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ABSTRACT 

 

ON STOCK RATIONING POLICIES FOR CONTINUOUS REVIEW 

INVENTORY SYSTEMS 

 

Önder Bulut 

M.S. in Industrial Engineering 

Supervisor: Asst. Prof. M. Murat Fadıloğlu 

July 2005 

 

Rationing is an inventory policy that allows prioritization of different demand 

classes.  In this thesis, we analyze the stock rationing policies for continuous 

review systems. We clarify some of the ambiguities present in the current 

literature. Then, we propose a new method for the exact analysis of lot-for-lot 

inventory systems with backorders under rationing policy.  We show that if 

such an inventory system is sampled at multiples of supply leadtime, the state 

of the system evolves according to a Markov chain.  We provide a recursive 

procedure to generate the transition probabilities of the embedded Markov 

chain. It is possible to obtain the steady-state probabilities of interest with 

desired accuracy by considering a truncated version of the chain. Finally, we 

propose a dynamic rationing policy, which makes use of the information on 

the status of the outstanding replenishment orders. We conduct a simulation 

study to evaluate the performance of the proposed policy.   

 

Keywords: Stochastic inventory models, stock rationing, multiple demand 

classes, embedded Markov chains, solution of infinite state space Markov 

chains 
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ÖZET 

 

SÜREKLİ GÖZDEN GEÇİRİLEN ENVANTER SİSTEMLERİNDE STOK 

TAYINLAMA POLİTİKALARI ÜZERİNE 

 

Önder Bulut 

Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. M. Murat Fadıloğlu 

Temmuz 2005 

 

Stok tayınlama politikaları, farklı talep sınıfları için bir tür öncelik 

mekanizması oluşturulmasına yarar. Bu tez çalışmasında sürekli gözden 

geçirilen envanter sistemleri için stok tayınlama politikaları incelenmiştir. 

Konuyla ilgili şu ana kadar yapılmış önemli çalışmalardaki muğlaklıklar 

giderildikten sonra ardısmarlamalı bire-bir envanter sisteminde kritik seviye 

stok tayınlama politikası için kesin analize imkan veren yeni bir yöntem 

önerilmektedir. Bu yöntemle gömülü bir Markov zinciri tanımlanmakta ve bu 

zincirinin geçiş olasılıkları bir özyineli prosedürle üretilmektedir. Kalıcı 

durum olasılıklarının Markov zincirinin bir bölümü kullanılarak istenilen 

doğrulukta bulunabileceği gösterilmiştir. Son olarak, beklenen siparişlerin 

ulaşmalarına kalan zaman bilgisini kullanan dinamik bir stok tayınlama 

politikası önerilmektedir. Önerilen politikanın performans değerlendirilmesi 

benzetim deneyleri kullanılarak yapılmıştır.  

 

Anahtar sözcükler: Rassal envanter modelleri, stok tayınlama, çoklu talep 

sınıfları, gömülü Markov zinciri, sonsuz durum uzaylı Markov zincirlerinin 

çözümü 
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Chap t e r  1  

INTRODUCTION 

 

For inventory systems that experience classes of demand for a single item, 

stock rationing is a well-known tool to differentiate customers. More 

specifically, stock rationing is an inventory policy that allows prioritization 

of different demand classes in order to provide different levels of service and 

to achieve higher operational efficiency. It is possible to maintain high 

service levels for certain demand classes while keeping inventory costs at 

bay by providing lower service levels to certain other demand classes. 

Demand classes are categorized on the basis of their shortage costs. The 

highest priority class is the one with the largest shortage costs, and the 

lowest priority has the smallest shortage costs. If there are n demand classes 

then class 1 has the highest priority, class n has the lowest. In an inventory 

system with backordering, the ordering of the unit backordering costs is 

nπππ >>> ...21  and similarly the ordering of the time dependent 

backordering costs is nπππ ˆ...ˆˆ 21 >>> . 

The systems that have multiple customer classes generating demand for a 

unit product are frequently observed in real life. For example, in spare parts 

inventory management, system can experience urgent and critical orders in 

case of breakdowns that have high shortage costs. On the other hand, the 

orders due to the planned maintenance activities may be less critical and 
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usually have less shortage costs. Again for the spare parts inventory system 

with multiple end products, same part can be used in many end products that 

have different importance and criticality. Thus, the demand for any spare 

part from these end products should be prioritized.  

Another example is a two-echelon inventory system consisting of a 

warehouse and many retailers. In case of stockouts, retailers may place 

urgent, more critical orders to the warehouse. Again in this setting, if the 

retailers are located on the basis of regional characteristics of the market 

area, this situation possibly implies different demand classes and the 

prioritization of retail orders are beneficial. As another example, in multi- 

echelon systems the inventory locations in the same echelon can allow 

shipments between themselves in order to increase the service levels for their 

direct customers. However, for any inventory location, direct customer 

orders have superiority over those intershipment orders that are placed by 

other locations. 

 Rationing is also a well-known tool in service sectors for customer 

differentiation. Hotel or airline companies ration their limited capacity 

according to the priorities of their different customer classes. In this setting, 

in addition to the rationing decision the key concern is deciding the prices 

charged to each demand classes. Since the capacity is fixed, in these 

problems the decisions of when to order and how much to order are 

irrelevant. 

 For the systems with multiple demand classes, the most common and 

easiest strategies are managing individual, separate stock systems for each 

customer class and managing a common stock pool to serve all the classes 

without any differentiation. The separate stock strategy permits to assign 
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different service levels to each customer class, but the positive effect of risk 

pooling is disregarded. The variability of the demand is higher in this 

strategy and therefore the whole system has to hold more safety stock to 

guarantee the desired service levels. On the other hand, common stock 

strategy uses the pooling effect. Yet this policy causes unnecessary inventory 

investments for the lower priority classes, because the system provides the 

highest service level required by the higher priority classes to all demand 

classes. Inventory rationing policies capture the pooling effect of the demand 

and in addition to this, they have the flexibility of providing different service 

levels to different customer classes. 

 It is possible to define many different kinds of rationing policies, but the 

mechanism through which any rationing policy is implemented is to stop 

serving a lower priority class when the inventory on hand inventory drops 

below a certain threshold level. Under this level only higher priority classes 

are served and this results in higher service levels for these classes. If there 

are more than two demand classes, then there is more than a single threshold 

level. The threshold levels may change dynamically according to the number 

and the ages of outstanding orders or static threshold levels may be used. 

The rationing policy with static threshold levels is known as the critical level 

policy in the literature. For the classic (r, Q) system with critical level 

rationing, the policy can be defined by the decision variables ( )QrK ,,
r

 where 

K
r

 represents the vector which consists of (n-1) critical levels. The critical 

level for the highest priority class is not specified since it is always set to 0. 

If  n = 2 then the policy is ( )QrK ,, .  

 

In the literature, there is no result characterizing the optimum policy 
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structure for the stock rationing problem except for the capacitated make-to-

stock production systems. For exponential leadtime Ha (1997a) characterize 

the optimum policy for lost sales case and Ha (1997b) does for the 

backordering case. Ha (2000) describes the optimum policy for Erlang 

distributed leadtime and lost sales case, later Gayon et al. (2005) partially 

define the optimum policy for the backordering case.  

 In this thesis, we are interested in traditional inventory systems, which 

have uncapacitated supply channels. It is obvious that dynamic policies that 

adjust the critical levels continuously in time by utilizing the information on 

the number of outstanding orders and their remaining times to arrive, are 

closer to the unknown optimum structure than the (static) critical level 

policy. To motivate this fact let us consider an inventory system in which 

there is an outstanding order that is about to arrive. If the probability of 

stockout for the higher priority classes in the remaining order arrival time is 

negligible, then we should choose to satisfy a demand of lower priority class 

even if the inventory on hand is below the critical level. On the other hand, 

dynamic decisions considerably complicate the performance evaluation and 

the optimization of policy parameters. Thus the common practice is to use 

static threshold levels, i.e. employing critical level policy. 

In a backordering environment, stock rationing introduces the problem of 

making allocation decision of incoming replenishment orders between 

increasing the stock level and clearing the backorders of different customer 

classes. The rule that governs this allocation decision is called the clearing 

mechanism. Without specifying the clearing mechanism, the rationing policy 

cannot be fully defined for inventory systems with backordering. Consider a 

system with two demand classes, class1 and class 2, when a replenishment 

order arrives it is optimal first to clear class 1 backorders due to high 



CHAPTER 1 INTRODUCTION 

 5

backorder costs of this class. After clearing all class 1 backorders one can 

give the priority to increasing the stock level up to the critical level. Then if 

all the order quantity has not been used, s/he can clear the backorders of 

class 2 starting from the oldest one until using all the remaining order 

quantity or until the class 2 backorders are depleted. If any units left from the 

order quantity after all class 2 backorders are filled, those units are added to 

the inventory to increase the stock level. This clearing mechanism is called 

priority clearing in the literature. Under priority clearing, inventory level 

cannot exceed K before clearing all backorders. One possible alternative to 

priority clearing is, after clearing class 1 backorders one can fulfill the 

backordered demands of class 2 then increase the stock level. One can come 

up with many other clearing mechanisms. Some different kinds of clearing 

mechanisms have already been suggested in the literature mostly due to the 

fact that exact analysis of stock rationing problem with priority clearing is 

not available. In a lost sales environment there is no clearing concept.  

In this thesis, following a general review of stock rationing literature, we 

present a detailed analysis of the critical level policy based on our 

observations in parallel with some notes on the main works in the literature 

that considered critical level policy and different clearing mechanisms. Then 

we present our contributions to the literature. The setting we consider is a 

continuously reviewed single location, and single product inventory system 

with backordering under rationing. We assume deterministic leadtime, L , 

and two customer classes that generate Poisson demand arrivals with rates 

1λ and 2λ . We first introduce an Embedded Markov Chain approach to the 

analysis of (S-1, S) policy under rationing with the priority clearing 

mechanism. With this approach we are able to obtain the steady state 

probabilities of the system with desired accuracy by considering a truncated 

version of an infinite state space Markov chain. These state probabilities 



CHAPTER 1 INTRODUCTION 

 6

permit the computation of any long-run performance measure of interest for 

the system. Finally for the (r, Q) policy, we present a dynamic rationing 

policy that utilizes the information of the number of outstanding orders and 

their ages. We conduct a simulation study to quantify the gains through this 

dynamic policy. 

We organized the thesis in six chapters. In the following chapter we 

discuss the related literature, then in Chapter 3 we present our observations 

on critical level policy and on some of the important works in the literature. 

In Chapter 4 we present our embedded Markov chain approach for the (S-1, 

S) policy under rationing and in Chapter 5 we introduce a dynamic rationing 

policy. Finally, we provide an overall summary of the study and address 

future research directions in Chapter 6. 
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Chap t e r  2  

LITERATURE REVIEW 

 

Similar to other stochastic inventory problems, stock rationing literature can 

be categorized based on the review policy (continuous/periodic) and on the 

consequence of shortages (backorders/lost sales). However, in addition to 

this general categorization research on stock rationing is also classified 

according to the assumed rationing policy and by the clearing mechanism for 

the backorders that defines how to handle the arriving replenishment orders. 

There is also a parallel literature on the production environment, which 

effectively considers a capacitated replenishment channel. 

Rationing models deal with the prioritization of different demand classes 

and the initial research on this topic were at 1960s, which generally 

considered the periodic review systems. Veinott (1965) is the first who 

analyze a periodic review setting with zero leadtime and backordering. He 

introduces the concept of critical levels as a rationing policy for multiple 

demand classes. Topkis (1968) worked on the same model and proved the 

optimality of time remembering critical level policy for both lost sales and 

backordering cases. His policy is based on dividing every review period into 

a finite number of subperiods. By using dynamic programming, he finds a 

critical level for each subperiod and for each demand class that depends on 

the time to the next review. Critical level is decreasing with the remaining 

time to review. For the lost sales case Evans (1968) and for the backordering 
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case Kaplan (1969) derive essentially the same results for two demand 

classes.  

Nahmias and Demmy (1981) consider a stationary, fixed critical level 

policy for two demand classes and derive the expected number of backorders 

for both types of the customer classes for a single period problem and 

extended the results to an infinite horizon multiperiod problem with the 

assumed (s, S) policy and zero lead time. They assume that demand is 

realized at the end of each period. Moon and Knag (1998) generalize the 

work of Nahmias and Demmy (1981) by considering multiple critical levels 

and by presenting a simulation analyses.  

