 𝑡𝑡 ∧ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗

≥ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡). 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖: min{𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖}, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖: max {𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖}. 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖:∃𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖:𝑚𝑚𝑚𝑚𝑚𝑚{𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 }. 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 :∃𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 ∧ 𝑗𝑗 < 𝑖𝑖. 

Rules. 
R1. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ⋀ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 then 

𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 =⊥ 
R2. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ⋀ |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖| > 𝑐𝑐𝑖𝑖 then 

repeat 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖\{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖} 

until 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∨ |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖| ≤ 𝑐𝑐𝑖𝑖 
R3. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ∧  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 > 0 ∧ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≠ ∅ then 

repeat 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖⋃{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖} 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≔ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖\{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖} 

until 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∨  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = 0 ∨ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = ∅ 
R4. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ∧ ∃𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖[(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ≠ 𝑖𝑖 ∧ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ≠⊥) ∨ 𝑗𝑗 ∉ 𝑁𝑁𝑖𝑖 ∨  𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼] then 

repeat 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖\{𝑗𝑗} 

until 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∨  ∀𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖[(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 = 𝑖𝑖 ∨ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 =⊥) ∧ 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖 ∧ 𝑆𝑆𝑗𝑗 ≠ 𝐼𝐼𝐼𝐼]  
R5. if 𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂 ∧  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥∧ [(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≠ ∅) ∨ (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 =⊥ ∧ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖)] 
then 

𝒊𝒊𝒊𝒊 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≠ ∅ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ≔⊥ 
else 
  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ≔ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 

R6. if  𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂 ∧  ��𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠⊥∧ �𝑖𝑖 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖⋁𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ∉ 𝑁𝑁𝑖𝑖⋁𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =

𝑂𝑂𝑂𝑂𝑂𝑂��⋁� 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ≠⊥∧ �𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠⊥∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ∉ 𝑁𝑁𝑖𝑖 ∨ 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 =

𝑂𝑂𝑂𝑂𝑂𝑂��� then 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ≔⊥ 
if 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠⊥∧ �𝑖𝑖 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖⋁𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ∉ 𝑁𝑁𝑖𝑖⋁𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂� 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔⊥ 

R7. if 𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂 ∧ ¬𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ∧ ∀𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖�𝑖𝑖 < 𝑗𝑗 ∨ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ≠⊥∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 ≠⊥� then 
𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = ∅ 
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4.4 Theoretical Analysis 

4.4.1 Closure 

Lemma 4.1 When the system is stable, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑗𝑗 if and only if 𝑖𝑖 ∈
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗. 

Proof. Assume, by contradiction, that the system is stable, and 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑗𝑗 but 𝑖𝑖 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗. In this case, node 𝑖𝑖 executes R6. If 𝑖𝑖 ∈
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠ 𝑗𝑗, it causes two cases. In case 1, if 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥, node 𝑖𝑖 executes R5. In case 2, if 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠⊥ and 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠ 𝑗𝑗, node 𝑗𝑗 executes R4.   Since there is at least one move in a stable 
system, it is a contradiction. 

Theorem 4.1 In any state in which no node is enabled the set 𝑆𝑆 is a CapMIS. 

Proof. Suppose to the contrary that the system is stable, and no node is 
enabled but 𝑆𝑆 is not a CapMIS. Then either (i) 𝑆𝑆 is not an MIS or (ii) 𝑆𝑆 is an MIS 
but not capacitated. First consider (i), since 𝑆𝑆 is not an MIS, there exists at least 
one node 𝑖𝑖 ∉ 𝑆𝑆 which has no IN neighbor. If node 𝑖𝑖 has minimum id in its 
neighborhood or all of its OUT neighbors with lower id has a dominator or has a 
temporary dominator, R7 is enabled for 𝑖𝑖. If there exists at least an OUT neighbor 
node with a lower id which has not a dominator, R5 or R7 is enabled for it. This 
contradicts to the assumptions that no node is enabled. Now consider (ii), let node 
𝑗𝑗 is a node in 𝑆𝑆, and the capacity of 𝑗𝑗 is overflow. In this situation, R2 is enabled. 
No rule lets the number of elements of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 be more than the capacity. 
Any node not in 𝑆𝑆 must have at least one IN neighbor since 𝑆𝑆 is an MIS. If node 𝑖𝑖 
does not have a dominator, and the capacity of node 𝑗𝑗 which is the IN neighbor of 
node 𝑖𝑖 is not full, then node 𝑗𝑗 executes R3. If the capacity of all IN neighbors of 𝑖𝑖 
is full, 𝑖𝑖 executes R5 and sets 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 to 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖. We contradict 
our assumption. 

4.4.2 Convergence 

Lemma 4.2 A node can execute R2 at most once and as the first move. 

Proof. In the initial configuration, the number of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 of IN node 𝑗𝑗 
can overflow the capacity. In this case, R2 can be executed once as the first move, 
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and the number of elements of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗  can be at most equal to the capacity. 
No rule lets the number of elements of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 be more than the capacity. 
Thus, R2 can be executed at most once and as the first move. 

Lemma 4.3 A node executes R1 or R7 at most once. Only the (IN OUT IN) 
sequence and its suffix (OUT IN) are possible during the execution of ACapMIS 
under an unfair distributed scheduler. 

Proof. In the initial configuration, suppose that an IN node 𝑖𝑖 has an IN 
neighbor with a lower id, it must execute R1 as the first move. In order to execute 
R1 again, it must execute R7. If 𝑖𝑖 has not an IN neighbor, 𝑖𝑖 has minimum id in its 
neighborhood or the dominator or the temporary dominator of all neighbors with 
lower id are not null, 𝑖𝑖 executes R7 and changes state to IN. After this move, its 
neighbors cannot execute R7. So, 𝑖𝑖 remains in state IN so. At the end of these 
moves, 𝑖𝑖 makes sequence IN OUT IN. Consequently, a node executes R1 or R7 at 
most once. 

Lemma 4.4 R5 and R6 can be executed at most 𝑛𝑛
2

2
 times until the system is 

stable. 

Proof. Suppose that node 𝑖𝑖 has initially state OUT, and it has at least one IN 
neighbor, it can execute R5 or R6. It causes two cases. In case 1, if 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is 
not null, and 𝑖𝑖 is not in dominatees set of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖, it executes R6 as the first 
move and sets 𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 as null. After the first move, if 𝑖𝑖 has an IN neighbor 
(𝑗𝑗) which includes 𝑖𝑖 in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗, 𝑖𝑖 executes R5. Node j can execute R1 and 
change state OUT. In this case, 𝑖𝑖 executes R6. These moves (R6-R5) can repeat as 
long as 𝑖𝑖 has IN neighbors which include 𝑖𝑖 into their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 set and make 
(IN-OUT) move. There must be an IN neighbor (𝑘𝑘) which has the minimum id 
among its IN neighbors and remains as IN. If 𝑘𝑘 adds 𝑖𝑖 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘, and 𝑖𝑖 
chooses 𝑘𝑘 as dominator, 𝑖𝑖 cannot execute any rule because there is no rule which 
breaks the matched of 𝑖𝑖 and 𝑘𝑘. If 𝑘𝑘 does not add 𝑖𝑖, an OUT neighbor (𝑢𝑢) which 
made (IN-OUT) move before executes R7 and adds 𝑖𝑖 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑢𝑢 by R3, 𝑢𝑢 
cannot execute R1 again by Lemma 4.3, and 𝑖𝑖 chooses 𝑢𝑢 as a dominator, 𝑖𝑖 cannot 
execute any rule because there is no rule which breaks the matched of 𝑖𝑖 and 𝑢𝑢. 

In case 2, if 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is null, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 is not null, and 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 is initially not in Ni, 𝑖𝑖 executes R6 and sets 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 
as null. If 𝑖𝑖 has an IN neighbor (𝑗𝑗), it chooses 𝑗𝑗 as 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 by executing 
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R5. 𝑗𝑗 can execute R1 and change state OUT. Then, 𝑖𝑖 executes R6 and sets 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 as null. These moves (R6-R5) repeat as long as IN neighbors 
of i make (IN-OUT) move. If an OUT neighbor (𝑢𝑢) which made (IN-OUT) move 
before executes R7, 𝑖𝑖 chooses 𝑢𝑢 as a 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 as long as 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is 
null.  

The two cases are mutual exclusion. The following formula shows the 
greatest move count of R5 and R6 for each case where 𝑛𝑛 is the set of nodes of 
graph G:  

= 2𝑥𝑥𝑥𝑥(𝑥𝑥 = {𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂},𝑦𝑦 = �𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼�,𝑛𝑛 = 𝑥𝑥 + 𝑦𝑦 

= 2𝑥𝑥(𝑛𝑛 − 𝑥𝑥) 

= 2𝑛𝑛𝑛𝑛 − 2𝑥𝑥2 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑛𝑛
2

 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛
2

2
 is the greatest move count. 

Lemma 4.5 R3 and R4 can be executed at most 𝑛𝑛
2

3
 times until the system is 

stable. 

Proof. In the initial configuration, the system may not be stable. Suppose 
that the state of node 𝑖𝑖 is initially IN state, it can make IN OUT IN sequence. In 
order to make this sequence, it must execute IN OUT sequence as the first move 
by Lemma 4.3. Suppose that there are 𝑛𝑛 nodes in the system. In the initial 
configuration, let 𝑋𝑋 is the set of nodes in CapMIS, 𝑌𝑌 is the set of other nodes, 
|𝑋𝑋| = 𝑥𝑥 and |𝑌𝑌| = 𝑦𝑦. Any node in 𝑌𝑌 has a neighbor of at least one node in 
CapMIS. In the first step, 𝑥𝑥 nodes can execute R3, and all of them can add the 
same node into their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. In the second step, at least one node of 𝑌𝑌 
executes R5. So, the capacity of every node in 𝑋𝑋 must be one and equal in the 
worst-case scenario. In the third step (𝑥𝑥 − 1) nodes can execute R4 and remove 
the matched node in 𝑌𝑌 from their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. In the fourth step, (𝑥𝑥 − 1) nodes 
can execute R3 and add the same node into their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 from 𝑌𝑌 except the 
matched node. In the fifth step, at least one node of 𝑌𝑌 executes R5 and chooses a 
dominator from 𝑋𝑋. It is shown below with equations that how many times the 
dominators execute R3 and R4 totally until the system is stable. 

𝑥𝑥 + 𝑦𝑦 = 𝑛𝑛(𝑥𝑥 ≥ 1,𝑦𝑦 ≥ 1,𝑛𝑛 ≥ 2) 



33 

 

𝑥𝑥 + (𝑥𝑥 − 1) + (𝑥𝑥 − 1) + (𝑥𝑥 − 2) + (𝑥𝑥 − 2) + ⋯ 

=

⎩
⎨

⎧ 𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖), 𝑥𝑥 ≤ 𝑦𝑦 (4.1)
𝑥𝑥−1

𝑖𝑖=1

𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖) + 𝑥𝑥 − 𝑦𝑦, 𝑥𝑥 > 𝑦𝑦 (4.2)
𝑦𝑦−1

𝑖𝑖=1

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1: 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 𝑦𝑦 

𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖)
𝑥𝑥−1

𝑖𝑖=1
 

= 𝑥𝑥 + 2 �� 𝑥𝑥 −� 𝑖𝑖
𝑥𝑥−1

𝑖𝑖=1

𝑥𝑥−1

𝑖𝑖=1
� 

= 𝑥𝑥 + 2�(𝑥𝑥(𝑥𝑥 − 1) −
𝑥𝑥(𝑥𝑥 − 1)

2
� 

= 𝑥𝑥 + 2(𝑥𝑥2 − 𝑥𝑥) − 𝑥𝑥2 + 𝑥𝑥 

= 2𝑥𝑥 − 2𝑥𝑥 + 2𝑥𝑥2 − 𝑥𝑥2 

= 𝑥𝑥2 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑛𝑛
2

 𝑎𝑎𝑎𝑎𝑎𝑎 
𝑛𝑛2

4
 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2: 𝑖𝑖𝑖𝑖 𝑥𝑥 > 𝑦𝑦 

𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖) + 𝑥𝑥 − 𝑦𝑦
𝑦𝑦−1

𝑖𝑖=1
 

= 𝑥𝑥 + 2��𝑥𝑥
𝑦𝑦−1

𝑖𝑖=1

−� 𝑖𝑖
𝑦𝑦−1

𝑖𝑖=1

� + 𝑥𝑥 − 𝑦𝑦 

= 2𝑥𝑥 − 𝑦𝑦 + 2�𝑥𝑥(𝑦𝑦 − 1) −
𝑦𝑦(𝑦𝑦 − 1)

2
� 

= 2𝑥𝑥 − 𝑦𝑦 + 2(𝑥𝑥𝑥𝑥 − 𝑥𝑥) − 𝑦𝑦2 + 𝑦𝑦 
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= 2𝑥𝑥𝑥𝑥 − 𝑦𝑦2 

= 2(𝑛𝑛 − 𝑦𝑦)𝑦𝑦 − 𝑦𝑦2 

𝑓𝑓(𝑦𝑦) = 2𝑛𝑛𝑛𝑛 − 3𝑦𝑦2 

𝑓𝑓(𝑦𝑦)′ = 2𝑛𝑛 − 6𝑦𝑦 = 0 

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑛𝑛
3

 𝑎𝑎𝑎𝑎𝑎𝑎 
𝑛𝑛2

3
 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
𝑛𝑛2

4
<
𝑛𝑛2

3
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 ≥ 0, 𝑠𝑠𝑠𝑠 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑅𝑅3 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅4 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
𝑛𝑛2

3
 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

Theorem 4.2 ACapMIS is self-stabilizing under an unfair distributed 
scheduler and stabilizes after at most �5𝑛𝑛

2

6
+ 3𝑛𝑛� moves with a CapMIS. 

