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ABSTRACT

A NOVEL ARRAY SIGNAL PROCESSING

TECHNIQUE FOR MULTIPATH CHANNEL

PARAMETER ESTIMATION

Mehmet Burak Güldoğan

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Orhan Arıkan

July 2006

Many important application areas such as mobile communication, radar, sonar

and remote sensing make use of array signal processing techniques. In this thesis,

a new array processing technique called Cross Ambiguity Function - Direction

Finding (CAF-DF) is developed. CAF-DF technique estimates direction of ar-

rival (DOA), time delay and Doppler shift corresponding to each impinging sig-

nals onto a sensor array in an iterative manner. Starting point of each iteration is

CAF computation at the output of each sensor element. Then, using incoherent

integration of the computed CAFs, the strongest signal in the delay-Doppler do-

main is detected and based on the observed phases of the obtained peak across

all the sensors, the DOA of the strongest signal is estimated. Having found

the DOA, CAF of the coherently integrated sensor outputs is computed to find

accurate delay and Doppler estimates for the strongest signal. Then, for each

sensor in the array, a copy of the strongest signal that should be observed at that

sensor is constucted and eliminated from the sensor output to start the next it-

eration. Iterations continue until there is no detectable peak on the incoherently

integrated CAFs. The proposed technique is compared with a MUSIC based
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technique on synthetic signals. Moreover, performance of the algorithm is tested

on real high-latitude ionospheric data where the existing approaches have limited

resolution capability of the signal paths. Based on a wide range of comparisons,

it is found that the proposed CAF-DF technique is a strong candidate to define

the new standard on challenging array processing applications.

Keywords: Array signal processing, direction of arrival (DOA), MUSIC, delay

and Doppler estimation, cross ambiguity function
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ÖZET

ÇOKLUYOL KANAL PARAMETRE KESTİRİMİ İÇİN YENİ

BİR DİZİ SİNYAL İŞLEME TEKNİĞİ

Mehmet Burak Güldoğan

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Orhan Arıkan

Temmuz 2006

Mobil haberleşme, radar, sonar ve uzaktan algılama gibi bir çok önemli uygula-

mada, dizi sinyal işleme tekniklerinden faydalanılır. Bu tezde, Çarpraz Belirsizlik

Fonksiyonu - Yön Bulma (ÇBF-YB) adında yeni bir dizi işleme tekniği

geliştirilmiştir. ÇBF-YB tekniği, bir algılayıcı dizisine gelen sinyallerden her-

birinin geliş yönünü (GY), zaman gecikmesini ve Doppler kaymasını yinelemeli

bir şekilde kestirir. Herbir algılayıcı çıktısındaki ÇBF hesaplaması, yinelemelerin

başlangıç noktasını oluşturur. Daha sonra, ÇBF’lerin faz uyumsuz bir şekilde

entegrasyonunu kullanarak, gecikme-Doppler alanındaki en güçlü sinyal tespit

edilir ve tüm algılayıcılarda elde edilen tepe noktalarında gözlemlenen fazlar esas

alınarak en güçlü sinyalin GY’si kestirilir. GY’yi bulduktan sonra, en güçlü

sinyalin gecikme ve Doppler kaymasını kestirmek için, uyumlu entegre edilmiş dizi

çıktısının ÇBF’si hesaplanır. Takiben, dizideki herbir algılayıcı için, aygılayıcıda

gözlemlenmesi gereken en güçlü sinyalin bir kopyası oluşturulur ve bir sonraki

yinelemeyi başlatmak için algılayıcı çıktısından çıkarılır. Faz uyumsuz olarak

entegre edilmiş ÇBF’ler üzerinde algılanabilecek tepe noktası kalmayıncaya

kadar yinelemeler devam eder. Sentetik olarak oluşturulmuş sinyaller kul-

lanılarak önerilen teknik ile MUSIC tabanlı tekniğin karşılaştırılması yapılmıştır.
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Ek olarak, algoritmanın peformansı, literatürdeki yaklaşımların sinyal yollarını

ayırmada sınırlı kabiliyetlere sahip olduğu gerçek yüksek-enlem iyonosfer verileri

üzerinde test edilmiştir. Geniş bir yelpazede yapılan kıyaslamalara göre, ÇBF-

YB tekniği karmaşık dizi işleme uygulamalarında standartları belirleyebilecek

güçlü bir adaydır.

Anahtar Kelimeler: Dizi sinyal işleme, geliş yönü (GY), MUSIC, zaman gecikmesi

ve Doppler kayması kestirimi, çarpraz belirsizlik fonksiyonu
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Chapter 1

INTRODUCTION

1.1 Objective and Contributions of this Work

Recent advances in wireless communication resulted in significant improvement in

our living standards. Information transmission can be achieved via several ways

by using electromagnetic, sonar, acoustic, or seismic waves as the carrier. In

addition to wireless communications, radar applications also process information

that bounced back from targets to deduce their position and velocity. To obtain

best results, sensor arrays are widely used [1].

Compared to single sensor systems, array systems have some crucial advan-

tages. First of all, for an M-sensor array, by proper processing of the received sig-

nal signal-to-noise ratio (SNR) can be increased by M times . Secondly, beams of

the array can be steered freely in any desired directions. Flexible steering ability

enables wireless equipment to separate multiple signals and suppress intentional

or unintentional interference.
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Array signal parameter estimation is a very popular research field of focus

by applied statisticians and engineers as problems required ever improving per-

formance. Direction of arrival (DOA) is one of the most important parameters

which plays a crucial role in many real life applications. In radar, estimation

of the DOA is a main issue in localization and tracking of targets. Moreover,

in multi-user mobile communications, generally waves reach the receiver within

a delay interval shorter than the resolution. In these cases, DOA estimates

can provide spatial diversity to the receiver to enable reliable communication in

multi-user scenarios [2]. Because of its importance, wide variety of algorithms

have been proposed for reliable estimation of DOAs . Initial trials of signal

source localization using arrays was through beamforming techniques. The idea

is to form a beam in the direction of waves coming from only one particular

direction. The steering directions which result in maximum signal power yields

the DOA estimates [3]. Subspace methods are very well known DOA estimation

techniques with high performance and relatively low computational cost. These

methods basically make use of the eigen-structure of the covariance matrix of

observed signals from the sensor array. The most commonly used technique

in this family is the MUSIC (Multiple SIgnal Classification) technique [4, 5].

Although, mentioned approaches are very efficient in terms of computational

power, they do not provide enough accuracy in correlated signal scenarios. On

the otherhand, maximum likelihood (ML) techniques are highly accurate but

computationally quite intensive [6, 7, 8, 9, 10]. Most recent subspace fitting

methods such as signal subspace fitting (SSF) and noise subspace fitting (NSF)

have the same statistical performance as the ML methods with a less computa-

tional cost [11, 12, 13]. Recently, there are some efforts dealing with the DOA

estimation for chirp signals by making use of ambiguity function [14, 15]. The

method called AMBIGUITY-DOMAIN MUSIC (AD-MUSIC) in [14], uses the

spatial ambiguity function (SAF) of the sensor array output. Once the noise

subspace of the SAF matrix is estimated, the technique estimates the DOA’s

2



by finding the largest peaks of a localization function. In [15], details of two

broadband DOA estimation methods for chirp signals based on the ambiguity

function is introduced. Most of these methods take advantage of the fact that

there is only a phase difference between sensor outputs, when the signals are

narrowband.

Estimating the time delays and Doppler shifts of a known waveform by an

array of antennas is another crucial aspect of the signal parameter estimation. For

instance, in active radar and sonar, a known signal is transmitted and reflections

from targets are received. The received signals are generally modeled as delayed,

Doppler-shifted and scaled versions of the transmitted one. Estimation of the

delay and Doppler-shift enables us to gather information about the position and

the radial velocities of targets. Secondly, estimation of the parameters of the

multipath communication channel, in cases where the transmitter has a rapid

movement or has an unknown frequency offset, is another important application.

Accurate delay and Doppler estimations are very critical in establishing a reliable

communication link. Classical techniques to time-delay and Doppler estimation

are based on matched filtering [16]. Matched filtering techniques are optimal

for single signal arrival but are not good when multiple overlapping copies of

the signal are present. In [17], a deconvolution approach for resolving multiple

delayed and Doppler shifted paths where path parameters are constrained to a

quantized grid is presented. Alternatively, two popular and efficient algorithms

called signal subspace fitting (SSF) and noise subspace fitting (NSF), which also

provide promising results when correlated signals received, can be found in [11].

In this thesis, a new signal parameter estimation technique called CAF-DF

(Cross Ambiguity Function - Direction Finding) based on the cross-ambiguity

function calculation will be presented. CAF-DF technique estimates DOA, time

delay and Doppler shift corresponding to one of the impinging signals onto the

3



array in an iterative manner. Starting point of each iteration is CAF computa-

tion at the output of each sensor element. Then, these 2D CAF matrixes are

incoherently integrated and the largest peak on the integrated CAF is found.

After that, DOA for the observed signal peak is estimated. Having found the

DOA, CAF of the coherently integrated sensor outputs is computed to find ac-

curate delay and Doppler estimates for the strongest signal. Then, the signal

whose parameters are estimated is eliminated from the array outputs to search

for the next strong signal component in the residual array outputs. Iterations

continue until there is no detectable peak on the incoherently integrated CAFs.

CAF-DF is different from the mentioned techniques because it both uses

coherent and incoherent integration of data. It performs significantly better

than the MUSIC in simulations. Especially in difficult scenarios involving low

SNR and highly correlated signals, resolution capability of the CAF-DF is very

promising. Moreover, there are three important differences between CAF-DF

and mentioned ambiguity function based techniques [14, 15]. First of all, there

isn’t any requirement to use chirp signals. Secondly, there is no need to use

any other estimation technique. Lastly, CAF-DF uses cross ambiguity function

instead of auto ambiguity function.

1.2 Organization of the Thesis

The organization of the thesis is as follows. In Chapter 2, a general parametric

data model, which is used throughout the thesis, is introduced for sensor array

systems. Then formulation and some important properties of the matched filter

and ambiguity function are given. Lastly, some commonly used applications of

array signal processing is presented.

In Chapter 3, spectral-based algorithmic solutions and parametric methods of

DOA estimation for narrowband signals in array signal processing are presented.
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In Chapter 4, basics of HF communication is introduced.The theory of wave

propagation through the ionosphere is briefly discussed.

The novel DOA, delay and Doppler estimation algorithm, CAF-DF, is in-

troduced in Chapter 5. Following the basic theory, detailed formulation of the

CAF-DF technique is given.

The theory of an alternative MUSIC based approach proposed for HF-DF

is discussed in Chapter 6. After that, simulation results and comparisons for

different scenarios with the CAF-DF is presented.

Chapter 7 presents the estimated parameters of a real ionospheric data using

CAF-DF and MUSIC based approach.

Finally, Chapter 8 concludes the thesis by highlighting the contributions made

and list of work for future research on the subject.
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Chapter 2

BASICS OF ARRAY SIGNAL

PROCESSING

The basics of array signal processing is briefly discussed in this chapter. First,

underlying parametric data model for sensor arrays is introduced. Then some

important points of matched filter and ambiguity function is presented. Lastly,

applications of array processing are discussed.

2.1 Parametric Data Model for Sensor Arrays

Sensor arrays consists of a set of sensors that are spatially distributed at known

locations with reference to a common reference point [18]. A sensor may be repre-

sented as a point receiver. The propagating signals are simultaneously sampled

and collected by each sensor. The source waveforms undergo some modifica-

tions, depending on the path of propagation and the sensor characteristics. In

this section a general parametric model will be given.

Usually, the direction and the speed of the propagation are defined by a vector

α in (2.11) which is called the slowness vector. Using the reference coordinate
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Figure 2.1: Direction of the signal and reference coordinate system.

system in Fig. 2.1, the slowness vector is

α =
1

c
[cos φ cos θ ; cos φ sin θ ; sin φ] , (2.1)

where θ is the azimuth angle, φ is the elevation angle and c is the speed of light.

