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ABSTRACT
ON MONOMIAL BURNSIDE RINGS

Ergiin Yaraneri
M.S. in Mathematics
Supervisor: Assoc. Prof. Dr. Laurance J. Barker
September, 2003

This thesis is concerned with some different aspects of the monomial Burnside
rings, including an extensive, self contained introduction of the A—fibred G—sets,
and the monomial Burnside rings. However, this work has two main subjects that
are studied in chapters 6 and 7.

There are certain important maps studied by Yoshida in [16] which are very
helpful in understanding the structure of the Burnside rings and their unit groups.
In chapter 6, we extend these maps to the monomial Burnside rings and find the
images of the primitive idempotents of the monomial Burnside C—algebras. For
two of these maps, the images of the primitive idempotents appear for the first
time in this work.

In chapter 7, developing a line of research persued by Dress [9], Boltje [6],
Barker [1], we study the prime ideals of monomial Burnside rings, and the prim-
itive idempotents of monomial Burnside algebras. The new results include;

(a): If A is a mw—group, then the primitive idempotents of ZB(A,G) and
ZnB(G) are the same

(b): If G is a n'—group, then the primitive idempotents of Z¢B(A, G) and
QB(A, Q) are the same

(c): If GG is a nilpotent group, then there is a bijection between the primitive
idempotents of ZyB(A, G) and the primitive idempotents of QB(A, K) where
K is the unique Hall 7’ —subgroup of G.

(Zixy = {a/b € Q: b ¢ UpepZ}, ™ =a set of prime numbers).

Keywords: Monomial Burnside rings, ghost ring, primitive idempotents, inflation
map, invariance map, orbit map, conjugation map, restriction map, induction
map, prime ideals, prime spectrum .
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OZET
TEK TERIMLI BURNSIDE HALKALARI

Ergiin Yaraneri
Matematik, Yiiksek Lisans
Tez Yoneticisi: Dog. Dr. Laurance J. Barker
Eyliil, 2003

Bu tezde tek terimli Burnside halkalarinin degigik yonlerini inceledik. Fakat bu
galigma iki 6nemli konu igermektedir, ve bunlar 6. ve 7. kisimlarda ele alinmigtur.

Burnside halkalar1 iizerinde 6nemli fonksiyonlar tamimlanmigtir. 6. kisumda
bu fonksiyonlar1 Burnside halkalarini alt halka olarak igeren tek terimli Burnside
halkalarina geniglettik. Ayrica yine 6. kisumda tek terimli Burnside C— cebir-
lerinin ilkel idempotentlerinin geniglettigimiz fonksiyonlar altindaki gériintiilerini

ilk olarak bu caligmada yer almaktadir.

Kisim 7 de ise tek terimli Burnside halkalarinin asal ideallerini inceledik
ve baz1 tek terimli Burnside cebirlerinin ilkel idempotentleri hakkinda bilgiler
edindik. Elde ettigimiz sonuglar daha onceden bagka galigmalarda yer almayan
yeni sonucglar da igermektedir. 7. kistmdaki bu yeni sonuglar arasinda agagidaki
ii¢ sonug en Snemlileridir. (Z¢r) = {a/b € Q : b ¢ Upe-pZ}, ® =asal sayilardan
olusan bir kiime).

(a): Eger A bir m—grup ise Z(B(A, G) ve ZB(G) ayni ilkel idempotentlere
sahiptir.

(b): Eger G bir «'—grup ise ZnB(A, G) ve QB(A, G) aym ilkel idempotentlere
sahiptir

(c): Eger G bir nilpotent grup ise Z¢)B(A, G) ve QB(A, K) 'nin ilkel idempo-
tentleri arasinda bire-bir egleme yapabiliriz. Burada K G'nin biricik Hall 7’—alt
grubudur.

Anahtar sozcikler: Tek terimli Burnside Halkalari, hayalet halka, ilkel idem-
potentler, infilasyon foksiyonu, stabil elemanlar foksiyonu, yoriinge fonksiyonu,
eslenik foksiyonu, daraltma fonksiyonu, genigletme fonksiyonu, asal idealler, asal
idealler spekturumu.
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Chapter 1

Introduction

The concept of fibred permutation sets arises naturally in topics closely connected
with many aspects of representation theory: character theory, induction theorems

etc.

The theory of fibred permutation sets for a finite group G is a quite easy
extension of the theory of permutation sets where the role played by points of the
permutation sets is now played by fibres, which are copies of a fixed finite abelian
group A called the fibre group. We define an A—fibred G—set to be a finite
A—free A x G—set. We concentrate exclusively on the study of isomorphism
classes of A—fibred G—sets. These classes may be added and multiplied in a
natural fashion and in this manner they generate a commutative ring known as
the monomial Burnside ring of A and G, and denoted by B(A, G). In the special

case where A is trivial, we recover the ordinary Burnside ring B(1, G) = B(G).

The ordinary Burnside rings have many uses in representation theory, the the-
ory of G—spheres, and group theory. They are Mackey functors. The importance
of the ordinary Burnside rings in such areas of algebra leads to an extension of

the ordinary Burnside ring. The first extension was given by Dress in [9].

Following Dress [9], the monomial Burnside rings, explicitly or implicitly, have

been studied in contexts related to induction theorems. See, for instance, Boltje
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2], 3], [4], [9], [6].

The main contributor to the subject is undoubtedly Dress who introduced the
monomial Burnside rings, and discovered a number of deep and striking results
in [9]. One of his celebrated results in [9] asserts that a finite group G is solvable

if and only if the monomial Burnside ring B(A4, G) has no nontrivial idempotents.

* Because of the importance of idempotents, the idempotents of the ordinary
Burnside rings have received much attentions, first by Dress in [8], a formula
for the primitive idempotents of QB(G) in terms of the transitive basis of B(G)
appeared for the first time in [10] by Gluck. After that, in [15], Yoshida found a
formula for the primitive idempotents of RB(G) where R is any integral domain
of characteristic 0 from which the idempotent formula of Gluck follows as an easy
corollary. For the monomial Burnside rings there is a similar history. In [6], Boltje
gave an idempotent formula for the primitive idempotents of K B(A, G) in terms
of the transitive basis of K B(A, G) where K is a field of characteristic 0 containing
enough roots of unity, and A is the unit group of an algebraically closed field.
Later, in [1], Barker gave idempotent formulas for the primitive idempotents of
CB(A,G), KB(A,G) and B(A,G) in terms of the transitive basis of B(A, G)
where K is any field of characteristic 0 from which the idempotent formula of
Boltje follows as an easy consequence. Since B(1,G) = B(G), the idempotent
formula of QB(G) obtained by Gluck in [10] follows from the idempotent formula
of Barker in [1].

The monomial Burnside rings introduced by Dress in [9] are more general than
the monomial Burnside rings considered by Boltje, Barker, and us. We consider

the same monomial Burnside rings as Barker [1].

We study some different aspects of the monomial Burnside rings and try to
extend some theory from the Burnside rings. We made much use of the paper
[9] by Dress, which is a fundamental paper on this subject especially in chapters
2,' 3, 4 and 7. However because of the full generalities of Drees’ paper [9], these

chapters, while influenced by [9], have different flavors.

Chapter 2 contains an extensive account of the theory of fibred permutation
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sets.

In chapter 3 and 4, the monomial Burnside ring is defined and its basic prop-

erties are studied.

There are certain maps defined on the Burnside rings which appear in [16].
With these maps the Burnside rings become Mackey functors. In chapter 6, we
extend these maps to the monomial Burnside rings and find the images of the

primitive idempotents of CB(A, G) under these maps.

In the paper [9] by Dress, there is a section dealing with prime ideals of his
ring. Because of the full generalities of his ring and his ghost ring, in chapter 7
our approach is indeed different from his approach, although inspired from his
paper. Although the name of chapter 7 is prime ideals, our main object there is
finding the primitive idempotents of the monomial Burnside rings tensored over
Z with an integral domain of characteristic 0. We give some partial answers when

the integral domain satisfies some restrictive conditions.

In chapter 8, we give some maps whose domains or codomains are the mono-

mial Burnside rings.

In chapter 9, we give some ring theoretic propertis of the monomial Burnside

rings.

Finally, let us summarize some of the new results in this thesis. In chapter
1, we prove all the results about A—fibred G—sets whose proofs are left to the
reader in Dress [9] and Barker [1]. In chapter 2, and 3, we try to exhibit which
results in [1] can be deduced from [9]. In chapter 6, we extend the maps studied
by Yoshida in [16] to the monomial Burnside rings and find the images of the
primitive idempotents of the monomial Burnside C—algebras. For two of these
maps, the images of the primitive idempotents appear for the first time in this
work. The results obtained in chapter 7 include new facts which did not appear
in the papers [9] by Dress, and [1] by Barker. The new results obtained in
chapter 7 includes, for instance, some facts about the primitive idempotents of

Z(xyB(A, G) where ‘A is a m—group, or G is a 7'—group, or G is a nilpotent group
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Here, Zixy = {a/b € Q : b & UperpZ}, m =a set of prime numbers).
() p

To facilitate the reading, important definitions and results have been repeated

where necessary.



Chapter 2

A—Fibred GG—Sets

The monomial Burnside rings were introduced by Dress in [9]. We will see in the
next chapter that the elements of the monomial Burnside rings are closely related
to the A—fibred G—sets. So we first need to introduce an account of the theory
of A—fibred G—sets. In [9], Dress gave a very short introduction to A—fibred
G —sets leaving details to the reader. Also he considered more general A—fibred
G—sets than we want to consider here. However, we mainly follow [9] but using

the notations of Barker in [1].

In this chapter we introduce A—fibred G—sets and give some properties. We
need some facts about G—sets. The following facts about G—sets are well-known
and can be found in [14]. Let G be a finite group.

(1) Let G be a group. A finite set S is called a G—set if there is a map Gx S — S,
(g, 8) +— gs, satisfying; 1s = s and (gh)s = g(hs) for all g,h € G,s € S.

(2) Let S and T be G—sets. Amap f: S — T is called a G—map if f(gs) = gf(s)
forallge G,s € S.

(3) Let S be G—set. For any s € S, we write orbg(s) = {gs : ¢ € G} and
stabg(s) = {g € G : gs = s}. They are called G—orbit of s and G—stabilizer of
s, respectively. Moreover, orbg(s) is a G—set and stabg(s) is a subgroup of G.
(4) A G—set S is said to be transitive if for any s;, s2 € S there is a ¢ € G such
that gs; = so.

(5) A G—set S is transitive if and only if any G—map from a G—set T into S is

6
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surjective.

(6) For any subgroup H of G, the set of left cosets of H in G becomes a G—set
by left multiplication.

(7) Let S be a G—set. For any s € S, the map G/stabg(s) — orbg(s) given
by gstabg(s) — gs is a bijective G—map (G—isomorphism) and so the G—sets
G/stabg(s) and orbg(s) are isomorphic. Hence in particular, |G : stabg(s)| =
|orbg(s)|. We write 17 ~¢ T for isomorphic G—sets T and 7.

(8) Let S and T be G—sets. Take any s € S and ¢t € T Then orbg(s) ~¢ orbg(t)
if and only if stabg(s) =¢ stabg(t). |

(9) For a G—set S and a subgroup H of G we write S¥ to denote the set of
H—fixed points of S.

(10) For G—sets S and T, Homg(S, T) denotes the set of all G—maps from S to
T.

(11) Let S be a G—set and H be a subgroup of G. Then we have a bijection
between the sets Homg(G/H, S) and SH given by (f : G/H — S) — f(H).
(12) For H,K < G; (G/K)Y = {gK : H < 9K} = {git,K : 1 = 1,...,1;j =
1,...,5} where 1 Kg;%, ..., 9-Kg; ! are all distinct G—conjugates of K containing
H and tq,...,ts are the left coset representatives of K in Ng(K).

(13) Let H, K be subgroups of G. Then (G/K)" =¥y w— x(G/K)Y.

(14) Let Hy, ..., H, be all distinct nonconjugate subgroups of GG, and S be a G~—set.
Then S =~ b, \i(G/H;) where )\ = % and S; = {s € S : stabg(s) =¢ H;}.
(15) (Burnside)For any G—set S, the number of G—orbits of S is TéTl > g 1577
(16) A G—set S is called G—free if stabg(s) = 1 for all s € S. For such G—sets

each G—orbits have the same number of elements.

(17) Let S be a G—set. Writing S as a disjoint union of its G—orbits we can
express S in the form GX = {gz : g € G,z € X} where X is a set of orbit
representatives. Once an X is chosen, any element of S can be written uniquely

in the form gx where g € G,z € X.

Now we can begin to study A—fibred G—sets. Let A be a finite abelian group
and G be a finite group. We write AG for A x G by identifying a € A with
(a,1) € Ax G and g € G by (1,g9) € G. Note that by our notational convention
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ag = ga for any a € A and g € G. A finite A—free AG—set is called an A—fibred
G—set, and its A—orbits orba(s), s € S, are called fibres. We sometimes use the
notation As instead of orb,(s) for fibres. Let S be an A—fibred G—set. Writing
S as a disjoint union of its fibres we can express S as AX = {az:a € A,z € X}
where X is a set of representatives of fibres. Any element of § = AX can be
written uniquely in the form ax where a € A,z € X. Hence, given any A—fibred
G—set S we can see S as a set of formal products AX = {az:a € A,z € X},
and a;z; = agxs if and only if a; = ay, 1 = x2. Consequently, by an A—fibred
G—set (equivalently by an A—free AG—set) we mean a set of formal products
AX ={azx:a € A,z € X} such that AX is a G—set and X is a finite set.

Let AX be an A—fibred G—set. Since it is an AG—set, it must be isomorphic to
a disjoint union of the sets of left cosets of some subgroups of AG. However, it
is not true for all subgroups of AG that the set of left cosets forms an A— fibred

G'—set because it may not be A—free.

Remark 2.1 Let V < G and v € Hom(V, A). Then {v(v")v : v € V} isa
subgroup of AG, and the set of its left cosets in AG forms an A— fibred G—set.

Proof: Put Ay, = {v(v™)v : v € V}. It is clear that Ay, is a subgroup
of AG and AG/Ay,, is an AG— set (by left multiplication). Hence we only
need to check its A—stabilizers. Take any v(v™')v € Agyy). Then a € A is in
staba(v(v~1)v) if and only if av(v™')v = v(v~1)v. Thus, staba(v(v~1)v) = 1 and
so AG/Aw,,) is an A—fibred G—set.

O

We use the notation Ay, for the subgroup {v(v™')v : v € V} of AG for any
V < G and v € Hom(V, A). Later we will show that any transitive A—fibred
G —set is AG—isomorphic to AG/Ay,, for some V' < G and v € Hom(V, A).
For an A—fibred G—set AX, the set of its A—orbits (fibres) {Az : z € X} is
denoted by A\ AX.

Remark 2.2 Let AX be an A—fibred G—set. Then A\ AX is a G—set with the
action;

G x (A\ AX) — (A\ AX), (g, Azx) — gAxz = Agz.
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Proof: Obvious.
|

Note that for an A—fibred G—set AX we have the following immediate proper-
ties;

orbac(az) = orbac(z), stabac(az) = stabag(z), orbe(Aaz) = orbg(Az), and
stabg(Aaz) = stabg(Az) for alla € A,z € X.

Remark 2.3 Let AX be an A—fibred G—set. Then AX is a transitive AG—set
if and only if A\ AX is a transitive G—set.

Proof: (=) Take any two fibres Az; and Az,. Since AX is a transitive AG—set
and zy, 2, € AX there is an ag € AG such that agz; = x9. But then gAx; = Az,
and so A\ AX is a transitive G—set.

(<) Take any a;x1,a:79 € AX. Since A\ AX is a transitive G—set, there is a
g € (G such that gAz; = Az,. But then ayzs = gazz; for some a3 € A and so
(a7 'azg)(a1x) = axz, implying that AX is a transitive AG—set.

O

We call AX a transitive A—fibred G—set if AX is a transitive AG—set, or
equivalently if A\ AX is a transitive G—set.

Remark 2.4 Let S = AX be an A—fibred G—set, and s € S. Then;

(i) The map s : stabac(s) — stabg(As) given by ws(ag) = g s a group isomor-
phism,

(i) For any g € stabg(As), there is a unique ag € A such that aggs = s,

(i) The map v, : stabg(As) — A given by vs(g) = a;*

s a group homomor-
phism,

(iv) stabac(s) = D (stabe(As)ve)s

(v) AG /A (stap(4s),vs) 18 @ transitive A—fibred G—set,

(vi) AG /A (stabg(s)vs) ac 07bac(S).

Proof: (i) It is a straightforward checking.

(ii) Since 7 is bijective, for any g € stabg(As) there is a unique a, € A such that
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Ts(agg) = g. Note that azgs = s.
(iii) Given g,h € stabg(As), we find unique elements g, G, Ggn, € A such that
aggs = aphs = agn(gh)s = s by part (ii). Then s = ag(gh)s = agg(hs) =

!s and so ag, = agap because S is A—free. Hence v, €

aghay, ' (gs) = agha,jlag“
Hom(stabg(As), A).
(iv) If ag € stabac(s), then g € stabg(As) and s = ags = agzgs = v,(g7})gs.
Thus as = v5(g7")s, and since S is A—free v,(g7!) = a. So ag = v,(g7V)g €
{vs(97")g : g € stabe(As)} = Astabe(as)rs)- Therefore, stabac(s) is contained in
the set A(stabg(4s)v,)- Converse direction is clear because an element v,(g~1)g of
A\ (stabg(As)vs) 18 €qual t0 agg where azgs = s.

(v) Clearly it is a transitive AG—set. Moreover it is A—free from 2.1.

(vi) Obvious.

O
For any A—fibred G—set S we know from 2.4 that the A—fibred G—sets orb,(s)

and AG/ A (stabg(4s),v.) are isomorphic (as AG—sets) where v, is the uniquely de-
termined element of Hom(stabg(As),v,) by the condition: gs = v,(g)s for all
g € stabg(As). Hence, in particular any transitive A—fibred G—set S is isomor-
phic to AG/A (staps(as),vs) Where s is any element of S. And conversely for any
V < G and v € Hom(V, A) the set AG/Ay,, is a transitive A—fibred G—set.
We use the notation 4,G/V to denote the transitive A—fibred G—set AG/ Awuy,
and use [A,G/V] to denote its isomorphism class. Also for any A—fibred G—set
AX, we write [AX] for the isomorphism class of AX.

Remark 2.5 Let S = AX be an A—fibred G—set, and for s € S let v, :
stabg(As) — A be the uniquely determined element of Hom(stabg(As), A) by
the condition: gs = vs(g)s for all g € stabg(As). Then

Vgs = Vs and vy = vs for any g € G and a € A.

Proof: h € stabg(As) if and only if Ahs = As, or equivalently A(ghg=!)gs =
Ags. Hence h € stabg(As) if and only if ghg™! € stabe(Ags). Moreover, hs =
vs(h)s and (ghg™')gs = vgs(ghg™)gs imply that vs(h)s = v(ghg™!)s. Since S
is A—free, vys(ghg™") = vs(h) implying that v,s = 9v;.

Note that A(as) = As. So the functions v,s and v, have the same domain. Also
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g(as) = vas(g)(as) implies that gs = v,5(g)s. On the other hand, gs = v5(g)s and

50 Vgs(g)s = vs(g)s. Because S is A—free, v45 = ;.
d

Let ch(A,G) = {(V,v) : V < G,v € Hom(V, A)}. Then G acts on ch(A,G)
by conjugation; (g,(V,v)) — 9(V,v) = (9V,%) where 9v : 9V — A is given
by 9v(gug™!) = v(v) for all v € V. We write (V,v) =¢ (W,w) if the elements
(V,v), (W,w) € ch(A, G) are in the same G—orbit of ch(A, G).

Remark 2.6 Let (V,v),(W,w) € ch(A, G). Then,
AGIV ~ac ALG/W (equivalently, [A,G/V] = [A.G/W]) if and only if
(Va V) =G (VV7w)

Proof: A,G/V ~ac A,G/W if and only if the subgroups Ay, A, of AG
are AG—conjugates. Now if “*Ay,) = A, for some ah € AG, then
{v(gHhgh™ 1 g€V} ={w(g™')g: g€ W}

But {v(¢7)hgh™" : g € V} = {"v((hgh™")")(hgh™") : g € V} = {"v(u")u :
u € "V}. So, "V = W and "v = w implying that *(V,v) = (W,w).

O

Consider A,G/V which denotes the A—fibred G—set AG/Ay,,) where Ay,
= {v(v™')v : v € V}. Let us denote agQ(v,) by agA. Two fibres A(agA) and
A(bhA) are equal if and only if there is a ¢ € A such that cg/A = hA if and only
if g € V and ¢ = v(g7'h) € A. Thus, the fibres A(agA\) and A(bhA\) are equal
if and only if gV = hV. Hence, we have a bijective map A\ (A,G/V) — G/V
given by A(agA) +— gV. It is clear that this map is a G—map. Consequently,
AN\ (A,G)V) ~¢ G/V.

Suppose A,G/V is given. It can be written in the form AX where X is a set of

A—orbits representatives. Since it is A—free, each A—orbit has the same number
of elements which is |A], and we showed above that the number of A—orbits is
equal to |G/V|. Therefore, to represent the A—fibred G—set A,G/V = AG/Ay,,)
in the form AX we can take for example X as the set {gAv,) : gV C G} (AG acts
on AX by left multiplication). Note that stabg(A(9Dwvw))) = TV, Veny,,, = v
and |A,G/V| = |A||G: V.



Chapter 3

Monomial Burnside Rings

We are still assuming that A is a finite abelian group and G is a finite group. We
introduce two binary operations on A—fibred G—sets. The most obvious one is
the disjoint union. The other one is slightly more complicated than the disjoint
union, and we introduce it now as exactly Dress did in [9] but we are using the

notations of [1].

Suppose S = AX and T = AY are both A—fibred G—sets. Then their
cartesian product S x T is an A—set with the action: a(s,t) = (as,a™t).
Let S®T denote the set of A—orbits of the cartesian product S x T with respect
to the above A—action. We write s®t for the A—orbit containing (s,t) € S x T.
Thus,
SRT={s®t:s€S,teT}, s®t={(as,a™'t):a € A}.

