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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. Oğuz Gülseren
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ABSTRACT

CARRIER DYNAMICS IN SILICON AND
GERMANIUM NANOCRYSTALS

Cem Sevik

PhD. in Physics

Supervisor: Assist. Prof. Dr. Ceyhun Bulutay

January, 2008

This is a computational work on the Si and Ge nanocrystals (NCs) embedded

in wide band gap host matrices. As the initial task, extensive ab initio work

on the structural and electronic properties of various NC host matrices, namely,

SiO2, GeO2, Si3N4, and Al2O3 are preformed. The structural parameters, elastic

constants, static and optical dielectric constants are obtained in close agreement

with the available results. Furthermore, recently reported high density cubic

phase of SiO2 together with GeO2 and SnO2 are studied and their stable high-

dielectric constant alloys are identified.

Based on the ab initio study of host matrices, two related high field phenom-

ena, vital especially for the electroluminescence in Si and Ge NCs, are examined.

These are the hot carrier transport through the SiO2 matrix and the subsequent

quantum-confined impact ionization (QCII) process which is responsible for the

creation of electron-hole pairs within the NCs. First, the utility and the validity

of the ab initio density of states results are demonstrated by studying the high

field carrier transport in bulk SiO2 up to fields of 12 MV/cm using the ensemble

Monte Carlo technique. Next, a theoretical modeling of the impact ionization

of NCs due to hot carriers of the bulk SiO2 matrix is undertaken. An original

expression governing the QCII probability as a function of the energy of the hot

carriers is derived.

Next, using an atomistic pseudopotential approach the electronic structures

for embedded Si and Ge NCs in wide band-gap matrices containing several thou-

sand atoms are employed. Effective band-gap values as a function of NC diameter

reproduce very well the available experimental and theoretical data. To further

check the validity of the electronic structure on radiative processes, direct photon
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emission rates are computed. The results for Si and Ge NCs as a function of

diameter are in excellent agreement with the available ab initio calculations for

small NCs.

In the final part, non-radiative channels, the Auger recombination (AR) and

carrier multiplication (CM) in Si and Ge NCs are investigated again based on the

atomistic pseudopotential Hamiltonian. The excited electron and excited hole

type AR and CM and biexciton type AR lifetimes are calculated for different

sized and shaped NCs embedded in SiO2 and Al2O3. Asphericity is also observed

to increase the AR and CM rates. An almost monotonous size-scaling and sat-

isfactory agreement with experiment for AR lifetime is obtained considering a

realistic interface region between the NC core and the host matrix. It is further

shown that the size-scaling of AR can simply be described by slightly decreas-

ing the established bulk Auger constant for Si to 1.0×10−30cm6s−1. The same

value for germanium is extracted as 1.5×10−30cm6s−1 which is very close to the

established bulk value. It is further shown that both Si and Ge NCs are ideal for

photovoltaic efficiency improvement via CM due to the fact that under an optical

excitation exceeding twice the band gap energy, the electrons gain lion’s share

from the total excess energy and can cause a CM. Finally, the electron-initiated

CM is predicted to be enhanced by couple orders of magnitude with a 1 eV of

excess energy beyond the CM threshold leading to subpicosecond CM lifetimes.

Keywords: Si and Ge Nanocrystals, High-Field Transport, Radiative Recombina-

tion, Auger Recombination, Carrier Multiplication, Quantum Confined Impact

Ionization, Electronic Structure, High-k Oxides.



ÖZET

SİLİSYUM VE GERMANYUM NANOÖRGÜLERDE
TAŞIYICI DİNAMIĞİ

Cem Sevik

Fizik, Doktora

Tez Yöneticisi: Yard. Doç. Dr. Ceyhun Bulutay

Ocak, 2008

Bu çalışma, Si ve Ge nanoörgülerin (NÖ’lerin) sayısal hesaplamaları hakkındadır.

Başlangıç olarak SiO2, GeO2, Si3N4, Ge3N4 ve Al3O3 gibi NÖ matrislerinin elek-

tronik ve yapısal özellikleri temel prensipler yöntemiyle incelenmiştir. Bunun

sonucunda, yapısal özellikler, elastik sabitler, statik ve optik dielektrik sabitler

için mevcut çalışmalar ile oldukça uyumlu değerler elde edilmiştir. Ayrıca,

SiO2’nun henüz yayımlanmış yüksek yoğunluklu kübik fazı GeO2 ve SnO2 da ele

alınarak calışılmış ve bu malzemelerin yüksek dielektrik sabitli duragan alaşım

formları elde edilmiştir.

NÖ matrisleri hakkındaki temel ilkeler hesaplamalarına dayanarak, Si ve Ge

NÖ’lerdeki elektronışıması için oldukça önemli olan iki yüksek elektrik alan olgusu

incelenmiştir. Bu olgular, SiO2 matrisi içerisinde yüksek enerjili yük taşınımı ve

NÖ içinde elektron-deşik çiftlerinin oluşumunda rolü olan kuvantum tuzaklı darbe

iyonizasyonudur (KTDI). İlk olarak, temel ilkeler yöntemiyle hesaplanmış durum

yoğunluklarının geçerliliğini ve yararlılığını test etmek amacı ile SiO2 yüksek en-

erjili tasıyıcı taşınımı 12 MV/cm elektrik alan değerine kadar Toplu Monte Carlo

yöntemi ile tetkik edilmiştir. Daha sonra, yığık SiO2 içerisindeki yüksek enerjili

taşıyıcılar tarafından tetiklenen NÖ darbe iyonizasyonunun teorik bir modellemesi

ele alınmıştır. Neticede, NÖ içerisinde KTDI oranını yüksek enerjili taşıyıcıların

enerjisinin bir fonksiyonu olarak veren orjinal bir ifade türetilmiştir.

Daha sonra, geniş-bant aralıklı yarıiletkenler içerisine gömülü, birkaç bin

atomdan oluşan, Si ve Ge NÖ’lerin elektronik yapısı atomistik görünürpotansiyel

yöntemi ile çalışılmıstır. NÖ çapının fonksiyonu olarak hesaplanmış etkin bant

aralığı değerlerinin mevcut deneysel ve teorik sonuçlar ile oldukça uyumlu olduğu

görülmüştür. Elektronik yapının radyasyonlu ışıma üzerindeki etkisini belirlemek
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amacı ile direk foton yayma oranları hesaplanmış ve hem Si hem de Ge için mev-

cut temel ilkeler veriler ile son derece benzer sonuçlar elde edilmiştir.

NÖ’nün çekirdek bölgesi ile matris arasındaki arayüzün gerçekçi bir şekilde

modellenmesi, yarıçapa göre neredeyse yeknesak artan ve deney ile hemen

hemen uyumlu sonuçlar elde etmemizi sağlamıştır. Ayrıca, Si NÖ’ler için

yarıçapa göre Auger geribirleşimi yaşam süresi’nin, yığık örgü Auger sabitini

1.0×10−30cm6s−1 alarak basit bir şekilde elde edilebileceği gösterilmiş ve Ge için

bu değer 1.5×10−30cm6s−1 olarak saptanmıştır. NÖ bant aralığından iki kat fa-

zla optik aydınlatma altında, elektronların uyarma enerjisinin arslan payını alarak

iletkenlik bandına geçtiği saptanmış ve bu elektronların tetiklediği taşıyıcı katlan-

ması yaşam sürelerinin hesaplanması sonucunda, bu iki NÖ’nun fotovoltaik uygu-

lamalarda verimliliği arttırma amaçlı kullanımının çok uygun olduğu gözlenmiştir.

Son olarak, uyarılma enerjisinin eşik değerinin yanlızca 1 eV üzerinde TK oranının

oldukça yükseldiği ve yaşam süresinin birkaç-picosaniye değerlerine kadar ger-

ilediği görülmüştür.

Anahtar sözcükler : Si ve Ge Nanoörgüleri, Yüksek Elektrik Alanı Altında

Taşınım, Radyasyonlu Işıma, Auger Geribirleşimi, Taşıyıcı Katlanması, Kuvan-

tum Tuzak Darbe İyonizasyonu, Elektronik Yapı, Yüksek-k Oksitler.
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and Dr. T. Yıldırım for their useful advices for ab initio studies. This work

has been supported by the European FP6 Project SEMINANO with the con-

tract number NMP4 CT2004 505285 and by the Turkish Scientific and Technical
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Chapter 1

Introduction

Due to its indirect band gap bulk silicon is a very inefficient emitter, even at liquid

helium temperatures. Within the last decade several approaches were developed

towards improving the efficiency of light emission from Si-based structures. In

spirit, all were based on the lifting of the lattice periodicity that introduces an un-

certainty in the k-space and therefore altering the indirect nature of this material.

Some examples are: SiGe or Si-SiO2 superlattices [1, 2] or Si nanocrystal (NC)

assemblies [3] (see Fig. 1.1). Recently, intensive electroluminescence (EL) from Si

implanted SiO2 [4] and Si implanted sapphire [5] layers were observed. Besides,

EL from Ge-implanted SiO2 [6, 7] layers and Ge implanted SiNx [8] layers were also

predicted. Applications of NC-based structures in laser emitters, [9, 10, 11, 12]

EL devices, [13, 14] switching elements, [15] and solar batteries [16] have been

announced in the recent past. Moreover, the search for new-generation photo-

voltaics has gained momentum and hence the subject of direct photon absorption

in NCs [17] is of prime interest. The largest quantum yield that has been achieved

under optical excitation of Si NCs is of the order of 50% and is already comparable

with that of direct band-gap quantum dots assemblies.

In spite of these exciting properties of NCs, their transport and emission

mechanisms are still unclear. A theoretical understanding of these exciting prop-

erties first of all requires a detailed and accurate electronic structure tool which

can then be used to predict certain optoelectronic properties as well as other

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: TEM micrographs of SiO2 films implanted with a fluence of 1×1017

Ge ions cm−2 after annealing for at 1000 ◦C for (a) 15 min, (b) 30 min, (c) 45 min
and (d) 60 min, obtained by E. S. Marstein et al. [18]

quantum processes such as quantum confined impact ionization (QCII), Auger

recombination (AR) and carrier multiplication (CM). However, such a task be-

comes formidable in the case of NCs: the ab initio approaches [19] are currently

out of consideration as there are 1,000-20,000 atoms within the active region of

these structures. On the other hand the standard multiband k·p approaches [20]

are neither accurate for NCs nor applicable directly to indirect band-gap semi-

conductors such as in Si and Ge based NCs. Based on these facts, the most useful

method to search NCs is the recently proposed linear combination of bulk bands

(LCBB) recipe by the Zunger group from NREL (USA) [21, 22]. The LCBB

has been used for self-assembled quantum dots [23, 22], superlattices [24, 25] and

high-electron mobility transistors [26], and very recently on the aggregation of Si

NCs [27].

Quantum processes such as radiative recombination, QCII, AR and CM have

strong effect on carrier dynamics, emission and absorption mechanisms in NCs.

One of the most important one especially responsible for exciton generation in

quantum dots and NCs is the QCII. This process is responsible for the intro-

duction of confined excitons in silicon NC devices which is a key luminescence
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mechanism. Another important processes AR and CM are responsible for the

nonradiative annihilation and creation of confined excitons in NCs. The rate of

these two processes affects many aspects of the performance of nanoscale devices.

The latter has been demonstrated in a very recent experimental study by signif-

icantly increasing the solar cell efficiency in colloidal Si NCs due to CM which

enables multiple exciton generation in response to a single absorbed photon [28].

Similarly, the inverse process, AR is also operational and it introduces a com-

peting mechanism to CM which can potentially diminish the solar cell efficiency

and in the case of light sources it degrades the performance by inflating the

nonradiative carrier relaxation rate [29]. A recent paper by Trojánek et al. [30]

reports that the photoluminescense decay time for Si NC is about 105 ps. This

is the characteristic time scale for the nonradiative AR process. As it is signif-

icantly shorter than the time of the radiative emission (approximately 20 to 30

nanoseconds [31, 32]), its main implication is that AR should inhibit the NC

laser, LED operations. Without any doubt, it is also detrimental for solar cell

applications as the created electron-hole pairs disappear without contributing to

the photocurrent.

1.1 This Work

Aiming for a clear and realistic characterization of the fundamental processes

such as QCII, AR and CM in embedded Si and Ge NCs, first we start with

the ab initio calculations of electronic and structural properties of the NC host

matrices. Our analysis includes wide band-gap crystalline oxides and nitrides such

as SiO2 (α-quartz, α- and β-cristobalite and stishovite), GeO2 (α-quartz, and

rutile) Al2O3 (α-phase), Si3N4 (α- and β-phases), and Ge3N4 (α- and β-phases).

Electronic structure and the elastic properties of these important insulating oxides

and nitrides are obtained with high accuracy based on density functional theory

within the local density approximation. We also perform detailed calculations

about new high-k cubic phase of SiO2, GeO2, SnO2 and their ternary alloys. This

part of the thesis work has been published in Journal of Material Science [33],

Physical Review B [34] and Materials Sciences in Semiconductor Processing [35].
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Next, in Chapter 3, we start by characterizing the hot electron transport in

oxides within the ensemble Monte Carlo (EMC) framework including all major

scattering mechanism such as acoustic, polar and non-polar optical phonon scat-

terings. Afterwards, we derive an analytical expression for the QCII probability

in NCs that can become an instrumental result in assessing EL in the presence

of other competing scattering mechanisms. The effect of QCII on bulk transport

quantities is also discussed. This part of the thesis work has been published in

Physica E [36] and Physica Status Solidi C [37].

In Chapter 4, embedded Si and Ge NCs in wide band-gap matrices are studied

theoretically using an atomistic pseudopotential approach. From small clusters

to large NCs containing on the order of several thousand atoms are considered.

The energy spectrum and real-space wavefunctions of each state are produced and

employed in the calculation of the AR and CM. For the comparison purposes with

the nonradiative processes, radiative recombination lifetime for Si and Ge NCs as

a function of diameter are computed. Our results are in excellent agreement with

the very reliable ab initio calculations which is only available for small NCs [38].

Finally in Chapter 5, we provide an atomistic theoretical account of CM and

AR in embedded Si and Ge NCs which reveals their size, shape and host matrix

dependence. Unlike most previous treatments, the NCs are considered to be

embedded into different wide band-gap host matrices. The electron- and hole-

initiated types of AR and CM and biexciton-type of AR are considered based

on an atomistic pseudopotential model. This part of the thesis work has been

submitted to Physical Review B as a Rapid Communication.

Chapter 6 contains our conclusions and main achievements in this thesis. The

two Appendix sections at the end provide the technical details of the theoretical

derivations on the QCII and related bulk carrier-initiated Coulombic excitations

and give some background information and further theoretical details on AR in

the bulk and NCs. Extensive literature survey on each individual topic is given

at the beginning of each chapter. Special emphasis is given to the comparison of

our results with the experimental and theoretical data, whenever possible.



Chapter 2

Ab initio Study of the

Nanocrystal Host Crystal

Lattices

To completely investigate the electronic and transport properties of embedded Si

and Ge nanocrystals (NCs) it is obligatory to have a thorough mastering of the

host matrices into which these NCs are embedded. Therefore as a first part of the

thesis, we performed an extensive theoretical study for NC host matrices which

are wide bandgap crystalline oxides and nitrides, namely, SiO2, GeO2, Al2O3,

Si3N4, and Ge3N4. In addition to the NC host matrices we also considered the

recently reported inverse silver oxide phase of SiO2 that possesses a high dielectric

constant (high-k) as well as lattice constant compatibility to Si. Moreover, we

explored the closely-related oxides, GeO2, SnO2 and their alloy formations with

the same inverse silver oxide structure. The details of these two studies are

presented in this Chapter collocated as follows: in Sec. 2 we provide details

of our ab initio computations and our first-principles results for the structural,

electronic properties of the NC host lattices, Sec. 3 includes the same details

about high-k inverse silver oxide structures.

5
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2.1 Ab initio study of the nanocrystal host crys-

tal lattices

As the first task of the thesis, we performed an extensive ab initio study for NC

host matrices which are wide bandgap crystalline oxides and nitrides, namely,

SiO2, GeO2, Al2O3, Si3N4, and Ge3N4. Their important polymorphs are con-

sidered which are for SiO2: α-quartz, α- and β-cristobalite and stishovite, for

GeO2: α-quartz, and rutile, for Al2O3: α-phase, for Si3N4 and Ge3N4: α- and

β-phases (see Fig. 2.1). This Chapter presents a comprehensive account of both

electronic structure and the elastic properties of these important insulating ox-

ides and nitrides obtained with high accuracy based on density functional theory

within the local density approximation. Two different norm-conserving ab initio

pseudopotentials have been tested and shown to agree in all respects with the

only exception arising for the elastic properties of rutile GeO2. The agreement

with experimental values, when available, is seen to be highly satisfactory. The

uniformity and the well convergence of this approach enable an unbiased assess-

ment of important physical parameters within each material and among different

insulating oxide and nitrides. The computed static electric susceptibilities are

observed to display a strong correlation with their mass densities. There is a

marked discrepancy between the considered oxides and nitrides with the latter

having sudden increase of density of states away from the respective band edges.

This is expected to give rise to excessive carrier scattering which can practically

preclude bulk impact ionization process in Si3N4 and Ge3N4.

