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ABSTRACT 
 

 
IMMUNOMODULATORY EFFECTS OF TLR LIGANDS AND 

POLYSACCHARIDE COMBINATIONS: STRATEGIES TO 

AUGMENT INNATE IMMUNE RESPONSE 

 
Gizem Tincer 

M.Sc. in Molecular Biology and Genetics 
Supervisor: Assist. Prof. Dr. İhsan Gürsel 

September 2007, 90 Pages 
 

Microbial infection initiates multiple TLR ligand mediated signaling cascade 
on innate immune cells. While some TLRs trigger a Th1 biased immune activation, 
others may lead to a Th2 dominant immune response. Extracellular (TLR1, 2, 4, 5, 6, 
10, and 11) vs endosome-associated TLRs (TLR3, 7/8, and 9) display differential 
immune activation and cytokine milieu. Understanding contrasting and synergistic 
behaviors of these TLR subclasses when mixed together may lead to more potent 
formulations for immunotherapy. Delivery and retaining the stability of nucleic acid 
based labile TLR ligands to the site of immunologically relevant cells is also a 
challenge.   

 
In the first part of the thesis, optimum TLR combinations with differential 

immune effects will be brought into light. Next, immunomodulatory effect of a 
natural polysaccharide (PS) will be characterized. Finally the ability of a PS carrier to 
form complex with ligands of nucleic acid sensing TLRs and its potential as a 
controlled delivery vehicle to stimulate the immune cells will be documented.  

 
In brief, our results suggest that different PS types extracted from various 

mushroom sources are immunostimulatory and are targeted to TLR2/6 for delivery of 
other relevant stimulants. Moreover, certain TLR ligand combinations can be 
harnessed to induce more robust immune activation compared to their stand alone 
counterparts.  

 
This knowledge will pave the way for establishing an effective PS based 

carrier of DNA/RNA ligands thus, more effective immunotherapeutic strategies for 
treating infectious and other local or systemic diseases be possible. 
 

 

Keywords: TLR, polysaccharide, cooperation, innate immunity, vaccine, 

immunotherapy 
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ÖZET 
 

 
TOLL-BENZERİ ULAK VE POLİSAKKARİT 

BİRLEŞİMLERİNİN BAĞIŞIKLIK DÜZENLEYİCİ ETKİLERİ: 

DOĞAL BAĞIŞIKLIK SİSTEMİNİ SAĞLAMLAŞTIRMAK İÇİN 

STRATEJİLER. 
 

Gizem Tincer 
Moleküler Biyoloji ve Genetik Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. İhsan Gürsel 
Eylül 2007, 90 Sayfa 

 
 

Mikrobiyal enfeksiyonlar birçok TLR ulağının, doğal bağışıklık hücrelerini 
yönlendirmiş olduğu sinyal yolaklarını başlatır.  Bazı TLR’lar Th1 eğilimli bağışıklık 
cevabını harekete geçirirken, diğerleri Th2’nin baskın olduğu bağışıklık yanıtına 
neden olabilirler. Hücre yüzeyi (TLR1, 2, 4, 5, 6, 10, ve 11) ve endozomlara bağlı 
TLR’lar (TLR3, 7/8, ve 9) farklı bağışıklık tepkileri ve sitokin salımları 
gerçekleştirebilir. Bu TLR alt sınıflarını birbirleriyle beraber karıştırıp kullanarak, 
sinerjistik ve karşıtık etkilerini anlayarak daha etkin immün tedavi formülasyonları 
elde edilebilir. Bazı kararsız TLR ulaklarını bağışıklıkla ilgili hücrelere iletilene kadar 
kararlı tutup, salacak taşıyıcıları tasarlamak da başa çıkılması gereken bir sorundur.  

 
Tezin ilk kısmında, bağışıklık hücreleri üzerine en çarpıcı fark yaratan TLR 

bileşenleri ortaya çıkarılıp etkin dozları tayin edilecektir. Sonra, mantar kökenli 
polisakkaridlerin (PS) doğal bağışıklığı uyarıcı özellikleri karakterize edilecektir. Son 
olarak da en etkin PS taşıyıcısıyla nükleik asit ulaklarının kompleksleri oluşturulup 
kontollu salım aracı olarak bağışıklık hücrelerini uyarma şiddeti dökümanlanacaktır. 

 
Özetle, bulgularımız farklı mantarlardan saflaştırılan değişik PS tiplerinin 

bağışıklığı etkinleştirici ve diğer ilgili uyarıcı ulakların salımı için TLR2/6 almacına 
hedeflenerek uyardığını göstermektedir. Ayrıca, değişik ulak karışımları, TLR 
ulaklarının tek tek kendi başlarına yaptıkları immün etkiye göre, birleşimlerin bu 
etkiyi oldukça çok arttırdığı da saptanmıştır.  

 
Bu bilgiler, çeşitli bulaşıcı ya da lokal ve sistematik hastalıkların tedavisi için, 

PS temelli etkin DNA/RNA ulaklarını taşıyabilen daha güçlü etki gösterebilen 
immünterapi yaklaşımlarının yolunu açacaktır. 
 

 

Anahtar kelimeler: TLR, polisakkarit, karışım, doğal bağışıklık, aşı, immün tedavisi  
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1. INTRODUCTION 
 

All kinds of vertebrates from birth to death face debilitating and potentially 

life-threatening infectious agents varying from viruses to fungi. Survival of the 

infected organism depends on its ability to recognize infectious pathogens and to 

respond with an appropriate defense system. “Immunity” which is derived from the 

Latin word immunis, meaning exemption from military service, tax payments or other 

public services in Roman Empire, refers protection from disease especially infectious 

disease almost for the last 300 years.  

 

A reaction to foreign substances “antigens”, including bacteria, viruses, as 

well as to macromolecules such as proteins or polysaccharides, alerts the immune 

system and the physiological response begins. This response is divided into two 

subcategories known as innate and adaptive immunity. Innate immunity (also called 

natural and native) is the first line of host defense against pathogens and consists of 

cellular and biochemical defense mechanisms that are in place even before infection. 

Physical and chemical barriers such as epithelia, antimicrobial peptides, lysozymes, 

phagocytic cells; neutrophils, macrophages, natural killer (NK) cells, complement 

blood proteins, other types of proteins called cytokines which coordinate and regulate 

many of the mechanisms of the cells, are the main components that build up the innate 

immune system (Janeway, 2004). Despite innate immunity, adaptive immunity – also 

called as specific or acquired immunity – is mediated by clonally expanded T and B 

lymphocytes and characterized by specifity and memory. 

 

The innate immune system recognizes microorganisms via germline-encoded 

pattern recognition receptors (PRR). Among the members of PRRs that recognize 

pathogen-associated molecular patterns (PAMPs) are Toll-like receptors, which are 

evolutionarily conserved from C. elegans to highly organized mammals (Janeway 

2002). There are at least 13 members of the TLR family characterized to date (Akira, 

2005).  

 

In humans ten functional Toll-like receptors (TLR) can be subdivided 

according to their subcellular localization. TLR1, 2, 4, 5, 6 and 10 are expressed on 
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the cell surface, however TLR3, 7, 8 and 9 are expressed in intracellular 

compartments, principally in endosomes and the endoplasmic reticulum (ER) 

(Kanzler, 2007) (Table 1.1).  They can occur as dimers, for instance TLR1 and TLR2 

heterodimerizes as they recognize bacterial triacylated lipopeptides, TLR2 and TLR6 

heterodimerization results in the recognition of diacylated bacterial lipopeptides 

(O’Neill, 2007). 

Table 1.1. Ligands specifity, immunological fate and cellular specifity of the Toll-like 

receptors. 

 

TLR Selected Ligands Role in Immunity Localization 

TLR1 

TLR2 

TLR6 

PGN 

Zymosan 

Lipoproteins 

 

Antibacterial and 

Antifungal 

TLR4 LPS 

TLR5 Flagellin 

Antibacterial 

TLR 11 Toxoplasma Antibacterial/Parasite

TLR3* dsRNA 

TLR7* ssRNA 

TLR8* ssRNA 

TLR9* ss/ds DNA 

 

Antiviral and 

Antibacterial 

TLR10 ? ? 

 

 

 

Dendritic Cells, 

Macrophages,  

T Cells,  

B Cells,  

Epithelium 

*Nucleic acid sensing TLRs are endosome associated, others are expressed at the cell 

surface. 

 

In addition to hetero-homo dimerization, TLRs also affect the immune system 

as by acting synergistically. TLR2 and TLR4 synergistically act on macrophages 

synergize to induce production of inflammatory cytokines (Sato, 2000). Costimulation 

with TLR4 and TLR2 or TLR9 induces synergistic release of interferon-gamma (IFN-

γ) and tumor necrosis factor- alpha (TNF-α) (Equils, 2003). TLR3 and TLR9 

promotes enhanced antitumor and cytokine activity (Whitmore, 2004).  Some of the 

combinations such as TLR3 and TLR9 were also searched if they could be used as 

vaccine adjuvants, combined with cationic liposomes (Zaks, 2006). 
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TLR4, TLR5, TLR7/8 and TLR9 agonists have potential to therapeutic 

vaccination for cancer and chronic viral infections, including human-immuno 

deficiency virus (HIV) and hepatitis-B virus (HBV) (Kanzler, 2007). Conjugating of 

HIV Gag protein (HIV vaccine candidate) to TLR7/8 agonist (Yarovinsky, 2006) and 

AVA (Anthrax Vaccine Adsorbed, the licensed anthrax vaccine for human use) to 

TLR9 ligand CpG substantially enhances the immune response (Klinman, 2006). Not 

only single TLR ligand but also the combination of more than one TLR ligand are and 

could be used as vaccine adjuvants with a liposomal delivery systems, mixed with 

licensed vaccines. The variety of TLR ligands may contribute significantly to 

inflammation, and appropriate agonists may represent a new class of therapeutic 

agents for diseases including; Hepatitis, Influenza, cancer and Human papillomavirus 

(HPV). 

 

Mushrooms, Ganoderma lucidum and Shiitake have been investigated for their 

medicinal benefits, most notably their anti-tumor properties in laboratory mice. These 

studies have also identified the polysaccharide lentinan, a (1-3) β-D-glucan, as the 

active compound responsible for the anti-tumor effects (Kim, 1999). Balachandran et. 

al. (2006) showed Spriluna (microalgae rich in protein) polysaccharides showed TLR-

2 dependent immune activation through monocytes. However this is one of the unique 

example that reveals the relationship between non-bacterial derived polysaccharides 

and TLR, so relationship polysaccharide and TLR-mediated immune response should 

be established for usage of polysaccharides as immuno-therapeutic or immuno-carrier 

agent. 

 

1.1 The Immune System 
 

Immunity meaning “the ability of an organism to resist infection” can be 

mainly divided into two subcategories such as; innate and adaptive immunity. 

Adaptive immune system can provide specific recognition of foreign antigens, 

immunological memory of infection and pathogen-specific adaptor proteins, but this 

type of immune response is also responsible for allergy, autoimmunity and the 

rejection of tissue grafts (Janeway, 2002). The defining characteristics of adaptive 

immunity are unique specificity for distinct molecules and ability to remember and 

respond more vigorously to repeated exposures to the same microbe. Therefore, 
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contributions of adaptive immune systems to pathogen elimination and vaccine design 

have been extensively studied (Medzhitov, 1997). Innate immunity was formerly 

thought to be a nonspecific immune response characterized by engulfment and 

digestion of microorganisms and foreign substances by phagocytic cells such as 

macrophages and lymphocytes (Akira, 2001). However, recent studies of host defense 

against microbial pathogens, have demonstrated that the type of effector response 

generated is strongly dependent on the strength of innate immune response initiated 

(Medzhitov, 1997). Indeed, the innate immunity help to shape the final adaptive 

immunity therefore, they act as hand in hand. The importance of innate immunity was 

fueled by the discovery of pathogen-associated molecular patterns (PAMP) which are 

recognized by the pattern-recognition receptors (PRR). The role, PRRs play in the 

elimination of pathogen and activity as adjuvant has reverted the interest in the 

importance of the initially ignored field of innate immunity. 

 

1.1.1 Induction of Immune System upon Exposure to Pathogens 

 

Defense against infections by both adaptive and innate immune system cells 

start with the recognition of a pathogen through binding of a PAMP to a PRR through 

either by antigen-presenting cells (APC) such as macrophages, NK cells, dendritic 

cells (DC), B-cells found at the site of infection like skin and mucosal epithelia that 

expresses PRRs and produce antimicrobial chemicals. DCs which were distributed 

throughout the body, encounters pathogen at different sides of the body such as the 

mucosal surfaces or the skin, phagocytose then process and present the major 

histocompatibility complex (MHC) I or MHC II complexed antigenic epitopes to T 

and B cells. Moreover, activated DCs produce cytokines and chemokines that will be 

act on pathogen and also alert and recruit other immune cells to the site of 

insult/infection (Lee, 2007). Activated T and B cells expressing T cell receptor (TCR) 

and B cell receptor (BCR) will migrate to the infected site upon chemokine and 

cytokine production (Luster, 2002). These cells rapidly differentiate into effector cells 

whose main function is to control ongoing infection. Therefore, the innate immune 

system can instruct the adaptive immunity about the nature and location of pathogenic 

infection.  
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1.2. Innate Immune System 

 

The innate immune system detects the presence of and the nature of infection, 

provides the first line of host protection, and controls the initiation and determination 

of the effector class of the adaptive immune response (Medzhitov, 2001). The 

components of innate immunity recognize the structures that are shared by various 

classes of microbes and are not present in host cells (self/non-self differentiation). 

The innate immune system is composed of epithelia, which provide barriers to 

infection, cells in the circulation and in the tissues, and several plasma proteins, such 

as members of the complement system. The other component of the innate immune 

system is phagocytes, (i.e.  neutrophils, monocytes/macrophages, DCs and B cells). 

Both types of immune cells recognize microbes in blood and extravascular tissues by 

surface receptors that are specific to microbial products such as Toll-like receptors. 

The recognition of pathogens by these phagocytic cells leads to engulfment of the 

microbes and activation of the phagocytes to kill the ingested agent (Bancroft, 1994). 

NK cells are a class of lymphocytes that respond to Interleukin-12 (which is produced 

by macrophages) (IL-12), kills microbe infected cells and produces Interferon-γ (IFN-

γ) that activates the other components of immune system. In addition to IL-12, NK 

cells’ effector functions are induced by a range of cytokines including IL-15, IL-18 

and type I IFNs (produced by DCs). NK cells have a crucial role in anti-viral 

immunity, by recognizing and eliminating Cytomegalovirus (CMV), Hepatitis C and 

HIV infected cells (Hammerman, 2005).  In response to microbes, macrophages and 

other cells secrete proteins called cytokines and chemokines. These chemoattractants 

can mediate many of the cellular reactions of innate immune cells. The main 

cytokines/chemokines appear during the onset of innate immune activation are; TNF-

α, IL-1α/β, IP-10, macrophage inflammatory protein-1α (MIP-1α), MIP-3α, 

monocyte chemoattractant protein (MCP) and Regulated upon activation, normal T-

cell expressed, and secreted (RANTES). These mediators can induce fever, apoptosis, 

neutrophil activation, recruitment of T and B cells and induction of inflammation as 

well as regulating the trafficking of immune effector cells to the site of infection.  
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Other indispensable cytokines such as; IL-12, (which directs T-helper 1 (TH1) 

differentiation), Type I IFNs (IFN-α and IFN-β; important for anti-viral response), 

IL-6 (stimulates and promotes B cell proliferation), IL-15 and IL-18 (helps NK and T 

cell proliferation) and IL-10 (that is known to induce inhibitory/stimulatory effect on 

other immune cells) are involved in the orchestral activation/regulation of innate 

immunity. 

 

1.2.1. Pathogen Recognition Receptors 

 

Pathogen recognition receptors are able to discriminate self from non-self. 