Note that (as) ® t = s ® (at) for any a € A and (s,¢) € S x T.
We let AG act on S® T as: ag(s ®t) = (ags) ® (gt).

Remark 3.1 S® T constructed above is an A—fibred G—set.

Proof: The action is well-defined: Let s ® t = s’ ® t’ for some s,s' € S and
t,t' € T. We want to show that ag(s ® t) = ag(s’' ® t') for any ag € AG. Since

12
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s®t=s®¢t, (st) and (¢,t) are in the same A—orbit of S x T. Thus there
is an a € A such that (s/,t') = (a7!s, at). But then (ags’, gt’) = (gs,agt) and so
ags' ® gt’ = gs ® agt = ags ® gt. Hence ag(s ®t) = ag(s' @ t').
S®T is A—free: Take an element s ®t € S ® T and compute its A—stabilizer.
a € Aisin the A—stabilizer of s®t if and only if as®t = s®¢ which is to say that
(as,t),(s,t) € ST are in the same A—orbit of S x T. Then, (as,t),(s,t) € SxT
are in the same A—orbit of S x T if and only if (bas, b1t) = (s,t) for some b € A,
or equivalently a = b = 1. Hence, S ® T' is A—free.
The action properties are satisfied: It is obvious that 1(s ® ) = s ® ¢t and
((ag)(bh))s @ t = (ag)((bh)s ®1).

|

Theorem 3.2 For any (V,v),(W,w) € ch(A,G) we have;

AGIVR®AGIW e |H AuG/VNIW.

VgWCG

Proof: Remember that A,G/V = AG/Ay,) and A,G/W = AG/Aw,.)- Put
Awpy =D, Dy = A, and S = A,G/V ® A,G/W. Since we can express any
A—fibred G—set S as a disjoint union of its AG—orbits, and since orbag(s) ~ac
AG/stabac(s) = AG/ A (stabs(4s),vs); We can proceed as follows.

Take any element agA ® bhA’ of S. Then orbag(agA ® bhA) = orbac(A ®
abg~'hA\"). Hence we calculate stabsg(s) for elements s € S of the form A® gA'.
ah € AG is in stabac(A ® gA') if and only if ahA ® th' = A ®g/'. But
ah/\ ® hg/\' = A ® g/\" if and only if (ahA, hg/A\') and (A, gA\') are in the same
A—orbit of A,G/V x A,G/W which is equivalent to, (ah/\, hgA'") = (bA, b~ 1gA\')
for some b € A. Now (ahA\, hg/\') = (bA,b71gA") is the same as with ab™'h €
A and bg~'hg € A/, or equivalently h € V, v(h7!) = ab”!, g7'hg € W and
w((g*hg)™!) = b. Hence, ah € AG is in stabac(A®gA') if and only if h € VNIW
and a = v(h Hw((g7 hg)™!) = (v.9w)(h™"). Therefore,

stabac(A ® gA') = Ayrewpsw) and so orbag(A ® gA") ~ae A, e,G/V NIW.
Now, orbac(A ® g/\') = orbac(A @ hA\') if and only if there is an ak € AG such
that akA ® kg/\' = A ® h/\', which is to say that (akA, kgA\') and (A, hA')
are in the same A—orbit of A,G/V x A,G/W. But this holds if and only if
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there is a b € A such that (akA, kgA') = (bA,b*hA'), which is equivalent to
ab™'k € A and bh~'kg € /A'. Using the definitions of A and A/, we see that
ab 'k € A and bh kg € A ifand only if k € V, v(k™!) = ab™!, h"'kg € W and
w((h™tkg)~') = b, or equivalently h='kg € W and k € V. But then by k € V,
orbac(A ® gA\') = orbac(A ® hA') if and only if VAW = VgW. Hence,

AGIVR®AGIW a4 AvsuG/V NIW.

VgWcCaG

The formula in 3.2 is known as the Mackey product formula.

Define an addition and multiplication on the isomorphism classes of A—fibred
G —sets as follows:
[S]+[T] = [SWT] and [S][T] = [S®T].
It is clear that the above operations are well-defined, commutative, associative,
and moreover the multiplication is distributive over the addition. Thus, the
set of isomorphism classes of A—fibred G—sets forms a commutative semiring.
We write B(A,G) for the associated Grothendieck ring and call it monomial
Burnside ring. Therefore B(A, G) is a set of formal differences of isomorphism
classes of A—fibred G—sets, and it is a commutative ring with 1 with respect to
the following operations;
[AX] + [AY] = [A(X WY)] and [AX][AY] = [AX ® AY] = [A(X ®Y)]
where the action of AG on A(X ® Y) is given by ag(z ® y) = agr ® y.
Note that the multiplicative identity of the ring is [A,G/G] where 7 is the trivial
group homomorphism from G to A.
Remember that ch(4,G) = {(V,v) : V < G,v € Hom(V,A)} is a G—set by

conjugation.

Remark 3.3 (i) B(A, G) is a commutative ring with 1.

(11) B(A, G) is a free Z—module with so called transitive basis {[A,G/V] : (V,v) €
ch(A,G)}.

(iti) B(A,G) = Dwu)cpenac) LIAG/V] where the notation under the direct
sum means that (V,v) runs over a set of representatives of nonconjugate elements

of ch(A, G).



CHAPTER 3. MONOMIAL BURNSIDE RINGS 15

(iv) The multiplication of B(A, G) on its transitive basis given as;

[AG/VI[AG/W] = Y [AsuG/V NIW].

VgWwCe

Proof: In chapter 2 we proved the following three facts.
(1) Any transitive A—fibred G—set is isomorphic to A,G/V for some (V, v).
(2) Any set of the form A,G/V is a transitive A—fibred G—set.
(3) ALG/V ~ A,G/W if and only if (V,v) =¢ (W,w).
Hence; (i), (ii), and (iii) follows from the above three and from the definition of
B(A,G). We proved (iv) in 3.2.
O

For a G—set S, let AS = {as: a € A,s € S} be the set of formal products.
Thus, a151 = agss if and only if a; = ay and s; = s5,. We let AG act on AS
as: (bg)(as) = (ab)(gs) for all bg € AG and as € AS. Then, AS becomes an
A—fibred G—set. If [S] denotes the isomorphism class of the G—set 9, then it is
clear that [S] = [I'] implies [AS] = [AT]. So we have a well-defined map
Y1 : B(G) — B(A4, G) given by ¥1([S]) = [AS] for any G—set S.

Remark 3.4 (i) Y,(|G/V]) = [A,G/V] for any V < G, where T is the trivial
element of the group Hom(V, A).

(i1) ¥y is a unital Ting monomorphism.

(i) B(G) can be regarded as a subring of B(A,G).

Proof: (i) vu([G/V]) = [A(G/V)], A(G/V) = {a(gV) : a € A, gV € G/V},
and A,G/V = AG/A,r where Ay = {lv:v eV} < AG.

Define a map f : A(G/V) — AG/Aw,y where f(a(gV)) = agAy,,). The ele-
ments a(gV’) and b(hV) of A(G/V) are equal if and only if ¢ = b and gV = hV
which is to say that (bh)~'(ag) = 1(h™'g) € Aw;r. Thus, the elements a(gV)
and b(hV) of A(G/V) are equal if and only if agA ;) = bhAy5y. Hence, f is
well-defined, and injective.

Obviously from its definition, f is surjective and an AG—map.
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Now since we proved that A(G/V) and AG/A v, are isomorphic (by the map
[) we have ¢, (|G/V]) = [A.G/V].

(ii) It follows easily from the multiplication formula given in 3.3 (iv).

(iii) Since %, is a unital ring monomorphism, by identifying B(G) with ¢, (B(G))
we can regard B(G) as a subring of B(A, G).

Remember that for any A—fibred G—set AX, the set A\ AX of its A—orbits
(fibres) is a G—set with respect to the G—action: gAr = Agz. Also in chapter 2
we showed that A\ (A,G/V) ~¢ G/V. Hence we have a well-defined map
$2: B(A,G) — B(G) given by $({AX]) = [A\ AX].

Remark 3.5 (i) ¥2([A.G/V]) = [G/V] for any (V,v) € ch(A,G).

(1) Yo 1s a unital Ting epimorphism.

Proof: Follows immediately from the above explanation and from the multipli-

cation formula given in 3.3 (iv).
O

Let A’ and A be two finite abelian groups such that A’ < A. Hence for any V <
G, a group homomorphism v : V — A’ can be seen as a group homomorphism
V — A. By this way the A’—fibred G—set A/ G/V can be seen as the A—fibred
G—set A,G/V. Moreover, if A,G/V ~p¢ AL,G/W then (V,v) =¢ (W,w) and
so A,G/V =~4q A,G/W. Thus we have a well-defined map 3 : B(A,G) —
B(A,G) given by ¢3([A,G/V]) = [A,G/V]. It is clear that 13 is a unital ring

monomorphism.

We constructed the ring homomorphisms ¢; and %5 in 3.4 and 3.5. Now
we consider the composition map ¢ = ¢; o ¢y : B(A,G) — B(A,G) where
#([A,G/V]) = [A,G/V] for any (V,v) € ch(A,G) where T denotes the trivial

homomorphism.



CHAPTER 3. MONOMIAL BURNSIDE RINGS 17

Remark 3.6 (i) ¢ is a unital ring homomorphism, and it can be also seen as
B(G)—module endomorphism of the B(G)—module B(A, G).

(i1) ¢ is a projection onto B(G) < B(A,G).

(i11) B(A,G) = B(G) ® Ker(¢) as B(G)—modules or Z—modules.

Proof: All parts are obvious. (Note that B(G) is a unital subring of B(A, G)
and Ker(¢) is an ideal of B(A, G). So, the decomposition in (iii) is not merely a

submodule decomposition. )
O

We close this chapter after giving an elementary consequence of the mul-
tiplication.formula given in 3.3 (iv). For any v € Hom(G,A), we have
[A,G/G]* = [AG/G). Since v(g) € A for any g € G, [A,G/G)A = 1.
Therefore, [A,G/G] is a unit in B(A,G) for any v € Hom(G, A). Moreover
& = {[A,G/G] : v € Hom(G, A)} is a multiplicatively closed subset of B(4, G)
containing 1. Hence R is a subgroup of the unit group B(A,G)* of B(A,G). In
fact, this shows that Hom(G, A) embeds in B(4, G)* by v — [A,G/G] for any
v € ch(A,G).



Chapter 4

Possible GGhost Rings

The Burnside ring B(G) can be embedded in the ring Z™ where n is the number of
noncojugate subgroups of G. That is, there is a ring monomorphism from B(G)
to Z™ and so the image of B(G) is a subring of Z" and it is called the ghost
ring of B(G). That is why the name of this chapter is possible ghost rings. In
this chapter we embed B(A, G) to two rings which are easier to work with than
B(A,G). The first one is a direct product of some group rings, and the second
one which is easier is a direct product of C. The first one was studied in [9] and
the second one in [1]. We will mainly follow [9] for the first ghost ring using the
notations in [1] and supply details skipped in [9]. We are still assuming that A
is a finite abelian group. However, for the second ghost ring we have to assume
that A is cyclic. Since the monomial Burnside rings introduced by Dress in [9] are
more general than the monomial Burnside rings we are considering, the second
ghost ring introduced by Barker in [1] will be used more than the first ghost ring

in the next chapters.

For any H < G, let ZHom(H, A) be the group ring. Conjugation by an ele-
ment g € G induces a group isomorphism Hom(H, A) — Hom(?H, A) which can
be extended to a group ring isomorphism from ZHom(H, A) to ZHom(H, A).
For an A—fibred G—set S = AX and s € S, remember that v, is the uniquely
determined element of Hom/(stabg(As), A) by the condition: gs = v4(g)s for all
g € stabg(As).

18
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Lemma 4.1 Let AX and AY be A—fibred G—sets. Foranyrz € X andy € Y
we have;
(i) stabg(Az ® y) = stabg(Az) N stabg(Ay),

(Z’l) Vegy = Vgly.

Proof: (i) Let g € G. If gz = a1z and gy = agy for some a1,as € A, then
9(z®y) = a1a2(z®y) and, more generally, ga(z®y) = aa1a3(zQy) for all a € A.
On the other hand, if 9(z ®y) = b(z @ y) for some b € A, then gz = cz for some
c € A, and we must have gy = ¢ 'by. So we have shown that g(Az®y) = AzQy
if and only if gAz = Az and gAy = Ay. So part (i) follows.

(ii) For any g € stabe(Az ® y) = stabe(Az) N stabg(Ay), we have gz = v,(g)z,
9y = vy(9)y and g(z ® y) = v1ey(9)(z ® y). Then 1,0,(9)(z Q@ Y) = g(z ® y) =
(97) ® (g9y) = (va(9)z) ® (y(9)y) = v2(9)1y(9)(z ®y). Since AX ® AY is A—free,
it follows that v,g,(g) = v,:(9)v,(g).

For any H < G, we define a map from B(A, G) to ZHom(H, A) as:

Vi : B(A,G) — ZHom(H, A),  [AX]— > Vel

r€X,H<stabg(Azx)
where v; |y denotes the restriction of v, to H. We usually omit |ir and use v, for

l/le.
Lemma 4.2 ¢y is well-defined.

Proof: Suppose [AX] = [AY]. We want to show that ¥([AX]) = ¥([AY]). Now,
AX and AY are two isomorphic AG—sets. Thus, there is a bijective AG—map
[+ AX — AY. For any z € X, there are unique elements a, € A and y, € Y
such that f(z) = a,y,.

Note that for 7,2’ € X if y, = y then f(apz) = apa,y, and f(a,2') = azazy, .
So f(axz) = f(as2') implying that z = &’ and a; = a,. That is, Y = {y, : z €
X} and y, are all distinct where z range in X.

Take an z € X. Then g € stabg(Az) if and only if Agr = Az which is to say
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that Agf(z) = Af(z) (equivalently g € stabs(Af(x))), because f respects the
AG—action. Thus the maps v, and vy are defined in the same domain, and
stabg(Az) = stabg(Af(z)) = stabg(Ay,). Moreover, for any g € stabg(Az) we
have gz = v,(g)z and gf(z) = V@) (g)f(z). On the other hand from gz = v,(g)z
we get £(g2) = f(va(g)z) implying that g (z) = v,(g) f(z). Hence, vy (9) () =
vz(9)f(x). Since AY is A—free, vs(5)(g) = vz(g). So we proved that v, = vp,) =
Va,ye = Vy, (the last equality follows from 2.5).

Finally, using Y = {y, : = € X}, stabg(Az) = stabe(Ay,), and v, = v, we

Y([AX]) = Z Vg = Z Vya

compute

r€X,H<stabg(Az) reX,H<stabg(Ayz)
= D, wm=y(AY)].
y€Y,H<stabg(Ay)

Theorem 4.3 (i) ¥y is a unital ring homomorphism.
(i1) For any (V,v) € ch(A, G);

va(AG/V))= ) w

gVCG,H<9V

(i5) If H £ V, then ¥u([A,G/V]) = 0.

Proof: (i) Additivity is clear because [AX] + [AY] = [A(X wY)).
Let AX and AY be A—fibred G—sets. Then using 4.1;

Yu([AX][AY]) = ¢¥u([AX © AY]) = vu([A(X @ Y)))

rQYEXQY,H<stabg(Az®y)

= E Valy

ze€X,yeY,H<stabg(Az),H<stabg(Ay)

= ( Z Va)( Z vy)

z€X,H<stabg(Ax) yeY,H<stabg(Ay)

= Yu([AX])pu([AY]).



CHAPTER 4. POSSIBLE GHOST RINGS 21

(ii) Remember that A,G/V = AG/Ay,,) where Ay, = {v(v")v:v € V}.
In chapter 2 we showed that to write 4,G/V in the form AX we can take
X = {gAw, : gV C G}. Now we easily find that stabe(A(gAw,))) = 9V

and Vg, = 0. So, Yu([A.G/V]) = ZngG’HSgV 9.
(iii) It is obvious because {gV C G : H <9V} is empty set if H £5 V.

d

Since conjugation by an element ¢ € G induce a group ring isomorphism
ZHom(H,A) — ZHom(9H,A), conjugation by g changes the map vy
B(A,G) — ZHom(H, A) to a map, 99y : B(A,G) — ZHom(9H, A), by tak-
ing g—conjugates of the image of 1g. Note that 99y = s because:

You([AG/V]) = Z ky = Z g(g‘lky)

kVCGIH<kY g~ lkVCG,H<9 kv

=0 YD TR =9y ((AG)/V)).

g-lkVCG H<s kY
Note that for any H < G, the group Ng(H)/H = N(H) acts on Hom(H, A) by
conjugation: (gH,v) — 9v : 9H — A where 9v(9h) = v(h) for all h € H. Thus
by Z—linear extension, N(H) acts on ZHom(H, A).

Remark 4.4 The action of N(H) on ZHom(H, A) fizes vu(B(A,G)) setwise.

Proof: From the explanation above we have 99y = ¢y for any g € G. Hence
the result follows because 9H = H for gH € N(H).

Remark 4.5 (i) Yu([A,G/H]) = 3. yenoon °v for any v € Hom(H, A).

(ii) Yu([A,G/H])) = |stabyy(v)|>_,w where w ranges over all distinct
N(H)—conjugates of v.

(iit) For any (V,v) € ch(A4,G),

vu([AG/V) = Y yw(AG/V]).

H<W<G,W=gV
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Proof: (i) Obvious.

(i) Tt is clear because Hom(H, A) is an N(H)—set by conjugation.

(il)) Ya([A.G/V]) = Xsvcen<sy 'v- Note that the indices of the sum range
in the set {gV C G : H < 9V} = (G/V)H. We can write (G/V)¥ as
Wr<ww=gv(G/V)W (this property is stated in the beginning of chapter 2, (13)).
So,

{gV CG: H <LV} =Wpcww=cv{gV CG: W <9V} Then

ba(AC/V) = Y W

gvVCG H<IV

- Sy W

HWW=gV gVCGW<sV
= Z Yw([A.G/V]).
H<W<GW=gV

O

Now we show that the product map [ [ <¢ Y 1s an injective ring homomorphism
from B(A,G) to [y ZHom(H, A). We need the following lemma.

Let F be a subset of the subgroups of G such that if V € F, then 9H € F for
any H <V, and g € G. We put

B(A,G, F) = &y ZIA,G/V].

(VaEgeh(A,G),VEF

Lemma 4.6

B(A,G,F) = [ Ker(vn).
H¢F

Proof: If H £¢ V then v ([A,G/V]) = 0. Hence,

B(A,G,F) C () Ker(¢n).
H¢F
Take any z = > wijcqenac) WwlAuG/W] € B(A,G) such that 2 is in
MNigr Ker(ym) where Aw,, is an integer for (W,w) € ch(A, G). We want to show
that z € B(A,G,F). So it suffices to show that if Ay, # 0, then W € F. Assume
the contrary. Then there is a W ¢ F with Aw,, # 0 for some w € Hom(W, A).
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Let Vo be such an element which is maximal with respect to < . Thus for some
vo € Hom(Vo, A) Avpe # 0, Vo ¢ F, and if Ay, # 0 and V ¢ F then Vy £g V.
Now,

0=vu(x) = D  Awudw([AG/W)).

(Ww)Egch{A,G)
Because H %£¢ V implies that ¢ ([A,G/V]) =0,
0=vw(2)= Y IAwuty(AG/W]).
(Ww), Vo<W

For any W appearing in the last sum, if W € F then Vy € F which is not the

case. So,

0 =ty(2) = > Awwtvg ([AuG/W)).

(Ww),Vo<ogW,W¢F

By the maximality of Vj,

0= d)VO(Z) &= Z /\Vo,won([AwG/‘/O])‘

wEN(VO)HO’m(VChA)

Then using 4.5(7);

0=1y(2) = Z )‘Vo,uJ|5tabN(Vo)(w)| Z 2
"

WEN(vy) Hom(Vy,A)

where for a fixed w € Hom(Vp, A) the index p ranges over all distinct
N(V,)—conjugates of w. So all 4 appearing in the last sum are distinct. Since the
elements of Hom(Vp, A) are linearly independent over Z, we must have Ay, ,, = 0

which is a contradiction. Hence we proved that

B(A,G,F) 2 () Ker(yn).
H¢F

O

Theorem 4.7 The map [[y<q¥u : B(A,G) — [lg<gZHom(H, A) is an injec-

tive ring homomorphism.

Proof: Let F be the empty set. Then 4.6 implies that

0=B(A,G,F)= () Ker(¥u) = Ker([] n)-

H<G H<G
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So the product map is injective.
O

Let R be a commutative ring with 1, we write RB(A, G) for R ®z B(A,G) and
RHom(H, A) for R ®z ZHom(H, A). We denote the R—linear extension of the
map Yy by again 1y. The results 4.6 and 4.7 are still true when Z is replaced
by any commutative ring R with identity such that |G| is not a zero divisor of R
(proofs are exactly the same).

For any (V,v) € ch(A, G) put ny,, = |stabn(v)(v)|. Note that for (V,v) =¢ (W,w)
nv,y = Nww- Now for any H < G and (V,v) € ch(A,G), by 4.5(¢i3);

wH([AuG/V]) = Z ¢W([AVG/V])
H<W<G,W=¢V
Suppose Wi, ..., W, are all distinct conjugates of V containing H. Let W; = %V.

Then since 9y = Yop,

vr([AG/V]) = “dv([AG/V)).

7

Using 4.5(2) and (4%);

bu([AG/V]) =D % > w)=>) %(stabnw)(v)| Y w).

i gVCNg(V) i

Hence for any (V,v) € ch(4,G); wH(miV [A,G/V]) € ZHom(H,A) and
wV(WIJ/[A,,G /V1]) = [v]T where [v]* denotes the sum of all distinct conjugates of
v. Let ZHom(V, A)NV) be the set of N(V)—fixed points of ZHom(V, A). Then
obviously it is a subring of ZHom(V, A) and it is a free Z—module with basis
[v]*. Hence, images of the different elements Wlu [A,G/V] under the map %y form

a Z—basis of ZHom(V, A)NV).

