
GENERATING CONTENT-BASED
SIGNATURES FOR DETECTING

BOT-INFECTED MACHINES

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Leyla Bilge

July, 2008

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Ali Aydın SELÇUK(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. İbrahim KÖRPEOĞLU

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Mustafa AKGÜL

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. BARAY
Director of the Institute

ii

ABSTRACT

GENERATING CONTENT-BASED SIGNATURES FOR
DETECTING BOT-INFECTED MACHINES

Leyla Bilge

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Ali Aydın SELÇUK

July, 2008

A botnet is a network of compromised machines that are remotely controlled and

commanded by an attacker, who is often called the botmaster. Such botnets are

often abused as platforms to launch distributed denial of service attacks, send

spam mails or perform identity theft. In recent years, the basic motivations

for malicious activity have shifted from script kiddie vandalism in the hacker

community, to more organized attacks and intrusions for financial gain. This shift

explains the reason for the rise of botnets that have capabilities to perform more

sophisticated malicious activities. Recently, researchers have tried to develop

botnet detection mechanisms. The botnet detection mechanisms proposed to date

have serious limitations, since they either can handle only certain types of botnets

or focus on only specific botnet attributes, such as the spreading mechanism, the

attack mechanism, etc., in order to constitute their detection models.

We present a system that monitors network traffic to identify bot-infected

hosts. Our goal is to develop a more general detection model that identifies

single infected machines without relying on the bot propagation vector. To this

end, we leverage the insight that all of the bots get a command and perform an

action as a response, since the command and response behavior is the unique

characteristic that distinguishes the bots from other malware. Thus, we examine

the network traffic generated by bots to locate command and response behaviors.

Afterwards, we generate signatures from the similar commands that are followed

by similar bot responses without any explicit knowledge about the command

and control protocol. The signatures are deployed to an IDS that monitors the

network traffic of a university. Finally, the experiments showed that our system

is capable of detecting bot-infected machines with a low false positive rate.

Keywords: botnet, botmaster, malware.

iii

ÖZET

BOTLAR TARAFINDAN ELE GEÇİRİLMİŞ
BİLGİSAYARLARIN TESPİT EDİLMESİ İÇİN
İÇERİK-TABANLI İMZALARIN ÜRETİLMESİ

Leyla Bilge

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Ali Aydın SELÇUK

Temmuz, 2008

Botnet’ler botmaster adı verilen saldırganlar tarafından uzaktan kontrol edilip

yönetilebilen, ele geçirilmiş makinalardan oluşan ağlardır. Botnetler genelde

dağıtık hizmet engelleme saldırıları uygulamak, reklam içerikli e-posta göndermek

ya da kimlik hırsızlığı yapmak için kullanılırlar. Son yıllarda, kötü niyetli

faliyetlerdeki temel amaç, haker topluluğundaki özenti çocukların saygınlık

kazanma isteklerinden daha çok organize saldırılarla finansal kazanç sağlamaktır.

Bu değişim, daha sofistike kötü niyetli faliyetleri yapabilme özelliği olan botnet-

lerin sayısındakı artışın nedenini de açıklar. Son zamanlarda, araştırmacılar bot-

netleri yakalamak için yoğun çalışmalar yapmaktalar. Şimdiye kadar geliştirilen

sistemler, bazı bot özelliklerine, çoğalma yöntemlerine ya da saldırı şekillerine

odaklandıkları için ne yazık ki çok sınırlıdırlar.

Biz, ağ trafiğini izleyerek, yerel ağdaki bot tarafından ele geçirilmiş makinaları

tespit eden bir sistem sunuyoruz. Bizim amacımız, bot yayılma vektöründen

bağımsız bir şekilde ele geçirilmiş makinaları tespit eden daha genel bir yakalama

yöntemi geliştirmektir. Bunun için, botların en belirgin karakteristiği olan komut

alma ve komuta itaat etmek özelliğinden yararlanıyoruz. Bot tarafından üretilmiş

ağ trafiğini inceleyip, komutları ve cevaplarını tespit ediyoruz. Ardından, be-

lirli bot davranışlarını tetikleyen benzer komutlardan, komut ve kontrol pro-

tokolü hakkında bir ön bilgiye sahip olmadan bot yakalama imzaları üretiyoruz.