2.1.1 Introduction

Insulating oxides and nitrides are indispensable materials for diverse applications

due to their superior mechanical, thermal, chemical and other outstanding high

temperature properties. Furthermore, in the electronic industry these wide band

gap materials are being considered for alternative gate oxides [39] and in the field

of integrated optics they provide low-loss dielectric waveguides [40]. Recently

the subject of wide bandgap oxides and nitrides have gained interest within the
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context of nanocrystals which offer silicon-based technology for light emitting

devices and semiconductor memories [14]. These nanocrystals are embedded in

an insulating matrix which is usually chosen to be silica [41, 42, 43, 44]. However,

other wide bandgap materials are also employed such as germania [45, 46], silicon

nitride [47, 48, 49], and alumina [50, 51, 52]. As a matter of fact, the effect of

different host matrices is an active research topic in this field.

Figure 2.1: Ball and stick model of (a) α-quartz XO2, (b) α-crystobalite XO2,
(c) β-crsytobalite XO2, (d) stishovite XO2, (e) α-phase X3N4, (f) β-phase X3N4,
and (g) Al2O3. X refers to Si or Ge.

Among these insulating oxides and nitrides technologically most important
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ones are SiO2, Al2O3, Si3N4. The activity around GeO2 is steadily increasing.

Another closely-related material, Ge3N4 has attracted far less attention up to

now even though it has certain interesting properties [53]. The major obstacle

has been the sample growth. However, a very recent study reported an in situ

Ge3N4 growth on Ge, demonstrating high thermal stability and large band offsets

with respect to the Ge system [54]. In our comprehensive treatment, we present

the ab initio structural and electronic properties of all these materials considering

their common polymorphs; these are for SiO2: α-quartz, α- and β-cristobalite and

stishovite phases, for GeO2: α-quartz, and rutile phases, for Si3N4 and Ge3N4: α-

and β-phases and for Al2O3: α-phase. For amorphous and inherently imperfect

matrices, these perfect crystalline phases serve as important reference systems.

Moreover, due to their distinct advantages, epitaxial host lattices are preferred

over the amorphous ones for specific applications.

With an eye on these technological applications, we focus on several physical

properties of these lattices. The elastic constants play an important role on the

strain profile of the embedded core semiconductor. Using Eshelby’s continuum

elastic consideration [55] the radial and tangential stress fields of the nanocrys-

tal can be determined [56]; these in turn, affect the optical properties [43]. The

static and optical dielectric constants of these lattices introduce nontrivial local

field effects that modify the absorption spectra of an isolated nanocrystal when

embedded inside one of these matrices [57]. Based on the simple effective medium

theory which has been tested by ab initio calculations [58], one can assess which

host lattice and nanocrystal combination would possess the desired optical prop-

erties. Because of the dielectric mismatch between the nanocrystal core and the

surrounding lattice, image charges will be produced [59]. These image charges

should be taken into account in characterizing nanocrystal excitons [3]. Another

promising application is the visible and near infrared electroluminescence from

Si and Ge nanocrystals [14]. The electroluminescence is believed to be achieved

by the recombination of the electron hole pairs injected to nanocrystals under

high bias [14]. In this context the bulk state impact ionization process which can

also give rise to electroluminescence is considered to be detrimental leading to

dielectric breakdown.
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For high-field carrier transport, the crucial physical quantity was identified

to be the valence and conduction band density of states (DOS) for each of the

crystalline polymorph [60]. Based on these technology-driven requirements we

compute the elastic constants, band structures, dielectric permittivities and elec-

tronic DOS of these aforementioned crystal polymorphs. Our ab initio framework

is based on the density functional theory [61, 62], using pseudopotentials and a

plane wave basis [19]. With the exception of Ge3N4 which was far less studied,

vast amount of theoretical work is already available spread throughout the lit-

erature based on a variety of techniques [63, 64, 65, 66, 67, 68, 69, 70, 71, 72].

Our first-principles study here enables a uniform comparison of important phys-

ical parameters within each material and among different insulating oxides and

nitrides.

2.1.2 Details of Ab initio Computations

Structural and electronic properties of the polymorphs under consideration have

been calculated within the density functional theory [61, 62], using the plane

wave basis pseudopotential method as implemented in the ABINIT code [19]1.

The results are obtained under the local density approximation (LDA) where

for the exchange-correlation interactions we use the Teter-Pade parameterization

[73], which reproduces Perdew-Zunger [74] (which reproduces the quantum Monte

Carlo electron gas data of Ceperley and Alder [75]). We tested the results under

two different norm-conserving Troullier and Martins [76] type pseudopotentials,

which were generated by A. Khein and D.C. Allan (KA) and Fritz Haber Institute

(FHI). For both pseudopotentials, the valence configurations of the constituent

atoms were chosen as N(2s2p3), O(2s2p4), Al(3s23p1), Si(3s23p2), and Ge(4s24p2).

The number of angular momenta of the KA (FHI) pseudopotentials and the

chosen local channel were respectively, for N: 1, p (3, d), for O: 1, p (3, d), for

Al: 2, d (3, d), for Si: 2, d (3, d), and for Ge: 1, p (3, s). Our calculated values

for these two types of pseudopotentials were very similar, the only exceptional

case being the elastic constants for rutile GeO2. Dielectric permitivity and the

1We are grateful to Prof. R. Eryiğit for his valuable technical guidance with ABINIT.
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fourth-order tensor of elastic constants of each crystal are determined by starting

from relaxed unit cell under the application of finite deformations within density

functional perturbation theory [77] as implemented in ABINIT and ANADDB

extension of it. Another technical detail is related with the element- and angular

momentum-resolved partial density of states (PDOS). To get a representative

PDOS behavior we need to specify the spherical regions situated around each

relevant atomic site. The radii of these spheres are chosen to partition the bond

length in proportion to the covalent radii of the constituent atoms. This resulted

in the following radii: for the α-quartz SiO2, rSi = 0.97 Å, rO = 0.65 Å, for

the rutile GeO2, rGe = 1.16 Å, rO = 0.69 Å, for the α-Al2O3, rAl = 1.32 Å,

rO = 0.56 Å, and for the β-Si3N4, rSi = 1.03 Å, rN = 0.70 Å. It should be

pointed that even though such an approach presents a good relative weight of the

elements and angular momentum channels, it inevitably underestimates the total

DOS, especially for the conduction bands. Other details of the computations are

deferred to the discussion of each crystal polymorph.

2.1.3 First-principles Results

First, we address the general organization and the underlying trends of our re-

sults. The lattice constants and other structural informations of all crystals are

listed in Table 2.1. Table 2.2 contains the bond lengths and bond angles of the

optimized oxide polymorphs. These results can be used to identify the represen-

tation of each polymorph within the amorphous oxides [78]. The elastic constants

and dielectric permittivity tensor of each crystal are tabulated in Table 2.3 and

Table 2.4, respectively. Very close agreement with the existing experimental data

and previous calculations can be observed, which gives us confidence about the

accuracy and convergence of our work. Employing KA pseudopotentials, the band

structure for the crystals are displayed along the high-symmetry lines in Figs. 2.2,

2.4, 2.6, 2.7 together with their corresponding total DOS. Such an information

is particlulary useful in the context of high-field carrier transport. These results

are in good agreement with the previous computations [64, 71, 70, 67]. For all

1We are grateful to Prof. O. Gülseren for his valuable technical guidance in this part.
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Table 2.1: Structural information on crystals.
Crystal Crystal Lattice Constants (Å) Space Group Molecules Per Density

Structure Prim. Cell (gr/cm3)
α-quartz SiO2 Hexagonal a =4.8831 4.8542 4.9133 P3221 3 2.698

c =5.3711 5.3412 5.4053

α-cris. SiO2 Tetragonal a =4.9501 4.9392 4.9733 P41212 4 2.372
c =6.9091 6.8942 6.9263

β-cris. SiO2 Cubic a =7.4031 7.3302 7.1603 Fd3m 2 1.966
Stishovite SiO2 Tetragonal a =4.1751 4.1452 4.1794 P42/mnm 2 4.298

c =2.6621 2.6432 2.6654

α-quartz GeO2 Hexagonal a =4.8701 4.8612 4.9846 P3221 3 4.612
c =5.5341 5.5202 5.6606

Rutile GeO2 Tetragonal a =4.2831 4.3142 4.40667 P42/mnm 2 6.655
Tetragonal c =2.7821 2.8042 2.86197

α-Al2O3 Rombohedral a =4.7581 4.7625 R3c 2 3.992
c =12.981 12.8965

α-Si3N4 Hexagonal a =7.7321 7.7669 C4
3v 4 3.211

c =5.6031 5.6159

β-Si3N4 Hexagonal a =7.5801 7.58510 C2

6h 2 3.229
c =2.8991 2.89510

α-Ge3N4 Hexagonal a =7.985a C4
3v 4 5.691

c =5.786a

β-Ge3N4 Hexagonal a =7.826a C2

6h 2 5.727
c =2.993a

aThis Work KA
bThis Work FHI
cRef. [79]
dRef. [80]
fRef. [81]
gRef. [82, 21]
eRef. [66]
iRef. [67]
jRef. [72]

of the considered polymorphs the conduction band minima occur at the Γ point

whereas the valence band maxima shift away from this point for some of the

phases making them indirect band gap matrices (see Table 2.5). However, the

direct band gap values are only marginally above the indirect band gap values.

These LDA band gaps are underestimated which is a renown artifact of LDA for

semiconductors and insulators [83]. In this work we do not attempt any correction

procedure to adjust the LDA band gap values.

We present in Figs. 2.3, 2.5, 2.8 the element- and angular momentum-resolved

PDOS. A common trend that can be observed in these various lattices is that

their valence band maxima are dominated by the p states belonging to O atoms;

in the case of Si3N4 and Ge3N4 they are the N atoms. For the conduction band

edges, both constituent elements have comparable contribution. This parallels
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the observation in amorphous SiO2 where due to large electronegativity difference

between Si and O, the bonding orbitals have a large weight on O atoms whereas

the lowest conduction band states with antibonding character have a significant

contribution from the Si atoms [84].

Table 2.2: Bond lengths and bond angles (in degrees) of SiO2 and GeO2 poly-
morphs where x represents a Si or a Ge atom.

Crystal x-O (Å) x-O (Å) O-x-O O-x-O O-x-O O-x-O x-O-x x-O-x
α-quartz SiO2 This Work 1.613 1.618 110.75 109.32 109.07 108.47 140.55

Exp.1 1.605 1.614 110.50 109.20 109.00 108.80 143.7
α-quartz GeO2 This Work 1.693 1.699 113.03 110.62 107.94 106.16 130.56
α-cris. SiO2 This Work 1.597 1.596 111.59 110.08 109.03 108.02 146.02

Exp.2 1.603 1.603 111.40 110.00 109.00 108.20 146.5
β-cris. SiO2 This Work 1.603 109.47 180

Exp.3 1.611 107.80 180.00
Stishovite SiO2 This Work 1.804 1.758 98.47 81.53 130.76 98.47

Exp.4 1.760 1.810 130.60
Rutile GeO2 This Work 1.848 1.824 99.34 80.66 99.34 130.33

aRef. [85]
bRef. [86]
cRef. [87]
dRef. [88]

From another perspective, the band structures and the associated DOS reveal

that there is a marked discrepancy between the valence and conduction band

edges where for the former there occurs a sharp increase of DOS just below

the band edge. As the probabilities of most scattering processes are directly

proportional to DOS [89], in the case of high-field carrier transport the electrons

should encounter far less scatterings and hence gain much higher energy from the

field compared to holes. In this respect Si3N4 and Ge3N4 are further different from

the others where for both conduction and valence bands the DOS dramatically

increases (cf. Fig. 2.7) so that the carriers should suffer from excessive scatterings

which practically precludes the bulk impact ionization for this material.

Another common trend can be investigated between the density of each poly-

morph and the corresponding static permittivity, ǫs. Such a correlation was put

forward by Xu and Ching among the SiO2 polymorphs [64]. We extend this com-

parison to all structures considered in this work and rather use ǫs − 1 = 4πχe

which is propational to the electric susceptibility, χe. It can be observed from

Fig. 2.9 that the trend established by SiO2 polymorphs is also followed by β-Si3N4
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and α-Al2O3.

Table 2.3: Elastic constants and bulk modulus for each crystal.
Crystal (GPa) C11 C12 C13 C14 C33 C44 C66 B
α-quartz SiO2 KA 76.2 11.9 11.2 -17.0 101.7 54.0 32.1 35

FHI 79.5 9.73 9.54 -18.9 101.7 55.5 34.9 35
Exp.1 87.0 7.00 13.0 -18.0 107.0 57.0 40.0 38
Exp.2 87.0 7.00 19.0 -18.0 106.0 58.0 40

α-Cris. SiO2 KA 49.30 5.26 -11.41 44.78 74.15 26.85 12
β-Cris. SiO2 KA 194.0 135.0 82.67 155

FHI 196.1 134.2 85.40 155
Stishovite SiO2 KA 447.7 211.0 203.0 776.0 252.0 302.0 306

FHI 448.8 211.1 191.0 752.0 256.5 323.0 302
Exp.3 453.0 211.0 203.0 776.0 252.0 302.0 308

α-quartz GeO2 KA 66.7 24.3 23.1 -3.00 118.7 41.3 21.2 41
FHI 63.8 25.7 26.2 -0.81 120.2 35.3 19.1 42
Exp.4 66.4 21.3 32.0 -2.20 118.0 36.8 22.5 42
Exp.2 64.0 22.0 32.0 -2.00 118.0 37.0 21.0 42

Rutile GeO2 KA 405.9 235.3 189.2 672.4 206.0 314.4 292
FHI 349.2 197.2 185.1 617.5 171.8 274.8 258
Exp.5 337.2 188.2 187.4 599.4 161.5 258.4 251

α-Al2O3 KA 493.0 164.1 130.1 485.8 155.5 164.4 258
Exp.6 497.0 164.0 111.0 498.0 147.0 251

β-Si3N4 KA 421.8 197.8 116.6 550.7 100.2 112.0 250
Exp.7 433.0 195.0 127.0 574.0 108.0 119.0 259
Exp.8 439.2 181.8 149.9 557.0 114.4 135.9 265

β-Ge3N4 KA 364.3 184.9 111.7 486.3 80.4 89.7 225

aRef. [90]
bRef. [91]
cRef. [92]
dRef. [81]
eRef. [21]
fRef. [93]
gRef. [94]
hRef. [95]

On the other hand, Ge-containing structures while possessing a similar trend

among themselves, display a significant shift due to much higher mass of the

this atom. This dependence on the atomic mass needs to be removed by finding

a more suitable physical quantity. We should mention that such a correlation

does not exist between the volume per primitive cell of each phase and the static

permittivity. After these general comments, now we concentrate on the results of

each lattice individually.
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Table 2.4: Dielectric permittivity tensor.
Crystal ǫ0xx = ǫ0yy ǫ0zz ǫ∞xx = ǫ∞yy ǫ∞zz

α-quartz SiO2 4.643 4.847 2.514 2.545
α-cris. SiO2 4.140 3.938 2.274 2.264
β-cris. SiO2 3.770 3.770 2.078 2.078
Stishovite SiO2 10.877 8.645 3.341 3.510
α-quartz GeO2 5.424 5.608 2.864 2.947
Rutile GeO2 10.876 8.747 3.679 3.945
α-Al2O3 10.372 10.372 3.188 3.188
β-Si3N4 8.053 8.053 4.211 4.294
β-Ge3N4 8.702 8.643 4.558 4.667

2.1.3.1 SiO2

The α-quartz SiO2 is one of the most studied polymorphs as it is the stable

phase at ambient pressure and temperature [65, 69], furthermore its short-range

order is essentially the same as the amorphous SiO2 [84]. α-quartz SiO2 has a

hexagonal unit cell containing three SiO2 molecules. A plane-wave basis set with

an energy cutoff of 60 Hartree was used to expand the electronic wave functions

at the special k-point mesh generated by 10×10×8 Monkhorst-Pack scheme [96].

The band structure of α-quartz SiO2 has been calculated by many authors (see,

for instance [63, 64]). Our calculated band structure and total DOS shown in

Fig. 2.2(a) are in agreement with the published studies [64].

Table 2.5: Indirect (Eg) and direct (Eg(Γ)) LDA Band Gaps for each crystal.
Crystal VB Max. CB Min. Eg (eV) Eg(Γ) (eV)
α-quartz SiO2 K Γ 5.785 6.073
α-cris. SiO2 Γ Γ 5.525 5.525
β-cris. SiO2 Γ Γ 5.317 5.317
Stishovite SiO2 Γ Γ 5.606 5.606
α-quartz GeO2 K Γ 4.335 4.434
Rutile GeO2 Γ Γ 3.126 3.126
α-Al2O3 Γ Γ 6.242 6.242
α-Si3N4 M Γ 4.559 4.621
β-Si3N4 A-Γ Γ 4.146 4.365
α-Ge3N4 M Γ 3.575 3.632
β-Ge3N4 A-Γ Γ 3.447 3.530

The indirect LDA band gap for this crystal is 5.785 eV from the valence band

maximum at K to the conduction band minimum at Γ. The direct LDA band

gap at Γ is slightly larger than the indirect LDA band gap as seen in Table 2.5.

