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ABSTRACT

PARALLEL HARDWARE AND SOFTWARE
IMPLEMENTATIONS FOR ELECTROMAGNETIC

COMPUTATIONS

Ali Rıza Bozbulut

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Levent Gürel

September 2005

Multilevel fast multipole algorithm (MLFMA) is an accurate frequency-

domain electromagnetics solver that reduces the computational complexity and

memory requirement significantly. Despite the advantages of the MLFMA, the

maximum size of an electromagnetic problem that can be solved on a single pro-

cessor computer is still limited by the hardware resources of the system, i.e.,

memory and processor speed. In order to go beyond the hardware limitations

of single processor systems, parallelization of the MLFMA, which is not a trivial

task, is suggested. This process requires the parallel implementations of both

hardware and software. For this purpose, we constructed our own parallel com-

puter clusters and parallelized our MLFMA program by using message-passing

paradigm to solve electromagnetics problems. In order to balance the work load

and memory requirement over the processors of multiprocessors systems, efficient

load balancing techniques and algorithms are included in this parallel code. As a

result, we can solve large-scale electromagnetics problems accurately and rapidly

with parallel MLFMA solver on parallel clusters.

Keywords: Parallelization, Load Balancing, Partitioning, Optimization,

Parallel Computer Cluster.
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ÖZET

ELEKTROMANYETİK HESAPLAMALARI İÇİN
PARALEL DONANIM VE YAZILIM UYGULAMALARI

Ali Rıza Bozbulut

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Levent Gürel

Eylül 2005

Çok seviyeli hızlı cok kutup yötemi (ÇSHÇY) frekans alanında hassas sonuçlar

veren bir elektromanyetik çözücüsüdür; bu çözücü hesapsal karmaşıklığı ve bellek

gereksinimi oldukça azaltmıştır. ÇSHÇY’nin tüm bu yararlarına karşın, tek

işlemcili bilgisayarların donanım kaynakları, örneğin bellek miktarı ve işlemci

hızı, çözülebilen elektromanyetik problemlerin büyüklüğünü kısıtlamaktadır.

Tek işlemcili sistemlerin bu kısıtlamalarını aşabilmek için, ÇSHÇY’nin par-

alelleştirilmesi önerilmiştir. ÇSHÇY’nin paralelleştirilmesi kolay bir işlem

değildir, bu işlemin yapılabilmesi için paralel donanım ve yazılım alanında yoğun

emek ve deneyim gerekmektedir. Elektromanyetik problemleri paralel ortamda

çözebilmek icin kendi paralel bilgisayar kümemizi kurduk ve ÇSHÇY kodumuzu

paralelleştirdik. Paralel bilgisayarlar üzerindeki iş yükünü ve bellek kullanımını

dengeleyen verimli yük dengeleme algoritmalarını ve yöntemlerini paralel kodu-

muza yerleştirdik. Şu anda, paralel ÇSHÇY çözücümüzle gelişigüzel şekilli çok

büyük elektromanyetik problemleri paralel bilgisayar kümeleri üzerinde çok kısa

bir zamanda çözebilmekteyiz.

Anahtar sözcükler : Paralelleştirme, Yük Dengelemesi, Yük Dağıtımı,

Optimizasyon, Paralel Bilgisayar Kümesi.
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Chapter 1

Introduction

1.1 Motivation

Computational electromagnetics (CEM) deals with the solution of real-life elec-

tromagnetic problems in the computer simulation environment. In our studies,

we mainly focus on two types of of these real-life problems: Radiation problems

and scattering problems.

In radiation problems, we aim to model and simulate the electromagnetic

field radiation from a source which is placed on a conducting body e.g., far-field

radiation modeling of an antenna. On the other hand; in scattering problems,

our goal is focused on the simulation of scattered electromagnetic field, which is

transmitted from a conducting object after the illumination of this object with an

external electromagnetic radiation source e.g., radar cross section (RCS) profile

computations of a helicopter.

In order to solve these kinds of problems accurately, many researchers in

the field of computational electromagnetics use the method of moments (MoM).

MoM is based on the discretization of electromagnetic integral equation into a

matrix equation. The memory requirement and computational complexity of

this method are both in the order of O(N2), where N is number of unknowns;

1



CHAPTER 1. INTRODUCTION 2

because of such high computational complexity and memory requirement, the

size of the electromagnetic problem that is solvable with this method is very

limited. Even today’s computers can not satisfy the memory requirement of a

MoM based electromagnetic simulation program for the solution of a moderate

size electromagnetic problem which might have 50000–60000 unknowns—a MoM

based program needs at least 20 GBytes of memory to solve a 50000 unknowns

electromagnetic scattering problem.

In 1993, Vladimir Rokhlin proposed the fast multipole method (FMM) for

the solution of electromagnetic scattering problems in three dimensions (3-D) [1].

FMM reduces the complexity of matrix-vector computations and memory require-

ment to O(N1.5), where N is the number of unknowns. After the proposal of this

new method, multilevel versions of FMM were proposed [2]. Weng Cho Chew

introduced a new view to multilevel FMM by using translation, interpolation

and anterpolation (adjoint interpolation) concepts. This new multilevel FMM

approach was renamed as multilevel fast multipole algorithm (MLFMA). Chew

and his group reduced the computational complexity and memory requirement

of FMM to O(N log N) with the new MLFMA [3].

With this new algorithm, MLFMA, people started to solve large scattering

problems, which are not solvable with MoM. Despite the advantages of MLFMA

in terms of memory and computational time, people have to use very effective

supercomputers to solve large scattering problems, which correspond to the num-

ber of unknowns in the order of one million. Using the supercomputers for the

solution of large electromagnetic scattering problems is very costly; because of

that reason and to overcome the hardware limitations of supercomputers, re-

searchers shifted their studies into the parallelization process with message pass-

ing paradigm. In 2003, research group of Weng Cho Chew at University of Illinois

computed bistatic RCS of an aircraft, whose dimensions are not scaled down, at

8 GHz with the parallel implementation of MLFMA [4]. This computation corre-

sponds to the solution of 10.2 million unknown dense matrix equations and this

is a turning point in CEM area. After that achievement, many research groups in

CEM community started to work on parallel implementations of MLFMA. Our

group has been working on parallel MLFMA since 2001 and we have developed
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our own parallel MLFMA code in order to solve very large scattering problems on

Beowulf parallel PC clusters. Now, we can solve 1.3 million unknowns helicopter

problem with our parallel MLFMA code on a 32 nodes parallel PC cluster. Our

studies are still continuing and our aim is to achieve the computation capabil-

ity to solve much larger electromagnetic scattering problems, which might have

number of unknowns greater than 3–3.5 millions.

1.2 Parallel Computer Systems and

Parallelization Techniques

In this part, we present an overview of various architectural basics and concepts

which lay behind the parallel computer systems. These basics are detailed ac-

cording to two categories: We give the details of hardware structure choices that

most of parallel computers are based, and then, we introduce the programming

models in order to use these hardware structures effectively.

From hardware structure point of view, parallel computer platforms can be

classified with respect to the communicational model that they use. On the other

side, from software point of view, parallel systems can be grouped according to the

control structures in order to program them. So, in the following two subsections

we mainly focus on the these issues:

1. Communicational Model of Parallel Computer Systems

2. Control Structure of Parallel Computer Systems
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1.2.1 Communicational Model of Parallel Computer

Systems

Parallel computers need to exchange data during parallel tasks. There are two

primary ways to do this data exchange between parallel jobs: By using shared-

address-space systems or with the usage of sending messages between tasks. De-

pending on these mentioned communicational approaches, parallel computer plat-

forms can be grouped in two groups:

Shared-address-space platforms: This type of parallel systems have single

memory addressing space, which supports the access to the memory from

all the processors of the system. These parallel platforms are also sometimes

referred to as multiprocessors [5].

Message-passing platforms: In this approach, every processing unit or pro-

cessor of these platforms has its own address space for its memory. So,

none of the processing units can reach other processing units’ data directly.

Because of this reason, processing units send and receive messages between

themselves in order to do data exchange. Since these systems are mostly

based on the connection of separate single processor computers, they are

sometimes called as multicomputers [6].

Shared-Address-Space Platforms

Memory in these parallel computers might be common to all the processors or it

may be exclusive to each processor. If the time required to access memory address

on the system is equal for all processors, this shared-address parallel computer is

classified as uniform memory access (UMA) computer. On the other hand, if this

access duration changes from one processor to the another processor, this system

is categorized as non-uniform access (NUMA) parallel computer system. UMA

and NUMA architectures are depicted in the Fig. 1.1:



CHAPTER 1. INTRODUCTION 5

IN
T

E
R

C
O

N
N

E
C

T
IO

N
 N

E
T

W
O

R
K

(b)

PM

PM

…
…

…
…

…
…

…
…

…
…

…
…

…
…

PM

SHARED-ADDRESS -SPACE

IN
T

E
R

C
O

N
N

E
C

T
IO

N
 N

E
T

W
O

R
K

P M

P

P

M

M

(a)

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

P : PROCESSOR
M : MEMORY

Figure 1.1: Shared-address-space architecture models: (a) uniform-memory-
access multiprocessors system (UMA) model and (b) non-uniform-memory-access
multiprocessors system (NUMA) model

Programming in these systems is very attractive with respect to message-

passing multicomputers; because, the data is shared among all the processors.

Therefore, the programmer need not worry about how to update the data if there

is a change during the execution of parallel task in these systems. Generally,

shared address space computers are programmed using special parallel program-

ming languages, which are extensions of existing sequential languages; e.g. High

Performance Fortran 90 (HPF90) is derived from Fortran 90 in order to pro-

gram the multiprocessors in parallel with Fortran language. In addition to these

parallel languages, threads can be used for programming these platforms.