Ürettiğimiz imzalar, bir üniversitenin trafiğini izleyen ve denetleyen bir IDS’e

uygulanmıştır. Yaptığımız deneylerin sonunda, bizim sistemimizin bot tarafından

ele geçirilmiş makinaları çok düşük orandaki yanlış alarmlar ile yakaladığı ortaya

çıkmıştır.

Anahtar sözcükler : botnet, botmaster, malware.

iv

Acknowledgement

This masters thesis was carried out in cooperation with Peter Wurzinger at Inter-

national Secure Systems Lab in Technical University of Vienna. I am glad that

I had the possiblity to work with Peter on a very interesting and hot subject. I

would like to thank him for being a great project partner.

Moreover, I would like to thank my advisors Engin Kirda and Christopher

Krügel for their patience and support during the whole work.

I also would like to thank to my advisor Ali Aydın Selçuk in Bilkent University

that he gave me the chance to be an exchange student in Technical University of

Vienna.

Special thanks to my office mates Manuel Egele, Martin Szydlowski and

Clemens Kolbitsch for their friendship and sharing the tea break with me.

My final thanks are for Tübitak which supported me financially during my

master studies.

v

Contents

1 Introduction 1

2 Botnets 5

2.1 Definition of Bots and Botnets . 5

2.1.1 Historical Evolution of Botnets 6

2.2 The Threat of the Botnets . 7

2.2.1 Distributed Denial of Service Attacks 8

2.2.2 E-Mail Spamming . 9

2.2.3 Phishing Mails . 10

2.3 Characteristics of Botnets . 11

2.3.1 Bot Propagation Mechanisms 12

2.3.2 Command and Control Mechanisms 13

2.3.2.1 Push Style C&C 14

2.3.2.2 Poll Style C&C 16

2.3.2.3 P2P C&C . 17

vi

CONTENTS vii

2.3.3 Exploit and Attack Mechanisms 18

2.3.4 Obfuscation Mechanisms 19

2.4 Real World Examples for Botnets 20

2.4.1 IRC Bots . 20

2.4.2 Storm . 21

3 System Overview 23

3.1 Running The Bot Samples . 24

3.2 Clustering Bot Families . 24

3.3 Finding Bot Responses in the Network Captures 25

3.4 Extracting Behavioral Profiles . 26

3.5 Generating Signatures . 26

4 Experimental Setup 27

4.1 Collecting Bot Binaries . 27

4.1.1 The Nepenthes Platform 29

4.1.2 ANUBIS:Analyzing Unknown Binaries 29

4.2 Running the Bot Binaries . 30

4.2.1 Virtual Machine Monitors (VMMs) and Emulators 31

4.2.1.1 VMware . 32

4.2.1.2 Qemu . 32

4.2.1.3 Xen . 33

CONTENTS viii

4.2.2 Running Environment: Virtual Machine 33

4.2.3 Starting Mutliple Virtual Machines 35

4.3 Capturing Network Traces . 37

5 Analysis of the Network Traffic 40

5.1 Aggregate Analysis . 41

5.2 Connection Based Analysis . 47

5.2.1 Detailed Connection Based Analysis Based on IP Addresses

and Port Numbers . 50

5.3 Observing Bots That Have Different Types of C&C Mechanisms . 53

5.3.1 Push Style Bots . 53

5.3.2 Poll Style Bots . 53

5.3.3 P2P Bots . 54

6 Signature Generation 59

6.1 Signature Quality . 60

6.2 Content-Based Signatures . 61

6.2.1 Substring Signatures . 62

6.2.2 Conjunction Signatures . 62

6.2.3 Token Subsequence Signatures 62

6.2.4 Bayes Signatures . 63

6.3 Signature Generation Algorithms 63

CONTENTS ix

6.3.1 Longest Common Substring Algorithm 63

6.3.1.1 Suffix Trees . 64

6.3.1.2 Suffix Arrays . 66

6.3.2 Longest Common Subsequence Algorithm 67

6.4 Generating Signatures for Detecting the Bots 68

7 Evalution 71

7.1 Signature Quality . 72

7.2 Real World Deployement . 74

8 Conclusion 75

A Signatures Generated for Bot Families 80

List of Figures

2.1 Botnets that have centralized command and control mechanisms . 14

2.2 Push Style C&C Mechanisms . 15

2.3 Poll Style C&C Mechanisms . 16

4.1 The code segment that checks the IDT location in the memory. . 35