Remark 4.8 The Z—linear span of the set {~[A,G/V]: (V,v) € ch(A,G)} is
a subring of QB(A, G) and isomorphic to HVSGG ZHom(V, ANV,

Proof: It follows from the explanation above. Note that the product is taken
over all nonconjugate subgroups of G. It is because: G acts on [[,o ZHom(V, A)
and g sends the term ZHom(V,A) onto ZHom(9V, A) isomorphicly. Thus
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since 9y = oy, the map [, o¥v : QB(A,G) — [y« QHom(V, A) maps
the Z—linear span of {n—é—u[A,,G/V] : (V,v) € ch(A,G)} isomorphicly onto
(ITy<g ZHom(V, A))¢ . Also note that we have

(H ZHom(V, A))¢ ~ H ZHom(V, ANV,

V<@ V<aG

Now we study the ghost ring introduced in [1]. For this purpose we have to
assume that A is cyclic. Hence, from now on in this chapter A is a finite cyclic
group and we assume that A < C*.

We have already some algebra maps ¢y : CB(A4,G) — CHom(H, A) and we
want to construct algebra maps from CB(A,G) to C. For any h € H, de-
fine a map ev(h) : CHom(H,A) — C given by ev(h)(X_,cromm.a) Av?¥) =
> veHom(m,a) WV (R). It is clear that ev(h) is a C—algebra epimorphism. Note
that ev(h,) = ev(hy) if and only if v(hy) = v(hs) for all v in Hom(H, A)
if and only if h3'h; € Kerv for all v € Hom(H, A). Let for any V < G,
O(V) = Nuetomv,aKerv. We saw above that ev(v;) = ev(vp) if and only if
v10(V) = v0(V).

For any H < G and h € H define a map S§, : CB(A,G) — C as 8§, =
ev(h) o ¢p. It is clear that S, is a C—algebra homomorphism (because it is a

composition of two such maps), and

SEa[AG/V) =eo(m)( Y w)= Y w(h).

gVCG,H<IV gVCG,H<IV

Remark 4.9 For any H < G and h € H we have;
(i) For any [A,G/V] € B(A,G)

SaalAG/V) = Y u(h),
gVCG,H<9V
(i) For any A—fibred G—set AX
Sia((AX]) = > wh,

z€X,H<stabg(Az)
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(iii) S§ , : CB(A,G) — C is a C—algebra epimorphism,
(iv) Sn = SSten, for any g € G.

Proof: (i) It is proved above.
(ii) Using the definition S§ , = ev(h) o i we can easily find the desired result
because we know the rules of the maps ev(h) and .

(iii) Because it is a composition of two C—algebra maps, the result follows.

(iv) S8y o, = €v(9h) 0 99y = ev(9h) 0 oy = SG 1

We define the following two sets (first one is already defined before);
ch(A,G) = {(V,v): V < G,v € Hom(V, A)},

el(A,G) = {(H,}k) : H < G,hO(H) € H/O(H)}

where O(H) = Nyepoma,a)Kerv, or equivalently O(H) is the minimal normal
subgroup of H such that H = H/O(H) is an abelian group of exponent dividing
|A]. The sets ch(A, G) and el(A, G) are called the set of A—subcharacters of G
and the set of A—subelements of G, respectively. See [1] for a more detailed

explanation of these two sets. We just state the following.

Remark 4.10 (i) The sets ch(A,G) and el(A, G) are G—sets by the conjugation
action of (3.

(i) |ch(A, G)| = lel(A,G)|, |G\ ch(A,G)| = |G \ el(A,G)| and |Hom(H, A)| =
|H|, where G\ el(A,G) and G\ el(A,G) denote G—orbit representatives.

Proof: See [1].
d

We write (H,h) =¢ (K, k) if the elements (H, k), (K, k) € el(4,G) are in the
same G—orbit of el(4, G).
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Theorem 4.11 For any (H,h), consider the map Sgyh : KB(4,G) — K given
by SGA([AX]) = X sex m<stabeian) V=(h) where K is a field of characteristic 0
containing enough roots of unity to ensure that A < K*. Then;

(i) For any (V,v) € ch(A,G),

SEalAG/V) = > ().
gVCG,H<IV
(it) S5 ) is a K—algebra epimorphism.
(iii) Any K—algebra homomorphism from KB(A, G) to K is of the form Sf,’h for
some (H, h) € el(A,G).
(iv) SG, = S5, if and only if (H,h) =¢ (K, k).
(v) KB(A,G) is a semisimple algebra.

(vi) The following map is a C—algebra isomorphism,

II ssi.:cBAG -~ [ c

(H,h)Eqel(A,G) (H,h)egel(A,G)

Proof: Indeed we know (i), (ii) and half of (iv) from 4.9. For the rest, or for all

of them see [1].
ta

Theorem 4.11 which was obtained by Barker in [1] is very important, and it will

be used in the next chapters.



Chapter 5

Primitive Idempotents of

CB(A, Q)

We are still assuming that A is a finite cyclic group and A < C*. An explicit
formula for the primitive idempotents of CB(A,G) in terms of the transitive
basis can be found in [1]. We just state in this chapter some results that we need

in later chapters, for details see [1].

From 4.11 (vi) we know that ¢ = [y mecea(ac) Shr is a C—algebra iso-
morphism from CB(4,G) to []y peqera e C- We know that B = {[A,G/V] :
(V,v) € ch(A,G)} is a C—basis of the C—algebra CB(A, G). Let B’ be the stan-
dard basis of [ [z nyeera,q) C- That is, it consists of all vectors (0, .., 1, .., 0) with
only one nonzero entry which is 1 in the (H, k)™ place. Suppose we order B
and B'. Then ¢ has an n x n matrix say g[p|s with respect to the ordered ba-
sis B and B’ where n = |G \ ch(4,G)| = |G \ el(A,G)|. Thus we have for any
z € CB(A,G) that [¢(2)]s = sl¢]s[2]s where [p(z)]s denotes the coordinate
matrix of ¢(z) with respect to ', and [z]g denotes the coordinate matrix of z
with respect to B. Since ¢ is an isomorphism, primitive idempotents maps onto
primitive idempotents. Also the primitive idempotents of H( Hheel(AG) C are
just the elements of B’. Hence ¢~'(B') must be the set of primitive idempotents

of CB(A, G). Hence, in concrete examples we can find the primitive idempotents

28
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of CB(A, G) by evaluating the inverse of the matrix g[y]s.

Remark 5.1 (i) The primitive idempotents of CB(A,G) are of the form eg,h
where (H, h) runs over all nonconjugate A—subelements of G.

1 if (H,h) =¢ (K,k)

0 otherwise.

(#11) 31 nyegeicac) €in = 1-

(iv) egyh is the unique element of CB(A, G) satisfying the following condition for
all (K, k) € el(A,G);

SEA(cG) = { LU = ()

(i) eg,hefcé,k =

0 otherwise.
(v)
CB(A,G)= @ ClAG/VI= & Cef,
(Viv)Egch(AG) (H,h)Egel(A,G)
(vi) For any z € CB(A, G),
= Z Sg,h(z)eg,h'

(H,h)Egel(A,G)

(vii) For any z € CB(A, G) and (H,h) € el(A,G), ze$;, = S§ 1(2)e5 5-

Proof: See [1].
O

Remark 5.1 was obtained by Barker in [1]. It is very important and used through-

out in the next chapters without referring sometimes.



Chapter 6

Some Maps

There are certain important maps defined in [16] for the Burnside rings. To
realize B(A,G) as a Mackey functor, in this chapter we extend these maps to
B(A, G) which contains B(G) as a unital subring, and we find the images of the
primitive idempotents of CB(A, G) under all these maps, except one, namely, the

orbit map.

If A is taken to be the trivial group, then our results recover the corresponding

results about these maps defined on B(G).

We are still assuming that A is a finite abelian group. However, for the places
in which the algebra maps Sg‘h or the primitive idempotents efl’ » appear we have
to assume that A is a finite cyclic group regarded as a subgroup of C*. Moreover,
wherever S , or e} , appear, it must be understood that we extended these maps
by C—linear extension from B(A, G) to CB(A4, G).

In fact, there are six maps that we want to consider. One of them , namely,
conjugation map, is very trivial. Two of them were studied, and the images of the
primitive idempotents under these two maps were found by Barker in [1]. Hence,

for these three maps we just state the results without proofs.

30
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6.1 The Inflation Map

Let N € G and S = AX be an A—fibred G/N—set. Define the inflated set
infG(S) = S and let AG act on infg(S) as;
(ag, s) — ags = a(gN)s for all ag € AG and s € inf§(S).

Remark 6.1 Let S = AX and T = AY be A—fibred G/N —sets where N < G.
(i) inf$(S) is an A—fibred G—set.

(i) S ~acyny T if and only if inf§(S) ~2ac infG(T).

(i4) infG(SWT) = inf$(S) WinfG(T).

(i) infG(S @ T) = infg(S) @ infG(T).

(v) S is a transitive A—fibred G/N—set if and only if inf$(S) is a transitive
A—fibred G—set.

Proof: (i) The action is well-defined: Suppose a1g; = a292 € AG and 51 = s5 €
inf$(S) = S. We want to show that a;9151 = a2g282, equivalently (a;(g1N))s; =
(az2(gaN))ss. Since a1(g1N) = az(g2N) and s; = s, we have already (a1(g1V))s; =
(a2(gaN))s2 because the action of A(G/N) on S is well defined.

The action properties are satisfied: Obvious.

inf$(9) is A—free: It is clear because the actions of A on S and inf§(S) are the
same.

(ii) Since inf$(S) = S and infg(T) = T, any bijective map from S to T is
a bijective map from inf$(S) to infG(T) and conversely. It is clear from the
definition of the AG—action on inflated sets that a bijective map from S to T
respects the A(G/N)—action if and only if it respects the AG—action.

(iii) and (iv) It is immediate because inf$(S) = S and inf$(T) =T.

(v) It is clear by the action of AG on inf§(S).

O

Hence, by 6.1 we have a well-defined map, called the inflation map,
Inf$ : B(A,G/N) — B(A,G) given by Inf§([S]) — [inf$(S)] for any A—fibred
G/N —set S.

Remark 6.2 Inf§ : B(A,G/N) — B(A,G) is a ring monomorphism.
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Proof: It is a well-defined map from 6.1(¢) and (é¢). It is a ring homomorphism

from (6.1)(¢i¢) and (iv). Finally, injectivity follows from 6.1(3).
O

Let N < G and N <V < G. For any v € Hom(V/N, A), we write ¥ for the
group homomorphism V — A given by &(v) = v(uN) for all v € V.

Remark 6.3 Let N < G and (V/N,v) € ch(A,G/N). Then

aira (GIN)
Ian([AVW]) = [A;G/V].

Proof: Infﬁ([A,,E—‘G/%]) = [inf$G(A, ((3%3)], and by 6.1(v)

in fﬁ(A,,%) = AV%)— is a transitive A—fibred G—set. Hence the AG—orbits
of its elements are all equal to A,,E—?,%\\,’—;.

Remember that A, {78 = A€ where Awyn,) = {v((vN)™")(wN) : N €
V/N} which is a subgroup of A(G/N). Put A = Awn,)-

We find the AG—stabilizer of A = 1(IN)A € 261 .

Let ag € AG. Then ag is in the stabilizer if and only if a(gN)A = A, which is

equivalent to g € V and v((gN)™!) = (g~!) = a. So, ag € AG is in the stabilizer

if and only if ag € {#(g7)g : g € V} = A(y,5). Therefore;

infG(AAZR) = orbac(D) ~ac (AG)/Aws) = AsG/V, as desired.

O

For the rest of this section, we consider the C—linear extension of the inflation
map; Inf$ : CB(A,G/N) — CB(A4,G).

Lemma 6.4 Let N 4 G and (H, h) € el(A, G). Then for any A—fibred G/N —set
S = AX we have;

S§h(InfS(S)) = St wan(1S)-

Proof: It suffices to prove this lemma for transitive A—fibred G/N —sets. Hence
take any (V/N,v) € ch(A,G/N). Remember that © is the group homomorphism
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from V to A given by (v) = v(vN). Using 6.3;
(G/N)

& (InfS(lA,~==2]) = 55 . ([4s = I5(h).
SialInfi((A A ) = Siall4:G/V)) gng,ZHng (h)

Note that; since N <V, V/N = (NV)/N. So, H <9V if and only if ((NH)/N) <
N((NV)/N) = 9(V). Hence {gV C G : H < 9V} = {(gN)(V/N) € (G/N) :
((NH)/N) < 9N(V/N)}. Also 90(h) = 9¥v(hN). Therefore the last sum can be

written as;

> )= > Ny(hN)

gvCG,H<V (gN)(V/N)S(G/N),((NH)/NY<sN (V/N)

N G/N
_ S(GN/H) v [A,,E—V;N—;]).

Theorem 6.5 Let N I G and (K/N,kN) € el(A,G/N). Then

G s GIN e
Inf N(eK/N,IcN) = Z €H,h
(H,h)€gel(A,G),(NH)/N,AN)=g,;n(K/N.kN)

Proof: For some complex numbers Mg p;
G G/N G
Ian(eK/N,kN) = Z AHKER b
(H,h)egel(AG)

Then by 6.4;
G/N G/N G/N
Amp = Sg,h(f nfﬁ(eKéN,kN)) = S(N/H)/N,hN(eKéN,kN)‘

Therefore

0, otherwise.
Thus, the result follows.

AHh =
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6.2 The Invariance Map

Let N 9 G and S = AX be an A—fibred G—set . Let inv§(S) = {s € S :
Ns = s}. We let A(G/N) act on inv§(S) as: (a(gN),s) — (a(gN))s = ags for
all a(gN) € A(G/N) and s € inv$(S).

Remark 6.6 Let N < G and S = AX be an A—fibred G—set. Then inv$(S) is
an A—fibred G/N —set.

Proof: inv§(S) is closed under the A(G/N)—action: Let a(gN) € A(G/N)
and s € inv$(S). We want to show that a(gN)s = ags € in$§(S). For any n € N,
n(ags) = ag((g~'ng)s). By the normality of N, g~'ng € N, and since s € inv$(9)
is fixed by N we have n(ags) = ags implying that inv$(S) is closed under the
action of A(G/N).

inv$(S) is an A(G/N)—set: It is a straightforward checking of action properties.
inv$§(S) is A—free: It is clear because the actions of A on inv§(S) and S are the

same.

a

Remark 6.7 Let S = AX and T = AY be A—fibred G—sets. Then

(i) If S ~ac T, then inv§(S) ~a@/n) inv§(T).

(i) inv$ (S WT) = inv§(S) W inv§(T).

(ii) If S is a transitive A—fibred G—set, then inv$(S) is a transitive A—fibred
G/N —set.

Proof: (i) Suppose S ~4¢ T. Then there is a bijective AG—map from S to T It
is clear that the restriction of this map to inv$(S) yields a bijective A(G/N)—map
from inv§(9) to inv§(T) which shows that inv§(S) 4 n) invF(T).

(ii) and (iii) are obvious.

ad

Hence by 6.6 and 6.7, we have a well-defined map, called the invariance map,
Inv§ : B(A,G) — B(A,G/N) given by Inv§([S]) = [inv§(S)] for any A—fibred
G—set S.
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Remark 6.8 Inv§ : B(A,G) — B(A,G/N) is a Z—module homomorphism.

Proof: Follows from 6.6 and 6.7.
O

Let N < Gand V < G. For any v € Hom(V, A) such that N < Kerv, we write
for the group homomorphism V/N — A given by o(vN) = v(v) for alluN € V/N.
Note that N < Kerv implies that N <V, and also that  is well-defined.

Remark 6.9 Let N 4 G and (V,v) € ch(A,G). Then we have

[A,«,M] N < Kerv
Inv§([A,G/V]) = (VIN)
vl VD) { 0, N £ Kerv.

Proof: Inv§([A,G/V]) = [inv§(A,G/V)]. Remember A,G/V = AG/Aw,,
where Ay,,y = {v(v™')v : v € V'} which is a subgroup of AG. Put Ay, = A.

Now, agA € inv§(A,G/V) if and only if ang/A = agA for all n € N which is
equivalent to g™'ng € A for all n € N. Then by the definition of A, g7'ng € A
for all n € N if and only if g7'ng € V and v((g7'ng)™!) = 1 for all n € N that
is to say, n € 9V and 9v(n~!) = 1 for all n € N. Since N is normal, n € 9V and

Iy(n~!) = 1 for all n € N if and only if N < Kerfv = 9(Kerv), equivalently

N < Kerv. Hence,
oS (A,G/V) = { empty if N £ Kerv

AG/V if N < Kerv.
So, if N £ Kerv, then Inv$([A,G/V]) = 0.
Suppose now N < Kerv. Then inv§(A4,G/V) = A,G/V, and it is a transitive
A—fibred G/N —set by 6.7. Thus A(G/N)—orbits of its elements are all equal to
A,G/V.
We find the A(G/N)-—stabilizer of A = 1.1A € AG/A :
a(gN) is in the stabilizer if and only if ag\ = A, equivalently ag € A. Then
by the definition of A, ag € A if and only if g € V and v(g7!) = a. Using
N < Kerv <V, we see that a(gN) is in the stabilizer if and only if gN € V/N
and o((gN)™') = a. Hence, stabag/n(D) = {2((gN)"')(gN) : gN € V/N} =
Awyn,p). Consequently for N < Kerv;

inv§G(A,GIV) = AGIV = orbae/ny (D) ~a/n) 2((3{5\?) = A,,Egﬁ:,’; So we
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proved the desired result.

O

Remark 6.10 Suppose N 9 G with O(N) = N and N <V < G. Then for any
v € Hom(V, A), N < Kerv.

Proof: The restriction of v to N is a group homomorphism from N to A. So
O(N) < Kerv.
O

For the rest of this section we consider C—linear extension of the invariance map;

Inv§ : CB(A,G) — CB(A, G/N).

Lemma 6.11 Let N < G with O(N) = N and (H/N,hN) € el(A,G/N). Then
for any A—fibred G—set S = AX we have;

Sern i (Inv§([181) = S5 A([S))-

Proof: It suffices to show this lemma for transitive A—fibred G—sets. Hence,
take any (V,v) € ch(A,G). From 6.10, N < Kerv if and only if N < V. Also
remember that & denotes the group homomorphism V/N — A given by o(vN) =
v(v) if N < Kerv.
Case (1): N <V.
Using 6.9 we have

N G G N
S (IS ([A,G/V]) = stx,hN([Apﬁvj—Nin
= > Ny (hN)

(gN)(V/N)C(G/N),(H/N)<sN (V/N)
= D> k) =SE(AG/V)).
gVCG,HIV
Case (2): N £ V.
By 6.9, Inv§([4,G/V]) = 0 and so Sg%’hN(Invﬁ([A,,G/V])) =0.
On the other hand S%,([A,G/V]) = 3 yce n<ov ¥(h) = 0 because the indices
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of the last sum range in the set {gV C G : H < 9V} which is empty. Otherwise;
if H < 9V for some g € G then from N < H we get N < 9V, and so by
the normality of N we have N < V which is not the case. So for N £V,
Sgﬁ:},’hN(Invﬁ([A,,G/V])) and S§ ,([A,G/V]) are both equal to 0.

Theorem 6.12 Let N 4 G, O(N) = N and (K, k) € el(A,G). Then
0 if N£K

lnvﬁ(e%k) = N .
’ e%N,kN if N<K.

Proof: For some complex numbers A H/N,AN

G/N
Im’z(\;f(e%,k) = Z )‘H/N,hNeHéN,h,N'
(H/N,hN)eg/nel(A,G/N)

Using 6.11;
AH/NAN = Sﬁfﬁ,m(fnvﬁ(eﬁ,k)) = Sg,h(eg,k)'
Hence,
1, (H,h) =¢ (K,k
Amynaw = Sgp(efy) = e G.( )
0, otherwise.
Therefore;
G/N
Tnu§(e) = > i

(H/NhNYeG nel(A,G/N),(H,h)=cg (K k)

The condition (H, k) =¢ (K, k) implies that N < H = 9K for some g € G, and
by the normality of N we get N < K. Hence, Invf,(e%k) =0if N£ K.

Suppose now N < K. If (Hy, hy) =¢ (K, k) =g (Ha, hy) where Hy > N < H,,
then (H,/N,hN) =¢/n (K/N,kN) =g;n (H2/N, hoN) (O(N) = N is used here!
Note that in this case N < T implies that O(T//N) = O(T)/N). So the last sum
can not contain more than one summand, and clearly (K/N, kN) is a summand.

Hence, Inv§ (e ) = ef(//x’kN if N <K.
|

Note that Inv§ is not a multiplicative map in general (in contrast to the in-

variance map defined on B(G)). Because, for example, it may happen that there
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are v € Hom(G, A) and w € Hom(G, A) such that N £ Kerv, N £ Kerw but
N < Ker(v.w). In this case; Inv§([A,.G/G]) # 0 but
[A,G/G][ALG/G] = [AvuG/G], Inv§([A,G/GInvF ([A.G/G]) = 0.

Remark 6.13 If O(N) = N, then Inv§ is multiplicative and so a ring homo-

morphism.

Proof: Take any two elements z,y € CB(A, G) where, say,

G G
T = E ABKERp Y = E MK KEK k-

(H,h)Egel(A,G) (K \k)egel(A,G)

Then using 6.12;

G/N
Inv(x) = E : AH,heHéN,hN’
(H7h)EGEI(A7G)7NSH

G G/N
Invy(y) = > 'U’K’keKéN,kN'
(K.k)egel(AG),N<K

Thus,

G /N
Inv§(z) Inv§(y) = 3 M€ o
(T t)eqel(A,G),N<T

On the other hand;

Ty = Z Artireed s,
(T\t)Egel(A,G)
implying from 6.12 that
Invg(zy) = > AT TSN o

(T)})€qel(A,G),N<T

Consequently, Inv§(zy) = Inv§(z)Inv§(y).
]

Lastly, if A is taken to be the trivial group then B(A,G) = B(G) and O(N) = N
for any subgroup N of G and so our invariance map extends the invariance map
defined for B(G) in [16].
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6.3 The Orbit Map

First we must recall some facts from chapter 2. For any A—fibred G—set S =
AX and s € S, v, is the uniquely determined element of Hom(stabg(As), A)
by the condition: gs = v,(g)s for all g € stabg(As). Moreover, orbag(s) ~ag
AG/ A (stapoas)vs) = Av,G/stabg(As) where A(sapg(as)sy = {vs(g7 g : g €
stabg(As)} < AG.