Proof. Any node can execute R1 or R7 at most once by Lemma 4.3. It 
causes at most 2𝑛𝑛 moves. From Lemma 4.2, any node executes R2 at most once. 
Thus, 𝑛𝑛 moves can be executed totally at most for R2. Any node can execute R5 
and R6 at most 𝑛𝑛

2

2
 times by Lemma 4.4. R3 and R4 can be executed at most 𝑛𝑛

2

3
 

times by nodes from Lemma 4.5. Therefore, the total move count in the worst-
case scenario is bounded by: 

= 2𝑛𝑛 + 𝑛𝑛 +
𝑛𝑛2

2
+
𝑛𝑛2

3
 

=
5𝑛𝑛2

6
+ 3𝑛𝑛 

4.5 Performance Evaluation 

4.5.1 Testbed experiments 

The proposed algorithm is evaluated through IRIS motes based on the 
ATmega1281 microcontroller that increase from 10 to 40 step by 10 in the 
testbed. IRIS motes have 2.4 GHz IEEE 802.15.4 compliant transceiver, 250 kbps 
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data rate, 8 kB RAM, 128 kB programmable flash memory. ACapMIS is written in 
NesC language supported by TinyOS and tested on TOSSIM with UDGs. Simple, 
connected and undirected UDG topologies are randomly generated. Each UDG 
topology consists of sensor nodes which have equal-sized 𝑇𝑇𝑟𝑟 and are deployed 
randomly. The topologies are classified in three densities which are sparse, 
medium, and dense where average degrees of these topologies are 4, 6, and 8, 
respectively. Java-based gateway software is developed to listen to the motes in 
the testbed via a sink node connected to a notebook.  

We measured the move count, transmitted byte count, received byte count 
and energy consumption (mJ) of ACapMIS against various node counts and 
densities. A carrier sense multiple access with collision avoidance MAC protocol 
is used in order to reduce the packet interference probability. The state of a node 
can be OUT or IN. The dominators send 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑆𝑆𝑖𝑖, 𝑐𝑐𝑖𝑖, and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 variables 
where the dominatees send 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑆𝑆𝑖𝑖, and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 variables in a message packet 
if they move. The local variables of each node are initially started randomly since 
a self-stabilizing system can be started from any initial configuration. When the 
system is stabilized, a CapMIS which includes only OUT and IN nodes is created. 

A non-uniform capacity is used for testbeds and simulations since it is very 
appropriate for heterogeneous networks which are more realistic. The maximum 
data bytes sending in a message packet do not exceed 127 bytes in the structure of 
IEEE 802.15.4. 𝐸𝐸𝑚𝑚𝑎𝑎𝑎𝑎 denotes the maximum consumed energy for sending a 127 
byte-sized packet, and 𝐸𝐸𝑖𝑖 denotes the energy of node 𝑖𝑖. Initially, we set random 
energy to each node of which energy is varying between 1000𝑥𝑥𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 and 
10000𝑥𝑥𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚. 𝐷𝐷𝑖𝑖 denotes the degree of node 𝑖𝑖, and 𝑐𝑐𝑖𝑖 denotes the capacity of 
node 𝑖𝑖. 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 denote the average energy and degree of the neighbors, 
respectively. We calculate the initial capacity of the nodes considering their 
energy as follow: 

𝑐𝑐𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧�
𝐸𝐸𝑖𝑖𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎
𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎

� , 𝑖𝑖𝑖𝑖 �
𝐸𝐸𝑖𝑖𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎
𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎

� ≤ 𝐷𝐷𝑖𝑖  (4.3)

𝐷𝐷𝑖𝑖  , 𝑖𝑖𝑖𝑖 �
𝐸𝐸𝑖𝑖𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎
𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎

� > 𝐷𝐷𝑖𝑖  (4.4)
 

Move count is a fundamental criterion affecting energy consumption due to 
decreasing move count prolongs the network lifetime in WASNs. The move count 
of ACapMIS against the node count and density is given in Figure 4.2.a. When the 
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node count rises, the move count of ACapMIS rises linearly. Move counts are at 
least in sparse topologies.  

Transmitted and received byte counts are directly affected by the move 
count. Because, when a node moves it transmits the new state of its local variables 
to its neighbors. Then, the transmitted message packets are received by its 
neighbors within one-hop distance. As illustrated in Figure 4.2.b and Figure 4.3.a, 
the transmitted and received byte counts are compatible with the move count 
shown in Figure 4.2.a. When the node count increases, the transmitted and 
received bytes increase linearly. If the density of the network increases, the 
transmitted and received bytes increase directly. However, the difference is more 
for the received byte count than the transmitted byte count since the node degree 
affects the received byte count directly. By these results, ACapMIS has high 
scalability due to act in response to rising node count and network density. 

  
(a) (b) 

Figure 4.2 a) Move count b) Transmitted byte count of ACapMIS against node count and density. 

The amount of energy consumption is calculated for each node from the 
transmitted bytes (𝑇𝑇) and received bytes (𝑅𝑅). Transmit data rate of IRIS motes is 
250 kbps (i.e. 31.25 kBps). They consume approximately 16 mA current in the 
receive mode and 17 mA in the transmitted mode with TX = 3 dBm (MEMSIC, 
2019). The input voltage of these motes is 3300 mV. According to the general 
formula E = V × I × T, the energy consumption is calculated as follow: 

𝐸𝐸 ≈  �
17𝑇𝑇 +  16𝑅𝑅

32
�3.3𝑚𝑚𝑚𝑚 (4.5) 

Energy consumption is the most important parameter affecting network 
lifetime in WASNs. Most of the energy is consumed for communication (Turau, 
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2007). Thus, the transmitted and received byte counts affects directly the energy 
consumption. As indicated in Figure 4.3.b, energy consumption rises linearly 
when the node count or the density rises. It is higher in dense topologies in which 
the transmitted messages of node 𝑖𝑖 are received by all neighbors of node 𝑖𝑖. 

  
(a) (b) 

Figure 4.3 a) Received byte count b) Energy consumption of ACapMIS against node count and 

density. 

The results observed from the figures of the testbeds show that the proposed 
algorithm ACapMIS is stable against various node counts and densities. Although 
the system is randomly started from any configuration, a CapMIS is always 
created when the system is stabilized without any external intervention. Moreover, 
ACapMIS has high scalability and energy efficiency in WASNs. 

4.5.2 Simulations 

The performance of ACapMIS is evaluated on a discrete event simulator 
TOSSIM for TinyOS sensor network under an unfair distributed scheduler. 
Simple, connected and undirected UDG topologies that are modeled of WASNs 
are randomly generated where the node count is varying from 50 to 250 by 
increasing 50 at each step. The densities of the networks are classified into three 
types which are sparse, medium, and dense of which average degrees are 
approximately 4, 6, and 8, respectively. Each UDG topology consists of sensor 
nodes which have equal-sized 𝑇𝑇𝑟𝑟 which covers one-hop distance. However, the 
proposed algorithm cope with not different-sized 𝑇𝑇𝑟𝑟. 

Each node is initially assigned with a unique id (𝑖𝑖𝑖𝑖𝑖𝑖), non-uniform capacity 
(𝑐𝑐𝑖𝑖), 𝑆𝑆𝑖𝑖, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 local variables. The 
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capacities of the nodes are randomly generated with Formula 4.3 or 4.4. Initially, 
the dominators broadcast 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑆𝑆𝑖𝑖, 𝑐𝑐𝑖𝑖, and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 variables where the 
dominatees broadcast 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑆𝑆𝑖𝑖, and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 variables in a Hello message 
packet. Then they send these packets if they are selected by an unfair distributed 
scheduler to move until the system is stabilized. In order to evaluate the 
performance of ACapMIS, we measure move count, transmitted byte count, received 
byte count, energy consumption, and the lifetime of the networks. Each 
measurement is the average of 50 repeated simulations. 

To the best of our knowledge, there is no distributed self-stabilizing 
CapMIS algorithm in the literature. Thus, we designed two distributed self-
stabilizing CapMIS algorithms from (Arapoglu et al., 2019) which is the best 
energy efficient and distributed self-stabilizing MIS algorithm in the literature so 
far by applying a hierarchical collateral composition technique. The first 
algorithm called as ARandom has a random approach in which the dominatees 
choose randomly its dominator, and the dominators definitively add them into 
their dominatees set if the node does not execute any rule of (Arapoglu et al., 
2019). The second algorithm called as AGreedy uses a minimum id priority-based 
approach in which the dominatees always choose the dominator which has the 
minimum id, and the dominators add definitively them into their dominatees set if 
the node does not execute any rule of (Arapoglu et al., 2019). We implemented 
and tested ACapMIS, ARandom, and AGreedy on TOSSIM. 

  
(a) (b) 

Figure 4.4 a) Move count of ACapMIS against node count and density. b) Move count of algorithms 

with medium density against node count. 

Move count is one of the most significant criteria affecting energy 
consumption since decreasing move count is vital to prolonging the network 
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lifetime. As shown in Figure 4.4.a, the move count of ACapMIS rises linearly when 
the node count rises. Sparse networks have at least move count. A comparison of 
the algorithms in terms of move count is represented in Figure 4.4.b. Move counts 
of the algorithms increase directly proportional with the node count where ACapMIS 
is 1.10 times better than ARandom and 1.05 times better than AGreedy. These results 
show us that the move counts of ACapMIS are significantly smaller than its 
counterparts although increasing node counts. 

As illustrated in Figure 4.5.a, the transmitted byte count increases when the 
node count increases. It is at least in the sparse graphs. In Figure 4.5.b, the 
transmitted byte count of the algorithms against node count and density is given. 
Although the behavior of the algorithms is similar against the varying node count 
and density, ACapMIS is 1.14 times better than ARandom and 1.07 times better than 
AGreedy. It is obviously shown that ACapMIS has better performance in terms of 
transmitted byte count. 

  
(a) (b) 

Figure 4.5 a) Transmitted byte count of ACapMIS against node count and density. b) Transmitted 

byte count of algorithms with medium density against node count. 

If a node moves, it transmits the new local variables to its neighbors in order 
to inform them. The transmitted message packets are taken by its neighbors. Thus, 
the transmitted byte count affects directly received byte count. As indicated in 
Figure 4.6.a, when the node count or density increases, the received byte count 
increases linearly. We can say that ACapMIS is stable against various node counts 
and densities. A comparison of the algorithms in terms of the received byte count 
is shown in Figure 4.6.b. ACapMIS is 1.11 times better than ARandom and 1.03 times 
better than AGreedy. According to the received byte count, ACapMIS has the best 
performance among the algorithms.  

50 100 150 200 250
500

1000

1500

2000

2500

3000

3500

N ode C ount

T
ra

ns
m

itt
ed

 B
yt

e 
C

ou
nt

S parse
M edium
D ense

50 100 150 200 250
500

1000

1500

2000

2500

3000

3500

4000

N ode C ount

T
ra

ns
m

itt
ed

 B
yt

e 
C

ou
nt

A
C apM IS

A
G reedy

A
R andom



40 

 

Energy consumption is directly affected by the transmitted and received 
byte counts. Since the nodes lack rechargeable battery, it has vital importance in 
WASNs. We calculated the energy consumption from Formula 4.5 since 
transmitting or receiving the message are the fundamental consumers in a 
message passing communication model in WASNs. In Figure 4.7.a, the energy 
consumption of ACapMIS against node count for various densities is presented. 
When the node count is enlarged, the energy consumption increases in a natural 
way. The energy consumption of ACapMIS increases linearly when the density 
increases. As illustrated in Figure 4.7.b, ACapMIS is 1.11 times better than ARandom 
and 1.03 times better than AGreedy. The results observed from the figures show that 
the proposed algorithm is significantly energy efficient than its counterparts.  

  
(a) (b) 

Figure 4.6 a) Received byte count of ACapMIS against node count and density. b) Received byte 

count of algorithms with medium density against node count. 

  
(a) (b) 

Figure 4.7 a) Energy consumption of ACapMIS against node count and density. b) Energy 

consumption of algorithms with medium density against node count. 
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The network lifetime is a vital issue in WASNs. The lifetime of a WASN is 
widely defined as the time from the network starts execution to the first node 
failure. Dominators consumed undoubtedly more energy than the dominatees due 
to their CH role in a clustering. The lifetime of a dominator denoted 𝐿𝐿𝑖𝑖 is 
calculated by Formula 4.6 as min {𝐿𝐿𝑖𝑖}. In Figure 4.8.a, the lifetime of ACapMIS 
against node count and density is shown. In spite of the fact that the lifetime 
generally fluctuates, when the node count or density increases the lifetime 
decreases. Because there are fewer dominators in CapMIS in dense topologies due 
to the probability of a node with less energy became a dominator is low in the 
dense topologies. As shown in Figure 4.8.b, ACapMIS has the best network lifetime 
where ACapMIS is 2.06 times better than ARandom and 2.21 times better than AGreedy. 