Despite these advantages in programming these systems, generally multicom-

puters are very expensive with respect to off-the-shelf single processor comput-

ers. Moreover, the development stages of these platforms take a lot of time

and therefore, these platforms are usually superseded by single processors, which
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have been regularly upgraded. For these reasons, message-passing multicomput-

ers have been more popular with respect to these systems in the last 20 years.

Nevertheless, Intel and AMD still produce processors for special computational

applications: Intel Itanium and Xeon processors, and AMD Opteron processor

based systems are recent examples of such systems; but, generally these processors

are not used in large scale multiprocessors systems. Researchers working in par-

allel processing choose to deploy these processors in small scale multiprocessors

and utilize them in the parallel message-passing multicomputer systems—these

small scale multiprocessors generally support two processors or four processors,

very few of them contain eight processors.

Message-Passing Platforms

Another approach to build a parallel processor hardware environment is to con-

nect the complete computers through an interconnection network, which is shown

in Fig. 1.2. These computer systems can be chosen from off-the-shelf processors

and computer components. Parallel Beowulf Cluster is the most popular example

of this type of parallel platforms.

INTERCONNECTION NETWORK

M

P

M

P

COMPUTERS

MESSAGES

LOCAL 
MEMORY

Figure 1.2: Message-passing multicomputer model

Beowulf clusters are generally built from ordinary ’off-the-shelf’ computers.

These computers are connected to each other using a network switch which sup-

ports fast ethernet or gigabit ethernet connections. Linux is the most exten-

sively used operating system on these clusters [7], because parallel programming
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libraries, such as message passing interface (MPI) [8] [9] and parallel virtual ma-

chine (PVM), are installed as default tools in Linux. Moreover, Linux file system

tools and servers make the installation of these clusters very easy and the biggest

advantage of Linux is that, especially for research groups, we do not need to pay

money in order to use it. On the other hand, Microsoft Windows 2000 based op-

erating systems, such as Microsoft Server 2003, can also be used as the operating

system in a Beowulf cluster. However, by experience, Microsoft’s operating sys-

tems’ performance decrease for more than eight computers connected in a cluster

connection manner.

1.2.2 Control Structure of Parallel Computer Systems

Processing units in parallel computer systems either work independently or pro-

cess their tasks under the supervision of a special control unit. Single instruction

stream, multiple data stream (SIMD) control architecture corresponds to the pre-

viously mentioned special supervision control over the processing units. In this

control approach, control unit sends the instructions to each unit of the system

and all units execute the same instruction synchronously. Today, Intel Pentium

Processors support this control architecture; actually, this control methodology

obtains very small scale parallelization inside the single processor architecture.

SIMD works properly on structured data computations; however, this method-

ology is not feasible for both shared-address space parallel computers and

message-passing multicomputer, because, these systems are composed of physi-

cally separate processing units. Multiple instruction stream, multiple data stream

(MIMD) approach was proposed in order to handle the control mechanism of such

parallel computing environments. In Fig. 1.3, these two control methodologies

are depicted:

MIMD model supports two programming techniques: Multiple program, mul-

tiple data (MPMD) and single program, multiple data (SPMD). In MPMD tech-

nique, each processor unit is able to execute a different program on different data;

e.g. a hybrid cluster, which is a cluster composed of computers with different
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PE : PROCESSING ELEMENT

CU : CONTROL UNIT

INTERCONNECTION
NETWORK

PE

+
CU

PE

+
CU

PE

Figure 1.3: Control architectures: (a) single instruction stream, multi-
ple data stream (SIMD) model and (b) multiple instruction stream, multi-
ple data stream (MIMD) model

processor architectures, such as 32 bit and 64 bit machines connected together;

different executables and programs, should be compiled for each architecture.

On the other hand, SPMD technique, a single code is compiled for all the pro-

cessors of the parallel system. However, by using if-else blocks with conditional

statements, we can assign different tasks to different processors; e.g. master-slave

parallel programming approach can be implemented with that programming tech-

nique by using conditional statements; we can separate the tasks of the master

processing unit from the tasks of the slave units’.

Another instruction model is the multiple instruction stream, single data

stream. In this model, different instructions are executed on the same data by

different processing units; e.g. pipelining approach.



CHAPTER 1. INTRODUCTION 9

1.3 Parallelization Basics and Concepts

During the improvement of our parallel MLFMA code, we continuously took

measurements to control the effects of our improvements and changes on the per-

formance of our parallel program. In these measurements, we looked at certain

metrics, which are used as common performance measurements in parallel pro-

cessing applications. In this part, brief information is presented on these parallel

measurement metrics in order to give some intuition before showing the perfor-

mance results of our parallel MLFMA code. In addition to these metrics, we

give some definitions of some basic parallel concepts for the aim of understanding

these metrics:

Processes are simultaneous tasks that can be executed by each parallel process-

ing unit—this processing unit generally refers to a processor in a parallel

platform. Parallelization’s main methodology for the solution of a prob-

lem is actually to divide the problem into smaller pieces, processes, and

then solve these pieces over connected processing units, which are placed in

either a shared address space parallel platform or a message-passing multi-

computer.

Execution time is the duration of the runtime of a program elapsed between

the beginning and the end of its execution on a computer system. The

execution time of a parallel program is denoted by Tp and the execution

time of sequential program which is run on a single processor computer is

denoted by Ts.

Overhead, or total parallel overhead of a parallel platform is the excess of

total time collectively spent by all processing units in a parallel system

with respect to the required time by the fastest known algorithm in order

to solve the same problem on a single processor computer. It is also named

as overhead function and it is denoted with T0:

T0 = pTp − Ts (1.1)
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where p is the number of processors in the parallel system; Tp and Ts are

parallel and sequential execution times respectively.

Overhead in parallel systems is mainly dependent on three factors:

1. Time durations when not all processing units are doing useful work or

computations and are waiting for other processors—this is also called

as idle time.

2. Extra computations which are done in parallel implementation of com-

putations; for instance recomputation of some constants on the pro-

cessing units of a parallel platform.

3. Communication time which is spent during the sending and receiving

of messages.

Granularity is defined as the size of computations between communication and

synchronization operations on message-passing multicomputers. It can be

summarized as the ratio of computation time to the communication time

during the execution of a parallel program.

computation / communication ratio =
tcomp

tcomm

, (1.2)

where tcomp is the computation time and tcomm is the communication time

In parallel systems, most of the time, our aim is to make granularity as big

as possible.

Speedup is the ratio of the time duration for the solution of a given problem on

a single processor computer to the time needed to solve the same problem

with p identical processors on a parallel platform. Speedup is denoted by

S and it is formulated as follows:

S =
Ts

Tp

, (1.3)

where Ts and Tp are the sequential and the parallel execution times, respec-

tively.

Maximum achievable speedup on parallel processor system with p number of

processor is p, if processors do not wait idle or communicate with each other.
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If the speedup of a parallel program is p, then this program is perfectly

parallelized. In real life, this situation does not happen frequently.

Sometimes, a speedup greater than p is observed in the parallelization of

a program; this extraordinary situation is named as superlinear speedup.

This phenomenon usually occurs if the computations performed by a serial

algorithm is greater than its parallel counter part or because of the hardware

features that put the serial implementation at a drawback.
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EXPERIENCED
 SPEEDUP

SUPERLINEAR
SPEEDUP

LIN
EA

R

S
PEE

D
U
P

S
P

E
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D
U

P
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Figure 1.4: Typical speedup curves

Efficiency is the metric of the fraction of time duration for which a processing

unit is usefully employed on the system. Actually, it is defined as the ratio

of speed up, S, to the number of processors, p, in a parallel platform. In

the parallelization of a program, our aim is to achieve efficiencies as close

to unity as possible.

Gain, or memory gain is the ratio of amount of memory needed to solve a

problem on a single processor system to the maximum amount of memory

needed by a single processing unit of the parallel system which deploys p

identical processors in order to solve the same problem. Gain is generally
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denoted by G:

G =
Ms

Mp

, (1.4)

where Ms and Mp are the amount of sequential and parallel memory re-

quirements, respectively.

Scalability is the ability of a parallel program to be executable in a larger hard-

ware environment with more processors, more dynamic memory, more stor-

age, etc., with a proportional increase in performance.

1.4 An Overview to the Parallelization of

MLFMA

As mentioned before, MoM discretizes the electromagnetic integral equation to a

matrix equation. This matrix in MoM is called as impedance matrix or Z matrix

and this matrix equation corresponds to a full dense matrix equation system. In

MLFMA methodology, we rewrite this full impedance matrix as the summation

of two matrices:

Z = Znear + Zfar, (1.5)

where Znear corresponds to near-field matrix elements of impedance matrix and

Zfar denotes the far-field components of this Z matrix—Near-field elements are

electromagnetically inducing currents which have a strong electromagnetic influ-

ence (interaction) between them; on the other hand, far-field elements correspond

to the electromagnetically induced currents on the same geometry whose electro-

magnetic interactions can be formulated by far-field approximations [10].

Despite the Z matrix being written as a summation of two matrices, these

two new matrices are not stored in the memory as sparse matrices. Memory

required for each component of these two matrices are computed carefully and the

elements of these matrices is stored in one dimensional arrays, because effective

memory usage is one of the most crucial part of our programming approach in

MLFMA. In addition to that, in MoM, whole Z matrix is filled with its elements
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before the matrix solution starts; however, in the MLFMA approach, just near-

field interactions on near-field elements (Znear) are computed before the matrix

solution begins. In our MLFMA program, we actually use iterative solvers in

order to solve this matrix equation, and far-field interactions in far-field elements

(Zfar) are computed dynamically in each iteration of the iterative solver.