Cohen et al. (1989) consider a periodic review (s, S) policy with lost sales 

and two demand classes. At the end of each period, after the realization of 

demands, they use the on hand stock to meet the demands of customer 

classes in the order of priorities. 

Frank et al. (2003) analyze a periodic review model with two demand 

classes, one is stochastic and the other is deterministic. High priority class is 

the one with deterministic demand. Any unsatisfied stochastic demand is 

lost. They characterize the complex structure of the optimal policy and 

propose a much simpler critical level policy for (s, S) type replenishment. 

They assume that the orders arrive instantaneously and aim to use the 

rationing to gain from fixed ordering cost instead of saving stock for future 

deterministic demand.  

Atkins and Katircioglu  (1995) consider service level requirements for 

each demand classes and propose a heuristic rationing policy that is hard to 

implement. They have a periodic review setting with fixed lead time and 

backordering. 
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In continuous review setting, multiple demand classes and rationing first 

analyzed by Nahmias and Demmy (1981). Under a ( ),r Q  policy they 

consider a setting with unit Poisson arrivals, two demand classes, constant 

leadtime, and full backordering. They assume a critical level rationing policy 

and at most one outstanding replenishment order. Instead of finding the 

optimum policy parameters, i.e. ( ), ,K r Q  and K  stands for the critical level, 

they focus on deriving the expected number of backorders and fill rates for 

any given parameter set for both demand classes. Moon and Kang (1998) 

extend the model of Nahmias and Demmy (1981) by considering compound 

Poisson demand. They analyze the system with a simulation model. 

Deshpande et al. (2003) work on exactly the same problem that Nahmias 

and Demmy (1981) analyze with the exception that they do not have any 

restriction on the number of outstanding orders. However, in order to get the 

analytical results of this more general critical level rationing model they do 

not use the priority clearing mechanism. To derive the steady state inventory 

level probabilities and to get the operating characteristics of the system they 

introduce the threshold clearing mechanism that allows clearing low priority 

backorders before clearing all class 1 backorders and raising the inventory 

above the critical level. They provide an algorithm to obtain the optimal 

policy parameters, which result in the minimum expected cost rate. They 

compare the performance of the threshold clearing with the performance of 

priority clearing. For the priority clearing, they obtain the optimum levels via 

simulation. 

Melchiors et al. (2000) analyze the model of Nahmias and Demmy (1981) 

for the lost sales case by preserving the assumption of at most one 

outstanding order. They allow the critical level to be above the reorder level 
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and observe some situations that this case is optimal. Melchiors (2003) 

extends this model by considering multiple Poisson demand classes and they 

propose the restricted time remembering policy. He divides the constant 

leadtime in subintervals and by considering the remaining lead time of the 

outstanding order finds the critical levels which are restricted to be constant 

over the subintervals. 

Teunter and Haneveld (1996) also consider a time remembering policy in 

the continuous review setting for two demand classes and backordering. 

They determine the set of remaining lead time values (L1, L2…) which imply 

to reserve 0,1,2… units of stock for high priority customers, i.e. if the 

remaining time is less than L1 they do not ration the stock, if it is between L1 

and (L1+L2) one item is reserved for the high priority class and so on. They 

showed that this policy outperforms the critical level policy. 

Dekker et al. (1998) work on a spare parts stocking environment with two 

demand classes and consider (S-1, S) inventory policy that allows 

backordering. They state that they do not have any restriction on the number 

of outstanding orders. For the critical level rationing, without assuming any 

clearing mechanism they derive the exact fill rate expression for the non-

critical demand class and make an approximation for the critical class fill 

rate by conditioning on the time that stock level hits the critical level. 

Afterwards they consider three different clearing mechanisms including the 

priority clearing and test their approximation under each of these 

mechanisms using simulation. They also present another approximation for 

the service level of the critical class, which accounts the effect of the way 

that the incoming orders are handled. 

Similar to Dekker et al. (1998), Dekker et al. (2002) consider the (S-1, S) 
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policy and critical level rationing. However, they assume generally 

distributed leadtime, multiple demand classes and lost sales. In lost sales 

case, there is no discussion about clearing. Using queueing results they 

derive the state probabilities and operating characteristics of the system. 

They introduce a numerical solution method for optimization.  

Ha (1997a) considers a make-to-stock production system with a single 

production facility, zero setup cost, multiple demand classes and lost sales. 

He assumes exponentially distributed production leadtime. His system is a 

capacitated one and order crossing is not possible. Using a queueing model 

he shows that lot-for-lot policy is optimal for production decision and the 

critical level policy is optimal for stock rationing decision. Intuitively, for a 

memoryless system the elapsed time does not provide any information for 

the arrival time of the replenishment order. Ha (1997b) analyzes the same 

setting but he allows backordering. He defines the optimal control policy as a 

monotone switching curve which says that production decision is based on a 

based stock policy and rationing decision determined by critical level policy 

which is decreasing in the number of backorders of the non-critical class. 

Vericourt (2002) considers the multiple demand class extension of Ha 

(1997b). 

Ha (2000) extends Ha (1997a) to an Erlangian production times. He 

defines the work storage level concept that keeps track of the number of 

completed Erlang stages for the items in the system. He proves that a critical 

work storage level is optimal for both production and stock rationing. With a 

numerical analysis he shows that the critical level policy performs well for 

the same setting.  

Gayon et al. (2005) considers the setting of Ha (2000) but they allow 
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backordering. Using the work storage level concept, they partially 

characterize the optimal policy. In addition, when they assume a salvage 

market without a backorder cost they fully characterize the optimal stock 

rationing policy.     

Kocaga (2004) works on the spare parts service system of a leading 

semiconductor equipment manufacturer. He considers the same setting of 

Dekker et al. (1998). However, the non-critical orders allow a fixed demand 

leadtime to be fulfilled. After deriving the service level expressions for both 

classes, with a numerical study he shows that significant savings are possible 

through incorporation of demand leadtimes and rationing.   

Arslan et al. (2005) considers a continuous review ( , )r Q  policy with 

multiple demand classes, unit Poisson demands and deterministic leadtime. 

They assume the critical level rationing and analyze this single location 

inventory system by constructing an equivalent multi stage serial system. 

The stages in the serial system are defined as inventory systems that face the 

external demand of corresponding customer class of the original problem. 

Each stage also sees internal demands from the lower level stages. By 

assuming a clearing mechanism that clears the backorders at each stage in 

the order of occurrence, they derive the state probabilities of the system. 

However, this clearing mechanism allocates the replenishment quantity fairly 

between the reserve stock for higher classes and the backorders of lower 

level classes. Thus, it deviates from the priority clearing. They also provide a 

heuristic for the optimization and describe how their model can be extended 

to a multi echelon setting. 

Zhao et al. (2005) consider a decentralized dealer network in which each 

dealer can share its inventory with the others. Each dealer gives the high 
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priority to its own customers and the low priority to other dealers. They 

assume the critical level rationing and use the threshold clearing mechanism 

that Dehpande et al. (2003) propose. They analyze the system by 

constructing an inventory sharing game. 

We conclude the chapter with Table 2.1. It summarizes the stock rationing 

literature. The literature is classified on the basis of the backordering and lost 

sales cases. Moreover, the works on the production environment, i.e. 

capacitated replenishment channel, are also provided.  
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Table 2.1 Stock Rationing Literature 

  

Periodic review 

 

Continuous review 

 

Production 

environment 

 

 

 

 

 

Backordering 

 

 

Veinott(1965) 

Topkis (1968) 

Kaplan (1969) 

Nahmias and Demmy (1981) 

Moon and Kang (1998) 

Atkins and Katircioglu (1995) 

 

 

 

Nahmias and Demmy 

(1981) 

Teunter and Haneveld 

(1996) 

Dekker et al. (1998) 

Moon and Kang (1998) 

Deshpande et al. (2003) 

Melchiors (2003) 

Kocaga (2004) 

Arslan et al. (2005) 

Zhao et al. (2005) 

 

 

 

Ha (1997b) 

Ha (2000) 

Vericourt (2002) 

Gayon et al. (2005) 

 

Lost sales 

 

Topkis (1968) 

Evans (1968) 

Cohen et .al (1989) 

 

Melchiors et al. (2000) 

Dekker et al. (2002) 

 

 

Ha (1997a) 
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Chap t e r  3  

NOTES ON THE CRITICAL 
LEVEL POLICY AND RELATED 
LITERATURE 

 

In this chapter, we present our observations on the critical level policy with 

two demand classes and backordering under continuous review. These 

observations can also be extended easily to multiple demand class systems. 

We clarify many ambiguities resulting from the literature and position the 

contributions of Dekker et al (1998) and Deshpande et al. (2003), the two 

important works in the area. 

For the stock rationing problem, even with the exponential lead times, i.e. 

the simplest setting, there is no work in the literature that characterizes the 

optimal policy structure. Related literature concentrates on the critical level 

policy, which assumes static threshold level. Although it is known that 

critical level policy is not optimal, having a fixed threshold level makes it the 

easiest policy to analyze and implement. Moreover, in literature there is no 

agreement on the backorder clearing mechanism to be used within the 

critical level policy. An important reason for assuming clearing mechanisms 

other than the priority clearing is to make the analytical analysis possible. 

However, there is no work that clarifies the connection between the critical 

level policy and the priority clearing mechanism. Although Deshpande et al. 
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(2003) state that they propose a different clearing mechanism because they 

could not get any analytical results with the priority clearing mechanism, 

they do not assess the necessity of priority clearing when the critical level 

policy is used. 

We organize this chapter in two sections. In section 3.1, we explain why 

the priority clearing mechanism should be the natural consequence of the 

critical level policy. In section 3.2, we discuss different clearing mechanisms 

considered in the literature and also show that when 1Q = , the fill rate 

expressions of Deshpande et al. (2003) turn out to be the expressions given 

in Dekker et al (1998).   

Before proceeding with the sections of the chapter, we provide the 

following notation: 

iβ  = { }an arriving class i customer is served immediatelyP , i.e. fill rate for 

class i and i = 1,2.  

PC

iβ  = fill rate for class i when the critical level policy is used with the 

priority clearing mechanism, i = 1,2. 

AC

iβ  = fill rate for class i when the critical level policy is used with an 

alternative clearing mechanism, i = 1,2. 

iγ  =  average backorder time per customer for class i, i = 1,2. 

PC

iγ  = average backorder time per customer for class i when the critical level 

policy is used with the priority clearing mechanism, i = 1,2. 
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AC

iγ  = average backorder time per customer for class i when the critical level 

policy is used with an alternative clearing mechanism, i = 1,2. 

[ ] 1 2
1 1 1 2 2 2 1 1 1 2 2 2

ˆ ˆ(1 ) (1 )E TC A hI
Q

λ λ
π β λ π β λ π γ λ π γ λ

+
= + + − + − + +  is the 

expected total cost rate where A  is the fixed ordering cost, h  is the unit 

holding cost and I  is the average inventory. 

In this chapter and also in chapter 5, we use simulation results for 

comparison and performance evaluation purposes. The simulation runs are 

controlled by the total number of arrivals. We run the simulation until 

500,000 total arrivals in order to observe the steady state behaviors of the 

policies. To verify the accuracy of our simulation, we simulate the critical 

level policy with the following parameter set; 

1 25, 1, 3, 3, 2, 1r Q K Lλ λ= = = = = = where L is the leadtime. With the 

significance level 0.05 and 10 replications, for the fill rate for class 1 we 

obtained a confidence interval (0.92024, 0.920455) and for the fill rate for 

class 2 we obtained (0.124471, 0.124742). These confidence intervals are 

small enough to allow us to use the average of 10 replications for each case. 

 3.1 The Priority Clearing Mechanism vs. Other Clearing Mechanisms   

It is possible to define many different clearing mechanisms under the critical 

level policy. Each policy results in different service levels and expected cost 

rate due to allocating the order quantity in different ways between increasing 

the stock level and clearing the backorders of different customer classes. 

However, the critical level policy provides service to class 2 when the on 

hand stock is above K  and reserves all the stock below K  for class 1 

customers. Thus, we think that the natural clearing mechanism of the critical 
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level policy should be the one that postpones the clearance of class 2 

backorders until the on hand inventory reaches K , i.e. until filling the 

reserve stock of class 1 customers. This clearing mechanism exactly 

corresponds to the priority clearing. Hence, to make it a well-defined policy, 

the critical level policy should be defined with the priority clearing 

mechanism. With any other clearing mechanism, K  does not really 

corresponds to a threshold level under which all the stock reserved for class 

1.  