Let N < G and S be a G—set. Let S\ N be the set of N—orbits of S.
So, S\ N = {orbn(s) : s € S}. S\ N becomes a G/N—set with the action:
(N, 0rbn(s)) — (gN)(orbn(s)) = orbn(gs).

To extend this definition to A—fibred G—sets, one can attempt to take all
N —orbits of an A—fibred G—set S = AX. Then it becomes an A(G/N)—set,

however it may not be A—free.
Let N <G and S = AX be an A—fibred G—set. Define
S\\N = {orbn(s) : s € S, stabg(As) N N < Kerv,}.

We let A(G/N) act on S\ \N as: (a(gN),orby(s)) — (a(gN))(orbn(s)) =
orby(ags) for all a(gN) € A(G/N) and orby(s) € S\ \N.

Remark 6.14 For any A—fibred G—set S = AX, S\ \N is an A—fibred
G/N —set.

Proof: Iforby(s) € S\\N and a(¢N) € A(G/N), then orby(ags) € S\\N : We
want to show that stabg(Aags) NN < Kerv,g,. We have stabg(As)NN < Kerv,.
From chapter 2 we know that stabg(Aags) = stabg(Ags) = 9stabg(As) and
Vags = Vgs = V. Hence by the normality of N, stabg(As) N N < Kerv, implies
stabg(Ags) NN < Kervggs.

If orby(s;) = orby(s2) € S\ \N and a;(¢1N) = az(92N) € A(G/N), then
OTbN(a19131) = OT'bN(a29282) :

orby(s1) = orby(s2) implies that ns; = s, for some n € N. Also from a;(g;N) =

az(gaN) it follows that a; = ag and gin’ = ¢go for some n’ € N. Now, asgess =
g
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mgin'ns; = a1(gin'ng; gis = (gin'ngr )aigis:. Since gin'ng;' € N (N is
normal), orby(a19151) = orby(asgess).

The action properties are satisfied: It is obvious.

S\\N is A—free: For any orby(s) € S\ \N we find its A—stabilizer as follows.
If a is in the A—stabilizer of orbyx(s), then orby(s) = orby(as). Then ns = as
for some n € N and so n(As) = A(as) = As implying that n € stabg(As). But
we have already n € N. So now n € stabg(As) N N < Kerv, implying that
as = ns = vs(n)s = s. Because S is A—free, as = s implies a = 1. Thus, S \\V
is A—free.

Being an A~—free A(G/N)—set, S\ \N is an A—fibred G/N —set.

Remark 6.15 Let S = AX and T = AY be A—fibred G—sets. Then

(i) If S ~ac T then (S\\N) ~a/n) (S \\N).

(1) (SWT)\\N = (S\\N) & (I'\ \N).

(i) If S is a transitive A—fibred G—set, then S\ \N is a transitive A—fibred
G/N —set.

Proof: (i) Suppose S ~4¢ T. Then there is a bijective AG—map f : S — T.
Define f : S\ \N — T\ \N with the rule florby(s)) = orby(f(s)) for all
orby(s) € S\ \N.

(1) Since f is bijective and preserves the AG—action, we have stabg(As) =
stabg(Af(s)) and vs = vy(,). Hence, orby(s) € S\ \V implies that orby(f(s)) €
T\ \N.

(2) Suppose f(orby(s)) = f(orby(s')) for some orby(s) and orby(s’) in S\ \N.
Then orby(f(s)) = orbn(f(s')) and so nf(s) = f(s') for some n € N. Since f
respects the AG—action, nf(s) = f(s') implies that f(ns) = f(s'). Then ns = s’
by the injectivity of f, and so orby(s) = orby(s'). Thus f is injective.

(3) f is surjective because f is surjective.

(4) Tt is clear that f preserves the A(G/N)—action because f preserves the
AG—action.

Hence we proved that (S\\N) ~a/n) (T\ \N).

(ii) Obvious.
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(iii) Suppose S is a transitive A—fibred G—set. Take any two elements orby(s)
and orby(s’) from S\ \N. Since S is transitive, there is an ag € AG such that
ags = s'. But then (a(gN))orbn(s) = orby(s’) implying that S\\ N is a transitive
A—fibred G/N —set.

g

Hence, by 6.15 we have a well-defined map, called the orbit map,
Orb§ : B(A,G) — B(A,G/N) given by Orb§([S]) = [S \ \N] for all A—fibred
G—set S.

Remark 6.16 Orb§ : B(A,G) — B(A,G/N) is a Z—module homomorphism.

Proof: It follows from 6.15.

Remark 6.17 For any (V,v) € ch(A, G);
empty if VNN<L Kerv

(A,G/V)\\N = . .. i
consist of all N—orbits if VNN < Kerv.

Proof: Remember that A,G/V = AG/Ay,,) where A,y = {v(vH)v:v e
V}. Put A = Awy,). In chapter 2 we showed that stabg(AagA) = 9V and

Vagn = 9v. Hence;
(ALG/V)\\N = {orbn(agl) : ag € AG,V N N < Ker(v)}.
Since Ker(9v) = 9(Kerv), using the normality of N we get
(A,G/VI\\N = {orby(agA) : ag € AG, VNN < Kerv}

which proves the desired result.
d

Let N 9 G and V < G. For any v € Hom(V, A) such that VNN < Kerv, we
write ¥ for the group homomorphism (NV)/N — A given by &(nvN) = v(v) for
all nuN € (NV)/N. Note that & is well-defined.
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Remark 6.18 Let N < G and (V,v) € ch(A, G). Then we have

(G/N)
Orb{([AG/V]) = Aormtym), VNN < Kerv
0 VNN £ Kerv.

Proof: If VNN £ Kery, from 6.17 Orb$([4,G/V]) = 0.

Suppose VNN < Kerv. Orb5([A,G/V]) = [(A,G/V)\ \N] is a transitive
A—fibred G/N—set from 6,15(iii). Also from 6.17, orby(A) € (A,G/V) \ \N
where A = 1.1A € AG/A = A,G/V and A = {v(v™})v : v € V}. So by the
transitivity of (A,G/V)\ \V;

(ALG/VI\\N = orban(orbn (D)) ~a/m stabA(:/ﬁ{g;N(A». Now, a(gN) €
stabaa/ny(orbn(A)) if and only if orby(agA) = orby(A\) which is to say that
ag/A = n/\ for some n € N. But then the definition of A yields; ag/A = nA if and
only ifn™'g € V and v((n~'g)™") = a, or equivalently a(gN) € {o((gN)"")(gN) :
gN € (NV)/N} = Aqwvyn,p)- Thus,

(AGIVINN =a6/m) whvas il = Avticgyra

((NV)/N.D)

For the orbit map, we could not find the images of the primitive idempotents
of CB(A, G).

"There are three more maps, for two of which the images of primitive idempo-
tents of CB(A, G) were found in [1]. The remaining one is the conjugation map
that is very trivial. For this reason in the following three sections we give the

definitions and results without proving them.

6.4 The Conjugation Map

Let F'< G and g € G. For any A—fibred F—set S = AX, we define g—conjugate
95 of S as the A—fibred 9F—set 9S = S with the A9F-action: (a9f)s = (af)s
for all a?f € AF and s € 95. Then we have a well-defined map, called the

conjugation map,
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Conl. : B(A,F) — B(A,9F) given by Con%.([S]) = [95] for any A—fibred F—set
S.

Remark 6.19 (i) Con?. : B(A,F) — B(A,9F) is a Z—algebra isomorphism.
(ii) Con%([A,F/V]) = [As,9F [9V].

(1i3) Con%(eﬁ,k) = egﬂ’gk.

Proof: Obvious.

6.5 The Restriction Map

Let FF< @G, and S = AX be an A—fibred G—set. By restricting the AG—action
to AF, we get an A—fibred F'—set res$(S) = S. Then we have a well-defined
map, called the restriction map,

Res$ : B(A,G) — B(A,F) given by ResG([S]) = [res%(S)] for all A—fibred
G—set S = AX.

Remark 6.20 (i) Res% : B(A,G) — B(A, F) is a Z—algebra homomorphism.
(i4)
ResG([A,G/V]) = > [Ag,F/FN9V].

FgvCG
(ii3)
Resg(e%k) = Z eZ,h'
(H,h)epel(A,F),(H,h)=c (K k)
Proof: See [1].
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6.6 The Induction Map

Let H < G and S = AX be an A—fibred H—set. Then the cartesian prod-
uct AG x S becomes an A—fibred H—set with the action: (ah,(bg,s)) +—
(a=1bh~1g,ahs) for all ah € AH, bg € AG and s € S.

Let AG X g4 S denote the set of AH —orbits of the AH—set AG x S. That is,

AG x 45 S = {orban(ag, s) : (ag,s) € AG x S}.

Then AG X apr S becomes an A—fibred G—set with the AG—action:

(ag, orbap(bh, s)) — orbag(abgh,s) for all orbap(bh,s) € AG X4n S and ag €
AG.

So we have a well-defined map, called the induction map,

Ind$ : B(A, H) — B(A,G) given by Ind$([S]) = [AG X ag S] for any A—fibred
H—set S = AX.

Remark 6.21 (i) Ind$ : B(A, H) — B(A, G) is a Z—module homomorphism.
(ii) Ind$([A,H/V]) = [A.G/V].
(iii)
Ne(K, k)|
Ind$ (el _ IN(K, k)| €% -
H( K,k‘) |NH(K, k)l K.k

Proof: Remember that el(A,G) is a G—set by conjugation. The notations in
(iii) are Ny (K, k) = staby((K, k)) and Ng(K, k) = stabg((K, k)). For the proof
see [1].

O



Chapter 7

Prime Ideals Of B(A, G)

In this chapter we will find the prime ideals of the monomial Burnside rings and
try to get some consequences about the primitive idempotents of the monomial
Burnside rings tensored over Z with an integral domain of characteristic 0. Some
of the results we are going to obtain are already obtained by Dress [9] and Barker
[1].

In [1], Barker found the primitive idempotents of CB(A, G) and gave a formula
expressing the primitive idempotents of CB(A, G) in terms of the transitive basis
of CB(A, G).

In [9], Dress found the prime spectrum of the monomial Burnside rings and gave
some consequences including his celebrated characterization of solvable groups.
As stated in the introduction Dress introduced the monomial Burnside rings in [9]
but his monomial Burnside ring is more general than the one we are considering
here. Because of the full generality of the assumptions in [9], we follow a different

approach some of whose parts inspired from [9].

h root of unity and A be a cyclic group of order n.

Let ¢ be a primitive n’
So we can assume that A < D* where D = Z[¢]. We first find the prime ideals
of DB(A,G). Some of the results that we will obtain for DB(A, G) hold for
RB(A,G) where R is a ring which is more general than D. After finding the
prime ideals and the spectrum of DB(A, G), and some consequences we state (if

possible) our results for RB(A, G) where R is a ring satisfying weaker assumptions

45
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than D satisfies. To do so we need to remember some theory about integral ring
extensions, prime ideals of product rings and Dedekind domains. Our rings will
be commutative with identity elements.

A ring extension of a ring R is a ring S containing R as a unital subring. We
write R < S to denote that S is a ring extension of R.

Let R < S be a ring extension, an element s € S is said to be integral over R if
f(s) = 0 for some monic polynomial f(z) € R[z].

A ring extension R < § is said to be integral if every element of S is integral over
R.

The following six theorems are all well-known (See [11] and [13]).

Theorem 7.1 Let R < S be a ring extension and s € S. The following condi-
tions are equivalent;

(i) s is integral over R.

(11) R]s] is a finitely generated R—module.

(i1i) There exists a faithful R[s|—module which is finitely generated R—module.

Theorem 7.2 Let R < S be a ring extension. If S is finitely generated

R—module, then R < S is an integral extension.

Theorem 7.3 Let R < S be a ring extension. For any prime ideal P of S, RNP

18 a prime ideal of R.

For a ring extension R < §, not‘all prime ideals of R is of the form RN P where
P is a prime ideal of S. However if R < S is an integral extension then prime
ideals of R are of the form RN P where P is a prime ideal of S. Indeed,

Theorem 7.4 Let B < S be an integral ring extension. Then we have;
(1)(Lying Over) Let P be a prime ideal of R. Then for any ideal I of S such that
RN I C P there exists a prime ideal Q of S such that I C QQ and RN Q = P.
In particular, for any prime ideal P of R there exists a prime ideal @ of S with
RN@=P.
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(i)(Going Up) Given prime ideals P G Py of R and Q of S with RNQ = P,
there exists a prime ideal Qg of S satisfying Q g Qo and RN Qg = Fp.
(i1i)(Going Down) Given prime ideals P 2 Py of R and Q of S with RNQ = P,
there exists a prime ideal Qy of S satisfying Q ; Qo and RNQy = F.
(1v)(Incomparability) Two different prime ideals of S having the same intersec-
tion with R cannot be comparable.

(v)(Mazimality) Let P be a prime ideal of R and @ of S with RNQ = P. Then
Q is a mazximal ideal of S if and only if P is a mazimal ideal of R.
(vi)(Minimality) Let P be a prime ideal of R and Q of S with RNQ = P. Then

Q is a minimal prime ideal of S if and only if P is a minimal prime ideal of R.

Theorem 7.5 Let R;, i € I, be a family of rings and w; be the projection of the
product ring [[,c; Ri onto the i" term R;. Then any prime ideal of [[,.; R; is
of the form w;'(P) for some i € I and prime ideal P of R;. Moreover, for any
i € I and prime ideal P of R; =;'(P) is a prime ideal of [];c; R:.

An integral domain R is called Dedekind domain if the following three conditions
hold:

(1) R is Noetherian,

(2) R is integrally closed,

(3) Every nonzero prime ideal of R is maximal.

Theorem 7.6 Let R be a Dedekind domain. Then
(i) If I is an ideal of R, then R/I is a principal ideal Ting,
(i) For any ideal I of R and nonzero a € I, there exists b € I such that I = (a,b),

(113) For any prime ideal P of R the localized ring Rp is a principal ideal domain.

Let K = Q[¢] and we are assuming that A < D* where D = Z[¢]. Note that D
is a Dedekind domain and K is its field of fractions. For any (H, h) €g el(4, G)
we have a ring epimorphism

Sin:DB(A,G)— D  given by [AG/V]— > 9y(h),

gVCG,HLIV
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and the product map ¢ = H(H,h)EGel( AG) Sgyh is injective. For any nonzero
prime ideal P of D let mp be the canonical epimorphism from D to D/P. We
write I(H, h,0) and I(H, h, P) for the kernels of the maps S§, and mp o S§ ,

respectively. Hence,
I(H,h,0) = {z € DB(A,G) : S5 ,(z) = 0},

I(H,h,P) = {z € DB(A,G) : 8§ ,(z) € P}.

Remark 7.7 Let P be a nonzero prime ideal of D and (H, h) €g el(A,G). Then
(i) DB(A,G)/I(H,h,0) ~ D,

(i) DB(A,G)/I(H,h,P) ~ D/P,

(111) I(H, h,0) and I(H, h, P) are prime ideals of DB(A, G).

Proof: Because D and D/P are domains and the maps 5§ ,, and 7p 0 Sg ,

are epimorphisms, the result follows.

O

Theorem 7.8 (i) Any prime ideal of DB(A,G) is of the form I(H,h,0) or
I(H, h, P) for some nonzero prime ideal P of D and (H,h) € el(A,G).

(i) If P is a nonzero prime ideal of D, then I(H,h, P) is a mazimal ideal of
DB(A,G) for any (H,h) €¢ el(4,G).

(ii1) For any (H, h) €c el(A, G), I(H, h,0) is a minimal prime ideal of DB(A, G).
(iv) For any nonzero prime ideal P of D and (H,h) €g el(A, G) we have
I(H,h,PYND =P, I(H,h,0)N D =0 and I(H,h,0) G I(H,h, P).

(v) For any (H,h), (K, k) €g el(A, G) and prime ideals (possibly 0) P,Q of D
I(H,h,P) = I(K, k,Q) implies that P = Q.

(vi) Let (H,h), (K, k) €g el(A,G). Then

I(H,h,0) = I(K,k,0) if and only if (H, h) =¢ (K, k).

Proof: (i) We know that the map ¢ is injective. Hence we can write

DB(A,G) < Iliumegeac D- Since both rings are finitely generated as
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D—modules, the ring extension DB(A,G) < H( Hpecea(ac) D 1 an integral ex-
tension.

Consequently by 7.4; any prime ideal of DB(A, G) is of the form ¢~!(I) where I
is a prime ideal of the product ring [y e ceac) D- Then by 7.5; I = 7 }}7,1)(P)
for some (H,h) €g el(A,G) and prime ideal P of D. Thus any prime ideal of
DB(A, Q) is of the form

YN (Mg (P)) = (SEa)7H(P).

Note that

if P =0, then (S$,)"'(P) = Ker(SS,,) = I(H, k,0), and

if P # 0, then (S5 ,) ' (P) = Ker(wp o S§,) = I(H, h, P).

(ii) and (iii) Since D is a Dedekind domain, its nonzero prime ideals are maxi-
mal. Hence for any nonzero prime ideal P of D 7'('(_1}’ h)(P) is a maximal ideal, and
w&}’h) (0) is a minimal prime ideal of []  pyeer(a,cy D Now from 7.4 ((Maximal-
ity) and (Minimality)), the results follow.

(iv) Let P be a nonzero prime ideal of D. Since I(H, h, P) is the kernel of the

D—linear ring epimorphism
mpo S, : DB(A,G)—» D — D/P

we have P C I(H,h,P) N D. Note that I(H,h, P) N D is a prime ideal of D
because D < DB(A,G). As D is a Dedekind domain, P is a maximal ideal of
D. Also it is clear that I(H,h, P)N D # D. Thus, maximality of P implies that
I{H,h,PYND = P.

The ring extension D < DB(A,G) is an integral extension and I(H,h,0) is a
minimal prime ideal of DB(A, G). Then by 7.4(Minimality) I(H, h,0) N D must
be a minimal prime ideal of D. Being Dedekind domain, 0 is the only minimal
prime ideal of D.

It is clear that I(H, h,0) C I(H, h, P). Because S§ , is D—linear, 5% ,(P) =

As aresult, P C I(H,h, P) but P € I(H, h,0).

(v) By part (iv).

(vi) Suppose I(H, h,0) = I(K, k,0). Any primitive idempotents of CB(A, G) lies
in KB(A,G). So for e ), we can find a nonzero d € D(=product of denominators)
such that de%, € DB(A,G). Then S ,(de§, —d) = 0. Hence de%, —d €

18 @‘gﬁ 1S %\ e
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I(H,h,0) = I(K, k,0). We must have S§ (def; , —d) = 0. However S§ ,(de$ , —
d) = 0 if and only if (H, h) =¢ (K, k) (otherwise it is equal to —d; but in D, —d

cannot be equal to 0 since D is of characteristic 0).

|

Lemma 7.9 Let P be a nonzero prime ideal of D and (H, h), (K, k) € el(A, G).
Then
I(H,h,0) C I(K,k, P) if and only if I(H,h, P) = I(K,k, P).

Proof: (=) Suppose I(H,h,0) C I(K,k, P). Take any @ € I(H,h, P). Then
5% h(z) = d € D =Z[(] and d € P. Because S ,, is a D—linear ring epimorphism
from DB(A,G) to D, we have S§ ,(z —d) = 0 and so z —d € I(H,h,0) C
I(K,k, P). Then SG ,(xz—d) = S§ ,(z)—d € P. As d € P, we must have S§ ,(z) €
P. Consequently, z € I(K, k, P). So we proved that I(H, h, P) C I(K,k, P). But
then maximality of I(H, h, P) implies that I(H, h, P) = (K, k, P).
(<) Tt is clear from 7.8(iv).

|

The next lemma states that the maps mp 0 S§ , and mp 0 S, are equal if and

only if their kernels are equal.

Lemma 7.10 For a nonzero prime ideal P of D let wp be the canonical epimor-
phism from D onto D/P. Suppose (H,h),(K,k) € el(A,G) and I(H,h, P) =
I(K,k,P). Then wpo S, =mpoSF,.

Proof: Since I(H,h,P) = I(K,k, P), for any z € DB(A,G), it follows that
S§ n(z) € P if and only if S§,(z) € P.

Take any z € DB(A, G) we know that both or none of S§ ,(z) and S% ; () belong
to P. If they are in P, then 7p 0 8§ ,(z) and 7p o S () are both equal to 0.
Assume that they are not in P. Then write S§ ,(z) = 31 and S§ (z) = ya for
some yi,y2 € D. Because D/P is a field there exists a z € D with z ¢ P such
that

(o P)on + P) = (sa + P).
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Now zy1 — y2 € P and note that zzx — 3o € DB(A,G) with S§ ,(zz — y2) =
zy1 — Y2 € P. Thus we must also have Sﬁ’k(zm — 1Y) = 2Ys — Y2 € P. But then
from zy; — y2 € P and 2y, — y2 € P we get

(zy1 —y2) — (2y2 — y2) = 2(y1 — 12) € P.

Since P is a prime ideal and z ¢ P it follows that y; — yo € P. Therefore;
for any x € DB(A, G) 8§ ,(z) —S§ (x) € P. That is to say 7poSf, = mpoSg .