𝐿𝐿𝑖𝑖 =
𝐸𝐸𝑖𝑖

(𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚)|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖|
          (4.6) 

  
(a) (b) 

Figure 4.8 a) Lifetime of ACapMIS against node count and density. b) Lifetime of algorithms with 

medium density against node count. 

As a result, the simulation results are evidence that ACapMIS has high 
stabilization and scalability despite large-scale networks and various network 
densities. The simulation results are compatible with the testbed results. 
Moreover, they proved that ACapMIS copes with non-uniform capacities under an 
unfair distributed scheduler. When the system stabilized, each dominatee has a 
dominator or a temporary dominator and there are no adjacent nodes in CapMIS. 
ACapMIS is compared with ARandom and AGreedy, and it is more energy efficient than 
both of them since the distribution of dominatees according to the capacity of 
dominators is more balanced in ACapMIS. Therefore, we can obviously say that 
ACapMIS significantly prolongs the network lifetime in WASNs. 
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5. A DISTRIBUTED SELF-STABILIZING ALGORITHM FOR 
CAPACITATED DOMINATING SET PROBLEM 

5.1 Introduction 

Energy-efficient and fault-tolerant construction of dominating sets (DSs) on 
WASNs is one of the vital tasks which provides clustering, data aggregation, 
topology control, and routing. A WASN is self-stabilizing if it can initially begin 
at any state and obtain a legitimate state in a finite time without any external 
intervention. In this thesis, we propose a distributed fault-tolerant algorithm for a 
minimum capacitated DS (CapDS) construction in WASNs. To the best of our 
knowledge, this is the first self-stabilizing CapDS algorithm. We proved the self-
stabilization and asynchronous behaviors of the algorithm in terms of closure and 
convergence. Moreover, we showed that the proposed algorithm has a 6-
approximation ratio for WASNs modeled as UDGs. The proposed algorithm can 
run on all connected graphs which are id-based, but we can give a 6-
approximation ratio for only UDGs. 

The remainder of this section is formed as follows. In Section 5.2, the 
system model is presented. It demonstrates the predicates and the features of the 
environments in which the proposed algorithm runs and is tested with testbeds and 
simulations. The design and analysis of the proposed algorithm are given in 
Section 4.3. It presents the explanation of the proposed algorithm in detail. The 
theoretical analysis of the proposed algorithm is demonstrated in Section 4.4. The 
performance evaluations of the testbed experiments and the simulations are 
discussed in Section 4.5. 

5.2 System Model  

In this section, we describe the system model which is used for testbeds and 
simulations. A WASN can be modeled with a UDG 𝐺𝐺(𝑉𝑉,𝐸𝐸) where 𝑉𝑉 is the set of 
nodes and 𝐸𝐸 is the set of edges. There exists an edge between any two nodes u and 
v if and only if the Euclidean distance between u and v is less than or equal to 𝑇𝑇𝑟𝑟. 
𝑁𝑁𝑖𝑖 denotes the neighbors of node 𝑖𝑖, 𝑆𝑆𝑖𝑖 ∈ {𝐼𝐼𝐼𝐼,𝑂𝑂𝑂𝑂𝑂𝑂} denotes the state of node 𝑖𝑖, 
𝑐𝑐𝑖𝑖 denotes the capacity of node 𝑖𝑖, and 𝑖𝑖𝑖𝑖𝑖𝑖 denotes the identifier of node i. The 
system can start from any configuration. Thus, the initial values of the local 
variables are generated randomly. We have made the following assumptions in 
this work: 
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1. Each node has a distinct id. Thus, the network is id-based. 
 
2. The capacity of each node is uniform, and this type is more suitable for 

homogeneous networks. The proposed algorithm can run even if the 
capacity is a non-uniform. 

 
3. Communication links between nodes are bidirectional. 
 
4. All nodes are homogeneously equipped except the sink node. 
 
5. Each node knows its neighbors within its 𝑇𝑇𝑟𝑟, and 𝑇𝑇𝑟𝑟 is same for each 

node. However, the proposed algorithm can run even if 𝑇𝑇𝑟𝑟 is different. 
 
6. Each node executes the same program. Thus, the proposed algorithm is 

uniform. 
 
7. The rules of the proposed algorithm are executed atomically. 
 
8. An unfair distributed scheduler is used as a runtime scheduler.  
 
9. As the communication model, a message passing model is used. 
 
10. If the topology changes due to nodes joining or leaving the network, a 

new CapDS should be constructed. 

5.3 Proposed Algorithm 

The steps of the proposed algorithm called ACapDS are given in Algorithm 
5.1. The local state 𝑆𝑆𝑖𝑖 of node 𝑖𝑖 can have two variable states: OUT and IN. Node 𝑖𝑖 
with 𝑆𝑆𝑖𝑖 = OUT means that it is out of the CapDS. If it is a member of CapDS, 𝑆𝑆𝑖𝑖 
sets as IN. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is the dominator node of node 𝑖𝑖. The null value is shown 
by ⊥. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is the set of dominatees of node 𝑖𝑖. If the capacity of node 𝑖𝑖 is 
full, and 𝑖𝑖 is the dominator of all dominatees in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 then 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 equals 
to true. Otherwise, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 equals to false. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 is used to calculate 
the maximum number of additional dominatee assignment to the dominator node 𝑖𝑖 
in order to fulfill its capacity. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is the set of candidate dominatees 
that can be assigned to dominator node 𝑖𝑖. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 is the set of possible 
dominators one of which can be chosen as the dominator node for dominatee node 
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𝑖𝑖. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 show the id of minimum and maximum neighbor ids of 
node 𝑖𝑖, respectively. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 is used to set the value of 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 variable. 

The algorithm has 8 rules (Rs) where R1, R2, R3, R4, and R8 are executed 
by IN nodes, and the other rules are executed by OUT nodes. R1, R7, and R8 are 
designed to construct a DS, and the other rules are given to provide the capacity 
constraint. According to R1, if node 𝑖𝑖 has IN state, its capacity is not full, and it 
has an IN neighbor having lower id and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 then node 𝑖𝑖 changes to 
state OUT and sets its 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 variable to null. Any two IN nodes of whose 
capacities are not full cannot be neighbors, and this property is supported by R1. 
If the state of node 𝑖𝑖 is IN, and the size of the dominatees set of 𝑖𝑖 is greater than 
the capacity then it executes R2 and removes the nodes from its dominatees set 
until this set is not greater than the capacity. In the initial state, the size of 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 can overflow its capacity. R2 solves this problem.  

By R3, dominators choose their dominatees considering their capacities. If 
the size of the dominatees set of an IN node 𝑖𝑖 is lower than its capacity, and there 
exits at least one candidate dominatee which has not chosen a dominator yet, it 
executes R3 and adds the candidate dominatees into its dominatees set until its 
capacity is full. According to R4, if the dominator node 𝑖𝑖 includes node 𝑗𝑗 in its 
dominatees set where node 𝑗𝑗 points to another dominator node then node 𝑖𝑖 
excludes 𝑗𝑗 from its dominatees set. 

If the state of node 𝑖𝑖 is OUT, the dominator variable of 𝑖𝑖 is null, and there 
exists at least one IN neighbor which includes 𝑖𝑖 in its dominatees set, then node 𝑖𝑖 
executes R5 by choosing a dominator from its CanDominators set and setting its 
dominator variable. A dominatee which has not a dominator and chosen by a 
dominator, answers this dominator request and completes a matching by R5. 
According to R6, if the state of node 𝑖𝑖 is OUT, the dominator variable of node 𝑖𝑖 is 
not null, and 𝑖𝑖 is not in the dominatees set of its dominator or the state of its 
dominator is OUT or its dominator is not a neighbor of it, then node 𝑖𝑖 sets the 
dominator variable to null. If there is a wrong matching between a dominator and 
a dominatee, R4 and R6 solve this problem.  

According to R7, if the state of node 𝑖𝑖 is OUT, it does not point to a 
dominator, each dominatee neighbor of 𝑖𝑖 with lower id points to a dominator, and 
each dominator neighbor of node 𝑖𝑖 has full capacity then node 𝑖𝑖 becomes a 
dominator by changing its state to IN. R7 supports that there must be a dominator 
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in every closed neighborhood except fulfilled dominators and its dominatees. 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 provides communication between a dominator and its neighbors to inform 
whether the capacity of the dominator is full. If none of the rules mentioned so far 
are true, and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 variable is incorrect then node 𝑖𝑖 updates it by executing R8. 

An example operation of ACapDS is shown in Figure 5.1. Black nodes denote 
IN state, and white nodes denote OUT state where the capacity is uniform and 
equal to 2. Each dominatee points its dominator with an arrow. The initial state of 
the system is shown in Figure 5.1.a. Initially, nodes 1 and 5 are IN, and the other 
nodes are OUT. Nodes 2, 3, and 4 have not a dominator except node 6. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼5 is 
true but it is incorrect. The stabilized system is shown in Figure 5.1.b. Nodes 1 
and 4 are in CapDS, and their 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 variables are true. The dominator of nodes 2 
and 3 is node 1, and the dominator of nodes 5 and 6 is node 4. We can see the 
detailed convergence steps of ACapDS in Table 5.1.  

 (a) (b) 

Figure 5.1 An example execution of ACapDS algorithm. 

Table 5.1 Convergence steps of ACapDS in Figure 5.1 

 Initial States Step 1 Step 2 Step 3 Step 4 

Node 1 
𝑆𝑆1 = 𝐼𝐼𝐼𝐼 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 = {2,3,8} 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼1 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

R2 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 = {2,3} 

R8 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼1 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  

 

Node 2 𝑆𝑆2 = 𝑂𝑂𝑂𝑂𝑂𝑂 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 =⊥ 

R5 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 = 1   

 

Node 3 𝑆𝑆3 = 𝑂𝑂𝑂𝑂𝑂𝑂 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3 =⊥ 

R5 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3 = 1   

 

Node 4 𝑆𝑆4 = 𝑂𝑂𝑂𝑂𝑂𝑂 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷4 =⊥ 

R7 
𝑆𝑆4 = 𝐼𝐼𝐼𝐼 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷4 = { } 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼4 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

R3 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷4 = {5,6 }  

 
R8 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼4 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

Node 5 
𝑆𝑆5 = 𝐼𝐼𝐼𝐼 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷5 = {1,2} 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼5 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

R1 
𝑆𝑆5 = 𝑂𝑂𝑂𝑂𝑂𝑂 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷5 =⊥ 
 R5 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷5 = 4 
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Algorithm 5.1 ACapDS 
 

Inputs. 
𝑖𝑖𝑖𝑖𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝑁𝑁𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝑐𝑐𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 

Variables. 
𝑆𝑆𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖: The variable of node i that shows whether its capacity is full or not. 

Macros. 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖: �𝑐𝑐𝑖𝑖 − |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖|�. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖: {𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝑂𝑂𝑂𝑂𝑂𝑂 ∧ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 =⊥∧ 𝑗𝑗 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖}. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖: {𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 ∧ 𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ∧ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑦𝑦𝑗𝑗 ≥ 0}. 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖: min{𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖}, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖: max{𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖}. 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖: 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 ∧  ∀𝑡𝑡 ∈ 𝑁𝑁𝑖𝑖(𝑆𝑆𝑡𝑡 = 𝐼𝐼𝐼𝐼 ∧  𝑗𝑗 ≠ 𝑡𝑡 ∧ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗

≥ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡). 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ∈ {𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓}: 
- 𝒊𝒊𝒊𝒊 (𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ∧  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = 0 ∧ ∀𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 = 𝑖𝑖�  
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

- 𝒊𝒊𝒊𝒊 𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂 ∨ �𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ∧ �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ≠ 0 ∨ ∃𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖�𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 ∨

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ≠ 𝑖𝑖���  𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.  
Rules. 
R1. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ⋀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ≠ 0 ∧ ∃𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖�𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 ∧  𝑗𝑗 < 𝑖𝑖 ∧ ¬𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗� then 

𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥ 
R2. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ⋀ |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖| > 𝑐𝑐𝑖𝑖 then 

repeat 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏𝑏𝑏𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖\{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖} 

until 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∨ |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖| ≤ 𝑐𝑐𝑖𝑖 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝒊𝒊 ≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝒊𝒊 

R3. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ∧  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 > 0 ∧ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≠ ∅ then 
repeat 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖⋃{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖} 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≔ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖\{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖} 

until 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∨  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = 0 ∨ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = ∅ 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝒊𝒊 ≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝒊𝒊 

R4. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ∧ ∃𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖[(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ≠ 𝑖𝑖 ∧ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ≠⊥) ∨ 𝑗𝑗 ∉ 𝑁𝑁𝑖𝑖 ∨  𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼] then 
repeat 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖\{𝑗𝑗} 
until 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∨  ∀𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖[(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 = 𝑖𝑖 ∨ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 =⊥) ∧ 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖 ∧ 𝑆𝑆𝑗𝑗 ≠ 𝐼𝐼𝐼𝐼]  
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝒊𝒊 ≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝒊𝒊 

R5. if 𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂 ∧  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥∧ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≠ ∅ then 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 

R6. if  𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂 ∧  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠⊥∧ (𝑖𝑖 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖⋁𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 ∉ 𝑁𝑁𝑖𝑖⋁𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =
𝑂𝑂𝑂𝑂𝑂𝑂) then  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔⊥ 
R7. if 𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂 ∧ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥∧ ∀𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖 ��𝑆𝑆𝑗𝑗 = 𝑂𝑂𝑂𝑂𝑂𝑂 ∧ �𝑖𝑖 < 𝑗𝑗 ∨ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ≠⊥��⋁(𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 ∧ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗)� 
then 

𝑆𝑆𝑖𝑖: = 𝐼𝐼𝐼𝐼, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖: = ∅, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝒊𝒊 ≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝒊𝒊 
 R8. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ∧ ¬(𝑅𝑅1 − 𝑅𝑅7) ∧ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 then 
  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝒊𝒊 ≔ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝒊𝒊 
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5.4 Theoretical Analysis 

5.4.1 Closure 

Lemma 5.1 When the system is stable, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑗𝑗 if and only if 𝑖𝑖 ∈
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗. 