We verify the idea mentioned above by considering the effects of clearing 

mechanisms on the service levels, which are the performance measures of 

the system, for any fixed set of input policy parameters. It is obvious that 

upon arrival of replenishment order, the system should first clear class 1, 

high priority, backorders if there is any, because the time dependent 

backorder cost of class 1 is higher, that is 21 ˆˆ ππ > . After the clearance of 

class 1 backorders, if the order quantity is not depleted, one can choose to 

clear some class 2 backorders before inventory level reaches K  or s/he can 

first choose to increase the stock level up to K  and then clear class 2 

backorders. The latter one corresponds to the priority clearing mechanism. If 

any class 2 backorder is cleared before increasing the stock level up to K , let 

us call it alternative clearing, the resulting fill rate for class 1, 1
ACβ , is less 

than 1
PCβ . This is so because when the priority is given to clearing some or 

all class 2 backorders, the remaining order quantity may not be enough to 

increase the inventory up to K . Therefore, compared to the priority clearing, 

the number of future class 1 demands that finds the system in stockout 

increases.  

In addition to the decrease in the fill rate for class 1, clearing some class 2 
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backorders before the inventory hits K  does not provide any increase in the 

fill rate for class 2, i.e. 2 2
AC PCβ β= . This is so because fill rate gives the ratio 

of customers that are served immediately when they arrive. Under the critical 

level policy, class 2 arrivals are satisfied when the on hand stock level is 

between K and )( Qr + . Therefore, not only the priority clearing mechanism, 

any mechanism that requires the clearing of all backorders before increasing 

the stock level above K  results in a class 2 fill rate same as 2
PCβ , i.e. the fill 

rate for class 2 is independent from the clearing mechanism if the stock level 

increases above K  after the clearance of all backorders. These kinds of 

policies fully allocate the on hand inventory above K to the future arrivals of 

both classes.  

Deviating from the priority clearing mechanism and using an alternative 

clearing provides some decrease in the total backorder time of class 2 

demands. Giving priority to clear some class 2 backorders decreases average 

backorder time for class 2, i.e. 2 2
AC PCγ γ< . However, as we discussed above, 

compared to the priority clearing, such a clearing mechanism decreases the 

fill rate for class 1. Thus, there are more backorders from class 1 and so 

average backorder time for class 1 increases, i.e. 1 1
AC PCγ γ> . Increasing 

average backorder time for class 1 is not rational because 21 ˆˆ ππ > . 

Therefore, from the perspective of service levels, the fill rates and the 

average backorder times, priority clearing should be the natural consequence 

of critical level policy. 
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 3.2 Notes on Dekker et al. (1998) and Deshpande et al. (2003)   

Nahmias and Demmy (1981) work on the critical level policy for continuous 

review systems with backordering for the first time in the literature. They 

assume Poisson arrivals of two demand classes, deterministic leadtime and at 

most one outstanding replenishment order. The two most important works 

that generalize the setting of Nahmias and Demmy (1981) are Dekker et al 

(1998) and Deshpande et al. (2003). Without having any restriction on the 

number of outstanding orders, Dekker et al (1998) analyze the ( ), 1,K S S−  

policy and Deshpande et al. (2003) consider the more general ( ), ,K r Q  

policy. However, there are some ambiguities in these works. To point out 

those ambiguities and to set the connection between these two works we 

present a deeper analysis in this section.  

For the ( ), 1,K S S−  policy, i.e. the order quantity Q  is 1, Dekker et al. 

(1998) discuss three clearing mechanisms including the priority clearing 

after deriving expressions for the fill rates 1β  and 2β . Similar to the priority 

clearing, the other two mechanisms that Dekker et al. (1998) suggest also use 

the arriving order quantity to clear the oldest class 1 backorder first. 

However, if there is no class 1 backorder and the stock level is below K, one 

of the mechanisms gives the priority to clearing the oldest class 2 backorder 

instead of increasing the stock level. But the other mechanism gives the 

priority to increasing the stock if a class 1 demand triggered the arriving 

order; otherwise it gives the priority to clear the oldest class 2 backorder. If 

the stock level is at K , then both of the mechanisms clear the oldest class 2 

backorder if there is any, if not, they increase the stock. Thus, as in the case 

of the priority clearing, the stock level cannot be increased above K before 

clearing all the backorders. Therefore, all the three mechanisms result in the 
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same fill rate for class 2 as we discussed in Section 3.1. 

The fill rate expression for class 2 that Dekker et al. (1998) provide is the 

following: 

 
1

2
0

( , )
S K

x

p x Lβ λ
− −

=

= ∑  (3.1) 

In (3.1) ( ),p x Lλ is the Poisson probability of x  arrivals in the leadtime, and 

1 2λ λ λ= +  

The logic behind equation (3.1) is as follows: We know that the inventory 

position is at the order-upto-level S  for at any time point t . As in the 

analysis of Hadley and Whitin (1963), to satisfy a class 2 demand that 

arrives at t L+ , the leadtime demand should be at most inventory position at 

t minus 1K − . 

Dekker et al. (1998) get the fill rate expressions without considering any 

clearing mechanism. They claim that the expression given in equation (3.1) 

is exact because the fill rate for class 2 is independent of the clearing 

mechanism. However, we should point out that 2β  also depends on the 

clearing mechanism. The independence of 2β  only holds for the clearing 

mechanisms that clear all class 2 backorders before increasing the inventory 

level above K. The logic behind the equation (3.1) is only valid for the 

clearing mechanisms that belong to this category. As noted before, the 

clearing mechanisms of Dekker et al. (1998) all belong to this category. 

However, it is easy to show that their claim is not true in general by 

considering a counter example. If we define a mechanism in such a way that 

we clear the oldest class 2 backorder after the on hand inventory level 

reaches K+1, then under this clearing the fill rate for class 2 would be 
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certainly greater than the expression given in equation (3.1). Because the 

ratio of the time that the inventory level is above K  increases due to the 

postponement of clearing class 2 backorders. Then, the probability of 

satisfying an arriving class 2 demand, i.e. 2β , increases. 

The expression that Dekker et al. (1998) suggest for the class 1 fill rate is 

( )

1 ( )11
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1 2
0 0
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1 ! !
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S K y

i

e L yy
e dy

S K i

λ
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=

−
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The logic behind equation (2) is as follows: Class 1 demands are satisfied in 

the region that class 2 demands are satisfied. In addition, a class 1 demand 

that arrived a leadtime later than the time the system observed will be filled 

if there will be at least one stock on hand, i.e. there should be at most 1K −  

class 1 demands within the leadtime. Equation (3.2) tries to capture this fact 

by conditioning on the “hitting time” of the critical level. Dekker et al. 

(1998) claim that “hitting time” is ( )S K−  stage Erlang random variable 

with parameter 21 λλ + . 

As Dekker et al. (1998) state that the expression in (3.2) is independent of 

the clearing mechanism and so it is an approximation of the realized fill rate 

for class 1. However, there are some other problems related to this 

approximation. It is true that at any time point the inventory position is S , 

but rationing decision depends on the on-hand stock level. Therefore, their 

“hitting time” is not the real hitting time of critical level K  if the on hand 

level is not S  at the time when the system is observed. The inventory level 

hits K  after ( )S K−  demand arrivals only if it starts at S . Moreover, even 

though it is not mentioned, the expression in (3.2) assumes that rationing 

continues until the end of the leadtime once it starts. This means that the 
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effect of incoming replenishment orders within the leadtime are ignored. 

Replenishment orders may increase the inventory level above K . Therefore, 

within the leadtime system may again start to satisfy class 2 demands. No 

replenishment order arrival within the leadtime is only possible if the 

inventory level is at S  when the system is observed, i.e. no outstanding 

orders. This is equivalent to at-most-one-order-outstanding assumption 

although the authors claim the otherwise. Therefore, if the steady state 

probability of being at level S  decreases, the approximation gets worse 

dramatically. By increasing the traffic rate this situation can be observed. 

Before the comparison of the realized fill rate for class 1 and the 

approximation of Dekker et al. (1998), let us analyze the clearing mechanism 

and the fill rate expressions of Deshpande et al. (2003). They consider 

( ), ,K r Q  policy and proposes the threshold clearing mechanism that allow 

clearing some class 2 backorders before the inventory level reaches to K . 

Later Deshpande and Ryan (2005) also use the threshold clearing 

mechanism. Under this mechanism Deshpande et al. (2003) define a clearing 

position that starts at r Q+  when an order is placed. Up to the threshold 

level K  clearing position decreases with the total demand rate 21 λλλ += . 

Then, it continuous decreasing at rate 1λ . When a replenishment order of size 

Q arrives, the rules to apply the threshold clearing are as follows: 

1. Clear all class 1 and class 2 backordered demand that arrived before the 

clearing position hits K  on the basis of FCFS rule.  

2. Clear any remaining class 1 backordered demand if possible with the 

remaining order quantity. Continue to backorder all class 2 demand that 

arrive after the clearing position hits K . 
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Figure 3.1 summarizes the threshold clearing mechanism for a typical 

cycle. At time jt , thj order is placed. At 2Bt on hand stock hits K and the 

system start to backorder the class 2 demands. At 1Bt  the on hand stock is 

depleted. And Kjt is the time that the clearing position of this specific order 

hits K . After the completion of the clearing procedure, clearing position and 

the on hand inventory meet at the same level. 

With the threshold clearing mechanism, Deshpande et al. (2003) enables 

to get the exact steady state characteristics of the system. However, in 

contrast to the priority clearing, threshold clearing fills some class 2 

backlogged demand before filling all class 1 backlogged demands.  

  FIGURE 3.1 Threshold Clearing Mechanism 

  As in the case of Figure 3.1, if an order is placed at time t , it will arrive at 

time t L+ . Deshpande et al. (2003) define ),( LttD + to denote the total 

demand between the placement and the arrival of the replenishment order. 

Then, if KQrLttD −+≤+ ),(  then all type of backorders are cleared and 

on hand stock is increased to ),( LttDQr +−+ , which is greater or equal to 
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K . This is so because, ),( LttDr +−  corresponds to the level after 

subtracting all satisfied and backordered demands, and this level plus the 

order quantity Q carried the stock level to at least K .  This implies that if the 

stock level is at or above K , there is no backorders of any type. As in the 

case of the clearing mechanisms that Dekker et al. (1998) suggested, from 

the discussion in Section 3.1, the threshold clearing mechanism must result 

in the same fill rate for class 2 with the priority clearing mechanism. 

Consequently, the expression in Equation (3.3), which Deshpande et al. 

(2003) derive under the threshold clearing, must be exactly the same for the 

priority clearing mechanism. 
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Therefore, we can get (3.3) directly without assuming any specific clearing 

mechanism: As in the analysis of Hadley and Whitin (1963), by conditioning 

on the inventory position at any time point t , which is uniform on 

],1[ Qrr ++ , we can get the distribution of on hand stock level by 

considering the lead time demand. Furthermore, to satisfy a class 2 demand 

that arrives at t L+ , the leadtime demand should be at most inventory 

position at t minus K-1. This logic is only valid for the clearing mechanisms 

that our observation is applicable, i.e. 2β  is independent from the clearing 

mechanism if the stock level increases above K  after the clearance of all 

backorders. 

Note that, by assuming 1Q =  and 1r S= − , we can get equation (3.1), 2β  

of Dekker et al. (1998), from equation (3.3). This is a verification of our 

observation. Moreover, we test the validity of our observation using 

simulation results. For 5 cases, which illustrate totally different scenarios by 
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considering different arrival rates, leadtimes and ( ), ,K r Q  values, Table 3.1 

shows the simulation results of 2β  under the priority clearing and the 

expression given in equation (3.3).  

TABLE 3.1 Comparison of the class 2 fill rates that are obtained with 

threshold clearing and priority clearing 

( )1 2, ,Lλ λ  ( ), ,K r Q  2β  
(threshold clearing) 

2β    
(priority clearing) 

(0.3, 0.7, 8) (1,10,20) 0.964 0.964 
(0.3, 0.7, 8) (5,15,20) 0.978 0.978 

(1, 1, 1) (1,1,1) 0.135 0.135 
(3, 2, 1) (5, 3, 4) 0.011 0.011 
(4, 6, 1) (2, 8, 5) 0.344 0.344 

As the last observation, it is important to note that when 1=Q , the fill rate 

expression for class 1 that Deshpande et al. (2003) provides for the threshold 

clearing turns out to be the approximation of Dekker et al. (1998), which is 

given in equation (3.2). Interestingly, Dekker et al. (1998) construct the 

expression in (3.2) without assuming any clearing mechanism, but it gives 

the exact 1β  under threshold clearing mechanism when 1=Q .  