Far-field interactions are computed very differently with respect to the near-

field interactions. In these calculations, far-field related induced currents are

grouped in clusters; moreover these clusters are also grouped. This clustering

strategy is used recursively and a tree structure is formed by this way. This tree

structure is called as MLFMA tree and electromagnetic computations over that

tree are done by special operations such as: interpolations, anterpolations and

translations [3] [11]. Because of these two different structured matrices (Znear

and Zfar) and electromagnetic computational approaches (near-field and far-field

computations), parallelization of MLFMA is not trivial. It certainly needs quite

a lot of effort and thinking in order to be parallelized.

We use a Beowulf PC cluster, which is relatively cheap and flexible for our

purposes, as parallel platform for our parallelization approach. Our sequential

MLFMA program was written in a non-standard Fortran 77 format, Digital For-

tran 77, and thus even the adaptation of the sequential version of MLFMA to

this new hardware backbone caused a lot of problems. After the adaptation of

the sequential program into our platform, we started to develop our own parallel

MLFMA code. In this parallelization process, we have written our code accord-

ing to SPMD methodology with the usage of MPI library for Fortran 77. We

tried different parallelization techniques. At the first stage we programmed the

parallel MLFMA according to master-slave programming approach and since we

do not have a parallel iterative solver, one of the nodes on the cluster was used

as a master of the other processors. This master node is the main computer of

the cluster and it does more work with respect to the other processors. After

the adaptation of a parallel iterative solver library into our parallel program,

the Portable, Extensible Toolkit for Scientific Computation (PETSc), all nodes

share the total work load of parallel MLFMA almost equally. The details of these

improvements and developments are given in the following chapters.



Chapter 2

Parallel Environments

As we mentioned earlier, we chose to use a Beowulf cluster [7] [12] as our hardware

backbone in order to improve our own parallel MLFMA program. For this aim,

we built our own message-passing multicomputer: Building such a system is not

a trivial process, but it certainly gives us a lot of advantages in our parallelization

efforts:

• By building our own cluster, we freely develop our parallel MLFMA; we do

not have a dependence to other sources and this fastens our studies after

we get familiar with the parallel system.

• When you have your own cluster, you can have full control over the software

and hardware structure of your cluster. Therefore, you have a chance to

do and experiments in order to find an optimum hardware and software

structure for your own needs.

Depending on these reasons, we did several changes and made upgrades in

our cluster system. The clusters that we worked on include:

14
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1. 32-bit homogeneous PC cluster.

2. 32-bit and 64-bit hybrid cluster.

3. 64-bit homogeneous multiprocessor cluster—proposed.

We also did measurements and program development studies on TUBITAK’s

ULAKBIM high performance cluster.

2.1 32-Bit Intel Pentium IV Cluster

The first cluster that we built is the 32-bit Intel Pentium IV cluster. In the very

first stage, it just contained three computers and in time this number went up

to nine. As our improvements on parallel MLFMA progressed, the speed and

performance of that cluster become the bottleneck. Nevertheless, we still use this

cluster architecture and we are solving many problems with this system working

at its limits. Today, this cluster consists of four computers since we have taken out

some nodes for special purposes, all having identical Intel Prescott Pentium IV

2.8 GHz processors and 2 GBytes of memory installed on each of them. We use a

non-blocking fast ethernet based network switch to connect these computers. This

cluster is completely based on the Beowulf cluster system in terms of hardware

and software structure. Thus, by looking at this cluster, we can understand the

Beowulf cluster topology in both hardware and software:

2.1.1 Hardware Structure of 32-Bit Intel Pentium IV

Cluster

Beowulf clusters are the most extensively used parallel computers. As a message-

passing multicomputer, in the Beowulf clusters, separate computers send mes-

sages with the aid of a network environment. Fast ethernet or gigabit ethernet

switches are used for interconnection purposes. In our cluster we used 3com’s 48
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port non-blocking fast ethernet superstack network switch. Hardware structure

of our cluster is schematically shown in Fig. 2.1:

NODES

WORLDLY NODE
 (HOST)

NETWORK SWITCH

NETWORK 
CONNECTIONS

Figure 2.1: Typical Beowulf system

Worldly node shown in Fig. 2.1 is actually the host that is connected to the

outside internet connection or local area network. Therefore to reach the Beowulf

cluster, first you should connect to the worldly node and then connect to the other

nodes of the cluster.

In our cluster, we compiled the software needed to run programs on the system

with the best compiler optimizations which are advised by processor manufactur-

ers.
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2.1.2 Software Structure of 32-Bit Intel Pentium IV

Cluster

In almost all Beowulf clusters, Linux based operating systems are installed. Linux

supports many tools about network and cluster technology as default features in

itself. Network information service (NIS) and network file system (NFS) [13] are

the most important features of Linux operating system in order to install and

operate in the parallel environment, the Beowulf parallel multicomputer.

LINUX OPERATING SYSTEM

HOMES
(PHYSICALLY STORED )

NFS AND NIS SERVERS

NFS AND NIS
CLIENTS

LINUX OPERATING SYSTEM ON 
NODE 1

HOMES ON NODE 1
(MOUNTED)

NFS AND NIS
CLIENTS

LINUX OPERATING SYSTEM ON 
NODE N

HOMES ON NODE N
(MOUNTED)

WORLDLY NODE (HOST)

NODE 1 NODE N

NODES

NETWORK

Figure 2.2: File system structure of a Beowulf cluster

As seen in Fig. 2.2, in a Beowulf cluster, users’ directories are stored in the

host. Despite all home directories being stored in the worldly node, other nodes

which are connected to the worldly node can reach users’ directories too, with

the aid of NFS—this reaching is called as mounting in Linux and Unix operating

systems terminology. The other service, NIS, actually supports the connection

between the nodes of the cluster without asking for any permission; thus a user is

able to directly connect from one node to another if he has an access to the worldly
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node. For this reason, security of the connection from the outside world to the

worldly node should be well configured; for instance many system administrators

install firewalls to secure the connection of host to the external network.

For the execution of a message-passing parallel program, this file system archi-

tecture is a must but it is not solely enough to build up the parallel environment.

In addition to that file structure, we need to install parallel environment pro-

grams to our system: message passing interface (MPI) implementation, scientific

sequential and parallel libraries and compilers.

Message passing interface and compilers are a must, in order to code and run

basic parallel applications. In our system, we use the local area multicomputer

MPI (LAM/MPI) implementation as the MPI interface and Intel Fortran and

C/C++ compilers are installed for compilation purposes. However, these soft-

ware tools are not enough to parallelize and to run our parallel MLFMA program;

we use certain parallel and scientific libraries, which are used extensively by the

scientific computations community. These libraries make our life easier in order

to program and develop applications and modules in our parallel program. An-

other advantage of scientific libraries are that these libraries are written by very

professional groups and these groups give strong support in the usage of these

libraries. Also, these libraries are provided for the usage after numerous trials

and thus, most of the time, these libraries routines are more reliable for certain

tasks than the routines that we write for the same application. In our parallel

program, we used the following parallel libraries:

Basic linear algebra subroutines (BLAS) —we use these subroutines in ba-

sic matrix-vector and matrix-matrix operations.

Linear algebra package (LAPACK) is actually based on BLAS, and it sup-

ports more complicated linear algebra operations such as LU factorization

[14] and etc.

AMOS library is a portable package for Bessel functions of a complex argument

and nonnegative order.
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Portable, extensible toolkit for scientific computation (PETSc) is used

as a parallel iterative solver and preconditioner preparation tool in our

parallel program.

All these tools are used in order to generate a parallel MLFMA executable:

ifort (INTEL FORTRAN 

COMPILER)

icc (INTEL C/C++ 
COMPILER)

PARALLEL

MLFMA 
CODE

LAM/MPI ENVIRONMENT

PARALLEL
MLFMA

EXECUTABLE

MATH LIBRARIES
PETSc 

TOOLKIT

mpicc

mpif77

Figure 2.3: Generating a parallel MLFMA executable

After we get a parallel executable, we run our parallel program with the aid

of LAM/MPI. LAM/MPI supports SPMD approach and it actually sends the

parallel executable, which is compiled on host, to all other nodes. Then, when

program execution starts, each processor does the task that is predefined for itself

in this single executable code:

During the installation and especially in usage of the parallel libraries and

interfaces, we have faced some problems. This situation occurs occasionally;

because, we work on the cutting edge in the scientific problem solving. Thus we

are the firsts to face these new problems in our country. Especially, the problems

that we experienced are mainly based on the compatibility problems between

parallel libraries, such as PETSc and Scalable LAPACK (ScaLAPACK)—parallel

version of LAPACK—, and parallel implementations, LAM/MPI in our case.

In spite of these problems, we worked continuously and have achieved a stable

parallel software environment which give us the chance to improve and run our
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NODES

WORLDLY NODE

 (HOST)

NETWORK SWITCH

PARALLEL EXECUTABLE

COPY OF PARALLEL 
EXECUTABLE

LAM/MPI

Figure 2.4: Run of a parallel program on homogenous Beowulf cluster

parallel programs.

2.2 Hybrid 32-Bit Intel Pentium IV and 64-Bit

Intel Itanium II Cluster

While beginning our parallel programming approach, we assumed that we might

assign some of the hard tasks of the parallel program on a special node of the

cluster, which has more computational power and memory capacity. For this

purpose, we decided to connect our newly bought multiprocessor system, which

is based on 64-Bit Intel Itanium II processor architecture, to our homogeneous

32-Bit Intel Pentium IV cluster. This new multiprocessor system has two 64-

Bit Intel Itanium II processors, which operates at 1.5 GHz and 24 GBytes of

memory. Therefore, as it is mentioned before, this huge memory capacity and

computational power might be successfully used in a master-slave approach in

our continuous program development effort.