They evolved to recognize special non-self pathogen-associated signature structures 

not present on the host (Medzhitov, 1997). They can be expressed on the cell surface, 

in intracellular compartments (i.e. endosomal organelles or ER) or secreted into 

bloodstream and tissue fluids, such as opsonins. Opsonins (enhancement of the 

process of phagocytosis) include: mannan-binding lectin, C-reactive protein and 

serum amyloid proteins are the secreted molecules produced by the liver (Fraser, 

1998). PRR functions include opsonization, activation of proinflammatory signaling 

pathways, induction of apoptosis and phagocytosis. Several pattern recognition 

receptors are expressed in the cytosol where they detect these intracellular pathogens 

and induce responses that block their replication. The protein kinase (PKR) activates, 

nuclear factor-kappa B (NF-κB) and mitogen-activated protein (MAP) kinase 

signaling pathways upon binding to dsRNA, which leads to the induction of the 

antiviral type-I IFN genes (Clemens, 1997). PKR also inhibits viral spread by 

inducing apoptosis in infected cells (Williams, 1999). 

 

Another group of proteins likely involved in intracellular pattern recognition is 

the family of Nucleotide-binding oligomerization domain protein-like receptors 

(NLR). The full range of ligands recognized by NOD proteins is currently unknown, 

but both NOD1 and NOD2 are reported to activate NF-κB in response to LPS, 

presumably through binding to their leucine-rich repeats (LRR) regions. Besides their 

common ligand, NOD1 recognizes a molecule called meso-DAP, that is a 

peptidoglycan constituent of only Gram negative bacteria and NOD2 proteins 
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recognize intracellular muramyl dipeptide (MDP), which is a peptidoglycan 

constituent of both Gram positive and Gram negative bacteria (Inohara, 2001).  

 

1.2.2. Toll-like Receptors  

 

The best characterized PRRs, Toll-like receptors were identified in mammals 

as a family of type I transmembrane receptors, that are homologous to the Drosophila 

Toll receptor (Medzhitov, 1997). TLRs are a group of evolutionarily conserved 

proteins belonging to the IL-1R superfamily, characterized by an extracellular LRR 

and an intracellular Toll/IL-1 receptor like (TIR) domain. TIR domain of Toll proteins 

is a conserved protein-protein interaction module, which is also found in a number of 

transmembrane and cytoplasmic proteins in animals and plants have a role in host 

defence (Medzhitov, 2001).  Ten TLRs are identified to date in mammals. They differ 

from each other in ligand specificities, expression patterns, and presumably in the 

target genes they can induce.  

 

1.2.1.1 TLRs in Innate and Adaptive Immunity 
 

TLRs in the innate immune system serve an essential role not only in 

recognition of pathogen, but also in directing the course and type of innate immune 

response generated following exposure to foreign antigen (Takeda, 2003). TLRs have 

been demonstrated to have a wide array of functions including initiation of 

proinflammatory responses and antiviral responses, up-regulation of costimulatory 

molecules on antigen presenting cells (APC), release of chemokines to induce 

migration of responder cells to the site of infection, and induction cross-priming of T 

cells by DCs (Takeda, 2005). TLRs are responsible for the adjuvant activity that is 

required to initiate immune responses both in natural infection and in vaccine 

responses (Lien, 2003). TLRs have emerged as essential not only in innate immune 

responses but also in shaping adaptive immune responses to pathogen. The signals for 

activation of adaptive immunity are mostly provided by DCs. TLR-mediated 

recognition of pathogens by DCs induces the expression of costimulatory molecules 

such as CD80/CD86 (which provides a costimulatory signal necessary for T cell 

activation and survival) and production of inflammatory cytokines such as IL-12 
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(Akira, 2001). DCs subsets can induce TH1 and TH2 responses. Activation of TLR9 in 

DCs induces production of IL-12, thereby changing the Th cell differentiation toward 

TH1 type (Sousa, 2001). LPS stimulates TLR4 signaling pathway and DCs to support 

TH1 and TH2 cell differentiation (Kaisho, 2002). In addition to that some pathogen-

derived adjuvants such as Complete Freund’s Adjuvant (CFA), Bacille Calmette 

Guerin of Mycobacterium bovis (BCG) are recognized by TLRs; TLR9 and TLR2, 

TLR4 respectively, which may explain the involvement of TLRs in adaptive 

immunity (Akira, 2003). 

 

1.2.1.2. The TLR Family Members 
  

Mammalian TLRs comprise of a large family consisting of at least 13 

members. TLRs play important roles in recognizing specific microbial components 

derived from pathogens including bacteria, fungi, protozoa and viruses. Human TLR4 

was the first characterized mammalian Toll (Poltorak, 1998). It is expressed in a 

variety of cell types, most predominantly in the cells of the immune system, including 

macrophages and DCs (Medzhitov, 1997). TLRs can be subcategorized according to 

their localization in the cells. TLR1, 2, 4, 5, 6 and 10 which are seemed to specialized 

in the recognition of mainly bacterial products; are located on the plasma membrane, 

whereas TLR3, 7, 8 and 9 that are specialized in viral and intracellular bacteria 

detection and nucleic acids,  are located in the intracellular endosomal and/or ER 

compartments (Iwasaki, 2004 and Latz 2004) (Figure 1.1). 
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Figure 1.1. The TLR family members recognize specific patterns of microbial 

components. TLR1 and TLR6 cooperate with TLR2 to discriminate differences 

between triacyl and diacyl lipopeptides, respectively. TLR4 is the receptor for 

bacterial LPS. TLR9 is essential in CpG DNA recognition. TLR3 is implicated in the 

recognition of viral dsRNA, whereas TLR7 and TLR8 recognizes viral-derived 

ssRNA. TLR5’s ligand is bacterial flagellin. (Adopted from Takeda, 2005, Nature).  
 

1.2.2.2.1. TLR 2, TLR1 and TLR6 
  

TLR2 responds to various microbial products, including lipoproteins, Gram-

positive bacterial PGN and LTA, lipoarabinomannan from mycobacteria, 

glycosylphosphatidylinositol anchors from a protozoan Trypanosoma cruzi, a phenol-

soluble modulin from Staphylococcus epidermis, Zymosan from fungi (Takeda, 

2005). One of the aspects proposed for the wide spectrum recognition of microbial 

components TLR2 recognizes, is that TLR2 forms heterophilic dimers with other 

TLRs such as TLR1 and TLR6, both of which are structurally related to TLR2. The 

studies done with the TLR6 or TLR1 deficient mice showed no inflammatory 

response to mycoplasma-derived triacyl and diacyl lipopeptides respectively. This 

proves that TLR1 and TLR6 functionally associate with TLR2 and discriminate 

between diacyl or triacyl lipopeptides. In addition to that TLR2 has been shown to 
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functionally collaborate with distinct types of receptors such as dectin-1, a lectin 

family receptor for the fungal cell wall component β-glucan. The bacterial 

components which were mentioned above, act on immune system from monocytes 

and macrophages to produce inflammatory cytokines such as TNF-α and IL-6 (Sato, 

2000). Gil et. al. (2006) reported that TLR2 triggers TNF-α and MIP-2 secretion from 

macrophages through the MyD88 signaling pathway with yeast C. albicans. In 2003, 

it has been found that PGN, could also be delivered to the cytosol for NOD1 

recognition from extracellular sites or from phagocytosed bacteria (Chamaillard, 

2003). Therefore we can suggest that for the recognition of PGN, TLR and NLR 

could act together.  

 

1.2.2.2.2. TLR3 
 

The discovery of double-stranded (ds) RNA as the ligand for endosomal 

located TLR3 helped recognize that TLRs may have a key role in the host defense 

against viruses by enhancing NF-κB  and interferon (IFN)-regulatory factor 3 (IRF3) 

pathways (Alexopoulou, 2001). dsRNA is produced by most viruses during their 

replication and induces the synthesis of type I interferons (IFNα/β), which exert anti-

viral and immunostimulatory activities. NK cells are the major players in the antiviral 

immune response and express TLR3 and are activated directly in response to synthetic 

dsRNA, polyriboinosinic polyribocytidylic acid (poly I:C) (Schimdt, 2004). Also 

myeloid DCs mainly produce IL-12 and IFN-β on TLR3 stimulation (Ito, 2002).  

 

1.2.2.2.3. TLR4 
 

As mentioned above TLR4 is the first identified mammalian Toll. This 

extracellular TLR is expressed in variety of cell types, most predominantly in 

macrophages and DCs (Medzhitov, 1997). TLR4 functions as the signal-transduction 

for signal-transducing receptor for lipopolysaccharide (LPS) which is a major 

component of the outer membrane of Gram-negative bacteria (Hoshino, 1999). 

Recognition of LPS by TLR4 is complex and requires several accessory molecules. 

LPS is first bound to a serum protein, LPS-binding protein (LBP), which functions by 

transferring LPS monomers to CD14 (Wright, 1999). CD14 is a high-affinity LPS 
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receptor that can either be secreted into serum, or expressed as a glycophosphoinositol 

(GPI)-linked protein on the surface of macrophages. Another component of the LPS 

receptor complex is MD-2 (Shimazu, 1999). Although its precise function is not 

known, MD-2 is required for LPS recognition (Schromm, 2001).  In addition to LPS, 

TLR4 is involved in the recognition and is considered to be an accessory protein other 

ligands, including LTA, and a heat-sensitive cell-associated factor derived from 

Mycobacterium tuberculosis (Li, 2001). Interestingly, TLR4 and CD14 were also 

shown to trigger a response to the fusion (F) protein of respiratory syncytial virus 

(RSV).  Since it is not clear yet whether the F protein of RSV represents an example 

of a viral PAMP, an alternative possibility is that the RSV evolved the ability to 

stimulate TLR4 for its own benefit (Kurt-Jones, 2000). 

 

1.2.2.2.4. TLR5 
 

TLR5 recognizes flagellin, the protein subunits that make up bacterial flagella. 

TLR5 is expressed on the basolateral side of the intestinal epithelium, where it can 

sense flagellin from pathogenic bacteria, such as Salmonella. Flagellin induces lung 

epithelial cells to induce inflammatory cytokine production (Hawn, 2003).  

 

1.2.2.2.5. TLR7 and TLR8 
 

Both of these TLRs are structurally highly conserved proteins, and recognize 

the same ligand in some cases.  Although both TLRs are expressed in mice, mouse 

TLR8 appears to be nonfunctional (Akira, 2006). It has been revealed that murine and 

human TLR7 (but not murine TLR8) recognizes synthetic compounds, 

imidazoquinolines (R848), which are clinically used for treatment of genital warts 

associated with viral infection (Hemmi, 2002). Murine TLR7 and human TLR8 

recognize guanosine or uridine-rich single-stranded RNA (ssRNA) from viruses such 

as HIV, vesicular stomatitis virus and influenza virus. ssRNA is abundant in host, but 

usually host-derived ssRNA is not detected by TLR7 or TLR8. This might be due to 

the fact that TLR7 and TLR8 are expressed in the endosome, and host-derived ssRNA 

is not delivered to the endosome (Lund, 2004). 
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1.2.2.2.6. TLR9 

 

One of the most popular TLR, TLR9 is the receptor for unmethylated bacterial 

genomic DNA which are primarily expressed on B cells, NK cells and DCs to 

proliferate, mature and secrete various cytokines (IL-12, IFN-γ, IL-6), chemokines or 

immunoglobulins (Ig) (Krieg, 2000). A single nucleotide substitution or methylation 

of a cytosine residue within the CpG motif completely abrogates the 

immunostimulatory property of bacterial DNA (Krieg, 1995). Because bacteria lack 

cytosine methylation, and most CpG is methylated in the mammalian genome, CpG 

motifs might signal the presence of microbial infection. There are at least two types of 

synthetic CpG DNA, termed A or D-type CpG DNA and B or K-type CpG DNA 

(Klinman, 2004). B/K-type CpG DNA is made up of phosphorothioate backbone and 

possesses >1 CpG motifs on a single backbone, and is a potent inducer of 

inflammatory cytokines such as IL-12, IL-6 and TNF-α, B cell proliferation and IgM 

secretion. A/D-type CpG DNA is structurally different from B/K CpG DNA, which 

are phosphodiester/phosphorothioate mixed backbone, and G-runs at 3’–5’ ends, and 

a single CpG motifs has a greater ability to induce IFN-α production from pDCs, but 

inability to induce B-cells (Gursel, 2006 and Verthelyi, 2001). TLR9 has been shown 

to be essential for the recognition of both types of CpG DNA (Hemmi, 2003). In 

addition to bacterial CpG DNA, TLR9 has been shown to recognize viral-derived 

CpG DNA in pDC such as Mouse cytomegalovirus MCMV (Krug, 2004).  While 

TLR9 is essential for CpG mediated effect the mechanism of the observed dichotomy 

between K and D type CpG-ODN on human cells was elusive. Recently, Gursel et. al. 

revealed that pDC but not B cells expresses a co-receptor known as CXCL16 and 

IFN-α induction by pDC trigerred by D-type ODN is significantly dependent on the 

CXCL16 expression. In addition to bacterial and viral CpG DNA, TLR9 is 

presumably involved in pathogenesis of autoimmune disorders. The immunoglobulin-

G2a (IgG2a) is bound and internalized by the B cell receptor, and the chromatin, 

including hypomethylated CpG motifs, is then able to engage TLR9, thereby inducing 

rheumatoid factor. Chloroquine is clinically used for treatment of autoimmune 

diseases such rheumatoid arthritis and systemic lupus erythematosus (SLE) (Boule, 

2004). Since chloroquine blocks TLR9-dependent signaling (Hacker, 1998), it act as 

an anti-inflammatory agent by inhibiting TLR9-dependent immune response. More 
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than a dozen of human clinical trails have been initiated utilizing TLR9 agonists. It 

seems likely that the targeted activation of TLR9 using CpG ODN will enhance the 

treatment of cancer and infectious diseases, as well as showing new hopes for 

reducing the harmful inflammatory responses such as, asthma and other allergic 

diseases (Krieg, 2006). 

 

1.2.2.3. TLR Signaling Pathways 
 

Activation of TLRs by PAMPs leads to induction of various genes that 

involved in host defense, including inflammatory cytokines, chemokines, MHC and 

co-stimulatory molecules. Mammalian TLRs also induce multiple effector molecules 

such as inducible nitric oxide synthase (iNOS) and antimicrobial peptides, which can 

directly eliminate microbial pathogens. Although both TLRs and IL-1Rs rely on TIR 

domains to activate NF-κB and MAP kinases and can induce some of the same target 

genes, a growing body of evidence points to several differences in signaling pathways 

activated by individual TLRs (Thoma-Uszynski, 2001). Besides, activation of specific 

TLRs lead to slightly different patterns of gene expression profiles. For example, 

activation of TLR3 and TLR4 signaling pathways results in induction of type I IFNs, 

(Doyle, 2002) but activation of TLR2- and TLR5-mediated pathways does not 

(Hoshino, 2002).  In addition to TLR3 and TLR4, TLR7, TLR8 and TLR9 signaling 

pathways also lead to induction of type I IFNs but in a different manner (Ito, 2002). 

Although myeloid differentiation primary response gene (88) (MyD 88) is common in 

all TLR pathways. It has been revealed that there are MyD88-dependent and MyD88-

independent/TRIF dependent signaling (Figure 1.2). 
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Figure 1.2. The MyD88-dependent and MyD88-independent TLR signaling pathways 

(Adopted from Akira, 2005). 

 
1.2.2.3.1. MyD88-Dependent Pathway 
 

The role of Toll-mediated recognition in the control of MyD88 protein was 

studied using MyD88-deficient mice. A MyD88-dependent pathway is analogous to 

signaling pathways through the IL-1 receptors. MyD88, including a C-terminal TIR 

domain and an N-terminal death domain, joins with the TIR domain of TLRs. After 

stimulation, MyD88 recruits IL-1 receptor-associated kinase-4 (IRAK-4) to TLRs by 

the interaction of the death domains of both molecules, and facilitates IRAK-4-

mediated phosphorylation of IRAK-1. Activated IRAK-1 then associates with 

TRAF6, leading to the activation of two distinct signaling pathways. One pathway 

leads to activation of AP-1 transcription factors through activation of MAP kinases. 