When 1=Q and 1−= Sr , 1β  expression of Deshpande et al. (2003) is 

 1 1
0

1 ( ; ; ) ( , )
x S

x S j

b x S K K j p x Lβ α λ
∝ −

= =

= − − + +∑∑  (3.4) 

In (3.4), jSxjK

JSxjK

KSx
jKKSxb −−+

−
−−+

+−
=++− )1(

)!()!(

)!(
);;( 111 ααα , i.e. 

a binomial probability, and 1
1

λ
α

λ
= . 

The expression in equation (3.4) means that 1β  is equal to one minus the 
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probability that the leadtime demand for both classes is at least S and at least 

K of the leadtime demand is from class 1. But, we can interpret equation 

(3.4) in a different way. 1β of (3.4) is composed of two parts. First part is the 

probability that the leadtime demand for both classes is at most 1S K− − . 

The second part is the probability of S K−  total demand within the 

leadtime, i.e. probability of hitting K within the leadtime, plus at most K-1 

class 1 demands in the remaining part of the leadtime. Then at least one unit 

of inventory is available at the end of the leadtime, i.e. the total demand that 

decreases the inventory is ( ) ( )1 1S S K K− = − + − . This interpretation of 

(3.4) is exactly what the equation (3.2) says, which is the class 1 fill rate 

approximation of Dekker et al. (1998).  

 As mentioned before, Dekker et al. (1998) derive the approximate 1β  

expression, equation (3.2), without assuming any clearing mechanism and 

Deshpande et al. (2003) work with the threshold clearing mechanism 

because they are “unable to perform an analysis under the priority clearing”. 

Moreover, for some parameter sets they test the performance of the threshold 

clearing mechanism by comparing it with the simulation results of priority 

clearing. Therefore, for 1=Q , we compare their class 1 fill rate expressions, 

which are equal to each other, with simulation results of the system under the 

critical level policy with priority clearing mechanism. Table 3.2 

demonstrates this comparison for different arrival rates. We choose 1L =  

and 1K = , 4r = . As we noted before, if the steady state probability of being 

at level S  decreases, the approximation of Dekker et al. (1998) gets worse 

dramatically. And by increasing the traffic rate this situation can be 

observed. Table 3.2 illustrates this fact. Moreover it shows that equation 

(3.2) and (3.4) gives the same results as expected.  
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As seen from Table 3.2, for the priority clearing mechanism, equations (3.2) 

and (3.4) always underestimate the class 1 fill rate. We already stated that the 

threshold clearing mechanism results in a lower fill rate for class 1 compared 

to the priority clearing mechanism. However, we can also explain the 

situation by just considering the approximate fill rate expression for class 1 

that is provided by Dekker et al. (1998). Equation (3.2) assumes that the 

inventory level is at S when the system is observed and it decreases with rate 

1 2λ λ+  until K , and then decreases with 1λ . Equivalently, this is same as 

starting at any inventory level and assuming that the replenishment orders 

clear all the backorders within the leadtime and increases the inventory level 

up to S .  This is a direct application of the logic that is used to derive the 

steady-state distribution of the inventory level for the ( )1,S S− policy 

without rationing, i.e. inventory level is S  minus the leadtime demand, 

because if no demand arrives replenishment orders carries the inventory level 

to S . However, for the ( ), 1,K S S− policy, replenishment orders do not clear 

class 2 backorders and increase the inventory level if it is below K . 

Increasing the stock instead of clearing a class 2 backorder increases the fill 

rate for class 1. Therefore, by assuming that all the backorders are cleared 

within the leadtime, Equation (3.2) underestimates the fill rate for class 1.    

 
 

TABLE 3.2 Comparison of the class 1 fill rates   
 

( )1 2,λ λ  1β  
(Dekker et al. (1998)) 

1β    
(Deshpande et al. 

(2003)) 

1β    
(Simulation) 

(1,1) 0.968 0.968 0.973 

(1.5,1.5) 0.881 0.881 0.907 

(2,1.5) 0.799 0.799 0.843 

(8,1.5) 0.050 0.050 0.211 
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 Before concluding the chapter we summarize our observations: 

1. Priority clearing should be the natural clearing mechanism of the 

critical level policy. Any alternative mechanism negatively affects 

the service levels for class 1 without any increase in the fill rate for 

class 2. 

2. All clearing mechanisms that clear all backorders before increasing 

the inventory level above K  result in the same fill rate value for class 

2.  

3. Class 2 fill rate expression of Dekker et al. (1998) is exact only for 

the clearing mechanisms that clear all backorders before increasing 

the inventory level above K . 

4. The approximation of Dekker et al. (1998) for the fill rate for class 1 

is valid if we assume at-most-one-order-outstanding. 

5. For 1Q = , fill rate expressions of Deshpande et al. (2003) turn out to 

be the expressions that Dekker et al. (1998) provide. 

6. For the priority clearing mechanism, class 1 fill rate expressions 

provided by Deshpande et al. (2003) and Dekker et al. (1998) always 

underestimate the realized fill rate for class 1. 
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 Chap t e r  4  

AN EMBEDDED MARKOV 
CHAIN APPROACH  

 

In this chapter, we present a new method for the exact analysis of 

continuous-review lot-per-lot inventory systems with backordering under the 

critical level rationing policy on two priority classes.  This method is based 

on the observation that the state of the inventory system sampled at multiples 

of the supply leadtime evolves according to a Markov chain.  Our analysis 

yields the steady-state distribution for the inventory system, which can be 

used to obtain any long-run performance measure.  An exact steady-state 

analysis for the inventory system was not available up to this point.  

The one-step transition probabilities of the embedded Markov chain 

corresponding to the inventory system are generated using a recursive 

procedure we develop in Section 4.1. This procedure is based on four 

recursion equations that are valid in different regions of the state space of the 

Markov chain and two equations for the boundaries of the state space.  

Section 4.2 is devoted to steady-state analysis of the chain.  In this section, 

we show that we can get steady-state probabilities of interest with desired 

accuracy by considering transition probabilities corresponding to a subset of 

the state space.  The application of this technique is mandatory for our 

problem since the state space for the embedded Markov chain is infinite.  

Finally, we demonstrate that the technique converges to acceptable accuracy 

levels fairly quickly by reporting the results of the technique on an instance 
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of the inventory system considered.  

 4.1.  The Embedded Markov Chain 

We assume inventory for an item is held and replenished over time in order 

to keep up with the demand from two customer classes, which occur 

according to two Poisson processes with rates 1λ and 2λ , accordingly.   This 

means that the total demand also follows a Poisson process with rate 

1 2λ λ λ= + .  Any unmet demand is backlogged. The inventory policy is a lot-

per-lot ( )1,S S−  with the critical level rationing and the priority clearing 

mechanism.   

In the analysis of continuous-review inventory systems, the state of the 

system is usually selected as the inventory level.  But under rationing policy, 

there may be class 2 backorders when the inventory level is under the 

support level.  Thus, one needs a two-dimensional state-space to keep track 

of the inventory level and the number of class 2 backorders. 

 To define the state of the system not in terms of the inventory level, but 

in terms of the number of outstanding replenishment orders lends itself better 

to analysis.  Therefore, we define the state of the system at time t  as 

( )( ), ( )X t B t , where ( )X t  is the number of outstanding replenishment orders 

at time t and ( )B t  is the number of class 2 backorders at time t.  Under a lot-

for-lot inventory policy, ( )X t  is also equal to the number of demand arrivals 

of both types in ( , ]t L t− , since each demand arrival triggers a replenishment 

order.  Notice that the inventory level at time t, 

 ( ) ( ) ( ),I t S X t B t= − +  (4.1) 
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since demand during ( , ]t L t−  reduces the inventory level from the inventory 

position at time t L− , which is S, given that it does not correspond to a class 

2 backorder.  There is no backorder if the inventory level is above the 

support level K, since all backorders need to be cleared at the support level, 

i.e. 

 ( ) 0 ( )B t if X t S K= < −  (4.2) 

If the inventory level is at K or lower, only class 2 demands that arrive after 

the inventory level hits K would be backordered.  Even if all the demand 

arrivals in ( , ]t L t−  belong to class 2, the maximum number of backorders 

would be ( ) ( )X t S K− − .  Thus, 

 0 ( ) ( ) ( ) ( )B t X t S K if X t S K≤ ≤ − − ≥ −  (4.3) 

Conditions (4.2) and (4.3) specify the feasible states and thereby the state 

space of the embedded Markov chain, while Equation (4.1) specifies the 

inventory level corresponding to each state of the state space. 

 Given that we know the state of the system at time t, it is possible to 

derive the probability that the system reaches a certain state at time t+L.  If 

we derive this probability for all feasible states at time t, and at time t+L, 

then we obtain an embedded Markov chain for the inventory system.  These 

probabilities are the one-step transition probabilities of the Markov chain. 

They determine the probabilistic evolution of the inventory system at 

multiples of leadtime.  One should note that the original continuous-time 

process describing the evolution of the states at any point in time is 

regenerative.  The process regenerates itself every time there is no 

outstanding replenishment order in the inventory system, i.e., when ( ) 0X t =  

and ( ) 0B t = . Since the underlying continuous-time process is regenerative, 
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the process is ergodic and the limiting distribution of the process exists (See 

Stidham 1974).  When the number of transitions for the embedded Markov 

chain tends to infinity, the probabilities observed will be the probabilities for 

the continuous-time process as t → ∞ .  Thereby, the limiting distribution of 

the embedded Markov chain has to be the same with the underlying 

continuous-time process, i.e., 

{ } { }lim ( ) , ( ) lim ( ) , ( )
t n

P X t x B t b P X nL x B nL b
→∞ →∞

= = = = = .   

Thus, the limiting distribution of the embedded Markov chain is sufficient 

for statistical characterization of the inventory system in the long run.  

 One can observe that one of our state variables X(t), sampled at multiples 

of leadtime, evolves itself according to an embedded Markov chain.  

Moreover, the one-step transition probabilities of this embedded Markov 

chain are independent of the origin state, i.e. 
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L t t L L L
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L
P X t L x X t x P D x e for x

x

λ λ−
++ = = = = = =

  (4.4) 

The evolution of X(t), number of outstanding replenishment orders, is fully 

independent of the rationing policy.  The result stated in (4.4) is the basis of 

the steady-state analysis of ( )1,S S−  inventory systems (see Hadley and 

Whitin (1963) pages 204-205).  A direct implication of (4.4) is that the 

distribution of X(t) converges to its limiting distribution at t L= .  Thus, we 

are able to decouple one of the dimensions of the two-dimensional chain, and 

solve it independently.   This simplifies our analysis considerably. 
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We can express all first step probabilities as  

( ) ( ){ }0 0( ) , | ( ) ,L LP X t L x B t L b X t x B t b+ = + = = =  

The probabilities that relate to reaching an inventory level above the support 

level K can be obtained directly from (4.4) as 

( ) ( ){ } { }
( )

0 0 ( , ]

0 0

( ) , 0 | ( ) ,
!

for 0 , for all feasible ( , ) pairs,

Lx

L

L t t L L

L

L

L
P X t L x B t L X t x B t b P D x e

x

x S K x b

λ λ−

+
+ = + = = = = = =

≤ ≤ −

(4.5) 

since there will be no backorders at time t+L. 

 One needs considerably more effort in order to obtain other one-step 

transition probabilities.  Since we know the distribution of X(t+L) and the 

fact that the distribution is independent of X(t) and B(t),  we can use this for 

our objective in 

 

( ) ( ){ }

( ) ( ){ }
( )

0 0

0 0
0

( ) , | ( ) ,

| ( ) , ( ) ,
!