64-bit architecture of Intel Itanium is completely different from the normal 32-

bit Intel Pentium based processors. As a result, assembly instruction set of this
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new processor also differs from the instruction set of 32-Bit Intel Pentium based

processors; so, Itanium multiprocessors need its own executable which is compiled

specially for its instruction set. Thankfully, Intel company developed a special

version of compilers which we used for generating the executable for our 32-bit

machines; Intel Fortran and C/C++ compilers for the Itanium architecture are

freely available for Linux operating environment and we installed those mentioned

compilers on our multiprocessors system.

Difference between the architectures of processors that we deployed in our

cluster system shifts our programming strategy to MPMD programming tech-

nique:

32-BIT NODES

64-BIT WORLDLY 
NODE (MAIN HOST)

PARALLEL EXECUTABLE
FOR 32-BIT PROCESSOR

COPY OF PARALLEL 

EXECUTABLE FOR
32-BIT PROCESSOR

LAM/MPI COMPILED FOR 
64-BIT PROCESSOR

PARALLEL EXECUTABLE

FOR 64-BIT PROCESSOR

32-BIT SLAVE 
HOST

LAM/MPI COMPILED FOR 
32-BIT PROCESSOR

NETWORK SWITCH

Figure 2.5: Execution of a parallel program on hybrid Beowulf cluster

As it can be seen in Fig. 2.5, we generate two different executables from the

same parallel MLFMA code for two different processor architectures. We build

the executable for Itanium machine on itself. On the other hand, we specially

allocate one 32-bit node of parallel cluster in order to compile programs and to

store parallel and sequential system tools for the rest of the 32-bit nodes. De-

pending on this methodology, parallel executables for 32-Bit nodes are generated

on the mentioned special 32-bit node of the cluster, which can be named as a

slave host—shown in Fig. 2.5.

In this new hardware architecture home directories are stored on the new
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64-bit machine and users’ homes are mounted by the nodes from these multi-

processors. Nevertheless, as explained before, 32-bit machines need some system

programs, which are compiled for their architecture and these system programs

are stored on the 32-bit slave host. Other nodes of the cluster mount these system

programs, which are compatible for 32-bit systems from this special node. All

those mounting operations are done with the aid of NFS.

64-BIT MAIN HOST 32-BIT SLAVE HOST

NODE 1 NODE N

LIBRARIES

COMPILERS

PARALLEL APPLICATIONS

FOR 64-BIT PROCESSOR

HOME DIRECTORIES

HOME DIRECTORIES

HOME DIRECTORIES

HOME DIRECTORIES

LIBRARIES

COMPILERS

PARALLEL APPLICATIONS

FOR 32-BIT PROCESSOR

LIBRARIES

COMPILERS

PARALLEL APPLICATIONS

FOR 32-BIT PROCESSOR

LIBRARIES

COMPILERS

PARALLEL APPLICATIONS

FOR 32-BIT PROCESSOR

HOME 

MOUNTING

SYSTEM

PROGRAMS

MOUNTING

NODES

        

Figure 2.6: Mountings in the hybrid cluster

In the software topology, as depicted in Fig. 2.6, there are a lot of mounting

operations done between computers. Since all these mountings use the network

of the cluster, the system’s overall network performance degrades. In addition,

compiling different programs on different architectures and servers working on

host computers, decrease the performance of the hosts. Moreover, as we continue

to improve our parallel code, we experience that we do not need such a special

computer for the tasks of our program. Therefore, we took out our 64-Bit Ita-

nium multiprocessors from the cluster and returned to our homogeneous Beowulf

architecture.
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2.3 Proposed 64-Bit AMD Opteron Cluster

In the beginning of 2004, Advanced Micro Devices (AMD) released the new 64-bit

processors for personal usage and computational purposes. These new processors

support both 64-bit and 32-bit assembly instruction sets; therefore, AMD’s pro-

cessors give a very huge flexibility in many applications. In addition to this

flexibility, Linux operating system developers always have sympathy for AMD

processors; because Intel generally supports and advices to use Microsoft’s oper-

ating system products on its products—Microsoft has been the natural rival of

Linux since the beginning of Linux’s first release. As a result, Linux developers

released 64-Bit Linux operating systems for these new processors in a very short

amount of time; so, AMD’s cheap and powerful new processors serve as a good

choice for Beowulf cluster computing solutions.

AMD produces many different versions of these new processors, but the most

interesting and suitable processor for scientific computing is its Opteron archi-

tecture. AMD Opteron is specially designed for server applications and heavy

scientific computing. It comes in three different models 1-way, 2-way and 8-way.

1-way model can only be used on single processor mainboards, 2-way can be used

on single processor and double processors systems and 8-way can be used in a

system which can support 8 AMD Opteron processors. In Turkey, only the 2-way

version is sold. We obtained many positive feedbacks about this architecture and

decided to build one such Opteron based system and compare its performance

with the other computers that we have. Thus, we would be able to plan how to

build our future cluster systems and decide which hardware components should

be chosen in order to get optimum performance in our parallel program develop-

ment efforts. For this purpose, we bought a 2-way AMD Opteron multiprocessors

system, whose processors operate at 1.8 GHz, and 4 GBytes of memory installed

in it. The system has a NUMA communication architecture; 2 GBytes of RAM

is directly addressed by one processor and the remaining 2 Gbytes of memory

is addressed by the other processor. Thus, when a sequential application needs

memory greater than 2 GBytes, its execution speed decreases a little bit because

of this NUMA architecture.
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After buying this new system, we used the sequential version of MLFMA

program as a benchmark tool and we compared performance of the computer

systems in different parts of the sequential MLFMA program. The following

hardware architectures are compared:

• Intel Prescott Pentium IV, 2.8 GHz single processor computer with 2

GBytes of memory

• AMD Opteron 244, 1.8 GHz dual multiprocessors computer with 4 GBytes

of memory

• Intel Itanium II, 1.5 GHz dual multiprocessors computer with 24 GBytes

of memory

In order to compare AMD Opteron multiprocessors with the other systems

that we have, we especially focused on the performances of these machines in the

two important parts of MLFMA: nearfield matrix Znear filling module and matrix-

vector multiplication module in iterative conjugate gradient stabilized (CGS)

solver. These performance plots are given in Fig. 2.7 and Fig. 2.8, respectively:
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Figure 2.7: Performance comparison of different processors with pre-solution part
of sequential MLFMA
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Figure 2.8: Performance comparison of different processors with matrix-vector
multiplication in the iterative solver part of sequential MLFMA

These benchmark plots are obtained for the scattering solution of sphere at

6 GHz and this problem corresponds to the solution of a 132003 unknown full

dense matrix. As can be seen from the first plot, Fig. 2.7, nearfield matrix

filling performance of Itanium machine is the best; despite this, in the matrix-

vector multiplications, AMD Opteron machine gives the best timing results. Ac-

tually, matrix-vector performance of machines is more important with respect to

nearfield matrix filling operation; because, this multiplication is done many times

in the iterative solution part of both sequential and parallel MLFMA. Moreover,

as the problem size grows—number of unknowns increase, iteration numbers also

increase, whereas only one nearfield matrix filling operation is done for the same

problem. Therefore, if we want to solve larger problems, we have to choose a

processor which performs better with respect to others in matrix-vector multipli-

cations. As a result, we choose AMD Opteron dual multiprocessors as the nodes

of our proposed cluster, which is going to be built in shortly.
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2.4 ULAKBIM Cluster

Our cluster at Bilkent consists of four nodes. Despite this small cluster, our paral-

lel program has been improved a lot by our group since 2002. In this improvement

process, main goal is to build a parallel program which is scalable. For this reason,

we wanted to test our program on a bigger cluster which has more processors.

Fortunately, TUBITAK built a high performance cluster at ULAKBIM which has

128 nodes and we obtained access to this system and the system administrators

of this cluster cooperated with us for our scalability measurements.

This cluster at ULAKBIM has 128 single processor machines which have Intel

Celeron Pentium IV processor operating at 2.6 GHz and 1 GBytes of memory

installed on all machines. We did certain parallel profiling measurements on

those machines and from these measurements, we observed that the network

speed of the cluster is more faster than ours. Since, we plan to build a new

parallel computer and we had to make decisions on hardware components of this

proposed cluster, we used our parallel program as a profiling tool in order to

test and compare the speed of network connection at ULAKBIM’s cluster, on

our cluster and on the two processors of dual AMD Opteron multiprocessors.

To achieve this aim, we did measurements on two processors of ULAKBIM’s

cluster and our cluster. In addition to that, we measured the two processor

AMD Opteron by using our parallel MLFMA program. In Figs. 2.9-2.10, these

benchmarking results are plotted:
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Figure 2.9: Performance comparison of different processors with pre-solution part
of parallel MLFMA
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From the figures, it can be easily observed that the performance of dual

AMD multiprocessors is the best for matrix-vector multiplications. The red and

gray parts on Fig. 2.10 actually shows the communications between processors

in matrix-vector multiplications—red corresponds to the sending and receiving

electromagnetic data, mainly translations; gray denotes idle time. As you can

see from the graph, network performance of ULAKBIM is much better than our

cluster’s network connectivity, but it is still not as good as our AMD Opteron

system. We expected this situation before we did our measurements; because

AMD Opteron processors do their communication on the same motherboard; no

network interface is used during these communications. On the other hand, in

our cluster and at ULAKBIM, processors communicate through an ethernet based

network. Actually ULAKBIM has a really fast ethernet system since they use

gigabit ethernet interfaces and network switches in order to connect their com-

puters. In spite of having a 100 Mbit/sec fast ethernet connection, here in our

lab, it is ten times slower than ULAKBIM’s gigabit connection. Depending on

these measurements, we plan to use a gigabit network or a much faster network

in our future cluster.



Chapter 3

Parallelization of MLFMA

3.1 Adaptation of MLFMA into Parallel System

Before starting to parallelize our MLFMA code, firstly, we tried to adapt and run

the original sequential version of the program on our message-passing multicom-

puter system. Our original program is written in DIGITAL FORTRAN 77, which

supports Cray pointers for the sake of dynamic memory allocation (DMA). These

dynamically allocated memory structures increase the efficiency of memory usage.