Another pathway activates the TAK1/TAB complex, which enhances activity of the 

Inhibitor kappa B kinase (IκK) complex. Once activated, the IκK complex induces 

phosphorylation and subsequent degradation of IκB, which leads to nuclear 
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translocation of transcription factor NF-κB (Takeda, 2004 and Klinman, 2004). 

MyD88-deficient mice do not show production of inflammatory cytokines such as 

TNF-α and IL-12p40 in response to all TLR ligands (Takeuchi, 2000 and Klinman, 

2004). This once again proves that MyD88 is essential for inflammatory cytokine 

production through all TLRs. MyD88-deficient macrophages, show impaired 

inflammatory cytokine production in response to TLR4 and TLR2 ligands in contrast 

to TLR3, TLR5, TLR7 and TLR9 ligands (Yamamoto, 2002). 

 

1.2.2.3.2. MyD88-Independent/TRIF Dependent Pathway 
 

TLR4 ligand-induced production of inflammatory cytokines is not observed in 

MyD88-knock-out macrophages; on the other hand, delayed NF-κB expression is 

observed. This shows that although TLR4 signaling depends on MyD88-dependent 

pathways, a MyD88-independent component exists in TLR4 signaling. TLR4-induced 

activation of IRF-3 leads to production of IFN-β. IFN-β in turn activates Stat1 and 

induces several IFN-inducible genes, like TLR3 (Yoneyama, 1998 and Alexopoulou, 

2001). TRIF-deficient mice generated by gene targeting showed impaired expression 

of IFN-β- and IFN-inducible genes in response to TLR3 and TLR4 ligands 

(Yamamoto, 2002). Studies with the other TRIF-related adaptor molecules 

(TRAM)/TICAM-2 showed that TRAM is involved in TLR4-mediated, but not 

TLR3-mediated, activation of IRF-3 and induction of IFN-β and IFN-inducible genes 

(Yamamoto, 2003), so TRAM is essential for the TLR4-mediated MyD88-

independent/TRIF-dependent pathway. Key molecules that mediate IRF-3 activation 

have been revealed to be non-canonical IκKs, Tank binding kinase-1 (TBK1) and 

IκKi/IκKe (Fitzgerald, 2003). It has been recently reported that, complete MyD88 and 

TRIF expression is required for the effective cooperation, resulting in the induction of 

IL-12, IL-6, and IL-23 but not of TNF-α and IP-10 upon MyD88- and TRIF-

dependent TLR stimulation. Downstream of MyD88, TRIF and IRF5 were identified 

as an essential transcription factor for the synergism of IL-6, IL-12, and IL-23 gene 

expression (Ouyang, 2007). Since TRAF6 is critically involved in TLR mediated NF-

κB activation, and TRAF6 associates the N terminal portion of TRIF (Gohda, 2004) 

and the association of C-terminal portion of TRIF with Receptor-interacting protein-1 

(RIP1) (Meylan, 2004) leads to NF-κB activation.  
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1.2.2.4 TLR Cooperation 
 

Because TLR-family members can collectively recognize biomolecules such 

as lipid, carbohydrates, peptides and even nucleic-acids that are broadly expressed by 

different groups of microbes, (Table 1.2) recently scientists are trying to understand 

the synergistic/antagonistic relationships between TLRs.  

 

Table 1.2. Types of ligands that pathogens expressed, for multiple TLRs (Adopted 

from; Trinchieri, 2007). 

 
 

The early reports for TLR cooperation are shown that, there is a synergism 

between TLR2 and TLR4. Sato et. al. (2000) and Beutler et. al. (2001), showed that a 

TLR2 agonist: Mycoplasmal lipopeptide (MALP-2) or MDP and TLR4 ligand: LPS 
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synergistically act on peritoneal macrophages and induce production of inflammatory 

cytokines such as; TNF-α and IL-6. However, the induction of cross-tolerance 

between the two receptors and the use of MDP as a putative TLR2 ligand, which has 

recently been formally identified as a ligand for NOD2 (Girardin, 2003). In one of 

these studies complicates the interpretation of these early reports. A subsequent study 

showed that stimulation of mouse macrophages with both polyI:C and CpG DNA 

induced more-than-additive levels of TNF, IL-6 and IL-12 p40 which confirmed that 

cooperation between certain TLRs does exist (Whitmore, 2004). Equils et. al. in 2003, 

in addition to their early reports that shows, TLR4 mediates LPS induction of HIV-

Long terminal repeat (LTR) trans-activation through IL-1R signaling molecules and 

NF-κB activation, TLR2 ligand; soluble tuberculosis factor (STF) with the 

combination of TLR9 ligand plays a central role in HIV-LTR transactivation. Also 

costimulation with TLR4 and TLR2 or TLR9 elevates synergistic release of Th1 

cytokines, IFN-γ and TNF-α in HIV-1 transgenic mouse spleen cells. In human and 

mouse DCs, TLR3 and TLR4 potently acted in synergy with TLR7, TLR8 and TLR9 

in the induction of a selected set of genes. Synergic TLR stimulation increased 

production of IL-12 and IL- 23 from DCs However, the expression of a few genes, 

were also downregulated in a synergistic manner by the combined TLR stimulation 

(Napolitani, 2005). Cytokine production can also be negatively regulated by 

simultaneous signalling through certain TLRs. Especially, the production of IL-10 

after TLR2 stimulation was shown to block the expression of IL-12 p35 and CXC-

chemokine ligand 10 (CXCL10; also known as IP10) by human DCs in response to 

either TLR3 or TLR4 ligands (Re, 2003). Stimulation of mouse or human DCs with 

the TLR7 and TLR8 ligand R848 and either polyI:C or the TLR4 ligand LPS results 

in higher amounts of IL-12 p70 than the amounts induced by the individual TLR 

ligands (Roelofs, 2005). However, when a TLR2 ligand was combined with any other 

TLR ligand the synergy for IL-12 p70 production was low of absent. Only a low-level 

synergy for IL-12 p40 (induced by MyD88 pathway), TNF-α and IL-6 production 

was observed when a TLR2 ligand was combined with a TLR3, TLR4 or TLR9 

(Bekeredjian-Ding, 2006). In addition to these works, CpG (TLR9) and LPS (TLR4) 

can cooperate in a functional manner. The synergistic effect on cytokine production 

from DCs was restricted to IL-12p40 and IL-12p70, but not IL-6, TNF-α or IL-10, 

and required a time window of about 4h pretreatment with CpG before LPS (Theiner, 
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2007). An example of the synergism between TLRs is that, pretreatment of mouse 

macrophages with the TLR9 and TLR7 ligands results in substantial decrease in the 

secretion of IL-6 and TNF-α in response to B. antracis infection of macrophages 

(Sabet, 2006). This result indicates that combination of TLR ligands could be used as 

vaccine adjuvants for the treatment of bacterial diseases. 

 

In addition to the cooperation between different ligands of TLRs, synergistic 

induction of cytokine production has also been observed for DCs or macrophages 

activated by a TLR ligand combined with ligands for other PRRs. Especially NOD1 

and NOD2 can synergize with many TLR ligands, including TLR2 ligands, for the 

induction of TNF and IL-12 p40 production (Tada, 2005). Because of the degradation 

of bacterial PGNs into different compounds that can activate NOD proteins, the 

synergy between TLR- and NLR family receptors can boost the response not only to a 

single pathogen but also to a single component of a pathogen (Girarin, 2005). Besides, 

a TLR5 ligand flagellin could induce the immune system via both TLR and NLRs 

(Franchi, 2006).  

 

To evaluate the TLR cooperation in vivo, various double knock-out mice were 

studied. Tlr2-/- or Tlr9-/- mice at high doses of aerosol-challenge of M. tuberculosis are 

clearly susceptible to infection than are their wild-type counterparts (Bafica, 2005). 

This indicates that under high levels of infectious stress, the function of each TLR 

involved in pathogen recognition becomes more crucial for the control of microbial 

growth, an explanation with possible TLR cooperation in host defence. Tlr2 and Tlr4 

double-knockout mice are more susceptible to infection than either of the Tlr2–/– or 

Tlr4–/– single knock-out parental strains (Weiss, 2004 and Reiling, 2002). During T. 

cruzi and M. tuberculosis infection, as judged by the bacterial load, the Tlr2–/–Tlr9–/– 

double-knockout mice were clearly less susceptible to infection than Myd88–/– mice, 

therefore indicating that other MyD88-dependent signaling events, in addition to 

TLR2 and TLR9 signaling, are involved in host resistance to these pathogens 

(Trinchieri, 2007). 

 

The idea that more than one TLR–ligand interactions are required for the 

induction of effective host resistance to pathogens has important implications for the 

design of superior vaccines and immunotherapy against infectious diseases. Individual 
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TLR7, TLR8 and TLR9 agonists have already been used successfully as adjuvants to 

improve CD4+ and CD8+ T-cell responses, to candidate microbial vaccine antigens. 

These agonists seem to be particularly effective when they are covalently conjugated 

to the immunogens (Krieg, 2006).  

 

Because of the results as mentioned above we aimed to study the cooperation 

of TLR ligands in dose-specific manner for the induction of immune response in a 

synergistic way. The determination of appropriate TLR ligands combination will 

guide and teach us how to include of more than one TLR ligand into vaccine 

formulation that induces stronger immune response, thus avoid combinations that will 

lower the overall immune response. 

 

1.2.2.5. Delivery of TLR Ligands 
 

Starting from 1990’s the use of liposomes as carriers of peptide, protein, and 

DNA vaccines requires simple, easy-to-scale-up technology capable of high-yield 

vaccine entrapment. Liposomes are vesicles consisting of one or more concentric 

bilayers alternating with aqueous compartments. They are usually made up of 

phospholipids or other amphiphiles such as nonionic surfactants (Gregoriadis, 1999).  

Gursel et. al. showed a technique that has been developed for the entrapment of live 

microbial vaccines into giant liposomes under conditions which retain their viability 

in 1995. They indicated that these kinds of liposomes (containing microbial vaccines 

and other soluble antigens or cytokines if required) could be used as carriers of 

vaccines in cases. Even though more stable backbone is used to synthesize CpG-ODN 

(a phosphorothioate modified form) when  used in vivo still eliminated rapidly from 

the circulation due to the adsorption onto serum proteins and degradation by serum 

nucleases (Barry, 1999), prolonging the bioavaliabilty and duration of CpG ODN by 

liposomal capsulation can improve their therapeutic efficiency. Pioneering studies by 

Gursel et. al. (2001) revealed that, sterically stabilized cationic liposomes (SSCL) 

contain positively charged and hydrophilic elements can efficiently encapsulate CpG 

ODN and significantly enhance DNA uptake by cells of the immune system. The 

immunostimulatory activity of SSCL-encapsulated ODN significantly exceeded that 

of free ODN in vitro and in vivo. In particular, coencapsulation of CpG ODN with a 

model Ag ovalbumin (OVA) increased Ag-specific IFN-γ production (10-fold) and 
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IFN-γ-dependent IgG2a anti-OVA antibody production (40-fold), consistent with the 

preferential induction of a TH1-biased immune response. In addition to that in 2005, 

Xie et. al. confirmed that co-administrating CpG ODN polylactide-co-glycolide (PLG; 

another cationic microparticle that improves the uptake and processing of immune 

adjuvants) with the licensed anthrax vaccine, “AVA”, resulting in a more rapid and 

stronger anti-protective antigen (PA; the core of anthrax vaccine) antibody response; 

IgG, than immunization with AVA alone in vivo. Not only CpG ODN but also pI:C a 

TLR3 ligand has been co-administrated with cationic liposomes and thereby elevated 

the type I IFN, IFN-α production and have a unique effective on CD8+ T cell 

responses in vivo (Zaks, 2006). Besides synthetically produced liposomes, the CpG 

delivery could be achieved by natural carriers, such as a β-(1 3)-D-glucan 

schizophyllan (SPG) polysaccharide from a fungus called Schizophyllan commune. 

SPG when modified with other peptides and cholesterol, and when the 

phosphorothioate CpG ODN complex made then exposed to macrophages, dramatic 

enhancement in the secretion of cytokines; like IL-6 and IL-12 secretion is observed 

(Mizu, 2004). 

 

Since some polysaccharides could be used as carrier molecules of CpG DNA. 

We postulated that polysaccharides from different types of edible mushrooms could 

reproduce the same effect thus, could serve as a novel delivery agent for nucleic acid 

ligands such as: CpG ODN, R848, pI:C. The enhanced in vivo action would implicate 

that these nucleic acids were protected from agile biological milieu targeted naturally 

to the cells of the immune system via TLR2/6 or TLR1/2 systems. 

 

1.2.2.6. Therapeutic Implications of TLRs 
 

The discovery of TLRs has opened up a whole new range of therapeutic 

possibilities, for infectious, autoimmune diseases, sepsis and cancer. (Table 1.3) 

Preclinical studies suggest that TLR3, TLR4, TLR7/8 and TLR9 agonists have 

potential to enhance therapeutic vaccination for cancer and chronic viral infections, 

HIV and HBV (O’Neill, 2003). Advantage of therapeutic applications of TLR ligands 

compared to current vaccines are; TLR agonists enhances CD8+ T-cell (kill cells that 

are infected with viruses) responses to protein antigens and overcoming tolerance to 
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self-antigens, probably necessary for generating responses to tumor-associated 

antigens (Hodi, 2006). 

 

Table 1.3. Potential role of TLRs as therapeutic targets in disease. (Adopted from 

O’Neill, 2003). 

TLR Target diseases 
TLR1/2 Bacterial/fungal diseases 

Gram-positive sepsis 
TLR3 Viral diseases 
TLR4 
 
 
 
 
 
 

Bacterial diseases 
Gram-negative sepsis 
Chronic inflammation 
Autoimmune diseases 
Vaccines 
Cancer 
Atherosclerosis 

TLR5 Bacterial diseases 
TLR2/6 Mycobacterial diseases 
TLR7 Viral diseases 
TLR8 Viral diseases 
TLR9 
 
 

Bacterial and viral 
diseases 
Autoimmune diseases 
Vaccines 
Cancer 
Allergy 

 

Since TLR3 is a key initiator of anti-viral host defense, stimulating TLR3 

would be predicted to have an anti-viral adjuvant effects, in the other hand blocking 

TLR3 might be useful in limiting viral virulence. Targeting of TLR3 with Ampligen 

(with a synthetic mismatched dsRNA,) for HIV is currently in phase II trials 

(Hemispherx).  Other viral TLR7/8 ligands, imiquimod and resiquimod have been 

studied in cutaneous disorders, like basal cell carcinoma and moles that are caused by 

HPV and shown that they induce cytokine production and elevate cutaneous immune 

responses (Licenced by 3M Pharma company). 

 

 The probable key driver of TNF during sepsis, TLR4 have been targeted 

mainly in allergic diseases. Blocking of TLR4 is of use in the prevention of over-

exuberant immune response induced in sepsis and autoimmune diseases such as 

Familial Mediterranean Fever and uveitis. Indeed TLR 4 antagonists have been in 
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phase III clinical trials for the treatment of severe sepsis (Takeda Pharmaceutical and 

Eisai). 

  

TLR9 ligands; CpG ODNs has been in clinical trials for treatment of cancers, 

like melanoma, breast cancer, leukemia, non-small-cell lung, renal and colorectal 

cancers (Krieg, 2007). Conjugation of hepatitis B virus plus CpG ODN developed 15-

fold higher anti-hepatitis B antibody titers than did animals immunized with vaccine 

alone (Klinman, 2004). Consequently Hepsilav, a candidate HBV vaccine is in phase 

III trials (Dynavax Technologies). Also VaxImmune (CpG B class ODN) for anthrax 

and influenza antigens with CpG ODN for influenza are in clinical phase studies. In 

monkey models, CpG ODN are capable of inhibiting airway hyper responsiveness, 

eosinophilia and even features of airway remodeling (Fanucchi, 2004). Therefore, 

four different CpG DNAs are targeted to suppress asthma (Dynavax Technologies, 

Coley Pharmaceuticals, Idera Pharmaceuticals).  