Proof. Assume, by contradiction, that the system is stable, and 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑗𝑗 but 𝑖𝑖 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗. In this case, node 𝑖𝑖 executes R6. If 𝑖𝑖 ∈
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠ 𝑗𝑗, it causes two cases. In case 1, if 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥, node 𝑖𝑖 executes R5. In case 2, if 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠⊥ and 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠ 𝑗𝑗, node 𝑗𝑗 executes R4. Since there is at least one move in a stable 
system, it is a contradiction. 

Theorem 5.1 In any state in which no node is enabled the set 𝑆𝑆 is a CapDS. 

Proof. Suppose to the contrary that the system is stable, and no node is 
enabled but 𝑆𝑆 is not a CapDS. Then either (i) 𝑆𝑆 is not a DS or (ii) 𝑆𝑆 is a DS but not 
capacitated. In case (i), if node 𝑖𝑖 has the least id in its neighborhood or all of its 
OUT neighbors with a lower id has a dominator and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 variables of all its IN 
neighbors are true, R7 is enabled. If there exists at least an OUT neighbor node 
with a lower id which has not a dominator, R5 or R7 is enabled for it. This 
contradicts to the assumptions that no node is enabled. Now consider (ii), let node 
𝑗𝑗 is a node in 𝑆𝑆, and the capacity of 𝑗𝑗 is overflow. In this situation, R2 is enabled. 
No rule lets the number of elements of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 be more than the capacity. 
Any node not in 𝑆𝑆 must have at least one IN neighbor since 𝑆𝑆 is a DS. If node 𝑖𝑖 
does not have a dominator, and the capacity of node 𝑗𝑗 (a neighbor of node 𝑖𝑖) is not 
full, then node 𝑗𝑗 executes R3. If the capacity of node 𝑗𝑗 is full, 𝑖𝑖 or one of its OUT 
neighbors with a lower id which does not have a dominator neighbor executes R7. 
We contradict our assumption. Lemma 5.1 provides that (dominator, dominatee) 
pairs are matched correctly then no node is enabled. Our theorem holds true. 

5.4.2 Convergence 

Lemma 5.2 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 of an IN node is exactly correct after the first move. 

Proof. In the first move, all IN nodes know the dominators of all OUT 
neighbors. Let 𝑗𝑗 is an IN node. If the size of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 is equal to the 
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capacity, the dominator of all OUT neighbors in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 is j and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗  =
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒, it changes 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗 to true. Otherwise, it is false. No rule lets the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗 to 
be incorrect after the first move.  

Lemma 5.3 A node executes R8 at most twice, and the first one must be the 
first move and the last one must be the last move. 

Proof. Let 𝑗𝑗 is an IN node in graph 𝐺𝐺. In the initial configuration, if 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗 is correct and true, then there is no rule to force 𝑗𝑗 to execute any rule. In 
order that a dominatee node 𝑖𝑖 in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 can execute R6, 𝑗𝑗 must execute R3 
to remove 𝑖𝑖 from 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗. On the other hand, 𝑖𝑖 must execute R6 so that 𝑗𝑗 
can execute R3. There is a deadlock between 𝑖𝑖 and 𝑗𝑗. In this case, if 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗 is 
correct and true in the first move it stays so. Now suppose that 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗 is initially 
incorrect, and 𝑗𝑗 does not execute any rule from R1 to R7 then node 𝑗𝑗 can execute 
R8, and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗 will be correct after the first move by Lemma 5.2. If 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗 is 
true after the first move it stays so. If 𝑗𝑗 executes R8 in any step after the first 
move, it can execute no rule. Because, when the capacities of nodes in 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 are full, and all dominatees in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗  choose 𝑗𝑗 as dominator, 
it changes 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑗𝑗 to true from false. There is no rule lets 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗 to be false 
again. Thus, a node executes R8 at most twice, and the first one must be the first 
move and the last one must be the last move.   

Lemma 5.4 A node can execute R2 at most once and as the first move. 

Proof. In the initial configuration, the number of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 of IN node 𝑗𝑗 
can overflow the capacity. In this case, R2 can be executed once as the first move, 
and the number of elements of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 can be at most equal to the capacity. 
No rule lets the number of elements of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 be more than the capacity. 
So, R2 can be executed at most once and as the first move. 

Lemma 5.5 A node executes R7 at most twice and R1 at most once. Only the 
following two sequences of states and their suffixes are possible during the 
execution of ACapDS under an unfair distributed scheduler. 

OUT IN OUT 

OUT IN OUT IN 
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Proof. In the initial configuration, suppose that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 of an OUT 
node 𝑖𝑖 is null, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 variables of all IN neighbors with lower id are true and 
incorrect, the dominators of all OUT neighbors with lower ids are not null. In this 
case, 𝑖𝑖 executes R7 and changes state to IN, and any IN neighbor with lower id 
executes R8 and changes its 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 variable to false. Node 𝑖𝑖 executes R1 as the 
second move and changes state to OUT again. Node 𝑖𝑖 makes sequence OUT IN 
OUT. In order to execute R7 again, all IN neighbors of 𝑖𝑖 with lower id must 
execute R8 and make their 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 variables to true, and all OUT neighbors with 
lower id must choose their dominator with R5. In this case, 𝑖𝑖 executes R7 second 
time and remains so. Because IN neighbors do not execute any rule after the 
second R8 by Lemma 5.2. On the other hand, even if any OUT neighbor with 
lower id assigns dominator variable to null with R6, it cannot force 𝑖𝑖 to run R1. At 
the end of these processes, 𝑖𝑖 makes sequence OUT IN OUT IN. 

 Suppose now that node 𝑖𝑖 has initially state IN if there exists a neighbor 
node 𝑗𝑗 with lower id, state IN and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑖𝑖 executes R1 and changes 
state to OUT. If 𝑖𝑖 does not execute R7, and any IN neighbor 𝑗𝑗 adds 𝑖𝑖 into 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗, 𝑖𝑖 executes R5 and does not execute any rule. At the end of these 
processes, 𝑖𝑖 makes sequence IN OUT.  

 Lemma 5.6 A node executes R5 and R6 at most 𝑛𝑛2 times until the system 
is stable. 

 Proof. Suppose that node 𝑖𝑖 has initially state OUT, it can execute R5, R6 
or R7. If 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is not null, and 𝑖𝑖 is not in the dominatees set of 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖, it executes R6 as the first move and sets 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 as null. After 
the first move, if 𝑖𝑖 has an IN neighbor (𝑗𝑗) which includes 𝑖𝑖 in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗, 𝑖𝑖 
executes R5. Node 𝑗𝑗 can execute R1 and change state OUT. In this case, 𝑖𝑖 
executes R6 again. These moves (R6-R5) can repeat as long as 𝑖𝑖 has IN neighbors 
which includes 𝑖𝑖 in their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 set and make (IN-OUT) move with R1. 
There must be an IN neighbor (k) which has the minimum id among its IN 
neighbors and remains as IN. If 𝑘𝑘 adds 𝑖𝑖 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘, and 𝑖𝑖 chooses 𝑘𝑘 as 
dominator, 𝑖𝑖 cannot execute any rule because there is no rule which breaks the 
matched of 𝑖𝑖 and 𝑘𝑘. If 𝑘𝑘 does not add 𝑖𝑖, an OUT neighbor (𝑢𝑢) that executes R1 
before can execute R7 and add 𝑖𝑖 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑢𝑢 by R3, and 𝑢𝑢 cannot execute 
R1 again by Lemma 5.5. Then node 𝑖𝑖 chooses 𝑢𝑢 as a dominator and cannot 
execute any rule because there is no rule which breaks the matched of 𝑖𝑖 and 𝑢𝑢. 
Node 𝑖𝑖 can make OUT IN OUT sequence and stays so by Lemma 5.5. In this 
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situation, we must multiply the total move count for R5 and R6 by 2. The 
following formula shows the greatest move count of R5 and R6 where 𝑛𝑛 is the set 
of nodes of graph 𝐺𝐺: 

= 4𝑥𝑥𝑥𝑥(𝑥𝑥 = {𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂},𝑦𝑦 = �𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼�,𝑛𝑛 = 𝑥𝑥 + 𝑦𝑦) 

= 4𝑥𝑥(𝑛𝑛 − 𝑥𝑥) 

= 4𝑛𝑛𝑛𝑛 − 4𝑥𝑥2 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑛𝑛
2

 𝑎𝑎𝑎𝑎𝑎𝑎 4 𝑛𝑛2

4
= 𝑛𝑛2 is the greatest move count. 

Lemma 5.7 R3 and R4 can be executed at most 2𝑛𝑛
2

3
 times until the system is 

stable. 

Proof.  In the initial configuration, the system may not be stable. Suppose 
that the state of node 𝑖𝑖 is initially IN and there are 𝑛𝑛 nodes. In the initial 
configuration, let 𝑋𝑋 is the set of nodes in CapDS, 𝑌𝑌 is the set of other nodes, |𝑋𝑋| =
𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑌𝑌| = 𝑦𝑦. Any node in 𝑌𝑌 has a neighbor of at least one node in CapDS. In 
the first step, 𝑥𝑥 nodes can execute R3, and all of them can add the same node into 
their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. In the second step, at least one node of 𝑌𝑌 executes R5. So, the 
capacity of every node in 𝑋𝑋 must be one and equal in the worst-case scenario. In 
the third step (𝑥𝑥 − 1) nodes can execute R4 and remove the matched node in 𝑌𝑌 
from their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. In the fourth step, (𝑥𝑥 − 1) nodes can execute R3 and add 
the same node into their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 from 𝑌𝑌 except the matched node. In the 
fifth step, at least one node of 𝑌𝑌 executes R5 and chooses a dominator from 𝑋𝑋. 
Node 𝑖𝑖 can make IN OUT IN sequence and stays so by Lemma 5.5. In this 
situation, we must multiply the total move count for R3 and R4 by 2. It is shown 
below with equations that how many times the dominators execute R3 and R4 
totally until the system is stable. 

𝑥𝑥 + 𝑦𝑦 = 𝑛𝑛(𝑥𝑥 ≥ 1,𝑦𝑦 ≥ 1,𝑛𝑛 ≥ 2 

𝑥𝑥 + (𝑥𝑥 − 1) + (𝑥𝑥 − 1) + (𝑥𝑥 − 2) + (𝑥𝑥 − 2) + ⋯ 

=

⎩
⎨

⎧ 𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖), 𝑥𝑥 ≤ 𝑦𝑦 (5.1)
𝑥𝑥−1

𝑖𝑖=1

𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖) + 𝑥𝑥 − 𝑦𝑦, 𝑥𝑥 > 𝑦𝑦 (5.2)
𝑦𝑦−1

𝑖𝑖=1
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1: 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 𝑦𝑦 

𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖)
𝑥𝑥−1

𝑖𝑖=1
 

= 𝑥𝑥 + 2 �� 𝑥𝑥 −� 𝑖𝑖
𝑥𝑥−1

𝑖𝑖=1

𝑥𝑥−1

𝑖𝑖=1
� 

= 𝑥𝑥2 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑛𝑛
2

 𝑎𝑎𝑎𝑎𝑎𝑎 2
𝑛𝑛2

4
=
𝑛𝑛2

2
 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2: 𝑖𝑖𝑖𝑖 𝑥𝑥 > 𝑦𝑦 

𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖) + 𝑥𝑥 − 𝑦𝑦
𝑦𝑦−1

𝑖𝑖=1
 

= 𝑥𝑥 + 2��𝑥𝑥
𝑦𝑦−1

𝑖𝑖=1

−� 𝑖𝑖
𝑦𝑦−1

𝑖𝑖=1

� + 𝑥𝑥 − 𝑦𝑦 

= 2𝑥𝑥 − 𝑦𝑦 + 2𝑥𝑥(𝑦𝑦 − 1) − 𝑦𝑦(𝑦𝑦 − 1) 

= 2𝑦𝑦(𝑛𝑛 − 𝑦𝑦) − 𝑦𝑦2 

𝑓𝑓(𝑦𝑦) = 2𝑛𝑛𝑛𝑛 − 3𝑦𝑦2 

𝑓𝑓(𝑦𝑦)′ = 2𝑛𝑛 − 6𝑦𝑦 = 0 

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑛𝑛
3

 𝑎𝑎𝑎𝑎𝑎𝑎 
2𝑛𝑛2

3
 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.   