O

We will study the prime spectrum of DB(A, G), written as Spec(DB(A, G)).
So we begin by some facts about spectrum of commutative rings (see [7]). Let
R be a commutative ring. Spec(R) is defined to be the set of prime ideals of R.
For any ideal I of R we put V(I) = {P € Spec(R) : I C P}. We can define a
topology on Spec(R) by calling sets of the form V(I) closed. The closure of a
point P € Spec(R) is {P} := P = V(P). Suppose R is a Noetherian ring. Then
two prime ideals P, @ of R are in the same connected component of Spec(R) if
and only if there is a sequence P, ....," P, of minimal prime ideals of R such that
PeP,Qe P, PNP  #@fori=12,..,n—1.
Being in the same connected component of Spec(R) forms an equivalence rela-
tion on Spec(R). We write P ~ @ if the prime ideals P,Q of R are in the same
connected component of Spec(R).
For a Noetherian ring R, we have a bijective correspondence between the con-
nected components of Spec( R) and the primitive idempotents of R. The connected
component of Spec(R) corresponding to a primitive idempotent e of R consists

of all prime ideals of R containing 1 — e.

Recall that for H < G, O(H) = Nyeromu,aKerv. For any automorphism
aof Hand v € Hom(H,A), voa € Hom(H, A). So O(H) is a characteristic
subgroup of H. For any g € G and v € Hom(H, A), v € Hom(%H, A) implying
that O(9H) = 90(H). We write H for H/O(H), h for hO(H) and N(H) for
Ne(H)/H.
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Ne(H) acts on H by conjugation;

(gH, hO(H)) := 9h +— ghg='O(h), for gH € Ng(H) and h € H.

The above action of Ng(H) on H respects the multiplication of H. That is;
9(hihg) = (9hn)(%ha).

Note that H < Ng(H) fixes H pointwise and so H is also N(H)—set with respect

to conjugation action.

Lemma 7.11 Let P be a nonzero prime ideal of D such that D/P has charac-
teristic p. For (H,hy),(H, hy) € el(A,G) with hi*hy € H is of p—power order,
we have I(H, hy, P) = I(H, hq, P).

Proof: Let v € Hom(H, A). Put v(h)) = di € A < D* and v(hy) = dy €
A < D*. Since Ei‘l_h2 has p—power order in H, we must have & = d&  for
some natural number m. For any d € D, let d = d + P = wp(d) where 7p is the
canonical ring epimorphism from D to D/P. Because D/P has characteristic p,
0=d"" —d" = (d — )"
So, 0 = d; — d, since a field has no nonzero nilpotent elements. Thus we have
v(hy) + P = v(hy) + P for any v € Hom(H, A). Therefore
wp 0 8§ 1, ([A,G/V]) = wp 0 8§, ([A,G/V]) for any [A,G/V] € B(A,G). That
is; [(H, hy, P) = I(H, hy, P).

O

Let G be a group and p be a prime number. For any g € G there are uniquely
determined elements g, and g of G satisfying; g = gpgy = gp'gp, the order of g, is
a p—power, and the order of g, is not divisible by p. Indeed, let p*m be the order
of g where (p,m) = 1. Then there are integers u and v such that p*u +mv = 1,
and so g = (g™)(g""*) = (¢***)(g™) where g, = g™ and gy = g*"*.

By the uniqueness of such representations, for any H < G and h € H we have
h,O(H) = (hO(H)), and hyO(H) = (hO(H))y. 7.11 implies that I(H, h, P) =
I(H, hy, P) for any nonzero prime ideal of D such that D/P has characteristic
p.

Lemma 7.12 Let P be a prime ideal (possibly 0) of D and (H,h) € el(A,G).
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Then the prime ideals I(H, h, P) and I(H,1,0) are in the same connected com-
ponent of Spec(DB(A, G)).

Proof: Since H is an abelian group, it is the direct product of its Sylow sub-

groups;

H =28, (H)x..x S, (H).

Then A can be written uniquely as h = f,...f, where £; € S,,(H) fori = 1,...,r.
Chose prime ideals P, ..., P, of D such that D/P; has characteristic p;. It is pos-
sible to choose such prime ideals because D = Z[(].

Fori=1,2,...,7 — 1; ({..5.) Y (fi31.--E) € Sp,(H). So by 7.11 we have

I(H, h, P) = I(H, tats...ty, P), I(H, tots..tr, Pa) = I(H, tste...ty, Py),
[(H, ts...tr, Ps) = I(H, ts...tr, Ps), eooo...,
I(H, tr—1tr, Pr—l) = [(H7 tr, P’r—l)’ ](H7 i, Pr) = I(Ha 1, P'r)

Also note that for any prime ideals A, B (possibly 0) of D and (K, k) € el(A, G)
we have I(K, k,2) D I(K, k,0) C I(K, k,B).

Thus, I(K,k,A) and I(K,k,B) are in the same connected component of
Spec(DB(A, G)). Recall that being in the same connected component is an equiv-

alence relation for which we use the notation ~ . Now what we have is

I(H,h, P) ~ I(H,h,P)) = I(H, tots...tr, P\) ~ I(H, tots..t,, P3) =
I(H, tstg.tp, Po) ~ I(H, ts...ty, Ps) = I(H, ty..t,, P3) ~
I(H,ty.dp, Py) = I(H,t5..tp, Py) ~ I(H, ts..tp, P5) = ...
~ I{H,t,_1ty, Pr_y) = I(H,t,, P,1) ~ I(H,t,,B) = I(H,1,P,) ~ I(H,1,0).

Hence, I(H,h, P) ~ I(H,1,0).
]

Lemma 7.13 Let P be a nonzero prime ideal of D such that D/P has charac-
teristic p. Let H < K be such that K/H is a p—group. Then we have
I(H,1,P) = I(K,1,P).
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Proof: Take any [A,G/V] € B(A,G) and compute;
Si(AG/V) = Y. L SZ(AG/V)= > 1L
gVCG,H<9V gVCG,K<9V

For any G—set S and H < G, let S¥ denote the H—fixed points of S. We have
SG([AG/V]) = SZ.([AG/V]) = |GV = G/VE).

The set G/V¥ — G/V¥ is a K/H—set whose K /H—orbits are nontrivial. Since
K/H is a p—group, |G/V¥ — G/V¥| is divisible by p. Thus,

p 0 Si1([A,G/V]) = mp o SZ,1 ([AG/V]) = 0

where 7p is the canonical ring epimorphism from D to D/P. Therefore 7rpo.S'IC;;’1 =
mpo Sg, implying that I(H,1, P) = I(K, 1, P).

O

Let H < K with K/H is a p—group. For any prime ideals 21 and 9B (possibly
0) of D we have I(H,1,21) ~ I(K,1,%). Because; choosing a prime ideal P of D
such that D/P has characteristic p we have by 7.13
I(H,1,9) ~ I(H,1,P) = I(K, 1, P) ~ I(K,1,%).

For a group G, let S(G) denote the unique minimal normal subgroup of G such
that G/S(G) is solvable. Indeed; S(G) is the intersection of all normal subgroups
of G with solvable quotient groups. Thus, S(G) is a characteristic subgroup of
G.

For g € G and H < G, we have S(9H) =9S(H) and S(S(H)) = S(H).

A group G is called perfect if S(G) = G, equivalently if D(G) = G where D(G)

is the commutator subgroup of G.

Lemma 7.14 Let P be a prime ideal (possibly 0) of D and (H,h) € el(A,G).
Then the prime ideals I(H, h, P) and I(S(H),1,0) of DB(A,G) are in the same
connected component of Spec(DB(A, G)).

Proof: Because H/S(H) is solvable, it has a subnormal series whose factor

groups have prime orders;

H=H>H,>Hs>..>H, ;> H,=S(H),
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where for each ¢ |H;/H;.1| =a prime number p;. Since D = Z[(], we can choose
prime ideals P, ..., P, of D such that D/P; has characteristic p;.
(A): By 7.13;

-[(Halapl) :I(H2717P1)aI(H2717P2) :](H3a17p2)7

I(Hs, 1, Py) = I(Ha, 1, Py), [(Ha, 1, Py) = I(Hs, 1, Py), oo,
I(Hyo2,1, Poog) = I(Hyo1, 1, Poos),
[(Hoo1,1, Par) = I(Ho, 1, Pay) = I(S(H), 1, Pa_y).
(B): By 7.12;

I(H,h,P) ~ I(H,1,0) ~ I(H,1,P,),I(S(H),1, P,1) ~ I(S(H), 1,0).

(C): Also we know already that I(K, k, ) ~ I(K, k,B) for any prime ideals A, B
of D and (K, k) € el(A, G).

Now since ~ is an equivalence relation on Spec(DB(A, G)), it follows from (A),
(B) and (C) that I(H,h, P) ~ I(S(H),1,0).

Theorem 7.15 Let P and Q are prime ideals (possibly 0) of D and (H, h),

(K, k) € el(A,G) with S(H) =g S(K). Then

the prime ideals I(H, h, P) and I(K,k,Q) of DB(A, G) are in the same connected
component of Spec(DB(A, G)).

Proof: By 7.14;

But S(H) =¢ S(K) implies that I(S(H),1,0) = I(S(K),1,0).
Since ~ is an equivalence relation on Spec(DB(A,G)) we have
I(H, b, P) ~ I(K,k,Q).
a

For a group G and prime number p, let OP(G) be the unique minimal normal
subgroup of G such that G/OP(G) is a p—group. Actually, OP(G) is the inter-

section of all normal subgroups of G having p—power indexes. So OP(G) is a



CHAPTER 7. PRIME IDEALS OF B(A,G) 56

characteristic subgroup of G.

Since p—groups are solvable, for a group G we have S(G) < OF(G).

Being a subgroup of the solvable group G/S(G), OP(G)/S(G) is solvable, and
so S(OP(G)) < S(G). As S(G) is a normal subgroup of G and S(OP(G)) is a
characteristic subgroup of S(G), we must have S(OP(G)) < G. Now the group
G/S(0?(@)) has a solvable normal subgroup OP(G)/S(OP(G)) whose quotient
group (isomorphic to G/OP(G)) is also solvable. Consequently, G/S(O?(G)) is
solvable and S(G) < S(OP(@G)). Therefore, S(OP(G)) = S(G) for any group G.
Let H < K be such that K/H is a p—group. Because OP(H) is a characteristic
subgroup of H and H is a normal subgroup of K, we get OP(H) < K. Then
K/OP(H) is a p—group and so OP(K) < OP(H). On the other hand; OF(K) is
a normal subgroup of H of p—power index. Thus OP(H) < OP(K). As a result,
OP(H) = OP(K) for any normal subgroup H of K of p—power index.

Lemma 7.16 Let P be a nonzero prime ideal of D such that D/P has charac-
teristic p, and (H,h), (K, k) € el(A,G). Suppose |[Ng(H) : H| and |Ng(K) : K|
are not divisible by p. Then

I(H,h, PYN B(G) = I(K, k, P) N B(G) implies that H =¢ K.

Proof: For any T < G, let 7 denote the trivial elements of the groups
Hom(T, A).
For [A.G/H],[A,G/K] € B(G) we compute;

San(A-G/H) = Y, 1=|Ne(H): H|,

gHCG,H<9H
SEW(AG/K) = > 1=|Ne(K): K|
9KCG,K<9IK
Since |Ng(H) : H| and |[Ng(K) : K| are not divisible by p;
[A:G/H] & I(H,h, P),[A,G/K]| & I(K, K, P).
Then from I(H, h, P)N B(G) = I(K, k, P) N B(G) we have,

[A,G/H] ¢ I(K, k, P),[A,G/K] ¢ I(H,h, P).
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Hence in particular;

SEL[AG/H) = Y 1#40,85,(4G/K))= > 1#0.

gHCG,H<IK gKCG,K<9H

Therefore, we must have H <qg K <g H.

Lemma 7.17 Let P be a prime ideal (possibly 0) of D and (H, h) € el(A, G).
Then; I(H,h, P)N B(G) = I(H,1, P) N B(G).

Proof: Let 7 be the trivial elements of the groups Hom(T, A) for all T < G.
Then for any [A.G/T] € B(G), S§ ,([A-G/T)]) and S§ ,([A-G/T1) are both equal
to G/TH where G/T¥ is the set of H—fixed points of the G—set G/T. So the

result follows.
d

Theorem 7.18 Let P be a nonzero prime ideal of D such that D/P has char-
acteristic p, and (H, h), (K, k) € el(4, G).
If I(H,h, P)N B(G) = I(K, k, P) N B(G), then OP(H) =g OP(K).

Proof: For any subgroup T of G we define a subnormal series;
T=Ty<T1<T5... 4T, < ...

where Th,41/T, is a Sylow p—subgroup of N(T,) = Ng(T,)/T, for each n. Since
we are considering only finite groups this series must stop in a finite number,
say n. Then T,y = T, for each natural number k, and so |Ng(T},) : T,| is not
divisible by p.

For i = 1,2,...n — 1; T; < Ti41 and T;11/T; is a p—group. Hence by 7.13;
I(T,1,P) = I(Ty, 1, P).

So finding the above series of H and K, we have

HZHoﬂHlﬂﬂHr, KZKoﬂKlﬂﬂKs
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Then I(H,1,P) = I(H,,1,P), I(K,1,P) = I(Kj, 1, P) implying by 7.17 that
I(H,,1,P)n B(G) = I(K,, 1, P) N B(G).

Since |Ng(H,) : H.| and |Ng(K,) : K| are not divisible by p, 7.16 gives that
H, =¢ K. '

Recall also that, for groups M I N with N/M is a p— group we have OP(M) =
OP(N).

Thus OP(H) = OP(H,) = ... = OP(H,) =g OP(K,) = ... = OP(K,) = OP(K).

Theorem 7.19 Let P and Q be prime ideals (possibly 0) of D and
(H,h),(K,k) € el(A,G). If the prime ideals I(H,h,P) and I(K,k,Q) of
DB(A, G) are in the same connected componént of Spec(DB(A,G)), then
S(H) =¢ S(K).

Proof: By 7.14;

I(H,h,P)~I(S(H),1,0) and I(K,k,Q) ~ I(S(K),1,0).

Since ~ is an equivalence relation, I(S(H),1,0) ~ I(S(K),1,0).

So (DB(A, G) is Noetherian as it is finitely generated Z—module) there is a se-
quence of minimal prime ideals

I(T1,1,,0), ..., I(Ty,t,0) of DB(A, G) such that

(A) I(S(H),1,0) D I(T1,t,0),

(B) I(S(K),1,0) D I(Ty,t,,0),

(C) Closures of the points I(T;,t;,0) and I(Tii1,ti+1,0) of Spec(DB(A,G)) in-
tersect nontrivially for each 1 =1,2,...,n — 1.

From (A), (B) and 7.8(vi) it follows that (S(H),1) =¢ (T1,%1) and

(S(K),1) =¢ (Tn,tn). In particular, S(H) =g T; and S(K) =¢ T,. Hence
S(H) =¢ S(T1) and S(K) =g S(Ty).

From (C); for each ¢ there is a nonzero prime ideal R; of D and (L;, ;) € el(A, G)
such that

I(T;,t:,0) C I(Li, 1, Ry) 2 I(Tig1,ti41,0).

By 7.9, for each i = 1,2,...n — 1 we have

I(Ti, t;, R} = I(Ti41,ti41, Rs), and it implies from 7.18 that O (T;) =g OPi(T;44)

where p; is the characteristic of D/R;. But for any group € and prime number p,
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S(0"(€)) = S(€).
Hence, S(H) =G S(Tl) =G S(Tg) =@ e /G S(Tn_l) =G S(Tn) =G S(K)

.

Consider the set § = {S(H) : H < G}. Let =¢ denote the conjugacy relation
on the set of subgroups of G. We know from 7.15 and 7.19 that prime ideals
I(H,h,P) and I(K,k,Q) of DB(A,G) are in the same connected component of
Spec(DB(A, G)) if and only if S(H) =g S(G). Hence, the number of connected
components of Spec(DB(A, G)) is equal to the |§/=¢| = the number of noncon-
jugate perfect subgroups of G. § has only one nonconjugate element if and only
if G is solvable. We state some simple consequences of what we proved up to
this point in the following corollary which contains also the characterization of

solvable groups given first by Dress in [9)].

Corollary 7.20 (i) The connected components of Spec(DB(A, G)) are in bijec-
tive correspondence with the conjugacy classes of perfect subgroups of G.

(it) The number of primitive idempotents of DB(A, G) is equal to the number of
nonconjugate perfect subgroups of G.

(1i1) G is solvable if and only if Spec(DB(A, G)) is connected if and only if 0 and
1 are the only idempotents of DB(A, G).

(i) If |(DB(A, G))*| = 2, then G is solvable.

Proof: (i) Follows from the above explanation.

(ii) It follows from the bijection between the connected components of the prime
ideal spectrum of a Noetherian commutative ring R and its primitive idempo-
tents.

(iii) By the above explanation we readily have that G is solvable if and only if
Spec(DB(A, G)) is connected. What remains is the content of ().

(iv) Suppose G is not solvable. Then Spec(DB(A, G)) is not connected and hence
DB(A,G) has at least one idempotent e different from 0 and 1. Then since the
nontrivial idempotents e and 1 — e are orthogonal and sum up to 1 we have a
decomposition of DB(A, G);
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DB(A,G) ~ DB(A,G)e x DB(A,G)(1 —e).
Because both e and 1 — e are different from 0,1 the rings DB(A,G)e and
DB(A,G)(1 — e) are of characteristics 0. Then |(DB(A,G))*| > 2 and
|(DB(A,G)(1 — €))*| > 2. Hence [(DB(A,G))*| > 4 which is a contradiction.
Therefore G is solvable.

a

We know the connected components of Spec(DB(A, G)), but we do not know
much about the equality of two maximal ideals of DB(A, G). We proved that if
I(H,h, P) and I(K,k,Q) are equal then P = @ and OP(H) =g OP(K) where p is
the characteristic of the field D/P. Before dealing with general case we examine
some special cases including B(G), for instance we will show for abelian groups
G that the prime ideals I(H, h, P) and I(OP(H), hy, P) of DB(A, G) are equal.
Note that for a group G, any element g of order coprime to p belongs to OP(G)
because gOP(G) has order dividing the order of g € G and |G/OP(G)|. Hence in
particular hy € OP(H) for all h € H.

Lemma 7.21 Let P be a nonzero prime ideal of D such that D/P has charac-
teristic p. Then for any H, K < G}
I(H,1,P) = I(K,1, P) if and only if OP(H) =¢ OP(K).

Proof: (=) Itis7.18.

(<) Suppose OP(H) =¢ O°(K). Then I(OP(H), 1, P) = I(OP(K), 1, P). By 7.13,
[(OP(H),1,P) = I(H,1, P) and I(O°(K),1, P) = I(K, 1, P). "

Thus, I(H,1,P) = I(K, 1, P).

If A is taken to be the trivial group then DB(A, G) reduces to B(G). The
results we obtained for DB(A, G) imply all the desired results about the prime
ideals of B(G) which is the content of the next theorem. All facts about the

prime spectrum of the Burnside rings first obtained by Dress in [8].
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Let p be a prime number and H < G. Define
I(H,p) = {z € B(G) : Sg(z) = 0 mod(p)},

I(H,0) = {z € B(G) : 8§(z) = 0}

where S§ is the ring epimorphism from B(G) to Z sending each G—set S to |SH].
Note that S§ = S§ ,|p(q) for any h € H.

Theorem 7.22 Let p be any pm’me‘ number and H, K be any subgroups of G.
Then

(i) I(H,p) and I(H,0) are prime ideals of B(G). Moreover, any prime ideal of
B(G) is one of these forms.

(i1) 1(H,0) is a minimal prime ideal, and I(H,p) is a mazimal ideal of B(G).
(i5i) I(H,0)NZ = 0, I(H,p) N Z = pZ.

(iv) Let m,n be prime numbers (possibly 0). Then

I(H,m) = I(H,n) implies m = n.

(v) I(H,0) = I(K,0) if and only if H =¢ K.

(vi) I(H,p) = I(K,p) if and only if OP(H) =¢ OP(K).

(vit) I(H,0) G I(H,p), and I(H,0) C I(K,p) if and only if I(H,p) = (K, p).
(viti) Let m,n be prime numbers (possibly 0). Then the prime ideals I(H, m) and
I(H,n) of B(G) are in the same connected component of Spec(B(QG)) if and only
if S(H) =¢ S(K).

(iz) The number of primitive idempotents of B(G) is equal to the number of
nonconjugate perfect subgroups of G.

(z) G is solvable if and only if Spec(B(G)) is connected if and only if 0 and 1 are
the only idempotents of B(G).

Proof: Let A be the trivial group. Then D = Z and DB(A,G) = B(G).
Moreover I(H, h, P) and I(H, h,0) reduce to I(H,p) and I(H,0), respectively.
Now 7.8 gives (1), (i3), (i), (iv) and (v); (vii) follows from 7.9; (vs) is 7.21;
(viiz), (iz) and (z) follow from 7.20.

'The following result was obtained by Barker also in [1].
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Corollary 7.23 The primitive idempotents of B(G), B(A,G) and DB(A, G) are

all the same.

Proof: Let R < S be a ring extension. A primitive idempotent e of R is an
idempotent of S. If e is not primitive in S then it must be a sum of primitive
idempotents of S. Hence, the number of primitive idempotents of S is more than
the number of primitive idempotents of R, and if they have the same number of
primitive idempotents then their primitive idempotents must be the same. By
7.20 and 7.22, the number of primitive idempotents of DB(A, G) and B(G) are
the same. The result follows because B(G) < B(A,G) < DB(A,G).

(]

Lemma 7.24 Let (|Al,|G|) be a p—power (possibly 1), and P be a nonzero prime
ideal of D such that D/P has characteristic p. Then for any (H,h) and (K,k) €
el(A, G);

I(H,h, P) = I(K, k, P) if and only if OP(H) =g OP(K).

Proof: For any T' < G, O(T) is the minimal normal subgroup of 7' such
that T/O(T) is an abelian group of exponent dividing the order of A. Hence
any element of T(= 7//O(T)) has order dividing both |A| and |G|. Thus, 7 is a
p—group. Now by 7.11, I(H,h,P) = I(H,1, P) and I(K, k, P) = I(K,1, P). But
then the result follows from 7.21.

d

Corollary 7.25 Let A have p—power order, and P be a nonzero prime ideal of
D such that D/P has characteristic p. Then for any (H, h), (K, k) € el(A, G);
I(H,h,P) = I(K,k, P) if and only if OP(H) =g OP(K).