L

L

L L

x

L

L L

x L

P X t L x B t L b X t x B t b

L
P B t L b X t L x X t x B t b e

x

λ λ∞
−

=

+ = + = = = =

+ = + = = =∑
.   (4.6)     

Thus, we need to compute  

 

 ( ) ( ){ }0 0| ( ) , ( ) ,L LP B t L b X t L x X t x B t b+ = + = = =  (4.7) 

for all feasible state pairs ( )0 0,x b  and ( ),L Lx b .  This is the probability that 

there are bL units of backorder at time t+L, given that there are b0 units of 
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backorder at time t, x0 demand arrival occurs in ( , ]t L t− , and xL  demand 

arrivals occurs in ( , ]t t L+ .   Since arrivals occur according to a Poisson 

process, the unordered arrival times in ( , ]t L t−  are x0 independent random 

variables with uniform distribution on ( , ]t L t−  and the unordered arrival 

times in ( , ]t t L+  are xL independent random variables with uniform 

distribution on ( , ]t t L+ .  Each demand arrival in ( , ]t L t−  triggers a 

replenishment order that arrives exactly in L units of time.  This means that 

replenishment order arrival times in ( , ]t t L+  are x0 independent random 

variables with uniform distribution on ( , ]t t L+ .  Moreover, since demand 

arrival times in ( , ]t L t−  and ( , ]t t L+  are independent, the xL demand and 

the x0 replenishment arrival times in ( , ]t t L+  are all independent from each 

other.    

Since the number of order and replenishment arrivals during ( , ]t t L+  is 

known, it is the order of the replenishment and demand arrivals, and the class 

of the demand arrivals, which determines the number of backorders reached 

at time t+L.   Unfortunately, it is not possible to obtain a closed form 

expression for the probability expression (4.7).  Yet, it is still possible to 

compute these probabilities using a recursive procedure.  This procedure is 

based on a related probability expression, which can be expressed as 

 
( ) ( ) ( ) ( ) ( ){ }| , ' , ' , '

                                                                      for '

L LP B t L b X t L x B t b Y t y Z t z

t t t L

+ = + = = = =

≤ ≤ +
 (4.8) 

 

where Y(t’) is the number of demand arrivals in ( ', ]t t L+ , and Z(t’) is the 

number of replenishment arrivals in ( ', ]t t L+ , whose occurrence times are 
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all independent and identically distributed on ( ', ]t t L+ .  The reader should 

note that the probabilities in (4.8) do not depend on t’.  This independence is 

due to fact that once the number of arrivals during ( ', ]t t L+  is known, the 

duration of the period does not change anything.  We can now express (4.7) 

in terms of (4.8) as 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

0 0

0 0

| , ,

| , ' , ' , '

for ' .

L L

L L L

P B t L b X t L x X t x B t b

P B t L b X t L x B t b Y t x Z t x

t t t L

+ = + = = = =

+ = + = = = =

≤ ≤ +

(4.9) 

The conditions of the conditional probability (4.8), do not include the 

number of outstanding replenishment orders at time t’.  But, given 

( ) ( ) ( ), ' , 'LX t L x Y t y Z t z+ = = = , this quantity is readily determined by 

 ( ') ( ) ( ') ( ') LX t X t L Z t Y t x z y= + + − = + −  (4.10) 

The logic behind Equation (4.10) can be explained as follows:  In order to 

find the number of outstanding replenishment orders at the end of the 

period ( ', ]t t L+ , i.e., ( )X t L+ , one should add the difference between the 

number of demand arrivals in ( ', ]t t L+  (which trigger new replenishment 

orders) and the number of replenishment arrivals in ( ', ]t t L+  (which clear 

the outstanding replenishment orders) to the number of outstanding 

replenishment orders at the beginning of the period. 

 The recursive procedure devised to compute the probabilities defined by 

(4.8) is based on the fact that the probabilities conditioned on the number of 

arrivals that occur in ( ', ]t t L+ , can be written in terms of the same kind of 

probabilities conditioned on fewer arrivals during the same period.  In order 

to write these relations, we need to consider what happens next depending on 
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the nature of the first arrival in ( ', ]t t L+ .  There are three possible events that 

can take place:  a replenishment order arrival, a class 1 demand arrival, and a 

class 2 demand arrival.  Since the arrivals in ( ', ]t t L+  will be uniformly 

distributed on ( ', ]t t L+ , the probability that a replenishment order arrives 

first is the proportion of outstanding replenishments to the total number 

arrivals, i.e. ( )( ') / ( ') ( ')Z t Z t Y t+ . The complement of this probability, 

( )( ') / ( ') ( ')Y t Z t Y t+ , is the probability that a demand arrival occurs first.  

This demand arrival will be of class 1 with probability ( )1 1 1 2/p λ λ λ= +  and 

will be of class 2 with probability 2 11p p= − .   

The effect of this first arrival depends on the number of outstanding 

replenishment orders at that time as a result of rationing policy.  If the 

number of outstanding replenishment orders is less than S-K, then there is no 

backorder in the system and a demand arrival does not cause any backorder 

either, i.e., 

( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }

if 0 1, then
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y
P B t L b X t L x B t Y t y Z t z
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+ = + = = = = =

+ = + = = = = −
+

+ + = + = = = − =
+

(4.11) 

 

If the number of outstanding replenishment orders is exactly S-K, again 

there is no backorder at the system.  If a replenishment order arrives first, 

then the state will move to the region of Equation (4.11).  If a class 1 demand 
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arrives first, the inventory level drops by one; and if the class 2 demand 

arrives first, that demand is backordered and the inventory level remains the 

same, i.e., 
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(4.12) 

If the number of outstanding replenishment orders is greater than S-K and 

the inventory level is still at K, then the system is at the clearing position. 

This means, if a replenishment order arrives first, one unit of class 2 

backorder is cleared.  If a class 1 demand arrives first, the inventory level 

drops by one; and if a class 2 demand arrives first, that demand is 

backordered and the inventory level remains the same, i.e., 
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(4.13) 
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Finally, if the number of outstanding replenishment orders is greater than S-

K and the inventory level is less than K, than the replenishments do not 

cause any clearing, but increase the inventory level.  The demand arrivals 

either decrease the inventory level or are backordered depending on their 

class, i.e., 
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(4.14) 

So far, we have defined four different regions in our state space and we 

have derived four equations ((4.11)-(4.14)), one for each region, which 

expresses the probabilities in (4.8) as a function of probabilities of the same 

type, which correspond to smaller number of arrivals.   This means if we 

know the probabilities corresponding to fewer arrivals, then we can compute 

those probabilities corresponding to more arrivals.  This fact constitutes the 

basis of the recursive procedure we propose.  All that is needed to complete 

the procedure are the boundary equations, which determine the probabilities 

corresponding to no replenishment arrival and to no demand arrival.  From 

these probabilities, all other probabilities are computed in a recursive 

fashion. 

The first boundary condition determines the probabilities corresponding to 

no demand arrival.  Under this condition, only a certain number of 

replenishments arrive in ( ', ]t t L+ .  These replenishments first increase the 
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inventory level to the support level.  If there are more replenishment orders, 

they clear the class 2 backorders.  If there are still more replenishments they 

continue increasing the inventory level, i.e., 
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 (4.15) 

{ }1 ⋅ is the indicator function. It is 1 if the condition holds and  0 otherwise. 

The second boundary condition determines the probabilities 

corresponding to no replenishment arrival.  Under this condition, only a 

certain number of demands arrive in ( ', ]t t L+ .  These demands first decrease 

the inventory level to the support level.  If there are more demands to arrive, 

class 1 demands decrease the inventory and class 2 demands increase the 

number of class 2 backorders.  The second boundary condition does not yield 

a close form expression unlike the first.  We again obtain an equation that 

needs to be solved recursively, which is 
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 (4.16) 
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The probability ( ) ( ) ( ) ( ) ( ){ }| , ' , ' 0, ' 0L LP B t L b X t L x B t b Y t Z t+ = + = = = =  

is already determined by Equation (4.15).  Starting with this probability, one 

can obtain the probabilities on the second boundary by increasing ( )'Y t  one 

by one. 

 With Equations (4.11)-(4.16), one can start with the one-step transition 

probabilities corresponding to ( )' 0Y t = , and ( )' 0Z t = ; and then obtain the 

rest of the one-step transition probabilities increasing ( )'Y t  and then ( )'Z t  

one by one in a recursive fashion. Thus, all the transition probabilities can be 

generated with this procedure. The only problem is that the state space of the 

embedded Markov chain is infinite and it would take infinite amount of time 

to generate all the elements of the Markov transition matrix. Thereby, we 

have to find a way of working with a finite version, i.e., a truncation, of the 

original matrix. 

 4.2.  Steady-State Analysis 

We consider a subset of the state space for which max0 ( )X t D≤ ≤ . maxD  is 

the maximum number of outstanding replenishment orders we consider.  

Since the second dimension of the state space, the number of class 2 

backorders, is limited by the number of outstanding replenishment orders 

through (4.2) and (4.3), no truncation is needed for this dimension, i.e., 

max( ) ( )B t D S K≤ − − . One should note that when we truncate the state-space 

as described, we are effectively ignoring an infinite number of states whose 

total probability is equal to { }max( )P X t D> . Since X(t) has a Poisson 
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distribution with parameter Lλ  as stated in  (4.4), we are ignoring the tail of 

Poisson distribution. Thereby, as maxD  increases, the probability 

corresponding to the ignored part of the state space goes to zero rapidly. 

In order to perform the steady-state analysis, we need to generate the 

Markov transition matrix for the chain.  Since we are unable to generate the 

full matrix, we generate a submatrix of the transition matrix, which 

corresponds to the states that are conserved by the truncation, i.e. that are not 

ignored.  We call this submatrix Q.  The number of states corresponding to 

Q is max max( - ) ( - ( - ) 1)( - ( - ) 2) / 2S K D S K D S K+ + + . When ( ) ( )X t S K< − , 

then ( ) 0B t = , which means there are exactly ( - )S K  states corresponding to 

that part of the state space.  When ( ) ( )X t S K≥ − , then the number of 

feasible ( )B t  values increases one by one starting from one 

for ( ) ( )X t S K= − .  Then the total number of states in this part of the state 

space forms an arithmetic progression, which is 

max max( - ( - ) 1)( - ( - ) 2) / 2D S K D S K+ +  at max( )X t D= .   

We consider a lexicographical ordering of these states in order to map the 

states to the columns and rows of the transition matrix.  Then using the same 

idea one can easily map the state ( ),x b  to the ( , )thr x b  column and row in 

the transition matrix, where 

1, if
( , )

1 ( - ( - ))( -1- ( - )) / 2 , if .

x x S K
r x b

x x S K x S K b x S K

+ ≤ −
= 

+ + + > −
 (4.17) 

 The number of states increases with maxD  and is in the order of 2
maxD .  

The recursive procedure discussed in the previous section computes the 

probability given in expression (4.8), for all feasible xL, bL, b, y, and z values.  
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Each of these dimensions is bounded by maxD , since our truncation neglects 

the event that the number of demand or replenishment arrivals during 

leadtime is greater than maxD .  This means the computational complexity of 

the recursive algorithm is ( )5
maxO D .  Thus, as a result of a computational 

effort of ( )5
maxO D , we are able to obtain the matrix Q, which is a finite 

submatrix of the original Markov transition matrix, which is infinite. 

 One could claim that once the truncation is performed, one does not have 

the original Markov chain, thereby an analysis based on this truncation 

would only be approximate.  Although this claim is correct in the strictest 

sense of approximation, there is a theory in computational linear algebra, 

which states that one can get exact upper and lower bounds for steady-state 

probabilities corresponding to the nontruncated states by considering a 

truncated version of an irreducible Markov chain.  The reader is referred for 

the theory behind the procedure giving the bounds to a paper by Courtois and 

Semal (1984).   

It is observed that the upper and lower bounds for our problem converge 

together rapidly as maxD  is increased.  This is due to the additional structure 

our Markov chain possesses.   Thus, we can get the steady-state probabilities 

with any desired accuracy. 

 In order to explain the procedure suggested by Courtois and Semal 

(1984), let us call the Markov transition matrix P.  The partitioning of P into 

submatrices corresponding to truncation states and to ignored states can be 

expressed as 



CHAPTER 4 AN EMBEDDED MARKOV CHAIN APPROACH 

 44

 
 

=  
 

Q A
P

B C
.  (4.18)                                                             

 

One should note that Q is not a transition matrix, and thereby Q and (I-Q) 

are invertible given that P is a transition matrix corresponding to an 

irreducible chain.  Let π  be the steady-state probabilities vector 

corresponding to truncation states and iπ  the one corresponding to ignored 

states.  Part of steady-state equations can be given as 

 ( ) ( )
1−

⇒ = ⇒ =i i iπQ+ π B = π π I -Q π B π π B I -Q  (4.19) 

 

Equation (4.19) means that we could find steady-state probabilities 

corresponding to truncation states, if the vector iπ B  were known. Based on 

this observation, one can construct another Markov transition matrix, P% , the 

truncated chain’s transition matrix, by lumping all the ignored states into a 

single state, i.e. 