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
𝑛𝑛2

2
<

2𝑛𝑛2

3
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 ≥ 0, 𝑠𝑠𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑅𝑅3 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅4 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
2𝑛𝑛2

3
 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

 Theorem 5.2 ACapDS is self-stabilizing under an unfair distributed 
scheduler and stabilizes after at most � 5𝑛𝑛

2

3
+ 6𝑛𝑛� moves with a CapDS.  
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Proof. Any node can execute R1 at most once and R7 twice by Lemma 5.5. It 
causes at most 3𝑛𝑛 moves. From Lemma 5.4, any node executes R2 at most once. 
Thus, 𝑛𝑛 moves can be executed totally at most by R2. R3 and R4 can be executed 
at most 2𝑛𝑛

2

3
 times by the nodes from Lemma 5.7. R5 and R6 can be executed at 

most 𝑛𝑛2 times by the nodes from Lemma 5.6. R8 can be executed at most 2𝑛𝑛 
times by nodes from Lemma 5.3. So that the total move count is bounded by 
� 5𝑛𝑛

2

3
+ 6𝑛𝑛� 

Theorem 5.3 ACapDS returns a solution of the minimum CapDS problem 
with approximation ratio 6 for a UDG model of nodes having a uniform capacity. 

Proof. Suppose that the set 𝐷𝐷∗ refers to the minimum CapDS of 𝑉𝑉 of UDG 
𝐺𝐺. We can formulate the size of 𝐷𝐷∗ as |𝐷𝐷∗| = 𝑉𝑉/(𝑐𝑐 + 1). Let 𝑆𝑆 be the CapDS 
produced by ACapDS. Suppose that 𝑆𝑆′ is the set of nodes in 𝑆𝑆 whose degrees are 
more than or equal to the capacity, 𝑆𝑆′′ is the set of other nodes in 𝑆𝑆. The nodes in 
𝑆𝑆′ can dominate at most 𝑐𝑐 nodes. The nodes in 𝑆𝑆′′ creates a maximal independent 
set. Since no IN nodes in 𝑆𝑆′′ can be a neighbor of each other, and every OUT node 
has an IN neighbor in 𝑆𝑆′′. Obviously, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 variable of an IN node in 𝑆𝑆′′ cannot 
be true due to its degree is lower than the capacity. Any node in MIS can 
dominate at most 5 nodes in a UDG (Alzoubi et al., 2002). Since 𝑆𝑆′ ≤
𝐷𝐷∗ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆′′ ≤ 5𝐷𝐷∗, 𝑆𝑆 ≤ 6𝐷𝐷∗, ACapDS is a 6-approximation algorithm.   

5.5 Performance Evaluation 

5.5.1 Testbed experiments 

We evaluated ACapDS by testbed experiments including IRIS sensor nodes. 
We generated topologies varying from 10 to 40 nodes by augmenting 10 nodes at 
each step in our laboratory environment. The topologies are simple, connected 
and undirected, and each node has a unique id. Three classes of densities are used 
as sparse, medium, and dense where average degrees of these topologies are 4, 6, 
8, respectively. IRIS motes have 2.4 GHz IEEE 802.15.4 compliant transceiver, 
250 kbps data rate, 8 kB RAM, 128 kB programmable flash memory. The 
proposed algorithm is written in NesC language supported by TinyOS. We 
calculated the move count, received byte count, and energy consumption. Each 
measurement is produced by averaging 10 repeated testbed experiments. All 
nodes initially send a Hello message to their 1-hop neighbors to inform them 
about their initial states. If node 𝑖𝑖 is dominator, it sends its 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑆𝑆𝑖𝑖, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖, and 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 variables in a message while a dominatee sends its 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑆𝑆𝑖𝑖, and 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 variables. Each node in the network can run the algorithm 
simultaneously. If the preconditions of a rule are satisfied, the node can move to 
execute its rule. When a node moves, it broadcasts the new state to its neighbors. 
When there is no enabled node, the network is stabilized, and a CapDS is created. 
This means that each dominatee has a dominator, and each dominator has a set of 
dominatees of whose size does not overflow the capacity. 

 

Figure 5.2 Move count of ACapDS against node count and density. 

 

Figure 5.3 Received byte count of ACapDS against node count and density. 

Move count of ACapDS against node count and density is shown in Figure 
5.2. Move count directly affects the received byte count and energy consumption 
since each node sends its new state information to its neighbors more frequently. 
When node count is increased, move count values are increasing linearly. Besides, 
move count values are generally stable against varying density values. Figure 5.3 
represents the received byte count of ACapDS against node count and density. 
Average degree is greater in dense topologies since the number of connections 
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between nodes is higher. According to the measurements, the received byte count 
increases linearly when node count and density increases.  

In Figure 5.4, the energy consumption measurements of ACapDS against node 
count and density are given. The amount of energy consumption is calculated for 
each node from Formula 4.5. The results of energy consumption are similar to the 
received byte count which is one of the most significant criteria affecting energy 
consumption. Therefore, the energy consumption increases proportionally with 
the node count and density. These measurements taken from the testbed of IRIS 
nodes show us that our algorithm consumes resources reasonably, and it is stable 
against varying node count and degree values.  

 

Figure 5.4 Energy consumption of ACapDS against node count and density. 

5.5.2 Simulations 

Since we are limited with 40 sensor nodes for testbed experiments, we make 
simulations to measure the behavior of the algorithm in large-scale networks and 
to compare it with the other approaches. As aforementioned, to the best of our 
knowledge, there is no distributed self-stabilizing capacitated DS algorithm in the 
literature. Therefore, we designed two self-stabilizing CapDS algorithms from 
Chiu et al.'s 4𝑛𝑛 move self-stabilizing DS algorithm (Chiu et al., 2014) by applying 
a hierarchical collateral composition technique (Datta, 2013). In the first 
algorithm called as CRandom, we used a random approach in which the dominatees 
choose randomly its dominator, and the dominators definitively add them into 
their dominatees set. On the other hand, the second algorithm called as CGreedy uses 
a minimum id priority-based approach in which the dominatees always choose the 
dominator with minimum id and the dominators add definitively them into their 
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dominatees set. We tested ACapDS, CRandom, and CGreedy on TOSSIM which is a 
discrete event simulator for TinyOS sensor network. We generated undirected and 
random graphs. The topologies are changing from 50 to 250 nodes by augmenting 
50 nodes at each step. The densities of topologies are classified into three 
categories as sparse, medium, and dense where the average degrees of the nodes 
are approximately 4, 6, and 8, respectively. Each measurement is produced by 
averaging 50 repeated simulations. We compared algorithms against node count 
and the average degree in terms of coefficient of variation (CV), move count, 
received byte count and energy consumption. The CV is formulated in Formula 
5.3 which is a measure of relative variability. It is used to represent the balance of 
the clusters that are formed by cluster heads (dominators) and cluster members 
(dominatees). 

𝐶𝐶𝐶𝐶 = �
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
� 𝑥𝑥100       (5.3) 

A comparison of the CV of algorithms against node count is shown in 
Figure 5.5.a. As the node count increases, CV decreases since dominatee nodes 
have more dominator neighbors for an assignment which provides to construct 
more balanced clusters. The CV of ACapDS is the smallest among the algorithms. 
ACapDS is averagely 1.49 times better than CRandom and 1.55 times better than 
CGreedy. Figure 5.5.b shows the CV values of algorithms against average degree. 
When the average degree increases, the size of CapDS reduces that leads to a 
decrease in CV values. ACapDS has far better performance than its counterparts 
which have similar results like Figure 5.5.a. As a result, CV of ACapDS is 
significantly better than its competitors against node count and average degree. 

  
(a) (b) 

Figure 5.5 CV of algorithms against a) Node count b) Average Degree. 
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Move count is one of the most significant criteria affecting energy 
consumption and decreasing move count is vital to prolonging the network 
lifetime. Figure 5.6.a represents the move count of algorithms against node count. 
Move counts of the algorithms increase proportionally with the node count where 
ACapDS is 1.61 times better than CRandom and 1.60 times better than CGreedy. In 
Figure 5.6.b, the move count of algorithms against the average degree is given. 
ACapDS has undoubtedly the best performance than the other algorithms on various 
topologies. These results show us that the move count of ACapDS is significantly 
smaller than its counterparts. 

  
(a) (b) 

Figure 5.6 Move count of algorithms against a) Node count b) Average Degree. 

Figure 5.7.a shows the received byte count of algorithms against node 
count. We can see that the received byte count values of the algorithms generally 
increase linearly while node count increases. ACapDS is 1.13 times better than 
CRandom and 1.09 times better CGreedy. The results of both other algorithms are very 
similar. The received byte count values of the algorithms against node degree are 
given in Figure 5.7.b. Again, the values have a linear increase since the average 
degree of the nodes is higher in dense graphs and a transmitted message of node 
𝑖𝑖 is received by all neighbors of node 𝑖𝑖. ACapDS has obviously the best performance 
among the algorithms in terms of received byte count. Therefore, it uses 
efficiently sources by reducing transmitted and received byte count.  

Energy efficiency has paramount importance for WASNs to prolong the 
network lifetime. We calculated the energy consumption from Formula 4.5. 
Figure 5.8.a shows the energy consumption of algorithms against node count. 
Energy consumption values of all algorithms increase as expected while node 
count increases. ACapDS has the best energy performance where ACapDS is 1.14 
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times better than CRandom and 1.10 times better than CGreedy. In Figure 5.8.b, the 
energy consumption values of the algorithms against the average degree are 
represented. ACapDS has the best energy efficiency. The performance of CGreedy is 
slightly better than CRandom. Consequently, the measurements taken from the 
simulations reveal us that the proposed algorithm outperforms its competitors 
according to CV, move count, received byte count and energy consumption 
against various node counts and densities. Moreover, ACapDS significantly prolongs 
the lifetime of the network by providing energy efficiency. 

  
(a) (b) 

Figure 5.7 Received byte count of algorithms against a) Node count b) Average Degree. 

  
(a) (b) 

Figure 5.8 Energy consumption of algorithms against a) Node count b) Average Degree. 

ACapDS can cope with uniform and non-uniform capacity but we can give a 
6-approximation ratio for only uniform capacity. It is considered important that 
the nodes with less battery life are not loaded much in clustering. The network 
lifetime in WASN using clustering can be defined as the time beginning of the 
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experiment until the first node in the dominating set failure. We calculate the 
network lifetime of algorithms against node count and average degree. The 
number of data bytes sent in one packet may not exceed 127 bytes in the packet 
structure of IEEE 802.15.4. 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximum consumed energy for a 
packet of which size is 127 bytes, and 𝐸𝐸𝑖𝑖 denotes the energy of node 𝑖𝑖. Initially, 
we set random energy to the nodes of which energies are varied between 
1000𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 and 10000𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚. We supposed that when a CapDS constructed by 
algorithms, each dominatees of a dominator sends a packet of which size is 127 
bytes in every round. The lifetime of a dominator node 𝑖𝑖 denoted 𝐿𝐿𝑖𝑖 is calculated 
from Formula 4.6 as min{𝐿𝐿𝑖𝑖}. 𝐷𝐷𝑖𝑖 denotes the degree of node 𝑖𝑖, and 𝑐𝑐𝑖𝑖 denotes the 
capacity of node 𝑖𝑖. 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 denote the average energy and degree of the 
neighbors, respectively. We calculate the initial capacity of the nodes considering 
their energy from Formula 4.3 and Formula 4.4. 

Figure 5.9.a presents the network lifetime of algorithms against node count. 
If the node count increases, the time to first node failure generally decreases. 
Because when the node count increases, the probability of being a dominator node 
with less energy increases. ACapDS has the best network lifetime since it is 1.86 
times better than CRandom and 1.69 times better than CGreedy. In Figure 5.9.b, the 
network lifetime of algorithms against the average degree is shown. The density 
of a network affects the degrees of nodes and the size of CapDS. Thus, when the 
average degree increases, the time to first node failure decreases. ACapDS has the 
best among the algorithms. The results show that even if the capacity is non-
uniform, ACapDS prolongs the network lifetime the best for realistic experiments 
modeled by homogenous or heterogenous networks. 

  
(a) (b) 

Figure 5.9 Network lifetime of algorithms against a) Node count b) Average Degree. 
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6. A DISTRIBUTED SELF-STABILIZING ALGORITHM FOR 
CAPACITATED CONNECTED DOMINATING SET 
PROBLEM 

6.1 Introduction 

Energy efficiency is one of the major issues in WASNs which lack a fixed 
infrastructure and centralized control. In order to prolong the network lifetime, 
connected dominating set (CDS) has been widely used as a virtual backbone in 
WASNs. The sensor nodes in WASNs can be failed due to lack of battery, have 
hardware damage, link failure or environmental interference. Therefore, it is 
desirable to design an energy efficient and fault-tolerant CDS algorithm in 
WASNs. A non-masking fault tolerance method denoted self-stabilizing tolerates 
any finite number of transient faults.  