Calculated values of the elastic constants and bulk modulus listed in Table 2.3 are

in good agreement with the experiments. Apart from C12, the elastic constants are
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within 10% of the experimental values. The discrepancy in C12 can be explained

by the fact that C12 is very soft and this type of deviation also exists among

experiments which is also the case for C14.

Figure 2.2: LDA band structure and total DOS (electrons/eV cell) of (a) α-
cristobalite SiO2, (b) α-quartz SiO2, (c) β-cristobalite SiO2, and (d) stishovite
SiO2.

The α-cristobalite SiO2 has a tetragonal unit cell containing four SiO2

molecules. In the course of calculations an absolute energy convergence of 10−4 Ha

was obtained by setting a high plane wave energy cutoff as 60 Ha and 10×10×8

k-point sampling. Figure 2.2(b) shows the band structure of α-cristobalite SiO2

with the 5.525 eV direct band gap at Γ. The bulk modulus of 12 GPa is the
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smallest among all the host lattice polymorphs considered in this work.

Figure 2.3: DOS of α-quartz SiO2 (a) Element-resolved; total, PDOS of Si, PDOS
of O. (b) Angular momentum-resolved; Si s electrons, Si p electrons, Si d electrons
(not visible at the same scale), O s electrons, O p electrons.

Regarding β-cristobalite, its actual structure is somewhat controversial, as

a number of different symmetries have been proposed corresponding to space

groups Fd3m, I42d, and P213 [69]. Recently, incorporating the quasiparticle

corrections the tetragonal I42d phase was identified to be energetically most

stable [97]. However, we work with the structure having the space group of

Fd3m that was originally proposed by Wyckoff [98] and which is widely studied

primarily due to its simplicity [63, 65]. This phase has a cubic conventional cell

with two molecules. We used 60 Ha plane wave energy cutoff and 10×10×10

k-point sampling. Figure 2.2(c) shows the band structure of β-cristobalite SiO2

with the 5.317 eV direct band gap at Γ. Unlike their band structures, total DOS

of α- and and β-cristobalite SiO2 are very similar (cf. Fig. 2.2(c)). This similarity

can be explained by the fact that their local structures are very close. On the

other hand there is a considerable difference between the DOS spectra of the α-

quartz SiO2 and the β-cristobalite SiO2. In Table 2.3, we present elastic constants
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of the β-cristobalite SiO2 calculated by two types of pseudopotentials, FHI and

KA. There is no considerable difference between them. Dielectric constants of

β-cristobalite SiO2 are the smallest among the five polymorphs of SiO2 studied

here (see Table 2.4).

Figure 2.4: LDA band structure and total DOS of (a) α-quartz GeO2, (c) rutile
GeO2.

Stishovite is a dense polymorph of SiO2 with octahedrally coordinated silicon,

unlike the previous phases [69]. It has a tetragonal cell with two molecules.

Calculations were done by using 60 Ha plane wave energy cutoff and 8×8×10

k-point sampling. The band structure of stishovite with a wide single valence

band is markedly different from that of the previous three crystalline phases of

SiO2 having two narrow upper valence bands. The cause of this increased valence

bandwidth is the lack of separation between bonding and nonbonding states [71].

Hence, the total DOS for stishovite shows no gap at the middle of the valence band

(see Fig. 2.2(d)). Our calculations yield a direct LDA band gap of 5.606 eV at Γ.

As seen in Table 2.3, the differences between our computed elastic constants and

the experimental values are less than 3%; this is an excellent agreement for LDA.

Its bulk modulus is the largest among all the host lattice polymorphs considered

in this work. Moreover, dielectric constants of stishovite is the largest of the five

polymorphs of SiO2 considered in this work (see Table 2.4).
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Figure 2.5: DOS of rutile GeO2 (a) Element-resolved; total PDOS of Ge, PDOS
of O. (b) Angular momentum-resolved; Ge s electrons, Ge p electrons, Ge d
electrons, O s electrons, O p electrons.

2.1.3.2 GeO2

For α-quartz GeO2 we used the same energy cutoff and k-point sampling as with

α-quartz SiO2, which yields excellent convergence. The band structure of the

α-quartz GeO2 is displayed in Fig. 2.4(a). The similarity of the band structures

of the α-quartz GeO2 and the α-quartz SiO2 is not surprising as they are isostruc-

tural. Similarly their total DOS resemble each other (cf. Fig. 2.4(a)). The indirect

LDA band gap for this phase is 4.335 eV from the valence band maximum at K to

the conduction band minimum at Γ. The direct band gap at Γ is slightly different

from indirect band gap as seen in Table 2.5. This gap is smaller than that of the

α-quartz SiO2. The perfect agreement between calculated elastic constants of the

α-quartz GeO2 and experimental values [91, 81] can be observed in Table 2.3.

The rutile structure of GeO2, also known as argutite [99] is isostructural with

the stishovite phase of SiO2. The same energy cutoff and k-point sampling values

as for stishovite yield excellent convergence. The direct LDA band gap at Γ
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for rutile-GeO2 is less than that of stishovite with a value of 3.126 eV. The two

upper valence bands are merged in the total DOS (see Fig. 2.4(b)) as in the

case of stishovite. The increased valence bandwidth in the band structure can

be explained by the same reason as in the case of stishovite. The results of the

elastic constants calculated with KA type pseudopotential shown in Table 2.3

deviate substantially from the experiment whereas the agreement with the FHI

pseudopotentials is highly satisfactory. The similarity of the dielectric constants

of rutile GeO2 and stishovite can be observed in Table 2.4.

Figure 2.6: LDA band structure of and total DOS of α-Al2O3.

2.1.3.3 Al2O3

Al2O3 is regarded as a technologically important oxide due to its high dielectric

constant and being reasonably a good glass former after SiO2 [39]. The α-Al2O3

(sapphire) has the rhombohedral cell with two molecules. Computations about

Al2O3 were done by using 60 Ha plane wave energy cutoff and a total of 60 k-

points within the Brillouin zone. Fig. 2.6 shows the computed band structure and

total DOS of the α-Al2O3. These are in excellent agreement with the previous

calculation [66, 68]. For Al2O3, minimum of the conduction band is at Γ and
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maximum of the valence band is at a point along Γ−X close to the Γ point. The

corresponding LDA band gap is 6.242 eV. Because of the very small difference

between the direct and indirect band gaps, Al2O3 is considered as a direct band

gap insulator. Measured band gap of this crystal is 8.7 eV. However the precise

value of the gap of Al2O3 is still elusive because of the existence of an excitonic

peak near the absorbtions edge [100]. As seen in Table 2.3, computed values of

the elastic constant and bulk modulus of Al2O3 are in excellent agreement with

the experiments. As a furher remark, the α-Al2O3 unit cell can be described as

hexagonal or rhombohedral depending on the crystallographical definition of the

space group R3C. During our first-principles calculations it has been defined as

rhombohedral in which case C14 vanishes. Although the sign of C14 is experimen-

tally determined to be negative for the hexagonal-Al2O3, previous calculations

reported a positive value [101]. To check this disagreement we have calculated

the elastic constant of the hexagonal-Al2O3 and found it to be around -3.0.

2.1.3.4 Si3N4 and Ge3N4

The research on silicon nitride has largely been driven by its use in microelec-

tronics technology to utilize it as an effective insulating material and also as

diffusion mask for impurities. Recently it started to attract attention both as a

host embedding material for nanocrystals [47, 48, 49] and also for optical waveg-

uide applications [40]. The α- and β-Si3N4 have hexagonal conventional cells with

four and two molecules, respectively. We used 60 Ha plane wave energy cutoff

and 6×6×8 k-point sampling. The computed band structures of these two phases

shown in Figs. 2.7 (a) and (b) are identical to those reported by Xu and Ching

[67]. The top of the valence band for β-Si3N4 is along the Γ-A direction, and for

α-Si3N4 it is at the M point. The bottom of the conduction band for two phases

are at the Γ point. The direct and indirect LDA band gaps of these two phases

are respectively, 4.559 eV, 4.621 eV for α-Si3N4 and 4.146 eV, 4.365 eV for the

β-Si3N4. The general band structure of two phases are very similar, except that

the α-Si3N4 has twice as many bands because the unit cell is twice as large. The

total DOS of these two phases shown in Figs. 2.7(a) and (b) are only marginally

different. Calculated values of the elastic constants and bulk modulus of β-Si3N4
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listed in Table 2.3 are in excellent agreement with the quoted experiments. Those

Figure 2.7: LDA band structure and total DOS of (a) α-Si3N4, (b) β-Si3N4, (c)
α-Ge3N4 and (d) β-Ge3N4.

for the α-Si3N4 which is thermodynamically less stable with respect to β-phase

[102] were left out due to excessive memory requirements for the desired accuracy.

Ge3N4 is the least studied material among the oxides and nitrides considered

in this work. Recently its high-pressure γ-phase has attracted some theoretical

interest [103]. However, the available Ge3N4 samples contain a mixture of α and

β-phases as in the case of Si3N4 and these are the polymorphs that we discuss in

this work. The band structures of both of these phases of Ge3N4 (cf. Fig. 2.7) are

very similar to those of Si3N4. Regarding the elastic constants of β-Ge3N4, our



CHAPTER 2. AB INITIO STUDY OF THE NC HOST CRYSTALS 22

theoretical results listed in Table 2.3 await experimental verification. In terms

Figure 2.8: Element-resolved DOS of (a) β-Si3N4; total, PDOS of Si, PDOS of
N, (b) β-Ge3N4; total, PDOS of Ge, PDOS of N.

of density, the β phases of Si3N4 and Ge3N4 fill the gap between the α-quartz

and stishovite/rutile phases of their oxides. As can be observed from Fig. 2.9

Figure 2.9: Density versus direction-averaged static electric susceptibility.

their electric susceptibility versus density behavior strengthens the correlation

established by the remaining polymorphs. Finally it can be noted that β-Ge3N4

has the largest high-frequency dielectric constant (ǫ∞) among all the materials

considered in this work.
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2.2 High-dielectric constant and wide band gap

inverse silver oxide phases of the ordered

ternary alloys of SiO2, GeO2 and SnO2

High-dielectric constant and wide band gap oxides have important technological

applications. The crystalline oxide polymorphs having lattice constant compat-

ibility to silicon are particularly desirable. One recently reported candidate is

the inverse silver oxide phase of SiO2. First-principles study of this system to-

gether with its isovalent equivalents GeO2, SnO2 as well as their ternary alloys are

performed. Within the framework of density functional theory both generalized

gradient approximation (GGA) and local density approximation (LDA) are em-

ployed to obtain their structural properties, elastic constants and the electronic

band structures. To check the stability of these materials, phonon dispersion

curves are computed which indicate that GeO2 and SnO2 have negative phonon

branches whereas their ternary alloys Si0.5Ge0.5O2, Si0.5Sn0.5O2, and Ge0.5Sn0.5O2

are all stable within LDA possessing dielectric constants ranging between 10 to

20. Furthermore, the lattice constant of Si0.5Ge0.5O2 is virtually identical to the

Si(100) surface. The GW band gaps of the stable materials are computed which

restore the wide band gap values in addition to their high dielectric constants.

2.2.1 Introduction

High-dielectric constant and wide band gap oxides are of general interest for

the next-generation gate oxides for silicon-based electronics [39] and also as host

matrices for nonvolatile flash memory applications [104]. Amorphous oxides have

been generally preferred as they are good glass-formers which tend to minimize

the number of dangling bonds at the interface. In this respect, poly-crystalline

oxides are undesirable as the grain boundaries cause higher leakage currents and

possible diffusion paths for dopants [39]. On the other hand, crystalline oxide

grown epitaxially on silicon [105] can be favorable as it will result in high interface

quality provided that it is lattice-matched to Si.
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Very recently, Ouyang and Ching [106] have reported a high-density cubic

polymorph of SiO2 in the inverse Ag2O structure, named by them as the i-phase,

possessing both high dielectric constant, as in stishovite phase, and the lattice

constant compatibility to Si(100) face which make it very attractive for electronic

applications. In this part of the thesis, we report our contribution to this search

for the crystalline high-dielectric constant oxides with the i-phases of GeO2 and

SnO2 as well as their ordered ternary alloys with SiO2. This pursuit is in line with

the International Technology Roadmap for Semiconductors where computational

synthesis of novel high-dielectric materials is emphasized [107]. We employ the

well-established ab initio framework based on the density functional theory within

the GGA and LDA using pseudopotentials and a plane wave basis [108].

Figure 2.10: Ball and stick model of the i-phase ordered ternary alloy X0.5Y0.5O2.

2.2.2 Computational Details

The unit cell for the ordered ternary alloy X0.5Y0.5O2 in the inverse Ag2O struc-

ture is shown in Fig. 2.10. Structural and electronic properties of the i-phase

structures under consideration have been calculated within the density functional

theory [108], using the plane wave basis pseudopotential method as implemented

in the ABINIT code [19]. The results are obtained under the the GGA and
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LDA where for the exchange-correlation interactions we use the Teter-Pade pa-

rameterization [73], which reproduces Perdew-Zunger [74] (which reproduces the

quantum Monte Carlo electron gas data of Ceperley and Alder [75]).

We tested the LDA results under two different norm-conserving Troullier and

Martins [76] type pseudopotentials, which were generated by A. Khein and D.C.

Allan (KA) and Fritz Haber Institute (FHI); for either set, the d electrons were

not included in the valence configuration. Our calculated values for these two

types of pseudopotentials were very similar. In the course of both GGA and LDA

computations, the plane wave energy cutoff and k-point sampling were chosen to

assure a 0.001 eV energy convergence for all i-phase crystals. In the case of SiO2

this demands a 65 Ha plane wave energy cutoff and 10×10×10 k-point sampling.

Phonon dispersions and phonon density of states were computed by the PHON

program [109] using a 2× 2× 2 supercell of 48 atoms to construct the dynamical

matrix1. The required forces were extracted from ABINIT. The corrected band

gap values are computed by obtaining self-energy corrections to the DFT Kohn-

Sham eigenvalues in the GW approximation [110]. All parameters used during

the GW calculation were chosen to assure a 0.001 eV energy convergence.

2.2.3 Results

Table 2.6: First-principles LDA and GGA structural data for i-phase crystals.
Crystal a (Å) Density (gr/cm3) x-O (Å) y-O (Å)
SiO2 LDA 3.734 3.830 1.617

GGA 3.801 3.633 1.646
GeO2 LDA 3.916 5.781 1.696

GGA 4.053 5.215 1.755
SnO2 LDA 4.180 6.864 1.808

GGA 4.452 5.671 1.928
Ge0.5Si0.5O2 LDA 3.836 4.843 1.697 1.625

GGA 3.923 4.528 1.762 1.635
Ge0.5Sn0.5O2 LDA 4.042 6.416 1.688 1.813

GGA 4.250 5.522 1.748 1.932
Sn0.5Si0.5O2 LDA 3.970 5.590 1.818 1.620

GGA 4.114 5.015 1.935 1.628

1We are grateful to Prof. O. Gülseren for his valuable technical guidance in this part.
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2.2.3.1 General

Using XO2 and X0.5Y0.5O2 as the generic notation, the O-X-O and O-Y-O bond

angles are 109.47◦ and the X-O-X and X-O-Y bond angles are 180◦ according to

the crystal construction of this cubic i-phase (cf. Fig. 2.10). Other structural

information such as the lattice constants and bond lengths of all i-phase crystals

are listed in Table 2.6. The Si(100) surface lattice constant is about 3.83 Å,

therefore according to LDA results Si0.5Ge0.5O2 is of particular interest as it can

be epitaxially grown on Si without any strain. According to our well-converged

calculations Si0.5Ge0.5O2 has a lower total energy compared to both SiO2 and

GeO2, the latter itself is unstable as will be shown later; this can be taken as

some indication of immunity to the phase separation of this ternary alloy into its

binary compounds.

Table 2.7: Elastic constants and bulk modulus for each crystal.
Crystal C11(GPa) C12(GPa) C44(GPa) B(GPa)

SiO2 LDA 383.6 260.0 243.0 301
GGA 354.3 232.1 227.9 273

GeO2 LDA 297.0 231.2 175.6 253
SnO2 LDA 208.9 185.5 113.9 193
Ge0.5Si0.5O2 LDA 349.4 253.2 200.0 285

GGA 292.8 203.9 161.8 234
Ge0.5Sn0.5O2 LDA 255.4 210.8 106.3 226
Sn0.5Si0.5O2 LDA 277.5 217.4 103.9 237

GGA 238.3 183.0 202.8 201

2.2.3.2 Stability

The LDA and GGA results of the three independent elastic constants and bulk

modulus for all crystals are tabulated in Table 2.7. An important concern is the

stability of these cubic phases. The requirement of mechanical stability on the

elastic constants in a cubic crystal leads to the following constraints: C11 > C12,

C11 > 0, C44 > 0, and C11 + 2C12 > 0. The elastic constants calculated by both

LDA and GGA shown in Table 2.7 satisfy these stability conditions. Furthermore,

we compute the LDA and GGA phonon dispersion curves of these structures using

the PHON program [109]. First, to verify the validity of the results of the PHON

program we compute the phonon dispersions of the SiO2 and GeO2 by using both
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Figure 2.11: LDA phonon dispersions of the unstable crystals: (a) GeO2, (b) SiO2.