A circular array geometry is depicted in Fig. 2.2. Position of each sensor is

represented by vector rm = [xm ; ym ; zm] = [rm sin(θm) ; rm cos(θm) ; 0] and

the propagation direction of each impinging signal is represented by unit vector

αi = (1/c)[xi ; yi ; zi], and i = 1, ..., d is the signal index. Using Eqn. 2.1, the

field measured at sensor m due to a source whose DOA is (θi, φi), can be written

as

E(rm, t) = s(t)ejw(t−ξm,i) (2.2)

where s(t) is the data signal and ξm,i is the relative phase of the mth sensor due

to ith impinging signal with respect to the origin of the sensor array. This phase

can be written in cartesian coordinates as
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ξm,i(θ, φ) = αi · rm

=
1

c




cos(θi) cos(φi)

sin(θi) cos(φi)

sin(φi)


 ·




rm cos(θm)

rm sin(θm)

0




=
1

c

[
rm cos(θi) cos(φi) cos(θm) + rm sin(θi) cos(φi) sin(θm)

]
. (2.3)

In practice, before sampling takes place, the signal is down-converted to baseband

which will be discussed in the following section. Therefore, without the carrier

term exp(jwt), the output is modeled by

xm(t) = am(θ, φ)s(t) . (2.4)

For an M-element antenna array, the array output vector is obtained as

x(t) = a(θ, φ)s(t) . (2.5)

where a(θ, φ) is called the steering vector. Assuming a linear receiving sys-

tem, if G signals impinge on an M-dimensional array from distinct DOAs
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(θ1, φ1), ..., (θd, φd) the output vector takes the form

x(t) =
d∑

i=1

a(θi, φi)si(t) , (2.6)

where si(t), denote the ith baseband signal. Last equation, can be written in a

more compact form by defining a steering matrix and a vector of signal waveforms

as

A(θ, φ) =
[
a(θ1, φ1), ..., a(θd, φd)

]
(M×d)

(2.7)

s(t) =
[
s1(t); ...; sd(t)

]
. (2.8)

Moreover, in the presence of noise n(t) we reach the well-known representation

for the array input output relation;

x(t) = A(θ, φ)s(t) + n(t) . (2.9)

The signal parameters in this thesis are spatial in nature, so the following

spatial covariance matrix plays an important role:

R = E{x(t)xH(t)} = AE{s(t)sH(t)}AH + E{n(t)nH(t)} (2.10)

where E denotes expected value operation,

E{s(t)sH(t)} = P (2.11)

can be called source covariance matrix and

E{n(t)nH(t)} = σ2I (2.12)

is the noise covariance matrix. At all sensors we have an uncorrelated and spa-

tially white receiver noise which has variance σ2 and is assumed to have circularly

symmetric Gaussian distribution.

9



In a more compact form, (2.10) can be written as

R = APAH + σ2I (2.13)

= UΛUH

=
[
u1 . . . ud , ud+1 . . . uM

]




µ1 + σ2

. . .

µd + σ2

σ2

. . .

σ2







uH
1

...

uH
d

uH
d+1

...

uH
M




=
[
Us , Un

]

Λs + σ2I 0

0 σ2I





UH

s

UH
n




= UsΛsU
H
s + σ2UsU

H
s + σ2UnU

H
n

= UsΛsU
H
s + UnΛnU

H
n

where Λ is a diagonal matrix with real eigenvalues and U is a unitary matrix.

From the equation above, it is easily seen that

APAH = UsΛsU
H
s . (2.14)

This says that the span of the columns of A is equal to the span of the columns

of Us (assuming that A and P are full rank). The eigenvectors associated with

the first d eigenvalues of R are the same as the eigenvectors of APAH . These

eigenvectors constitute the signal subspace. The eigenvectors associated with

the remaining M − d eigenvalues of R constitute the noise subspace and are

orthogonal to the signal subspace.

Throughout the thesis, the number of underlying signals, d, is assumed to

be known. Otherwise, we can use the techniques presented in [19, 20, 21] to

estimate the number of signals impinging onto the sensor array.
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2.2 Matched Filter and the Ambiguity Function

A matched filter can be defined as a type of filter matched to the known or

assumed characteristics of a target signal, designed to optimize the detection of

that signal in the presence of noise [22]. In the case of white additive noise, the

highest SNR at the detector is obtained when the received signal is correlated

with the replica of the transmitted signal. In this section, firstly complex en-

velopes of the narrow bandpass signals, which make the design of the matched

filter simple, will be described. After that, basics of the matched filter and how

we get to the ambiguity function will be discussed.

Narrowband bandpass signals can be represented in several ways. The sim-

plest one is

s(t) = g(t) cos[ωct + Φ(t)] (2.15)

where Φ(t) is the instantaneous phase and g(t) is the envelope of s(t). Second

form is

s(t) = gc(t) cos(ωct)− gs(t) sin(ωct) (2.16)

where gc(t) and gs(t) are the in-phase and quadrature baseband components,

respectively, and represented as follows

gc(t) = g(t) cos(Φ(t)) (2.17)

gs(t) = g(t) sin(Φ(t)) . (2.18)

An I/Q detector, depicted in Fig. 2.3 is used to eliminate the in-phase I and

the quadrature Q components using a low-pass filter which discards the high

frequency terms. A third form of a narrow bandpass signal is

s(t) = Re{u(t) exp(jwct)} (2.19)

where u(t) is called the complex envelope of the signal s(t) and is defined as

u(t) = gc(t) + jgs(t) . (2.20)
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The angular frequency wc is called as the carrier frequency and it is significantly

larger than the bandwidth of the baseband signal. The fourth and the most

general form of a narrow bandpass signal is

s(t) =
1

2
u(t) exp(jwct) +

1

2
u∗(t) exp(−jwct) . (2.21)

Now we can get into the motivation and derivation of the matched filter and the

ambiguity function.

Matched filters can be designed for both baseband and bandpass real signals.

In the following derivations, a filter matched to the complex envelope of the

signal will be considered. In Fig. 2.4, the input signal to the filter is the s(t) in

additive white gaussian noise with a two-sided power spectral density of N0/2

[22]. Impulse response of the filter is h(t) and the frequency response is H(w).

The objective here is to find a h(t), which yields the maximum output SNR at a

specific t0 when we decide on the presence or absence of s(t) in white noise. The

mathematics of this objective is maximizing
(

S

N

)

out

=
|so(t0)|2
n2

o(t)
. (2.22)

Assuming S(w) is the Fourier transform of the s(t), one can write the output of

the matched filter at t0 as

so(t0) =
1

2π

∫ ∞

−∞
H(w)S(w) exp(jwt0)dw (2.23)
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The mean-squared value of the noise is

n2
o(t) =

N0

4π

∫ ∞

−∞
|H(w)|2dw (2.24)

If we substitute (2.23) and (2.24) into (2.22) output SNR becomes

(
S

N

)

out

=

∣∣∣
∫ ∞

−∞
H(w)S(w) exp(jwt0)dw

∣∣∣
2

πN0

∫ ∞

−∞
|H(w)|2dw

. (2.25)

Using the Schwarz inequality, (2.41) can be rewritten as

(
S

N

)

out

≤ 1

πN0

∫ ∞

−∞
|S(w)|2dw =

2E

N0

(2.26)

where E is the energy of the signal:

E =

∫ ∞

−∞
s2(t)dt =

1

2π

∫ ∞

−∞
|S(w)|2dw (2.27)

The equality in the above, Schwarz upper bound can be achieved by the following

filter response which is the matched filter:

H(w) = KS∗(w) exp(−jwt0) . (2.28)

Taking the inverse fourier transform, impulse response of the filter reveals as

h(t) = Ks∗(t0 − t) , (2.29)

meaning that delayed mirror image of the conjugate of the signal is impulse

response of the matched filter. Using this configuration, at t = t0, one can

obtain a maximum output SNR value of 2E/N0. This result is interesting in the

sense that, maximum SNR at the output of a matched filter is only a function

of the signal energy but not its shape.
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Let’s now investigate a filter matched to a narrowband bandpass signal. If we

use the forth form of s(t), given in (2.21), in (2.23) we get the equation below:

so(t) =
K

4

∫ ∞

−∞

[
u(τ) exp(jwcτ) + u∗(τ) exp(−jwcτ)

]

.
{
u∗(τ − t + t0) exp[−jwc(τ − t + t0)]

+u(τ − t + t0) exp[jwc(τ − t + t0)]
}
dτ (2.30)

After straightforward simplifications, so(t) can be obtained as:

so = Re

([
1

2
K exp(−jwct0)

∫ ∞

−∞
u(τ)u∗(τ − t + t0)dτ

]
exp(jwct)

)
. (2.31)

From this long equation, we can separate out a new complex envelope:

uo(t) =
1

2
K exp(−jwct0)

∫ ∞

−∞
u(τ)u∗(τ − t + t0)dτ , (2.32)

and in the end we obtain the output of the matched filter as

so(t) = Re
{
uo(t) exp(jwct)

}
. (2.33)

This equation tells us that the output of a filter matched to a narrowband band-

pass signal has a complex envelope uo(t) obtained by passing the complex en-

velope u(t) of the narrowband bandpass signal through its own matched filter.

Therefore, in applications where narrowband bandpass signals used, it is suffi-

cient to work with the complex envelope u(t) of the signal and its matched filter

output uo(t). Once uo(t) is obtained, so(t) could be found by (2.33).

The above derivation of the matched filter ignored the potential Doppler shift

on the received signals. However in wireless communication, when the receiver is

moving relative to the transmitter or the received waves bounced off from moving

objects, the received signal suffers a Doppler shift. When the Doppler shift is not

known, performance of the receiver that makes use of a matched filter matched

to the transmitted signal may significantly degrade. Now let’s modify the input

complex envelope with a Doppler shift as below:

ud(t) = u(t) exp(j2πνt) . (2.34)

14



In order to find the output complex envelope we replace the first u(t) in (2.32)

by ud(t) and choose t0 = 0, K = 1 yields a function carrying both doppler shift

and time information:

uo(t, ν) =

∫ ∞

−∞
u(τ) exp(j2πντ)u∗(τ − t)dτ . (2.35)

Another form of (2.35) is the well-known ambiguity function and given as

χu,u(τ, ν) =

∫ ∞

−∞
u(t)u∗(t− τ) exp(j2πνt)dt . (2.36)

The ambiguity function (AF), characterizes the output of a matched filter

when the input signal is delayed by τ and Doppler shifted by ν. This function

was first introduced by Woodward in 1953 and found useful in wide variety of

applications.

Let’s now mention some of the important properties of AF. If we assume that

the energy E of u(t) is normalized to unity, maximum value of the ambiguity

function occurs at the origin and equals to one. We can formalize it as

∣∣χ(τ, ν)
∣∣ ≤

∣∣χ(0, 0)
∣∣ = 1 . (2.37)

Total volume under the normalized ambiguity surface equals unity, independent

of the signal waveform:

∫ ∞

−∞

∫ ∞

−∞

∣∣χ(τ, ν)
∣∣2dτdν = 1 . (2.38)

These two properties states that, if one try to squeeze the AF to a narrow peak

at the origin, that peak cannot exceed a value of one and the volume squeezed

out of that peak must reappear somewhere else [23]. Therefore, the behavior of

the ambiguity diagram indicates that there have to be trade-offs made among

the resolution, accuracy, and ambiguity. Thirdly, AF is symmetric with respect

to the origin;

∣∣χ(−τ,−ν)
∣∣ =

∣∣χ(τ, ν)
∣∣ (2.39)
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which suggests that it is sufficient to study only two adjacent quadrant of the

AF.

Although it is not realistic, the “ideal” ambiguity diagram would consists

of a single infinitesimal thickness peak at the origin and be zero everywhere

else, as shown in Fig. 2.5. This figure tells us that we have no ambiguities in

range or doppler frequency. Time delay and/or frequency could be determined

simultaneously to as high a degree of accuracy as wanted.

Usually two dimensional plots of ambiguity diagrams are used to gather in-

formation. In Fig. 2.6, two dimensional representation of the ambiguity diagram
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for a single unmodulated pulse obtained by gating a sinusoid signal of width τp

is given. Black shaded regions indicate that
∣∣χ(τ, ν)

∣∣2 is large and gray regions

indicate that
∣∣χ(τ, ν)

∣∣2 is small. This figure says that if τp is large corresponding

to a long pulse, we have poor delay and good doppler accuracy. The opposite

occurs for a short pulse. The short pulse is doppler tolerant, meaning that the

output from a filter matched to a zero doppler shift will not change much when

there is a doppler shift. However, the long pulse is not doppler tolerant, and

produce reduced output for a doppler-frequency shift. Lastly for this unmod-

ulated pulse, the time bandwidth product (TBP) which is defined as the 3-dB

timewidth times the 3-dB bandwidth of the pulse is one. For modulated pulses

the TBP may significantly exceed one.

Each different waveform yields a new distribution of ambiguity. There are

several types of signals that are commonly used in practice. Two important

examples are the periodic continuous wave (CW) radar signal and a coherent

train of identical pulses. In Fig. 2.7, ambiguity distribution of a uniform pulse

train is shown. If there are N pulses of duration τp in a pulse train where pulses

are separated by T/N , the Doppler measurement accuracy becomes 1/T which

can be many time more accurate than the accuracy provided by a single pulse.

This fact is illustrated in Fig. 2.7. To increase the delay accuracy, transmitted

pulses can be modulated either by using phase or frequency modulations. For

example, if the pulse of duration τp is divided into 13 subpulses where the phase

of each subpulse is chosen to be {11111− 1− 111− 11− 11}, which is known as

the Barker-13 sequence, the delay accuracy can be increased by 13 times. Note

that, the Ambiguity distribution of a Barker-13 sequence is plotted in Fig. 2.8.

The TBP of this sequence is thirteen.
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2.3 Applications of Array Processing

The practical and theoretical improvements of parameter estimation in array sig-

nal processing has resulted in a many types of applications. In this section, only

the three important areas, namely radar-sonar, communications and industrial

applications will be discussed.