In this thesis, we propose the first distributed self-stabilizing algorithm for 
CapCDS construction in WASNs. It stabilizes at most �𝑛𝑛

2

3
+ 2𝑛𝑛� moves under an 

unfair distributed scheduler where 𝑛𝑛 is the number of nodes. We supposed that a 
CDS is constructed by a self-stabilizing distributed CDS algorithm like (Kamei et 
al., 2016) before. The remaining of this paper is organized as follows. Section 6.2 
represents the system model. The proposed algorithm is shown in Section 6.3. 
Section 6.4 is devoted to the theoretical analysis of it. The performance evaluation 
that includes the results of real experiments and simulations is finally given in 
Section 6.5.  

6.2 System Model  

The topology of a distributed system can be represented as a simple, 
connected and undirected graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) where 𝑉𝑉 and 𝐸𝐸 represent the set of 
vertices and the set of edges, respectively. The identifier of a node 𝑖𝑖 is denoted 
𝑖𝑖𝑖𝑖𝑖𝑖, and we assume that each node has a unique 𝑖𝑖𝑖𝑖. Any two nodes 𝑖𝑖 and 𝑗𝑗 are 
neighbor if there is an edge between 𝑖𝑖 and 𝑗𝑗. The transmission range of the nodes 
is the same in UDGs. There is an edge between 𝑖𝑖 and 𝑗𝑗 if their transmission range 
covers the center of each other in UDGs. 𝑁𝑁𝑖𝑖 denotes the set of neighbor nodes of 
node 𝑖𝑖. Each node executes the same program. Thus, the proposed algorithm is 
uniform. In order to understand clearly the proposed algorithm, we have made the 
following assumptions: 
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1. Each node has a distinct id and the capacity of each node is non-uniform. 
Communication links between nodes are bidirectional. 

 
2. All nodes are homogeneously equipped except the sink node. Each node 

knows its neighbors within its 𝑇𝑇𝑟𝑟. 
 
3. The proposed algorithm is uniform, and the rules of the proposed 

algorithm are executed atomically. 
 
4. An unfair distributed scheduler is used as a runtime scheduler.  
 
5. Message passing model is used as a communication model.  
 
6. The nodes can join or leave the network, the new CapCDS should be 

constructed since the algorithm is self-stabilizing. 

An example CapCDS on a UDG of which nodes have the same transmission 
range dotted by circles is shown in Figure 6.1. The dominators (nodes 2, 4, and 8) 
in CapCDS are colored black and the dominatees (nodes 1, 3, 5, 6, 7, and 9) out of 
CapCDS are colored white. The edge of the arrows represents the dominator of a 
dominatee. The capacity of each dominator node 𝑖𝑖 is denoted 𝑐𝑐𝑖𝑖, the dominator of 
a dominatee 𝑗𝑗 is denoted 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 , and the set of dominatees of a dominator 
node 𝑖𝑖 is denoted 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖. The size of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is represented 
|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖|. In this work, we assume the capacity is non-uniform and greater 
than or equal to 1, and it represents the maximum size of |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖| of the 
dominator node 𝑖𝑖.  

 
Figure 6.1 An example CapCDS on a sample UDG. 
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6.3 Proposed Algorithm 

The proposed algorithm called ACapCDS is distributed and self-stabilizing. 
ACapCDS shown in Algorithm 6.1 is formed by rule sets and executed atomically in 
steps. The rules are assigned a number in priority order. We can separate the rules 
of the algorithm as dominator rules and dominatee rules. The first three rules are 
for dominators, and the last three rules are for dominatees. If a node is in CDS, the 
state of it is IN, otherwise OUT1 or OUT2 which are simply OUT. 𝑆𝑆𝑖𝑖 denotes the 
state of node 𝑖𝑖. If a dominatee node has a dominator in CDS, its state is OUT1. If 
the capacity of all dominator neighbor nodes of a dominatee is full, the state of 
this node is OUT2. An OUT2 node cannot dominate any OUT node. When the 
system is stabilized, the set of ACapCDS exists union of IN and OUT2 nodes. 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 denotes the number of IN neighbor nodes of an OUT node 𝑖𝑖, and 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 denotes the empty space of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖. These macros 
support a balanced capacity matching between dominators and dominatees. 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 is equal to (-1) if the size of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 overflow the 𝑐𝑐𝑖𝑖, and 
|𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖| denotes the size of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖. The null value is shown 
⊥. If no node is enabled in any state, the system is stabilized, each dominatee has 
a dominator, and the capacity of any dominators is not overflow. 

The algorithm works as follows. A self-stabilizing system can start from any 
configuration in the initial state. Thus, the size of the dominatees set of any 
dominator node 𝑗𝑗 can initially overflow its capacity. In this situation, Rule 1 (R1) 
is enabled. When R1 is executed, the dominatee nodes in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 are 
removed until the size of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 is not overflow the capacity according to 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖. If there is equality for 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖, 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 macros, the symmetry is broken by minimum id priority. If the 
size of dominatees set of an IN node 𝑗𝑗 is not full, and 𝑗𝑗 has at least one OUT1 or 
OUT2 node 𝑖𝑖 which has not just chosen its dominator, it executes Rule 2 (R2) and 
adds 𝑖𝑖 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗 from 𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 according to 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 
until the capacity of 𝑗𝑗 is full. If an IN node 𝑗𝑗 has at least a dominatee node 𝑖𝑖 in 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 of which dominator is not 𝑗𝑗 and not null or not in its neighborhood 
or 𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼, it executes Rule 3 (R3) and removes all 𝑖𝑖 nodes from 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗. 

If an OUT1 or OUT2 node 𝑖𝑖 has not a dominator, and there exists an IN 
dominator node 𝑗𝑗 which has added 𝑖𝑖 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗, it executes Rule 4 (R4) 
and chooses 𝑗𝑗 node as a dominator according to 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖. If the state of 
node 𝑖𝑖 is OUT2, it changes its state to OUT1. If the dominator of an OUT1 node 𝑖𝑖 
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is null, and there is no node 𝑗𝑗 which adds 𝑖𝑖 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗, it executes Rule 5 
(R5) and changes its state to OUT2. If there is an OUT1 or OUT2 dominatee of 
which dominator is not null, and it is not in the dominatees set of its dominator or 
its dominator is not in its neighborhood or the state of its dominator is not IN, it 
executes Rule 6 (R6) and changes its dominator as null. When the system is 
stabilized, there are IN, OUT1, and OUT2 nodes in the system, and CapCDS 
exists. IN and OUT2 nodes are in CapCDS but only IN nodes in CDS.  

An example execution of ACapCDS on a sample UDG is presented in Figure 
6.2. In Figure 6.2.a, the initial configuration is shown. Each node has a unique id 
and a non-uniform capacity. We assume that CDS is constructed with nodes 1 and 
3 before. The state of black nodes is IN, the state of white nodes is OUT1, and the 
state of grey nodes are OUT2. Our algorithm runs in steps under an unfair 
distributed scheduler. In the first step, node 1 executes R2 and adds node 8 into 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1. Nodes 2, 5, and 7 execute R6 and set their dominators as ⊥. Node 
3 executes R1 and excludes 4 from 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3 to make the capacity not 
overflow. Node 6 executes R4 and set its 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 to node 3. Node 8 executes 
R5 and set its state to OUT2. In the second step, node 1 executes R3 and excludes 
node 3 from 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1. Nodes 2, 7, and 8 execute R4, node 2 sets its 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 to node 3, and the others set their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 variables to node 1. 
Node 5 executes R5 and sets its state to OUT2. In the third step, node 1 executes 
R2 and adds node 5 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1. In the fourth step, node 5 executes R4 and 
sets 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷5 as node 1. Then the system is stabilized. The convergence steps 
of ACapCDS in Figure 6.2 is illustrated in Table 6.1. The stabilized system 
configuration is shown in Figure 6.2.b, and CapCDS is constructed from IN nodes 
(1 and 3) and OUT2 node (4). 

 

Figure 6.2 An example execution of ACapCDS algorithm 
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Algorithm 6.1 ACapCDS 
 
 

Inputs. 
𝑖𝑖𝑖𝑖𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝑁𝑁𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝑐𝑐𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 

Variables. 
𝑆𝑆𝑖𝑖 ∈ {𝐼𝐼𝐼𝐼,𝑂𝑂𝑂𝑂𝑂𝑂1 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂2}:𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 

If node 𝑖𝑖 is in both CDS and CapCDS, 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼. 
If node 𝑖𝑖 is only in CapCDS, 𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂2. 
If node 𝑖𝑖 is out of both CDS and CapCDS, 𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂1. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑟𝑟 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖:𝑇𝑇ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖. 

Macros. 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖: �𝑐𝑐𝑖𝑖 − |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖|�. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 : {𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 ≠ 𝐼𝐼𝐼𝐼 ∧ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 =⊥∧ 𝑗𝑗 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖}. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖: {𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 ∧ 𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ∧ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗 ≥ 0}. 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖: |{𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼}|. 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖: 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 ≠ 𝐼𝐼𝐼𝐼 ∧  ∀𝑡𝑡 ∈ 𝑁𝑁𝑖𝑖(𝑆𝑆𝑡𝑡 ≠ 𝐼𝐼𝐼𝐼 ∧  𝑗𝑗 ≠ 𝑡𝑡 ∧ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏𝑡𝑡 ≥ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗). 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖: 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 ≠ 𝐼𝐼𝐼𝐼 ∧  ∀𝑡𝑡 ∈ 𝑁𝑁𝑖𝑖(𝑆𝑆𝑡𝑡 ≠ 𝐼𝐼𝐼𝐼 ∧  𝑗𝑗 ≠ 𝑡𝑡 ∧ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 
≤ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖: 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖|𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼 ∧  ∀𝑡𝑡 ∈ 𝑁𝑁𝑖𝑖(𝑆𝑆𝑡𝑡 = 𝐼𝐼𝐼𝐼 ∧  𝑗𝑗 ≠ 𝑡𝑡 ∧ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑗𝑗 
≥ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡). 

Rules. 
R1. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ⋀ |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖| > 𝑐𝑐𝑖𝑖  then 

repeat 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖\{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖} 

until 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∨ |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖| ≤ 𝑐𝑐𝑖𝑖  
R2. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ∧  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 > 0 ∧ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≠ ∅ then 

repeat 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖⋃{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖} 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≔ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖\{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖} 

until 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∨  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = 0 ∨ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = ∅ 
R3. if 𝑆𝑆𝑖𝑖 = 𝐼𝐼𝐼𝐼 ∧ ∃𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖[(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ≠ 𝑖𝑖 ∧ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ≠⊥) ∨ 𝑗𝑗 ∉ 𝑁𝑁𝑖𝑖 ∨  𝑆𝑆𝑗𝑗 = 𝐼𝐼𝐼𝐼] 
then 

repeat 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖\{𝑗𝑗} 

until 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∨  ∀𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖[(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 = 𝑖𝑖 ∨ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 =⊥) ∧ 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖  ∧ 𝑆𝑆𝑗𝑗 ≠ 𝐼𝐼𝐼𝐼] 
R4. if 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∧  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥∧ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≠ ∅ then 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖   
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≔ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 
if 𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂2 then  𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂1 

R5. if  𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂1 ∧  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥∧ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = ∅  then 
𝑆𝑆𝑖𝑖 = 𝑂𝑂𝑂𝑂𝑂𝑂2 

R6. If 𝑆𝑆𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼 ∧ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠⊥∧ �𝑖𝑖 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ∨ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ∉ 𝑁𝑁𝑖𝑖 ∨
𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠ 𝐼𝐼𝐼𝐼� then 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥ 
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Table 6.1 Convergence steps of ACapCDS in Figure 6.2. 

 Initial States Step 1 Step 2 Step 3 Step 4 

Node 
1 

𝑆𝑆1 = 𝐼𝐼𝐼𝐼 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 = {3,7} 

R2 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 = {3,7,8} 

 

R3 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 = {7,8} 

 

R2 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 = {5,7,8} 

 
 

Node 
2 

𝑆𝑆2 = 𝑂𝑂𝑂𝑂𝑂𝑂1 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 = 5 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2 = 1 

R6 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 =⊥ 

 

R4 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 = 3 

 
  

Node 
3 

𝑆𝑆3 = 𝐼𝐼𝐼𝐼 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3 = {2,4,6} 

R1 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3 = {2,6} 

 
   

Node 
4 

𝑆𝑆4 = 𝑂𝑂𝑂𝑂𝑂𝑂2 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷4 =⊥ 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁4 = 2 

    

Node 
5 

𝑆𝑆5 = 𝑂𝑂𝑂𝑂𝑂𝑂1 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷5 = 1 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁5 = 1 

R6 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷5 =⊥ 

 

R5 
𝑆𝑆5 = 𝑂𝑂𝑂𝑂𝑂𝑂2 

 
 R4 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷5 = 1 

Node 
6 

𝑆𝑆6 = 𝑂𝑂𝑂𝑂𝑂𝑂1 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷6 =⊥ 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁6 = 1 

R4 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷6 = 3 

 
   

Node 
7 

𝑆𝑆7 = 𝑂𝑂𝑂𝑂𝑂𝑂2 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷7 = 8 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁7 = 1 

R6 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷7 =⊥ 

R4 
𝑆𝑆7 = 𝑂𝑂𝑂𝑂𝑂𝑂1 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷7 = 1 
  

Node 
8 

𝑆𝑆8 = 𝑂𝑂𝑂𝑂𝑂𝑂1 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷8 =⊥ 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁8 = 1 

R5 
𝑆𝑆8 = 𝑂𝑂𝑂𝑂𝑂𝑂2 

 

R4 
𝑆𝑆8 = 𝑂𝑂𝑂𝑂𝑂𝑂1 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷8 = 1 
  

6.4 Theoretical Analysis 

In this section, we show the proof of correctness of ACapCDS. The general 
requirement to prove the correctness of a self-stabilizing algorithm is to show that 
it has closure and convergence properties. 