 

 [ ]1 ... 1
1

T
where

− 
= = − 

Q 1 Q1
P 1

x x1
%  (4.20) 

The row vector x represents the probability vector at which the process 

corresponding to the truncated chain makes a transition from the lumped 

state to the other states. 

Let us consider the matrix P%  when (1/ )= i ix π 1 π B .  The vector iπ B  can 
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be interpreted as the probability vector at which the process makes a 

transition from the ignored states into truncated states.  Then (1/ )i iπ 1 π B  is 

the same transition probability under the condition that the process is in the 

ignored part of the state space. Therefore, the lumped state here mimics the 

dynamics of the ignored states. The steady-states probabilities corresponding 

to the matrix (4.20), will be the same with the ones of the original chain 

given that (1/ )= i ix π 1 π B . In order to show this, let us call the steady-state 

probabilities vector corresponding to truncation states under the new 

transition matrix P%  as π%  and the steady-state probability for the lumped 

state as lπ .  Steady-state equations corresponding to truncation states are 

( ) ( ) ( )

( ) ( )
1

1/ 1/

                                                                1/

l l

l

π π

π
−

⇒ =

⇒ =

i i i i

i i

πQ + π 1 π B = π π I -Q π 1 π B

π π 1 π B I -Q

% % %

%

 (4.21) 

The equation for the lumped state is not needed since it is linearly 

dependent with the equations in (4.21).  This means that the steady-state 

probabilities can be obtained by setting lπ  to 1, then finding the rest of the 

probabilities using (4.21), and finally normalizing them, i.e. 
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 (4.22) 

This means that the both transition matrices, P and P% , yield the same steady-

state probabilities for truncation states.  Thereby, one could obtain certain 

steady-state probabilities of an infinite state space Markov chain, using a 
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finite state space chain.  The only problem is that in order to construct the 

finite chain, one needs to set vector x to (1/ )i iπ 1 π B , which requires the 

steady-state solution of the original.  Since the solution is what we are after, 

this result does not have practical relevance.  Yet based on this result, exact 

upper and lower bounds can be developed for steady-state probabilities of 

interest. 

 The idea behind the procedure yielding the bounds is as follows:  Since 

the vector (1/ )i iπ 1 π B  representing the transitions from the lumped state to 

the truncation states in P%  cannot be determined without having the steady-

state solution of the original chain, one can try to see what happens if any 

vector x of the same dimension is used instead of (1/ )i iπ 1 π B . If we can find 

the steady-state probabilities vector solution set corresponding to all possible 

vectors, then the theory of Courtois and Semal (1984) states that the actual 

steady-state probabilities vector π% , which is equal toπ , has to be an element 

of this set.  Moreover, it has been shown that this solution set forms a 

polyhedron, whose vertices are the solutions of the truncated chain with 

T= ix e  for all i’s where ie ’s are the standardized basis vectors 

( ( )0 ... 0 1 0 ... 0
T

=ie ).  Since (1/ )i iπ 1 π B  is an element of the convex 

hull defined by the standardized basis vectors, it makes sense that the 

solution corresponding to (1/ )= i ix π 1 π B  is an element of the convex hull 

defined by the solutions corresponding to the basis vectors. 

 One does not have to solve a different system of equations for every 

basis vector.  In order to find all the solutions, it is enough to compute the 

inverse of (I-Q). Let xπ%  be the solution of the truncated chain when the 

vector x is used.  Then, 
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 ( )
( )

( )
1 1

1

1

1

lπ
− −

−
= ⇒ =

+
x xπ x I -Q π x I -Q

x I -Q 1
% %  (4.23) 

using the same steps with the derivations given in (4.21) and (4.22).  

Basically T
ie

π%  can be obtained by taking the ith row of ( )
1−

I -Q  and then 

applying normalization to it. The computational complexity of the inverse 

operation with LU factorization is O(n
3
)  where n is the dimension of the 

matrix Q.  Thence, since only one inverse operation is needed in order to 

apply our procedure, the computational complexity of the truncation 

algorithm is also O(n
3
), where n is the number of states that are not ignored 

in the truncation.   

 The bounds for individual steady-state probabilities can be obtained, 

once the polyhedron including the steady-state probability vector is known, 

by constructing a larger rectangular polyhedron covering the original 

polyhedron.  The constructed polyhedron is defined by inequalities involving 

one dimension at a time.  These bounds are given explicitly in Dayar and 

Stewart (1997).   Let zi,j be the jth element of the vector T
ie

π% , which is the 

steady-state probability corresponding to the jth state in Markov chain 

defined by truncated chain with T= ix e .  Then the upper and the lower 

bounds for the steady-state probability of state j are 

 ( ) ( )inf
, ,max min ;1 maxj i j i k

i i
k j

z zξ
≠

 
= − 

 
∑  (4.24) 

 ( ) ( )sup
, ,min max ;1 minj i j i k

ii
k j

z zξ
≠

 
= − 

 
∑  (4.25) 

In our problem, the size of Q is determined by the maximum demand 



CHAPTER 4 AN EMBEDDED MARKOV CHAIN APPROACH 

 48

considered during leadtime, maxD .  Since the dimension of Q increases with 

maxD  and is in the order of 2
maxD .  This means the algorithm providing 

bounds on the steady-state probabilities has a computational complexity of 

( )6
maxO D .  The recursive algorithm generating the matrix Q, has a 

computational complexity of ( )5
maxO D  as we have discussed before. Thus, 

the computational complexity of the whole procedure we suggest is 

( )6
maxO D .  This means that as maxD  increases the computation times increase 

accordingly.  Yet, as maxD  increases, a greater portion of the system’s 

dynamics is included in the matrix Q, which means the quality of the bounds 

provided by our algorithm increases, i.e., bounds become tighter.  We know 

that, when we set maxD , we are effectively ignoring those states whose total 

steady-state probability is 

 { }
( )

max

max
1

( )
!

x

L

x D

L
P X t D e

x

λ λ∞
−

= +

> = ∑  (4.26) 

 

Since the Poisson probability mass function tends to zero rapidly beyond its 

mean value, one should select a maxD  that is larger than the mean demand 

during leadtime, and increase it until the bounds are tight enough to yield the 

desired accuracy.  One should note that in a setting where ( )1,S S−  is 

applied, the value of maxD  should not be very large, although it can be large 

enough to cause multiple outstanding orders.  Under these circumstances, it 

would make sense to increase the lot size in order to decrease the 

replenishment traffic. 
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 In order to clearly demonstrate the tradeoff between the computation 

times and the quality of bounds, we provide the results of a numerical 

experiment.  The algorithm described in this paper is coded in MATLABTM 

computing language, and is run on a PC with a Pentium III processor of 1 

GHz clock speed.  One should note that MATLABTM is an interpreted 

language and the PC used is far from state of the art, which means that the 

computation times can be easily improved upon by transferring the code to a 

compiled language such as C or FORTRAN.   

We consider an inventory system of the type described at the beginning of 

Section 4.2, with the following parameters:  S  = 6, K = 3, λ1 = 3, λ2 = 2, L = 

1. In Table 4.1, we provide results of our algorithm for the described system.  

We start our experiment with max 5D = , since the expected total demand 

during leadtime is 5.  The tightness of the bounds is measured by the 

maximum bound gap, which is { }sup minmax j j
j

ξ ξ− .  In order to see how the 

performance measures of interest are affected, estimates for fill rates of the 

first and second classes ( 1β , 2β ) are also reported in Table 4.1.  Since the 

exact steady-state probabilities are not known, but upper and lower bounds 

are, the steady-state probabilities are assumed to be the midpoint in the 

interval.   The probabilities ignored by the truncation are assumed to be zero, 

i.e. 

 { }
( )

{ }maxmin 1, ( )

1
0 ( 1)

ˆ ˆ ,
S D x S K

x b x S

P X x B bβ
+

− − −

= = − −

= = =∑ ∑  (4.27) 

 { }
{ }maxmin 1,

2
0

ˆ ˆ , 0
S K D

x

P X x Bβ
− −

=

= = =∑  (4.28) 
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where { } ( )sup inf
( , ) ( , )

ˆ , 2r x b r x bP X x B b ξ ξ= = = + . 

One should note in (4.27) that if max 1D S< − , then all the probabilities 

needed to compute the fill rate of class 1, will not be obtained by our 

truncation procedure.  The same is true for the fill rate of class 2, when 

max 1D S K< − −  as seen in (4.28).  Thus, the smallest value one should 

consider for maxD  is S -1. 

One should also note that there is no need to calculate the fill rate using 

the steady-state probabilities obtained through our procedure.  Since the 

steady-state distribution for the random variable X(t) is Poisson as stated in 

(4.4), we know that 

 { } { }
( )1 1 1

2
0 0 0

, 0
!

x
S K S K S K

L

x x x

L
P X x B P X x e

x

λ λ
β

− − − − − −
−

= = =

= = = = = =∑ ∑ ∑  (4.29) 

Using (4.29), we can compute the exact fill rate for the second class, 

which turns out to be 0.1246 for the setting considered in Table 4.1.  Thus, 

we see that our procedure yields an estimate for 2β , which converges to the 

theoretical value as expected.  Moreover, our class 1 fill rate estimate agrees 

with the results we obtained from simulation experiments. 
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Table 4.1   Numerical Experiment (S  = 6, K = 3, λ1 = 3, λ2 = 2, L = 1) 

 

Dmax Computation Time 

(sec) 

Maximum Bound 

Gap 
  1β̂  2β̂  

5 <1 0.2954 0.6160 0.1856 

6 <1 0.2047 0.7189 0.1604 

7 <1 0.1254 0.7698 0.1373 

8 <1 0.0680 0.7972 0.1216 

9 1.5 0.0329 0.8216 0.1147 

10 2.5 0.0144 0.8499 0.1145 

11 4 0.0058 0.8774 0.1175 

12 6 0.0021 0.8980 0.1207 

13 9 7.43e-4 0.9104 0.1228 

14 13 2.41e-4 0.9166 0.1239 

15 18 7.35e-5 0.9193 0.1244 

16 25 2.11e-5 0.9203 0.1245 

17 35 5.77e-6 0.9207 0.1246 

18 47 1.49e-6 0.9209 0.1246 

19 61 3.68e-7 0.9209 0.1246 

20 81 8.64e-8 0.9209 0.1246 

 

It is clear that maximum bound gap decreases uniformly as maxD  

increases.  As the bound gaps decrease, the error in our steady-state 

probability estimates also decreases, which in turn causes the performance 

measure estimates to converge to their theoretical values as expected.  Our 

method provides the exact steady state distribution with desired precision 
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just like any other computational procedure, which can provide results valid 

up to a certain precision. The only approximation involved in our method is 

a numerical approximation similar to the ones used when computed an 

integral numerically.  In numerical integration, the numerical error decreases 

as the step-size is reduced.  This is exactly the kind of behavior observed as 

maxD  is augmented in our procedure.  In our experimental setting the average 

number of outstanding replenishment orders is 5, which is quite high for an 

inventory system.  For other systems with smaller λL’s, convergence occurs 

at smaller values of maxD . 

 In order to give an idea about the effectiveness of the approximations 

proposed for the same system, we also calculated the fill rate estimates 

proposed by Dekker et al. (1998) and Deshpande et al. (2003).  As we 

discussed in Chapter 3, both of these approximations yield the same results, 

which are 1
ˆ 0.8149β =  and 2

ˆ 0.1246β = .  Their estimates for the class 2 fill 

rate are exact. Yet, the error involved in their class one fill rate is striking.  
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Chap t e r  5  

RATIONING WITH 
CONTINUOUS 
REPLENISHMENT FLOW 

 

Current level of information and computer technologies enables us to 

consider more elaborate policies. Data interchange is very fast and cheap in 

electronic environments. Although the analysis of these elaborate policies are 

difficult and mostly intractable, it is possible to estimate the steady state 

behavior of the system, even faster, with simulation in a reasonable amount 

of time with new computer systems. In this chapter we propose a dynamic 

rationing policy that makes use of the available information, specifically the 

number of outstanding orders and their ages. Since we are unable to provide 

a mathematical analysis, for this complex policy, we conduct a simulation 

study to quantify the gains. We assume a setting in which the inventory is 

replenished according to the continuous review( , )r Q policy. The leadtime is 

a constant, L , and there are two demand classes with Poisson arrival rates 1λ  

and 2λ .   