Nevertheless, the default FORTRAN 77 compiler, g77, in Linux systems does not

support this feature; therefore, we could not compile the sequential MLFMA code

directly and we could not run it on our Linux based parallel computer system.

For the solution of this problem, we primarily focused on the usage of open

source software solutions and compilers, which are installed as default features

in Linux based operating systems; we realized that open source Fortran and

C/C++ compilers, g77 [15] and gcc, are compatible with each other and Fortran

programs are able to call functions or features of C/C++ language by the aid

of this compatibility. Then, we wrote small C subroutines which implements

malloc (memory allocation) feature of this language and used them in Fortran

trial programs. These trials were successful, and then we used these C subroutine

in our sequential MLFMA code and it worked well. In spite of all these successful

29
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trials, this new feature of C certainly complicates the array structure of our

program. In addition, it also complicates the readability of our program. As a

result of these facts, we started to look for another solution for this compilation

problem.

At this point, we found freely available Intel Linux FORTRAN compiler, which

supports many extensions in Fortran semantics and has a backward compatibility

with the old FORTRAN distributions. We installed this free compiler in our sys-

tem and compiled our parallel applications, such as MPI and parallel-sequential

libraries, with that compiler. We followed that way, because we do not want to

face any compatibility problems because of different compilations of these system

programs. After all these, we compiled the sequential version of MLFMA suc-

cessfully and executed it on a single node of the parallel cluster. Then, we put

this sequential version of MLFMA as a single parallel process in a simple parallel

program and executed it as such and we realized that we could start to parallelize

our code. Following chapters are going to give the details of this parallelization

process.

3.2 Partitioning Techniques

Message-passing parallelization paradigm is actually based on partitioning of data

structures among processors. Most of the time, processes do similar tasks on those

partitioned data and depending on the type of the problem or computation, they

interchange their partitioned or processed data. These partitioned data structures

are generally arrays or array-based data structures. One-dimensional arrays and

two dimensional arrays are the most commonly used array architectures. For

the sake of parallelization, these array structures are firstly partitioned; then,

these partitions are mapped onto the processors depending on the criteria of

the parallelization approach e.g., minimizing communication, equalizing memory

usage, and etc. Arrays can be partitioned as shown in Fig. 3.1:
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(a) (b)

COLUMN-WISE 
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ROW-WISE DISTRIBUTION 4 x 6 GRID
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Figure 3.1: (a) One-dimensional partitioning of an array (b) two-dimensional
partitioning of an array

In Fig. 3.1, common array partitioning methodologies are shown. These par-

titioned arrays can be distributed among the processor statically or dynamically,

depending on the application or problem. We used statical mapping of these ar-

rays on our processors, because, we know the sizes of the arrays that we need for

our electromagnetic data and we try to minimize the communication over proces-

sors. For these reasons, in our program, array load of each cluster is determined

in the beginning of the code.

In our MLFMA code, all arrays related with the matrix information of our

problem, Znear and Zfar matrices, which need a lot of memory in order to be

stored, are one-dimensional arrays. Therefore , partitioning of these arrays among

processors is not trivial; because of that reason, we started our parallelization

efforts from the relatively easily parallelized parts of our program.
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3.3 Partitioning in Parallel MLFMA

We mentioned that our strategy for the parallelization of MLFMA code is to

parallelize relatively simple parts at the beginning; then, we decided to move on

to more complex parts of the program. According to our point of view, the first

parallelized part of MLFMA is the filling of preconditioner matrix [16], which

is used in the iterative CGS solver part of the program. After parallelization

of this part, we realized that the partitioning applied on the data structure of

preconditioner can be used to partition the whole tree structure of MLFMA

among the processors.

3.3.1 Partitioning of Block Diagonal Preconditioner

In the iterative solution techniques, preconditioners are used in order to get a

better solvable matrix equation system. Preconditioners are actually matrices,

which are very similar to the inverse of the original matrix. In our MLFMA

code, the preconditioner, M, is extracted from the near-field matrix, Znear, of

our matrix system and then it is applied to the matrix system:

M
−1

.Z.x = M
−1

.y (3.1)

where x and y are the unknown and excitation vectors, respectively.

As stated before, M is extracted from Znear. Actually, M contains the most

powerful terms of Znear matrix, which are the self interaction terms of the in-

duced electromagnetic currents grouped in the last level clusters of MLFMA tree

structure—self interactions refer to the near-field interactions of clusters in Znear

with themselves. These interaction terms are placed as blocks in the diagonal

of near-field matrix; because of this placement, the preconditioner is named as

block diagonal preconditioner (BDP). In order to build our preconditioner, we

take out these blocks and treat each of them as a normal matrix system: LU fac-

torization is applied on each of these blocks and the inverses of them are taken.

LAPACK subroutines, ZGETRF and ZGETRI [17] are used in these operations,
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respectively. Finally inverses of these blocks are written in the memory in order

to built the preconditioner matrix:

NEARFIELD 

MATRIX

SELF INTERACTIONS 

OF A CLUSTER

LAPACK SUBROUTINES

MATRIX BLOCK

INVERSE
MATRIX BLOCK

PRECONDITIONER 

MATRIX

Figure 3.2: Extraction of preconditioner matrix

In parallelization, each of these clusters’ self interaction blocks are partitioned

among processors, equally; so, each of the processor gets equal number of blocks

according to this partitioning. For this purpose near-field matrix’s corresponding

blocks are row-wise partitioned and then partitioned blocks are assigned to a

processor consecutively as it is shown in Fig. 3.3:

PROCESSOR 0

PROCESSOR M

M+1 PROCESSORS

LAST LEVEL CLUSTERS’ 
SELF INTERACTIONS 

Figure 3.3: Partitioning of preconditioner matrix
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3.3.2 Partitioning of MLFMA Tree Structure

It is stated before that MLFMA is actually based on the grouping of electromag-

netic interactions in clusters and those clusters are re-grouped in bigger clusters

recursively. As a result, we get a tree structure. In that tree structure, bigger

clusters have direct electromagnetic relations with the small clusters, which are

in its group. For that reason, a cluster, which contains a small cluster, is called

as parent of that cluster and the small cluster is called as child of the bigger

cluster. Thus, MLFMA’s far-field operations—aggregations, disaggregations and

translations [11]— and near-field matrix filling operations are done on this hier-

archical tree structure. Actually the near-field matrix, Znear, is computed by last

level cluster’s electromagnetic interactions; because in order to compute the near-

field matrix, we should interact each discretized induced electromagnetic current

with its near-field neighbor directly according to the MoM. Hence near-field in-

teractions are calculated depending on this approach, we do not need to do any

computation for near-field interactions of the upper levels clusters in MLFMA

tree.

In the parallelization of BDP, last level clusters of the MLFMA tree are parti-

tioned among the processors in order to assign equal number of last level clusters

in each of the processors. Partitioning of MLFMA is based on this basic par-

titioning: We simply start to put last level clusters’ parents on the processor

where their children are deployed, and this strategy is applied from the last level,

bottom level of clusters, to the top level. This situation is depicted in Fig. 3.4:

C0 C6C5C4C3C1 C8C7

PR1

COPY 

OF
PR2

PR2

PROCESSOR 1PROCESSOR 0

LAST LEVEL 
CLUSTERS

UPPER LEVELS OF
MLFMA TREE

PR : PARENT CLUSTER
C : CHILD CLUSTER

Figure 3.4: Partitioning of MLFMA tree
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This partitioning strategy minimizes the communications in far-field matrix-

vector product, because, many of the computations about child-parent cluster

pairs can be done independently without requiring any information from other

processors for aggregation and disaggregation stages of MLFMA. Nevertheless,

from experience and profiling studies, near-field computations are not very well

distributed over the processors in the partitioning strategy; moreover memory

balance for the far-field interaction computations is not very good. As a result

of these artifacts, we started to study load balancing techniques and features to

balance the load of computations and memory usage over the processors for the

mentioned MLFMA parts, near-field and far-field computations.

3.4 Load Balancing in Parallel MLFMA

Load balancing is a very distributed and important issue in parallel computations.

By the load balancing techniques and algorithms, memory and workload [18]

of a parallel application’s processes can be distributed equally over the parallel

system and this balance operation increases the overall performance of the parallel

code. In addition to these load balancing approaches, communications might be

balanced with special methods. Depending on the importance of one of these

features, the parallel programmer focuses on a load balancing technique, which is

suitable for his application. Nevertheless, it must be noted, most of the time that

one load balancing technique applied for one aspect of parallelization may harm

the balance of another aspect. For instance, a load balancing technique which is

suitable for memory balancing might degrade the balance of computational time

over the nodes and it might increase the idle time.

In our load balancing approach, our primary goal is to balance the memory

allocation for the near-field and far-field parts of the program. In our MLFMA

program, far-field and near-field computations are almost calculated indepen-

dently. Therefore, we decided to apply different cluster partitioning for these

parts of the program by using their memory requirement information. Our load

balancing algorithm is based on the famous bin-packing algorithm [19] and we
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applied this algorithm for the near-field and far-field parts of the parallel MLFMA

program separately.

According to this algorithm, we primarily calculate the number of memory

packets, whose size is Mi, that are going to delivered to the processors and this

memory size information is written in a memory size list LM . Then, those memory

packets are summed and total amount of memory allocated over the whole system

is computed, which is abbreviated with Mtotal.

Mtotal =
N∑

i=1

Mi, (3.2)

where N is number of memory packets. Then, we compute the average amount

of memory, Maverage that should be delivered to each processor:

Maverage =
Mtotal

p
, (3.3)

where p is number of processors.