The very first application of array signal processing is in radar. Phased ar-

rays are the most advanced type of antenna used in modern radars. Its a kind of

array whose beam direction is controlled by the relative phases of the excitation

coefficients of the relative elements [24]. Some important issues which provide

radar with great flexibility can be given as: high directivity and power gain;

capability of combining search and track functions when operating in multiple-

target and severe interference environments; ability to change beam position in

space almost instantaneously; generating very high powers from many sources

distributed across the aperture; better throughput; and compatibility with dig-

ital signal processing algorithms and digital computers. Furthermore, in sonar

applications the signal energy is usually acoustic and measured using arrays of

hydrophones. The receiving antenna usually towed under water and has the

capability of detecting and locating distant sources.

Antenna arrays are extremely important in personal communications. One

of the most crucial problems in a multiuser environment is the inter-user inter-

ference. This type of problems degrade the performance severely which is also

the case in Code Division Multiple Access (CDMA) systems. CDMA is a form of

multiplexing and a method of multiple access that does not divide up the channel

by time (as in TDMA), or frequency (as in FDMA), but encodes data with a

special code associated with each channel and uses the constructive interference

properties of the special codes to perform the multiplexing [25]. CDMA exploits

at its core mathematical properties of orthogonality. In real life applications,
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varying delays of different users induce non-orthogonal codes. An implementa-

tion of multiple signal classification algorithm (MUSIC), which will be discussed

in Chapter 3, is presented in [26] for estimating these propagation delays. Spatial

diversity had been used for a long time in order to handle the fading problem

due to multipath. Nevertheless, array antennas have several additional advan-

tages such as obtaining higher selectivity. For instance, a receiving array can

be steered in the direction of one user at a time, while simultaneously nulling

interference from other users. In [27], a similar version of the beamspace array

processing describes how to localize incoming users waveforms.

In many areas of industry, array signal processing plays a central role. Medical

applications are the most important commercial application areas of the sensor

arrays. Circular arrays are widely used as a means to focus energy, in medical

imaging and hyperthermia treatment [28]. Planar arrays are found important

applications in electrocardiograms. They used to track the changes of wavefronts

which in turn provide information about the situation of patient’s heart. In

tomography, array signal processing used to characterize shapes of the objects

[29]. Moreover, biomagnetic sensor arrays, so called super-conducting quantum

interference device (SQUID) magnetometers localize brain activity [30]. Other

application areas in industry may be given as; fault detection/localization and

automatic monitoring. For instance, sensors are placed to detect and localize

faults such as broken gears [31].
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Chapter 3

DIRECTION-OF-ARRIVAL

(DOA) ESTIMATIONS

The interest in array signal processing originates from a wide range of applica-

tions such as radar, radio and microwave communications where waveforms are

measured at several poins in space and/or time. Many estimation techniques for

estimating unknown signal parameters from the measured output of a antenna

array have been proposed.

Much of the current work in array signal processing has focused on meth-

ods for high-resolution DOA estimation. In this chapter, well known parameter

estimation techniques will be discussed in two main categories, namely spectral-

based and parametric approaches [32]. In spectral-based approaches, we form a

function of the parameter(s) of interest, e.g., the DOAs. The locations of the

highest peaks of the function are considered as the DOAs estimates. Differently,

in parametric techniques, we search for all parameters of interests simultaneously.

In this latercase, one gets more accurate estimates however, the computational

complexity also increases.
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3.1 Spectral-Based Algorithmic Solutions

In the following, we will investigate the spectral-based approaches in two cate-

gories: beamforming techniques and subspace-based methods.

3.1.1 Beamforming Techniques

Beamforming is a signal processing technique used with antenna arrays that

controls the directionality and localize signal sources. The basic idea behind the

technique is to concentrate the array to waves coming from only one particular

direction. The steering directions which result in maximum signal power yields

the DOA estimates. The array response can be obtained by multiplying the

each sensor output with an appropriate weighting factor and forming a linear

combination:

y(t) =
M∑

m=1

w∗
mxm(t) = wHxt . (3.1)

If we digitize (3.1), the output power is measured by

P (w) =
1

N

N∑
n=1

|y(n)|2 (3.2)

=
1

N

N∑
n=1

wHx(n)xH(n)w

= wHR̂w

where, in sample-wise notation,

R̂ =
1

N

N∑
n=1

x(n)xH(n) (3.3)

R̂ = ÛsΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

n .

In this thesis, two basic beamforming approaches will be investigated.

The conventional beamforming technique is the simplest one which relays on

the Fourier-based spectral analysis to antenna array output [3]. The purpose is to
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maximize the output power of the beamformer from a certain signal propagation

direction. If the desired direction is (θ, φ), then we can write the array output as

x(t) = a(θ, φ)s(t) + n(t) . (3.4)

If we assume that the noise is spatially white, the maximum output power can

be found as;

max
w

E{wHx(t)xH(t)w} (3.5)

= max
w

wHE{x(t)xH(t)}w

= max
w

{E|s(t)|2|wHa(θ, φ)|2 + σ2|w|2} .

Also let |w| = 1, the maximum power can be obtained for the following choice

for the w:

w =
a(θ, φ)√

aH(θ, φ)a(θ, φ)
. (3.6)

This vector matches to the direction of impinging signal and can be thought of

as a filter. If we substitute (3.6) into (3.2), the spatial spectrum is obtained as

P (θ, φ) =
aH(θ, φ)R̂a(θ, φ)

aH(θ, φ)a(θ, φ)
(3.7)

Conventional beamformers shows poor performance when resolving power of

two sources spaced closer than a beamwidth. However, a well-known method

called Capon’s beamforming proposed in [33], resolves this limitation. The cost

function of the approach is introduced as

min
w

P(w) (3.8)

subject to wHa(θ, φ) = 1 ,

which tries to minimize the power contributed by impinging signals coming from

other directions than the look direction (θ, φ) and noise. One solution of (3.8) is

w =
R̂
−1

a(θ, φ)

aH(θ, φ)R̂
−1

a(θ, φ)
, (3.9)
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and the spatial spectrum is obtained by inserting the (3.9) into (3.2) as

P (θ, φ) =
1

aH(θ, φ)R̂
−1

a(θ, φ)
. (3.10)

This spatial spectrum and the constraint given in (3.8) gives the Capon’s beam-

former the ability of better focusing in the directions where there are multiple

sources.

3.1.2 Subspace-Based Methods

Spectral decomposition of a covariance matrix is the starting point of the many

spectral methods in DOA analysis. Subspace-based approaches become very pop-

ular with the usage of the eigen-structure of the covariance matrix. The interest

was mainly due to the introduction of the MUSIC(Multiple SIgnal Classification)

algorithm [4, 5].

As stated in the early sections, the spectral decomposition of a covariance

matrix can be expressed as

R = APAH + σ2I (3.11)

= UsΛsU
H
s + σ2UnU

H
n

where the diagonal matrix Λs holds the d largest eigenvalues, assuming APAH

to be of full rank. Spatial directions of d signal sources are the solutions of the

equation;

UH
n a(θi, φi) = 0 (3.12)

where Un contains the noise eigenvectors.

Eigenvectors of the covariance matrix estimate, R̂, are separated into the

signal and noise eigenvectors as in Eq.(3.3). Secondly, the orthogonal projector

onto the noise subspace is found as

Π̂⊥ = ÛnÛ
H

n . (3.13)
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Then the spatial spectrum of the MUSIC algorithm is defined as

P (θ, φ) =
aH(θ, φ)a(θ, φ)

aH(θ, φ)Π̂⊥a(θ, φ)
. (3.14)

Performance of the MUSIC algorithm is significantly better than the beam-

forming techniques and provides statistically consistent estimates. However, at

low SNR and closely spaced signals scenarios , MUSIC fails to resolve DOAs.

This resolution loss is more revealed for highly correlated signals. In the case

of coherent signals, Eqn.(3.12) becomes false and the algorithm fails to yield

consistent estimates.

The idea behind the MUSIC algorithm is applied to many application areas

and led to a multiple of variants. One of the most successful variant is the

weighted MUSIC, which has a spatial spectrum as

P (θ, φ) =
aH(θ, φ)a(θ, φ)

aH(θ, φ)Π̂⊥WΠ̂⊥a(θ, φ)
. (3.15)

The effects of the eigenvectors are taken into account through the weighting

matrix W. Although uniform weighting usage yields estimates with minimal

variance, in some scenarios involving correlated signals, low SNR and short du-

ration signals, a non-uniform weighting improve the resolution of the algorithm

considerably with an acceptable increase in the variance [34].

3.2 Parametric Methods

Spectral-based methods discussed in the previous section are very effiecient in

terms of computational power. However, they do not provide enough accuracy

for different cases. For instance, in correlated signal scenarios, performance of

the spectral-based algorithms degrades significantly. Parametric methods fill the

gap in coherent signal DOA estimations. These methods provide better accu-

racy and robustness but at the same time require a multidimensional search to
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produce estimates. In this section, deterministic maximum likelihood, stochastic

likelihood and subspace-based approximations will be discussed respectively.

3.2.1 Deterministic Maximum Likelihood

In our data model, we assume that the signal carrying the data is emitted from

d sources whereas background and receiver noise can be thought of as emanating

from a large number of independent sources. As a result, data signals are deter-

ministic and noise is assumed to be a stationary Gaussian white random process

[32].

In the case of spatially white and circularly symmetric noise, statistical prop-

erties can be written as

E{n(t)nH(t)} = σ2I (3.16)

E{n(t)nT (t)} = 0 . (3.17)

By means of the assumptions above, array output x(t) can be modeled as circu-

larly symmetric and temporally white Gaussian random process having a mean

A(θ, φ)s(t) and covariance σ2I. The probability density function (PDF) of x(t)

is the complex L-variate Gaussian:

1

(πσ2)L/2
e−‖x(t)−As(t)‖2/2σ2

, (3.18)

where ‖.‖ denotes the Euclidean norm. Measurements are independent so likeli-

hood function is given as

L(θ, φ, s(t), σ2) =
N∏

t=1

1

(πσ2)L/2
e−‖x(t)−As(t)‖2/2σ2

. (3.19)

Direction of arrivals (θ, φ), signal waveforms s(t), and the noise variance σ2

are the parameters that should be estimated. Calculated ML estimates of these

unknown parameters maximize L(θ, φ, s(t), σ2). In the maximization, the log
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likelihood function:

l(θ, φ, s(t), σ2) = L log σ2 +
1

σ2N

N∑
t=1

‖x(t)−As(t)‖2 (3.20)

is commonly used. The minimizing arguments of the log likelihood function are

called as the deterministic maximum likelihood (DML) estimates. Note that the

DML estimates for σ2 and s(t) are:

σ̂2 =
1

L
tr

{
(I−AA†)R̂

}
(3.21)

ŝ(t) = A†x(t) (3.22)

where A† is the pseudo inverse of A and R̂ is the sample covariance matrix

[35, 7].

If we substitute (3.21) and (3.22) into (3.19), the DML estimates for θ and φ

can be expressed as:

θ̂, φ̂ = arg
{
min

θ
tr

{
(I−AA†)R̂

}}
(3.23)

In order to obtain θ̂ and φ̂, one should solve the non-linear d-dimensional opti-

mization problem. Good initial estimates lead to very accurate DOA estimates.

However, as stated before computational complexity is very high.

3.2.2 Stochastic Maximum Likelihood

Stochastic maximum likelihood (SML) method is derived by modeling the signal

waveforms as Gaussian random processes. By [8, 9], the accuracy of the parame-

ter estimates are related with correlations and power of the waveforms. Assume

that, some properties of the signal is given as

E
{
s(t)sH(t)

}
= P (3.24)

E
{
s(t)sT (t)

}
= 0 , (3.25)
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saying that x(t) is a white, zero-mean and circularly symmetric gaussian random

vector having a covariance matrix

R = A(θ, φ)PAH(θ, φ) + σ2I . (3.26)

where the unknown parameters are (θ, φ), P and σ2.

The likelihood function of the SML is proportional to

1

N

N∑
t=1

‖Π⊥
Ax(t)‖2 = tr

{
Π⊥

AR̂
}

(3.27)

and for fixed θ, φ, the minimum with respect to σ2 and P can be given as [10]

σ2(θ, φ) =
1

M − d
tr{Π⊥

A} (3.28)

P̂(θ, φ) = A†(R̂− σ̂2(θ, φ)I
)
A†H . (3.29)

If we substitute (3.28) and (3.29) into (3.27), we get the following expression for

the SML estimates of θ and φ:

θ̂, φ̂ = arg
{
min

θ
log

∣∣AP̂(θ, φ)AH + σ̂2(θ, φ)I
∣∣} . (3.30)

SML parameter estimates are better than the DML estimates in low SNR and

highly correlated signal situations. Moreover, this method provides robust results

even if the distribution of the signal waveform is not Gaussian.