  Typical policies, like the critical level policy, use the information about 

the inventory position and the on hand inventory level to make the 

replenishment and rationing decisions. In addition to these, we try to 
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incorporate the information that the outstanding orders carry to the decision 

mechanisms. However, it is not easy to define the threshold level as a 

function of the ages of outstanding orders. Instead, we consider a constant 

threshold level and decide to modify the on hand stock level dynamically by 

using the information that outstanding orders provide. For this purpose, we 

propose a dynamic rationing policy and call it Rationing With Continuous 

Replenishment Flow. Throughout the text, the initials RCRF will be used in 

place of this policy. RCRF incorporates the outstanding orders in to the on 

hand inventory as if they arrive continuously within the leadtime. The part of 

the order that is treated as if it has arrived is proportional to the ratio of the 

age of outstanding order and the leadtime. The whole order quantity 

completes its arrival at the end of the leadtime, just like in the original 

process. The on hand inventory level is modified by continuously adding the 

arrived parts of the outstanding orders. RCRF makes the rationing decision 

based on the modified on hand inventory instead of the real on hand level. If 

the modified inventory level is above K and we have stock at hand, class 2 

demands are satisfied, otherwise backordered. 

 To define RCRF, for any time point t when a class 2 demand occurred 

and the on hand stock level is below K , let us define ( )ia t  as the age of 

thi oldest outstanding order, ( )X t as the number of outstanding orders, 

( )OH t  as the on hand inventory level and ( )MOH t  as the modified 

inventory level. We have 0 ( )ia t L≤ ≤ .  

 We can model the continuous flow of the replenishment orders by 

considering the linear case, i.e. the part of the order that is treated as if it has 

arrived linearly increases with its age. In this case, the age ratio is 
( )ia t

L
 and 
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the quantity 
( )

1

( )
 

X t

i

i

a t
Q

L=

∑ is added to the on hand inventory level. However, 

the linear case directly uses the continuous flow assumption of the 

replenishment orders. We can increase the quality of our assumption, and so 

can decrease the gap between the unknown optimal policy and RCRF, by 

taking the powers of the age ratio, i.e. 
( )

n

ia t

L

 
 
 

. We consider the powers 

greater than 1. Because, for all i  we have 
( )

0 1ia t

L
≤ ≤ , and in order to fine-

tune the effect of continuous flow we should decrease the effect of the age 

ratio which is possible by taking the powers greater than 1. In this thesis we 

consider the integer values of n  in order to make it possible to find the best 

values of n  using a simulation based search procedure.  

 To make the effect of the power n  clear, let us consider two different 

cases at the time of a class 2 demand arrival and assume ( ) 2X t = . For the 

first case, assume that 1( )
0.9

a t

L
=  and 2 ( )

0.1
a t

L
= . For the second case, 

assume that 1( )
0.6

a t

L
=  and 2 ( )

0.4
a t

L
= . If 1n = , we are indifferent between 

the two cases because the ratios add upto 1 for both of them. However, if 

2n = , for the first case
2

1( )
0.81

a t

L

 
= 

 
, 

2

2 ( )
0.01

a t

L

 
= 

 
 and they add upto 

0.82. On the other hand, for the second case, 
2

1( )
0.36

a t

L

 
= 

 
, 

2

2 ( )
0.16

a t

L

 
= 

 
 and they add upto 0.52. Therefore the value of the 

information gained from the outstanding orders diminishes as we go from the 

oldest to the youngest order and this effect gets stronger as n  increases. The 



CHAPTER 5 RATIONING WITH CONTINUOUS REPLENISHMENT FLOW 

 56

difference between ( )MOH t  and ( )OH t  is mostly due to the outstanding 

orders that will arrive in the very near future. 

Then the modified on hand inventory level can be expressed as 

n( )

1

( )
( ) ( )  , 0 ( ) ,  and 

X t

i
M i

i

a t
OH t OH t Q a t L i n Z

L

+

=

 
= + ≤ ≤ ∀ ∈ 

 
∑  (5.1) 

If there is no outstanding order at time t, i.e. ( ) 0X t = , then ( ) ( )MOH t OH t=  

and as in the critical level policy we compare the on hand stock level with 

the critical level to make the rationing decision. If ( )OH t K> , then ( )MOH t  

is surely greater than K and the arriving class 2 demand is satisfied.  

 It is important to note that in the calculation of ( )MOH t , the oldest 

outstanding orders, i.e. the ones that will arrive first, do not have any direct 

superiority or priority over the other outstanding orders. Because, we are 

interested in total potential of outstanding orders that will turn out to be 

physical stock units in the future. Naturally, the ratio 
( )ia t

L
 is close to 1 for 

the oldest replenishment orders and so they contribute more to ( )MOH t . 

Therefore, there is no need to make any prioritization of outstanding orders. 

Moreover, defining the power n strengthen the effect of the outstanding 

orders that will arrive in near future.  

 In order to be consistent with RCRF, clearing mechanism associated to 

this policy should also consider the modified on hand inventory instead of 

the real on hand inventory level. This is so because, when a replenishment 

order arrives future projection of the on hand stock is important to make the 

allocation decision of the order quantity between increasing the stock level 
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and clearing the backorders. Therefore, we use a modified priority clearing 

mechanism which compares the modified on hand stock level with K after 

clearing class 1 backorders. Suppose a replenishment order arrived at time t. 

Without taking the arrived order into account, we calculate ( )MOH t  using 

the remaining outstanding orders and current on hand level. If ( )MOH t K≥  

then we use the order quantity to clear class 2 backorders and add any 

remaining units to the stock. Otherwise, if ( )MOH t K< , if possible we 

increase ( )MOH t  up to K  by adding the necessary amount of order quantity 

to the stock and then use the remaining order quantity to clear the class 2 

backorders.  

 For given policy parameters, applying RCRF instead of the critical level 

policy decreases 1β  and increases 2β . Because, critical level policy stops 

serving class 2 when on hand stock drops below K , but dynamic policy 

provides service to class 2 customers whenever the modified on hand stock 

is above K  even though the on hand stock is not. Similarly, the modified 

priority clearing mechanism of RCRF lowers 2γ , the average backorder time 

of a class 2 demand, compared to the priority clearing mechanism of critical 

level policy. Increasing value of 2β contributes to the decrease in 2γ , 

because less number of class 2 customers is backordered so the total 

backorder time is less. In both clearing mechanisms upon arrival of 

replenishment order, clearing class 1 backorders has the highest priority. So 

modified clearing mechanism do not effect 1γ  directly. However, a lower 1β  

value results in more class 1 backorders. Therefore we expect a higher 1γ  

value under RCRF. To be able to increase 2β  and decrease 2γ  provides 

more incentive to the dynamic policy to increase K  and this is what we 

observe from the simulation outputs. In most of the cases RCRF results in 
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higher K  values than critical level policy.  

 An interesting feature of our proposed policy is it is possible to generate 

critical level policy from RCRF. As n goes to infinity, 
( )

n

ia t

L

 
 
 

goes to 0 for 

all i  except for the replenishment orders that just arrived at time t  for which 

the ratio is 1 and they are added to the on hand stock level at t . Then from 

(5.1), we have lim ( ) ( )M
n

OH t OH t
→∞

= . Therefore, rationing decision depends 

on the on hand stock level, i.e. as n → ∞  RCRF turns out to be the critical 

level policy. For any replenishment order i , Figure 1 illustrates the power of 

the age ratio
( )

n

ia t

L

 
 
 

 for different n  values. 

 

 We start with 1n =  to illustrate the linear case, and as n  increases the 
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value of the oldest outstanding orders increase. However, at the extreme, as 

n → ∞ , we no more use any information about the outstanding orders and do 

not make any dynamic decision. Our policy becomes identical with the 

critical level policy. Therefore, optimum n  should be in the interval ( )1,∞ . 

Except for the exponential leadtimes for which the age of outstanding orders 

provides no information, RCRF should perform better than the critical level 

policy. The optimum expected cost rate of critical level policy is an upper 

bound for the optimum expected cost rate of RCRF.  In our case leadtime is 

constant, so for the given system parameters we can find ( ), ,K r Q  and 

( )1,n∈ ∞ values that give lower expected cost rate than the optimum of the 

critical level policy.   

 5.1 Performance Evaluation of RCRF with Simulation 

To define how the gain through RCRF changes under different scenarios and 

to quantify the gain, we conducted a simulation study. In this study, for each 

parameter set we compare the minimum expected total cost rate values of 

RCRF and the critical level policy. Expected total cost rate, [ ]E TC , consists 

of expected values of holding, ordering and backordering costs as introduced 

in Chapter 3. Moreover, to get an idea about the benefit of rationing decision 

and to assess the relative value of dynamic stock decision we also simulate 

the common stock policy. We compare the optimal expected cost rates of the 

common stock policy and the critical level policy for each parameter set. As 

explained in Chapter 1, the common stock policy is one of the easiest ways 

of managing an inventory system that experiences different demand classes. 

In this policy both of the classes are served without any differentiation from 

a common stock pool. Rationing policies are alternatives of this policy in 
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order to provide different service levels to different customer classes. 

 Stock rationing is meaningful when 1 2π π>  and 1 2
ˆ ˆπ π> , i.e. the unit 

backorder and the time-dependent backorder costs of class 1 are higher. To 

test the efficiency of RCRF under different pairs of backorder costs, we 

choose a low and a high value of 1π  and 1π̂ .  We let 1π  take the values of 2 

and 10; and let 1π̂  1 and 5. Then, 2π  and 2π̂  are defined as the ratios of 1π  

and 1π̂ . For each values of class 1 backorder cost, we set 1

2

π
π  and 1

2

ˆ
ˆ

π
π  to 

5 and 1.25. Then if 1π  is 2, 2π  takes the values of 0.4 and 1.6. If  1π  is 10, 

2π  can be 2 or 8. Similarly, if 1
ˆ 1π = , 2

ˆ 0.2,0.8π = . And if 1
ˆ 5π = , 2

ˆ 1,4π = . 

 The other most important factor that determines the performance of the 

rationing policies is the arrival rates of the customer demands. We fix the 

leadtime to 1, and change the arrival rates of both classes to generate 

different leadtime traffic rates. We let 1 2λ λ λ= +  take values of 5 and 25, 

and set three levels of 1λ
λ , 0.9, 0.5 and 0.1. Table 5.1 shows the arrival rate 

pairs for the simulation study. 

TABLE 5.1 Arrival rates for the simulation study 

 5λ =  

 

25λ =  

 

 

1 2( , )λ λ  

 

(4.5, 0.5) 
 (2.5, 2.5) 
(0.5, 4.5) 

(22.5, 2.5) 
 (12.5, 12.5) 
(2.5, 22.5) 
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We set the holding cost to 5 and the fixed ordering cost to 2.  

We define [ ] [ ],RCRF CLE TC E TC  and [ ]CSE TC  as the expected total cost 

rates of RCRF, critical level policy and common stock policy 

correspondingly. Then we calculate the performance gain of RCRF as the 

cost reduction obtained by using the optimal RCRF policy compared to the 

optimal critical level policy: 

[ ]{ }
[ ]{ }

[ ]{ }

min : 0, 1, 0

               min : 0, 1, 0
100

min : 0, 1, 0

CL

RCRF

RCRF

CL

E TC r Q K Q r

E TC r Q K Q r
G x

E TC r Q K Q r

+ > ≥ ≥ ≥

− + > ≥ ≥ ≥
=

+ > ≥ ≥ ≥
.  

Similarly, we compare the critical level policy with the common stock policy 

by calculating the percent gain  

 

[ ]{ }
[ ]{ }

[ ]{ }

min : 1, 0

               min : 0, 1, 0
100

min : 1, 0

CS

CL

RCRF

CS

E TC Q r

E TC r Q K Q r
G x

E TC Q r

≥ ≥

− + > ≥ ≥ ≥
=

≥ ≥
 

Table 5.2 shows the performance gains, RCRFG  and CLG , when 5λ = . For 

a specific ( )1 2,λ λ pair, the table displays maximum and minimum percent 

gains that observed for different backorder cost values. We also present the 

average value of the gain, i.e. average of the gains for different backorder 

cost values. The columns 2 to 4 present the gains through RCRF compared to 

critical level policy. And columns 6 to 8 show the gains through critical level 

policy compared to common stock policy. 