6.4.1 Closure 

Lemma 6.1 When the system is stable, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑗𝑗 if and only if 𝑖𝑖 ∈
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗. 

Proof. Assume, by contradiction, that the system is stable, and 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑗𝑗 but 𝑖𝑖 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗. In this case, node 𝑖𝑖 executes R6. If 𝑖𝑖 ∈
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠ 𝑗𝑗, it causes two cases. In case 1, if 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =⊥, node 𝑖𝑖 executes R4. In case 2, if 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ≠⊥ and 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ≠ 𝑗𝑗, node 𝑗𝑗 executes R3. Since there is at least one move in a stable 
system, it is a contradiction. 

Lemma 6.2 When the system is stable, any node with state 𝑂𝑂𝑂𝑂𝑂𝑂2 remains 
so. 
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Proof. Suppose that the system is stable. Any node with state OUT2 can 
execute only R4 or R6 if dominator neighbors execute R2 or R3. However, any 
neighbor dominator nodes cannot execute R2 or R3 because the system is stable. 

6.4.2 Convergence 

Lemma 6.3 Any node can execute R1 at most once and as the first move. 

Proof. In the initial configuration, the number of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 set can 
overflow the capacity. In this case, R1 can be executed once in the first step, and 
the number of elements of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 can be at most the capacity. No rule let 
the number of elements of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 be more than the capacity. So, R1 can be 
executed at most once and as the first move. 

Lemma 6.4 Any node executes R4 at most once.  

Proof. After 𝑖𝑖 executes R4, 𝑖𝑖 cannot execute R4 or R5 until it makes the 
dominator as null because it has a dominator. It must execute R6 to make the 
dominator as null. Besides, node 𝑗𝑗 must remove node 𝑖𝑖 from 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 to be 
executed R6. Node 𝑗𝑗 must execute R1 or R3 to remove node 𝑖𝑖. Node j cannot 
execute R1 since node 𝑖𝑖 cannot execute R4 while the capacity of node 𝑗𝑗 is 
overflow. On the other hand, node 𝑖𝑖 must make the dominator as null to be 
executed R3. In this situation, there is a deadlock between nodes 𝑖𝑖 and 𝑗𝑗 because 
R3 is the precondition for R6 and R6 is the precondition for R3. Therefore, a node 
executes R4 at most once. 

Lemma 6.5  Any node can execute R5 at most once. 

Proof. Suppose that node 𝑖𝑖 executes R5 in any step. R4 must be executed to 
be executed R5 again. If R4 is executed, node 𝑖𝑖 does not make a move by Lemma 
6.4. Thus, any node can execute R5 at most once. 

Lemma 6.6 Any node can execute R6 at most once. 

Proof. A self-stabilizing system can be started from any initial 
configuration. In any step 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝑗𝑗 and 𝑖𝑖 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 can be true. In 
this situation, node 𝑖𝑖 executes R6 and makes its dominator as null. It must be 
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matched by R4 again to execute R6 again. No rule can be executed after R4 by 
Lemma 6.4. 

If node 𝑗𝑗 matched with node 𝑖𝑖 executes R1 as the first move and removes 𝑖𝑖 
from 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗, 𝑖𝑖 executes R6 and make the dominator as null. Node 𝑖𝑖 must 
execute R4 and choose its dominator to be executed R6 again. A dominator node 
𝑘𝑘 must execute R2 and add 𝑖𝑖 into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑘𝑘 to execute R4 again. No rule can 
be executed after R4 by Lemma 6.4. 

Lemma 6.7 R2 and R3 can be executed at most 𝑛𝑛
2

3
 times until the system is 

stable. 

Proof. Suppose that there are 𝑛𝑛 nodes in a UDG 𝐺𝐺(𝑉𝑉,𝐸𝐸). In the initial 
configuration, 𝑋𝑋 is the set of nodes in CDS, and 𝑥𝑥 is the size of 𝑋𝑋. Y is the set of 
nodes out of CDS, and 𝑦𝑦 is the size of Y. Any node in Y has a neighbor of one 
node in CDS at least. In the first step, 𝑥𝑥 nodes can execute R2, and all of them can 
add the same node into their Dominatees. In the second step, at least one node of 
Y executes R4. So, at least one dominator and one dominatee match and remain so 
by Lemma 6.4. Thus, the capacity of every node in 𝑋𝑋 must be one and equal in the 
worst-case scenario. In the third step (𝑥𝑥 − 1) nodes can execute R3 and remove 
the matched node in 𝑌𝑌 from their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. In the fourth step, (𝑥𝑥 − 1) nodes 
can execute R2 and add the same node into their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 from 𝑌𝑌 except the 
matched node. In the fifth step, at least one node of 𝑌𝑌 executes R4 and chooses a 
dominator from 𝑋𝑋. It is shown below with formulas that how many times the 
dominators execute R2 and R3 totally until the system is stable. 

𝑥𝑥 + 𝑦𝑦 = 𝑛𝑛(𝑥𝑥 ≥ 1,𝑦𝑦 ≥ 1,𝑛𝑛 ≥ 2) 

𝑥𝑥 + (𝑥𝑥 − 1) + (𝑥𝑥 − 1) + (𝑥𝑥 − 2) + (𝑥𝑥 − 2) + ⋯ 

=

⎩
⎨

⎧ 𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖), 𝑥𝑥 ≤ 𝑦𝑦 (6.1)
𝑥𝑥−1

𝑖𝑖=1

𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖) + 𝑥𝑥 − 𝑦𝑦, 𝑥𝑥 > 𝑦𝑦 (6.2)
𝑦𝑦−1

𝑖𝑖=1

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1: 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 𝑦𝑦 

𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖)
𝑥𝑥−1

𝑖𝑖=1
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= 𝑥𝑥 + 2 �� 𝑥𝑥 −� 𝑖𝑖
𝑥𝑥−1

𝑖𝑖=1

𝑥𝑥−1

𝑖𝑖=1
� 

= 𝑥𝑥2 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑛𝑛
2

 𝑎𝑎𝑎𝑎𝑎𝑎 
𝑛𝑛2

4
 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2: 𝑖𝑖𝑖𝑖 𝑥𝑥 > 𝑦𝑦 

𝑥𝑥 + 2� (𝑥𝑥 − 𝑖𝑖) + 𝑥𝑥 − 𝑦𝑦
𝑦𝑦−1

𝑖𝑖=1
 

= 𝑥𝑥 + 2��𝑥𝑥
𝑦𝑦−1

𝑖𝑖=1

−� 𝑖𝑖
𝑦𝑦−1

𝑖𝑖=1

� + 𝑥𝑥 − 𝑦𝑦 

= 2𝑦𝑦(𝑛𝑛 − 𝑦𝑦) − 𝑦𝑦2 

𝑓𝑓(𝑦𝑦) = 2𝑛𝑛𝑛𝑛 − 3𝑦𝑦2 

𝑓𝑓(𝑦𝑦)′ = 2𝑛𝑛 − 6𝑦𝑦 = 0 

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑛𝑛
3

 𝑎𝑎𝑎𝑎𝑎𝑎 
𝑛𝑛2

3
 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.   

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
𝑛𝑛2

4
<
𝑛𝑛2

3
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 ≥ 0, 𝑠𝑠𝑠𝑠 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑅𝑅2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅3 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
𝑛𝑛2

3
 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

Theorem 6.1 ACapCDS is self-stabilizing under an unfair distributed 
scheduler and stabilizes after at most �𝑛𝑛

2

3
+ 2𝑛𝑛� moves with a capacitated 

connected dominating set, where n is the number of nodes. 

 Proof. In order to calculate the time complexity of ACapCDS in the worst-
case scenario, the following initial assumptions are required: 

• CDS has been established by (Kamei et al., 2016) before. However, 
CapCDS is not.  
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• There are 𝑛𝑛 nodes in a simple, connected and undirected UDG 𝐺𝐺(𝑉𝑉,𝐸𝐸) 
with a unique id.  

 
• The states of all nodes out of CDS are OUT1, and all nodes out of CDS 

are connected to all nodes in CDS.  
 
• The number of nodes in CDS is (2𝑛𝑛/3), the number of nodes out of CDS 

is (𝑛𝑛/3), and the capacity of every dominator node is uniform and equal 
to one by Lemma 6.7. 

 
• The size of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 of every node in CDS is the overflow of their 

capacity. 
 
• The dominator of each OUT1 node is not null and their dominators are 

not in 𝑁𝑁𝑖𝑖.  

 When these assumptions are true in the initial configuration, in the first 
step all dominators execute R1, and they correct their capacity of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
with (2𝑛𝑛/3) moves; all dominatees execute R6 and make their dominator as null 
with (𝑛𝑛/3) moves then they cannot execute R6 again by Lemma 6.6. In the 
second step, (2n/3) dominators execute R2 and can add the same dominatee not 
chosen by a dominator into their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗; (n/3) dominatees execute R5 and 
change their state OUT2. In the third step, the node added into 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 by 
all dominators executes R4 and chooses one of them as a dominator, and it cannot 
make a move by Lemma 6.4. In the fourth step ((2𝑛𝑛/3) − 1) dominators execute 
R3, in the fifth step ((2𝑛𝑛/3) − 1) dominators execute R2, in the sixth step one of 
the dominatees execute R4, and these steps loop until all dominatees choose a 
dominator. In the last step, (2𝑛𝑛/3) dominators execute R3, and the system 
stabilizes. The time complexity formula of the worst-case scenario is shown 
below: 

2𝑛𝑛
3

+
𝑛𝑛
3

+
2𝑛𝑛
3

+
𝑛𝑛
3

+ 1 + �
2𝑛𝑛
3
− 1� + �

2𝑛𝑛
3
− 1� + 1 + ⋯+ 

�
2𝑛𝑛
3
− �

𝑛𝑛
3
− 1�� + �

2𝑛𝑛
3
− �

𝑛𝑛
3
− 1�� + 1 +

2𝑛𝑛
3

 

=
8𝑛𝑛
3

+ � 1
𝑛𝑛
3

𝑖𝑖=1
+ 2�

2𝑛𝑛
3
− 𝑖𝑖

𝑛𝑛
3−1

𝑖𝑖=1
 



69 

 

=
8𝑛𝑛
3

+
𝑛𝑛
3

+ 2��
2𝑛𝑛
3
−� 𝑖𝑖

𝑛𝑛
3−1

𝑖𝑖=1

𝑛𝑛
3−1

𝑖𝑖=1
� 

= 3𝑛𝑛 + 2��
𝑛𝑛
3
− 1� �

2𝑛𝑛
3
� −

�𝑛𝑛3 − 1� �𝑛𝑛3�
2

� 

= 3𝑛𝑛 + �
𝑛𝑛2

3
− 𝑛𝑛� 

=
𝑛𝑛2

3
+ 2𝑛𝑛 

6.5 Performance Evaluation 

6.5.1 Testbed experiments 

The testbed experiments presented in this subsection use from 10 to 40 IRIS 
motes based on the ATmega1281 microcontroller and increased by 10 in a 
laboratory environment. IRIS motes have 2.4 GHz IEEE 802.15.4 compliant 
transceiver, 250 kbps data rate, 8 kB RAM, 128 kB programmable flash memory. 
ACapCDS is written in NesC language supported by TinyOS and tested on TOSSIM 
with simple, connected and undirected UDGs which are generated randomly. The 
topologies are classified in three densities which are sparse, medium, and dense 
where average degrees of these topologies are 4, 6, and 8, respectively. Java-based 
gateway software is developed to listen to the motes in the testbeds via a sink 
node connected to a notebook.  

Move count, transmitted byte count, received byte count and energy 
consumption are measured, and each measurement is produced by averaging 10 
repeated testbed experiments. Firstly, a CDS is constructed by (Kamei et al., 
2016). 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗  variables are randomly initiated for the 
dominators 𝑖𝑖 and the dominatees 𝑗𝑗, respectively. In order to reduce the packet 
interference probability, a carrier sense multiple access with collision avoidance 
MAC protocol is used. The dominators send 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑆𝑆𝑖𝑖, 𝑐𝑐𝑖𝑖, and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 
variables where the dominatees send 𝑖𝑖𝑖𝑖𝑗𝑗, 𝑆𝑆𝑗𝑗, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗 , and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗  
variables in a message packet if they are chosen by an unfair distributed scheduler 
and move after sending Hello message. 
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We used non-uniform capacity for the testbeds and simulations. In the 
structure of IEEE 802.15.4, the maximum data bytes sending in a message packet 
do not exceed 127 bytes. 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 represents the maximum consumed energy for 
sending a packet of which size is 127 bytes, and 𝐸𝐸𝑖𝑖 represents the energy of node 
𝑖𝑖. In the beginning, we set random energy to each node of which energy is varying 
between 1000𝑥𝑥𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 and 10000𝑥𝑥𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚. 𝐷𝐷𝑖𝑖  denotes the degree of node 𝑖𝑖, and 𝑐𝑐𝑖𝑖 
denotes the capacity of node 𝑖𝑖. 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 and 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 denote the average energy and 
degree of the neighbors, respectively. We calculate the initial capacity of the 
nodes considering their energy from Formula 4.3 and Formula 4.4. 