 

TLR4 and TLR9 agonists are being developed for the cure of allergic rhinitis 

because of their ability to induce strong Th1 responses (Racila, 2005)  

 

Many companies with preclinical antagonists to the intracellular TLRs 7, 8 

and 9 have shown efficiency in models of SLE (Dynavax Technologies, Coley 

Pharmaceuticals and Idera Pharmaceuticals). 

 

 In conclusion, variety of TLR agonists or antagonists for the most severe 

diseases are undergoing preclinical and various stages of clinical trials. 
 
Since more than one TLR ligand could induce more powerful immune 

activation, we propose that introduction of two or more TLR ligands in vaccination 

could provide more efficient, robust and long-lasting immune-response. 
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2. AIM OF STUDY 

 
Studying the immunobiology of the Toll-like receptors is one of the most 

popular fields in basic and applied immunology in recent years. There is no doubt that 

TLR therapeutics soon will be in the clinics. The TLR ligand(s) are strong candidate 

drugs as an immunotherapeutic agent against diseases like cancer, allergy, and 

infectious diseases (including viral, parasitic and bacterial infections) as well as 

vaccine adjuvant or immunoprotective agent where there is no available vaccine. 

Recently, accumulating data indicate that two or more TLR ligands can cooperate to 

mount a suitable immune response in order to contain a pathogenic insult. We 

proposed that including more than one TLR ligands in vaccine formulations would 

provide an added benefit and help to establish a more efficient and stable immune 

response. 

 

Because of this, the first part of this study was dedicated to reveal the 

antagonistic/synergistic cooperation of several candidate TLR ligands. These were the 

most promising, and potent extracellular and endosomal-associated TLR ligands 

members planned for the clinical trials (i.e. TLR2/6, TLR3, TLR4, TLR7/8 and 

TLR9). 

 

The second part of the study is dedicated to establish a novel natural delivery 

depot system especially designed for the targeted delivery of candidate nucleic acid 

based TLR ligands (because of their lability in biological milieu as well as low level 

accumulation within relevant immune cells). For this, we have selected candidate 

polysaccharides extracted from different mushrooms and first characterized their 

stand alone immunostimulatory potential and then prepared complexes with the 

candidate RNA and DNA ligands and tested their synergistic effect on spleen cells.  
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3. MATERIALS AND METHODS 
 

3.1. MATERIALS 

 

All cell culture media components were from Hyclone (USA) unless otherwise 

stated. Cytokine pairs and recombinant proteins for ELISA were from Endogen 

(USA) unless otherwise mentioned. TLR ligands; for stimulation assays were as 

follows and supplied from several vendors: peptidoglycan (PGN) (isolated from 

B.subtilis; Fluka, Switzerland), pI:C (Amersham, UK), lipopolysaccharide (LPS) 

(isolated from E.coli; Sigma, USA), Zymosan (isolated from S.cerevisiae; Invivogen, 

USA),  phosphorothioate backbone modified synthetic CpG ODN 1555 (15mer) 

(GCTAGACGTTAGCGT), CpG ODN 2006 (24mer) 

('TCGTCGTTTTGTCGTTTTGTCGTT or CpG ODN K3 (20mer) 

(ATCGACTCTCGAGCGTTCTC) as control ODN; and 1612 ODN 

(GCTAGATGTTAGCGT) (Alpha DNA, Canada) K3 Flip ODN 

(ATGCACTCTGCAGGCTTCTC), R848 or gardiquimod (Invivogen, USA). Four 

different polysaccharide extracts were kind gift from Prof. Dr. Oktay Erbatur 

(Cukurova University, Chem Dept., Adana, Turkey). They were isolated from 

Shiitake and the different strains (Balcali and Alata) of Ganoderma lucidum, under 

subcritical water conditions at 100°C (AROsm, BROsm) and 150°C (AR150, 

BR150). For RNA isolation and for cDNA synthesis, obtained from TRIdity G 

(AppliChem, Germany) and DyNAmoTM cDNA Syntesis kit (Finnzymes, Finland) 

respectively and were used according to the manufacturer’s protocol. HEK 293 and 

RAW cells were transfected with Fugene6 (Roche, Germany) or Lyovec (Invivogen, 

USA) and Luciferase acitivity was detected with using Promega kit. Several plasmids 

were expanded in house and purified using Endotoxin free plasmid isolation kit from 

Qiagen (Germany). 
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3.1.1. Polysaccharides 

 
  For the coding of four different polysaccharide extracts, see appendix A 

 

3.1.2. Standard Solutions, Buffers, Media 

See appendix B 

 

3.2. METHODS 
 

3.2.1. The Maintenance of the Animals 

 

Adult male or female BALB/C mice (8-12 weeks old) were used for the 

experiments. The animals were kept in the animal holding facility of the Department 

of Molecular Biology and Genetics at Bilkent University under controlled ambient 

conditions (22o C ±2) regulated with 12 hour light and 12 hour dark cycles. They were 

provided with unlimited access of food and water. Our experimental procedures have 

been approved by the animal ethical committee of Bilkent University (Bil-AEC).  

 

3.2.2. Cell Culture 

 

3.2.2.1. Spleen Cell Preparation 
 

Spleens were removed from the BALB/C female mice after cervical 

dislocation. Single cell suspensions were obtained by smashing of spleens with the 

back of the sterile syringes by circular movements suspended in the 2% FBS 

supplemented regular RPMI media. The cells were washed 2-3 times at 1500 rpm for 

10 mins. The cell pellet was gently dislodged with fresh media, the tissue debris was 

removed and finally the splenocyte suspension was counted and adjusted to 2-

4x106/ml unless otherwise stated.  
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3.2.2.2. Cell Lines 
 

3.2.2.2.1. RAW 264.7  
 

Macrophage / monocyte like RAW 264.7 (Mus musculus) cells (ATCC) were 

cultured with RPMI 1640 plus 5% regular FBS. Adherent RAW 264.7 cells were 

passaged in every 3-4 days when they reached >90% confluency with fresh media, 

following washing (2% FBS containing RPMI). 

 

3.2.2.2.2. HEK 293 hTLR2/6 
 

Adherent HEK cells, that stably expresses hTLR2/6 genes (Invivogen) were 

sustained in a High-glucose DMEM media with 5% or 10% regular FBS (Hyclone) 

supplemented with 10µg/ml Blasticidin S (Invivogen). Cells were passaged by 

scraping in every 3-4 days intervals as they get over 90% confluency. 

 

3.2.2.3. Cell Number Detection with Thoma Cell Counter 
 

After the spleen cells, RAW cells, HEK 293 hTLR2/6 were pooled, washed 

and precipitated, they were suspended in 10 ml of 5% regular RPMI-1640 media. 

Cells were diluted 10 fold and micropipetted on a hemocytometer.  

 

The number of cells in the chamber was determined by counting under the 

light microscope from these gridlines as indicated with red areas: 

 
The cell number was calculated according to the following formula:  

__Cell number__       106    = Total cell number in 10 ml media  

4 
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3.2.2.4. Cell Distribution 
 

For NO Assay and Cytokine ELISA; 2-4x106/ml cells were distributed into 96 

well plates with a final volume of 200µl or 250µl media per well. After 6 to 42 hours 

stimulation, supernatants were collected from the plates and stored at -20°C. 

Supernatants were layered on the 96 well plates with or without dilution for two assay 

as previously mentioned. 

 

Spleen cells (6-8 x 106) were splitted into 6 well plates or 15 ml falcons with a 

final concentration 2-3 ml, for RNA isolation after stimulation with TLR ligands for 2 

and 4 hours. 

 

For the transfection assay 2-4x106/ml HEK 293 hTLR2/6 cells were added to 

24 well plates, in a 500 µl/ well media final volume. 

 

3.2.3. Stimulation with Ligands and Polysaccharides 

 

Spleen cells were stimulated with the combination of two TLR ligands in 

various doses (i) PGN; 5 µg/ml, (ii) pI:C; 20 µg/ml, (iii) LPS; 1 µg/ml, (iv) R848; 1 

µg/ml and (v) CpG ODN 1555, including control either K3 Flip ODN or 1612 ODN; 

1 µM. These ligands were diluted in 5x, 25x, 125x, 625x doses and used for 

stimulations. 

 

For the stimulation assays including polysaccharides, RAW and HEK 293 

hTLR2/6 cells were incubated with PS-1, PS-2, PS-3 and PS-4 for concentration 

ranges between 20 µg/ml to 0,002 µg/ml. PGN; 20 µg/ml- 0,002 µg/ml or  Zymosan 

20 µg/ml- 0,02 µg/ml and LPS 5 µg/ml- 0,5 µg/ml including control ODN; 3 µg/ml- 

0,3 µg/ml. 

 

Cells were incubated with 5% oligo FBS RPMI-1640 or 5% oligo FBS 

DMEM when stimulated with ODNs and cultured with 5% regular RPMI-1640 or 5% 

regular FBS supplemented DMEM as they stimulated with other TLR Ligands and 

polysaccharides. 
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3.2.4. Delivery of TLR Ligands with Polysaccharides 

 

Sonicated (at PMA 48%, 1 min.) PS-4 was mixed PS:ligand (1:1 w/w) with 

CpG 2006 ODN, CpG, K3 Flip ODN, pI:C (pI:C was mixed at 1:5 ratio as well), and 

R848 seperately and these five different mixtures were incubated over night at 4°C 

prior to stimulation of RAW cells for 24-42 hours with a starting concentrations of 

0,5µM; CpG ODN 1555, 0,5µM; K3 Flip ODN, 20 µg/ml and 4 µg/ml; pI:C, 2 µg/ml; 

R848, 2 µg/ml; PS-4 for NO Assay and Cytokine ELISA. These stimulants were 

further diluted up to 625x and used for cell stimulation. 

 

3.2.5. Enzyme Linked-Immunosorbent Assay (ELISA) 

 
Cytokine ELISA 
 

Polysorp (F96 Nunc-Immunoplate, NUNC, Germany) plates were coated with 

anti-cytokine IL-4, IL-6, IL-12, IFNγ, TNFα monoclonal antibodies (Pierce, 

Endogen); 5 µg/ml, 10 µg/ml, 5 µg/ml, 5 µg/ml, 5 µg/ml respectively for 4-5 hours at 

room temperature or overnight at +4°C. The wells were blocked with 200 µl blocking 

buffer for 2 hours at room temperature and washed with wash buffer for 5 minutes, 5 

times and rinsed with ddH2O at the end of the washes. Supernatants and serially 

diluted recombinant proteins of IL-4 (1000 ng/ml), IL-6 (2000 ng/ml), IL-12 (100 

ng/ml), IFNγ (2000 ng/ml), TNFα (2000 ng/ml) were added and incubated for 2 hours 

at room temperature or overnight at +4°C. Plates were washed as previously 

described. For the detection of cytokine levels; biotinylated anti-cytokine antibodies 

(Pierce, Endogen) were prepared in a T-cell buffer, 1:1000 dilution, added to the wells 

and incubated for 2 hours at room temperature or overnight at +4°C, followed by 

washing as described earlier. 1:5000 diluted Streptavidin Alkaline-phosphatase (SA-

AKP) was prepared in T-cell buffer and added to the plates for 1 hour at room 

temperature. After washing the plates; PNPP substrate (Pierce) was added and after 

color formation, multiple optical density readings at target 405 nm, were recorded on 

an ELISA plate reader (BioTek, µQuant). 
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Concentrations of the cytokines from cell supernatants were determined by 

constructing 4-parameter standard curves, from recombinant proteins as mentioned 

above. 

 

3.2.6. NO2 Detection 

 

Griess Assay 
 

For the calorimetric detection of Nitrate (NO2) level, that was produced by 

macrophages, NO Assay using Griess Reagent (Sigma) was performed. Supernatants 

were added, either diluted or as such, to the microtiter plates. For the linear standard 

curve; 100µM NaNO2, which is dissolved in NO free H2O, with 2x dilution, prepared. 

Equal volumes of Greiss Reagent and supernatants were mixed. After 15 min. plates 

optical densities at 540 nm were measured on a plate reader. 

 

3.2.7. Transfection of Cells 

 

Stably transfected HEK 293 cells with hTLR2/6 were transiently transfected 

with cationic lipid molecule FuGENE 6 as decribed in manufacturer’s protocol. 

Briefly, 6µl FuGENE 6 is added to 94 µl (serum and penicillin/streptomycin free 

media) in an eppendorf. Mixture was vortexed for 3-5 secs, and then incubated at 

room temperature for 5 min. 2µg p5xlucNF-κB Luciferase plasmid was added to the 

mixture and further incubated for 15-30 min. The transfection mixture was distributed 

20 µl/well in a drop wise manner as a control GFP expressing plasmid or mock 

plasmid was used for transfectin. Wells were swirled to ensure distribution over the 

entire plate surface. Cells were incubated for 24-36h prior to specific stimulations. 

 

3.2.8. Luciferase Assay 

 

After 12-24 hours stimulation, media was removed, each well was washed 

gently with warm 1x PBS. 100 µl/well Luciferase substrate reagent was added for cell 

lysis. Plates were left on a rocking shaker for 15 min. at room temperature. 
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Supernatants were transferred into a new white 96 well plate and relative light signal 

from cell extracts were recorded on a Reporter Machine™ (Turner Biosystems, USA). 

 

3.2.9. Determination of the Gene Expression 

 

3.2.9.1. Total RNA Isolation from the Cells 
 

After incubating cells (spleen, RAW) with combinations of TLR Ligands and 

polysaccharides, for 2 and/or 4 hours, total RNAs were extracted. The cells were 

removed and centrifuged at 2500 rpm for 5 min. in cold media. Then the media was 

removed and 107 cells were extensively mixed and lysed by a 1 ml of mono-phasic 

solution of phenol and guanidinium thiocyanate: TRItidy G (Applichem, Germany). 

200 µl of chloroform for every 1ml of TRItidy G was used and tubes were shaked 

vigorously for 15 seconds and incubated at room temperature for 2-3 min. followed 

by a centrifugation for 15 min. at 13.900 rpm at 4°C. The clear aqueous phase was 

transferred to a fresh tube. Total RNA was precipitated by adding 500 µl of 2-

propanol for every 1ml of TRItidy G, incubated at room temperature for 10 min. and 

centrifuged for 10 min. at 13.900 rpm. Next the supernatant was removed and the 

pellet was washed with 1 ml of 75% EtOH for every 1 ml of TRItidy G used. Tubes 

were vortexed and centrifuged at 8000 rpm for 7 min. in order to remove 2-propanol 

from the pellet. Supernatant was discharged and pellet was washed with >99.9% 

EtOH, vortexed and centrifuged as previously described. After centrifugation, the 

alcohol was removed and pellet was dryed under laminair flow hood, and dissolved 

with 20-30 µl RNase/DNase free H2O. The OD measurements were taken at 260/280 

nm wavelengths with the spectrophotometer NanoDrop® ND-1000 (NanoDrop 

Technologies, USA). The expected value of the A260/A280 ratio in order to determine if 

there is a phenol, protein or DNA contamination in the RNA samples was between 

1.8-2.0. The isolated RNA was stored at -80°C for further use. 

 

 

 

 

 

 
 

30



3.2.9.2. cDNA Synthesis and PCR 
 

3.2.9.2.1. cDNA Synthesis  
 

The cDNAs were synthesized from the total RNA samples with the cDNA 

synthesis kit according to the manufacturers’ protocol. 1-2µg RNA was mixed with 

1µl of Oligo(dT) primer and completed to a total volume of 12 µl with RNase DNase 

free H2O (Hyclone). They were pre-denatured at 65°C for 5 min. then chilled on ice 

for 3-5 min. 15µl RT Buffer (includes dNTP mix and 10 mM MgCl2) and 3µl M-

MuLV RNase H+ reverse transcriptase (includes RNase inhibitor) were added to the 

mixture and incubated at 25°C for 10 min., 40°C for 45 min., 85°C for 5 min. and on 

ice (+4°C) for 10 min. respectively. cDNA’s were runned on 2% Agarose gel for 45-

50 min, at 80V and visualized under transilluminator (Gel-Doc BIO-RAD, USA and 

Vilber Lourmat, France) for 1 sec exposure time. The cDNA’s were stored at -20°C. 