After all these memory computations, we start to assign the memory packets

to the processors by using the load balancing algorithm. We trace the memory

length information from the beginning of the memory packet size list, LM , and

calculate a deviation for this case, deviation
forward
total . Then, we trace the same

memory packets size list, LM , from the end of the list and compute its devia-

tion, which is deviationbackward
total . These deviations are the summation of absolute

differences between the processor memory load and average memory that they

should take:

deviation
forward
total =

p∑

i=1

deviationforward
proci

(3.4)

deviationbackward
total =

p∑

i=1

deviationbackward
proci

, (3.5)

where proci is the processor number and p is the number of processors.

deviationforward
proci

and deviationbackward
proci

are calculated as follows:
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deviationforward
proci

= |Maverage − M forward
proci

| (3.6)

deviationbackward
proci

= |Maverage − M backward
proci

|, (3.7)

where deviationforward
proci

is the deviation of the memory assigned on proces-

sor proci, M forward
proci

, from Maverage in the forward load balancing and simi-

larly deviationbackward
proci

is deviation of the memory assigned on processor proci,

M backward
proci

, from Maverage in the backward load balancing.

Backward load balancing is exactly similar to this algorithm, except that we

start to put the memory packets size information from the back of the LM , as

mentioned before. We apply both of these methods for the load balancing of

near-field related arrays partitioning and far-field related arrays partitioning. In

the end, by comparing the deviations for forward and backward load balancing,

deviation
forward
total and deviationbackward

total , we chose the most appropriate partition-

ing for the related parallel MLFMA part. As an example, for the near-field

matrix filling part, if deviationbackward
total is less than deviation

forward
total , we apply the

backward load balancing partitioning map to this part and vice versa.

Details of forward memory load balancing and backward memory load bal-

ancing algorithms are given in Fig. 3.5 and Fig. 3.6 respectively:
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1: while There remains a processor to get memory packet do

2: Initialize the total forward deviation to 0, deviation
forward
total = 0

3: Put a memory packet onto the available processor from the beginning of memory

packet list, LM

4: Compute total amount of memory, M
prev
total ,

before the last memory packet is added

5: Compute total amount of memory, M last
total,

after the last memory is added

6: if M last
total ≥ Maverage then

7: Calculate deviation of total memory after putting last packet on the proci,

deviation = |M last
total − Maverage|

8: Calculate deviation of total memory before putting last packet on the proci,

deviationprev = |Mprev
total − Maverage|

9: if deviation ≥ deviationprev then

10: proci memory capacity is full,

take the previous memory packet as the last packet of proci

11: Calculate total deviation, deviation
forward
total = deviation

forward
total +

deviationprev

12: else

13: proci memory capacity is full,

take the last memory packet as the last packet of proci

14: Calculate total deviation, deviation
forward
total = deviation

forward
total + deviation

15: Update the available processor

16: Initialize the total memory to informations for the available processor as 0,

M last
total = 0 and M last

total = 0

Figure 3.5: Structure of forward load balancing algorithm for the memory
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1: while There remains a processor to get memory packet do

2: Initialize the total backward deviation to 0, deviationbackward
total = 0

3: Put a memory packet onto the available processor from the end of memory packet

list, LM

4: Compute total amount of memory, M
prev
total ,

before the last memory packet is added

5: Compute total amount of memory, M last
total,

after the last memory is added

6: if M last
total ≥ Maverage then

7: Calculate deviation of total memory after putting last packet on the proci,

deviation = |M last
total − Maverage|

8: Calculate deviation of total memory before putting last packet on the proci,

deviationprev = |Mprev
total − Maverage|

9: if deviation ≥ deviationprev then

10: proci memory capacity is full,

take the previous memory packet as the last packet of proci

11: Calculate total deviation,deviationbackward
total = deviationbackward

total +

deviationprev

12: else

13: proci memory capacity is full,

take the last memory packet as the last packet of proci

14: Calculate total deviation, deviationbackward
total = deviationbackward

total + deviation

15: Update the available processor

16: Initialize the total memory to informations for the available processor as 0,

M last
total = 0 and M last

total = 0

Figure 3.6: Structure of backward load balancing algorithm for the memory
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3.4.1 Load Balancing of Near-field Interactions Related

Operations and Structures

It is mentioned that near-field computations are done on the last level clusters of

the MLFMA tree structure. These clusters actually store information about the

discretized induced electromagnetic currents, which are called basis and testing

functions [20], over the surface of problem geometry. Depending on the near-field

interactions criteria, each basis in a last level cluster interact with each testing

function of another last level cluster if those clusters are in the near field of

each other. Therefore, if two clusters, which are in the near field of each other,

have n basis and m testing functions, respectively, first cluster do nm near-field

interactions with the second cluster and second cluster also do same amount of

near-field interactions with the first cluster.

In our program, we must store all the near-field interaction data in complex

arrays and after reading the problem’s geometry information we can calculate the

size of those arrays by just adding the near-field interaction numbers. Therefore,

by using this info, we can fill the memory packet size information list and we are

able to apply both forward and backward load balancing for near-field arrays.

Hence, we implemented that approach; the results are given in the next chapter.

3.4.2 Load Balancing of Far-field Interactions Related

Operations and Structures

In far-field load balancing, we also use the same load balancing algorithms. In

this case, the memory information calculations are just changed with respect to

the near-field case. In far-field calculations, all MLFMA tree structure is used in

order to compute far-field interactions between the clusters, so we must store that

tree structure in the arrays. After reading the problem geometry information,

the tree structure is formed and the amount of memory needed for that tree

structure can be calculated easily by traversing the tree. Thus, in order to apply

load balancing in this tree structure, we deal with the memory information of the
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clusters in different levels.

We apply load balancing for the far-field tree structure as follows: First, we

choose a level in the MLFMA tree, then we open an array which is in the length

of the number of clusters in that level; we use that array as our memory size

information list, LM . Then, we calculate the memory need of all the children and

the parent itself for each cluster in the chosen level. Finally, the sizes of memory

requirements for each children cluster and parent itself are superposed for each

parent cluster on the chosen level; thus, we have the memory requirement for each

branch in the chosen partitioning load balancing level. By this methodology, we

partition the memory needed for far-field computations more equally. Memory

information reading is depicted in Fig. 3.7:

MN5 MN6

MN3MN2

MN4M14 M15

M12 M13

M11

M16

UP LEVELS 
OF MLFMA TREE

MEMORY NEEDED 
FOR BRANCH 1

BRANCH 1 BRANCH N

MEMORY NEEDED 
FOR BRANCH N

CHOSEN MLFMA 

LEVEL

MN1

M11+M12+…..+M16 MN1+MN2+…..+MN6

MEMORY SIZE INFORMATION LIST

Figure 3.7: Memory calculations for far-field related arrays

As we did in near-field load balancing, we use the far-field array size informa-

tion list in order to partition the far-field arrays among the processors of clusters

by using the algorithm in Fig. 3.5. The results of this approach is also given in

detail in Chapter 4.



Chapter 4

Results of Load Balancing

Techniques

In this chapter, profiling and scaling measurements of two different scattering

problems are presented. A perfectly electric conducting (PEC) sphere and a PEC

generic helicopter model are used in the measurements of our parallel MLMFA

solver. These measurements on the given geometries are done with two different

versions of the parallel MLFMA program. The first version uses the old parti-

tioning algorithm, which does not contain any load balancing approach and it

partitions the last level clusters of MLFMA tree among the processors equally.

On the other hand, the second version of the program that we used partitions

these clusters by using forward and backward load balancing algorithms. These

algorithms are separately applied on near-field matrix related parts (Znear) and

far-field computations (Zfar). As a result, two different partitionings are applied

on the geometries according to the memory requirement information related to

near-field and far-field computations respectively. In the presented results, first,

time and memory profiling measurements for these geometries are given and then,

speedup, memory gain, time and memory scaling results are shown. Effects of the

load balancing of near field and far field related memory structures on our parallel

MLFMA program can be easily seen from these presented plots and graphs.

42



CHAPTER 4. RESULTS OF LOAD BALANCING TECHNIQUES 43

4.1 Sphere Geometry

Scattering problem from a PEC sphere geometry was used in our primary scaling

and profiling studies. In this problem, an external electromagnetic wave is used

to illuminate the PEC sphere, then the scattered electromagnetic field after this

illumination is simulated with our parallel MLFMA program. Scattering from a

PEC sphere geometry is depicted in Fig. 4.1:

Figure 4.1: Electromagnetic scattering problem from a PEC sphere

Profiling and scaling measurements are done on 7 different meshes of the given

sphere geometry, which are tabulated in Table 4.1:

Sphere Geometry Information

Mesh Size Number of Unknowns Solution Frequency

1.50 mm 1,462,854 20.0 GHz

1.75 mm 1,083,282 17.5 GHz

2.00 mm 829,881 15.0 GHz

2.50 mm 528,786 12.0 GHz

3.00 mm 367,821 10.0 GHz

4.00 mm 206,499 7.5 GHz

5.00 mm 132,003 6.0 GHz

Table 4.1: Sphere geometries, which were used in the profiling measurements
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During our measurements on TUBITAK’s high performance parallel computer

system at ULAKBIM, we did parallel runs with these sphere meshes given in

Table 4.1. These parallel solutions were computed with the changing number of

processors on this parallel system—from 32 processors to 1 processor.

4.1.1 Time and Memory Profiling Results

In this part, the effects of memory load balancing techniques on near-field and

far-field related parts of our parallel program are depicted graphically. In these

graphs, we show the measurement results for 1.5 mm mesh sphere problems which

were solved on 32 processors of ULAKBIM high performance parallel computer

system. The solution of this sphere mesh corresponds to 1,462,854 unknowns

dense matrix solution. Other graphs for different sphere meshes are not given,

because the behavior of our parallel solver in the solution of these meshes are

oxymoron.