Move count is an important criterion affecting the transmitted byte count 
and received byte count directly. Because when a node moves, it sends its new 
local variables in a message packet, and the message is received by its neighbors. 
Decreasing move count provides energy efficiency and extends the network 
lifetime. As illustrated in Figure 6.3.a, if the node count rises, move count rises 
linearly. On the other hand, the rising of the density affects move count in a direct 
proportion.  

  
(a) (b) 

Figure 6.3 a) Move count b) Transmitted byte count of ACapCDS against node count and density. 

Transmitted byte count of ACapCDS against node count and density is shown 
in Figure 6.3.b. The results are similar to Figure 6.3.a since each move causes the 
transmitted byte count increases. If the node count increases, the transmitted byte 
count increases. The transmitted byte count is at most in dense graphs and at least 
in sparse graphs. The reason behind this behavior, the sparse graph has less move 
to match the dominators and the dominatees due to CDS size is greater in sparse 
graphs than dense graphs. 
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In WASNs, most of the energy is consumed for communication by the 
antennas. Thus, the transmitted byte count and received byte count affects directly 
the energy consumption. As shown in Figure 6.4.a, the rising of the node count 
rises received byte count linearly. Since the message sent by a moved node is 
received by the neighbor nodes, and the size of neighbors is greater in the dense 
graphs than the sparse graphs, the received byte count rises when the density rises. 

  
(a) (b) 

Figure 6.4 a) Received byte count b) Energy consumption of ACapCDS against node count and 

density. 

Energy efficiency is one of the most important criteria in WASNs since the 
nodes have bounded energy. We calculated the energy consumption from Formula 
4.5. Energy consumption (mJ) of ACapCDS against node count and density is shown 
in Figure 6.4.b. It is clearly shown that when the node count or density rise, 
energy consumption generally presents a linear rise. Consequently, the testbed 
experiments with IRIS nodes on various topologies show that ACapCDS reacts well 
to the stability and scalability against various node counts and densities. 

6.5.2 Simulations 

In this subsection, we evaluate the performance of ACapCDS on a discrete 
event simulator TOSSIM under an unfair distributed scheduler. The simulation 
analysis of WASNs can be presented with UDGs. The UDG topologies are 
simple, connected, undirected, and randomly generated in a field of 
(1000𝑥𝑥1000)𝑚𝑚2, and each node has a unique id. The number of nodes is 
changing from 50 to 250 by increasing 50 at each step, and three type network 
densities are used as sparse, medium, and dense of which average degrees are 
approximately 4, 6, and 8, respectively. Nodes are assigned with the initial non-
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uniform capacity that is randomly generated with Formula 4.3 or 4.4. Each 
measurement is the average of 50 repeated simulations. Initially, a CDS is 
constructed by (Kamei et al., 2016).  

The initial variables of Dominatees and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 are randomly 
generated. In the beginning, the dominators broadcast 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑆𝑆𝑖𝑖, 𝑐𝑐𝑖𝑖, and 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 variables where the dominatees broadcast 𝑖𝑖𝑖𝑖𝑗𝑗, 𝑆𝑆𝑗𝑗, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑗𝑗 , and 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗  variables in a Hello message packet. Then they send these packets if 
they are selected by an unfair distributed scheduler to move until the system is 
stabilized. In order to evaluate the performance of ACapCDS, we measure move 
count, transmitted byte count, received byte count, energy consumption, and the 
lifetime of the networks. 

Move count is one of the most significant criteria affecting energy 
consumption since decreasing move count prolongs the network lifetime. When a 
node moves, it broadcasts the new variables to its neighbors within one-hop 
distance. Thus, a move causes that the transmitted byte count and the received 
byte count increase. As indicated in Figure 6.5.a, the move count of the nodes 
using different densities increases with the increase in the node count. Although 
the results are similar according to the various densities, move count is at least for 
sparse graphs. As demonstrated in Figure 6.5.b, the transmitted byte count is 
compatible with the move count shown in Figure 6.5.a. As soon as the node count 
or the density increases, the transmitted byte count tends to increase linearly. 

  
(a) (b) 

Figure 6.5 a) Move count b) Transmitted byte count of ACapCDS against node count and density. 

Figure 6.6.a shows the received byte count of ACapCDS against node count for 
various densities. The average degree of the network affects directly the received 
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byte count. When the density or node count increase, the received byte count 
increases directly. Energy consumption of ACapCDS against node count for various 
densities is presented in Figure 6.6.b. We calculated the energy consumption from 
Formula 4.5 since transmitting or receiving the messages is a fundamental 
consumer in a message passing communication model in WASNs. When the node 
count is enlarged, the energy consumption increases in a natural way. The energy 
consumption of ACapCDS increases linearly when the density increases. It is at most 
in the dense topologies since the average degree is the highest in them. 

  
(a) (b) 

Figure 6.6 a) Received byte count b) Energy consumption of ACapCDS against node count and 

density. 

The network lifetime is a critical issue in WASNs. The lifetime of a sensor 
network is commonly defined as the time from the network starts execution to the 
first node failure. To the best of our knowledge, there is no distributed self-
stabilizing CapCDS algorithm in the literature. Thus, we designed two distributed 
self-stabilizing CapCDS algorithms to compare them with ACapCDS in terms of the 
network lifetime. We assume that a CDS is constructed by (Kamei et al., 2016) 
before. The first algorithm is called Greedy, and the main aspect of it is that the 
dominatees nodes choose a dominator node in the CDS which has minimum id 
from the set of IN neighbor nodes. The second algorithm is called Random, and 
the dominatees choose randomly their dominators from the set of IN neighbor 
nodes. In both algorithms, the dominators add definitively the dominatees which 
choose them into their 𝐷𝐷𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. If there is a wrong match, the dominators 
remove the dominatees from their 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, and the dominatees set their 
dominator variable as null. The lifetime of a dominator node 𝑖𝑖 denoted 𝐿𝐿𝑖𝑖 is 
calculated from Formula 4.6 as min (𝐿𝐿𝑖𝑖). 
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The comparison of the algorithms in terms of the network lifetime against 
node count is shown in 6.7.a. When the node count increases, the network lifetime 
decreases generally since the probability of being a dominator node with less 
energy increases. ACapCDS has the best network lifetime where ACapCDS is 1.72 
times better than Random and 2.12 times better than Greedy.  

In Figure 6.7.b, the network lifetime of the algorithms against the average 
degree is presented. The CapCDS size is directly affected by the network density. 
It is smaller in dense graphs than sparse graphs. So, the lifetime of the algorithms 
decreases when the density increases. ACapCDS has the best performance in terms 
of the lifetime and significantly outperforms its counterparts.  

  
(a) (b) 

Figure 6.7 a) Lifetime of ACapCDS b) Lifetime of algorithms against node count and density. 

Consequently, the simulation results are evidence that ACapCDS is stable and 
scalable despite large-scale networks and various network densities. The 
simulation results are compatible with the testbed results. Moreover, ACapCDS 
copes with non-uniform capacities under an unfair distributed scheduler. Thus, it 
is more suitable for real applications. Although the system starts randomly in any 
state for testbeds and simulations, a CapCDS is always constructed by the 
proposed algorithm. Since there is no distributed self-stabilizing CapCDS 
algorithm in the literature, to the best of our knowledge, we proposed two 
approaches which are Greedy and Random. ACapCDS is more energy efficient than 
its counterparts since the distribution of dominatees according to the capacity of 
dominators is more balanced in ACapCDS. Therefore, it provides load-balancing 
along energy efficiency. Since a CapCDS is a virtual backbone in WASNs, 
ACapCDS prolongs outstandingly the network lifetime. 
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7. CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In this thesis, we proposed three new distributed self-stabilizing algorithms 
for the capacitated domination problems which are maximal independent set, 
dominating set, and connected dominating set. These problems have a cornerstone 
role for many important applications such as clustering, routing, data aggregation, 
topology control, and building other graph structures. To the best of our 
knowledge, proposed algorithms are the first distributed self-stabilizing 
algorithms for these problems in the literature.  

All proposed algorithms are uniform and work on id-based networks. They 
can cope with non-uniform capacity, but we can give a 6-approximation ratio for 
ACapDS if it works with uniform capacity on UDGs. The uniform capacity is more 
suitable for homogeneous networks where the non-uniform capacity is more 
suitable for heterogeneous networks. In this work, the capacity is a metric of a 
dominator node 𝑖𝑖 which shows an upper bound for the size of the dominatees set 
which is dominated by dominator node 𝑖𝑖. A dominatee node can be dominated at 
most one dominator. However, vice versa depends on the capacity of a dominator. 
These features of the capacity provide load-balancing in WASNs by matching 
dominators and dominatees.  

The proposed algorithms are tested on IRIS motes via testbeds which 
contain from 10 to 40 motes increasing by 10 at each step. UDG topologies are 
used, and they are simple, connected and undirected. The densities of the 
networks are classified into three types which are sparse, medium, and dense of 
which average degrees are approximately 4, 6, and 8, respectively. In order to test 
the performance of them on large-scale networks, they are also tested on TOSSIM 
via simulations which contain from 50 to 250 nodes increasing by 50 at each step. 
The proposed algorithms are as follows: 

We proposed the first distributed self-stabilizing algorithm called ACapMIS for 
a soft capacitated maximal independent set problem. The algorithm stabilizes an 
unstable system at most �5𝑛𝑛

2

6
+ 3𝑛𝑛� moves under an unfair distributed scheduler. 

ACapMIS is theoretically proved in terms of convergence and closure. Then the 
performance of ACapMIS through testbeds and simulations is evaluated practically 
on the UDG topologies. Although UDGs are used as the network model for 
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ACapMIS, the proposed algorithm is applicable for CapMIS construction when 
nodes in a WASN have different transmission ranges. We compare ACapMIS with 
two approaches which are generated a hierarchical collateral composition 
technique and called ARandom and AGreedy. The results show us that ACapMIS reacts 
well to the stability and scalability against various node counts and densities. 
Moreover, ACapMIS is more energy efficient than its counterparts and prolongs 
significantly the network lifetime. 

The second proposed algorithm is the first distributed self-stabilizing 6-
approximation algorithm called ACapDS for hard capacitated dominating set 
problem. ACapDS stabilizes at most � 5𝑛𝑛

2

3
+ 6𝑛𝑛� moves under an unfair distributed 

scheduler. ACapDS is theoretically proved in terms of convergence and closure. We 
also show through testbed experiments and simulations that our algorithm is 
favorable. ACapDS is compared with two approaches which are generated a 
hierarchical collateral composition technique and called CRandom and CGreedy. It has 
the best performance and energy efficiency. Thus, it prolongs more the lifetime of 
the network than its counterparts. Determination of the expected move count, 
reducing the total move count in the worst-case, redefining capacity as a function 
of network parameters such as throughput, energy, reliability, and designing an 
approximation algorithm running on WASNs modeled as undirected graphs of 
nodes with non-uniform capacities are open problems. 

The last proposed algorithm called ACapCDS is the first distributed self-
stabilizing hard CapCDS algorithm. It is considered significant that the nodes with 
less battery life are not loaded much in WASNs. Thus, the proposed algorithm 
forms a capacitated virtual backbone via a CapCDS. ACapCDS gains a legitimate 
configuration at most �𝑛𝑛

2

3
+ 2𝑛𝑛� moves using an unfair distributed scheduler. 

Additionally, it is easy that ACapCDS can be composed with any distributed self-
stabilizing algorithms via a hierarchical collateral composition technique. The 
results are obviously demonstrated that ACapCDS reacts well to the stability and 
scalability against various node counts and densities. Moreover, it is compared 
with two CapCDS approaches which are Greedy and Random proposed in this 
thesis, and ACapCDS is more energy efficient than its counterparts and significantly 
prolongs the network lifetime in WASNs.  

Finally, all proposed distributed self-stabilizing algorithms for capacitated 
domination problems react well to the stability, scalability, and load-balancing in 
WASNs. We hope that they will be followed up by many researchers in the future. 
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7.2 Future Work 

 Applying a capacity constraint to other graph problems such as vertex 
cover, matching, spanning tree or other types of domination problems via a 
distributed self-stabilizing algorithm is an attractive research direction. We intend 
to design randomized algorithms for capacitated domination problems for 
anonymous networks. 

Designing capacitated distributed self-stabilizing algorithms by using 
composition techniques for capacitated domination problems is open. Some 
difficult graph problems can be solved in an efficient way by using them. For 
instance, a CapCDS can be constructed by the composition of two self-stabilizing 
algorithms for CapMIS and BFS problems. Moreover, a new composition 
technique can be designed for capacitated domination problems. 

The popularity of IoT and social networks which are distributed systems are 
increasing day by day. We focused on WASNs in this thesis. A deeper and more 
comprehensive experimental analysis could be possible for IoTs and social 
networks in order to apply practically the proposed algorithms in realistic 
environments. 
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