 

3.2.9.2.1.2. PCR 
 
3.2.9.2.1.2.1. Primers 
 

Primers such as; il-18, cxcl16, mip-3α were designed using Primer3 Input 

0.4.0 program (http://frodo.wi.mit.edu/primer3/input.htm) and Primer Designer 3.0 

program with the cDNA sequences of the mouse homologues of these genes which 

are available at the Ensembl database. Each primer pair was blasted 

(http://www.ncbi.nlm.nih.gov/BLAST/) against mouse genome. Other primer 

sequences were obtained from data available in the literature and references were 

cited at their proper primer set (Table 3.1). 

 

 

Table 3.1. The sequences, the sizes and the sources of the primers used. 

Primer  Sequence Product 

Size (base 

pair) 

β-actin Forward 

Reverse 

:5’-GTATGCCTCGGTCGTACCA -3’ 

:5’-CTTCTGCATCCTGTCAGCAA -3’ 

450 bp 
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mTLR-1 Forward 

Reverse 

:5’-TTTGGGGGAAGCTGAAGACATC -3’ 

:5’-CTTCGGCACGTTAGCACTGAGAC-3’ 

410 bp 

mTLR-2 Forward 

Reverse 

:5’-TCTCTGGGCAGTCTTGAACATTTG -3’ 

:5’-CGCGCATCGACTTTAGACTTTG- 3’ 

320 bp 

mTLR-3 Forward 

Reverse 

:5’-GGGGCTGTCTCACCTCCAC-3’ 

:5’-GCGGGCCCGAAAACATCCTT- 3’ 

250 bp 

mTLR-4 Forward 

Reverse 

:5’-TGCCGTTTCTTGTTCTTCCTCT -3’ 

:5’-CTGGCATCATCTTCATTGTCCTT - 3’ 

240 bp 

mTLR-5 Forward 

Reverse 

:5’- TGGGGCAGCAGGAAGACG -3’ 

:5’- AGCGGCTGTGCGGATAAA- 3’ 

380 bp 

mTLR-6 Forward 

Reverse 

:5’- GCCCGCAGCTTGTGGTATC - -3’ 

:5’- GGGCTGGCCTGACTCTTA - 3’ 

650 bp 

mTLR-7 Forward 

Reverse 

:5’- TTAACCCACCAGACAAACCACAC -3’ 

:5’- TAACAGCCACTATTTTCAAGCAGA - 3’ 

700 bp 

mTLR-9 Forward 

Reverse 

:5’- GATGCCCACCGCTCCCGCTATGT - 3’ 

:5’- TGGGGTGGAGGGGCAGAGAATGAA - 3’ 

430 bp 

mIP-10* Forward 

Reverse 

:5’-GCCGTCATTTTCTGCCTCAT- 3’ 

:5’- GCTTCCCTATGGCCCTCATT- 3’ 

127 bp 

mTNF-α* Forward 

Reverse 

:5’- CATCTTCTCAAAATTCGAGTGACAA - 3’ 

:5’- TGGGAGTAGACAAGGTACAACCC  - 3’ 

175 bp 

mIL-15* Forward 

Reverse 

:5’- CATCCATCTCGTGCTACTTGTGTT - 3’ 

:5’- CATCTATCCAGTTGGCCTCTGT - 3’ 

126 bp 

mIL-6* Forward 

Reverse 

:5’- GAGGATACCACTCCCAACAGACC - 3’ 

:5’- AAGTGCATCATCGTTGTTCATACA - 3’ 

141 bp 

mIL-18¶ Forward 

Reverse 

:5’-ACAACTTTGGCCGACTTCAC - 3’ 

:5’- ACAAACCCTCCCCACCTAAC - 3’ 

491 bp 

mMCP-1 Forward 

Reverse 

:5’- AGGTCCCTGTCATGCTTCTG - 3’ 

:5’- TCTGGACCCATTCCTTCTTG - 3’ 

249 bp 

mCXCL16¶ Forward 

Reverse 

:5’- CGCTGGAAGTTGTTCTTGTG - 3’ 

:5’- GGTTGGGTGTGCTCTTTGTT - 3’ 

384 bp 

mMIP-3α¶ Forward 

Reverse 

:5’- CGTCTGCTCTTCCTTGCTTT - 3’ 

:5’-CCTTTTCACCCAGTTCTGCT - 3’ 

237 bp 

mCD40* Forward 

Reverse 

:5’-GTCATCTGTGGTTTAAAGTCCCG - 3’ 

:5’- AGAGAAACACCCCGAAAATGG - 3’ 

91 bp 
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¶ Designed primer 

* Adopted from Giulietti et. al., 2001  

 
3.2.9.2.1.2.2. Semi-Quantitative RT-PCR 
 

 For the comparison of the mRNA expression levels of the samples, 

semiquantitative reverse-transcriptase PCR (MJ Mini, BIO-RAD, USA) was 

performed. Quantification of the band intensities was performed using MultiAnalyst 

and Bio1D softwares. The quantitated values for the samples were normalized by the 

division of the quantitated values of corresponding β-actin sample intensities. The 

reaction ingredients used in PCR reactions are shown in Table 3.2 and the condition 

of PCR reactions are shown in Table 3.3. 

 

 Table 3.2. PCR reaction composition 

25 µlTotal

9,5 µlRNase DNase free H2O

1 µl (10 pmol)Reverse Primer (Alpha DNA)

1 µl (10 pmol)Forward Primer (Alpha DNA)

12,5 µlDyNAzyme TMII Master Mix (Finnzymes)

1 µlcDNA

VolumeReaction Ingredients

25 µlTotal

9,5 µlRNase DNase free H2O

1 µl (10 pmol)Reverse Primer (Alpha DNA)

1 µl (10 pmol)Forward Primer (Alpha DNA)

12,5 µlDyNAzyme TMII Master Mix (Finnzymes)

1 µlcDNA

VolumeReaction Ingredients

 
 

Table 3.3. PCR running conditions 

 

 

 

 
 Fin

 
3
 

2

bromide

 
 

 
94 oC, 30 sec 
55 oC, 30 sec                35 cycles       
72 oC, 1 min. 
 
al Extension: 10 min. at 72 oC
.2.9.2.1.2.3. Agarose Gel Electrophoresis 

% agarose gel was prepared with 1X TAE buffer and 1 mg/ml ethidium 

 solution. Lanes were loaded by mixing 5µl agarose gel loading dye with 10µl 
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of cDNA sample. For every gel, the low range DNA ladder (Jena Biosciences) was 

used as a marker and the gels were visualized as previously mentioned. Comparisons 

of the cDNA band intensities for the analysis were done with BIO-PROFILE Bio-1D 

V11.9 sofware. 

 

3.2.10. Atomic Force Microscopy (AFM) 

 

 Polysaccharides diluted in DNase/RNase free H2O were deposited on silicone 

wafer. Following complete drying images were taken by using non-contact mode XE-

100E model AFM (PSIA with XEI 1.6 software incorporated) with a 0.73-0.79 Hz 

scanning rate. The scanning area sizes were in range from 3µm x 3µm to 0.5µm x 

0.5µm. AFM images were taken with the help of Dr. Aykutlu Dana’s group.  

 

3.2.11. Statistical Analysis 

 

Statistical significance was determined between unstimulated group (or 

control ODN stimulated) versus stimulated groups using SigmaSTAT software via 

Student’s t- test analysis. 
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4. RESULTS 
 

4.1 Studies to Establish the Benefit of Using More Than One TLR Ligand 

Combinations in Immunotherapy 

 

Recent findings suggest that more than one TLR members can collectively 

recognize “non-self” lipid, carbohydrate, peptide (or combinations thereof) and 

nucleic-acid structures that are broadly expressed by various infectious 

microorganisms. This concerted activation is the key to control pathogen attack and 

spread. Understanding the synergistic and/or antagonistic interaction of more than one 

TLR ligand during the initial induction on immune cells is critical and may contribute 

to develop more effective vaccine adjuvants or immunotherapeutic agents. The prime 

aim of this project is to first delineate these interactions by systematically combining 

different ligands and determining how these combinations alter the immune response 

(i.e. determine whether ligand combinations increase or decrease the immune 

activation of the spleen cells compared to a single ligand activation).  

 

4.1.1 Determining the Most Adequate Combination of TLR Ligands 

  

Preliminary optimization assays were undertaken to establish the optimum and 

sub-optimum doses of different ligands required for murine splenocyte stimulation. 

For that, varying ligand concentrations were tested on the mouse spleen cells in 

culture for 42 h. The cell supernatants were collected and stored at -20°C and then 

were subjected to cytokine ELISA. Initial experiments revealed that two different 

doses could be used for further experiments. We have named these concentrations 

(based on their stimulation potency) as optimum and sub-optimum ligand doses. 

Table 4.1 summarizes the ligands and their combinations used throughout the rest of 

the study. We have decided to carry out the rest of the experiments using spleen cells 

rather than isolated single cell type. The major reason for this is that when these 

agents are given in vivo, many cell types are influenced by these ligands (either 
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directly or upon co-stimulation) so, to see overall activation effect we believed that 

using a mixed cell population (such as spleen cell population) rather than looking at a 

single cell type is going to be more informative and conclusive as well as close to in 

vivo setting. Therefore, we have conducted our further ligand cooperation studies 

using freshly isolated single cell suspension of BALB/C mice splenocytes. 

 

Table 4.1. The list of TLR ligands which were used for the stimulation of spleen cells 

 
Group 
# 

TLR Ligands Stimulated TLR Optimum 
Concentration 

Suboptimum 
Concentration 

1 Naïve None Only media Only media 
2 Control ODN (1612) None 1µM 0,2µM 
3 Peptidoglycan (PGN) TLR2/6 5 µg/ml 1 µg/ml 
4 pI:C TLR3 20 µg/ml 4 µg/ml 
5 Lipopolysaccharide TLR4 1 µg/ml 0,2 µg/ml 
6 R848 (Imiquimod®) TLR7/8 1 µg/ml 0,2 µg/ml 
7 CpG ODN (1555) TLR9 1µM 0,2µM 
8 Control ODN + PGN ––  + TLR2/6  1µM + 5 µg/ml 0,2µM + 1 µg/ml 
9 Control ODN + pI:C ––  + TLR3 1µM + 20 µg/ml 0,2µM + 4 µg/ml 
10 Control ODN + LPS ––  + TLR4 1µM + 1 µg/ml 0,2µM + 0,2 µg/ml 
11 Control ODN + R848 ––  + TLR7/8 1µM + 1 µg/ml 0,2µM + 0,2 µg/ml 
12 Control ODN + CpG ODN ––  + TLR9 1µM + 1µM 0,2µM + 0,2µM 
13 CpG ODN + PGN TLR9 + TLR2/6 1µM + 5 µg/ml 0,2µM + 1 µg/ml 
14 CpG ODN + pI:C TLR9 + TLR3 1µM + 20 µg/ml 0,2µM + 4 µg/ml 
15 CpG ODN + LPS TLR9 + TLR4 1µM + 1 µg/ml 0,2µM + 0,2 µg/ml 
16 CpG ODN + R848 TLR9 + TLR7/8 1µM + 1 µg/ml 0,2µM + 0,2 µg/ml 
17 R848 + PGN TLR7/8 + TLR2/6 1 µg/ml + 5 µg/ml 0,2 µg/ml + 1 µg/ml 
18 R848 + pI:C TLR7/8 + TLR3 1 µg/ml + 20 µg/ml 0,2 µg/ml + 4 µg/ml 
19 R848 + LPS TLR7/8 + TLR4 1 µg/ml + 1 µg/ml 0,2 µg/ml + 0,2 µg/ml 
20 pI:C + PGN TLR3 + TLR2/6 20 µg/ml + 5 µg/ml 4 µg/ml + 1 µg/ml 
21 pI:C + LPS TLR3 + TLR4 20 µg/ml + 1 µg/ml 4 µg/ml + 0,2 µg/ml 
22 PGN + LPS TLR2/6 + TLR4 5 µg/ml + 1 µg/ml 1 µg/ml + 0,2 µg/ml 

 

4.1.1.1 Cytokine ELISA  
 

In order to understand the nature of the immune response with these ligand 

combinations i) trigger a Th1-biased (judged by IL-6, TNF-α or IFN-γ production) or 

ii) a Th2 (IL-4 secretion) dominated immune activation, in addition to a pronounced 

cytokine production upon more than TLR addition to the cell culture media, we 

determined IL-6, TNF-α, IFN-γ and IL-4 cytokine secretion from culture supernatants 

following cell stimulation.  

 

One of the main proinflammatory cytokine, IL-6 which is mainly secreted by 

T-cells B-cells and macrophages; mainly in response to a bacterial infection was 
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highly secreted in the combinations of CpG either with PGN (TLR2), pI:C (TLR3), or 

LPS (TLR4) increased IL-6 production by about 2-3 fold independent of the tested 

ligand concentrations (Fig. 4.1, and Fig. 4.2).  When a TLR3 ligand pI:C plus R848 

(TLR7/8) was used, IL-6 production from spleen cells was significantly increased 

(Fig. 4.1 and Fig. 4.2) compared to either of the single ligand stimulation. Similar 

trend but substantially at a lower level PGN mixture was also increased IL-6 level 

(Fig. 4.1 and Fig. 4.2). When IL-6 profile is collectively assessed, data suggest that 

endosome-associated TLRs act synergistically and exceed IL-6 production seen by a 

single TLR ligand, whereas, pI:C plus LPS did not show any improvement in the 

cytokine level.   
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Figure 4.1. IL-6 production from spleen cells following stimulation with various TLR 

ligand combinations set at optimum induction doses. (Cont ODN; Control ODN).  p < 

0,02 (compared with unstimulated or control group). 

 

Stimulation of spleen cells with CpG ODN plus PGN or LPS synergistically 

enhanced the IFNγ mediated cytokine production. However, LPS, PGN or CpG ODN 

plus R848 showed no substantial improvement (or inhibition) of IFNγ production 

(Fig. 4.3 and Fig. 4.4). 
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Figure 4.2. IL-6 production from spleen cells following stimulation with various TLR 

ligand combinations set at suboptimum induction doses. p < 0,04 (compared with 

unstimulated or control group). 
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Figure 4.3. IFN-γ production determined by ELISA from spleen cells which were 

stimulated with optimum doses of TLR ligands for 42 hours.  p < 0,001 (compared 

with unstimulated or control group). 

 

 
 

38



0

5

10

15

20

25

N
ai

ve

C
on

t O
D

N

P
G

N

pI
:C

LP
S

R
84

8

C
pG

 O
D

N

C
on

t O
D

N
+P

G
N

C
on

t O
D

N
+p

I:C

C
on

t O
D

N
+L

P
S

C
on

t O
D

N
+R

84
8

C
on

t O
D

N
+C

pG
 O

D
N

C
pG

 O
D

N
+P

G
N

C
pG

 O
D

N
+p

I:C

C
pG

 O
D

N
+L

P
S

C
pG

 O
D

N
+R

84
8

R
84

8+
P

G
N

R
84

8+
pI

:C

R
84

8+
LP

S

pI
:C

+P
G

N

pI
:C

+L
P

S

P
G

N
+L

P
S

IF
N

-γ
 (n

g/
m

l)

 
Figure 4.4. IFN-γ production determined by ELISA from spleen cells which were 

stimulated with suboptimum doses of TLR ligands for 42 hours. p < 0,001 (compared 

with unstimulated or control group). 

 

Tumor necrosis factor-alpha (TNF-α) is another cytokine involved in systemic 

inflammation and is a member of a group of cytokines that stimulate the acute phase 

reaction with IL-6.  ELISA results of TNF-α secretion with the co-stimulation of TLR 

ligands resulted as; R848 plus CpG, LPS and Control ODN raised >2 fold in both 

optimal (Fig. 4.5) and suboptimal (Fig. 4.6) doses. Also, at all doses, cooperation of 

pI:C with PGN significantly elevated the TNF-α level in spleen cells. TLR3 ligand 

pI:C or TLR2 ligand PGN with CpG ODN antagonistically acted on the TNF-α 

production after 42 hours stimulation, similar result was seen with Control ODN plus 

pI:C group (at two different doses). 
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Figure 4.5. TNF-α production from spleen cells following stimulation with various 

TLR ligand combinations set at optimum induction doses. p < 0,001 (compared with 

unstimulated or control group). 
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Figure 4.6. TNF-α production from spleen cells following stimulation with various 

TLR ligand combinations set at suboptimum induction doses. p < 0,001 (compared 

with unstimulated or control group). 