First, we give the memory distribution of plots for near-field and far-field

related arrays, and then, peak memory usage plots of the modules of our parallel

MLFMA program during its execution are given. In the near-field related array

memory plots, Figs. 4.2-4.3, blue color corresponds to the memory requirement

used to store the near-field matrix and black color corresponds to the memory

requirement to store the preconditioner. On the other hand, in far-field related

memory plots, Figs. 4.4-4.5, orange and cyan colors correspond to the memory

requirement of arrays to store far-field radiation patterns of basis functions and

green color corresponds to the memory need to store the electromagnetic data of

clusters in MLFMA tree structure. In Figs. 4.6-4.7, each color corresponds to the

peak memory usage of a processor during the execution of the parallel MLFMA

code. Moreover in Figs. 4.6-4.7, vertical axis shows the modules of MLFMA and

horizontal axis shows the peak memory usage at the corresponding module of the

parallel program.
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Figure 4.2: Memory usage of near-field interactions related arrays for sphere with
1.5 mm mesh when load balancing algorithms are not applied
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Figure 4.3: Memory usage of near-field interactions related arrays for sphere with
1.5 mm mesh when load balancing algorithms are applied
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Figure 4.4: Memory usage of far-field interactions related arrays for sphere with
1.5 mm mesh when load balancing algorithms are not applied
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Figure 4.5: Memory usage of far-field interactions related arrays for sphere with
1.5 mm mesh when load balacing algorithms are applied
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Figure 4.6: Peak memory usage in the modules of MLFMA for sphere with 1.5
mm mesh when load balancing algorithms are not applied
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Figure 4.7: Peak memory usage in the modules of MLFMA for sphere with 1.5
mm mesh when load balancing algorithms are applied
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As can be seen from Figs. 4.2-4.5, memory load balancing algorithms for

near-field and far-field related arrays work properly and supports the balance of

memory usage load over 32 processors for this problem. This situation is actually

observable from Figs. 4.6-4.7 too; when load balancing for the memory is properly

applied, the gap between the peak memory usages of processors decreases.

In the following figures, we will show the effects of memory load balancing on

computations of near-field interactions and matrix-vector multiplication opera-

tions: In Figs. 4.8-4.9, the effect of near-field related memory load balancing on

the computations of near-field matrix filling operations is shown and in Figs. 4.10-

4.11, far-field related memory load balancing effect on the matrix-vector calcu-

lations are shown. Matrix-vector multiplication time profilings are especially

presented; because, far-field related computations, aggregations, disaggregations

and translations, are done in this stage of our parallel MLFMA solver.

Color map for near-field related time profilings are as follows: Red corresponds

to the time required to fill the near-field matrix, Znear, black corresponds to the

time required to calculate the radiation patterns of basis functions and colors

below red region correspond to the reading of geometry information, distribution

of this information and clustering parts of the parallel MLFMA program. On the

other hand, main colors seen in the matrix-vector operations are orange, blue,

yellow, red and gray, respectively: Orange corresponds to the initialization of

matrix-vector operation, blue color corresponds to aggregation and disaggregation

stages consecutively, yellow corresponds to the translation operations which can

be done by the processor on itself without communication, red corresponds to

interprocessor translations and gray shows the idle time.
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Figure 4.8: Pre-solution time for sphere with 1.5 mm mesh when load balancing
algorithms are not applied
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Figure 4.9: Pre-solution time for sphere with 1.5 mm mesh when load balancing
algorithms are applied
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Figure 4.10: Matrix-vector multiplication time profiling for sphere with 1.5 mm
mesh when load balancing algorithms are not applied
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Figure 4.11: Matrix-vector multiplication time profiling for sphere with 1.5 mm
mesh when load balancing algorithms are applied
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As seen from Figs. 4.8-4.9, near-field related memory load balancing also bal-

ances the computational time requirement in order to fill near-field matrix, Znear.

This situation actually depends on the linear proportion between storage require-

ments and filling operations of this matrix. Therefore, by balancing the near-field

matrix memory, we also balance the near-field interactions’ computations. De-

spite this positive effect of near-field memory load balancing on near-field related

computations, in far-field related calculations, memory load balancing algorithm

has a negative impact on the far-field related operations, which are done in matrix-

vector multiplications. This situation is depicted in Figs. 4.10-4.11. In order to

balance the computational time of matrix-vector multiplications and memory

storage need for this part, we shift our focus on different balancing approaches.

4.1.2 Speedup, Memory Gain, and Scaling Results

In this part, with load balancing and without load balancing approaches are com-

pared by using the mentioned parallel measurements metrics, which are speedup,

memory gain, time and memory scale plots. In these metrics, we use three sphere

solutions: 5 mm mesh sphere, 4 mm mesh sphere and 2.5 mm mesh sphere ge-

ometries. 5 mm mesh problem is the biggest problem that can be solvable on

a single processor computer with our MLFMA code; as a result, the solution of

this problem on a single computer system is used as the reference for speedup

and memory calculations. In order to test the scalability of our parallel code,

we use 4 mm mesh and 2.5 mm mesh sphere problems, which are the biggest

problems that are solvable on 4 processors and 8 processors respectively. In our

speedup and memory gain plots, we give the speedup and gain curves, which use

4 processors’ and 8 processors’ solutions as reference. Moreover, in these gain

and speedup plots, gain and speedup curves which depend on 4 processors’ so-

lution and 8 processors’ solution are normalized with respect to curves, which

uses 1 processor solutions as reference. To normalize these curves with respect

1 processor’s solution curve, we multiply the data points of 4 processors’ and 8

processors’ curves with 4 and 8 respectively.
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Figure 4.12: Memory scale plots of three different sphere meshes for array struc-
tures, which are related with near-field computations (load balancing algorithms
are not applied)
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Figure 4.13: Memory scale plots of three different sphere meshes for array struc-
tures, which are related with near-field computations (load balancing algorithms
are applied)
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Figure 4.14: Memory gain plots of three different sphere meshes for array struc-
tures, which are related with near-field computations (load balancing algorithms
are not applied)
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Figure 4.15: Memory scale plots of three different sphere meshes for array struc-
tures, which are related with near-field computations (load balancing algorithms
are applied)
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Figure 4.16: Memory scale plots of three different sphere meshes for array struc-
tures, which are related with far-field computations (load balancing algorithms
are not applied)
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Figure 4.17: Memory scale plots of three different sphere meshes for array struc-
tures, which are related with far-field computations (load balancing algorithms
are applied)
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Figure 4.18: Memory gain plots of three different sphere meshes for array struc-
tures, which are related with far-field computations (load balancing algorithms
are not applied)
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Figure 4.19: Memory gain plots of three different sphere meshes for array struc-
tures, which are related with far-field computations (load balancing algorithms
are applied)
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Figure 4.20: Time scale plots of three different sphere meshes for the computa-
tions of near-field interactions (load balancing algorithms are not applied)
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Figure 4.21: Time scale plots of three different sphere meshes for the computa-
tions of near-field interactions (load balancing algorithms are applied)
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Figure 4.22: Speedup plots of three different sphere meshes for the computations
of near-field interactions (load balancing algorithms are not applied)
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Figure 4.23: Speedup plots of three different sphere meshes for the computations
of near-field interactions (load balancing algorithms are applied)
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Figure 4.24: Time scale plots of three different sphere meshes for the matrix-
vector multiplication (load balancing algorithms are not applied)
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Figure 4.25: Time scale plots of three different sphere meshes for the matrix-
vector multiplication (load balancing algorithms are applied)
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Figure 4.26: Speedup plots of three different sphere meshes for the matrix-vector
multiplication (load balancing algorithms are not applied)
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Figure 4.27: Speedup plots of three different sphere meshes for the matrix-vector
multiplication (load balancing algorithms are applied)
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As we expected before, memory load balancing technique applied on near-

field partitioning makes near-field related memory structures perfectly scalable:

In Fig. 4.15, all memory gain curves are linear and they coincide. In addition, this

memory load balancing technique for near-field part makes the computations of

near-field matrix filling perfectly scalable too; this can be seen from Fig. 4.23. On

the other hand, speedup and memory gain plots for without load balancing case

in the near-field part show us that the old partitioning that we used decreases

the efficiency of near-field computations. From Fig. 4.14 and Fig. 4.22, it is easily

observable that the speedup and memory gain values are less than 30 when 32

processors used. Therefore, we can state that the memory load balancing scheme

affects the computational time and memory storage of this part very positively.

In far-field related figures, we observe that memory load balancing of far-field

related array structures does not have a positive effect on speedup plots. Actually,

memory load balancing for far-field structures are not deeply related with far-field

related computations. Moreover, as can be seen from Figs. 4.26-4.27, speedup for

the matrix-vector multiplication approximately goes to 20 when 32 processors are

used. Therefore, we decided to work on new approaches for the load balancing

of this part and this new strategy is going to include the effects of interprocessor

communications and computational effects of far-field interactions’ operations.
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4.2 Helicopter Geometry

We also did profiling and scaling measurements with a generic helicopter model.

This geometry is more complex with respect to PEC sphere problem and com-

putational time for the solution of this problem, is much larger because of the

complex geometrical structure. Picture of this helicopter is given in Fig. 4.28:

z

x

y

16m

1.9m

3.25m

0.75m

Figure 4.28: PEC helicopter model

Different mesh sizes data for this helicopter geometry were used, they are

given in Table 4.2:

Helicopter Geometry Information

Mesh Size Number of Unknowns Solution Frequency

1.5 cm 1,316,235 1.80 GHz

2.0 cm 739,404 1.30 GHz

2.5 cm 469,017 1.00 GHz

3.0 cm 325,665 0.85 GHz

4.0 cm 183,546 0.65 GHz

5.0 cm 117,366 0.50 GHz

Table 4.2: Helicopter geometries, which were used in the profiling measurements

In the solution of these meshes of helicopter geometry, we again used memory

load balanced version of the parallel MLFMA and its counterpart, which does

not have load balancing feature. Load balancing techniques are again applied

to near-field related and far-field related parts, separately; thus, two different

partitionings are used in the solution of these helicopter meshes as in the case of

sphere meshes.
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4.2.1 Time and Memory Profiling Results

As in sphere problem, time and memory profiling plots of the solution of 1.5

cm mesh helicopter geometry, which was solved on 32 processors of ULAKBIM’s

parallel system, are shown in this part. Color map for time and memory profiling

plots are exactly the as the one, which is used in the 1.5 mm sphere mesh profiling

results. The solution of this mesh of helicopter corresponds to the solution of a

1,316,235 unknowns full matrix equation.