As seen from Table 5.2, if we make the rationing decision based on RCRF 
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instead of the critical level policy, the maximum gain observed when 

1 2 2.5λ λ= = . It is % 5.6. In this case, rationing is a valuable tool as we 

observe from CLG  values. On the average, the critical level policy provides  

%2.5 cost reduction and RCRF provides an additional %1.86 reduction. For 

both RCRFG  and CLG , the maximum values are observed when 1 10π = , 

2 2π = , 1
ˆ 1π =  and 2

ˆ 0.2π = . Therefore we can say that, when 1λ  and 2λ  are 

close to each other, if we compare RCRF and the critical level policy, RCRF 

provides most significant cost reductions when the gap between backorder 

costs of class 1 and class 2 is large. Similarly, under these conditions the 

critical level policy strictly dominates the common stock policy. 

 

Table 5.2 Percent gain of RCRF over the critical level policy and percent gain of 

the critical level policy over common stock policy when 5λ =  

 

When we consider the case where the arrival rate of class 2 is larger than the 

  
RCRFG    

CLG   

 

( )1 2,λ λ   Max.  Min.  Avg.  Max.  Min.  Avg. 

 (0.5, 4.5)  4.03  0.02  1.59  1.18  0.08  0.27 

 (2.5, 2.5)  5.16  0.04  1.86  7.29  0.08  2.50 

 (4.5, 0.5)  1.98  0.01  0.57  8.60  0.05  2.80 
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arrival rate of class 1, i.e. the case where 2 4.5λ = and 1 0.5λ = , the critical 

level policy provides maximum %1.18 cost reduction. On the other hand, we 

get maximum % 4.03 and on the average % 1.59 cost reduction when we 

apply RCRF instead of the critical level policy. When the high portion of the 

total traffic is from class 2, it does not seem that rationing provides high 

savings if we just consider the critical level policy. However, our proposed 

dynamic policy provides considerable additional saving. Intuitively, critical 

level policy does not perform very well when 2λ  is very high compared to 

1λ , because to eliminate large number of class 2 backorders K  is set to 0. 

Therefore critical level rationing gets some gain only through the priority 

clearing mechanism. For the rationing problems it is hard to explain how the 

tradeoffs between holding, ordering and backorder costs affect optimum 

( ), ,K r Q  values when the input parameters are changed. However, we can 

say that RCRF can provide high savings when 2λ  is high, because, as we 

discussed before, RCRF decreases 2γ  and increases 2β . This fact provides 

much more gain when 2λ  is high. Thus compared to the critical level policy, 

RCRF does not result in high backordering costs for class 2.  

 For the same case, i.e. 2 4.5λ = and 1 0.5λ = , maximum gain achieved 

through the critical level policy, %1.18, is observed when 1 10π = , 2 8π =  

and 1
ˆ 5π = , 2

ˆ 4π = . Backordering costs of both classes are close to each 

other and so there is no distinctive difference between class 1 and class 2. 

This is in parallel with intuition because the critical level rationing sets K  to 

0 due to the high arrival rate of class 2 so there is not much need for critical 

level policy. Classes are not very distinguishable. Maximum value of RCRFG , 

% 4.03, is observed when 1 2π = , 2 1.6π =  and 1
ˆ 5π = , 2

ˆ 4π = . Again 
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backordering costs of class 2 are at their maximum for the corresponding 

class 1 backordering costs.   

 If we analyze the case where 1 4.5λ =  and 2 0.5λ = , we observe that the 

critical level rationing provides significant cost reductions but RCRF cannot 

provide significant additional cost savings. Maximum value of RCRFG  is % 

1.98. This can be due to the fact that when 1λ  is higher, 1γ  and 1β  are much 

more important. Since the expected number of backorders per unit time is 

1 1λ β . For the same 1β  value, the case with a larger value of 1λ  results in 

more backordering cost than the case with a lower 1λ . For the optimum 

( ), ,K r Q  values of critical level policy, RCRF provides higher 2β  and lower 

1β  values compared to critical level policy. Thus RCRF increases class 1 

backorder costs much more than the decrease in the class 2 backorder costs 

due to the high 1λ . Therefore, the value of the information about the 

outstanding orders seems less significant in this setting.  

We observe that when 5λ = , for all different values of the backorder 

costs, [ ]* 4,6n ∈  where *n  stands for the optimum value of the power n .  

Table 5.3 shows the cost reductions for the case where 25λ = , in a similar 

way that Table 5.2 does for 5λ = .  

All the comments that we made for Table 5.2 is also valid for Table 5.3, 

i.e. maximum values of RCRFG  and CLG are observed when the arrival rates of 

class 1 and class 2 are equal and RCRF does not provide any significant 

additional cost saving when the arrival rate of class 1 is very large compared 

to the rate of class 2.  
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Moreover, when the maximum values of RCRFG  and CLG  that are obtained 

from Table 5.3 and from Table 5.2 are compared, the values from Table 5.3 

are close to twice of the ones obtained from Table 5.2. This means that for 

the cases that the total traffic is high; applying RCRF instead of the critical 

level policy can result in more dramatic cost savings compared to the cases 

where the traffic is lower. Because, when the total demand rate increases, 

mostly the number of outstanding orders increases. 

 

Table 5.3 Percent gain of RCRF over the critical level policy and percent gain of 

the critical level policy over common stock policy when 25λ =  

 

For the ( ),r Q  policy with backordering, expected number of outstanding 

orders is 
L

Q

λ
 (see Hadley and Whitin (1963) page 187). In our simulation 

study, when 5λ =  the maximum cost reduction achieved through RCRF 

when the optimum Q is 4, i.e. * 4Q = . When 25λ = , * 5Q = . Therefore 

  
RCRFG    

CLG   

 

( )1 2,λ λ   Max.  Min.  Avg.  Max.  Min.  Avg. 

 (2.5, 22.5)  7.92  0.60  2.97  3.43  0.02  0.81 

 (12.5, 12.5)  10.70  0.33  4.49  13.48  0.12  5.03 

 (22.5, 2.5)  1.60  0.01  0.66  7.13  0.01  3.27 
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since L  is fixed to 1, when we increase λ  from 5 to 25, expected number of 

outstanding orders increases from 1.25 to 5 for the cases that we get 

maximum cost savings. Since RCRF uses the information about the 

outstanding orders, it gets more information when there are more outstanding 

orders and provides more cost savings. 

When 25λ = , we observe that *n  cannot be defined in single short 

interval. If 1 22.5λ = , [ ]* 20,22n ∈ . If 1 12.5λ = , [ ]* 29,33n ∈  and if 1 2.5λ =  

then [ ]* 9,15n ∈ .  

 As a final observation, in Table 5.4 and Table 5.5, we present  percentage 

of the cases where RCRF provides improvements for each  component of the 

expected total cost rate function. For each parameter set, the comparison is 

made for the cases where the policies have their minimum expected total cost 

rates. Table 5.4 illustrates the percentage improvements for 5λ = , and Table 

5.5 does for 25λ = . For both tables, columns 2 to 4 present the percentage 

of cases where 1β , 2β  and both 1β  and 2β  increases correspondingly. 

Similarly, columns 5 to 7 present the percentage of cases where 1γ , 2γ  and 

both 1γ  and 2γ  decreases. Column 8 illustrates the percentage of cases where 

RCRF decreases the average inventory compared to the critical level policy. 

Finally, column 9 presents the percentage of cases where RCRF decreases 

Q
λ , which determines the expected fixed ordering cost.  For each parameter 

set, RCRF results in a lower expected cost rate than the critical level policy. 

Tables 5.4 and 5.5 illustrate how each cost component contributes to the 

improvement in the expected cost. 
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Table 5.4 Percentage of the cases where RCRF provides improvements in cost 

components when 5λ =  

    5λ =      

 

( )1 2,λ λ   1β   2β   1β , 2β   1γ   2γ   1 2,γ γ   I   
Q

λ  

 (0.5, 4.5)  62.5  56.25  43.75  81.25  43.75  25  37.5  12.5 

 (2.5, 2.5)  50  56.25  37.5  62.5  18.75  12.5  43.75  18.75 

 (4.5, 0.5)  68.75  62.5  31.25  75  31.25  12.5  31.25  12.5 

 

Table 5.5 Percentage of the cases where RCRF provides improvements in cost 

components when 25λ =  

    25λ =      

 

( )1 2,λ λ   1β   2β   1β , 2β   1γ   2γ   1 2,γ γ   I   
Q

λ  

 (2.5, 22.5)  75  62.5  37.5  93.75  12.5  12.5  68.75  6.25 

 (12.5, 12.5)  75  93.75  68.75  93.75  18.75  18.75  56.25  25 

 (22.5,2.5)  87.5  75  62.5  93.75  62.5  56.25  18.75  37.50 
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Chap t e r  6  

CONCLUSION 

 

In this thesis, we consider the stock rationing policies for continuous review 

inventory systems. Firstly, we present a detailed analysis of the critical level 

policy and the backorder clearing mechanisms that used under the critical 

level policy. In this analysis, we position the works of Dekker et al. (1998) 

and Deshpande et al. (2003) by pointing out some ambiguities resulting from 

the literature.  

 

Afterwards, we provide a new method for the analysis of continuous-review 

lot-per-lot inventory systems with backordering under rationing policy.  Our 

method culminates in an algorithm to compute the exact steady-state 

distribution for the inventory system.  Although there are many approximate 

results in the literature on this important inventory system, there was no 

method to obtain the exact steady-state distribution of the considered system 

up to this point.  This constitutes the main contribution of the study.   

 

The second contribution is the approach used in developing the algorithm.  

The method is based on the observation that continuous-review inventory 

systems with backordering evolve according to a Markov chain at multiples 

of its leadtime.  This means that when the system is sampled at multiples of 

leadtime, a discrete-time Markov chain is obtained.  Moreover, the steady-
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state probabilities of this embedded Markov chain at hand are also valid for 

the underlying continuous-time inventory model.  We believe that this new 

approach should be applicable to other continuous-review inventory systems 

with backordering as well.  Therefore, the approach constitutes a 

contribution in its own right. 

 

The third and final contribution relates to the computational procedure used 

in the algorithm for the computation of steady-state probabilities.  Firstly, we 

provide a recursive algorithm to compute the probabilities defining the 

embedded chain.  We note that since the state space of the embedded chain is 

infinite, one would need infinite amount of time to generate all the one-step 

transition probabilities, and then to obtain the steady-state probabilities.  

Then, we show that one can obtain upper and lower bounds for steady-state 

probabilities of certain states of a Markov chain using a truncated version of 

the chain.  We explain how the quality of these bounds increase as the 

number of states conserved by the truncation is augmented.  Finally, we 

show how the bounds can be used to obtain steady state probabilities of 

interest with desired accuracy.   Although the theory behind the bounds is 

not new, its application to the analysis of infinite state-space inventory 

systems is.  These bounds, which are known to be loose under general 

settings, work extremely well for the inventory system under consideration.  

We believe the technique of using a truncated Markov chain in order to find 

steady-state probabilities with desired accuracy can be applied successfully 

to other inventory systems as well.  Furthermore, the exposition of the theory 

behind the technique in the study is self-contained.  We believe that this 

exposition, which extracts a practical tool from the field of computational 

linear algebra, could be of use to operations researchers. 
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 The scope of the method introduced can easily be extended.  For example, 

it is straightforward to generalize the method to more than two priority 

classes.  The state space dimension would have to increase by one for each 

additional class.  We believe that a computer program that implements the 

algorithm for any number of priority classes would be a handy tool.  The 

described tool could also have policy optimization capability. 

 

A direct extension of the method would be the generalization of the current 

model from lot-per-lot policy to (r, Q) policy.  This would certainly increase 

the application area of the resulting tool.  Another interesting extension can 

be the addition of a deterministic demand leadtime to the model.  The 

addition of demand leadtimes to a stock-rationing environment leads to 

many interesting issues that need to be investigated.  An interesting issue that 

can be addressed is the relation between the demand leadtimes and the 

optimal rationing levels. 

 

Finally, we propose a dynamic rationing policy that uses the available 

information about the number and the ages of the outstanding orders. 

Simulation study shows that dynamic policy provides considerable gains. 

With the current technology of the computer systems, it is easy to implement 

such kind of dynamic policies. An important extension can be the analytical 

analysis of the proposed policy.  
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