 

IL-4 ELISA was also performed to establish if any of these combinations 

trigger a Th-2 biased inflammatory response (Fig. 4.7, Fig. 4.8). Combination of 

TLR4 ligand LPS either with PGN or pI:C significantly surpassed LPS only IL-4 level 

by spleen cells. Also similar results were seen with R848 plus pI:C or PGN or with 

PGN plus CpG ODN groups (Fig. 4.7 and Fig. 4.8).    
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Figure 4.7. IL-4 production from spleen cells following stimulation with various TLR 

ligand combinations set at optimum induction doses. p < 0,001 (compared with 

unstimulated or control group). 
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Figure 4.8. IL-4 production from spleen cells following stimulation with various TLR 

ligand combinations set at suboptimum induction doses. p < 0,03 (compared with 

unstimulated or control group). 

 

Table 4.2 summarizes four cytokine ELISAs and demonstrates which 

treatment group up (+) or down (–) regulated these cytokines. In general, the 

combination of R848 with TLR ligands such as: pI:C, PGN, CpG ODN and 
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combination of CpG ODN plus PGN, pI:C, LPS gave synergistic immune activation 

for at least two different Th1 type cytokines. It is worth to note that the LPS 

combinations either with pI:C, PGN or R848 had very little or no positive effect on 

the overall Th1 biased immune response and significantly increased Th2 response, 

therefore it is of caution to combine these ligands if the aim is to boost the Th1 

immunity, but on the other hand if the idea is to boost Th2 biased immune response 

then it could prove beneficial. As expected there was no significant change of 

cytokine levels when Control ODN was mixed with these TLR ligands (Fig 4.1 to 4.8 

and Table 4.2).  

 

Table 4.2. Upregulated and downregulated cytokine profiles compared to single TLR 

ligand induction level. (red circles; antagonism, green circles; synergism). 
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4.1.1.2. mRNA Expression Profile of TLRs  
 

To establish the changes in TLR message level upon stimulation with TLR 

ligand combinations we have performed reverse transcriptase PCR of β-actin, tlr2, 

tlr3, tlr4, tlr5, tlr6, tlr7 and tlr9  genes after stimulation of spleen cells for 4 hours 

with single TLR ligand or combination of the two TLR ligands at optimum doses 

(Fig. 4.9). 

 

We compared the band intensities of stimulated groups with unstimulated 

(naive) group. We considered the band intensity of naïve group as “1” and calculated 

the expression levels of other groups. Figure 4.10 shows the fold induction graphs of 

all tlr genes that were analyzed with RT-PCR. 

Figure 4.9. The agarose gel picture of the RT-PCR products of the tlr genes. The 

spleen cells were stimulated with TLR ligands in optimum doses for 4 hours. 

 

Tlr-2 gene expression was significantly increased almost 3 fold and tlr-3 gene 

was slightly increased with the stimulation of R848 plus PGN when compared with 

unstimulated group. (Fig 4.10A) The combination of CpG ODN and pI:C also 

upregulated the tlr2, tlr3 (Fig 4.10B), tlr4, tlr5 expression. The mRNA levels of tlr4 

 

β-actin 
 
 

tlr2 
 

 

tlr3 
 

tlr4 
 

tlr5 
 

tlr6 
 

tlr7 
 

tlr9 

N
ai

ve
 

 C
on

tr
ol

 O
D

N
 

 PG
N

 
 pI

:C
 

 L
PS

 
 R

84
8 

 C
pG

 
 C

on
t O

D
N

 +
 P

G
N

 
 C

on
t O

D
N

 +
 p

I:
C

 
 C

on
t O

D
N

 +
 L

PS
 

 C
on

t O
D

N
 +

 R
84

8 
 C

on
t O

D
N

 +
 C

pG
  

 C
pG

 +
 P

G
N

  
 C

pG
 +

 p
I:

C
 

 C
pG

 +
 L

PS
 

 C
pG

 +
 R

84
8 

 R
84

8 
+ 

PG
N

 
 R

84
8 

+ 
pI

:C
 

 R
84

8 
+ 

L
PS

 
 pI

:C
 +

 P
G

N
 

 pI
:C

 +
 L

PS
 

 PG
N

+
L

PS

 
 

43



(Fig 4.10C), tlr6 (Fig 4.10E) weren’t changed or slightly down-regulated with the 

combinations of TLR ligands when compared with the alone TLR ligand mRNA 

levels. Cooperation of R848 with other TLR ligands up regulated the tlr7 and tlr9 

expression levels 2-5 fold at optimum concentrations but down regulated tlr5 

expression (Fig 4.10D). The combinations of two ligands each other such as; TLR2 

ligand PGN, TLR3 ligand pI:C and TLR4 ligand LPS also resulted higher expression 

levels of tlr7 (Fig 4.10F)  and tlr9 genes (Fig 4.10G). Control ODN either with LPS 

or R848 elevated the tlr7 expression, but decreased the tlr9 gene expression. CpG 

ODN plus pI:C or LPS substantially increased tlr7 gene expression. Consistent with 

previous ELISA data, R848 plus other TLR ligand combinations elevated the message 

intensity of tlr2, tlr3, tlr7 and tlr9 genes. Table 4.3 summarizes the gene regulation 

status of mouse TLR panel after treatment with multiple ligand combinations. 
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Figure 4.10. The fold induction graphs of tlr genes. A) The expression profile of tlr2 

gene of stimulated groups versus unstimulated group. B) The expression profile of tlr3 

gene. C) The expression profile of tlr4 gene. D) The expression profile of tlr5 gene. 

E) The expression profile of tlr6 gene. F) The expression profile of tlr7 gene. G) The 

expression profile of tlr9 gene. 
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Table 4.3. Upregulated and downregulated mRNA message, based on band intensities 

of single TLR Ligand. 

 

+ +Cont ODN + CpG ODN

- -- -- - - -- -- -

- - -- -

- - --

- - - ---

- -- - -- - -- -

--- -

- -- - - - --- -- -

-- - - - -- -

- -- - - -- -- -

-

- - - - ---

- - -- -- -

- - --

Cont ODN + PGN 

+Cont ODN + pI:C

+ ++ +Cont ODN + LPS

Cont ODN + R848

Gene Expressions

+ + + + +PGN + LPS

+ + ++ +pI:C + LPS

+ ++ +PGN + pI:C

+ + ++ + + +R848 + LPS

+ ++ +R848 + pI:C

+ + + + ++ + + + +++ + + +R848 + PGN

++ + + +CpG ODN + R848

+ + ++ +CpG ODN + LPS

++ ++ + + ++ + +CpG ODN + pI:C

CpG ODN + PGN

TLR9TLR7TLR6TLR5TLR4TLR3TLR2

+ +Cont ODN + CpG ODN

Cont ODN + PGN 

+Cont ODN + pI:C

+ ++ +Cont ODN + LPS

Cont ODN + R848

Gene Expressions

+ + + + +PGN + LPS

+ + ++ +pI:C + LPS

+ ++ +PGN + pI:C

+ + ++ + + +R848 + LPS

+ ++ +R848 + pI:C

+ + + + ++ + + + +++ + + +R848 + PGN

++ + + +CpG ODN + R848

+ + ++ +CpG ODN + LPS

++ ++ + + ++ + +CpG ODN + pI:C

CpG ODN + PGN

TLR9TLR7TLR6TLR5TLR4TLR3TLR2

- -- -- - - -- -- -

- - -- -

- - --

- - - ---

- -- - -- - -- -

--- -

- -- - - - --- -- -

-- - - - -- -

- -- - - -- -- -

-

- - - - ---

- - -- -- -

- - --

 
 

4.1.1.3 Cytokine ELISA of IL-6 and IFN-γ with suboptimum doses 

 

Since suboptimal concentrations of TLR ligand combinations gave almost the 

same cytokine production levels as observed for optimal doses (especially the groups 

having R848 were too strong), we were curious to delineate the degree of spleen cell 

stimulation by these ligands when they were further titrated (i.e. up to 125 fold 

dilution was monitored during the stimulation assays). This data provide insight and 

help us to investigate whether these cooperative effects are still retained at very low 

level ligand doses (which were neglected in the preliminary phases of the study). In 

Table 4.4, the regulatory action of these ligand combinations is presented for IFN-γ 

and IL-6 production.  These findings suggest that, as observed earlier, R848 still 

strongly synergize with several other ligands and induce strong cytokine induction 

even at very low dose of ligand combinations. In contrast to that; LPS plus pI:C or 

PGN decreased IL-6 and IFN-γ cytokine levels. 
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Table 4.4. The fold induction of TLR ligand combinations based on the overall, IL-6 

and IFN-γ cytokine level of all groups. (red boxes; antagonism, green boxes; 

synergism). p < 0,01 (compared with unstimulated groups). 

 

- ---+/--- -PGN + LPS

- ---+/--- -pI:C + LPS

+----+/-pI:C + PGN

++ + ++ + + ++ + ++ + ++ + +R848 + LPS

++ + ++ + + + ++/-+ + ++ + +R848 + pI:C

++ + + ++ + + +-+ + ++ +R848 + PGN

- -+ ++ + + +-+ ++ +CpG + R848

- ---+/---CpG + LPS

- ---+/-- -- -CpG + pI:C

- -+/----+/-CpG + PGN

- --- --- -- -Cont + CpG

- -+ ++ + + + ++/-+ ++ +Cont + R848

- ---+ +-- -Cont + LPS

- --- --- -- -Cont + pI:C

- ----- -+/-Cont + PGN

- ----- -- -CpG

- -+ ++ + +-+ ++ +R848

- ---+/---LPS

- -- -- --- -- -pI:C

- -----+ +PGN

- -- -- --- -- -Cont

- -- -- --- -- -Naive

125x25x5x125x25x5x

IL-6IFN-γID

- ---+/--- -PGN + LPS

- ---+/--- -pI:C + LPS

+----+/-pI:C + PGN

++ + ++ + + ++ + ++ + ++ + +R848 + LPS

++ + ++ + + + ++/-+ + ++ + +R848 + pI:C

++ + + ++ + + +-+ + ++ +R848 + PGN

- -+ ++ + + +-+ ++ +CpG + R848

- ---+/---CpG + LPS

- ---+/-- -- -CpG + pI:C

- -+/----+/-CpG + PGN

- --- --- -- -Cont + CpG

- -+ ++ + + + ++/-+ ++ +Cont + R848

- ---+ +-- -Cont + LPS

- --- --- -- -Cont + pI:C

- ----- -+/-Cont + PGN

- ----- -- -CpG

- -+ ++ + +-+ ++ +R848

- ---+/---LPS

- -- -- --- -- -pI:C

- -----+ +PGN

- -- -- --- -- -Cont

- -- -- --- -- -Naive

125x25x5x125x25x5x

IL-6IFN-γID

 
 

4.2 Immunomodulatory Effects of Polysaccharides Extracted from 

Ganoderma lucidum and Shiitake Mushrooms 

 

After establishing the contrasting and synergistic effects of several ligand 

combinations on splenocytes, we were curious to develop a depot delivery system that 

will protect the TLR ligands and also help to improve the uptake by the immune cells 

and at the same time induce synergistic effect by acting as a co adjuvant to the TLR 

ligand incorporated with it. Our ligand mixture experiments suggested that among 

several ligand candidates TLR2/6 ligand PGN is inducing a robust immune activation 

when combined with CpG ODN especially for IFN-γ induction (which is an indication 

of not only the humoral immunity but another important arm the cell mediated 
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immunity is also elevated). We aimed to identify a candidate which can mimic PGN 

and yet will be cheap and easy to formulate with our nucleic acid TLR ligands (as 

well as non nucleic acid ones too).  

 

Accumulating data in the literature strongly suggest that extracts from certain 

mushrooms (Ganoderma and Shiitake mushrooms) can induce i) anti cancer and ii) 

immunomodulatory activities (Paterson, 2001). These polysaccharides are 

amphiphilic in nature and can easily form complexes with the nucleic acids or other 

small immune response modifiers, such as R848. In this part of the study we will 

demonstrate that, four different polysaccharides (named as PS1, 2, 3, and 4) (See 

appendix A) extracted and purified from Ganoderma and Shiitake mushrooms can 

activate innate immune system through TLR2 and TLR6 when used as such on 

splenocytes or macrophage cell line and furthermore can be harnessed as a controlled 

delivery store system for our target nucleic acid based TLR ligands. This PS:Nucleic 

acid combinations can induce synergistic effect and can further improve Th1 mediated 

cytokine production from mouse spleen cells.  

 

4.2.1 Effect of Polysaccharides on Cytokine Secretion and Nitric Oxide 

Production by Macrophages 

 

4.2.1.1 Preliminary Study of Dose and Time Dependent Cytokine ELISA 

and NO Assay Polysaccharides 

 

 RAW 264.7 mouse macrophage like cells were stimulated with two different 

doses (16 µg/ml and 1,6 µg/ml) of different types of PS. The cells were also 

stimulated with several positive and negative controls (TLR2/6 ligand PGN, TLR4 

ligand LPS and Control ODN in 5 µg/ml, 0,5 µg/ml, 3µM concentrations 

respectively). After 24 hours and 42 hours incubation with these ligands the 

supernatants were collected and IL-6 (Fig. 4.11 A, B), TNF-α (Fig. 4.12 A, B) 

cytokine levels and bactericidal mediator nitric oxide (NO) levels (Fig. 4.13 A, B) 

were detected. Off note, Nitric oxide is a versatile, very small molecule although it is 

known to possess other important physiological properties (like dilation of smooth 

muscle and help to relieve vein pressure from sickle cell anemic patients) it is also 
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generated by macrophages as part of the immune response to ongoing infection. It is 

toxic to bacteria and other pathogens. We can measure the NO metabolite 

concentrations, “NO2” for each treatment, and get an idea about the macrophage 

killing capacity upon stimulation with TLR ligands.  

 

These preliminary results showed that PS2 and PS4 extracts were the most 

potent inducers of IL-6, and TNF-α cytokines and also they were the most potent NO 

inducers. When PS2 and PS4 performances were compared, upon dilution, it is clear 

that PS4 is more potent than PS2 (at the end of 24 h incubation). But after longer 

stimulations, PS2 at least for IL-6 secretion suppressed PS4. For NO secretion there is 

no significant difference between PS2 and PS4 albeit the magnitude of PS4 is slightly 

higher than PS2.  
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B) 

Figure 4.11. IL-6 production after 24h (A) or 42h (B) stimulation of RAW cells with 

different doses of PSs. p < 0,01 (compared with unstimulated or control groups). 
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B) 

Figure 4.12. TNF-α production after 24h (A) or 42h (B) stimulation of RAW cells 

with different doses of PSs. p < 0,07 (compared with unstimulated or control groups). 
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Figure 4.13. NO production by different PS extracts, PGN, LPS and Control ODN 

from RAW cells after 24 (A) or 42 hours (B) stimulation. p < 0,05 (compared with 

unstimulated or control groups). 

 

4.2.1.2 Dose-dependent TNF-α and NO secretion Profiles of 

Polysaccharide Extracts 

 

In order to differentiate which PS is a strong stimulant and may also serve as a 

depot system, we performed dose-response stimulation assay with four 

polysaccharides, including controls like PGN and another TLR2/6 ligand Zymosan 

(from 20 µg/ml to 0,002 µg/ml) for 24 hrs of culture. TNF-α level and nitric oxide 

responses are presented in Figs. 4.14A and 14.4B respectively. Consistent with 

previous preliminary study (see Figs. 4.11–4.13), PS2 and PS4 were still the most 

potent ones and significantly elevated TNF-α production at high PS doses. However, 

at lower doses PS4 once more proved that it is surpassing the rest of the test groups. 