PHON and ANADDB extension of the ABINIT code [19]. There exists a good

agreement between two calculations. Next, we calculate the phonon dispersions

of the all i-phase crystals via PHON program with forces obtained from LDA and

GGA. It is observed that SiO2 is at least locally stable whereas GeO2 and SnO2

contains negative phonon branches which signal an instability of these phases

(see Fig. 2.11). As for their alloy, Ge0.5Sn0.5O2, according to LDA this material is

stable whereas within GGA it comes out as unstable. For the stable structures the

LDA phonon dispersions and the associated phonon DOS are shown in Fig. 2.12.

Table 2.8: LDA and GGA dielectric permittivity tensor for the stable crystals.
Crystal ǫ0xx = ǫ0yy=ǫ0zz ǫ∞xx = ǫ∞yy=ǫ∞zz

SiO2 LDA 9.857 3.285
GGA 9.970 3.303

Ge0.5Si0.5O2 LDA 11.730 3.416
GGA 14.383 3.585

Ge0.5Sn0.5O2 LDA 19.415 3.527
Sn0.5Si0.5O2 LDA 12.883 3.360

GGA 18.096 3.711

For the stable systems, the static and high-frequency dielectric constants are

listed in Table 2.8. The static dielectric constants falling in the range between

10 to 20 suggest that these are moderately high dielectric constant crystals. It

can be observed that GGA yields systematically higher values for the dielectric

constants of these structures. Employing KA pseudopotentials, the LDA band
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Figure 2.12: LDA phonon dispersions and the phonon DOS (a. u.) of the stable
crystals: (a) SiO2, (b) Ge0.5Si0.5O2, (c) Ge0.5Sn0.5O2, and (d) Si0.5Sn0.5O2.

structure for the crystals are displayed along the high-symmetry lines in Fig. 2.13

including the electronic DOS. The widths of the valence bands get progressively

narrowed from Fig. 2.13(a) to (d), i.e., from SiO2 to Sn0.5Si0.5O2. For all of the

i-phase crystals under consideration including the unstable ones the conduction

band minima occur at the Γ point whereas the valence band maxima are located

at R point making them indirect band gap semiconductors. As tabulated in

Table 2.9, the direct band gap values are only marginally above the indirect band

gap values. Again GGA systematically yields narrower band gaps compared to

LDA.
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Figure 2.13: LDA electronic band structure and DOS (States/eV cell) of i-phase
(a) SiO2, (b) Ge0.5Si0.5O2, (c) Ge0.5Sn0.5O2, and (d) Sn0.5Si0.5O2.

2.2.3.3 GW Band Gap Correction

A renown artifact of LDA is that for semiconductors and insulators band gaps are

underestimated [108]. In this part of our work, the corrected band gap values are

also provided by GW approximation. As there are different GW implementations

we briefly highlight the particular methodology followed in the ABINIT code.

First, a converged ground state calculation (at fixed lattice parameters and atomic

positions) is done to get self-consistent density and potential, and Kohn-Sham
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Table 2.9: Indirect (Eg) and direct (Eg,Γ) band gaps for each i-phase crystal
within LDA, GGA, and for the stable structures the GW approximation (GWA).

Crystal Eg (eV) Eg,Γ (eV)
SiO2 LDA 5.269 5.870

GGA 4.584 5.155
GWA 7.283 7.964

GeO2 LDA 2.402 2.511
SnO2 LDA 2.285 2.670
Ge0.5Si0.5O2 LDA 3.666 4.179

GGA 2.558 3.005
GWA 5.943 6.513

Ge0.5Sn0.5O2 LDA 2.487 2.900
GGA 0.767 0.865
GWA 4.533 4.972

Sn0.5Si0.5O2 LDA 3.292 3.900
GGA 1.763 2.304
GWA 5.484 6.153

eigenvalues and eigenfunctions at the relevant band extrema k-points as well as

on a regular grid of k-points. Next, on the basis of these available Kohn-Sham

data, the independent-particle susceptibility matrix χ0 is computed on a regular

grid of q-points, for at least two frequencies (usually, zero frequency and a large

pure imaginary frequency - on the order of the plasmon frequency, a dozen of

eV). Finally, the Random Phase Approximation susceptibility matrix, χ, the

dielectric matrix ǫ and its inverse ǫ−1 are computed. On this basis, the self-

energy, Σ matrix element at the given k-point is computed to derive the GW

eigenvalues for the target states at this k-point. Note that this GW correction

is achieved as a one-shot calculation (i.e., no overall self-consistency) hence, our

results technically corresponds to G0W0 which has been the standard approach

as originally proposal by Hedin [111]. The GW correction as can be observed

from Table 2.9 restores the wide band gap values; this feature is essential for

these materials to provide sufficient confinement to carriers of the narrow band

gap semiconductors such as silicon.

2.2.3.4 Final Remarks

We have also considered the i-phase of PbO2 which turned out to be unstable and

hence its ab initio data are not included. In this work, we do not consider the

thermodynamic stability of these i-phase oxides. However, for technological ap-

plications rather than bulk systems the epitaxial growth conditions become more
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critical [112]. A promising direction can be the finite temperature investigation

[113] of these i-phase isovalent structures on Si(100) surfaces using large number

of monolayers.



Chapter 3

Modeling of the Hot Carrier

Transport Through SiO2 and the

Quantum-Confined Impact

Ionization Processes

Injected carriers from the contacts to delocalized bulk states of the oxide ma-

trix via Fowler-Nordheim tunneling can give rise to quantum-confined impact

ionization (QCII) of the nanocrystal (NC) valence electrons. This process is re-

sponsible for the creation of confined excitons in NCs, which is a key luminescence

mechanism. For a realistic modeling of QCII in Si NCs, a number of tools are

combined: ensemble Monte Carlo (EMC) charge transport, ab initio modeling for

oxide matrix, pseudopotential NC electronic states together with the closed-form

analytical expression for the Coulomb matrix element of the QCII. To character-

ize the transport properties of the embedding amorphous SiO2, ab initio band

structure and density of states of the α-quartz phase of SiO2 are employed. The

confined states of the Si NC are obtained by solving the atomistic pseudopoten-

tial Hamiltonian. With these ingredients, realistic modeling of the QCII process

involving a SiO2 bulk state hot carrier and the NC valence electrons is provided.

32
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3.1 Introduction

Due to its indirect band gap, bulk Si is a very inefficient emitter, even at liq-

uid He temperatures. Within the last decade, several approaches were developed

towards improving the efficiency of light emission from Si-based structures. In

spirit, all were based on the lifting of the lattice periodicity that introduces an

uncertainty in the k-space and therefore altering the indirect nature of this ma-

terial. Some examples are: SiGe or Si\SiO2 superlattices [1, 2] or Si nanocrystal

(NC) assemblies [3]. Recently, blue electroluminescence (EL) from Si-implanted

SiO2 layers and violet EL from Ge-implanted SiO2 layers were observed. An im-

portant process responsible for EL occurring in quantum dots and NCs is the

quantum-confined impact ionization (QCII). A carrier initially at a high energy

Figure 3.1: Quantum-confined impact ionization in NCs.

in the continuum states of the bulk structure when able to excite a valence band
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electron of a NC across its band gap creates an electron-hole pair (cf. Fig. 3.1).

This process is responsible for the introduction of confined excitons in silicon NC

LEDs, which is a key luminescence mechanism. In contrast to its crucial role,

QCII has not been given the attention it deserves.

To model the QCII process, we start by characterizing the hot electron trans-

port in oxides within the ensemble Monte Carlo (EMC) framework. Our EMC

code [114, 115] includes all major scattering mechanism such as acoustic, polar

and non-polar optical phonon scatterings. Density of states and band structure

of common crystal phases of the SiO2 used in our Monte Carlo transport calcula-

tion were described in Chapter 2 of this thesis. As the main contribution of this

part of the thesis, we derive an analytical expression for the QCII probability in

NCs that can become an instrumental result in assessing EL in the presence of

other competing scattering mechanisms. The effect of QCII on bulk transport

quantities is also discussed.

3.1.1 Theoretical Details

Details about first principles calculations can be found in Chapter 2. Here, we

demonstrate the utility and the validity of our ab initio DOS results by studying

the high-field carrier transport in bulk SiO2 up to fields of 10 MV/cm using the

EMC technique. The corresponding scattering rates are intimately related with

the band structure and the DOS of SiO2 for which we use those of the α-quartz

phase due to its strong resemblance of the amorphous SiO2 in terms of both the

short-range order and the total DOS [116]. Aiming for very high fields around

10 MV/cm, we also include the impact ionization process within the bulk SiO2

medium; the relevant parameters were taken from the work of Arnold et al. [117].

Our modeling for QCII is an extension of the approach by Kehrer et al. who

have dealt with the high-field impurity breakdown in n-GaAs [118]. We assume

the impacting carrier to be an electron, however all of the formulation can be

reiterated by starting with an impacting high energy hole in SiO2. Above the

mobility edge which is well satisfied for an energetic electron in SiO2, the bulk
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SiO2 wave function will be delocalized, i.e., of the Bloch form,

ψb =
1√
V
uk(r)e

ik·r, (3.1)

whereas for the NC wave function we use a simple hydrogenic form [118],

ψn =
α3/2

v√
π
uv(r)e

−αv|r|. (3.2)

Some remarks will be in order, regarding the choice of these wave functions.

Even though the embedding medium is usually an amorphous oxide, for high-field

transport purposes well above the mobility edge, one can safely use crystalline

states (i.e., Bloch functions) [116, 117]. On the other hand, the use of hydrogenic

wave function which is well suited for the impurity problem was preferred solely

due to its analytical convenience. The latter can be relaxed in case a closed-form

expression is not aimed for.

Furthermore, we are neglecting the exchange interaction between the impact-

ing electron and the valence nanocrystal electron due to huge energy difference

between them1 [119]. The scattering matrix element which is due to the Coulomb

interaction between the two electrons is given by

M =
∫
d3r1

∫
d3r2

α3/2
c√
π
u∗c(r1)e

−αc|r1|
1√
V
u∗k′(r2)e

−ik
′

·r2

× e2

4πǫǫ0

e−λ|r1−r2|

|r1 − r2|
1√
V
uk(r2)e

ik·r2
α3/2

v√
π
uv(r1)e

−αv|r1|, (3.3)

yielding

|M |2 =

[
64e4α3

cα
3
vα

2

(ǫǫ0V )2

]

|Fcv|2|Fk′k|2
1

[|k − k
′ |2 + λ2]2

× 1

[|k − k
′ |2 + α2]4

, (3.4)

where,

Fcv =
∫

cell
u∗c(r1)uv(r1)d

3r1 , (3.5)

Fk′k =
∫

cell
u∗k′(r2)uk(r2)d

3r2 , (3.6)

1We are grateful to Prof. M. Özgür Oktel for pointing out this simplicity.
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and α ≡ αc + αv. By using Fermi’s golden rule we can write the probability as,

P (k) =
∑

nc

∑

k′

2π

h̄
|M |2δ

[
h̄2k2

2mk
− Ev − Ec −Eg −

h̄2k
′2

2mk
′

]

fNC , (3.7)

where Eg is that bandgap of the NC which is absorbed into the value of Ec. Here

Ev is taken as positive hole energy. Taking A2 ≡ m
k
′ k2

mk
− 2m

k
′ Ev

h̄2 − 2m
k
′ Ec

h̄2 − 2m
k
′ Eg

h̄2

and assuming

∑

nc

fNC = NNC = nNCV , (3.8)

where nNC is the density per unit volume and in terms of the NC filling ratio

nNC is

nNC =
f

VNC
, (3.9)

P (k) =
∑

k
′

4πmk′

h̄3 |M |2δ
[
A2 − k

′2
]
nNCV . (3.10)

Note that there is no spin summation as the Coulomb interaction preserves spin.

Using Eq. B.9 and Eq. 3.8 we can write

P (k) =
V

(2π)3

∫
d3k

′ 4πmk′

h̄3

[
64e4α3

cα
3
vα

2

(ǫǫ0V )2

]

|Fcv|2|Fk
′
k|2

1

[|k − k
′ |2 + λ2]2

× 1

[|k − k
′ |2 + α2]4

δ
[
A2 − k

′2
]
nNCV . (3.11)

P (k) = −πC
2k

1

3(α2 − λ2)5

[

− 9(α2 − λ2)

(|A| − k)2 + α2
+

9(α2 − λ2)

(|A| + k)2 + α2

− 3(α2 − λ2)2

((|A| − k)2 + α2)2
+

3(α2 − λ2)2

((|A| + k)2 + α2)2
− (α2 − λ2)3

((|A| − k)2 + α2)3

+
(α2 − λ2)3

((|A| + k)2 + α2)3
− 3(α2 − λ2)

((|A| − k)2 + λ2)
+

3(α2 − λ2)

((|A| + k)2 + λ2)

+ 12 ln

{
[(|A| − k)2 + α2] [(|A| + k)2 + λ2]

[(|A| + k)2 + α2] [(|A| − k)2 + λ2]

}]

. (3.12)

where,

C =

[
32e4α3

cα
3
vα

2mk′

h̄3π2(ǫǫ0)2

]

|Fcv|2|Fk′k|2nNC , (3.13)
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here the screening parameter within Thomas-Fermi approximation is given in cgs

units by

λ =



4(3/π)1/3n
1/3
0

a0




1/2

. (3.14)

We should note that the direct adoption of the bulk screening model to the case

of NCs discards the polarization charges on the NC surface which are supposed

to cancel the screening effect within the oxide region [120].

Figure 3.2: Pseudopotential and the fitted hydrogenic wave functions.

The α parameter of the wave function shown in Eq. 3.2 is extracted by fitting

it to the wave function obtained from a pseudopotential-based electronic structure

calculation for Si NCs [27] both of which are illustrated in Fig. 3.2. The details for

the pseudopotential-based electronic structure calculation will be provided in the

next Chapter. The effect of the carrier density due to Thomas-Fermi screening

length can be observed in Fig. 3.3. As seen in Eq. A.42, NC density and QCII

scattering probability are directly proportional as expected.
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Figure 3.3: QCII probability for carrier densities; 1014 cm−3, 1015 cm−3, and 1016

cm−3.

3.1.2 High Field Transport Results

We simulate the high field transport for both electrons and holes within SiO2

and observe a marked difference between the two as seen from the average carrier

velocity curve in Fig. 3.4 (a). The holes acquire a much slower velocity than the

electrons governed by a monotonic behavior. On the other hand, electrons expe-

rience a negative differential mobility regime between 1.5 MV/cm to 5 MV/cm.

Fig. 3.4 (b) displays the average energy as a function of field. Our results agree

quite well with the experimental data [60] for fields up to 7 MV/cm. Beyond this

value, the two experiments deviate substantially from each other while the en-

semble Monte Carlo results fall between the two. Another important observation

is that the energy gained by the holes is well below 0.5 eV even for fields above

10 MV/cm due to excessive scattering which is a consequence of the very large

DOS close to the valence band edge. For Si NCs embedded in SiO2 the EL peak

is typically around 2 eV [121]. Based on our results we can conclude that such an

energy cannot be imparted by the bulk SiO2 holes to the NC carriers through the

quantum confined impact ionization process. Other mechanisms such as direct
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tunneling from contacts to NCs may be responsible for the p-type EL.

Figure 3.4: For SiO2 (a) average velocity vs field (b) field vs energy profiles for
both electrons and holes.

Turning to electrons which can become indeed hot in SiO2 matrix, in Fig. 3.5

(a) and (b) we illustrate the temporal evolution of the energy and velocity, re-

spectively at different electric field values. It can be observed that steady state is

attained for these hot electrons within about 30 fs. Furthermore, there is a strong

velocity overshoot which is the hallmark of hot electrons [115] where nonequilib-

rium carriers initially enjoy an almost ballistic motion that is eventually brought
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to equilibrium. We also simulate the high field transport with and without QCII

Figure 3.5: Temporal evolution of the ensemble-averaged (a) electron energy and
(b) average velocity for different electric field values.

by setting the carrier and NC densities to 1015 cm−3 and 1021 cm−3. It can be

inferred from the average energy versus field behavior (see Fig. 3.6 (a)) that QCII

does not have significant effect. In Figs. 3.6 (b) and (c) we illustrate the temporal

evolution of the average carrier energy and velocity with and without QCII at a

fixed electric field value of 8 MV/cm; carrier and NC densities are again chosen

as 1015 cm−3 and 1021 cm−3, respectively. It can be observed that steady state
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is attained for these hot electrons within about 30 fs. Furthermore, there is a

no pronounced effect of QCII on the average velocity and energy profiles. This

is quite understandable given the dominance of the other scattering mechanisims

over QCII.

Figure 3.6: For SiO2 (a) field vs energy, (b) energy vs time and (c) average
velocity vs time profiles with and without QCII.



Chapter 4

Pseudopotential-based Atomistic

Electronic Structure and

Radiative Recombination

Using an atomistic pseudopotential approach the electronic structures for em-

bedded Si and Ge NCs in wide band-gap matrices containing several thousand

atoms are employed. From small clusters to large NCs containing on the order of

several thousand atoms are considered. Effective band-gap values as a function of

NC diameter agree very well the available experimental and theoretical data. To

further check the validity of the electronic structure on radiative processes, direct

photon emission rates are obtained. Our results for Si and Ge NCs as a function

of diameter are in excellent agreement with the available ab initio calculations

for small NCs. Moreover, our formalism is applicable to much larger NCs as well.