3.2.3 Subspace-Based Approximations

We already mentioned that, conventional beamforming techniques are signifi-

cantly behind the subspace-based methods as far as the performance and the

accuracy are our concern. Moreover, in uncorrelated signal scenarios, MUSIC

performs identical to DML in accuracy [34]. However, resolution problems occur

for finite samples and high source correlation scenarios in spectral-based meth-

ods. In this section, some well-known Subspace Fitting methods, which offer
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the same statistical performance and are computationally very efficient, will be

discussed.

Let’s restate the eigendecomposition of the array covariance matrix (3.11),

R = APAH + σ2I (3.31)

= UsΛsU
H
s + σ2UnU

H
n . (3.32)

We know that if P is a full rank matrix, then A and Us span the same range

space. However, in general, the rank of P is d̃ which is the number of eigenvectors

in Us. Then Us will span a d̃-dimensional subspace of A. Since,

I = UsU
H
s + UnU

H
n (3.33)

we have the following equality

APAH + σ2UsU
H
s = UsΛsU

H
s . (3.34)

After some simple manipulations on the equation above we obtain:

Us = AT (3.35)

where T is the full rank (d̃) matrix given by

T = PAHUs

(
Λs − σ2I

)−1
. (3.36)

Equation (3.35) is the basic starting point of the Signal Subspace Fitting

(SSF) approach [12, 6]. In order to solve the (3.35) one needs a search for the

unknown parameters (θ, φ) and T. Obviously, resulting (θ, φ) are the DOAs. If

instead of Us, an estimate Ûs is used then the distance between the Ûs and

AT should be minimized. The SSF estimates are found by solving the following

optimization problem:

{
θ̂, φ̂, T̂

}
= arg min

θ,φ,T

∥∥Ûs −AT
∥∥2

F
. (3.37)

For fixed but unknown A, the estimate of T is

T̂ = A†Ûs , (3.38)

29



and using this result, the required optimization can be expressed as:

ˆθ, φ = arg
{
min
θ,φ

{
Π⊥

AÛsΛ̂Û
H

s

}}
(3.39)

Another form of a subspace fitting approach is obtained by using the following

equation;

AH(θ, φ)Un = 0 , (3.40)

which holds for P having full rank. After an estimate of Un is found, signal

parameters can be determined by minimizing the following equation;

θ̂, φ̂ = arg
{
min
θ,φ

tr
{
AHÛnÛ

H

n AV
}}

, (3.41)

which is known as noise subspace fitting (NSF) criterion [6, 13]. In this equation

V is a positive definite weighting matrix. For V = I and in the case of |a(θ, φ)| is
independent of (θ, φ), this method reduces the MUSIC algorithm. The criterion

function is a quadratic function of the steering matrix A. If any of the parameters

of A enter linearly then it is very easy to obtain an analytical solution with

respect to these variables [36]. However, NSF fails to produce reliable estimates

in coherent signal situations [11, 32].
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Chapter 4

HF COMMUNICATION

Modern radio technology actually starts with the publication of James Clerk

Maxwell’s Treatise on Electricity and Magnetism in 1873, introducing the basic

theory of electromagnetic wave propagation. However, the first radio waves were

actually detected 15 years later. In 1888, Heinrich Rudolph Hertz showed that

disturbances generated by a spark coil showed the characteristics of Maxwell’s

radio waves. His work impressed Guglielmo Marconi’s early experiments with

wireless telegraphy using Morse code. By 1896, Marconi had communicated

messages over distances of a few kilometers.

In those years, it was thought that radio waves in the atmosphere traveled

in straight lines and that they therefore would not be useful for over-the-horizon

communication. However, Marconi achieved radio communication over long dis-

tances. In 1901 in Newfoundland, Canada, he detected a telegraphic signal

transmitted from Cornwall, England,3000 kilometers away using a 120 meters

long wire.

Marconi’s achievement activated a huge effort on this issue. Eventually Ed-

ward Appleton answered the question of how radio waves could be received

around the surface of the earth. He discovered that a blanket of electrically
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charged, or ”ionized”, particles in the earth’s atmosphere, the ”ionosphere”,

were capable of reflecting radio waves. By the 1920s, researchers had used this

theory and developed ways to predict the refractive properties of the ionosphere.

Today, with the experience and understanding of the propagating effects of the

ionosphere, HF technology provides reliable and effective communication over

many thousands of miles. In this chapter, structure and some important prop-

erties of this natural satellite will be discussed.

4.1 Structure of the Ionosphere

The ionosphere is composed of a number of ionised regions above the earth’s

atmosphere, which extends from a height of about 60 km to 600 km. These

regions are believed to influence the radio waves mainly because of the presence of

free electrons, which are arranged in approximately horizontally stratified layers

[37].

The ionisation in the ionosphere is caused mainly by radiation from the sun.

This is a process by which electrons, having a negative charge, are stripped from

the neutral atoms or molecules to form positively charged ions. It is these ions

that give their name to the ionosphere. These electrons under the influence of

an electromagnetic wave will absorb and reradiate energy, and modify direction

of an electromagnetic wave.

Most of the ionisation in the ionosphere results from ultraviolet light, although

this does not mean that other wavelengths do not have some effect. Addition-

ally, each time an atom or molecule is ionised, a small amount of energy is used.

This means that as the radiation passes further into the atmosphere, its intensity

reduces. It is for this reason that the ultraviolet radiation causes most of the

ionisation in the upper reaches of the ionosphere, but at lower altitudes the radi-

ation that is able to penetrate further cause more of the ionisation. Accordingly,
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Figure 4.1: Electron production due to solar radiation.

extreme ultra-violet and X-Rays give rise to most of the ionisation at lower alti-

tudes. In addition to this, there is a variation in the proportions of monatomic

and molecular forms of the gases, the monatomic forms of gases being far greater

at higher altitudes. These and a variety of other phenomena mean that there are

variations in the level of ionisation with altitude.

The level of ionisation in the ionosphere also changes with time. It varies with

the time of day, time of year, and according to many other external influences.

One of the main reasons why the electron density varies is that the sun, which

gives rise to the ionisation. While the radiation from the sun causes the atoms

and molecules to split into free electrons and positive ions. The reverse effect also

occurs. When a negative electron meets a positive ion, the fact that dissimilar

charges attract means that they will be pulled towards one another and they may

combine. This means that two opposite effects of splitting and recombination are

taking place. This is known as a state of dynamic equilibrium. Accordingly the

level of ionisation is dependent upon the rate of ionisation and recombination.
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Figure 4.2: Ionosphere layers.

4.2 Layers of Ionosphere

The ionosphere is often described in terms of its component regions or layers

which are firstly mentioned by E.V. Appleton. Naming convention were based

upon data obtained from a myriad of radiowave measurement schemes involving

vertical and oblique geometries, pulsed and CW systems, variable and constant

frequencies, and different types of observables such as polarization and signal

time delay [38]. For reasons related to historical development of ionospheric

research, the ionosphere is divided into three regions or layers designated D,E

and F respectively, in order of increasing altitude. The D layer is the innermost

layer, within the ionosphere that affects radio signals to any degree. It is present
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at altitudes between about 60 and 90 kilometres and the radiation within it is

only present during the day to an extent, which affects radio waves noticeably.

It is sustained by the radiation from the sun and levels of ionisation fall rapidly

when the sun sets. In this region, electron density, which has a maximum value

shortly after local solar noon and a very small value at night, exhibits large

diurnal variations. The D layer mainly has the affect of absorbing or attenuating

radio signals particularly LF and MF slice of the radio spectrum. At night it has

little effect on most radio signals.

The altitude range from 90 - 130 kilometres constitutes the E-region and en-

compasses the so-called ‘normal’ and sporadic E layers. The former is a regular

layer which displays a strong solar zenith angle dependence with maximum den-

sity near noon and important only for daytime HF propagation. Sporadic E may

form at any time during the day or night. It is difficult to know where and when

it will occur and how long it will persist. Sporadic E can have a comparable

electron density to the F region. This means that it can refract comparable fre-

quencies to the F region. Sometimes a sporadic E layer is transparent and allows

most of the radio wave to pass through it to the F region, however, at other times

the sporadic E layer obscures the F region totally and the signal does not reach

the receiver which is known as sporadic E blanketing. Sporadic E in the low and

mid-latitudes occurs mostly during the daytime. At high latitudes, it generally

forms at night.

The most important region in the ionosphere for long distance HF commu-

nications is the F region. It extends upwards from about 135 kilometres and is

divided into the F1 and F2 layers during the daytime when radiation is being

received from the sun. Typically the F1 layer is found at around an altitude

of 180 kilometres with the F2 layer above it at around 350 kilometres. The F1

layer exists only during daylight and is sometimes the reflecting region of the HF

transmission. However, generally obliquely-incident waves that penetrate the E
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region also penetrate the F1 layer and are reflected by the F2 layer. At night,

F1 layer merges with the F2 layer at a height of about 300 kilometres [37]. Prin-

cipal reflecting region for long distance HF communication is the F2 layer since

it provides us with the capability to achieve the greatest skywave propagation

range (by a single hop) at generally the highest allowable frequency in relation

to underlying layers. The lifetime of electrons is greatest in the F2 layer which

is one reason why it is present at night.

4.3 Wave Propagation through the Ionosphere

In an earth environment, electromagnetic waves propagate in ways that depend

not only on their own properties but also on those of the environment itself.

Waves travel in straight lines, except where the earth and the atmosphere alter

their path. Waves with frequencies above HF travel in a straight line. They

propagate by means of so-called space waves. They are sometimes called tropo-

sphereic waves, since they travel in the troposphere. Frequencies below the HF

range travel around the curvature of the earth. They are called ground waves or

surfaces waves. Waves in the HF range are reflected by the ionised layers of the

atmosphere and are called sky waves. Such signals are beamed into the sky and

come down again after reflection, returning to earth well beyond the horizon. In

this section, having mentioned the structure and the layers of the ionosphere, we

will focus on how and in what conditions wave propagation through the iono-

sphere enables HF communication.

Using the optimum operational frequency is very crucial in HF communica-

tion. Not all HF waves are refracted by the ionosphere, saying that there are

upper and lower frequency bounds for communication between two stations. The

range of usable frequencies will change through out the day, with the seasons,

from place to place and with the solar cycle. If the frequency is too low, the
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Figure 4.3: Propagation modes.

strength of the signal will be weakened by the D-region. If the frequency is too

high the wave will penetrate the ionosphere. Radio waves hop from the earth to

the ionosphere and back to the Earth. The ground distance covered by a radio

signal after it has been refracted once from the ionosphere and returned to earth

is called hop length. For E and F layer heights of 100 km and 300 km, the maxi-

mum hop lengths with an elevation angle of 4◦, are approximately 1800 km and

3200 km, respectively. There are many paths by which a sky wave may travel

from a transmitter to a receiver. The mode by a particular layer which requires

the least number of hops between the transmitter and receiver is called the first

order mode. If one more hop is needed then it is called second order mode. For

instance, for a link with a path length of 5000 kilometres, the first order F mode

has two hops (2F), while the second order F mode has three hops (3F).

Propagation modes can be classified as simple (modes propagated by one

region; F or E layer only) and complicated (modes consisting of combinations of

refractions from the E and F layers, ducting and chordal modes) modes as shown

in Fig. 4.3. As far as the reflection phenomenon is concerned, many people think
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of the regions of the ionosphere as being smooth, nevertheless, the ionosphere

fluctuates and moves. This situation affects the refraction of the signals. The

ionospheric regions may tilt and when this happens chordal and ducted modes,

which involve a number of refractions from the ionosphere without intermediate

reflections from the earth, may occur. Occasionally, ionospheric tilting takes

place near the mid-latitude trough, equatorial anomaly and in the sunrise and

sunset sectors. Since the elapsed time during the D-region traversing is less

and attenuation during ground reflections, in the chordal and ducted modes,

relatively signals may be strong.

Frequency, path length and antenna elevation angle are three crucial variables,

combinations of which changes the ray paths considerably. For a fixed antenna

elevation angle as shown in Fig. 4.4, when the frequency is increased toward the

maximum usable frequency (MUF), the wave is refracted higher in the ionosphere

and the range is increased (paths 1 and 2). At the MUF, maximum range is

reached and above the MUF, wave penetrates the ionosphere represented by

paths 3 and 4 respectively. In the second scenario, for a fixed point-to-point

circuit path length seen in the Fig. 4.5, when the frequency is increased toward

the MUF, the wave is refracted from higher in the ionosphere. Therefore, in order

to sustain the link operation, the elevation angle should be increased (paths 1

and 2). At the MUF, path-3 operates at the critical elevation angle which is

the uppermost angle before penetration. In path-4, the wave penetrates the

ionosphere, since the frequency is above the MUF. For the case of fixed frequency

given in the Fig. 4.6, the length of the path (path-1) is longest at low elevation

angles. The path length decreases and the ray is refracted from the higher in

the ionosphere when the elevation is increased represented by path-2 and path-3

successively. If the critical elevation angle is exceeded for that frequency, then

the wave penetrates the ionosphere, resulting an area around the transmitter

where no sky wave communication can be accomplished.
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Multipath phenomena occurs when the signal is nondispersively distended by

multiple reflections from the ionosphere with or without ground reflections or

when the signal is distorted by the superposition of multiple and nearly equal

amplitude sources within a single layer. Fading is involved in both cases. Ac-

cording to their origin there are a number of different kinds of fading. The main

causes are movements and changes of curvature of the electron-dense ionospheric

reflector, rotation of the axes of the received polarisation ellipse, time variations

of absorption and changes in electron density [37]. Moreover it is extremely im-

portant that the ionospheric irregularities within a single layer are generally in

pseudorandom motion up and down, therefore in the case of micro-multipath

situation one should focus on the doppler spreads.