Proof: Since (|4],|G|) is a p—power, the result follows from 7.24.
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Corollary 7.26 Let G be a p—group, and P be a nonzero prime ideal of
D such that D/P has characteristic p. Then I(H,h,P) = I(K,k, P) for all
(H,h), (K, k) € el(A,G).

Proof: It is immediate from 7.24 because for any subgroup T of G, we have
OP(T) = 1.
O

Now we want to examine the prime ideals of B(A, G) when it is tensored over
some ring of fractions of D. Hence we begin with writing some basic facts about
the ring of fractions of a commutative ring R with 1 (See [11]). A subset S of R
is called multiplicative if 1 € S, and st € S for all s, € S. It is called proper if
also 0 ¢ S. Given a proper multiplicative subset S of R we define an equivalence
relation on R x S as follows: (a, s) is equivalent to (b,¢t) if and only if atu = bsu
for some u € S. The equivalence class containing (a, s) is denoted by a/s, and
the set of equivalence classes , denoted by S™'R, becomes a commutative ring
with 1 (0 =0/1, 1 = 1/1)with respect to the operations: a/s+b/t = (at + bs) /st
and (a/s)(b/t) = (ab)/(st). We have a ring homomorphism ¢ : R — S™'R given
by ¢(r) = r/1 for all r € R. This homomorphism is injective if R is an integral
domain. For an ideal % of S7!R, the ideal :~1(A) of R is denoted by ¢ and
called the contraction of 2. For an ideal a of R, the ideal {a/s € ST'R : a € a}
of S~'R is denoted by af and called the expansion of a. We have a bijective
correspondence between the prime ideals of S™'R and the prime ideals of R not
intersecting S given by % — A€, af « a. Let P be a prime ideal of R. Then
R— P = S is a proper multiplicative subset of R and we write Rp for ST R. The
ring Rp is called the localization of R at P, and it is a local ring with unique
maximal ideal P¥, and also Rp/PF ~the quotient field of the integral domain
R/P. If R is a Dedekind domain and S is a proper multiplicative subset, then
R < S7'R is an integral ring extension and the ring S™'R is also a Dedekind
domain. Now let R = D and P be a nonzero prime ideal of D such that D/P
has characteristic p, we have Z,z < Dp, D < Dp, and both are integral ring

extensions.
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Theorem 7.27 Let G be a p—group, and P be a nonzero prime ideal of D such
that D/ P has characteristic p. Then

(i) The rings DpB(A, G) and Z,zB(A, G) are local.

(i) 0 and 1 are the only idempotents of the rings DpB(A, G) and Z,zB(A, G).

Proof: (i) [Imnycgeiac) Dp can be seen as an integral ring extension of the
ring DpB(A, G) because the product of the Dp—linear extensions of the maps
S&,: DB(A,G) — D, (H,h) €g €el(A,G), is still injective. Hence any prime
ideal of DpB(A,G) is of the form Ip(H,h, Q") = {z € DpB(A,G) : 5§ ,(z) €
QF} where Q is prime ideal of D not intersecting D — P. But there are two possi-
bilities for ¢}, namely 0 and P. Hence maximal ideals of DpB(A, G) are precisely
Ip(H, h, P®) for (H,h) € el(A, G).

Let d;,dy € D be such that d; + P = dy + P in the field D/P. Then d, —d, € P
and so d;/1 — dy/1 € PF implying that d,/1 + PF = dy/1 + PZ in the field
Dp/PE ~ D/P.

Note that Ip(T,t, PF) is the kernel of the map 7pe o S§.: DpB(A,G) — Dp —
Dp/PF? where mpe is the canonical ring epimorphism from Dp to Dp/PE.

By 7.26 I(H, h, P) = I(K, k, P) for all (H,h),(K,k) € el(A,G),

and so from 7.10 we have mp o S§ , = 7p o S% , where mp is the canonical ring
epimorphism from D to D/P.

For any z = [A,G/V] € B(A,G) we have S§,(z) + P = S§,(z) + P. Then
SEn(@)/1+ PP = S (2)/1+ PP, and so mps 0 S ,(z) = mps o S§ 1(z).
Therefore Ip(H, h, PF) = Ip(K, k, PE) for all (H, h), (K, k) € el(A,G).
Consequently DpB(A, G) has only one maximal ideal(=it is local).

ZyB(A,G) < DpB(A,G) is an integral ring extension and hence the maximal
ideals of Z,zB(A, G) can be obtained from the maximal ideals of DpB(4, G) by
intersecting with Z,zB(A, G). Thus Z,zB(A, G) must be a local ring.

(ii) Follows from (¢) and the bijective correspondence between the primitive idem-

potents and the connected components of spectrum.
O

Let m be a set of prime numbers and Z,) be the ring of fractions of Z with
respect to the proper multiplicative subset Z — UperpZ. 7.27 has the following

obvious generalization.
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Theorem 7.28 Let G be a n—group. Then ZyB(A, G) is a local ring (0 and 1
are the only idempotents of Zx)B(A, G)).

Theorem 7.29 Let A have p—power order. Then the primitive idempotents of
ZyzB(A,G) and ZyzB(G) are the same.

Proof: Let P be a nonzero prime ideal of D such that D/P has characteristic
p. For (H,h) € el(A,G), let Ip(H,h, PP) = {z € DpB(A,G) : 5§ ,(z) € PP}
and I,(H, (pZ)?) = {z € ZyB(G) : S§(z) € (pZ)F}. From 7.25 it follows that
Ip(H,h, PE) = Ip(K, k, PP) if and only if OP(H) =¢ OP(K), and from 7.22(vs)
I(H, (pZ)¥) = I,(K, (pZ)F) if and only if OP(H) =¢ OP(K). Hence spectrums
of the rings DpB(A, G) and Z,zB(G) have the same number of connected com-
ponents, and so they have the same number of primitive idempotents. Since
ZyB(G) < Z,zB(A,G) < DpB(A, G), the result follows.

As a generalization of 7.29 we state the following theorem.

}

Theorem 7.30 Let 7 be a set of prime numbers and Zry be the ring of fractions
of Z with respect to Z — UpexpZ. Then the rings ZxB(G) and ZyB(A, G) have

the same primitive idempotents for all m—group A.
As an implication of 7.24 we give the next result.

Theorem 7.31 The primitive idempotents of the rings ZyB(A,G) and
Z(x)B(G) are the same where 7 is the set of primes dividing (|A|, |G|).

For a given prime number p and subgroup H of G, let H,/O(H) be the Sylow
p—subgroup of H/O(H) and H,y /O(H) be the complement of H,/O(H).

We have the following immediate consequences; H/O(H) = H,/O(H) x
Hy/O(H), OH)y < H, < H > Hy > O(H), H,N Hy = O(H). Take any
automorphism f of H. Then O(H) = f(O(H)) < f(H,) (because O(H) is a
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characteristic subgroup of H) and so f(H,)/O(H) is a Sylow p—subgroup of the
abelian group H/O(H). Hence f(H,) = H, and similarly f(H,) = H,. Therefore

H, and Hy are characteristic subgroups of H.

Lemma 7.32 For a prime number p, let (H,h),(K,k) € el(A,G) satisfy the
following conditions;

(C1) H <K and K/H is a p—group,

(C2) zha™ = h mod H, for all z € K,

(C3) h =k mod K,

Then we have I(H, h, P) = (K, k, P) for any nonzero prime ideal P of D such
that D/P has characteristic p.

Proof: From (C3); h 'kO(K) has p—power order in K and so we have
I(K,h,P) = I(K,k, P) by 7.11. But this means 7p 0 S, = np 0 S, from
7.10.

Now take any [4,G/V] € B(A,G) and compute,

mpo SgAlAG/V)= Y  (w(h)+P)

gVCG,H<9V

= > (Cum+P+ Y (uh)+P)

gVCG,K<9V gVCG,H<IV,K L3V
=m0 SEA([AG/V]) + >, (Pv(R) + P).
gVCG,H<IV, KLV

Thus, using 7p 0 S§ ), = np o S,C‘}',k we get

p o SEA([AG/V]) —7p o S ([AG/V]) = > (Pv(h) + P).
gVCG,HSIV, KLV

From (C2); (A~ (xhx~1))O(H) has p—power order in H and so v(h) 'v(zhz~1)
+P is a p—power root of unity in the field D/P for any v € Hom(H, A). Since
D/ P has characteristic p, it has no nontrivial p—power roots of unity. Thus we
must have v(h) + P = v(zhz™') + P for all z € K and v € Hom(H, A).

Note that the indices of the last sum range in the K/H—set G/VH — G/V¥.
Because K/H is a p—group and K/H—orbits of G/VH — G/V¥ have nontrivial
sizes, any orbit has size divisible by p. Take a gV € G/VH# — G/V¥ and consider
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its orbit orbx/u(gV) = {kgV : kH € K/H}.
If £71gV € orbk/u(gV') then we have
*9y(h) + P = 9y(zha~') + P = 9v(h) + P. Therefore,

> (v(h) + P) = > (v(h) + P)

gVCG,HSIV, K49V gvVeG/VH-G/VE

= > lorby,u(gV)|(Pv(h) + P) = P.
gVEw/uG/VHE-GIVK

So we proved mp o Sg’h =Tpo Slc'(",c implying that I(H, h, P) = I(K, k, P).

O

Remark 7.33 Let G be an abelian group, and P be a nonzero prime ideal of D
such that D/P has characteristic p. Then I(H,h, P) = I(OP(H), hy, P) for all
(H,h) € el(A,G).

Proof: It suffices to note that (OP(H), hy) and (H, h) satisfy the conditions
in 7.32. (C1) holds trivially , and the condition (C2) disappears because G is
abelian.

Since H/O(H) = H,/O(H) x Hy/O(H), any element hO(H) of H can be writ-
ten uniquely as hO(H) = (hiO(H))(heO(H)) where hiO(H) € H,/O(H) and
heO(H) € H,/O(H). Since hyO(H) has p—power order, hyO(H) has order not
divisible by p and hO(H) = (mO(H))(heO(H)) = (h2O(H))(h1O(H)) we must
have hjO(H) = (hO(H)), = h,O(H) and heO(H) = (hO(H))y = hyO(H).
Thus (hy) 'hO(H) = h,O(H) = nO(H) € H,/O(H) implying that hy = h
mod H,. Therefore the condition (C3) holds.

a

Let p be a prime number and H be a subgroup of G. Then (OP(H)), is a
characteristic subgroup of OP(H) of p—power index. Therefore, (OP(H)),y is a
normal subgroup of H having p—power index. Then by the minimality of OP(H)
we must have OP(H) = (OP(H)),. Thus, OP(H)/O(OP(H)) is a p'—group.
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Lemma 7.34 Let H < G be such that H (= H/O(H)) is a p'—group, and P be
a nonzero prime ideal of D such that D/P has characteristic p. Let |A| = p®m
where (p,m) = 1. Then;

(i) The field D/P contains a primitive m*™™ root of unity. In fact, (** + P is a
primitive m™ root of unity in D/P where A=< ( > .

(ii) The group algebra (D/P)H is semisimple.

(i) For any v € Hom(H, A) define a (D/P)—algebra map ev(v) : (D/P)H —
(D/P) given by ev(v)(Lsepn Auh) = Creq Mav(R) for all 5 Mh € (D/P)H.
The maps ev(v), where v ranges in Hom(H, A), are all distinct.

(iv) The product map I1,epomeu.aev(v) : (D/P)H — ILoctomm,a)(D/P) is
injective.

Proof: (i) The following three facts can be found in [12](page 57, 58).

(a) Let 8 be a (p°)* primitive root of unity. Then the principal ideal (1 — 6)Z[6]
is the unique prime ideal of Z[f] lying over pZ.

(b) Let 6 be a primitive m® root of unity. If m is divisible by at least two different
prime numbers, then 1 — 6 is unit in Z[6].

(c) Let 6 be a primitive m** root of unity, and ¢ be a prime number not dividing
m. Then for any prime ideal @ of Z[f] lying over ¢Z, 1 — 6* € Q if and only if
1—6%=0. So 6 + Q is a primitive m** root of unity in (Z[6])/Q.

We are assuming that ¢ =a primitive n** root of unity, A =< ¢ >, D = Z[¢), and
A< D*.

(A) Any prime ideal P of D lying over pZ contains 1 — (™ :

It is clear that (™ is a primitive (p®)** root of unity. So by the above fact (a),
(1 = ¢™)Z[¢™] is the unique prime ideal of Z[(™] lying over pZ. Now P N Z[(™]
is a prime ideal of Z[¢™] lying over pZ because Z[{™] < D. Hence, PN Z[(™] =
(1 — ¢™)Z[¢™] implying that 1 — (™ € P.

(B) Let P be a prime ideal of D lying over pZ. If 0 #£ 1 — (¥ € P, then m divides
k:

1 —¢* € PNZ[¢¥] which is a prime ideal of Z[¢*] because Z[¢*] < D. Let ¢* has

order+Themn since T =*isinma prime ideat of Z{¢*, T=*is nonunit. Thus by
the above fact (b), ¢ cannot be divisible by more than one prime number. Also

from the above fact (c) p must divide ¢, otherwise 1 — (¥ = 0. Hence ¢t = p® for
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some natural number a. Now the order of (¥ is given by the formula; p* = ¢ =
p*m/(k,p*m). Hence k must divide m.
(C) Let P be a prime ideal of D lying over pZ. The smallest integer k such that
1—-¢*cPism:
Follows from (A) and (B).
Now we know from (C) that 1 — (™ € P and m is the smallest such number.
Then (( + P)™ =1+ P, and so ¢ + P is an m® root of unity in D/P. On the
other hand the minimality of m implies that { + P has order m. Thus ( + P is a
primitive m** root of unity in D/P.
(ii) D/P is a field of characteristic not dividing H. Thus (D/P)H is semisimple
by Mascke’s Theorem.
(iii) Any element h of H has order dividing m. So for any v € Hom(H, A), v(h)
is an ™ root of unity in < ¢ >< D*. Thus v(h) belongs to the unique subgroup
of A of order m, namely < ¢?* > . Note that ¢** is a primitive m*® root of
unity. Since D/P contains a primitive m®® root of unity 1 + ¢ we have a group
monomorphism < (7% >~< ¢+ P >< (D/P)* given by (¢*")" + (" + P for any
integer r. Therefore, the maps ev(v) are all distinct for all v € Hom(H, A).
(iv) Since (D/P)H is a semisimple algebra over the field (D/P) containing all at?
roots of unity for all ¢ dividing the order of H, (D/P)H must be isomorphic to the
direct sum of |H| many (D/P) by Wedderburn Theorem. Hence there arc exactly
|H| = |Hom(H, A)| many distinct (D/P)—algebra maps from (D/P)H to D/P.
However we know that the (D/P)—algebra maps ev(v),v € Hom(H, A), are all
distinct. Thus they are precisely all the (D/P)—algebra maps. Consequently,
the product map is injective.

O

Recall that N(H) acts on H by conjugation where N () denotes Ng(H)/H.

Lemma 7.35 Let H < G be such that H is a p'—group, and P be a nonzero
prime ideal of D such that D/P has characteristic p. Given h € H;
[A,G/H] € I(H,h, P) for allv € Hom(H, A) if and only if there is a gH € N(H)

of order p such that 9h = h.

Proof: Letz =3 ncn.m 9'h € (D/P)H. Take any v € Hom(H, A) and
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compute;

ew)(@)= >, v B+P= Y 9y(h)+P

gHCNg(H) gHCNg(H)
=mpo S5 ,([AG/H]) =0

Since it is true for all v € Hom(H, A), z is in the kernel of the product map
[ L ctrom(er,a) €0(v) - (D/P)H — (D/P). By the injectivity of the product map

we must have,

O=z= Y 9 h=|stabyary(R) > k.

gHCNg(H) k=n(myh

In the group algebra (D/P)H, the different elements of A are linearly indepen-
dent over (D/P). Thus, z = 0 if and only if the characteristic of the field (D/P)
divides |stabnry(h)|. Hence, stabym)(h) has an element of order p if and only if
[A,G/H] € I(H,h, P) for all v € Hom(H, A).

O

Lemma 7.36 Let H < G be such that H is a p'—group, and P be a nonzero
prime ideal of D such that D/P has characteristic p. Let hy,hy € H. Suppose
that 7p o S§ , ([A,G/H]) = np o S§,.([A,G/H)) for all v € Hom(H, A), but
7p o S§ 1, ([ALG/H]) # 0 for at least one v € Hom(H,A). Then there is a
gH € N(H) such that 9h; = h,.

Proof: Let z = 3 ycngm 97'hy and y = 2 G HCNG(H) 9 hy. For any v €
Hom(H,A) we evaluate the image of z —y € (D/P)H under the map ev(v) :
(D/P)H — D/P;

ew@)(z—y)= Y. W h)—v( hy))+ P

gHCNG(H)

= Y () +P) - Y (v(hy)+P)

gHCNg(H) gHCNg(H)

= 15 0 5§, (AG/H)) — 7p 0 %, (A,G/H)) = 0.
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Since it is true for all v € Hom(H, A), z — y is in the kernel of the product
map [, Hom(H,A) ev(v) which is an injective map. Hence z — y = 0 in the group
algebra (D/P)H. Since N(H) acts on H by conjugation we can write z — y as

follows;

0=z —y=|stabyan(h1)] Y, Fi—lstabyiny(h)l D ko
k1=n(myh k2=n(ayh2
By 7.35, p cannot divide the orders of N(H)—stabilizers of k; and hy because
mp oSG, ([A,G/H]) is nonzero for some v € Hom(H, A). Since z —y = 0, by the
linear independency of different elements of H over (D/P) we can conclude that

ki = ko for some k; =N(H) hy and ko =N(H) hy. Thus h; =N(H) ho, as desired.

a

Lemma 7.37 Let P be a nonzero prime ideal of D such that D/P has char-
acteristic p, and H < G be such that H is a p'—group For hy,hy € H if
[(H,hy,P) = I(H, hs, P), then hy =nuy ho or [A,G/H] € I(H,hy,P) for all
v € Hom(H, A).

Proof: Suppose [(H, hi, P) = I(H, hy, P). Then by 7.10 7po S5, = mpoS§, .
In particular, mpo S5, ([A,G/H]) = mpoS§ ,,([A,G/H]) for all v € Hom(H, A).
Now if [A,G/H] ¢ I(H,hy, P) for some v € Hom(H, A) then by 7.36 we must

have h; =N(H) ho which completes the proof.

a

Corollary 7.38 Let P be a nonzero prime ideal of D such that D/P has char-
acteristic p, and G be a p'—group. Then for any (H,h), (K, k) € el(A, G);
I(H,h,P) =I(K,k, P) if and only if (H,h) =g (K, k).

Proof: (=) Suppose I(H,h,P) = I(K,k,P). We know from 7.18 that
I[(H,h,P) = I(K,k,P) implies OP(H) =g OP(K). Since G is a p'—group,
OP(T) =T for any T < G. Hence H =¢ K. Suppose H =9K. Then I(H,h, P) =
[9K,h,P)=I(K,k,P)=I1(°K,%, P) implying that I(H, h, P) = I(H,%%, P).
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Since H is a p'—group, from 7.37 we get h =n(m) 9% or [A,G/H] € I(H,h, P)
for all v € Hom(H, A). However, according to 7.35 [A,G/H] € I(H,h, P) for
all v € Hom(H, A) if and only if stabym(h) < G contains an element of or-
der p. Since G is a p'—group, stabym)(h) has no element of order p. Therefore,
h =ne) %. So ®h = 9k for some z € Ng(H). Then *(H,h) = (°*H,h) =
(H,*h) = (“K, %) = 9(K, k). That is, (H, h) =¢ (K, k).
(<) Trivially holds.

O

Theorem 7.39 Let G be a p'—group, and P be a nonzero prime ideal of D such
that D/P has characteristic p. Then the rings DpB(A, G) and CB(A,G) have

the same primitive idempotents.

Proof: By the integrality of the ring extension DpB(A, G) < H(H,h)ec;el(A,G) Dp,
it is clear that the prime ideals of DpB(A, G) are the kernels of the maps Sg , :
DpB(A,G) — Dp and 7pe 0 S§, : DpB(A,G) — Dp — Dp/PE. We denote
these kernels by Ip(H, h,0) and Ip(H, h, PE), respectively. The maximal ideals of
DpB(A, G) are of the form Ip(H, h, PE) where (H, h) € el(A, G). By 7.38 we con-
clude that Ip(H,h, P?) ~ Ip(K,k, PE) (equivalently, I(H,h, P) = I(K,k, P))
if and only if (H,h) =g (K, k). Hence, the number of primitive idempotents of
DpB(A, G) is equal to the number of nonconjugate subelements (H, h) € el(A,G)
which is equal to the number of primitive idempotents of CB(A, G). The result
follows, because DpB(A,G) < CB(A,G).

The previous theorem implies the following result.

Theorem 7.40 The primitive idempotents of Z,zB(A, G) and QB(A, G) are the

same for any prime number p not dividing the order of G.

Proof: Let P be a nonzero prime ideal of D such that D/P has characteristic p
where p is a prime number not dividing the order of G. From 7.39 we know that

the primitive idempotents of DpB(A, G) are precisely the primitive idempotents
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of CB(A,G). Since QN Dp = Zyz, QB(A,G) N DpB(A, G) = Zyz B(A, G) which
completes the proof.

0

Next we find the prime ideals of B(4,G) and their properties by using the
facts we obtained so far. We use the integrality of the ring extensions B(A, G) <
DB(A,G) and B(A,G) < [limnegeac D- We already found almost all facts
appearing in the next theorem. For any (H,h) € el(A, G), and nonzero prime
ideal P of D define

J(H,h,0) = {z € B(A,G) : S§ ,(z) = 0},

J(H,h, P) ={z € B(A,G) : S5 ,(z) € P}.

Let G be the Galois group of the extension Q < Q(¢). Then G acts transitively on
the prime ideals of D lying over pZ where p is any prime number. Restricting any
element o € G to A we get an automorphism of A. Thus by function composition
G acts on Hom(H, A) ~ H for any H < G. Note that G acts also on DB(A, G)

as follows;

(0, dvulAG/V]) = (3 dvu[AG/V]) = o(dv,)AG/V].