4.1 Introduction

The quantum processes of the semiconductor NCs are related to the optical tran-

sition oscillator strength, density of states and real space wavefunctions. To

characterize these processes, it is very important to calculate accurate electronic

42
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structure of NCs. Here, we follow the approach in Ref. [122] and references

therein. As in any such task, the usual trade off between the computational cost

and accuracy is operational. The constraints on the former are quite stringent

as a NC including the active region of the matrix surrounding itself can contain

on the order of ten thousand atoms. As for the latter, not only the accuracy but

also the validity of a chosen approach can become questionable. Computation-

ally low-cost approaches like the envelope function in conjunction with 8-band

k·p are not as accurate for this task and furthermore, they miss some critical

symmetries of the underlying lattice [108]. On the other extreme, there lies the

density functional theory-based ab initio codes which have been applied to smaller

NCs containing less than 1000 atoms which still require very demanding compu-

tational resources [123, 57, 58, 124, 125, 126]. The ab initio analysis of larger NCs

of sizes between 3-10 nm is practically not possible with the current computer

power. While this technological hurdle will be gradually overcome in the years

to come, there exists other atomistic approaches that can be employed for NC

research which can be run on modest platforms and are much simpler to develop,

such as the tight binding technique which has been successfully employed by sev-

eral groups [127, 128, 129]. On the pseudopotential-based approaches, two new

recipes were proposed by Wang and Zunger over the last decade [130, 23, 22].

The folded spectrum method [130] relies on standard plane wave basis and direct

diagonalization; its speed is granted from being focused on relatively few targeted

states. For the study of excitons this approach becomes very suitable whereas

for the optical absorption spectra where a large number of states contribute it

loses its advantage. Their other recipe is the so-called linear combination of bulk

bands (LCBB); it has been used for self-assembled quantum dots [23, 22], super-

lattices [24, 25] and high-electron mobility transistors [26], and very recently on

the nc-Si aggregation stages [27]. In this work, we apply LCBB to the electronic

structure and absorption spectra of Si and Ge NCs. An important feature of

this work, in contrast to commonly studied hydrogen-passivated NCs is that we

consider NCs embedded in a wide band-gap matrix which is usually silica [131].

In principle, other matrices such as alumina or silicon nitride can be investigated

along the same lines.
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4.2 Theory: Energy Spectrum

For the electronic structure of large-scale atomistic systems Wang and Zunger

have developed the LCBB method which is particularly convenient for embed-

ded NCs containing several thousand atoms [23, 22]. The fact that it is a

pseudopotential-based method makes it more preferable over the empirical tight

binding technique for the study of optical properties as aimed in this work. In

this technique the NC wavefunction with a state label j is expanded in terms of

the bulk Bloch bands of the constituent core and/or embedding medium (matrix)

materials

ψj(~r) =
1√
N

∑

n,~k,σ

Cσ
n,~k,j

ei~k·~ruσ
n,~k

(~r) , (4.1)

where N is the number of primitive cells within the computational supercell,

Cσ
n,~k,j

is the expansion coefficient set to be determined and σ is the constituent

bulk material label pointing to the NC core or embedding medium. uσ
n,~k

(~r) is

the cell-periodic part of the Bloch states which can be expanded in terms of the

reciprocal lattice vectors { ~G} as

uσ
n,~k

(~r) =
1

Ω0

∑

~G

Bσ
n~k

(
~G
)
ei ~G·~r , (4.2)

where Ω0 is the volume of the primitive cell. The atomistic Hamiltonian for the

system is given by

Ĥ = − h̄
2∇2

2m
+

∑

σ, ~Rj ,α

W σ
α (~Rj) υ

σ
α

(
~r − ~Rj − ~dσ

α

)
, (4.3)

where W σ
α (~Rj) is the weight function that takes values 0 or 1 depending on the

type of atom at the position ~Rj − ~dσ
α, and υσ

α is the screened spherical pseudopo-

tential of atom α of the material σ. We use semiempirical pseudopotentials for Si

and Ge developed particularly for strained Si/Ge superlattices which reproduces

a large variety of measured physical data such as bulk band structures, defor-

mation potentials, electron-phonon matrix elements, and heterostructure valence

band offsets [132]. With such a choice, this approach benefits from the empirical

pseudopotential method (EPM), which in addition to its simplicity has another

advantage over the more accurate density functional ab initio techniques that run
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into well-known band-gap problem [108] which is a disadvantage for the correct

prediction of the excitation energies.

The formulation can be casted into the following generalized eigenvalue equa-

tion [22, 26]:

∑

n,~k,σ

Hn′~k′σ′,n~kσ C
σ
n,~k

= E
∑

n,~k,σ

Sn′~k′σ′,n~kσ C
σ
n,~k
, (4.4)

where

Hn′~k′σ′,n~kσ ≡
〈
n′~k′σ′|T̂ + V̂xtal|n~kσ

〉
,

〈
n′~k′σ′|T̂ |n~kσ

〉
= δ~k′,~k

∑

~G

h̄2

2m

∣∣∣~G+ ~k
∣∣∣
2
Bσ′

n′~k′

(
~G
)∗
Bσ

n~k

(
~G
)
,

〈
n′~k′σ′|V̂xtal|n~kσ

〉
=

∑

~G, ~G′

Bσ′

n′~k′

(
~G
)∗
Bσ

n~k

(
~G
)

×
∑

σ′′,α

V σ′′

α

(∣∣∣ ~G+ ~k − ~G′ − ~k′
∣∣∣
2
)

×W σ′′

α

(
~k − ~k′

)
ei( ~G+~k− ~G′−~k′)·~dσ′′

α ,

Sn′~k′σ′,n~kσ ≡
〈
n′~k′σ′|n~kσ

〉
.

Here, the atoms are on regular sites of the underlying Bravais lattice: ~Rn1,n2,n3
=

n1~a1 + n2~a2 + n3~a3 where {~ai} are its direct lattice vectors of the Bravais lat-

tice. Both the NC and the host matrix are assumed to possess the same lat-

tice constant and the whole structure is within a supercell which imposes the

periodicity condition W
(
~Rn1,n2,n3

+Ni~ai

)
= W

(
~Rn1,n2,n3

)
, recalling its Fourier

representation W
(
~Rn1,n2,n3

)
→ ∑

W̃ (q)ei~q·~Rn1,n2,n3 , implies ei~q·Ni~ai = 1, so that

~q → ~qm1,m2,m3
= ~b1

m1

N1
+~b2

m2

N2
+~b3

m3

N3
, where {~bi} are the reciprocal lattice vectors

of the bulk material. Thus the reciprocal space of the supercell arrangement is

not a continuum but is of the grid form composed of points {~qm1,m2,m3
}, where

mi = 0, 1, . . . , Ni − 1.

An important issue is the choice of the host matrix material. If the NC is

surrounded by vacuum, this corresponds to the free-standing case. However, the

dangling bonds of the surface NC atoms lead to quite a large number of interface
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states which adversely contaminate especially the effective band-gap region of the

NC. In practice NCs are embedded into a wide band-gap host matrix which is

usually silica [131]. However, the pseudopotential for oxygen is nontrivial in the

case of EPM [133] and furthermore, lattice constant of SiO2 is not matched to

either of the core materials introducing strain effects. Therefore, we embed the

Si and Ge NCs into an artificial wide band-gap medium which for the former

reproduces the proper band alignment of the Si/SiO2 system. To circumvent the

strain effects which are indeed present in the actual samples, we set the lattice

constant and crystal structure of the matrix equal to that of the core material.

The pseudopotential form factors of the wide band-gap matrices for Si and Ge

can easily be produced starting from those of the core materials [122].

4.3 Theory: Radiative Recombination

An excellent test for the validity of the electronic structure is through the com-

putation of the direct photon emission. The radiative lifetime for the transition

between HOMO and LUMO is obtained via time-dependent perturbation theory

utilizing the momentum matrix element as first undertaken by Dexter [134]. How-

ever, to take into account local field effects we have used the expression offered

by Califano et al. [135]:

1

τfi
=

4

3

n

c2
Fαω3

fi |rfi|2 (4.5)

where α = e2/h̄c is the fine structure constant, n =
√
ǫout is the refractive index

of the surrounding medium, F = 3ǫout/ (ǫNC + 2ǫout) is the screening factor within

the real-cavity model [136, 137], ωi is the frequency of the emitted photon, c is

the speed of light, and |rfi|2 = 〈i|p|f〉/m0ωfi is the dipole length element between

the initial and final states. We can rewrite the Eq. 4.5 as,

1

τfi
=

16π2

3
nF 2 e2

h2m2
0c

3
(Ef − Ei) |〈i|p|f〉|2 . (4.6)

Using the oscillator strength (apart from some coefficients),

f ee
osc,fi ≡

∣∣∣ê · −→P fi

∣∣∣
2

Efi

, where |〈i|p|f〉| =
2πh̄

acell

−→
P fi, (4.7)
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the radiative recombination lifetime becomes,

1

τfi
=

16π2

3
nF 2 e2

a2
cellm

2
0c

3
(Ef −Ei)

2f ee
osc,fi. (4.8)

Finally, the Boltzmann average is performed over the states close to the HOMO

and LUMO to obtain a thermally averaged radiative lifetime as

1

〈τr〉
=

∑

fi

1

τfi
e−(Efi−Eg)/kBT

∑

fi

e−(Efi−Eg)/kBT
. (4.9)

Figure 4.1: Pseudopotential atomistic energy spectra of Si and Ge NCs for dif-
ferent diameters. The dashed lines indicate the conduction band minimum and
valence band maximum for the bulk semiconductors.

4.4 Results

The evolution of resultant electronic spectra with respect to size for embedded

Si and Ge NCs is shown in Fig. 4.1. The quantum size effect is clearly visible
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from this figure as the HOMO (highest occupied molecular orbital) and LUMO

(lowest unoccupied molecular orbital) approach the bulk valence band maximum

and the conduction band minimum of the core materials (indicated by dashed

lines), respectively.

Figure 4.2: The variation of the radiative lifetime with respect to diameter for Si
and Ge NCs. Our data is compared with the existing ab initio and tight-binding
results in the literature.

Our results for the radiative lifetime in Si and Ge NCs as a function of diameter

are shown in Fig. 4.2. These are in excellent agreement with the very reliable ab

initio calculations for small NCs [38]. However, our formalism is applicable to

much larger NCs as well. This is also the case with the tigh-binding approach as

undertaken by Niquet et al. [138]. It should be noted that the radiative lifetime

is reduced logarithmically as the NC size is reduced turning the indirect band-

gap bulk materials into efficient radiators. In the next Chapter, we shall observe
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that the nonradiative processes (Auger recombination and carrier multiplication)

are still much more efficient than the radiative process. As another remark, for

larger NCs the level spacings become comparable to phonon energies. Therefore,

the direct recombination as considered here, needs to be complemented by the

phonon-assisted recombination beyond approximately 3-4 nm diameters.



Chapter 5

Auger Recombination and

Carrier Multiplication in

embedded Si and Ge

Nanocrystals

Carrier multiplication (CM) and Auger recombination (AR) are the two most

important Coulombic excitations in NCs. For Si and Ge NCs embedded in

wide band-gap matrices, CM and AR lifetimes are computed exactly in a three-

dimensional real space grid using empirical pseudopotential wave functions. Our

results support the recent experimental data and also lead to further predictions.

We extract simple Auger constants valid for NCs up to a size of at least 4 nm. We

show that both Si and Ge NCs are ideal for photovoltaic efficiency improvement

via CM due to the fact that under an optical excitation exceeding twice the band

gap energy, the electrons gain lion’s share from the total excess energy and can

cause a CM. Finally, we predict the electron-initiated CM to be enhanced by cou-

ple orders of magnitude with a 1 eV of excess energy beyond the CM threshold

leading to subpicosecond CM lifetimes.

50
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5.1 Introduction

NCs can turn the indirect band-gap bulk materials into light emitters [14] or offer

increased efficiencies in solar cells [139]. The latter has been demonstrated in a

very recent experimental study by significantly increasing the solar cell efficiency

in colloidal Si NCs due to carrier CM which enables multiple exciton generation

in response to a single absorbed photon [28]. Similarly, the inverse process, AR

is also operational and it introduces a competing mechanism to CM which can

potentially diminish the solar cell efficiency and in the case of light sources it

degrades the performance by inflating the nonradiative carrier relaxation rate [29].

In the case of the NCs, quantum-confinement enhances the AR and CM rates

compared to bulk by advancing the Coulomb interaction and relaxing the trans-

lational momentum conservation [140]. Therefore, AR and CM are held largely

responsible for the carrier generation and recombination occurring in quantum

dots and NCs. This becomes a major obstacle particularly in the case of Si and

Ge NCs, aiming for Si- and Ge-based light sources and promoting the realm of

Si photonics [14]. For other semiconductor NCs as well, the AR and CM pro-

cess plays a major role in carrier relaxation as demonstrated by a large number

of experimental studies such as in CdS and CdSe quantum dots [141, 142, 143].

Similarly for Si NCs, the recent experimental studies addressing the importance

of AR has become substantial [144, 10, 145, 146, 147, 11, 148]. Walters et al.

have proposed a novel scheme that circumvents AR by the sequential tunneling

of a hole followed by switching the gate bias to enable the tunneling of an electron

into a typical NC which gives rise to a very efficient electroluminescence [11]. The

same group, in another work has utilized AR as a desirable effect to switch off

the photoluminescence in a Si optical NC memory [147].

The utilization and full control of both CM and AR require a rigorous theoret-

ical understanding. Zunger et al. have established an empirical pseudopotential

many-body approach [149, 150, 151] to calculate the lifetime of the different type

of the AR in free standing and hydrogen passivated CdSe NCs (R= 29.25 and

38.46 Å) and found the results which are good agreement with Klimov et al. How-

ever, the pioneering series of publications on the AR in Si NCs belong to a single
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group based on an atomistic tight binding approach [152, 153, 154]. Unfortu-

nately, they only considered hydrogen passivated Si NCs without addressing the

shape and host matrix effects. Moreover, their results do not reveal a size-scaling

for AR but rather a scattered behavior over a wide band of lifetimes in the range

from few picoseconds to few nanoseconds as the NC diameter changes from 2 to

4 nm. In the past decade, no further theoretical assessment of AR in Si NCs

was put forward. In this context, the Ge NCs have not received any attention

although with their narrower effective band gap, they can benefit more from the

low-energy part of the solar spectrum in conjunction with CM for increasing the

efficiency.

In this Chapter, we provide a theoretical account of CM and AR in Si and Ge

NCs which reveals their size, shape and energy dependence. Another important

feature of this work, unlike commonly studied hydrogen-passivated NCs is that

we consider NCs embedded in a wide band-gap matrix which is essential for the

solid-state device realizations. Similar to the classification of Wang et al. in

their theoretical work on Coulombic excitations in CdSe NCs [149], we consider

different possibilities of AR as shown in Fig. 5.1. We use the type of the exicted

carrier as the discriminating label, hence we have the excited electron (Fig. 5.1(a))

and the excited hole (Fig. 5.1(b)) AR and their biexciton variants (Fig. 5.1(c)

and (d)). The latter also correspond to CM taking place in reverse direction. To

calculate AR and CM in Si and Ge NCs in the next section, we briefly explain

details of AR in Bulk and NC systems to clarify our method used.

5.2 Theory

Both AR and CM require an accurate electronic structure over a wide energy

band extending up to at least 3-4 eV below (above) the highest occupied molec-

ular orbital-HOMO (lowest unoccupied molecular orbital-LUMO). Another con-

straint is to incorporate several thousands of core and host matrix atoms within

a supercell (see Fig. 5.2 (a)). To meet these requirements we have employed

the linear combination of bulk bands basis within the empirical pseudopotential
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Figure 5.1: Auger recombination and carrier multiplication in nanocrystals.

framework (described in Chapter 4) which can handle thousands-of-atom systems

both with sufficient accuracy and efficiency over a large energy window [23]. De-

tails regarding its performance and the implementation such as the wide band-gap

host matrix can be found in Ref. [122]. We should mention that Califano et al.

have successfully employed a very similar theoretical approach in order to explain

the hole relaxation in CdSe NCs. [155]

Detailed description of the calculation of AR and CM in NCs can be found in

Appendix A. However we also briefly explain our method in this Chapter. After

solving the atomistic empirical pseudopotential Hamiltonian for the energy levels

and the wave functions, the AR and CM probability can be extracted using the
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Figure 5.2: (a) Embedded NC in a supercell, core atoms of a (b) spherical, (c)
oblate and (d) prolate ellipsoidal NC.

Fermi’s golden rule,

R =
Γ

h̄

∑

f

|〈ψi |Vc(r1, r2)|ψf 〉|2
(Ef − Ei)2 + (Γ/2)2

, (5.1)

where ψi and ψf are respective initial and final configurations with the corre-

sponding energies Ei and Ef , respectively, and Γ is the level broadening pa-

rameter which is taken as 10 meV. However, sensitivity to this parameter is also

considered in this work. The spin-conserving screened Coulomb potential is given

by Vc(r1, r2) = e2/ǫ(r1, r2)|r1−r2|. Here, for the dielectric function ǫ(r1, r2) past

theoretical investigations [156, 149] have concluded that it is bulklike inside the

NC. Therefore, we use [149],

1

ǫ(r1, r2)
=

1

ǫout

+
(

1

ǫin
− 1

ǫout

)
m(r1)m(r2), (5.2)

as the dielectric function, where, the so-called mask function m(r) is set to 1

when r inside of the NC and 0 when r outside of the NC.