4.4 High Latitude HF Communication

The terrestrial ionosphere may be categorized as three regions (low, mid and high

latitude region) each having different properties according to their geomagnetic

latitude. The high-latitude zone is the most interesting part of the ionosphere
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and is also known as the our window to the distant magnetosphere. Different

than the low and mid latitude zones, here the geomagnetic field runs nearly

vertical, and this simple fact of nature leads to the existence of an ionosphere

that is considerably more complex [37].

Auroral zones occur within the high-latitude region. Location of these zones

depends on the linkage with the magnetosphere. The auroral phenomena include

electrojets, which cause magnetic perturbations, and also substorms in which

the rate of ionization is greatly increased by the arrival of energetic electrons.

Auroral regions may be the most difficult part of the ionosphere to make a stable

radio communication. Although the mechanisms causing to the formation of

the trough are not completely known, it is known that one fundamental cause

is the difference in circulation pattern between the inner and outer parts of the

magnetosphere [37].

In closing this chapter, we can conclude that the high-latitude ionosphere

is a dynamic and disturbed region containing irregularities which can severely

degrade the performance of high-frequency radio systems when signals propagate

through these regions. Due to this roughness, characteristics (amplitude, phase,

delay, Doppler, DOA ) of the signal associated with each propagation mode can

be changed.
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Chapter 5

ESTIMATION OF DOA,

DELAY AND DOPPLER BY

USING CROSS-AMBIGUITY

FUNCTION

5.1 Introduction

Estimation of DOAs of signals that are delayed and Doppler shifted in the prop-

agation channel has been a challenge for all the previously proposed array pro-

cessing techniques. Since almost all wireless communication systems as well as

radar and sonar systems operate in such conditions, a robust and accurate esti-

mator of DOA’s in the presence of delay and Doppler shift is very much needed.

To address this challenge, in this chapter, we introduce a novel array processing

technique.

Since the proposed technique makes use of cross-ambiguity function compu-

tation, we call it CAF-DF technique. It is an iterative technique, where, at each
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iteration the DOA, time delay and Doppler shift corresponding to one of the

signals impinging onto the array are estimated. Each iteration starts with com-

putation of the CAF at the output of each sensor element. Then, these CAF’s

are incoherently integrated and the largest peak on the integrated CAF is found.

Then the direction of arrival for the observed signal peak is estimated. Once

the DOA of this strong signal is found, a coherent integration of the CAF’s is

obtained to find accurate delay and Doppler estimates. Then, the signal whose

parameters are estimated is eliminated from the array outputs to search for the

next strong signal component in the residual array outputs. The iterations stop

when there is no detectable peak on the incoherently integrated CAF’s. In the

following sections we will present all the details of the CAF-DF technique.

5.2 The CAF-DF Technique

In this section we introduce a novel array processing technique to estimate DOA’s

of known signal components which impinge on a sensor array by propagating

through paths with unknown delay and Doppler. To simplify the discussion, we

will focus on the HF-DF application where the HF propagation channels have

variable delay and Doppler shifts due to the dynamically nature of the ionosphere.

When a transmitter pumps a signal waveform towards the ionosphere as in

Fig. 5.1, it is reflected back to the earth and intercepted by the array. The

received signal at each of the array antenna outputs is an attenuated, delayed

and Doppler shifted version of the transmitted one. Using the narrowband as-

sumption, a parameterized compact data model for the array antenna outputs
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Figure 5.1: Signal transmitted to the ionosphere and reflected back to the sensor
array.

were given in Eqn. 2.6 and 2.9 as

x(t) =




x1(t)

...

xm(t)


 (5.1)

=
d∑

i=1

a(θi, φi)si(t) + n(t) (5.2)

= A(θ, φ)s(t) + n(t) . (5.3)

In this chapter, a more detailed open version of this equation, that explicitly

includes the Doppler shift due to the dynamical nature of the ionosphere, will

be used. In this more informative form, the mth array output for only one signal

path can be written as

xm(t) = ζm,1s(t− τm,1)e
j2πνm,1(t−ξm,1(θ,φ))ej2πνc(t−ξm,1(θ,φ)) + nm(t) . (5.4)

where ζm,1 is a complex number including the amplitude attenuations and phase

rotations due to reflection, τm,1 is the delay, νm,1 is the Doppler shift, νc is
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the carrier frequency and ξm,1(θ, φ)) represents the phase difference of the mth

antenna with respect to the phase reference center or the origin of the array.

Since the structure and behavior of the ionosphere is complex, most of the

time we have multiple signal paths from the sources to the antenna array. For the

multipath situation, the above equation should be modified as a superposition

of contributions due to each signal path:

xm(t) =
d∑

i=1

ζm,is(t− τm,i)e
j2πνm,i(t−ξm,i(θ,φ))ej2πνc(t−ξm,i(θ,φ)) + nm(t) . (5.5)

As seen from the Fig. 5.1, location of the each antenna is different with respect

to the origin of the array. Therefore path delay of the signal from transmitter to

the each antenna will be different. If we label the path delay of the signal from

transmitter to the origin of the array as τ0,i, then we can write that

τm,i = τ0,i + δm,i (5.6)

where δm,i is the delay difference of the each antenna, due to their orientation,

to the array origin. Hence the mth antenna output can be written as:

xm(t) =
d∑

i=1

ζm,is(t− τ0,i − δm,i)e
j2πνm,i(t−ξm,i(θ,φ))ej2πνc(t−ξm,i(θ,φ)) + nm(t) . (5.7)

In order to resolve the phase ambiguities, array antenna spacings should be

smaller than or equal to the half of the wavelength. For narrowband signals, the

time delay appears as a pure phase delay of the reference signal. Moreover, this

phase delay depends only on the spacing between the array elements and the

angle-of-arrival of the plane wave and is independent of the time variable. As a

result, Eqn. (5.7) can be simplified as;

xm(t) =
d∑

i=1

ζm,is(t− τ0,i)e
j2πνm,i(t−ξm,i(θ,φ))ej2πνc(t−ξm,i(θ,φ)) + nm(t) . (5.8)

A few more simplifications can be done on this equation. Doppler shift corre-

sponding to an impinging signal can be taken same for each sensor:

νm,i = νi . (5.9)
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Additionally, for small Doppler shifts:

e−j2πνiξm,i(θ,φ) ' 1 . (5.10)

Lastly, if we convert (5.8) down to baseband, our fundamental equation at the

output of the mth antenna becomes

xm(t) =
d∑

i=1

ζm,is(t− τ0,i)e
j2πνite−j2πνcξm,i(θ,φ) + nm(t) . (5.11)

Starting point of our algorithm is to estimate the direction-of-arrival informa-

tion which is hidden in the e−j2πνcξm,i(θ,φ). By using the cross-ambiguity function

processing, angle estimates will be extracted from Eqn. 5.11. In order to do that,

first of all, lets give the continuous time symmetrical form of the cross-ambiguity

function as follow;

χxm,s =

∫ ∞

−∞
xm(t +

τ

2
) s∗(t− τ

2
) e−j2πνt dt . (5.12)

Although theoretically useful, the continuous form of the CAF is not practical

for real time computations. Therefore, the discrete form of the CAF should be

used in our approach. In the discrete form both τ and ν is discretized and the

integral is approximated by a Riemann sum. To compute the discrete values of

time delay and doppler, some a priori information is needed which includes the

max/min doppler (from largest expected velocity difference) and max/min time

delay (from largest expected range difference). The max/min values allow for

computation of a precise number of dopplers and time delays that are of interest

to use in computation of the CAF. Two other important values needed are the

delay spacing (taken from expected/measured signal bandwidth) and the doppler

spacing (taken from the observation time interval, T). These values dictate how

fine a grid of time delays and dopplers that will be used in conjunction with the

number of time delays and dopplers. For lossless digitization, the sampling rate

is chosen to be at least twice the maximum frequency responses. The discrete

time version of the (5.12) can be written as

χxm,s(k∆τ, l∆ν) =
∆τ

2

∑
n

xm

(
n

∆τ

2
+ k

∆τ

2

)
s∗

(
n

∆τ

2
− k

∆τ

2

)
e−j2πl∆νn∆τ

2(5.13)
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where ∆τ and ∆ν represents delay and doppler spacings, k and l are the number

of delay and doppler spacings respectively.

One can make this equation look like the Fourier transform of a function by

a simple variable modification. Assume that the length of DFT is L and if we

make the replacement below

2πl∆νn
∆τ

2
=

2π

L
nl , (5.14)

(5.13) becomes

χxm,s(k∆τ, l∆ν) =
∆τ

2

∑
n

xm

(
n

∆τ

2
+ k

∆τ

2

)
s∗

(
n

∆τ

2
− k

∆τ

2

)
e−j 2π

L
nl (5.15)

=
∆τ

2

∑
n

xm

(∆τ

2
(n + k)

)
s∗

(∆τ

2
(n− k)

)
e−j 2π

L
nl (5.16)

=
∆τ

2

∑
n

xm[n + k]s∗[n− k]e−j 2π
L

nl (5.17)

=
∆τ

2

∑
n

hk[n]e−j 2π
L

nl (5.18)

=
∆τ

2
DFTL(hk[n]) , (5.19)

In Chapter 2, we plotted the ambiguity function distribution of a uniform pulse

train and observed that doppler resolution is related with the length of the pulse

train. For the cases of long duration signals, such as the recorded real ionospheric

echo signals whose length can be more than 20000 samples, Eqn. (5.19) becomes

inefficient to implement. Moreover, we are not interested in the whole doppler

spectrum. Therefore, it would be wise to narrow our doppler search range to the

physically expected range of values. One way of achieving this purpose is to use

the chirp Z-transform (CZT) [39]. The CZT is proposed to compute Z-transform

of a sequence on arbitrary number of uniformly spaced samples lying on circular

or spiral contours, such as the ones shown in Fig. 5.2, beginning at any arbitrary

point in the Z-transform domain.
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By choosing the Z-transform domain contour as a segment of the unit circle,

the CZT returns the same result as the DFT, but it is limited to a discrete-

frequency band;

|l| ≤ νmax

∆ν
(5.20)

−ND ≤ |l| ≤ ND . (5.21)

where νmax is the maximum doppler shift and ND is the number of frequency

samples to be focused on. For implementation purposes, lets make the doppler

index start from 0 and finish at 2ND by introducing a new variable ľ,

ľ = l + ND . (5.22)

If we update (5.18) with this change of variable we get

χxm,s(k∆τ, (ľ −ND)∆ν) =
∆τ

2

∑
n

hk[n]e−j 2π
L

n(ľ−ND) (5.23)

=
∆τ

2

∑
n

hk[n]ej 2π
L

nNDe−j 2π
L

nľ (5.24)

=
∆τ

2

∑
n

ȟk[n]e−j 2π
L

nľ (5.25)

=
∆τ

2

∑
n

ȟk[n]z−n
ľ

. (5.26)

The CZT is not restricted to operate along the unit circle. It can evaluate the

Z-transform along contours described by

zľ = ej 2π
N

ľ ľ = 0, ..., 2ND (5.27)

= AW−ľ (5.28)

A = A0e
j2πΘ0 (5.29)

W = W0e
j2πΦ0 (5.30)

where A is the complex starting point, W is a scalar describing the ratio between

points on the contour, and 2ND + 1 is the length of the transform. If we have
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Figure 5.2: z-domain circle

A = 1, 2ND + 1 = N and W = e−j2π/N then the Z-transform on this contour is

simply the DFT. Moreover, if W0 = 1 the contour is an arc of circle. In Fig.5.2, a

spiral contour where the Z-transform is evaluated is seen [39]. Having substituted

(5.28) into (5.26), we obtain;

χxm,s(k∆τ, (ľ −ND)∆ν) =
∆τ

2

∑
n

ȟk[n]A−nW nľ (5.31)

for 0 ≤ ľ ≤ 2ND .

Additionally, if we use the substitution described by Bluestein in [40],

nľ =
n2 + ľ2 − (ľ − n)2

2
(5.32)

49



for the exponent of W in (5.31), we thus get

χxm,s(k∆τ, (ľ −ND)∆ν) =
∆τ

2

∑
n

ȟk[n]A−nW [n2+ľ2−(ľ−n)2]/2 (5.33)

=
∆τ

2

∑
n

ȟk[n]A−nW n2/2W ľ2/2W−(ľ−n)2/2 (5.34)

=
∆τ

2
W ľ2/2

∑
n

(
ȟk[n]A−nW n2/2

)
W−(ľ−n)2/2 (5.35)

for 0 ≤ ľ ≤ 2ND .