Similar trend is valid for NO production (Fig. 4.14B). Low dose activity in culture is 

very informative. One can predict about the activity when these agents are given in 

vivo. Peptidoglycan gave similar stimulation pattern as PS2. Unexpectedly, zymosan 

showed no activity either in ELISA or in NO assays.  
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Figure 4.14. TNF-α (A) and Nitric oxide (Β) production by different PS extracts, 

PGN and Zymosan (Zym) from RAW cells at different doses. p < 0,03 (compared 

with unstimulated or control groups). 
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4.2.1.3 Effect of Incubation Time on Cytokine and NO Production by 

Polysaccharide Extracts 

 

To examine the time-dependent PS activity, 2 µg/ml PS doses were selected.  

The culture fluid was collected at 6, 12, 24, 36, and 48 hours. LPS and PGN were 

used as control and similar to previous assays TNF-α (Fig. 4.15A) and NO (Fig. 

4.15B) levels were determined from culture supernatants. As seen in Fig. 4.15A, TNF-

α level reached near saturation within 6hrs of stimulation independent of the PS type. 

Nitric oxide production showed a time-dependent production reaching near saturation 

after 24 hrs of incubation. Consistent with previous observations, PS2 and PS4were 

the most potent inducers of TNF-α 12–24h. 
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Figure 4.15. Time dependent TNF-α (A) and Nitric oxide (Β)  secretion by different 

PS extracts from RAW cells. p < 0,07 (compared with unstimulated or control 

groups). 

 

Consequently, dose-response and time-course experiments prompted us to 

conclude that PS2 and PS4 polysaccharides were the most potent stimulant candidates 

among four PSs at hand. 

 

4.2.2 Effect of Polysaccharides on TLR and Cytokine, Chemokine Gene 

Expression  

 

In order to understand whether PS triggering (via TLR2/6 pathway) changes 

other unrelated TLR message expression, we stimulated RAW cells with different PS 

extracts (10 µg/ml), up to 4 hrs in culture (PGN was used as a positive control), and 

checked the expression levels of whole TLR panel (TLR1-10) via RT-PCR. 

 

4.2.2.1 Polysaccharide Stimulation Alters mRNA Expression Profile of 

TLRs   

 

 Results (Fig. 4.16 and Fig. 4.17) showed that at 2h stimulation PS4 gave 

higher and broader TLR message activity compared to PS2. When message level of 

naive group is compared to PS2 or PS4, it is clearly seen that PS4 mRNA message for 
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tlr1, 2, 5, 7, and 9 highly expressed. By 4h PS2 induction level catches up the level of 

the PS4. If we consider the fold change in the mRNA band intensities from 2 to 4 h 

PS incubation, as seen in Fig. 4.17, PS2 is the strongest polysaccharide, and then 

comes PS4. Data indicated that only TLR2 message reduced at the end of 4 hrs of 

stimulation with PS2, however, in PS4 group neither TLR2 nor TLR6 levels lowered, 

but TLR5 message level came down. This time dependent TLR2 message level 

change in PS2 could contribute to the activation potency difference between PS2 and 

PS4 types.  

 

Another striking finding is that PS2 and PGN behaved very similar during 

cytokine and NO induction experiments, here similar to previous observations, PGN 

and PS2 gave identical mRNA activation trend, and as seen in PS2 group, in PGN 

treated group, TLR2 message comes down by 4h of stimulation (Fig. 4.17).  Off note, 

since our utmost aim is to deliver nucleic acid based TLR ligands together with PS, 

upregulation of TLR3, 7 and 9 messages are very promising, as it will eventually 

conribute to signaling through these receptors when PS plus pI:C, R848, or CpG ODN 

ODN is delivered to immunologically relevant cells.  

 22  hh  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. mRNA expression of TLRs upon varying PS treatment time. Total RNA 

from RAW cells (stimulated with PSs  and positive control PGN for 2h and 4h) were 

subjected to RT-PCR and tlr-1 to tlr-9 specific bands were visualized on agarose gels. 
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Figure 4.17. Time dependent relative expression change of TLR gene message 

mediated by polysaccharide stimulation. Ratio of expression level change of TLR 

genes from 2h to 4h is presented. Fold induction levels for each gene was calculated 

by dividing the value of the 2h band intensity to that of corresponding 4h intensity. 

(Please note that fold induction values over 1 indicate gene expression level increase 

over time, and the values below 1 indicate a reduction of that gene over time upon PS 

stimulation). 

 

4.2.2.2 Expression Profile of Cytokines and Chemokines upon PS 

Treatment 

  

Gene expressions of cytokines and chemokines which are important for the 

generation of innate immune response (and then to instruct an adaptive immunity) 

were checked with reverse-transcriptase PCR (Fig. 4.18).  
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When time-dependent change (from 2 to 4 h stimulation) in mRNA band 

intensities of these cytokines and chemokines upon PS2 or PS4 treatment are 

investigated (taking naive group into account too), the followings were observed: 

 

i) There was no difference in the CXCL16 and CD40 message levels 

between PS2 and PS4 treatments.  

ii) TNF-α  and MIP-3α levels significantly increased with PS4 and slightly 

decreased with PS2 treatments 

iii) Extending PS4 stimulation from 2h to 4h (but not PS2 stimulation) 

increased significantly IP10 (CXCL10), IL-15, and IL-18 message levels. 
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cells are responding to PS via only TLR2/6 and the PS preparations are free from 

other contaminants like endotoxin, we designed two experiments; first we have 

determined the endotoxin levels of these preparations and confirmed that there is no 

endotoxin contamination (data not shown). Secondly, we took HEK cells stably 

expressing hTLR2/6 genes and transiently transfected with a plasmid controlled by a 

NF-κB promoter (the main transcription factor in the TLR signaling cascade) that 

encodes for luciferase gene. After different PS extracts were added to these dual 

transfectant HEK cells (for 12 hours) we analyzed the cell extract for the NF-κB 

mediated luciferase activity by using Promega`s luciferase assay kit. As seen in Figure 

4.19, different PS extract induced different levels of luciferase activity. The strongest 

being PS type 2 and 4 (PGN showed similar activity level, as expected). These 

findings suggest that indeed PS extracts initiate a TLR2/6 mediated NF-κB dependent 

signaling cascade to produce Th1 cytokines. These results support our previous 

findings and are in close accordance with the previously observed TNF-α and NO 

values from RAW cells (see Figures 4.11 and 4.18). 
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Figure 4.19. Relative luciferase activity of different PS extracts. hTLR2/6 HEKs were 

transfected with p5xluc NF-κB and stimulated with 5µg/ml of each PSs. 12h later 

cells were lysed and luciferase activity was assessed via Luciferase kit. p < 0,05 

(compared with naive group). 
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4.3 Delivery of TLR Ligands with Polysaccharides 

  

One of the goals of this study is to establish a novel carrier system that 

possesses immunostimulatory property, cheap, easy to obtain and suitable for targeted 

delivery of the labile nucleic acid TLR ligands (i.e. pI:C, R848, ss/ds RNA or CpG 

DNA, including plasmid DNA suitable for either transfection or gene therapy 

applications) to the relevant target immune cells. So far, data revealed that based on 

the ability to stimulate an innate immune response PS2 and PS4 consistently 

performed well over the rest of the candidate PS types (see Figures 4.11 to 4.19). 

Between PS2 and PS4, however the strongly indicated that PS4 is more potent than 

PS2, therefore, to pursue the rest of the formulation and delivery experiments PS4 was 

selected.   

 

4.3.1. Cytokine ELISA and NO Assay  

 

As previously mentioned in the materials and methods section, different TLR 

ligands plus PS combinations were first prepared. Specifically, these nucleic acid TLR 

ligands were selected to yield PS complexes TLR3 ligand: pI:C, TLR7/8 ligand: 

R848, and TLR9 ligand: CpG ODN. Since pI:C was synthesized via native PO 

linkage chemistry, it was anticipated that in vivo free pI:C will be prone to RNase 

digestion. Thus we have selected 2 different doses of pI:C; while achieving 

complexation with PS4 and hoped to observe a dose dependent increase in synergy at 

the end of serial dilution and stimulation studies. Later, these ligands were mixed with 

PS4 at a 1:1 weight ratio, and incubated at 4°C to allow adsorption/incorporation of 

PS with nucleic acids and then upon serial dilution (5x, 25x, 125x and 625x) were 

used to stimulate either mouse peritoneal macrophages (or RAW 264.7 cells) or 

splenocytes for 24 hours. Cell supernatants were analyzed for IL-6 and NO secretion.  

 

As expected, mixing of PS4 with Control ODN or CpG ODN did not 

significantly induced CpG ODN mediated IL-6 (Fig 4.20A, B) cytokine production 

but synergistically increased the NO activity (Fig. 4.21 B) at very low doses. This 

activity is CpG ODN dependent since Control ODN did not produce synergistic IL-6 

effect with PS4. TLR3 ligand pI:C were chosen at two different doses for PS4 
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adsorption, we thought using pI:C at two different doses could be more informative 

since it is so sensitive to serum nucleases we can monitor the PS4 shielding better. 

High and low pI:C adsorbed PS4 resulted in significantly higher IL-6 levels of the 

either stimulant specially at 125x dilution (there was a pI:C dose dependent relation 

for the synergistic activity of pI:C/PS4 complexes). Please compare IL-6 values of 

pI:C, PS4 and PS4-pI:C complex in Fig. 4.20C, D at 625x dilution. PS4–pI:C 

complex also increased the NO secretion by about 2 fold compared to either pI:C or 

PS4 alone counterpart (compare Fig 4.21C, D at 125x dilution).   

 

Of PS4 and nucleic acid ligand complexations and delivery studies TLR7/8 

ligand “R848” showed the most significant synergistic effect with PS4 (compare Fig. 

4.20E, and 4.21E at 125x dilution). At 125x dilution where both R848 alone and PS4 

alone lost its stimulation ability, PS4-R848 complex induced significantly high IL-6 

and NO production (Fig. 4.20E and 4.21E). NO response rose from about 12 µM to 

over 40 µM a rise >3 fold, while IL-6 induction rose >10 fold (ca. 200 ng/ml to 

>2000ng/ml).  

 

These results were critical since inclusion of TLR ligands within PS4 proved 

to be beneficial and may be used for in vivo stimulations in the future.  
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E) 

Figure 4.20. IL-6 ELISA of RAW 264.7 cells when stimulated with PS-4 only, TLR 

ligands only and PS-4 complexed TLR ligands. A) Control ODN B) CpG ODN 

(ODN1555) C) pI:C at low dose [0.4 µg/ml pI:C at 1x dilution]  D)  pI:C at high dose 

[2.0 µg/ml pI:C at 1x dilution] E) R848.  p < 0,001 (compared to ligand only and PS 

only levels at 5X, 25X and 125X dilutions). (green boxes; synergism). 
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Figure 4.21. NO production of RAW 264.7 cells when stimulated with alone PS-4 

only, TLR ligand only and PS-4complexed TLR ligand. A) Control ODN B) CpG 

ODN (ODN1555) C) pI:C at low dose [0.4 µg/ml pI:C at 1X dilution]  D)  pI:C at 

high dose [2.0 µg/ml pI:C at 1X dilution] E) R848. p < 0,002 (compared to ligand 

only and PS only levels at 25X and 125X dilutions). (green boxes; synergism). 

 

4.3.2. Stimulation of Spleen Cells with PS4 and TLR ligands 

 

To see the effect of PS4 complexed TLR ligands on various immune cells, we 

stimulated spleen cells either with i) PS4 only, ii) CpG ODN only and iii) PS4-CpG 

ODN ODN complex (i.e. TLR ligand only, PS4 only and PS4-TLR ligand complex).  

Control ODN, pI:C or R848 were prepared similarly as mentioned earlier and were 

serially diluted and used accordingly. Splenocyte culture stimulation was extended for 

42 hours. While CpG ODN group was tested at 1x to 625x  dilution, TLR3 and TLR7 

ligands were used only at 125x and 625x dilutions. The reason for choosing only two 

concentration for pI:C and R848 was due to the fact that previous experiments gave 

no synergistic effect for IL-6 and NO production at higher concentrations. As 

expected, Control ODN complexed with PS4 did not enhance IL-6 production (Fig 

4.22A). However, at 1x and 5x dilutions, contrary to previous observation when CpG 

ODN  (ODN 2006) complexed with PS4, a robust synergistic IL-6 induction was 
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observed (almost >4 fold increase compared to either CpG ODN only or PS4 only 

treatments (Fig 4.22B) this trend is seen even at 25x dilution but the magnitude is 

relatively small. Interestingly, at 625x dilution both pI:C and R848 complexed with 

PS4 showed almost 3 times higher synergistic cooperation while inducing IL-6 (Fig. 

4.22C,D) . 
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e 4.22. IL-6 ELISA of spleen cells when stimulated with PS-4 only, TLR 

s only and PS-4 complexed TLR ligands after 42h. A) Control ODN B) CpG 

(ODN 2006) C) pI:C (2.0 µg/ml) D) R848. p < 0,04 (compared to ligand only 

 only levels  at 1X, 5X, 125X and 625X dilution). (green boxes; synergism). 
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4.3.3. TLR Expression Pattern of Spleen Cells  

  

We checked the TLR gene expression of spleen cells after incubation with 

pI:C, and R848 alone or complexed with PS4, at 125x dilution for 4 hrs (Fig. 4.24). 

Despite to the RAW TLR panel (Fig. 4.16) in spleen cells tlr3, tlr4, tlr6 and tlr7 

messages were strongly upregulated after the stimulation with PS4 alone. Tlr1, tlr2, 

tlr6 were up-regulated with PS4-pI:C complex, as expected. In stimulation of spleen 

cells with i) PS4 only, ii) R848 only and iii) PS4-R848 complex we couldn’t see any 

enhancement in any TLR gene messages. This is not surprising since R848 is so 

potent in inducing gene upregulation at 125x dilution there is no additive effect 

imposed by PS4.  
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Figure 4.23. TLR mRNA expression of PS4 complexed pI:C or R848. After 

stimulation for 4h, spleen cells’ total RNA were subjected to RT-PCR and amplified 

with tlr-1 to tlr-9 specific primers. 

   

4.3.4. Cytokine and Chemokine Expression Pattern of Spleen Cells  

 

In addition to TLR panel we tested the specific cytokines and chemokine gene 

level differentiation of these two mixtures despite to their alone stimulation affects. 
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(Fig 4.24). When PS4-pI:C or R848 complexes were prepared the messages of all the 

tested cytokines and chemokines were upregulated for PS4-pI:C set (compared to 

either PS4 or pI:C alone counterparts). The only exception is that il-15, mcp-1 and il-6 

message expression intensities were slightly lower compared to the rest of the 

cytokines/chemokines. This is in general true for PS4-R848 set (with two exceptions). 

While il-18 expression level decreased, il-6 message remained unchanged for PS4-

R848 set (compared to either PS4 or R848 alone counterparts). 
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Figure 4.24. RT-PCR analysis for various chemokines and cytokines after incubation 

for 4h spleen cells with with PS-4 only, R848 only, pI:C only and PS-4 complexed 

R848 or pI:C in 125x diluted concentrations. 

 

4.3.5. Particle Size Determination of PS4-complexed TLR ligand 

 

In the literature, there is building evidence that some of the TLR ligands 

induce their effects more effectively when they are in nanoparticle structures. To 

establish whether PS4-TLR ligand complexes can form nanoparticles we have 

investigated the sizes of PS4, pI:C and their complexed form. pI:C showed relatively 

homogenous size distribution (20-70 nm, Fig. 4.25C). The images were taken with 

AFM. Sonicated PS4 (Fig 4.25A) showed more homogenous particle size distribution 
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compared to unsonicated PS4 (Fig 4.25B). The size of the sonicated PS4 (30 – 100 

nm) as expected was much smaller than unsonicated one (ca. 150 – 250 nm). Indeed, 

in our preliminary experiments, we have observed that sonicated PS4 gave 

significantly higher immune activation than that of unsonicated counterpart (data not 

shown).  When we checked PS4-pI:C complex size were in between 100–300 nm, 

indicating that dsRNA complexation increased the nanoparticle diameter (Fig 4.25D) 

 
  

 

Figure 

unsonic

 

 

     

 

 

 

 
 

 A)
C)

D)

B)

 

4.25. AFM phase, 2D topography, 3D topography images of A) PS-4 

ated B) PS-4 sonicated C) pI:C D) PS-4 + pI:C at 1 µm x 1 µm areas. 
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5. DISCUSSION 
 

One of the main innate immune activation system against microbes in 

mammals are controlled by Toll-like receptors; which is first characterized in 1997 by 

Medzhitov et. al. Since then, TLR mediated immunity become one of the most 

popular subject in immunobiology. It has been reported that several TLR ligands are 

the future candidates for many therapeutic applications. and can be the cure for many 

infectious diseases such as Anthrax, AIDS, Hepatitis, (Klinman DM, 2004), 

Listeriosis, (Gursel, 2001) and cancer (Krieg, 2007).  