Expressing the initial and final states of the AR shown in Fig. 5.1 (a) or (b)

by using the Slater determinant, the matrix elements (〈ψi |Vc(|r1, r2|)|ψf 〉) can

be calculated as

M(i, j; k, l) =
1

V 2

∫ ∫
φ∗

i (r1)φ
∗
j (r2)Vc(r1, r2)

×(φk(r1)φl(r2) − φk(r2)φl(r1))d
3r1d

3r2, (5.3)

here the labels i, j and k and l refer respectively to the initial and final states

which also include the spin and V is volume of the supercell.
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These matrix elements, M(i, j; k, l) are computed exactly in a three-

dimensional real space grid without resorting to any envelope approximation.

The number of final states are determined setting the final state window to ±7Γ

around the exact conserved energy Ek(= Ej + Ei − El). For the initial states i

and l, Boltzmann average is taken into account due to thermal excitations. The

other initial state j is kept fixed at LUMO for the excited electron (EE), and at

HOMO for the excited hole (EH) type AR.

5.3 Results

We first apply this formalism to spherical NCs (see Fig. 5.2(b)) having abrupt

interfaces. The corresponding AR lifetimes for EE and EH processes are plotted

as a function of NC diameter in Fig. 5.4 (a) and (b). The C3v point symmetry

Figure 5.3: Smeared interface of Nanocrystals.

of the NCs in the case of abrupt interface between NC core and the matrix

causes oscillations in the physical quantities such as the state splittings and the

density of states (See Fig. 5.6) with respect to NC diameter [122]. When we

account for the interface transition region (See Fig 5.3) between the NC and host

matrix [157], we observe that these strong oscillations in the size dependence of

AR are highly reduced for Si and Ge NCs (cf. Fig. 5.4). The interface region
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especially affects the excited state wave functions and the final state density of

states and it makes our model more realistic for both Si and Ge NCs. As an

observation of practical importance, we can reproduce our data remarkably well

using the simple expression 1/τ = Cn2, with an Auger coefficient of C = 1×10−30

cm6s−1 for Si NCs and C = 1.5×10−30 cm6s−1 for Ge NCs , where n is the carrier

density within the NC (cf. Fig. 5.4).

Figure 5.4: AR lifetimes for (a) excited electron, (b) excited hole, and (c) biexci-
ton types in Si NCs, and (d) excited electron, (e) excited hole, and (f) biexciton
types in Ge NCs. Square symbols represent AR lifetimes with interface smear-
ing, and dashed lines show AR lifetimes calculated from our proposed C values.
Spherical symbols in (a) and (b) represent AR lifetimes in Si NCs with abrupt
interfaces.

The other two types of AR shown in Fig. 5.4 (c) and (f) refer to biexciton

recombinations. This process becomes particularly important under high carrier

densities such as in NC lasers or in solar cells under concentrated sunlight. Its

probability can be expressed in terms of EE and EH type AR as [149], 1/τXX =

2/τEE + 2/τEH where τEE and τEH are EE and EH lifetimes. Fig. 5.4 (c) and (f)

compares the computed biexciton type AR for Si and Ge NCs with the expression

1/τ = Cn2 where the value C = 4 × 10−30cm6s−1 and 6 × 10−30cm6s−1 are used
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which are obtained from the previous C values extracted for EE and EH processes

together with the τXX expression. For Si NC case, our calculated value at 3 nm

diameter agrees reasonably well with the experimental photoluminescense decay

time of about 105 ps which was attributed to AR [30]. In Fig. 5.4 (c) and (f),

we also demonstrate the fact that a choice of Γ = 5 meV does not introduce any

marked deviation from the case of Γ = 10 meV as used in this work for both

Si and Ge NCs. This parameter test automatically checks the sensitivity to the

final state energy window chosen as ±7Γ.

Next, we demonstrate the effects of deviation from sphericity on Si NCs. We

consider both oblate (Fig. 5.2(c)) and prolate (Fig. 5.2(d)) ellipsoidal Si NCs

described by the ellipticity values of e=0.85 and -0.85, respectively. For the

comparison purposes, we preserve the same number of atoms used in spherical

NCs of diameters 1.63 and 2.16 nm. The results listed in Table 5.1 indicate that

the spherical NC has a lower Auger rate than the aspherical shapes. This can be

Table 5.1: AR lifetimes for different ellipsoidal shapes of Si NCs with diameters
of 1.63 and 2.16 nm.

Spherical Prolate Oblate
D (nm) 1.63 2.16 1.63 2.16 1.63 2.16
EE (ps) 40.1 540.6 31.5 103.1 36.4 121.3
EH (ps) 267.2 430.1 74.0 76.3 26.1 139.0

reconciled as follows: in the case of either prolate or oblate NC, the electronic

structure is modified in such a way that the number of final states is increased,

furthermore, a coalescence of the states around the HOMO and LUMO occurs. A

similar effect was also observed in the asphericity-induced enhancement of Auger

thermalization of holes in CdSe NCs [155]. Another important parameter in

Coulomb interactions is the choice of the host matrix. The two most common wide

band-gap matrices are SiO2 and Al2O3. The host matrix is expected to play two

roles: dielectric confinement effects due to different permittivities of the core and

the matrix (ǫSi = 12, ǫSiO2
= 4 and ǫAl2O3

= 9.1) and the electronic confinement

effects due to different band gaps. The results tabulated in Table 5.2 show that

Al2O3 matrix leads to increased AR lifetime which reveals the importance of the
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Table 5.2: Comparison of AR lifetimes for SiO2 and Al2O3 host matrices.

Diameter (nm) 1.63 2.16 3.00 4.00
SiO2-EE (ps) 40.1 540.6 838.3 17580.1
Al2O3-EE (ps) 43.2 612.4 1177.7 23373.4
SiO2-EH (ps) 267.2 430.1 922.1 30150.0
Al2O3-EH (ps) 206.5 245.1 1907.5 101942.8

dielectric confinement. The deviations from this trend for smaller NCs should be

due to electronic structure effects dominating at these sizes. However, we should

note that neither of the shape or matrix effects are pronounced.

In their work on the CM in PbSe NCs, Allan and Delerue have deduced that

such Coulombic interactions are primarily governed by the state-density function,

whereas the breaking of the momentum conservation rule due to the confinement

does not lead to an enhancement of these rates [158]. Even though we agree

Figure 5.5: Average Coulomb matrix elements for (a) Si and (b) Ge NCs for EE
type AR (red squares) and for EH type AR (black spheres).

on the importance of the density of states, we believe that such a conclusion

undermines the significant role of the Coulomb matrix elements. We illustrate

our point by Fig. 5.5, where the average matrix element for Si and Ge NCs are

shown. The strong size dependence leading to a variation over several orders of

magnitude proves their nontrivial role.
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Figure 5.6: Final state configuration for, (a) AR in Si, (b) AR in Ge, (c) CM
in Si and (d) CM in Ge NCs. Dashed line in (a) and (b) corresponds to exact
conserved energy

Regarding the CM, to calculate the EE (EH) type CM (cf., Fig. 5.1 (c) and

(d)) for different diameters of the Si and Ge NCs, first we consider the impacting

electrons (holes) having the energy of Egap (threshold energy to initiate a CM

event) above (below) the conduction (valence) band edge. As seen in Fig. 5.7,

EE and EH type CM lifetimes for Si and Ge NCs decrease from the few ns to

about 1 ps as the NC diameter decreases. However, for EE (EH) type CM, the

few number of final states at the bottom of the CB (top of the VB) cause a
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nonmonotonic dependence of CM on size of the NC (See Fig. 5.6 (c) and (d)).

Figure 5.7: CM Lifetime results for (a) EE and (b) EH types in Si NCs embedded
in SiO2 and Al2O3, and (c) EE and (d) EH types in Ge NCs embedded in Al2O3.

Finally, we investigate the effect of excess energy on the CM under an optical

excitation above the effective gap, Egap = ELUMO−EHOMO. We assign the excited

electron and hole to their final states based on the transition with the largest

radiative oscillator strength [122]. In Fig. 5.8 (a) we observe that the electrons

receive the lion’s share of the total excess energy which is the desired case for the

high efficiency utilization of CM in photovoltaic applications [159]. Our threshold

value for Si NCs agrees very well with the recent experimental data of 2.4Egap [28].

In Fig. 5.8 (b) we show the corresponding electron-initiated CM lifetimes as a

function of excess energy. It can be observed that CM is enhanced by couple

orders of magnitude with a 1 eV of excess energy beyond the CM threshold leading

to subpicosecond CM lifetimes. We believe that these theoretical predictions

prove the strong potential of both Si and Ge NCs in utilizing CM especially for

the photovoltaics and photonics applications.
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Figure 5.8: (a) Electron and hole excess energy vs pump energy for 4 nm Si and
3 nm Ge NCs, (b) CM lifetime vs electron excess energy for different diameter of
Si and Ge NCs.



Chapter 6

Conclusions

Even though the group-IV semiconductors Si and to a lesser extend Ge have been

the workhorse of the electronics industry in the twentieth century, the subject of

group-IV NCs is just booming, thanks to their added prospects in photonics and

microelwctronics. This computational thesis is devoted to the realistic assessment

of their mainly radiative and non-radiative properties. Special emphasis is given

to the comparison with the available theoretical and especially experimental re-

sults. In this final chapter we would like to summarize our conclusions and main

achievements.

The media in which these NCs are embedded play a nontrivial role. Therefore,

as the initial task to determine the electronical and structural properties of the

NC host matrices, a comprehensive first-principles study is performed which is

unique in analyzing common polymorphs of the technologically-important insu-

lating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4. The structural

parameters, elastic constants, static and optical dielectric constants are obtained

in close agreement with the available results. The computed dielectric constants

are observed to display a strong correlation with their mass densities. For all

of the considered polymorphs the conduction band minima occur at the Γ point

whereas the valence band maxima shift away from this point for some of the

phases making them indirect band-gap matrices. However, the direct band gap

values are only marginally above the indirect band gap values. The investigation

62
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of band structure and DOS data reveal that the holes in all polymorphs consid-

ered and the electrons for the case of Si3N4 and Ge3N4 should suffer excessive

scatterings under high applied field which will preclude bulk impact ionization

for these carrier types and polymorphs. This can be especially important for ap-

plications vulnerable to dielectric breakdown. In the course of the study related

with NC host matrices, elastic constants, electronic band structures and phonon

dispersion curves of the i-phase high-k oxides have been obtained with high ac-

curacy. These calculations suggest that the new cubic-phases of GeO2 and SnO2

are unstable whereas SiO2, Si0.5Ge0.5O2, Si0.5Sn0.5O2 are particularly promising

due to their high dielectric constants as well as wide band gaps as restored by the

GW correction. Moreover, they are lattice-matched to Si(100) face, especially

for the case of Si0.5Ge0.5O2. We believe that these findings can further boost the

research on the crystalline oxides.

Next, the rate of an important high-field process known as quantum confined

impact ionization (QCII) is calculated analytically. As our main contribution, we

propose a closed-form expression of the QCII probability which is incorporated

into the EMC high-field transport framework that involves other major scatter-

ing mechanisms. The scattering rates are computed using ab initio DOS for SiO2

matrix as described in Chapter 2. Our results for a range of parameters indicate

that QCII has a marginal effect on the carrier average energy and velocity charac-

teristics both in the transient and steady-state regimes. As a possible future work

in this direction, the high field phenomena in other NC host lattices, especially

Al2O3 warrants to be similarly studied. Finally, it needs to be mentioned that we

consider the QCII process that yields an electron-hole pair within the NCs. There

can be other variants of this specific process (still to be named as QCII) which

may have much more dramatic effect on the average carrier transport quantities

leading to dielectric breakdown. In the Appendix section, these related processes

are mentioned and their matrix elements are worked out analytically.

Moving away from matrices inward towards NCs, using an atomistic pseu-

dopotential approach the electronic structures for embedded Si and Ge NCs in

wide band-gap matrices containing several thousand atoms are employed. To
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check the validity of the electronic structure on radiative processes, direct pho-

ton emission rates are obtained. Our results for Si and Ge NCs as a function of

diameter are in excellent agreement with the available ab initio calculations for

small NCs. However, our formalism is applicable to much larger NCs as well.

The main observation is that the radiative lifetime gets reduced logaritmically

as the NC size is decreased, hence turning the indirect band-gap bulk materials

into efficient radiators. However, when compared with the nonradiative processes

AR and CM, the radiative channel is still by far inefficient as it remains above

nanoseconds. As another remark, for larger NCs (typically above a diameter of

3-4 nm), the phonon-assisted recombination needs to be considered as the energy

level spacings become comparable to phonon energies.

Finally, for the first time, the rate of two most important Coulombic exci-

tations, AR and CM, in Si and Ge NCs are computed in a three-dimensional

real space grid using the above pseudopotential wave functions. Our results have

a very good agreament with the avaliable experimental data. It is shown that

AR rates of Si and Ge NCs can be obtained remarkabely well using a simple

expression 1/τ = Cn2, with an Auger coefficient of C = 1 × 10−30 cm6s−1 for

Si NCs and C = 1.5 × 10−30 cm6s−1 for Ge NCs. These Auger coefficients can

serve for the practical needs in the utilization of this process. Under an optical

excitation, final states of the excited electron and hole are obtained based on

the transition with the largest radiative oscillator strength. Our results point

out that for the efficiency enhancement via CM in Si and Ge NCs the prospects

look positive as the hot electrons receive most of the excess energy and they can

undergo a CM within few picoseconds with an only 1 eV of excess energy beyond

the CM threshold. We believe that these theoretical predictions prove the strong

potential of both Si and Ge NCs in utilizing CM especially for the photovoltaics

and photonics applications.
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[72] J. C. Idrobo, H. Iddir, S. Öğüt, A. Ziegler, N. D. Browning, and R. O.

Ritchie, Phys. Rev. B 72, 241301 (2005).

[73] S. Goedecker, M. Teter, and J. Huetter, Phys. Rev. B 54, 1703 (1996).

[74] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

[75] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).



BIBLIOGRAPHY 70

[76] N. Troullier and J. L. Martins, Solid State Commun. 74, 613 (1990); Phys.

Rev. B 43, 1993 (1991); Phys. Rev. B 43, 8861 (1991).

[77] X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).

[78] R. M. Van Ginhoven, H. Jónsson, and L. R. Corrales, Phys. Rev. B 71,

024208 (2005).

[79] R. W. G. Wyckoff, Crystal Structure (Interscience, New York, 1965).

[80] W. H. Baur and A. A. Khan, Acta Crystallogr. Sec. B 27, 2133 (1971).
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[133] J. R. Chelikowsky, Solid State Commun. 22, 351 (1977).

[134] D. L. Dexter, Solid State Physics (Academic Press Inc., New York), 6, 358

(1958).

[135] M. Califano, A. Franceshetti, and A. Zunger, Nano Lett. 5, 2360 (2005).

[136] R. J. Glauber and . Lewenstein Phys. Rev. A 43, 467 (1991).

[137] C.K. Duan, M.F. Reid, and Z. Wang, Phys. Lett. A 343, 474 (2005).

[138] Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo, Appl. Phys. Lett. 77,

1182 (2000).

[139] M. C. Hanna and A. J. Nozik, J. Appl. Phys. 100, 074510 (2006).

[140] C. Delerue, G. Allan and M. Lannoo, Semiconductor and Semimetals, 49,

253 (1998).



BIBLIOGRAPHY 74

[141] V. I. Klimov and D. W. McBranch, Phys. Rev. B, 55, 13173 (1997).

[142] V. Klimov, P. Haring-Bolivar, and H. Kurz, Phys. Rev. B 53, 1463 (1996).

[143] V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and

M. G. Bawendi, Science 287, 1011 (2000).
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Appendix A

Technical Details for Bulk

Carrier-Initiated Impact

Ionization Processes in

Nanocrystals

In this appendix, we would like to provide the technical details on the manipu-

lations for the quantum-confined impact ionization (See Fig. A.1 (a)) and other

related possible processes multiplication (See Fig. A.1 (b)) and direct tunnelling

(See Fig. A.1 (c)) in more detail for documentation purposes.

A.0.1 Quantum-Confined Impact Ionization

To explain the derivation of the probability of the quantum confined impact ion-

ization (QCII) (See Fig. A.1 (a)) in nanocrystals (NC) we assume the impacting

carrier to be an electron, however all of the formulation can be reiterated by

starting with an impacting high energy hole in SiO2.