This summation is precisely a linear convolution of the two sequences gk[n] and

p[n] of length N defined by

gk[n] = ȟk[n]A−nW n2/2 (5.36)

p[n] = W−n2/2 , (5.37)

with the output of the convolution multiplied by ∆τ
2

p[ľ]∗. That is:

χxm,s(k∆τ, (ľ −ND)∆ν) =
∆τ

2
p[ľ]∗

∑
n

gk[n]p[ľ − n] (5.38)

for 0 ≤ ľ ≤ 2ND .

As revealed by this equation, χxm,s(k∆τ, (ľ−ND)∆ν) is a weighted convolution

of sequences gk[n] and p[n], and can be computed efficiently by using FFT based

convolution techniques.

In the proposed array signal processing technique, we will make use of this

efficient implementation of the CAF computation for each antenna output in the

array. In Fig. 5.3, two different views of the CAF computation of the received

signal, which is a barker-13 coded pulse train, with the transmitted Barker-13

pulse train signal is given.

If we have more than one signal source impinging on the antenna array, CAF

of the transmitted and received signals at each antenna output may have multiple
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(a) Top view of CAF

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

frequency, Hz

(b)

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

time, s

(b) Time and frequency slices of CAF crossing at the peak location

Figure 5.3: Result of the CAF computation for the mth antenna output with
transmitted signal when only one signal path exists.
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Figure 5.4: Result of the CAF computation for the mth antenna output with the
transmitted signal for the case of two signal paths.

discernible peaks as shown in Fig. 5.4. Since the antennas in the array are closely

spaced, peak locations of the CAFs will be nearly the same for each antenna.

Adding up the absolute values of the CAF of each antenna output provides the

following incoherent integration

χtotal =
∣∣χx1,s

∣∣ +
∣∣χx2,s

∣∣ + . . . +
∣∣χxM ,s

∣∣ , (5.39)

which make it easier to detect the peaks due to actual signal paths above the

noise level. Therefore, the SNR at the peak detection phase is improved resulting

in more precise detection of the delay and doppler coordinates of the peak. The

procedure is illustrated in Fig. 5.5, using a real ionospheric five-element array

data set. It is seen from the resultant normalized CAF surface that the noise

level is suppressed relative to the peak when compared to the individual CAF

surfaces.
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Incoherent Integration
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Figure 5.5: Incoherent integration of the CAF surfaces.
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Using the delay and doppler location of the highest peak point, a vector will

be created as below;

P p =




χx1,s(τp, νp)

χx2,s(τp, νp)

...

χxM ,s(τp, νp)




M,1

=




∣∣χx1,s(τp, νp)
∣∣ejΨ1

∣∣χx2,s(τp, νp)
∣∣ejΨ2

...
∣∣χxM ,s(τp, νp)

∣∣ejΨM




M,1

. (5.40)

As mentioned before, DOA information is captured in the phases of this vector

entries. The following vector whose elements include the relative phase of each

antenna with respect to the origin due to DOA of a hypothetical signal source

impinging on the antenna array will be used to estimate the DOA of the signal

corresponding to the highest peak:

S(θ̂, φ̂) =
1√
M




ejξ1,1(θ̂,φ̂)

ejξ2,1(θ̂,φ̂)

...

ejξM,1(θ̂,φ̂)




, (5.41)

here, θ̂ and φ̂ are the azimuth and elevation angle of the hypothetical signal

source. To estimate the DOA of the signal corresponding to the highest peak,

we make a search in the (θ̂, φ̂) space and choose an azimuth and elevation pair,

which satisfies the following criteria;

(θ̂p, φ̂p) = arg max
θ̂,φ̂

1

1− |P H
p S(θ̂, φ̂)|
‖P p‖

. (5.42)

For the scenario in Fig. 5.4, the search surface for the θ̂p and φ̂p is illustrated

in Fig. 5.6. The location of the peak provides the DOA estimates. Note that,

the search is conducted on a discrete grid in the search domain. Therefore, the

obtained estimates differ from the actual DOAs related with the grid spacing of

∆θ
2

and ∆φ
2

in elevation and azimuth respectively. At high SNR, this grid spacing

determines the accuracy of our estimates. Assuming uniform distributions, the

error in the obtained estimates will have standard deviations of ∆θ√
12

and ∆φ√
12
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Figure 5.6: Evaluation of the (5.42) and resultant DOA (Azimuth=195.6 deg,
Elevation=32.2 deg) estimate.

in elevation and azimuth respectively. This error floor at high SNR can be

decreased by using finer grids in the search or by using polynomial fit techniques

to the search surface around the estimated peak locations of the grid based

search. Although these improvements are leaved as a future work, we derived

the Cramer-Rao lower bound for this joint estimation problem and gave the

elements of Fisher Information Matrix (FIM) in Appendix-A.

Once θ̂p and φ̂p estimates are obtained, we can now modify the array outputs

for a coherent integration with enhanced signal reception and simultaneous sup-

pression of the undesired noise and interference from other signals. To illustrate

the SNR improvement, Eqn. (5.11) may be simplified for a single path as follows

xm(t) = š(t)e−j2πνcξm,1(θ,φ) + nm(t) . (5.43)

Corresponding input SNR is

SNRm =
E[|š(t)|2]

E[|nm(t)|2] =
Eš

σ2
, (5.44)
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where Eš is the signal energy. From (5.43) the signal components can be co-

herently combined if the array outputs are phase shifted by ej2πνcξm,1(θ̂p,φ̂p) ;

m = 1, 2, . . . , M and the signals are added up. Assuming that θ̂p and φ̂p are

accurate, this gives the output signal xtotal(t) to be

xtotal(t) =
M∑

m=1

xm(t)ej2πνcξm,1(θ,φ) (5.45)

= Mš(t) +
M∑

m=1

nm(t)ej2πνcξm,1(θ,φ) (5.46)

= Mš(t) + n(t) . (5.47)

The output SNR in this case is given by

SNRo =
E[|Mš(t)|2]
E[|n(t)|2] (5.48)

=
M2Eš

Mσ2
(5.49)

= M.SNRm . (5.50)

As a result, coherent integration of the sensor outputs results in an improvement

in the SNR by a factor equal to the number of array elements. The phase compen-

sation procedure in Eqn. (5.47) is illustrated as in Fig. 5.7, where the slow-time

versions (sampled version of the pulse train with pulse repetition interval) of the

antenna outputs are seen. If phase shifting with respect to the origin occurs

with the correct DOA estimates than output slow-time signals overlap as in the

Fig. 5.7(b). Now we can make use of the SNR improved signal by calculating

CAF response with the transmitted waveform, to estimate the delay and Doppler

more accurately. In Fig. 5.8, CAF of the coherently integrated sensor outputs

is seen. Note that, interference from other signal paths and noise level is lower

than the incoherently integrated CAF. Corresponding time-axis and frequency

values of the peak point on this surface are our delay and Doppler estimates.

Thus, we have estimated the azimuth, elevation, delay and Doppler of one

of the impinging signals. Using the four estimated parameters, a copy of the
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Figure 5.7: Slow-time representation of the 5-element array output. (a)before
phase compensation (b)after phase compensation with the first DOA estimate.
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Figure 5.8: CAF of the coherently integrated sensor outputs.

impinging signal at each antenna can be obtained as;

xm,p1(t) = ζ̂m,p1s(t− τ̂0,p1)e
j2πν̂p1te−j2πνcξm,p1 (θ̂,φ̂) m = 1, 2, . . . , M , (5.51)

where p1 represents the first detected path and ζ̂m,p1 is a complex value, which

covers all the phase shifts and attenuation effects and modeled as an uniformly

distributed phase between 0 and 2π. Depending on the calibration capabilities

of the antenna array, ζ̂m,p1 value may be different or same for each antenna. A

cost function to estimate the fifth parameter of the mth antenna output signal

can be;

Jm(ζm,p1) =

∫ T

0

∣∣xm(t)− xm,p1(t)
∣∣2dt (5.52)

The minimizer ζ̂m,p1 of this quadratic cost function with respect to ζm,p1 can be

obtained easily by the following derivative condition:

∫ T

0

∂
(∣∣xm(t)− xm,p1(t)

∣∣2
)

∂ζm,p1

= 0 (5.53)
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which implies the following two equalities:

2

∫ T

0

s∗(t− τ̂0,p1)e
−j2πν̂p1tej2πνcξm,p1(θ̂,φ̂)

(
xm(t)− xm,p1(t)

)
dt = 0 (5.54)

∫ T

0

s∗(t− τ̂0,p1)e
−j2πν̂p1tej2πνcξm,p1(θ̂,φ̂)xm(t)dt = ζ̂m,p1

∫ T

0

s∗(t− τ̂0,p1)s(t− τ̂0,p1)dt .

(5.55)

Hence the ζ̂m,p1 can be obtained as

ζ̂m,p1 =

∫ T

0

s∗(t− τ̂0,p1)e
−j2πν̂p1tej2πνcξm,p1 (θ̂,φ̂)xm(t)dt

∫ T

0

s∗(t− τ̂0,p1)s(t− τ̂0,p1)dt

. (5.56)

If ζ is assumed to be same for each of the antennas, then (5.56) can be modified

as below,

ζ̂p1 =

M∑
m=1

∫ T

0

s∗(t− τ̂0,p1)e
−j2πν̂p1tej2πνcξm,p1 (θ̂,φ̂)xm(t)dt

M

∫ T

0

s∗(t− τ̂0,p1)s(t− τ̂0,p1)dt

. (5.57)

Having determined the copy of the first signal path at each antenna output,

we can eliminate it by simply subtracting its respective copy from each antenna

output in order to start our search procedure for other signal paths if they ex-

ist. This simple elimination procedure is the key in the success of the proposed

approach. The sidelobes in the CAF domain due to the first signal path, may

be stronger than the second target’s echo. The elimination of the first signal

path results in the elimination of the first signal path related sidelobes in the

CAF domain as well. Therefore after the elimination, we can start our search

for a second signal path in the CAF domain with confidence. In Fig. 5.9, syn-

thetically generated copy of the first signal path on only three antenna output is

plotted with real slow-time data. A strong correspondence is seen with the real

data. After the elimination, the cross-ambiguity surface is changed such that

first dominant peak and all the sidelobes of first signal path are disappeared as

in Fig. 5.10 for each antenna. Therefore, better and accurate estimation of the
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Figure 5.9: Synthetically generated copy of the first signal path on three antenna
output with original slow-time data. Marked lines represent the real data and
smooth lines for synthetic signal.

second signal path will be possible. The block diagram of the proposed iterative

CAF-DF technique is given in Fig. 5.11.

Computational estimation procedure can be divided into mainly two parts as

CAF calculation and spatial angle search, as far as the computational complexity

is concerned. Number of delay and Doppler samples determine the computational

cost of CAF computation. However, in spatial angle search, computational cost is

determined by angle resolution of the search grid both in azimuth and elevation.
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Figure 5.10: Incoherent integration of the computed CAF surfaces of each an-
tenna output for the second path.
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Chapter 6

COMPARISON OF THE

PROPOSED METHOD WITH

AN ALTERNATIVE MUSIC

BASED APPROACH

Direction-of-arrival estimation plays an essential role in many signal processing

applications and MUSIC is one of the most popular techniques for DOA estima-

tion. In this chapter, a MUSIC-based approach estimating not only DOAs but

delay and doppler of the impinging signal components is presented. Following the

theory of the approach, simulation results and comparisons with the proposed

CAF-DF technique are provided.
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6.1 A MUSIC based delay-Doppler and DOA

Estimation Technique

As stated in Chapter 3, MUSIC is a super-resolution algorithm which is based

on the ensemble-averaged correlation matrix of the antenna array output. The

MUSIC spectrum is computed by performing an eigen-value analysis on the cor-

relation matrix. The space spanned by the eigenvectors consists of two disjoint

subspaces: signal and noise subspaces. In terms of the orthogolonal characteris-

tics of eigenvectors in the signal and noise subspaces, the MUSIC spectrum P ,

is given as:

P (θ, φ) =
aH(θ, φ)a(θ, φ)

aH(θ, φ)Π̂⊥a(θ, φ)
(6.1)

where Π̂⊥ and a denote the eigenvectors corresponding to the noise space and

the steering vector.

Having rementioned the basic logic behind the DOA estimation by MUSIC,

lets now examine the sequential procedure of parameter estimation. First of all,

each antenna output is correlated with a pulse duration of Barker-13 sequence as

in Fig. 6.1. After that, correlated signal is used as an input for the Superposed

Epoch Averaging (SEA) technique which is a statistical method used to resolve

significant signal to noise ratio problems. Averaging procedure is demonsrated in

Fig. 6.2 where Cn
m is a vector obtained by taking the nth element of each pulse of

the mth antenna correlated output, prl is the pulse repetition length in samples,

N represents number of pulses and κ is the output of the SEA. Formulation of

the κ can be basically given as;

κ[n] =
1

M

M∑
m=1

‖Cn
m‖2 . (6.2)

Dominant peak points of the κ[n] corresponds to probable signal arrival paths.