From the figures, memory load balancing algorithms work properly for this

complex geometry too. In Figs. 4.33 and 4.34, it is noticed that the parallel pro-

gram achieves its peak memory usage before matrix-vector computations. Actu-

ally, this depends on a bug in our MLFMA program and it will certainly be fixed

in short time.

As in the sphere problems, near-field memory load balancing implementation

also balances the computational load in the near-field matrix filling operations

and this is shown in Fig. 4.36. Nevertheless, load balancing applied on far-

field related memory structures increases the idle time of processors. Thus, as

mentioned before, we will move on a different strategy for this part of the parallel

MLFMA. In the following part of this chapter, speedup and memory gain plots

are presented and this situation about the far-field related calculations and array

structures can be seen from these speedup and gain plots.
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Figure 4.29: Memory usage of arrays structures which are related with near-field
interactions for helicopter with 1.5 cm mesh when load balancing algorithms are
not applied
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Figure 4.30: Memory usage of arrays structures which are related with near-field
interactions for helicopter with 1.5 cm mesh when load balancing algorithms are
applied
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Figure 4.31: Memory usage of arrays structures which are related with far-field
interactions for helicopter with 1.5 cm mesh when load balancing algorithms are
not applied
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Figure 4.32: Memory usage of arrays structures which are related with far-field
interactions for helicopter with 1.5 cm mesh when load balancing algorithms are
applied
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Figure 4.33: Peak memory usage in the modules of MLFMA for helicopter with
1.5 cm mesh when load balancing algorithms are not applied
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Figure 4.34: Peak memory usage in the modules of MLFMA for helicopter with
1.5 cm mesh when load balancing algorithms are applied
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Figure 4.35: Pre-solution time for helicopter with 1.5 cm mesh when load bal-
ancing algorithms are not applied
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Figure 4.36: Pre-solution time for helicopter with 1.5 cm mesh when load bal-
ancing algorithms are applied
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Figure 4.37: Matrix-vector multiplication-time profiling for helicopter with 1.5
cm mesh when load balancing algorithms are not applied
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Figure 4.38: Matrix-vector multiplication-time profiling for helicopter 1.5 cm
mesh when load balancing algorithms are applied
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4.2.2 Speedup, Memory Gain, and Scaling Results

In this part of this chapter, we provide the parallel performance metrics’ re-

sults for the different meshes of helicopter geometry with the different number of

processors. These performance metrics plots show the effects of memory load bal-

ancing techniques on the scalability of the different parts of our parallel MLFMA

program. This kind of work is also presented in previous parts of this chapter

for the sphere problem; so, we follow the same analysis methodology for different

helicopter mesh solutions. The meshes of helicopter that we use in this part are

of sizes 5 cm, 4 cm and 2.5 cm. Solution frequencies and corresponding number

of unknowns for these helicopter meshes can seen in Table 4.2.

In these parallelization metrics, plots of different helicopter meshes, scalability

of near-field related computations and memory structures with the presentation

of our load balancing approach can be observed again as in the cases of sphere

meshes’ near-field related scalability analysis. On the other hand, far-field related

memory balance approach affects the computations about far-field interaction

negatively. Since this situation is also observed in the scattering simulations of

different meshes, we again decided to move our focus to different load balancing

algorithms which might parallelize far-field related computations and memory

storages by using optimization techniques. This would be our primary future

work in load balancing studies of our parallel MLFMA program.

Memory scale and memory gain plots for the array structures, which are re-

lated with near-field computations are given in Figs. 4.39-4.42 and same plots for

the array structures of far-field related computations are presented in Figs. 4.43-

4.46. Following these figures, time scale and speedup plots for near-field compu-

tations are given in Figs. 4.47-4.4.50 and same plots for far-field computations

can be shown in Figs. 4.51-4.54:
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Figure 4.39: Memory scale plots of three different helicopter meshes for array
structures, which are related with near-field interactions (load balancing algo-
rithms are not applied)

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Number of Processors

M
em

or
y 

U
sa

ge
 (

M
B

)

Nearfield Related Memory Scaling for Helicopter

5 mm mesh
4 mm mesh
2.5 mm mesh

Figure 4.40: Memory scale plots of three different helicopter meshes for array
structures, which are related with near-field interactions (load balancing algo-
rithms are applied)
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Figure 4.41: Memory gain plots of three different helicopter meshes for array
structures, which are related with near-field interactions (load balancing algo-
rithms are not applied)
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Figure 4.42: Memory gain plots of three different helicopter meshes for array
structures, which are related with near-field interactions (load balancing algo-
rithms are applied)
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Figure 4.43: Memory scale plots of three different helicopter meshes for array
structures, which are related with far-field interactions (load balancing algorithms
are not applied)
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Figure 4.44: Memory scale plots of three different helicopter meshes for array
structures, which are related with far-field interactions (load balancing algorithms
are applied)
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Figure 4.45: Memory gain plots of three different helicopter meshes for array
structures, which are related with far-field interactions (load balancing algorithms
are not applied)
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Figure 4.46: Memory gain plots of three different helicopter meshes for array
structures, which are related with far-field interactions (load balancing algorithms
are applied)
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Figure 4.47: Time scale plots of three different helicopter meshes for the compu-
tations of near-field interactions (load balancing algorithms are not applied)
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Figure 4.48: Time scale plots of three different helicopter meshes for the compu-
tations of near-field interactions (load balancing algorithms are applied)
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Figure 4.49: Speedup plots of three different helicopter meshes for the computa-
tions of near-field interactions (load balancing algorithms are not applied)
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Figure 4.50: Speedup plots of three different helicopter meshes for the computa-
tions of near-field interactions (load balancing algorithms are applied)
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Figure 4.51: Time scale plots of three different helicopter meshes for the matrix-
vector multiplication (load balancing algorithms are not applied)
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Figure 4.52: Time scale plots of three different helicopter meshes for the matrix-
vector multiplication (load balancing algorithms are applied)
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Figure 4.53: Speedup plots of three different helicopter meshes for the matrix-
vector multiplication (load balancing algorithms are not applied)
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Figure 4.54: Speedup plots of three different helicopter meshes for the matrix-
vector multiplication (load balancing algorithms are applied)



Chapter 5

Conclusion

In this thesis, different parallel hardware and software approaches are pre-

sented for the parallelization of the efficient electromagnetic simulation method

MLFMA. Parallel hardware and software structures, parallelization performance

metrics and the basics of the parallelization of MLFMA are presented in the

introduction chapter.

Following this introductory information, in the second chapter, details of par-

allel computation environments, which we used in our studies, are described. In

this chapter, mostly, hardware backbones for parallel environments are examined

in detail. These parallel hardware backbones are the parallel cluster systems that

we used, built or plan to build. Software components of parallel environments

that are needed to execute parallel applications on these systems are also ex-

plained in Chapter 2. Moreover, performance comparisons of different parallel

cluster systems are presented in this chapter by using our sequential and parallel

versions of MLFMA program as benchmark tools. Depending on these perfor-

mance comparisons, we chose the hardware components of our proposed parallel

cluster, which is expected to give the optimum parallel performance during the

execution of our parallel code.

In Chapter 3, we mainly focused on the parallelization of MLFMA. First,

adaptation problems about sequential MLFMA is described in this chapter; and
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then, the primary parallelization studies done on this sequential version of the pro-

gram are summarized. After these, partitioning techniques and approaches that

are used in our parallel program are explained in detail. Following these parti-

tioning concepts, importance of load balancing and our load balancing strategies

for the memory storage of parallel MLFMA are presented. In this presentation,

we underline that different load balancing strategies are used for the near-field

and far-field memory storages of our parallel program. Moreover, the details of

the memory load balancing algorithms are given in this chapter.

The effects of memory load balancing for the near-field interactions and far-

field interactions parts of the parallel MLFMA program are shown by compu-

tational electromagnetic simulations in Chapter 4. Different meshes of a PEC

sphere and an antitank helicopter were used in those simulations. By using the

simulation results. The time and memory usage profiling of our parallel MLFMA

program are depicted. Furthermore, parallelization measurement metrics are ap-

plied these simulations results: Time and memory scaling plots, speedup and

memory gain curves for different meshes of these two problems are presented

in this chapter and scalability analysis were done using these plots. It is ob-

served that memory load balancing approach for near-field related parts of the

program affects the scalability of these parts very positively; we get more scal-

able near-field matrix operations and memory storage for near-field related arrays

with this balancing algorithm. On the other hand, far-field related memory load

balancing approach does not have this kind of positive effect on far-field com-

putations, which are mostly done in matrix-vector multiplications of our parallel

solver. Therefore, we decided to consider different optimization and scalability

improvement approaches for the far-field related parts of the parallel MLFMA

program.

To conclude this study, we presented the effects of memory load balancing

on different features of parallel MLFMA program. By using computational data,

we observed that load balancing approaches certainly have a significant effect on

the overall parallel performance of the code. Proper load balancing approaches

would certainly result with a real scalable version of parallel MLFMA and this

kind of study has not been done in the CEM community. We now plan to focus
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our efforts to build such a completely scalable version of the parallel MLFMA.
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