Here we assuming that above the mobility edge which is well satisfied for an

76
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Figure A.1: A schematic illustration of the (a) QCII, (b) multiplication and (c)
direct tunnelling processes in nanocrystals.

energetic electron in SiO2 the bulk SiO2 wavefunction is taken as

ψb =
1√
V
uk(r)e

ik·r, (A.1)

and the nanocrystal wavefunction as

ψn =
α3/2

v√
π
uv(r)e

−αv|r|. (A.2)

Here, we are neglecting the exchange interaction between the impacting elec-

tron and the valance nanocrystal electron due to huge energy difference between

them [119]. Scattering matrix element can be written as,

M =
∫
d3r1

∫
d3r2

α3/2
c√
π
u∗c(r1)e

−αc|r1|
1√
V
u∗k′(r2)e

−ik
′

·r2
e2

4πǫǫ0

e−λ|r1−r2|

|r1 − r2|
1√
V
uk(r2)e

ik·r2
α3/2

v√
π
uv(r1)e

−αv|r1|, (A.3)

M =
e2α3/2

c α3/2
v

4π2ǫǫ0V

∫

cell
u∗c(r1)uv(r1)d

3r1

∫

cell
u∗k′ (r2)uk(r2)d

3r2
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×
∫ ∫

d3r1d
3r2e

−αc|r1|e−ik
′

·r2
e−λ|r1−r2|

|r1 − r2|
eik·r2e−αv |r1|. (A.4)

where we can define

Fcv =
∫

cell
u∗c(r1)uv(r1)d

3r1, (A.5)

Fk′k =
∫

cell
u∗k′(r2)uk(r2)d

3r2. (A.6)

The first overlap is zero for direct band gap semiconductors, however, it does

not vanish for Si where uv derives from valence band maximum states at Γ and

uc derives mainly from conduction band minimum states arount 0.85X. If r12 =

r1 − r2, r2 = r1 − r12, scattering matrix yields,

M =
e2α3/2

c α3/2
v FcvFk′k

4π2ǫǫ0V

∫ ∫
d3r1d

3r12e
−αc|r1|e−ik

′

·r1eik
′

·r12

e−λ|r12|

|r12|
eik·r1e−ik·r12e−αv|r1|, (A.7)

M =
e2α3/2

c α3/2
v FcvFk′k

4π2ǫǫ0V

∫
d3r12e

−i(k−k
′

)·r12
e−λ|r12|

|r12|
×

∫
d3r1e

−i(k
′

−k)·r1e−(αc+αv)|r1|. (A.8)

In the scattering matrix we have two independent integrals, the solution of the

first one

∫
d3r12e

−i(k−k
′

)·r12
e−λ|r12|

|r12|
, (A.9)

can be evaluated by setting q = −k′

+ k we can write,

I ≡
∫
d3re−iq·r e

−λ|r|

|r| , (A.10)

I =
∫
dφ
∫
d(cos θ)

∫
drr2e−iq·r e

−λ|r|

|r| , (A.11)

I = 2π
∫
drre−λ|r|

∫
d(cos θ)e−iqr cos θ, (A.12)
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I = 2π
∫
drre−λ|r| 1

iqr

[
eiqr − e−iqr

]
(A.13)

I =
2π

iq

[∫
dre(−λ+iq)|r| − e(−λ−iq)|r|

]
, (A.14)

I =
2π

iq

[
1

(−λ + iq)
− 1

(−λ− iq)

]

, (A.15)

I =
2π

iq

[
(−λ− iq) − (−λ+ iq)

λ2 + q2

]

, (A.16)

I = − 4π

λ2 + q2
= − 4π

[|k − k
′|2 + λ2]

. (A.17)

The solution of the second integral given by

∫
d3r1e

−i(k
′

−k)·r1e−(αc−αv)|r1|, (A.18)

can be evaluated by setting α = αc + αv and q
′

= k
′ − k, we can write,

II ≡
∫
d3r1e

−iq
′

r1 cos θe−α|r1|, (A.19)

II =
∫
dφ
∫
d(cos θ)

∫
r2
1dr1e

−iq
′

r1 cos θe−α|r1|, (A.20)

II = 2π
∫
r2
1dr1e

−α|r1|
∫
d(cos θ)e−iq

′

r1 cos θ, (A.21)

II = 2π
∫
r2
1dr1e

−α|r1|
2π

iq′r1

[
eiq

′

r1 − e−iq
′

r1

]
, (A.22)

II =
2π

iq′

∫
r1dr1

[
e(−α+iq

′

)|r1| − e(−α−iq
′

)|r1|
]
, (A.23)

II =
2π

iq′

[
1

(α + iq′)2
− 1

(α− iq′)2

]

, (A.24)

II =
2π

iq′

[
(α2 − q

′2 + 2iαq
′

) − (α2 − q
′2 − 2iαq

′

)

(α2 + q′2)2

]

, (A.25)
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II =
2π

iq′

4iαq
′

(q′2 + α2)2
, (A.26)

II =
8πα

(q′2 + α2)2
=

8πα

[|k − k
′ |2 + α2]2

. (A.27)

With the solution of these two integrals the square of the matrix element can be

obtained as,

|M |2 =

[
64e4α3

cα
3
vα

2

(ǫǫ0V )2

]

|Fcv|2|Fk′k|2
1

[|k − k
′|2 + λ2]2

1

[|k − k
′ |2 + α2]4

. (A.28)

With this matrix element we can calculate the probability as,

P (k) =
∑

nc

∑

k′

2π

h̄
|M |2δ

[
h̄2k2

2mk
−Ev −Ec − Eg −

h̄2k
′2

2mk′

]

fnc, (A.29)

P (k) =
∑

nc

∑

k′

2π

h̄

2mk
′

h̄2 |M |2δ
[
mk

′k2

mk

− 2mk
′Ev

h̄2 − 2mk
′Ec

h̄2

− 2mk′Eg

h̄2 − k
′2
]
fnc. (A.30)

Now, lets assume that all of the NC states are avaliable for QCII

∑

nc

fnc = Nnc = nV, (A.31)

where n is the density per unit volume and in terms of the NC filling ratio n is

n =
f

Vnc
, (A.32)

where Eg is that bandgap of the NC which is absorbed into the value of Ec. Here

Ev is taken as positive hole energy. Writing the A2 =
m

k
′ k2

mk
− 2m

k
′ Ev

h̄2 − 2m
k
′ Ec

h̄2 −
2m

k
′ Eg

h̄2 , the probability can be written as

P (k) =
∑

k′

4πmk′

h̄3 |M |2δ
[
A2 − k

′2
]
nV. (A.33)

There is no spin summation as the Coulomb interaction preserves spin. The

integral form of the probability can be written as,

P (k) =
V

(2π)3

∫
d3k

′ 4πmk′

h̄3 |M |2δ
[
A2 − k

′2
]
nV, (A.34)
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P (k) =
V

(2π)3

∫
d3k

′ 4πmk′

h̄3

[
64e4α3

cα
3
vα

2

(ǫǫ0V )2

]

|Fcv|2|Fk′k|2

× 1

[|k − k
′|2 + λ2]2

1

[|k − k
′ |2 + α2]4

δ
[
A2 − k

′2
]
nV, (A.35)

P (k) =
∫
d3k

′

[
32e4α3

cα
3
vα

2mk′

h̄3π2V (ǫǫ0)2

]

|Fcv|2|Fk′k|2
1

[|k − k
′|2 + λ2]2

× 1

[|k − k
′ |2 + α2]4

δ
[
A2 − k

′2
]
nV, (A.36)

C =

[
32e4α3

cα
3
vα

2mk′

h̄3π2(ǫǫ0)2

]

|Fcv|2|Fk
′
k|2n, (A.37)

P (k) =
∫
d3k

′

C
1

[|k − k
′ |2 + λ2]2

1

[|k − k
′|2 + α2]4

× δ
[
A2 − k

′2
]

(A.38)

P (k) =
π

|A|
∫
dx
∫
dk

′

k
′2C

1

[k2 + k′2 − 2kk′x+ λ2]2

× 1

[k2 + k′2 − 2kk′x+ α2]4
δ
[
|A| − k

′
]
, (A.39)

P (k) = π|A|C
∫
dx

1

[k2 + |A|2 − 2k|A|x+ λ2]2

× 1

[k2 + |A|2 − 2k|A|x+ α2]4
, (A.40)

u = k2 + |A|2 − 2k|A|x, du = −2k|A|dx

P (k) = −πC
2k

∫ (k−|A|)2

(k+|A|)2
du

1

[u+ λ2]2
1

[u+ α2]4
, (A.41)

After solving this integral the final probability expression is obtained as,

P (k) = −πC
2k

1

3(α2 − λ2)5

[

− 9(α2 − λ2)

(|A| − k)2 + α2
+

9(α2 − λ2)

(|A| + k)2 + α2

− 3(α2 − λ2)2

((|A| − k)2 + α2)2
+

3(α2 − λ2)2

((|A| + k)2 + α2)2
− (α2 − λ2)3

((|A| − k)2 + α2)3

+
(α2 − λ2)3

((|A| + k)2 + α2)3
− 3(α2 − λ2)

((|A| − k)2 + λ2)
+

3(α2 − λ2)

((|A| + k)2 + λ2)

+ 12 ln

{
[(|A| − k)2 + α2] [(|A| + k)2 + λ2]

[(|A| + k)2 + α2] [(|A| − k)2 + λ2]

}]

. (A.42)
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A.0.2 Multiplication Process

We can write the matrix element for the other multiplication process in

Fig. A.1 (b) as

Mt =
∫ ∫

d3r1d
3r2

1√
V
U∗

k′′ (r1)e
−ik

′′

·r1
1√
V
U∗

k′ (r2)e
−ik

′

·r2
1

4πǫǫ0

e2

|r1 − r2|

× e−λ|r1−r2|
1√
V
Uk(r2)e

ik·r2Uv(r1)
α3/2

v√
π
e−αv|r1|, (A.43)

Mt =
e2α3/2

v

4πǫǫ0V 3/2
√
π

∫

cell

U∗
k′′ (r1)Uv(r1)d

3r1

∫

cell

U∗
k′ (r2)Uk(r2)d

3r2

∫ ∫
d3r1d

3r2

× e−ik
′′

·r1e−ik
′

·r2
e−λ|r1−r2|

|r1 − r2|
eik·r2e−αv |r1|, (A.44)

Fk′′v =
∫

cell

U∗
k′′ (r1)Uv(r1)d

3r1, (A.45)

Fk′′k =
∫

cell

U∗
k′ (r2)Uk(r2)d

3r2, (A.46)

Mt =
e2α3/2

v

4πǫǫ0V 3/2
√
π
Fk

′′
vFk

′
k

∫ ∫
d3r1d

3r2e
−ik

′′

·r1e−ik
′

·r2

e−λ|r1−r2|

|r1 − r2|
eik·r2e−αv|r1|, (A.47)

If we write r12 = r1 − r2 and r2 = r1 − r12 the matrix element yields,

Mt =
e2

4πǫǫ0V 3/2

α3/2
v√
π
Fk

′′
vFk

′
k

∫ ∫
d3r1d

3r12e
−ik

′′

·r1e−ik
′

·r1eik
′

·r12

e−λ|r1−r2|

|r1 − r2|
e−ik·r12eik·r1e−αv|r1|. (A.48)

For the scattering matrix we have two independent integrals, the solution of the

first one can be found as,

I ≡
∫
d3r12e

ik
′

·r12
e−λ|r1−r2|

|r1 − r2|
e−ik·r12 , (A.49)

I =
∫
d3r12e

−i(−k
′

+k)·r12
e−λ|r1−r2|

|r1 − r2|
, (A.50)
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writing the q = −k′

+ k and r12 = r the integral yields,

I =
∫
d3re−iq·r e

−λ|r|

|r| , (A.51)

I =
∫
dφ
∫
d(cos θ)

∫
drr2e−iq·r e

−λ|r|

|r| , (A.52)

I = 2π
∫
drre−λ|r|

∫
d(cos θ)e−iqr cos θ, (A.53)

I = 2π
∫
drre−λ|r| 1

iqr

[
eiqr − e−iqr

]
, (A.54)

I =
2π

iq

[∫
dre(−λ+iq)|r| − e(−λ−iq)|r|

]
, (A.55)

I =
2π

iq

[
1

(−λ + iq)
− 1

(−λ− iq)

]

, (A.56)

I =
2π

iq

[
(−λ− iq) − (−λ+ iq)

λ2 + q2

]

, (A.57)

I = − 4π

λ2 + q2
. (A.58)

The matrix element can be written as,

Mt = − e2

ǫǫ0V 3/2

α3/2
v√
π
Fk

′′
vFk

′
k

1

(q2 + λ2)

×
∫
d3r1e

−i(k
′′

+k
′

−k)·r1e−αv|r1|, (A.59)

Mt = − e2

ǫǫ0V 3/2

α3/2
v√
π
Fk′′vFk′k

1

(q2 + λ2)

×
∫
d3r1e

−i(k
′′

−(k−k
′

))·r1e−αv |r1| (A.60)

Mt = − e2

ǫǫ0V 3/2

α3/2
v√
π
Fk′′vFk′k

1

(q2 + λ2)

×
∫
d3r1e

−i(k
′′

−q)·r1e−αv |r1| (A.61)
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writting q
′

= k
′′ − q the matrix element yields,

Mt = − e2

ǫǫ0V 3/2

α3/2
v√
π
Fk

′′
vFk

′
k

1

(q2 + λ2)

×
∫
d3r1e

−iq
′

·r1e−αv|r1| (A.62)

The solution of the second integral can be found as,

II ≡
∫
d3r1e

−iq
′

r1 cos θe−αv|r1|, (A.63)

II =
∫
dφ
∫
d(cos θ)

∫
r2
1dr1e

−iq
′

r1 cos θe−αv|r1|, (A.64)

II = 2π
∫
r2
1dr1e

−αv |r1|
∫
d(cos θ)e−iq

′

r1 cos θ, (A.65)

II = 2π
∫
r2
1dr1e

−αv |r1|
2π

iq′r1

[
eiq

′

r1 − e−iq
′

r1

]
, (A.66)

II =
2π

iq′

∫
r1dr1

[
e(−αv+iq

′

)|r1| − e(−αv−iq
′

)|r1|
]
, (A.67)

II =
2π

iq′

[
1

(αv + iq′)2
− 1

(αv − iq′)2

]

, (A.68)

II =
2π

iq′

[
(α2

v − q
′2 + 2iαvq

′

) − (α2
v − q

′2 − 2iαvq
′

)

(α2
v + q′2)2

]

, (A.69)

II =
2π

iq′

4iαvq
′

(q′2 + α2
v)

2
(A.70)

II =
8παv

(q′2 + α2
v)

2
. (A.71)

As a result the matrix element becomes

Mt = − e2

ǫǫ0V 3/2

α5/2
v√
π
Fk′′vFk′k

1

(q2 + λ2)

8π

(q′2 + α2
v)

2
, (A.72)
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and the square of it,

|Mt|2 =

[
e2

ǫǫ0V

]2
64π

V
|Fk

′′
v|2|Fk

′
k|2

1

(q2 + λ2)2

1

(q′2 + α2
v)

4
α5

v. (A.73)

Now, we can write the probability equation as,

P
(t)
ii (k) =

∑

k′

∑

k′′

∑

imp.

2π

h̄
|Mt|2δ[

h̄2k
′2

2m
+
h̄2k

′′2

2m
+
h̄2α2

v

2m
− h̄2k2

2m
], (A.74)

∑

imp.