By setting a threshold value, location of the dominant peaks are obtained. Time
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Figure 6.1: (a)Barker-13 sequence (b)One antenna output correlated with the
Barker-13, a short segment.
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Figure 6.2: Averaging procedure and output(κ[n]) .
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domain pair of the indexes are the delay estimates of paths. For each peak,

corresponding correlated antenna output vectors, Cn
m m = 1, ..., M , are merged

to form an Mxprl matrix. Using this matrix as an input to the classical MUSIC

algorithm, DOA of the each path can be found easily. As discussed in Chapter 5,

in order to increase the SNR, with the estimated DOA each antenna correlated

output is phase corrected with respect to the origin of the array and added up.

Lastly, Fourier Transform of the resultant vector is evaluated to find the doppler

shift on the arrival signal.

6.2 Simulation Results

In this section, performance of the proposed algorithm is tested by computer sim-

ulations and compared with a MUSIC-based technique using various scenarios.

The simulation results in this chapter exhibit the characteristics of each method.

A six-sensor circular array structure used in the simulations. The distance be-

tween the sensors is smaller than the half-wavelength of the signal. This ensures

that there is no spatial aliasing.

We used sum of sinusoidal signals each of which is coded with a Barker-13

sequence. The reason for the use of Barker-13 was; real ionospheric echoes were

coded like that, so for comparison reasons we preferred to use. Each received se-

quence from different signal paths consists of 111 Barker-13 coded pulses. Length

of a pulse is 0.018 s and total length of a signal is ∼ 2 s. The synthetic signal

impinging on the mth antenna, used in simulations is

sm(t) =
d∑

i=1

b13(t− τ0,i)e
j(2πνit+ϕi)e−j2πνcξm,i(θ,φ) + nm,i(t) , (6.3)

where nm,i(t) represents circularly symmetric gaussian noise, ϕi is a uniformly

distributed random phase in [0, 2π] and b13(t) represents the barker-13 coded

sequence.
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Azimuth θ(deg) Elevation φ(deg) Delay τ(ms) Doppler ν(Hz)
scenario-1 191.2 31.3 0.4 0.67
scenario-2 91.2 61.3 0.4 0.67

Table 6.1: Azimuth, Elevation, Delay and Doppler values of two different sce-
narios in case of 1 signal path. Computational delay and Doppler resolutions are
0.1 ms and 0.0023 Hz respectively.

Firstly, performances are compared when there exists only one signal path

arriving at the array. Secondly, in the case of two signal paths, in addition

to the root mean squared error (rMSE) performances, ability of the algorithms

in path separation is discussed. In both used techniques, delay and Doppler

computation resolution is 0.1 ms and 0.0023 Hz respectively. Two scenarios with

different parameters for one signal source case are tabulated in Table 6.1. The

rMSE of the DOAs, time-delay and Doppler estimates are calculated for each

of the algorithms based on 200 Monte Carlo trials for various SNR values and

presented in the Figs. 6.3-4. As observed from the simulation results of one

signal source case, especially at low SNR, CAF-DF performs significantly better

than the MUSIC.

Having discussed the performances of two algorithms for one signal source

case, we will now focus on when there exist two closely spaced signals impinging

on the antenna array. In Table 6.2, some scenarios are listed. Firstly lets observe

the ability of algorithms in separating two signal paths in (θ, φ) space having

the parameters as in scenario-3. In this situation, it is clearly seen from the Fig.

6.5 and Fig. 6.6 that the MUSIC-based technique cannot separate two signal

paths. This crucial difference is also illustrated for various SNR values in Fig.

6.7. In scenario-4, for two paths have nearly same Doppler shift and differ in

time-delay, CAF-DF has slightly better performance at low SNR values due to

processing delay and Doppler information simultaneously Fig. 6.8. Oppositely,

scenario-5 consists of two paths delayed by same amount but separated in Doppler

significantly. Now MUSIC-based technique shows poorer performance than the

previous case due to being unable to process Doppler difference information Fig.
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Azimuth θ(deg) Elevation φ(deg) Delay τ(ms) Doppler ν(Hz)
scenario-3 191.2 ; 189.1 36.3 ; 38.2 0.4 ; 0.6 0.31 ; 0.93
scenario-4 191.2 ; 189.1 36.3 ; 38.2 0.3 ; 1.3 0.70 ; 0.701
scenario-5 191.2 ; 189.1 36.3 ; 38.2 0.6 ; 0.6 0.31 ; 0.93
scenario-6 189.1 ; 189.1 33.2 ; 41.2 0.4 ; 0.7 0.31 ; 0.93

Table 6.2: Azimuth, Elevation, Delay and Doppler values of four different sce-
narios in case of 2 signal paths. Computational delay and Doppler resolutions
are 0.1 ms and 0.0023 Hz respectively.

6.9. Since MUSIC-based technique makes use of the matched filter output, when

two signals arrive with very close delay to each other, it will be impossible to

separate them without using any other data processing. Lastly, in scenario-6, we

examine an important case, which is widely encountered in real HF experiments,

where arrival azimuth angles are nearly same but elevation angles differ. Results

in Fig. 6.10, shows that CAF-DF is able to separate the two paths and has

significantly better delay and Doppler shift estimates for a wide range of SNR

values than the MUSIC-based technique.
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Figure 6.3: rMSE of the proposed estimators as a function of the SNR for
Scenario-1. (a)Azimuth θ. (b)Elevation φ. (c)Time-delay τ . (d)Doppler shift ν
shift.
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Figure 6.4: rMSE of the proposed estimators as a function of the SNR for
Scenario-2. (a)Azimuth θ. (b)Elevation φ. (c)Time-delay τ . (d)Doppler ν
shift.
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Figure 6.5: (a) 3-D and (b) 2-D spatial spectra of MUSIC algorithm.
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Figure 6.6: (a) 3-D and (b) 2-D spatial spectra of CAF-DF.
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Figure 6.7: rMSE of the proposed estimators as a function of the SNR for
Scenario-3. (a)Azimuth θ1. (b)Elevation φ1. (c)Time-delay τ1. (d)Doppler
shift ν1. (e)Azimuth θ2. (f)Elevation φ2. (g)Time-delay τ2. (h)Doppler shift ν2.
shift.

73



0 10 20 30 40 50
10

-1

10
0

10
1

rM
S

E
, 

d
e
g

SNR, dB

MUSIC-based

CAF-DF

(a)

0 10 20 30 40 50
10

-1

10
0

10
1

rM
S

E
, 

d
e
g

SNR, dB

MUSIC-based

CAF-DF

(b)

0 10 20 30 40 50

10
-4

10
-3

10
-2

rM
S

E
, 

s

SNR, dB

MUSIC-based

CAF-DF

(c)

0 10 20 30 40 50
10

-3

10
-2

10
-1

10
0

10
1

rM
S

E
, 

H
z

SNR, dB

MUSIC-based

CAF-DF

(d)

0 10 20 30 40 50
10

-1

10
0

10
1

rM
S

E
, 

d
e
g

SNR, dB

MUSIC-based

CAF-DF

(e)

0 10 20 30 40 50
10

-1

10
0

10
1

rM
S

E
, 

d
e
g

SNR, dB

MUSIC-based

CAF-DF

(f)

0 10 20 30 40 50
10

-4

10
-3

10
-2

rM
S

E
, 

s

SNR, dB

MUSIC-based

CAF-DF

(g)

0 10 20 30 40 50
10

-3

10
-2

10
-1

10
0

10
1

rM
S

E
, 

H
z

SNR, dB

MUSIC-based

CAF-DF

(h)

Figure 6.8: rMSE of the proposed estimators as a function of the SNR for
Scenario-4. (a)Azimuth θ1. (b)Elevation φ1. (c)Time-delay τ1. (d)Doppler
shift ν1. (e)Azimuth θ2. (f)Elevation φ2. (g)Time-delay τ2. (h)Doppler shift ν2.
shift.
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Figure 6.9: rMSE of the proposed estimators as a function of the SNR for
Scenario-5. (a)Azimuth θ1. (b)Elevation φ1. (c)Time-delay τ1. (d)Doppler
shift ν1. (e)Azimuth θ2. (f)Elevation φ2. (g)Time-delay τ2. (h)Doppler shift ν2.
shift.
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Figure 6.10: rMSE of the proposed estimators as a function of the SNR for
Scenario-6. (a)Azimuth θ1. (b)Elevation φ1. (c)Time-delay τ1. (d)Doppler shift
ν1. (e)Azimuth θ2. (f)Elevation φ2. (g)Time-delay τ2. (h)Doppler shift ν2. shift.
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Chapter 7

A CASE STUDY:

HIGH-LATITUDE HF

COMMUNICATION

Performances and results of the proposed CAF-DF and MUSIC-based techniques

on real ionospheric signals recorded by the University of Leister, Electrical and

Electronics Department will be presented. In this chapter, following a brief

description of the experimental system, comparison of the technique will be pre-

sented.

7.1 System Description

The signals processed in the simulations were radiated by a DAMSON (Doppler

and Multipath SOunding Network) transmitter which is the result of a collabo-

ration between the UK Defence Evaluation and Research Agency, the Canadian
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Figure 7.1: Relative positions of the antennas in the receiving array at Kiruna.

Communications Research Center, the Norwegian Defence Research Establish-

ment and the Swedish Defence Research Establishment. This system character-

izes the propagation path using a number of sounding signals which can be freely

scheduled [41].

The signals were received on a six-element antenna array with a circular

arrangement as in the Fig.7.1. However, due some calibration problems, we

discarded the third antenna and used the remaining five antennas. The individual

elements of which were connected, via a calibration switch, to individual inputs

of a multi-channel receiver [42]. The radiated signals consists of Barker-13 coded

BPSK pulses modulated at 1667 baud with a repetition rate of 55 coded pulses

per second. The total length of the sequence is ∼ 2s and a short time segment

of the absolute value of the received signal at the output of an antenna element

is given in Fig. 7.2. In both used techniques, delay and Doppler resolution is 0.1

ms and 0.0023 Hz respectively. Measurements that we used in the simulations,

were made over Uppsala-Kiruna path highlighted with a red line in Fig.7.3.
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Figure 7.2: A short time segment of the actual signal at the output of an antenna
element.

Figure 7.3: Map showing the path from Uppsala to Kiruna.
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7.2 Simulation Results

In this section, two multipath signal sets will be examined using the proposed

CAF-DF technique and MUSIC-based technique. Steps in the estimation of

parameters corresponding to each signal path will be presented with related

plots. Two sets of data will be used namely dataset1 and dataset2.

As previously mentioned, firstly CAF with the transmitted signal is calculated

at each antenna and then these resultant CAFs are incoherently integrated as in

Fig. 7.4. It is seen from the resultant normalized CAF surface that the noise level

is suppressed relative to the peak when compared to the individual CAF surfaces.

Then, we make a search in the (θ̂, φ̂) space and choose an azimuth and elevation

pair, which satisfies the criteria in Eqn. (5.42). Once θ̂p and φ̂p estimates are

obtained, we modify the array outputs for a coherent integration as seen in Fig.

7.5 . With correct DOAs, we have overlapped sensor outputs. Then, CAF of the

SNR improved signal is calculated in order to estimate delay and Doppler shift

accurately in Fig. 7.6. Observe that the CAF of the coherent integrated data is

sharper than the previous CAFs. Using the four estimated parameters, a copy

of the impinging signal at each antenna is created. In Fig. 7.7, three antenna

outputs and copy of the strongest path at these antennas is seen. In this figure,

we omitted to plot other two antennas for a clear appearance. Having determined

the copy of the strongest signal path at each antenna output, we eliminate it by

simply subtracting its respective copy from each antenna output in order to start

our search procedure for other signal paths.