 

To reach our aim we took the following approach; we incubated the spleen 

cells with 15 different combinations at two different ligand concentrations of bacterial 

and viral origin TLR ligands. We found out the most potent TLR ligand combination 

from these groups (Tables 4.2, 4.3 and 4.4. summarize these findings). Independent 

from these experiments we determined the most effective PS (out of 4 PS candidates) 

using mouse macrophage cell line RAW 264.7. After establishing the potency of the 

most promising PS, we have initiated the complexation studies with nucleic acid TLR 

ligands (pI:C, R848, Control ODN and CpG DNA).  

  

Six different TLR ligands were used for the cooperation studies. Cytokines 

such as IFN-γ, IL-6 and TNF-α were checked to demonstrate the changes in Th1 

biased immunity. Mainly TLR7/8 ligand, R848 plus other TLR ligands, which are 

bacterial and viral synthetic products, induced pro-inflammatory cytokines. The R848 

mainly acted in synergistically with several other ligands and was the most potent 

inducer of innate immunity.  

 

mRNA expression analysis of TLR genes resulted as tlr2, tlr4, tlr7 and tlr9 in 

the combination of R848 plus other TLR ligands, in accordance with ELISA results 

means that both extracellular and endosomal TLRs act in concert. It was an interesting 

result that Control ODN, when combined with LPS or R848 increased tlr7 expression, 

but decreased the tlr9 gene expression. Further studies should be done to explain this 

unexpected result. Combination of two intracellular TLR ligands; TLR3 and TLR9 

enhanced the extracellular tlr2, tlr4, and tlr5 expression. This finding is interesting, 
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indication of this could mean that immune cells may want to make sure if there is an 

extracellular or intracellular infection is going on pathogen insult. Upon this 

extracellular TLR message upregulation, may be it differentiates the type of infection 

and becomes committed to upregulate only endosome associated TLRs and prepares 

itself for combat against an intracellular pathogen.  

   

 Ganoderma and Shiitake mushrooms have been used for medicinal purposes. 

The anti-tumor and immuno-modulating acitivites of these mushrooms have been 

reported as early as in 1957. Extracts from G.lucidum have been shown to activate the 

host-mediated immune responses by the production of cytokines (Lieu, 1992).  

 

One aproach to get an improved vaccine immunity, is to design formulations 

that provide simultaneous presentation of an antigen and an adjuvant to 

immunologically relevant cell in a carrier depot system. Only in these cases Ag 

specific immune response reach to a level where appreciable protection from 

pathogen is created. Inclusion of one or more TLR ligand with a specific carrier that 

can act as a co-adjuvant would activate innate immunity, and lead to an increased and 

extended cytokine production. It has been previously reported that TLR2 and TLR4 

synergistically act on macrophages resulted in enhancement of TNF production 

(Beutler, 2001). Costimulation with TLR4 and TLR2 or TLR9 induces synergistic 

release of Th1 cytokines (Equils, 2003).  A subsequent study showed that stimulation 

of mouse macrophages with both TLR3 ligand, pI:C and TLR9 ligand; CpG DNA 

induced more-than-additive levels of TNF, IL-6 and IL-12p40 which again confirmed 

that cooperation between certain TLRs exist (Whitmore, 2004). A study about 

TLR7/8 described that the effects of coupling a TLR ligand to antigen induced 

pronounced vaccine mediated antigen-specific response in a primate model (Wille-

Reece, 2005). Another primate conducted study showed that licensed anthrax vaccine 

in the combination of CpG ODN improved the protective immune response (Klinman, 

2006).  

 

It has been showed that a type of polysaccharide from Spirulina bacteria was a 

potent activator of TLR2 through NF-κB pathway which induces IL-1β and TNF-α in 

human monocytes (Balachandran, 2006). The relation between G.lucidum, Shiitake 
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mushrooms and TLRs are coming to light these days. There are limited studies 

concerning TLR and PS extracts from mushrooms. Recent study showed that G. 

lucidum polysaccharides enhanced CD14 mediated endocytosis of LPS and promote 

TLR2/4 signal transduction of cytokine expression (Hua, 2007). 

  

We hypothesized that by achieving PS/TLR ligand complexes we have two 

fold benefits, i) while constructing a depot delivery system, ii) we can have an 

effective immunoadjuvant action that could be used for generating novel vaccine 

formulations. 

   

Polysaccharides mainly act on innate immune system through TLR2/6 (similar 

to peptidoglycan, and zymosan) and TLR4 (lipopolysaccharide). So, we did check the 

pro-inflammatory cytokines TNF-α and IL-6 which were primarly secreted from 

immune cells, after the exposure of polysaccharides. IL-6; secreted from macrophages 

in response to pathogen associated molecular patterns (PAMPs) seemed to be released 

at high levels with the incubation of PS2 and PS4 in two different doses for 24 and 42 

hours. An interesting result from the IL-6 ELISA, is that at 42 hour stimulation in low 

doses (1,6 µg/ml) with PS2 and PS4 secreted more IL-6 then in high doses (16 

µg/ml). The dose and time-dependent stimulation assays we found out that incubation 

of PS2 and PS4, with one of the main APC macrophages, at least 2µg/ml (0,2µg/ml 

seems the optimum dose) dose was enough to induce TNF-α level. In time-dependent 

experiment we saw that PS2 and PS4 seemed to release more TNF-α from 

macrophages after 12-24 hours than PS1 and PS3.  

 

We further checked for the nitric oxide levels after the stimulation with these 

PSs. Since NO is an important regulator and mediator of macrophage-mediated 

cytotoxicity for microbes and tumor cells (Nathan, 1993), the results from NO Assay 

gave us the direct evidence for the activation of RAW 264.7 in culture via PS. As 

similar with ELISA it was turned out that both PS2 and PS4 were the most potent 

PSs. But time-dependent NO assay didn’t result like TNF-α ELISA. After 24h 

stimulation the NO levels reached saturation with PS2 and PS4 in parallel to the one 

of the control ODN group plus LPS. It seemed that PS1 and PS3 were ineffective until 

24h and secreted nitric oxide almost 2-3 fold lower than the other two PS extracts.  
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The gene expression analysis of these polysaccharide extracts (PS1 to PS4) for 

entire mouse TLR panel, showed us that within 4 hours of stimulation with PS2 or 

PS4 tlr-1, 2, 3, 4, 6 and 7 upregulated. In spite of that, after the first 2 hours the gene 

expression of tlr-1, 2, 3, 4, 6 and 7 were down-regulated with the incubation of PS1 

and PS3. Once again these results showed us that, all four polysaccharides change the 

gene expression pattern of TLRs and PS2 with PS4 were the most potent immune-

activators when compared with unstimulated group.  

 

To prove if these PS extracts acts on immune-system throughout the TLR-

dependent pathway, we transformed hTLR2/6 HEK cells with NF-κB plasmid. 

Incubation with PS1, 2, 3, and 4 with positive controls, PGN or Zymosan, and LPS as 

a negative control for 24 hours, showed that PS2 and PS4 were triggering through 

TLR2/6 pathway and are the strongest inducers (compared to PS1 andPS3) of this 

TLR2/6 induced NF-κB mediated signaling pathway.  

 

Finally we formulated the most potent PS extract (PS4) with three nucleic acid 

TLR ligands and incubated them with murine macrophages (and splenocytes) to 

investigate whether there is an added benefit to create PS/Nucleic acid complexations 

in the augmented activation of the innate immunity. PS4-R848 or PS4-pI:C 

complexes even at very low doses, showed highly significant IL-6 production 

compared to their alone treatments at the same dose. These findings collectively, 

strongly indicated that these complexes indeed impose a synergism when they are 

brought together and simultaneously presented to the relevant immune cells. Like in 

the first TLR cooperation experiments which were done to determine the most 

effective TLR ligand combination, when combined with PS4, TLR7/8 ligand R848 

seemed to be the most active stimulant. 

 

In conclusion, the combination of certain TLR ligands induces immune response 

(both cytokine and mRNA expression level) in a TLR-dependent manner. To 

conceive an effective vaccine against infectious agents, inclusion of more than one 

TLR ligand in the final formulation will be of great benefit.  
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Polysaccharides which were extracted from edible mushrooms, when given as 

such could stimulate the immune system via TLR2/6 dependent fashion but can also 

serve as a depot delivery vehicle. This carrier may be used to deliver certain nucleic 

acid based vaccine adjuvants to enhance cytokine secretion from splenocytes (Mizu, 

2003). These PS extracts could be a potent carrier.  Ultimately, the whole knowledge I  

this thesis will guide us to develop more effective/specialized vaccine formulations 

against infectious agents. 
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6. FUTURE STUDIES 
 

In future, we are planning to work on the effect of these combinations on 

specific cell types which are important in innate-immunity and regulate Toll-like 

receptor induction from plasmacytoid dendritic cells (pDC that expresses TLR7 and 

TLR9) which are the main producers of IFN-α cytokine that is highly efficient in 

inducing cross-priming CD8+ T cells against exogenous viral antigens (Lapenta, 

2006) and also isolate myeloid dendritic cells (mDC, express TLR2/6 TLR3) that 

induces IL-12 production by stimulating T-cells. One main reason for choosing these 

types of cells to work with is that the ex vivo manipulation of the DCs. Accumulating 

data point out that these manipulated cells becomes potent antigen presenting cell and 

can be harnessed in clinics to induce effective anti-tumor activity in vivo (Gilboa, 

2007). 

 

Specific cluster of differentiation (CD) markers such as;  CD36; a monocyte 

marker, CD80 and CD86; provides a co-stimulatory signal necessary for T cell 

activation and survival, CD11b; a macrophage marker, BDCA; pDC marker, CD4; 

expressed on the surface of T helper cells, regulatory T cells (together with CD25), 

monocytes, macrophages, and dendritic cells, CD69; a T-cell activator molecule will 

be used as a marker to determine the differentiation/activation status and effect on a 

collection of diverse group of immune cells from spleen, peritoneal exudate and 

lymph nodes will be studied. In addition, we are expecting establish intracellular 

cytokine staining of specific immune cells in order to display differential activity of 

our PS formulations and the production/secretion characterization from different cell 

populations.  

 

To see in which manner these combinations triggers the immune-system, 

silencing of specific genes for example TLR genes or the genes of adaptor proteins 

that are involved in the TLR pathway; Myeloid differentiation primary response gene 

88 (MyD88), Toll/IL1 receptor-associated protein (TIRAP), TIR domain-containing 

adaptor protein inducing IFN-b (TRIF) and TRIF-related adaptor molecule (TRAM) 

is planned for further studies.  
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Since TLRs and other pathogen recognition receptor (PRR), such as NOD-like 

receptors (NLR) NOD-1 and NOD-2 or even Dectin-1 can synergize with several 

TLR1, 2 and 6 ligands, especially when delivered into cytosol (such as PS molecules) 

or even endosome associated TLR was reported to cooperate with NOD-2 and 

regulate the induction of more robust TNF and IL6 and IFNγ production (Uehara, 

2005). We will transfect hTLR2/6 HEK cells with NOD-1 and NOD-2 expressing 

plasmids, and stimulate these cells with different PS4  nucleic acid complexes to 

observe if there is an interaction between NLRs and TLRs while inducing this 

synergism. 

 

It is of great importance to establish whether in vitro observations can be 

translated to in vivo setting. These mixtures could be used as an anti-tumorogenic, 

immunoprotective agents. Also they could be used as vaccine adjuvants by 

coadministirating with specific vaccine antigens such as; anthrax vaccine adsorbed 

(AVA), tuberculosis vaccine; Bacillus of Calmette and Guerin (BCG), influenza, and 

hepatitis B.  

 

Indeed synergism between these TLR ligands and PS extracts is important not 

only for understanding innate response to microbial infection but also in the context of 

vaccination and  cancer immunotherapy. Thus the additional studies exploring these 

interactions will lead to an improved understanding of innate immunity to pathogen 

infection and the utility for TLRs in immune based therapies for diseases. 
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9. APPENDICES 
 

9.1 Appendix A 

 
Four different polysaccharide extracts code table: 

 

Name Code Our Code Weight Solubility in ddH2O 

Ganoderma lucidum (Alata strain) AR150 PS-1 39,21 mg 70-80 % 

Ganoderma lucidum (Balcalı strain) BROsm PS-2 24,55 mg 80-90 % 

Shiitake SR150 PS-3 34,18 mg 40 % 

Ganoderma lucidum (Alata strain) AROsm PS-4 23,22 mg 60 % 

 

9.2 Appendix B 

 

Standard Solutions, Buffers, Media 

 

Blocking Buffer (ELISA) 

• 500 ml 1x PBS 

• 25 grams BSA (5%) 

• 250 µl Tween20 (0,025%) 

Crystal particles of BSA should be dissolved very well, with magnetic-heating 

stirrer for 20-30 min. The buffer should be stored at -20°C. 

 

Loading Dye (Agarose gel)

• 0,009 grams Bromofenol blue  

• 0,009 grams Xylen cyanol  

• 2,8 ml ddH2O 

• 1,2 ml 0,5M EDTA 
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• 11 ml glycerol 

After preparing, just vortex it. 

 

 

PBS (Phosphate Buffered Saline) [10x] 

• 80 grams NaCl 

• 2 grams KCl 

• 8,01 grams Na2HPO4 . 2H2O 

• 2 grams KH2PO4 

into 1 lt ddH2O 

pH= 6,8. For 1xPBS’s pH should be ≈ 7,2-7,4. Should be autoclaved prior to use. 

 

TAE (Tris-Acetate-EDTA) [50x] 

• 242 grams Tris (C4H11NO3) 

• 37,2 grams Tritiplex 3 (EDTA= C10H14N2Na2O2 . 2H2O) 

• 57,1 ml Glacial acetic acid 

into 1 lt ddH2O 

Dissolves in ≈1 day. Should be autoclaved. Diluted to 1X prior to use 

 

T-cell Buffer [ELISA] 

• 500 ml 1x PBS 

• 25 ml FBS (5%) 

• 250 µl Tween20 (0,025%) 

The buffer should be stored at -20°C. 

 

Wash Buffer [ELISA] 

• 500 ml 10x PBS 

• 2,5 ml Tween20   

• 4,5 lt dH2O 

 

High Glucose DMEM (Hyclone) and RPMI-1640 (Hyclone) 

• 2 %: 10 ml FBS (Oligo FBS = inactivated at 65°C, Regular FBS = inactivated 

at 55°C ) 
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• 5 % : 25 ml FBS 

• 10 % : 50 ml FBS 

• 5 ml Penicillin/Streptomycin (50 µg/ml final concentration from 10 mg/ml 

stock) 

• 5 ml HEPES (Biological Industries), (10 mM final concentration from 1M 

stock ) 

• 5 ml Na Pyruvate, (0,11 mg/ml final concentration from 100mM, 11 mg/ml 

stock) 

• 5 ml Non-Essential Amino Acids Solution, (diluted into 1x from 100x 

concentrate stock) 

• 5 ml L-Glutamine, (2 mM final concentration from 200 mM, 29.2 mg/ml 

stock) 

In 500 ml media 

 

NaNO2 (100µM) 

• 34,5 µg NaNO2  

• 50 ml Ultrapure H2O [100x] 

Dilute this solution into 1x for 100µM concentration. 
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