= PNCV, (A.75)

P
(t)
ii (k) =

2π

h̄

2m

h̄2

[
e2

ǫǫ0V

]2 |Fk′′v|2|Fk′k|264πα5
v

V
PNCV

V

(2π)3

V

(2π)3

∫
d3k

′

×
∫
d3k

′′ 1

(q2 + λ2)2

1

(q′2 + α2
v)

4
δ[k

′′2 + k
′2 + α2

v − k2], (A.76)

if τ−1 = 1
π
|Fk

′′
v|2|Fk

′
k|2
[

e2m1/2

ǫǫ0h̄3/2

]2
(A.77)

P
(t)
ii (k) = τ−1 4PNCα

5
v

π3

∫
d3k

′

∫
d3k

′′ 1

(q2 + λ2)2

1

(q′2 + α2
v)

4

×δ[k′′2 + k
′2 + α2

v − k2], (A.78)

if q = k − k
′

d3q = −d3k
′

P
(t)
ii (k) = τ−1 4PNCα

5
v

π3

∫
d3q

∫
d3k

′′ 1

(q2 + λ2)2

1

(q′2 + α2
v)

4

× δ[k
′′2 + k2 + q2 − 2k · q + α2

v − k2], (A.79)

P
(t)
ii (k) = τ−1 4PNCα

5
v

π3
(2π)2

∫
q2dq

1

(q2 + λ2)2

∫
dx
∫
dx

′′

∫
k

′′2dk
′′

× 1

(k′′2 + q2 − 2k′′ · q + α2
v)

4
δ[k

′′2 + k2 + q2 − 2k · q + α2
v − k2],

(A.80)

P
(t)
ii (k) = τ−1 16PNCα

5
v

π

∫
q2dq

1

(q2 + λ2)2

∫
dx
∫
dx

′′

∫
k

′′2dk
′′

× 1

(k′′2 + q2 − 2k′′qx′′ + α2
v)

4
δ[k

′′2 + k2 + q2 − 2kqx+ α2
v − k2],

(A.81)
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if q → q
αv

and k
′′ → k

′′

αv

P
(t)
ii (k) = τ−1 16PNCα

5
v

π

∫
α2

vq
2αvdq

1

α4
v[(q

2 + (λ/αv)2)2]

∫
dx
∫
dx

′′

∫
dk

′′

× α2
vk

′′2αv
1

α8
v[(k

′′2 + q2 − 2k′′qx′′ + 1)4]

1

α2
v

δ[k
′′2 + q2 − 2(kq/αv)x+ 1],

(A.82)

P
(t)
ii (k) = τ−1 16PNC

πα3
v

∫
q2dq

1

[q2 + (λ/αv)2]2

∫
dx
∫
dx

′′

∫
k

′′2dk
′′

× 1

(k′′2 + q2 − 2k′′qx′′ + 1)4
δ[k

′′2 + q2 − 2(kq/αv)x+ 1], (A.83)

P
(t)
ii (k) = τ−1 16PNC

πα3
v

∫
q2dq

1

[q2 + (λ/αv)2]2

∫
dx
∫
dx

′′

×
∫
k

′′2dk
′′ 1

(k′′2 + q2 − 2k′′qx′′ + 1)4

1

2
√
−q2 + 2(kq/αv)x− 1

× δ[k
′′ −

√
−q2 + 2(kq/αv)x− 1], (A.84)

if B =
√
−q2 + 2(kq/αv)x− 1

P
(t)
ii (k) = τ−1 8PNC

πα3
v

∫
q2dq

1

[q2 + (λ/αv)2]2

∫
dx
∫
dx

′′

B2 1

(B2 + q2 − 2Bqx′′ + 1)4

1

B
,

(A.85)

P
(t)
ii (k) = τ−1 8PNC

πα3
v

∫
q2dq

1

[q2 + (λ/αv)2]2

∫
dx
∫
dx

′′ B

(B2 + q2 − 2Bqx′′ + 1)4
,

(A.86)

P
(t)
ii (k) = τ−1 8PNC

πα3
v

∫
q2dq

1

[q2 + (λ/αv)2]2

∫
dx

[
B

6q(B2 + q2 − 2Bqx′′ + 1)3

]1

1−

,(A.87)

P
(t)
ii (k) = τ−18PNC

πα3
v

∫
q2dq

1

[q2 + (λ/αv)2]2

×
∫
dx

[
B

6q(B2 + q2 − 2Bqx′′ + 1)3
− B

6q(B2 + q2 + 2Bqx′′ + 1)3

]

,

(A.88)
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B2 = −q2 − 1 + 2kq
αv
x and dx = αvdB

kq

P
(t)
ii (k) = τ−18PNC

πα2
vk

∫
qdq

1

[q2 + (λ/αv)2]2

×
∫
dB

[
B2

6q(B2 + q2 − 2Bqx′′ + 1)3
− B2

6q(B2 + q2 + 2Bqx′′ + 1)3

]

,

(A.89)

P
(t)
ii (k) = τ−1 8PNC

πα2
vk

∫
qdq

1

[q2 + (λ/αv)2]2

× 1

48q

[
2(−1 +Bq − q2)

(1 +B2 − 2Bq + q2)2
+

3(B − q)q

1 +B2 − 2Bq + q2
+

2(1 +Bq + q2)

(1 +B2 + 2Bq + q2)2

+
3(B + q)q

1 +B2 + 2Bq + q2
+ 3q arctan(B + q) + 3q arctan(B − q)

]

, (A.90)

If C2 = B2 + q2 + 1

P
(t)
ii (k) = τ−1 8PNC

πα2
vk

∫
qdq

1

[q2 + (λ/αv)2]2

×
[

1

48q

(
2(−1 +Bq − q2)

(C2 − 2Bq)2
+

3(B − q)q

C2 − 2Bq
+

2(1 +Bq + q2)

(C2 + 2Bq)2

)

+
1

48q

(
3(B + q)q

C2 + 2Bq
+ 3q arctan(B + q) + 3q arctan(B − q)

)]

,

(A.91)

P
(t)
ii (k) = τ−1 8PNC

πα2
vk

∫
qdq

1

[q2 + (λ/αv)2]2

×
[

1

48q

2(−1 +Bq − q2)(C2 + 2Bq)2 + 2(1 +Bq + q2)(C2 − 2Bq)2

(C2 − 2Bq)2(C2 + 2Bq)2

+
1

48q

(3(B − q)q)(C2 + 2Bq) + (3(B + q)q)(C2 − 2Bq)

(C2 + 2Bq)(C2 − 2Bq)

+
1

48q
(3q arctan(B + q) + 3q arctan(B − q))

]

, (A.92)

P
(t)
ii (k) = τ−1 8PNC

πα2
vk

∫
qdq

1

[q2 + (λ/αv)2]2

×
[

1

48q

(
4Bq(C4 + 4B2q2 − 4C2 − 4C2q2)

(C4 − 4B2q2)2
+

(3Bq(2C2 − 4q2)

(C4 + 4B2q2)

)

+
1

48q
(3q arctan(B + q) + 3q arctan(B − q))

]

, (A.93)
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P
(t)
ii (k) = τ−1 8PNC

πα2
vk

∫
qdq

1

[q2 + (λ/αv)2]2

× 2

48

[
B

(C4 − 4B2q2)

(
2(C4 + 4B2q2 − 4C2 − 4C2q2)

(C4 − 4B2q2)
+ (3C2 − 6q2)

)

+
3

2
arctan(B + q) +

3

2
arctan(B − q)

]
, (A.94)

The final probability equation can be written as,

P
(t)
ii (k) = τ−1 PNC

3πα2
vk

∫
dq

q

[q2 + (λ/αv)2]2

×
{

B

(C4 − 4B2q2)

[

2
(C4 + 4B2q2 − 4C2(q2 + 1))

(C4 − 4B2q2)
+ (3C2 − 6q2)

]

+
3

2
(arctan(B + q) + arctan(B − q))

}
. (A.95)

We can also express this probability as,

P
(t)
ii (k) = τ−1 PNC

3πα2
vk

∫
dq

q

[q2 + (λ/αv)2]2
h(q), (A.96)

then h(q) is

h(q) =
B

(C4 − 4B2q2)

[

2
(C4 + 4B2q2 − 4C2(q2 + 1))

(C4 − 4B2q2)
+ (3C2 − 6q2)

]

+
3

2
(arctan(B + q) + arctan(B − q)). (A.97)

A.0.3 Direct Tunnelling

Changing the αv with αc in Eq. A.96 we can easily obtain the probability of the

direct tunnelling process(cf. Fig. A.1 (c)) as

P
(t)
ii (k) = τ−1 PNC

3πα2
ck

∫
dq

q

[q2 + (λ/αc)2]2
h(q), (A.98)

where h(q) is given by

h(q) =
B

(C4 − 4B2q2)

[

2
(C4 + 4B2q2 − 4C2(q2 + 1))

(C4 − 4B2q2)
+ (3C2 − 6q2)

]

+
3

2
(arctan(B + q) + arctan(B − q)). (A.99)



Appendix B

Theoretical Details on Auger

Recombination and Carrier

Multiplication

In this appendix, for documentation purposes we would like to provide some

background information and further technical details on the Auger recombination

and carrier multiplication.

B.0.4 Auger Recombination in Bulk Systems

Before starting the explanation and clarification of method used to calculate the

Auger recombination (AR) and carrier multiplication (CM) (inverse AR) rate in

NCs it would be more worthwhile to examine AR in bulk systems. Simply, AR in-

volves three particles: an electron and a hole, which recombine in a band-to-band

transition and give off the resulting energy to another electron or hole. In high

purity bulk materials only the direct processes (see Fig. B.1) are of significance.

The matrix element M12 for the scattering in the direct process is

M12 =
1

V 2

∫ ∫
u∗

vk
′

1

(r1)e
−ik

′

1
·r1u∗

ck
′

2

(r2)e
−ik

′

2
·r2Vc(|r1 − r2|)uck1

(r1)

89
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× e−ik1·r1uck2
(r2)e

−ik2·r2d3r1d
3r2 (B.1)

M21 =
1

V 2

∫ ∫
u∗

vk
′

1

(r2)e
−ik

′

1
·r2u∗

ck
′

2

(r1)e
−ik

′

2
·r1Vc(|r1 − r2|)uck1

(r1)

× e−ik1·r1uck2
(r2)e

−ik2·r2d3r1d
3r2 (B.2)

The integration of the planewave of the wavefunctions leads to a momentum

conservation; this constraint reduces the AR and CM in bulk systems.

Figure B.1: A schematic of the Auger Recombination in Bulk Semiconductors.

In quantum mechanics there is an important distinction when scattering oc-

curs between identical particles or distinguishable particles.

• If the particles are distinguishable the total matrix element is

|M |2 = |M12|2 + |M21|2, (B.3)

• If the particles are indistinguishable and are bosons (e.g. α-particles, pho-

tons, mesons) then the total matrix element is

|M |2 = |M12 +M21|2, (B.4)

• If the particles are indistinguishable but are fermions (e.g. electrons, neu-

trinos, protons, neutrons) the total matrix element is

|M |2 = |M12 −M21|2. (B.5)
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We can essentially use the above formalism and apply it to the AR case. There

are four processes and two of them are totally indistinguishable (initial electrons

have the same spins) and two of them are distinguishable (initial electrons have

the opposite spins). One has to square and add the contributions separately. The

total matrix element becomes

|M |2 =
[
|M12|2 + |M21|2 + |M12 −M21|2

]
(B.6)

During the calculation of AR, we must take into account the occupation statis-

tics of the various electrons and hole states involved in. For example in the Auger

case, we need to weight the rate with the probability that states k2 is full, k
′

1

is empty and k1 is full. In general we have to use the Fermi-Dirac function to

describe the occupation.

B.0.5 Theory of Auger Process in Nanocrystals

After solving the atomistic empirical pseudopotential Hamiltonian for the energy

levels and the wave functions, the AR and CM probability can be extracted using

the Fermi’s golden rule,

W =
1

τ
=

2π

h̄

∑

fin

| 〈in|∆H|fin〉 |2δ(∆E). (B.7)

We consider Auger final states with a finite lifetime h̄/Γ [thus evolving with time

as Φfe
−iωt−Γt/2h̄] to account for these interactions, which may cause their decay

into lower energy states. We derive a phenomenological formula for the Auger

rate (under standard time-dependent perturbation theory):

Im

{
1

π

1

x− i(Γ/2)

}

= δ(x) (B.8)

and using this identity Eq. B.7 yields

W =
1

τ
=

Γ

h̄

∑

n

| 〈n|∆H|i〉 |2
(Efn − Ei)2 + (Γ/2)2

(B.9)

where |i〉 and |f〉 are the initial and final Auger electronic state, Ef and Ei are

their eigenenergies, Γ is the broadening parameter of the energy and ∆H is the
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Coulomb interaction. In Eq. B.9, we have used multiple final states {n} (where

n includes spin as well), since each final state might have some contribution to

the Auger rate W = 1/τ .

Now we use τe (Conduction Type in Fig. 5.1 (a)) the Auger lifetime for the

process of exciton + electron → electron, and with τh (Valence Type in Fig. 5.1

(b)) the process of exciton + hole → hole. To calculate the τe (τh), we must write

the Slater determinant of the initial and final states. If two initial electrons (holes)

have identical spin (indistinguishable) initial and final states can be written by

using the Slater determinant

Φin =
1√
2

∣∣∣∣∣∣

φi(r1, σi) φi(r2, σi)

φj(r1, σj) φj(r2, σj)

∣∣∣∣∣∣
,Φfin =

1√
2

∣∣∣∣∣∣

φk(r1, σk) φk(r2, σk)

φl(r1, σl) φl(r2, σl)

∣∣∣∣∣∣
,

and the Auger matrix element | 〈in|∆H|fin〉 | can be calculated as

MI(i, j, k, l) =

〈
1√
2
(φi(r1, σi)φj(r2, σj) − φj(r1, σj)φi(r2, σi)) |V (r1 − r2)|

1√
2
(φk(r1, σk)φl(r2, σl) − φl(r1, σl)φk(r2, σk))

〉

δσi,σj
, (B.10)

and Eq. B.10 is equal to

MI(i, j, k, l) = +
1

2
〈φi(r1, σi)φj(r2, σj)|Vc(r1 − r2) |φk(r1, σk)φl(r2, σl)〉 δσi,σj

− 1

2
〈φi(r1, σi)φj(r2, σj)|Vc(r1 − r2) |φl(r1, σl)φk(r2, σk)〉 δσi,σj

− 1

2
〈φj(r1, σj)φi(r2, σi)|Vc(r1 − r2) |φk(r1, σk)φl(r2, σl)〉 δσi,σj

+
1

2
〈φj(r1, σj)φi(r2, σi)|Vc(r1 − r2) |φl(r1, σl)φk(r2, σk)〉 δσi,σj

,

(B.11)

here Eq. B.11 can be simplified by changing the r1 ⇐⇒ r2 in the the third and

fourth terms, yielding

MI(i, j, k, l) = + 〈φi(r1, σi)φj(r2, σj)|Vc(r1 − r2) |φk(r1, σk)φl(r2, σl)〉 δσi,σj

− 〈φj(r1, σj)φi(r2, σi)|Vc(r1 − r2) |φk(r1, σk)φl(r2, σl)〉 δσi,σj
.

(B.12)
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Coulomb interaction doesnot change the spin of the particles so Eq. B.12 is equal

to

MI(i, j, k, l) = + 〈φi(r1, σi)φj(r2, σj)|Vc(r1 − r2) |φk(r1, σk)φl(r2, σl)〉 δσi,σj
δσi,σk

δσj ,σl

− 〈φj(r1, σj)φi(r2, σi)|Vc(r1 − r2) |φk(r1, σk)φl(r2, σl)〉 δσi,σj
δσi,σl

δσj ,σk
.

(B.13)

If two initial electrons (holes) have opposite spin (distinguishable), initial and

final states can be written as

Φin = φi(r1, σi)φj(r2, σj),Φfin = φk(r1, σl)φl(r2, σk),

and the Auger matrix element | 〈in|∆H|fin〉 |

MD(i, j, k, l) = 〈(φi(r1, σi)φj(r2, σj)|Vc(r1 − r2) |(φk(r1, σl)φk(r2, σl)〉 (1 − δσi,σj
)

. (B.14)

Similarly, Eq. B.14 is equal to

MD(i, j, k, l) = 〈(φi(r1, σi)φj(r2, σj)|Vc(r1 − r2) |(φk(r1, σl)φk(r2, σl)〉 (1 − δσi,σj
)δσi,σk

δσj ,σl
.

(B.15)

For completeness, the spin-conserving screened Coulomb potential is given by

Vc(r1, r2) =
e2

ǫ(r1, r2)|r1 − r2|
, (B.16)

here, the dielectric function ǫ(r1, r2) requires some special attention. The subject

of the correct screened Coulomb interaction for NCs has been the center of dis-

cussion within the past decade. A number of researchers [161, 162, 163, 164] have

reported the average dielectric constant of a quantum dot or NC to be smaller

than the bulk case and linked the cause of this reduction to increase in energy

gap in NC. However, further theoretical investigations [156, 165, 160, 149, 166]

have concluded that dielectric constant of the NC is bulklike inside. On the basis

of these reports, we use as the dielectric function [149]

1

ǫ(r1, r2)
=

1

ǫout

+
(

1

ǫin
− 1

ǫout

)
m(r1)m(r2), (B.17)

where, the so-called mask function m(r) is set to 1 when r inside of the NC and

0 when r outside of the NC.
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Using the matrix elements MI and MD, we can write the total rate expression

as,

W (i, j, k) = Γ
h̄

∑

l

|MI(i, j; k, l)|2 + |MD(j, i; k, l) +MD(i, j; k, l)|2
(∆E)2 + (Γ/2)2

, (B.18)

where the sum l run over the spin ↑, ↓ of the electron as well.

For T 6=0, we take a Boltzmann average over the one of the initial electron

and initial hole state. For example, in the case of the Conduction Type Recom-

bination (see Fig.5.1 (a)), we take the average over all initial electronic (i) and

initial hole (k) states with the probability (e−(Ei−ELUMO)/kBT for conduction and

e−(EHOMO−Ek)/kBT for valance) grater than the 1/20.

1

τ
=

∑

i,k

W (i, j, k)e−(Ei−ELUMO)/kBT e−(EHOMO−Ek)/kBT

∑

i,k

e−(Ei−ELUMO)/kBT e−(EHOMO−Ek)/kBT
(B.19)

Because of the huge number of the possible transitions (it requires excessive

simulation time), the other initial electron is kept fixed at LUMO. For this initial

state we did not take the average over the spin, because our wavefunctions do

not depend on it. The rate equation reduces

1

τ
=

∑

i,k

W (i, lumo, k)e−(Ei−ELUMO)/kBT e−(EHOMO−Ek)/kBT

∑

i,k

e−(Ei−ELUMO)/kBT e−(EHOMO−Ek)/kBT
(B.20)

where lumo is valence band top state.

Biexciton types of AR shown in Fig. 5.1 (c) and (d) becomes particularly

important under high carrier densities such as in NC lasers. Its probability can

be expressed in terms of EE and EH type AR as [149],

1

τXX

=
2

τEE

+
2

τEH

(B.21)

where τEE and τEH are EE and EH lifetimes.

Almost the same formalism applies to the carrier multiplication, hence it will

not be repeated.