For any prime ideal (possibly 0) 4 of D, °(I(H, h,4)) = [(H,o(h),o(A)).

Theorem 7.41 Let P,Q be any nonzero prime ideals of D, and (H, h), (K, k) be
any elements of el(A, G). Then

(1) J(H,h,0) and J(H, h, P) are prime ideals of B(A,G). Moreover, any prime
ideal of B(A, G) is one of these forms.

(i) J(H, h,0) is a minimal prime ideal of B(A,G), and J(H, h, P) is a mazimal
ideal of B(A,G).

fiii) J(H,h,0)NZ = 0, and J(H,h,P)NZ = PNZ = pZ where p is the
characteristic of the field D/ P. .

(i) J(H,h, P) = J(K,k,Q) implies that PNZ = QN Z.

(v) Let A,B be prime ideals (possibly 0) of D. Then J(H, h,A) ~ J(K,k,B) if
and only if S(H) =¢ S(K).



CHAPTER 7. PRIME IDEALS OF B(A,G) 74

(vi) The number of primitive idempotents of B(A,G) is equal to the number of
nonconjugate perfect subgroups of G.

(vii) G is solvable if and only if Spec(B(A, G)) is connected if and only if 0 and
1 are the only idempotents of B(A,G).

Proof: By the integrality of the ring extension B(A,G) < DB(A,G), any
prime ideal of B(A, Q) is the intersection of a prime ideal of DB(A, G) with
B(A, G). Note that I(H,h,0)NB(A,G) = J(H,h,0) and I(H,h, P)YNB(A,G) =
J(H,h,P). Then (i) and (ii) follows. (iii) and (iv) are obvious. For the
rest; note that D is G—stable and (DB(A,G))Y = B(A,G). Consequently,
I(H,h,%) N B(A,G) = I(K,k,B) N B(A,G) if and only if there isa 0 € G
such that 7(I(H, h,)) = I[(H,o(h),oc()) = I(K, k,B). Therefore, J(H, h, P) =
J(K, k, Q) still implies that OP(H) =¢ OP(K'), and so the results follow.

O

As remarked at the beginning of this chapter some results we obtained so far
can be extended to RB(A, G) where R is not so specific as D. In the following
three remarks we collect some of the results which we obtained for DB(A, G) and
state them for RB(A, G).

Let R be an integral domain of characteristic 0 such that R contains a primitive
nt* root of unity to ensure that we have a fixed embedding of A into the unit
group of R. As before, for any (H, h) € el(A, G) we have a ring epimorphism
SG,:RB(A,G)~»R  where [AG/V]— Z Iv(h).
gVCG,H<9V

The product map

v= J[ Si.:RBAG -~ ][] R

(Hh)Egel(AG) (H,h)Egel(AG)

is still injective. For any nonzero prime ideal P of R we again define
I(H,k,0) = {z € RB(A,G) : S§ () = 0},
I(H,h,P) = {z € RB(A,G) : S§ ,(z) € P}.

Let also 7p : R — R/P be the canonical ring epimorphism.
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Remark 7.42 Let R be an integral domain of characteristic 0 such that R con-
tains a primitive n'* root of unity to ensure that A < R*. Then;

(i) Any prime ideal of RB(A, G) is of the form I(H, h, P) for some prime ideal P
of R and element (H, h) of el(A, G). Conversely, any I(H, h, P) is a prime ideal
of RB(4,Q) '

(i1) I(H, h,0) is a minimal prime ideal of RB(A,G)

(11i) P is a mazimal ideal of R if and only if [(H, h, P) is a mazimal ideal of
RB(A,G)

(iv) For any prime ideal P of R, I(H,h, P)NR =P

(v) For any nonzero prime ideal P of R, I(H,h,0) & I(H, h, P)

(vi) I(H,h, P) = I(K, k,Q) implies P = Q

(vii) I(H, h,0) = I(K, k,0) if and only if (H,h) =¢ (K, k)

(viii) Suppose P is a mazimal ideal of R. Then I(H,h,0) C I(K,k, P) if and
only if I(H,h, P) = I(K, k, P)

(iz) I(H, h, P) = I(K, k, P) if and only if mp o S§; ), = mpo S§

(z) Let P be a prime ideal of R such that R/P has characteristic p. Then for any
(H,h1), (H, hy) € el(A,G) with hi*h,O(H) € H is of p—power order, we have
I(H, hy, P) =I(H, hy, P).

Proof: Since both rings RB(A,G) and [] g pyeqerac) R are finite over R, the
ring extension RB(A, G) < [ g nyegeicac) 1 is an integral ring extension. Hence,
all parts of the remark follow by slight modifications of the proofs that we gave
for 7.8, 7.9, 7.10 and 7.11 (indeed, word by word).

O

To study the prime spectrum of RB(A, G) we assume R is Noetherian implying
RB(A, G) is Noetherian.

Remark 7.43 Let R be a Noetherian integral domain of characteristic 0 such
that R contains a primitive nt* root of unity to ensure that A < R*. Then;

(i) Let P be a prime ideal of R and (H,h) € el(A, G). If no prime divisor of | H|
is invertible in R, then the prime ideals I(H,h, P) and I{H,1,0) of RB(A,G)
are in the same connected component of Spec(RB(A, G))
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(i) Let P be a prime ideal of R and (H, h) € el(A,G). If no prime divisor of |H|
is invertible in R, then the prime ideals [(H, h, P) and I(S(H),1,0) of RB(A, Q)
are in the same connected component of Spec(RB(A, G))

(111) Let P and Q be prime ideals of R, and (H,h), (K, k) € el(A, G) Suppose no
prime divisor of |H||K| is invertible in R. Then S(H) =¢ S(K) implies that the
prime ideals I(H,h, P) and I(K,k,Q) of RB(A,G) are in the same connected
component of Spec(RB(A, G)).

Proof: It is clear that the proofs given for 7.12, 7.13, 7.14 and 7.15 still work

under the assumptions given in this remark.

O

Remark 7.44 Let R be a Noetherian integral domain of characteristic 0 such
that R contains a primitive n'* root of unity to ensure that A < R*. Suppose
further that any nonzero prime ideal of R is mazimal, and no prime divisor of
|G| is invertible in R. Then for any prime ideals P and Q) of R, the prime ideals
I(H,h,P) and I(K,k,Q) of RB(A,G) are in the same connected component of
Spec(RB(A,G)) if and only if S(H) =g S(K).

Proof: Under the hypothesis of this remark, evidently 7.19 is still true for
RB(A,G). Hence the result follows from 7.19 and 7.43.

d

We finish generalizations of our results obtained for DB(A, G) after giving a

generalization of one of the remarkable results of Dress appearing in [9)].

Remark 7.45 Let R be a Noetherian integral domain of characteristic 0 such
that R contains a primitive n** root of unity to ensure that A < R*. Suppose
further that any nonzero prime ideal of R is mazimal, and no prime divisor
of |G| is invertible in R. Then G is solvable if and only if Spec(RB(A,G)) is

connected.
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Proof: It is immediate from 7.44.

Now we collect the results we proved related to idempotents in the following
corollary. The first three parts of the following corollary are already known ((ii)
was obtained by Barker in [1], and (i) and (iii) were obtained by Dress in [9]).
We also achieved to get these three known parts by our slightly different way.

Corollary 7.46 Let A =< ( >, ( =a primitive n'* root of unity, @ =a set
of prime numbers, Ly = {a/b € Q : b ¢ UyexpZ}, and for m = {p} write
Lizy = Lpg. Then;

(1) G is solvable if and only if 0 and 1 are the only idempotents of B(A, G)

(#1) The primitive idempotents of B(A,G) and B(G) are the same

(iii) If G is a m—group, 0 and 1 are the only idempotents of Z)B(A, G)

(iv) If A is a m—group, the primitive idempotents of ZryB(A, G) and ZB(G)
are the same

(v) If w is the set of primes dividing (|A|,|G|), then the primitive idempotents of
ZxyB(A, G) and Zx)B(G) are the same

(vi) For any prime number p not diwiding |G|, the primitive idempotents of
ZzB(A,G) and QB(A, G) are the same

(vii) If G is w'—group, then the primitive idempotents of ZB(A,G) and
QB(A, G) are the same.

Proof: All of them except (vii) are obtained so far. However (vii) is trivial

because it is an obvious generalization of (vi).

We will close this chapter after finding the primitive idempotents of
Z(x)B(A, G) where 7 is any set of prime numbers, and G is a nilpotent group.

We will show that there is a bijection between the primitive idempotents of
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Z(»yB(A,G) and the primitive idempotents of QB(A, K) where G is a nilpo-
tent group, and K is the unique Hall 7’—subgroup of G. I discovered this result,
but the proof I suggested was not complete. A complete proof was given by my
supervisor L. Barker.

For a K—algebra R, a K —algebra homomorphism from R to K is called species.
We use the notation Ipot(R) to denote the set of the primitive idempotents of R.
We begin with giving a slight generalization of 7.46.

Remark 7.47 Let R be an integral domain with characterisric 0, and w be a set
of prime numbers that are not invertible in R. Then,

(1) If G is a m—group, then Ipot(RB(A,G)) = Ipot(B(G))

(i) If G is a 7' —group, then Ipot(RB(A,G)) = Ipot(KB(A, G)) where K is the
field of fractions of R.

Proof: Both part follow from obvious generalizations of 7.46 (iii), (v) and (vii).
a

The next lemma and its proof was given by L. Barker.

Lemma 7.48 Let R be an integral domain with characteristic 0. Let K be the
field of fractions of R. Let A and B be R—algebras, finitely generated and free
as R—modules. Suppose that KA and KB are direct sums of copies of K (Here,
KA =K®grA and KB = K®g B). Given primitive idempotents e and f of A
and B, respectively, then e ® f is a primitive idempotent of A Qg B.

Proof: By replacing A and B with eAe and fBf, we may assume that that
e=1gand f =1p Writee = >, ;e and f = >, f; as the sums of the
primitive idempotents of KA and KB. Thus

KA = @z'e[Kei, KB = @jEJKfj.

Consider a nonzero idempotent € of A ® g B. We must show that € = 1. We have

e= Y e®f

(i.3)eT
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for some subset T of I x J. We are to show that T =1 x J.

Fix an element ¢ € I, let J(i) = {j € J : (¢,5) € T}, and suppose that J(i) is
nonempty. We claim that J(i) = J. Let s; be the species KA — K such that
si(e;) = 1. Then s;(ey) = 0 for ¢’ € I —{i}. Since s;(14) = 1 and s;(R14) = R, we
have R C s;(A). But s;(A) is finitely generated as an R—module, so R = s;(A).

Therefore, we have an R—algebra map
$;®idg: AQr B — B, a®b+——>si(a)b.

The element

Si®’l:d3(€) = Z fj

jed (@)
is an idempotent of B, nonzero because J(i) is nonempty. But 1p is a primitive
idempotent of B, so J(i) = J, as claimed.
Now fix an element j € J, and let I(j) = {k € I : (k,5) € T}. By what we have
shown, 7 € I(j). In particular, /(j) is nonempty. Interchanging A and B, the
claim established above implies that I(j) = I. Therefore T' = I x J, as required.

O

Let H and K be two groups of coprime order. Then any subgroup of H x K
is of the form T x L where T and L are subgroups of H and K, respectively.
For any v € Hom(T x L, A), define v; € Hom(T, A) and vo € Hom(L, A) as
n(t) = v((t,1)) and v(l) = v((1,1)) for all ¢ € T and I € L. So we have a
map Hom(T x L,A) — Hom(T, A) x Hom(L, A), given by v — (11, 15), which
is a group isomorphism. This map induces the ring homomorphism given in the

following lemma.

Lemma 7.49 Let H and K be two groups of coprime order. Then the map
B(A, H x K) — B(A, H) x B(A,K) given by [A,22K] v (A, H/T], [A,, /L]

vV TxL
for any (T x L,v) € ch(H x K, A) is a unital ring epimorphism.

Proof: Straightforward checking.
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By considering dimensions of B(A, H x K) and B(A, H) x B(A, K) over Z, it
is clear that the map in the previous lemma is not injective in general. To make
it injective, an obvious way is the taking the tensor product of B(A, H) and
B(A, K) over Z instead of taking the direct product of them.

Lemma 7.50 Let H and K be two groups of coprime order. Then the map
¥ : B(A,H x K) — B(A, H) ® B(A,K) given by v([A,22K]) = [A,, H/T] &

YV TxL
[A, K /L)) for any (T x L,v) € ch(H x K, A) is a ring isomorphism.

Proof: It is clear.
O

Note that for any integral domain R with characteristic 0, the R—linear exten-
sion of the map 4 given in 7.50 is also a ring isomorphism from RB(A, H x K)
to RB(A,H) ®g RB(A, K).

The following theorem was obtained by L. Barker, and its proof below was sug-

gested by him.

Theorem 7.51 Suppose G = P xQ where P is a 1—group and Q is a ©'—group,
and 7 is a set of prime numbers. Also suppose that O is a ring extension of Z
whose field of fractions K is a Galois extension of Q. Let R= Oy = {z/y € K:
Y & UpexDZ}. Then there is a bijection

Ipot(RB(A,G)) = Ipot(B(P)) x Ipot(KB(A,Q))

such that € «— e ® f provided ¢ = e ® f. Here, we make the identification
RB(A,G) = RB(A,P) ®g RB(A,Q) given by the R—linear extension of the
map ¢ introduced in 7.50.

Proof: First suppose that R has enough roots of unity. By 7.48, there is a
bijection
Ipot(RB(A, G)) < Ipot(RB(A, P)) x Ipot(RB(A, Q))

described by tensor products, e® f < (e, f). The required conclusion now follows

from 7.47 in this case.
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For the general case, let K < K’ be a Galois extension such that K’ has enough
roots of unity. Let ' be the ring of algebraic integers in K', and let R/ =
' (z). The Galois group I of the extension K < K’ acts on R/, and the I'—fixed
subalgebra of R’ is R. Letting I' act in the evident way on R'B(A,G), then the
I'—fixed subalgebra is RB(A, G). So

Ipot(RB(A,G)) = Ipot(R'B(A,G))L.
Similarly, we have
Ipot(KB(A,Q)) = Ipot(K' B(A, Q))F.
On the other hand, the bijection
Ipot(R'B(A, G)) < Ipot(B(P)) x Ipot(K'B(4,Q))
is invariant under Galois automorphisms. Therefore
Ipot(RB(A, G)) = Ipot(R'B(A,G))"
< (Ipat(B(P))) x Ipot((K'B(4,Q))")
= Ipot((B(P))") x Ipot((K'B(A,Q))")
= Ipot(B(P)) x Ipot(KB(A,Q)).
O

Theorem 7.51 implies the following result which is about the primitive idem-
potents of Z)B(A, G) where G is a nilpotent group and 7 is any set of prime

numbers.

Theorem 7.52 Let m be a set of prime numbers and Zizxy = {a/b € Q : b ¢
UperPZ}. For a milpotent group G, there is a bijective correspondence between the
primitive idempotents of ZxyB(A, G) and the primitive idempotents of QB(A, Q)
where Q is the unique Hall 7' —subgroup of G.

Proof: Sine G is nilpotent, G = P x () where P is the unique Hall 7—subgroup
of G, and @ is the unique Hall 7'—subgroup of G. Let © = Z. Then R = Z,
and K = Q. So by theorem 7.51, there is a bijection

Ipot(Zix B(A, G)) = Ipot(B(P)) x Ipot(QB(A, Q)).
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Then the result follows because from 7.47, Ipot(B(P)) = Ipot(Z(xB(A, P)) =
{1} (by 7.46, Z(r)B(A, P) is a local ring).

By the previous theorem, we know the primitive idempotents of Z(»)B(A, G)
where G is a nilpotent group and 7 is any set of prime numbers, because for any
group H the primitive idempotents of QB(A, H) are known, and obtained by
Barker in [1].



Chapter 8

Some Further Maps

In this chapter, we collect together some miscellaneous further material on maps

between monomial Burnside rings.

8.1 B(G)— B(A,G)

We find the images of the primitive idempotents of CB(G) under the map 1,
defined in 3.4. We repeat its definition below.

For a G—set S, let AS = {as : a € A,s € S} be the set of formal products.
Thus, a;8; = ays, if and only if s; = sy and a; = ay. We let AG act on AS as:
(bg)(as) = (ab)(gs) for all bg € AG and s € S. Then, AS becomes an A—fibred
G —set and we have a well-defined map

i, : B(G) — B(A,G) given by [S] — [AS] for any G—set S. In 3.4 we proved
that 71 is a unital ring monomorphism and ¢, ((G/V]) = [A,G/V] forany V < G
where 7 is the trivial group homomorphism V — A. In the following remark we

consider the C—linear extension of ¢, for which we still use the same notation.

Remark 8.1 (i) For any G—set S and (H, h) € el(A, G) we have
St ([81)) = SH((SD.

83
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(i3) For any primitive idempotent €% of CB(G);
Pi(ef) = Z e h
A

where h Tuns over all distinct representatives of N(H)—orbits of the N(H)—set

Proof: (i) It suffices to prove the desired result for transitive G—sets. Take
S = G/V. Then using ¥, ([G/V]) = [A.G/V];

Sia(G/V]) = SEA(AG/V) = D 1=53(G/V)).
gVCG,H<IV
(ii) For some complex numbers Ag x;
vilef) = Y. Ak
(Kk)Egel(A,G)

where by part (i)

Aick = SEp(1(eF)) = SE(eF) = {

Hence the result follows.

1, H=¢K

0, otherwise.

8.2 B(A,G)— B(G)

We find the images of the primitive idempotents of CB(A, G) under the map
defined in 3.5. Remember that v, is a unital ring epimorphism from B(A4,G) to
B(QG) given by 12([A,G/V]) = [G/V] for any (V,v) € ch(A,G).

Remark 8.2 (i) For any A—fibred G—set S = AX and H < G,
S5 (a(181)) = S5 (1S))-
(i) For any primitive idempotent ef , of CB(A, G);

dale§,) = { ¢S, heO(H)

0, otherwise.
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Proof: (i) There is no loss in taking S to be transitive. Let S = A,G/V. Then
using ¥([4,G/V]) = [G/V],
Si(Wa([A.G/V])) = SF(G/V]) = S§1([A.G/V]).

(ii) For some complex numbers Ag;

1/}2(62,};) = Z /\Ke?(-

K<qG
Then using part (i);
Ak = Sl(g("p?(eg,h)) = Slcé,l(eg,h) = {

Hence, the result follows.

L, (Hah) =G (K7 1)

0, otherwise.

8.3 B(A,G)— B(A,G)

Let A and A’ be two cyclic groups, and f be a group homomorphism from A
to A’. So f is given by f(a) = b" for some natural number n where o and b are
the respective generators of A and A’. Note that fov € Hom(V,A’) for any
v € Hom(V, A). Thus, we can transform the transitive A—fibred G—set A,G/V
to the transitive A'—fibred G—set A}, ,G/V.

Lemma 8.3 Let (V,v),(W,w) € ch(A,G) and g € G. Then we have
(i) 9(f ov) = fo9v € Hom(9V, A').

(it) fo(vw) = (fov).(fow) € Hom(VNW,A).

(iii) If A, G/V ~ac AuG/W, then A} G|V ~pq A, ,G/W.

Proof: (i) For any v € V we compute that

I(fov)(Pv) = fov(v) = fov(®).

(ii) It is clear.

(iii) A,G/V ~4¢ A,G/W if and only if (V,v) =¢ (W,w). Then (9V,9v) = (W,w)
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for some g € G. But then by part (i);
(W, fow) =(°V, fov) = (V,9(fov))

implying that A%},,G/V ~aq A%, ,G/W.

Now by the above lemma (iii), we have a well-defined map
¥ : B(A,G) — B(A4,G) given by ¢([A,G/V]) = [A},,G/V] for all (V,v) €
ch(A,G).

Theorem 8.4 (i) v is a (unital) ring homomorphism.
(ii) For any A—fibred G—set S = AX and (H,h) € el(A,G);
aSEAW(8]) = aSH i ([S]).

(111) For any (K, k) € el(A, G);

w(Ae?(,k): Z A'efr;{,h-

hn:Nc(K)k

Proof: (i) By using the part (i) and (ii) of the above lemma;

Y(AG/VIAG/IW]) = (D [AveuG/V NIW])

VgWCG

= Y Ao G/V NW]

VgWcCaG
= Z [Azfou).g(fow)G/V n gW]
VewCae
=[5, G/V] AL, G/W] = P([A.G/VI)Y([AG/W)).
So ¢ is multiplicative and hence a ring homomorphism.
(ii) Since f : A =< a >— A’ =< b > with f(a) = b", we have f o v(v) = v(v")
for any (V,v) in ch(A, G) and v € V. By this observation;

aSin(W(AG/V]) = wSE u([A7,G/V])
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= > fou)n)

gVCG,H<V

= ) wmy

gVCG H<IV

= 4S5 m([A,G/V]).

(iii) For some elements Ay, of C;

G G
1/’(A€K,k) = E /\H,hA’eH,h~
(H,R)Egel(A',G)

Then by part (ii);

AHp = A'Sg,h(w(/le%,k)) = ASfGI,hn(AC?(,k) = {

Hence,

1, (H,h") =¢ (K,k)

0, otherwise.

G G e}
w(AeK,k): Z A'CHp = Z A'CK -

(H,h)EGCI(AI.G),(H,h"‘)ZG(K,k) hn=NG(K)k

8.4 B(A H)— B(AG)

87

Let G and H be finite groups and o : G — H be a group homomorphism. Then

any H—set S can be viewed as a G—set with the G action on S:

gs — a(g)s.

Hence any A—fibred H—set S can be viewed as an A—fibred G—set with the

same action of A and the above action of G. Let o*(S) denote this new fibred

set. Of course, as a set a*(S) = S.