Estimation results obtained by CAF-DF and MUSIC-based techniques for

dataset-1 are tabulated in Table 7.1 and 7.2. Based on the locations of HF

transmitter and receiver on the map in Fig. 7.3, both CAF-DF and MUSIC-

based techniques provide very reasonable azimuth estimates. However, they differ

in elevation estimates. By making use of the Doppler shift difference between
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dataset1 Azimuth(deg) Elevation(deg) Delay(ms) Doppler(Hz)
1.Path 197.30 31.87 9.4 -0.5912
2.Path 198.48 54.79 11.5 -0.9417
3.Path 200.55 22.86 11.5 -0.5125

Table 7.1: Azimuth, elevation, delay and Doppler estimates of CAF-DF for 3
signal paths. Computational delay and Doppler resolutions are 0.1 ms and 0.0023
Hz respectively.

dataset1 Azimuth(deg) Elevation(deg) Delay(ms) Doppler(Hz)
1.Path 197.12 31.80 9.4 -0.5914
2.Path 198.41 57.49 11.5 -0.9586
3.Path 197.67 32.91 10.7 -0.5966

Table 7.2: Azimuth, elevation, delay and Doppler estimates of MUSIC for 3 signal
paths. Computational delay and Doppler resolutions are 0.1 ms and 0.0023 Hz
respectively.

dataset2 Azimuth(deg) Elevation(deg) Delay(ms) Doppler(Hz)
1.Path 195.82 31.73 9.4 -0.5078
2.Path 194.49 39.56 11.5 -0.5388
3.Path 197.74 18.42 8.7 -0.4291

Table 7.3: Azimuth, elevation, delay and Doppler estimates of CAF-DF for 3
signal paths. Computational delay and Doppler resolutions are 0.1 ms and 0.0023
Hz respectively.

dataset2 Azimuth(deg) Elevation(deg) Delay(ms) Doppler(Hz)
1.Path 195.45 29.58 9.4 -0.5080
2.Path 195.64 31.43 8.1 -0.5042
3.Path 195.64 33.46 10.7 -0.5195

Table 7.4: Azimuth, elevation, delay and Doppler estimates of MUSIC for 3 signal
paths. Computational delay and Doppler resolutions are 0.1 ms and 0.0023 Hz
respectively.
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second and third path, CAF-DF resolves the third path which is at the same

delay with the second one. Same procedure is applied to dataset2 and plots

are given in Figs. 7.15-7.24. Estimation results of each technique are tabulated

in Table 7.3 and 7.4. Again, all estimated azimuth values are in the expected

angle range for each signal path. Now the Doppler shifts corresponding to each

path are very close to each other with separated delays. MUSIC-based technique

elevation angle estimates are nearly same meaning that they are not resolved.

However, by making use of the delay difference between signal paths, CAF-DF

finds three distinct paths.
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Figure 7.4: Incoherent integration of the CAF surfaces for the strongest path.
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Figure 7.5: Slow-time representation of the 5-element array output. All signal
amplitudes are normalized to 1. (a)before phase compensation (b)after phase
compensation with the first DOA estimate.
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Figure 7.6: Coherently integrated CAFs for the strongest path.
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Figure 7.7: Synthetically generated copy of the strongest path at three antenna
output with original slow-time data. Marked lines represent the real data and
smooth lines for synthetic copy signal. All signal amplitudes are normalized to
1.
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Figure 7.8: Incoherent integration of the CAF surfaces for the second path.
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Figure 7.9: Strongest path eliminated slow-time representation of the 5-element
array output. All signal amplitudes are normalized to 1. (a)before phase com-
pensation (b)after phase compensation with the first DOA estimate
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Figure 7.10: Coherently integrated CAFs for the second path.
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Figure 7.11: Synthetically generated copy of the second path at three antenna
output with original slow-time data. Marked lines represent the real data and
smooth lines for synthetic copy signal. All signal amplitudes are normalized to
1.
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Figure 7.12: Incoherent integration of the CAF surfaces for the third path.
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Figure 7.13: Second path eliminated slow-time representation of the 5-element
array output. All signal amplitudes are normalized to 1. (a)before phase com-
pensation (b)after phase compensation with the first DOA estimate
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Figure 7.14: Coherently integrated CAFs for the third path.
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Figure 7.15: Incoherent integration of the CAF surfaces for the strongest path.
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Figure 7.16: Slow-time representation of the 5-element array output. All signal
amplitudes are normalized to 1. (a)before phase compensation (b)after phase
compensation with the first DOA estimate
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Figure 7.17: Coherently integrated CAFs for the strongest path.
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Figure 7.18: Synthetically generated copy of the strongest path at three antenna
output with original slow-time data. Marked lines represent the real data and
smooth lines for synthetic copy signal. All signal amplitudes are normalized to
1.

94



Incoherent Integration

time, ms

fr
e
q

u
e
n
c
y
, 

H
z

2 4 6 8 10 12 14 16 18

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, ms

fr
e
q

u
e
n

c
y

, 
H

z

2 4 6 8 10 12 14 16 18 20

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, ms

fr
e
q

u
e
n

c
y

, 
H

z

0 2 4 6 8 10 12 14 16 18 20

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, ms

fr
e
q
u
e
n
c
y
, 

H
z

0 2 4 6 8 10 12 14 16 18 20

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, ms

fr
e
q
u
e
n
c
y
, 

H
z

0 2 4 6 8 10 12 14 16 18 20

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time, ms

fr
e
q
u
e
n
c
y
, 

H
z

2 4 6 8 10 12 14 16 18 20

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7.19: Incoherent integration of the CAF surfaces for the second path.
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Figure 7.20: Strongest path eliminated slow-time representation of the 5-element
array output. All signal amplitudes are normalized to 1. (a)before phase com-
pensation (b)after phase compensation with the first DOA estimate
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Figure 7.21: Coherently integrated CAFs for the second path.
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Figure 7.22: Incoherent integration of the CAF surfaces for the third path

98



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-1

-0.5

0

0.5

1

time, s

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time, s

(b)

Figure 7.23: Second path eliminated slow-time representation of the 5-element
array output. All signal amplitudes are normalized to 1. (a)before phase com-
pensation (b)after phase compensation with the first DOA estimate
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Figure 7.24: Coherently integrated CAFs for the third path.
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Chapter 8

CONCLUSIONS and FUTURE

WORK

In this thesis, a new array processing technique called as the Cross Ambiguity

Function - Direction Finding (CAF-DF) is proposed. The CAF-DF technique

estimates DOA, time delay and Doppler shift corresponding to a known trans-

mitted signal impinging on a sensor array. In the case of multipath, the CAF-DF

technique provides estimates for the DOAs, delays and Doppler shifts correspond-

ing to each signal path iteratively. Each iteration starts with a CAF computation

at the output of each sensor element. Then, using incoherent integration of the

computed CAFs, the strongest signal in the delay-Doppler domain is detected.

After that, based on the observed phases of the obtained peak across all the sen-

sors, the DOA of the strongest signal is estimated. Using the estimated DOA,

signals at the sensor outputs are coherently integrated in order to estimate time

delay and Doppler accurately. Finally, the signal whose parameters are estimated

is eliminated from the array output to start the next iteration.

The superiority of the proposed CAF-DF algorithm to the MUSIC-based

alternatives in several different scenarios is investigated based on simulations.
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In the case of a single signal path, especially at low SNRs, CAF-DF performs

significantly better than the MUSIC based technique, which is the algorithm

of choice in the literature. Even in the scenarios of multipath signals, CAF-

DF successively separate each signal path as long as the delays and Doppler

shifts of the paths are separable in the cross-ambiguity domain. By using actual

ionospheric data recordings, it is shown that the CAF-DF separates existing

signal paths better than the MUSIC based alternative described in detail in

Chapter 6. In conclusion, the CAF-DF is a powerful and flexible new array

signal processing technique that is very useful in the parameter estimation of

multipath signals impinging on a sensor array.

Future work on the CAF-DF will be focused on improving the estimation

accuracy of the multipath signal parameters by utilizing adaptive search tech-

niques in the DOA plane. For this purpose we are planning to use grids whose

dimensions will be a function of the estimated SNR. To further increase the ac-

curacy of the obtained DOA estimates, we will also investigate the polynomial

fitting techniques in the vicinity of the observed peak location in the finite reso-

lution search grid. In this way, we believe that the performance of the CAF-DF

technique will be very close to the Cramer-Rao lower bound for high SNR cases

as well. Furthermore, we will adapt the proposed CAF-DF technique to wireless

MIMO communication channels. We expect to obtain significant performance

improvements in the estimation of MIMO channel parameters especially for mo-

bile communication.
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APPENDIX A

The Cramer Rao Bound

In this appendix derivation of CRB for joint estimation problem is presented.

We derive the elements of the Fisher information matrix (FIM) for the case of

one signal source. Inverse of the FIM yields the CRB. The log likelihood function

can be written as

L = −MN log σ2 − 1

σ2

N∑

k=1

‖e(ti)‖2/2σ2 (A.1)

where

e(tk) = x(tk)− ζs(tk − τ0)e
j2πνtke−j2πνc(ξ(θ,φ)) (A.2)

= x(tk)− ζs(tk − τ0)e
j2πνtka(θ, φ) , (A.3)

and N represents number of samples. By differentiation, we get

∂L

∂θ
=

1

2σ2

N∑

k=1

xH(tk)ζ
∂a(θ, φ)

∂θ
s(tk − τ0)e

j2πνtk (A.4)

=
1

2σ2

N∑

k=1

x(tk)ζ
H ∂a(θ, φ)

∂θ
sH(tk − τ0)e

−j2πνtk (A.5)

=
N∑

k=1

1

σ2
<e

[
ζHsH(tk − τ0)e

−j2πνtk
∂a(θ, φ)

∂θ
e(tk)

]
(A.6)
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∂L

∂φ
=

1

2σ2

N∑

k=1

xH(tk)ζ
∂a(θ, φ)

∂φ
s(tk − τ0)e

j2πνtk (A.7)

=
1

2σ2

N∑

k=1

x(tk)ζ
H ∂a(θ, φ)

∂φ
sH(tk − τ0)e

−j2πνtk (A.8)

=
N∑

k=1

1

σ2
<e

[
ζHsH(tk − τ0)e

−j2πνtk
∂a(θ, φ)

∂φ
e(tk)

]
(A.9)

∂L

∂τ
=

1

2σ2

N∑

k=1

xH(tk)ζa(θ, φ)
∂s(tk − τ0)

∂τ
ej2πνtk (A.10)

=
1

2σ2

N∑

k=1

x(tk)ζ
Ha(θ, φ)

∂sH(tk − τ0)

∂τ
e−j2πνtk (A.11)

=
N∑

k=1

1

σ2
<e

[
ζH ∂sH(tk − τ0)

∂τ
e−j2πνtka(θ, φ)e(tk)

]
(A.12)

∂L

∂ν
=

1

2σ2

N∑

k=1

j2πtkx
H(tk)ζa(θ, φ)s(tk − τ0)e

j2πνtk (A.13)

=
1

2σ2

N∑

k=1

−j2πtkx(tk)ζ
Ha(θ, φ)sH(tk − τ0)e

−j2πνtk (A.14)

=
N∑

k=1

2πtk
σ2

=m

[
ζHsH(tk − τ0)e

−j2πνtka(θ, φ)e(tk)

]
(A.15)

In order to evaluate the elements of FIM, we will use the following identities

whose derivations can be found in [34].

E
[
ej(tk)e

H
p (tc)

]
= δjpδkcσ

2 (A.16)

E
[
ej(tk)ez(tc)

]
= 0 (A.17)

E
[
eH

j (tk)ep(tc)en(tk)
]

= 0 (A.18)

E
[
e(tk)e

H(tk)e(tj)e
H(tj)

]
= M2σ4 + δtktjMσ2 (A.19)
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where ej(tk) is the jth component of e(tk) and δ is Kronecker’s delta. Using

these identities and from (A.5), we have

E

[
∂L

∂θ

∂L

∂θ

]
= <e

[
∂aH(θ, φ)

∂θ

∂a(θ, φ)

∂θ
ζζH

N∑

k=1

|s(tk − τ0)|2
2σ2

]
(A.20)

E

[
∂L

∂φ

∂L

∂φ

]
= <e

[
∂aH(θ, φ)

∂φ

∂a(θ, φ)

∂φ
ζζH

N∑

k=1

|s(tk − τ0)|2
2σ2

]
(A.21)

E

[
∂L

∂τ

∂L

∂τ

]
= <e

[
aH(θ, φ)a(θ, φ)ζζH

N∑

k=1

∣∣∣∣
∂s(tk − τ0)

∂τ

∣∣∣∣
2

1

2σ2

]
(A.22)

E

[
∂L

∂ν

∂L

∂ν

]
= 2π2 <e

[
aH(θ, φ)a(θ, φ)ζζH

N∑

k=1

|s(tk − τ0)|2
σ2

t2k

]
(A.23)

E

[
∂L

∂τ

∂L

∂θ

]
= <e

[
∂aH(θ, φ)

∂θ
a(θ, φ)ζζH

N∑

k=1

∂s(tk − τ0)

∂τ

sH(tk − τ0)

2σ2

]
(A.24)

E

[
∂L

∂τ

∂L

∂φ

]
= <e

[
∂aH(θ, φ)

∂φ
a(θ, φ)ζζH

N∑

k=1

∂s(tk − τ0)

∂τ

sH(tk − τ0)

2σ2

]
(A.25)

E

[
∂L

∂τ

∂L

∂ν

]
= −π =m

[
aH(θ, φ)a(θ, φ)ζζH

N∑

k=1

∂s(tk − τ0)

∂τ

sH(tk − τ0)

σ2
tk

]
(A.26)

E

[
∂L

∂ν

∂L

∂θ

]
= −π =m

[
∂aH(θ, φ)

∂θ
aH(θ, φ)ζζH

N∑

k=1

|s(tk − τ0)|2
σ2

t2k

]
(A.27)

E

[
∂L

∂ν

∂L

∂φ

]
= −π =m

[
∂aH(θ, φ)

∂θ
aH(θ, φ)ζζH

N∑

k=1

|s(tk − τ0)|2
σ2

t2k

]
(A.28)
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