It is clear that if S ~4y T then o*(S) ~ag o*(T). Therefore, we have a well-

defined map
Y : B(A,H) - B(A,G) where [S] - [a*(S)]

for any A—fibred H—set S.
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Theorem 8.5 (i) The map v is a unital ring homomorphism.
(i1) If a is surjective, then for any V < H and v € Hom(V, A)
la (V)

P([AH/V]) = I_KT(a)H_VI[A”wG/a_I(V)]'

(111) For any A—fibred H—set S = AX and (W, w) € el(A, G);

S50 (1SD) = Satw.aqw) (151)-

(iv) For any primitive idempotent ¥}, of CB(A, H)

NCAE > €S-

(Ww)egel(A,G),(a(W),a(w))=x(V,v)

Proof: (i) It is clear because ¢(S) = S for any A—fibred H —set.

(ii) Remember [A,H/V] represents the AH—isomorphism class of the A—free
AH—set AH//Ay,,) where Ay, is the subgroup {v(v™')v:v e V} of AH.
Find the AG—stabilizer of an element ahA v,y of o*(AH/Aw,)) = AH /D,y
bk is in the stabilizer if and only if (bk)ahA(y,,) = ahA,,. But then since
ba(k)hA v,y = hA v, is equivalent to bh~'a(k)h € Ay, we have h™la(k)h =
veVand b=v(v!). So k € a”}(*V). If a is surjective then there exists an = €
G such that a(z) = h. Then b = v(v™!) = v(h la(k™)h) = v(a(z7k 1)) =
yoa(k™) and k € a~}(V). Hence;

stabac(ahAwy)) = {"voa(k ™k : k € "o (V)} = Na-1(v)voa)- Therefore we
must have ¢([A,H/V]) = n[A,oaG/a~1(V)] for some natural number n because
the AG—stabilizer of ah/A\(y,,) does not depend on ah up to isomorphism of

AG—sets. Moreover n can be determined by counting the sizes of both sides
|ALH/V]| = n|[AveaG/a™ (V)]

|A||H : V| =n|A||G : a” (V)]

(iii) Since a*(AX) = AX for any A—fibred H—set S = AX, we have;

(a) g € stabg(Az) if and only if gAx = Az which is to say that a(g)Az = Az, or
equivalently a(z) € staby(Az). So a(stabg(Ax)) = staby(Az) N a(G).

(b) For W < G; W < stabg(Az) if and only if a(W) < staby(Azx).
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(c) For any z € X, let 9¢ and 92 denote the uniquely determined elements of
Hom(stabg(Axz), A) and Hom(staby(Az), A) by the conditions gz = ¥S(g)z and
hz = 9] (h)z. We can compute that for any w € W < stabg(Az) we have;

9¢ (w)z = wr = a(w)z = I (a(w))z implying that 9S(w) = 95 (a(w)). Now

S (W([S)) = Sy (@ (AX)) = > 9z (w)
z€X,W <stabg(Azx)
= Z rl9:1::{(01(’w)) = SCI;I(W),a(w) (AX) = S(i{(W),a(w)([S])'

zeX,a(W)<staby (Az)

(iv) Clearly for some complex numbers Ay, we have
w(ell}l,u) = Z )‘W,weg/,wa
(Ww)egel(A,G)

where (by using part (iii))
)‘VVKLU = SI?V,w(a* (eg,'u)) = SﬁW),a(w) (81‘;’,”).
Then the result follows because S ﬂw)’a(w) (efl,) takes only two values 0 or 1 (takes
value 1 if and only if (a(W), a(w)) =g (V,v)).

(|

8.5 B(A,G)— B(Q)

Suppose S = AX is an A—fibred G—set. Hence, in particular S is a G—set.
Moreover, for A—fibred G—sets S and T, if S ~s¢ T then S ~g T. Thus, we
have a well-defined map

¥ : B(A,G) — B(G) given by ¥([S]) = [¢S] for any A—fibred G—set S where

the notation ¢S means that we regard S as a G—set.

Remark 8.6 (i) v is a Z—module homomorphism.
(i1) For any (V,v) € ch(4, G)
A
Y([AG/V]) = m[G/KGTV}

(iii) v is not multiplicative, not injective, not surjective.
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Proof: (i) Obvious.

(ii) A,G/V = AG/Aw,) where A,y = {v(v™')v : v € V} which is a subgroup
of AG. Put A,y = A.

We find the G—stabilizer of an element agA of A,G/V;

h € G is in the stabilizer if and only if ahg/A = ag/A which is equivalent to
g 'hg € A. By the definition of A, g~'hg € A if and only if g~ 'hg € V and
v((g7thg)™') = 1 which is to say that h € 9V and h € Kerfv = 9(Kerv), or
equivalently h € 9(Kerv). Hence, orbg(ag/\) ~¢ G /Kerv which does not depend
on ag. Therefore A,G/V = nG/Kerv for some natural number n which can be
determined by counting of the elements of both sets.

(iii) Obvious from part (ii).

8.6 B(A,G)— B(A,AG)

Suppose S = AX is an A—fibred G—set. Thus S is an AG—set which is A—free
implying that it is also an A—fibred AG—set. It is obvious that if S and T
are isomorphic A—fibred G—sets, then they are also isomorphic as A—fibred

AG—sets. Hence, we have a well-defined map

¢ : B(A,G) — B(A, AG) given by ¢([S]) = [S] for any A—fibred G—set S.

Remark 8.7 (i) ¢ is a Z—module monomorphism.
(i) For any (V,v) € ch(A, G);

AG
AV
where va € Hom(AV, A) is given by va(av) = av(v) for all av € AV.

P([AG/V]) =[A

(#1) v is not multiplicative, not surjective.

Proof: (i) Additivity of ¢ is clear. It is injective because A(AG)—isomorphism

implies AG—isomorphism.
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(ii) A,G/V = AG/Aw,) where A,y = {v(v™")v : v € V} which is a subgroup
of AG. Put Ay, = A.

It is clear that A,G/V is a transitive A—fibred AG—set and so

AGV = orbaacy (D) ~acac ﬁ%

where A = 1.1A € AG/A. Now;

a(bg) € A(AG) is in the A(AG)—stabilizer of A if and only if a(bg)A = A which
is equivalent to g € V and v(g~!) = ab. But this holds if and only if bg € AV and
va((bg)™") = a, or equivalently a(bg) € {va((bg)~')(bg) : bg € AV} = A(avu,)-
Hence,

A,G/V ~4a¢) Avy AG/AV which completes the proof.

(iii) It is clear from part (ii).

8.7 B(A,G) — B(A)

Suppose S = AX be an A—fibred G—set. Let S\ G be the set of G—orbits of S.
Thus

S\ G = {orbg(s) : s € S}.
We let A act on S\ G as: (a,0rbs(s)) — a(orbg(s)) = orbg(as). It is clear
that isomorphic A—fibred G—sets have isomorphic (as A—sets ) G—orbit sets.

Therefore, we have well-defined map

¥ : B(A,G) — B(A) given by ¥([S]) =[S\ G] for any A—fibred G—set S.

Remark 8.8 (i) If S is a transitive A—fibred G—set, then S\ G is a transitive
A—set.
(i1) For any (V,v) € ch(A,G);

([A.G/V]) = [A/v(V)).

(14i) ¥ is a Z—module homomorphism.

(1v) ¢ is not multiplicative, not injective, not surjective.
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Proof: (i) Suppose S is a transitive A—fibred G—set. Take any two elements
orbg(s), orbg(s’) from S\ G. By the transitivity of S there is an ag € AG such
that ags = s implying that a(orbg(s)) = orbg(s’). Thus, S\ G is a transitive
A—set.

(ii) Since ¥([A,G/V]) is transitive, we must have ¥([4,G/V]) = [orba(orba(A))]
where A = {v(g7')g: g € G} < AG and A,G/V = AG/A. Now, a € A is in the
A—stabilizer of orbg(A) if and only if orbg(al\) = orbg(A) which is to say that
ag\ = A for some g € G. But agA = A for some g € G if and only if g € V
and v(g™!) = a, or equivalently a € v(V). Therefore,

P([A,G/V]) = [orba(orbe(A))] = [A/staba(orba(A))] = [A/v(V)].

(iii) and (iv) They are clear from part (ii).

8.8 B(A,G) — B(AG)

Let v : V — A be a group homomorphism. Then observing v(9V) = v(V) we
can see the map
¥ : B(A,G) — B(AG) given by [A,G/V] — [ﬁ] is a well-defined map which

is not multiplicative.

8.9 B(A1 X A2,G) — B(Al,G) X B(AQ,G)

Since our fibre group A is abelian, it is of interest to consider a direct product
decomposition A = A; X A,. Let m; and 75 be the respective projections from A
to A; and Aj,. Define a map

¥ : B(A,G) — B(A1,G) x B(As,G) given for all (V,v) € ch(A,G) by
Y([AG/V]) = ([Aimon G/ V], [A2m0 G/ V).

Remark 8.9 (7)) mo(v.p) = (mov).(mou) for any H, K < G, v € Hom(H, A),
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and pp € Hom(K, A) where i = 1,2.

(i1) For any g € G, H < G, and v € Hom(H, A) we have m; o (9v) = 9(m; o v)
where ¢ =1, 2.

(i1i) For any H < G, v € Hom(H, A) we have Kerv < Ker(m; ov) and Kerv =
Ker(m ov)N Ker(myov) wherei =1,2.

(iv) ¥ is a unital ring homomorphism.

Proof: (i), (ii) and (iii) follow from easy calculations.
(iv) Using (i) and (ii) it is clear that 9 respects the multiplication of two transitive
A—fibred G—sets. Hence, the result follows.

8.10 The Number Of Orbits

Let S = AX be an A—fibred G—set. In particular S is an AG—set, a G—set,
and an A—set. So we have the following three maps:

Ouac : B(A,G) — Z, O4c([S]) =the number of AG—orbits of S

O¢ : B(A,G) — Z, Og([S]) =the number of G—orbits of S

Oa: B(A,G) — Z, 04([S]) =the number of A—orbits of S.

Remark 8.10 (i) O is a Z—module homomorphism.

(i) Oac([AX]) = ey Sapenc 14X <20

(i11) Oac([A,G/V][ALG/W]) =the number of double coset representatives of
(V,W) in G.

Proof: For (ii) we use the result of Burnside which counts the number of orbits

(it is stated at the beginning of chapter 1). The other parts are trivial.
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Remark 8.11 (i) O¢g is a Z—module homomorphism.
(i) Oc([AG/V]) = g

Proof: (i) is trivial, and (ii) follows from the result of Burnside which counts
the number of orbits.
|

Remark 8.12 (i) O4 is a Z—algebra homomorphism.
(ii) Oa([AX]) = | X].
(i1i) OA([AG/V]) = |G : V.

Proof: Since any A—fibred G—set is an A—free set, the results are straightfor-
ward.

O

Since Q4 is multiplicative, it is more important than the first two maps. Some

properties of the map O4 is given in the next remark.

Remark 8.13 (i) KerO4 = J(G,1,0) = {z € B(A,G) : S§(z) = 0}.
(i) If z € B(A, G) is unit in B(A,G), then O4(z) € {—1,+1}.

Proof: (i) KerOy is a prime ideal of B(A, G) which is not maximal. Hence,
we know from chapter 7 that KerO4 = J(H, h,0) for some (H,h) € el(A,G).
However, it is clear that [A,G/V] — [A,G/V] € KerOy4 for all V < G and
v,u € Hom(V, A). Thus KerO,4 must be J(G, 1,0).

(ii) It is obvious.



Chapter 9

The Ring B(A, G)

In this short chapter we study some ring theoretic properties of the monomial
Burnside rings. We are assuming that A is a finite cyclic group regarded as a
subgroup of C*. As with the previous chapter, this is a compendium of further

results and observations, recorded with a view to subsequent development.

Recall that for any (H,h) € el(A,G), S§, : B(A,G) — C is the
ring homomorphism given for any (V,v) € ch(A,G) by S§,([A.G/V]) =
> ogvca,a<ev 'v(R). Also the injectivity of the product map [Ty pepaac) Stn
B(A,G) — Il pyegeiac) C implies that two elements z and y of B(A,G) are
equal if and only if S§ ,(z) = S§ ,(y) for all (H, h) € el(A,G).

Let R be a unital subring of S. We write gS to imply that we are regarding S
as an R—module. We have Z < B(G) < B(A, G) via the embeddings 1 + [G/G],
[G/V] — [A.G/V]. So for instance if we write p(g)B(A4, G) this means that we
are regarding B(A, G) as a B(G)—module.

Remark 9.1 ZB(G), B(G)B(G), ZB(A,G), B(g)B(A, G), B(A,G)B(A, G) are all

Noetherian modules but not Artinian.

Proof: Since both B(G) and B(A, G) are finite over Z, the results follow because

Z is a Noetherian but not Artinian (as a ring, or equivalently as a module over

95
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itself).
(]

Remark 9.2 The only nilpotent element of B(A,G) is 0. So, the nilradical of
the ring B(A, G) is the 0 ideal.

Proof: Let z € B(A,G) be a nilpotent element. Then z" = 0 for some natural

number n. We know from 5.1 that
= Z Sg‘h(a:)efl’h.
(H,h)egel(A,G)
Then it follows from z™ = 0 that

0= Z (Sg,h(x))neg,h

(H,h)egel(A,G)

which implies S§ ,(z) = 0 for all (H, h) € el(A, G) because S ,(z) is a complex
number for any (H, h) € el(A, G). Hence, z = 0.

Remark 9.3 The Jacobson radical of B(A,G) is the 0 ideal.

Proof: Let R < S be a ring extension of commutative rings. Then from
7.4(Maximality) it is clear that J(R) = RN J(S) where for any ring T, J(T)
denotes the Jacobson radical of the ring T. Let D be as in chapter 7. Using
the integrality of the ring extension DB(A,G) < H( Hhegelac) D we conclude
that J(DB(A,G)) = 0 because J(D) = 0. Hence, J(B(A,G)) = 0 because
B(A,G) < DB(A,G) is an integral extension.

O

Remark 9.4 If x € B(A,G) is a zero divisor, then Sg’h(w) = 0 for some
(H,h) € el(A,G). Hence the zero divisors of B(A,G) belong to the union of
the minimal prime ideals of B(A, G).
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Proof: Let z be a nonzero zero divisor of B(A, G). Then there is a nonzero y
in B(A,G) such that zy = 0. Now using (see 5.1)

G G
= Z Sun(@)egn, ¥ = Z Sg,h(y)eg,h
(H,h)Ecel(AG) (Hh)Egel(AG)

we see from zy = 0 that S§ ,(z)SG ,(y) = 0 for all (H,h) € el(A,G). Since y is
nonzero, the result follows.
O

Remark 9.5 Any ring homomorphism ¢ : B(A,G) — C is of the form Sg,h for
some (H,h) € el(A, Q).

Proof: The map ¥ extends by C—linear extension to a C—algebra map from
CB(A4,G) to C. So the result follows from 4.11 for which we referred [1]. The

same result appears also in [9)].

O

Remark 9.6 An element x € B(A, G) belongs to B(G) if and only if SG ,(z) =
S5 1(x) for all (H,h) € el(A,G).

Proof: See [1].
O

Remark 9.7 Let ¢ : B(A,G) — B(A,G) be a ring homomorphism. Then for
any (H,h) € el(A,G) there exists a (K, k) € el(A, G) such that S5, 0¢ = S§ .
Hence any ring endomorphism ¢ of B(A,G) induces a map ¥ el(A, @) —
el(A,G) given by the condition: S§ , 09 = Sg((H’h)) for all (H,h) € el(A,G).

Proof: It is obvious since any ring homomorphism from B(A, G) to C is of the
form Sf ,, for some (H, h) € el(4,G).

O

Let G\ el(A, G) denote the set of G—orbit representatives of the G—set el(4, G).

By the previous remark any ring endomorphism of B(A, G) induces a map from
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G\ el(A,G) to G\ el(A,G). However, the converse may not be true since given
any map ¥ : G \el(A,G) — G\ el(A,G) the image of the map ¢ is in general
belongs to CB(A4, G).

Remark 9.8 Let ¢ : G\ el(A,G) — G\ el(A,G) be any map. Define ¥ :
CB(A,G) — CB(A,G) by the condition: S§, o9 = Sg((Hh)) for oll (H,h) €
el(A,G). Then ) is a ring homomorphism.

Proof: Take any (H,h) € el(A,G). Then for any z,y € B(4,G)
G G G G
SH.h(¢($ + y)) = Szﬁ((H,h)) (‘/B + y) = S&((H,h)) (ZL‘) + Sz[z((H,h)) (y)

= SEa(¥(@)) + S (W (y)) = SEAW(2) + ¥(y)).

Since it is true for all (H, k) € el(4, G), ¥(z +y) = ¥(x) + ¥(y). Similar calcu-
lations shows that ¥(zy) = ¥ (x)¥(y).

d

The previous two remarks imply that there are finitely many (at most |G \
el(A, G)|) ring endomorphisms of B(A,G).

Theorem 9.9 Let ¢ : B(A,G) — B(A, G) be a ring homomorphism. Then 1 is
injective if and only if it is surjective. In fact, it is almost true also for Z—module
endomorphisms of B(A,G). If ¢ : B(A,G) — B(A,G) 1is a surjective Z—module

homomorphism, then v is injective.

Proof: (=) Suppose 9 is injective. Since there are finitely many ring en-
domorphisms of B(A,G), not all of 1,42, ...,4", ... can be distinct. So there
are natural numbers ni,no such that ¥™ = ™. To show that v is surjec-
tive, take any z € B(A,G). Then ¢y™(z) = ¢¥™(z) implying by the injectiv-
ity of v that ¥™~'(z) = ¥™ !(z). Using injectivity of ¢ inductively we get
z = Yp™(z) = Y™ Y(z)). So ¢ is surjective.

(<) Suppose ¢ is surjective. Since B(A,G) is Noetherian (as both Z—module
and B(A,G)—module), the chain Kery C Kery? C ...Kery™ C ... cannot be
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infinite. So there is a natural number n such that Kery" = Kery™l. We
show that Kery™ ! = Kery™. Let z € Kery™ Then by the surjectivity of
1, there is a y € B(A,G) such that ¥(y) = z. Then ¥""!(y) = ¥"(z) and
so y € Kery™! = Kery™ implying that ¥ 1(z) = ¥ 1(4(y)) = ¥™(y). So
z € Kery™ !, and hence Kery™ ! = Kery™. Proceeding in this way we can
show that Kery? = Keriy. To show that 1 is injective, take any z € Kery.
Then since 1 is surjective, there is a t € B(A, G) such that z = ¢(¢). Now from
¥(2) = ¥*(t) it follows that t € Kery? = Kery and so 2z = (t) = 0. Thus ¥ is
injective.

g

Remark 9.10 B(A,G) has no minimal ideals.

Proof: It is trivial because Z is embeddable in B(A, G).
O

Lastly we show below that we can extend some maps from B(G) to B(A,G).
The following result is immediate from 8.1. We give an alternative proof that does

not require the classification of the species of the monomial Burnside algebras.

Remark 9.11 Let K be an algebraically closed field. Then any ring homomor-
phism ¢ : B(G) — K can be extended to a ring homomorphism ¥: B(4,G) — K.

Proof: Let 9 : B(G) — K be a ring homomorphism which is nonzero (otherwise
the result is trivial). Then B(G)/Kery is a subring of K, and so it is an integral
domain. Put P = Kery which is a prime ideal of B(G). Let S = B(G) — P.
Then S is a proper multiplicative subset of both B(G) and B(A4, G). We consider
the ring of fractions of B(G) and B(A, G) with respect to S. For notations and
details about the ring of fractions of commutative rings see chapter 7. So now we
have two new rings B(G)p and S7!B(4,G).

Define ¢, : B(G)p — K as 91(2) = ¥(a)y(s)”" for all ¢ € B(G)p. It can be
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checked easily that 1; is a ring homomorphism. Now Kerw; is a proper ideal
of B(G)p, and so it is contained in a maximal ideal of B(G)p. However B(G)p
is a local ring with its unique maximal ideal PZ. Hence, Kery; C PZ. On the

other hand, if ¢ € P% then there is a b € P and t € S such that S = %’ and

so ¥1(2) = 11(2) implying that ¥(b)y(t)~! = ¢(a)¥(s)™L. But b € P = Kery
gives that ¢ € Keryy = PP. Hence, PP = Keryy. As a result, B(G)p/P¥ =
B(G)p/Keriy, is a field.

Note that B(G)p < S~'B(A, G) is an integral ring extension. Also Kery; = PF
is a maximal ideal of B(G)p. Then by 7.4(Lying Over) there is a maximal ideal
a of ST1B(A, G) such that Kery; = PP = an B(G)p.

Define ¢ : B(G)p/P? — S7'B(A,G)/a as ¢(2 + PF) = ¢ +afor all & + PF ¢
B(G)p/PE. Then from PE = anB(G)pit follows that ¢ is well-defined, and it can
be checked that ¢ is a ring monomorphism. Hence, B(G)p/PP < S~'B(A,G)/a
is a field extension. Moreover it must be an algebraic field extension because
B(G)p < S'B(A, G) is an integral ring extension.

Define 5 : B(G)p/PF — K as 95(2 + PF) = ¢1(2) for all £+ PF € B(G)p/PE.
It is a well-known fact from the field theory that any ring homomorphism from a
field IF to an algebraically closed field K can be extended to a ring homomorphism
from F’ to K if F < [’ is an algebraic field extension.

So, there is a ring homomorphism 3 : S7!B(A, G)/a — K extending the ring
homomorphism 9, : B(G)p/P? — K.

Define ¢ : ST'B(A,G) — K as 94(%) = ¢3(£ +a) for all £ € S™'B(A,G). It is
clear that ¢4 is a ring homomorphism.

Define 95 : B(A,G) — K as 95(z) = ¢4(¥) for all z € B(A,G). It can checked

that ¢ = v is a ring homomorphism extending .
O

By the extension procedure given in the last proof we can extend the ring homo-
morphisms 5§ : B(G) — Z < C, S§([S]) = |S*] to ring homomorphisms from
B(A,G) to C. For example, by using the above procedure if we extend SG we get

Sg,h where h € H is arbitrary, as we already know from 8.1.
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