4.2 The configuration of VMware virtual machine. 36

4.3 Creating and running a virtual machine. 37

5.1 Packet count per 100 seconds . 43

5.2 Cumulative packet size per 100 seconds 44

5.3 Count of HTTP packets per 100 seconds 44

5.4 Count of unique IP addresses per 100 seconds 45

5.5 Count of port numbers per 100 seconds 46

5.6 Number of non-ascii characters per 100 seconds 47

5.7 Count of Packets per connection 48

5.8 Amount of data flows per connection 48

x

LIST OF FIGURES xi

5.9 IP and Port Specific Connection Based Analysis of an IRC Bot . . 50

5.10 IP and Port Specific Connection Based Analysis of an HTTP Bot 51

5.11 HTTP bots’ characteristics . 54

5.12 Count of packets produced by the storm sample for each connection 55

5.13 Amount of data transfered in each connection by the storm sample 56

5.14 Total count of packets produced by the storm bot 56

5.15 Cumulative amount of data produce by the storm bot 57

5.16 Count of SMTP packets produced by the storm bot 57

5.17 Count of non-ascii characters sent and received by the storm bot . 58

6.1 Generalized Suffix Tree Representation of two strings, abbab and

aabab . 65

A.1 The signature for one of the behavioral clusters of IRC-1 80

A.2 The signature for one of the behavioral clusters of IRC-2 80

A.3 The signature for one of the behavioral clusters of IRC-3 80

A.4 The signature for one of the behavioral clustera of IRC-4 81

A.5 The signature for one of the behavioral clusters of an IRC bot

which has an obfuscated C&C. 81

A.6 The signature for the inbound traffic of the HTTP bot 81

A.7 The signature for the outbound traffic of the HTTP bot 81

A.8 The signature for storm . 81

List of Tables

2.1 The Timeline of Bots . 7

4.1 The Virtual Machines detected and undetected by the Redpill pro-

gram . 34

4.2 The firewall rules of each VMware virtual machine 38

6.1 The suffix array constructed for the string abacdacbb 66

7.1 Numbers of detection models and total numbers of token sequences

generated for each bot family. 71

xii

Chapter 1

Introduction

During the last ten years, the increase in the popularity of the Internet caused

people to be addicted to this phenomenon to such an extent that it is almost

impossible for most of the users to complete any piece of work without the help

of the Internet. This major growth in popularity results in the increase of the

number of cyber-criminals as well. The miscreants do not need to expend any

physical effort to steal money from banks as it so was in the past. Internet-based

attacks are relatively easy to launch. Moreover, it is difficult to chase and catch

the criminals, since all of the activities on the Internet are done virtually. Thus,

the Internet became an attractive tool for the attackers who are inclined to use

it for their nefarious purposes.

The most dangerous, effective and popular tool of choice for cyber-criminals

today are bots [19]. A Bot (a.k.a. zombie or drone) is a compromised machine

that can be controlled by an attacker remotely. Immediately after the bot binary

is installed on the target machine either by exploiting known vulnerabilities or

by using social engineering techniques, a command and control channel (C&C

channel) is established between the bot and the controller, who is called as the

botmaster. One of the most distinguishing characteristics of bots [6] is to establish

a C&C channel, which allows the botmaster to remotely control or update the

compromised machine. In order to perform more effective attacks, the botmaster

tries to compromise several machines to construct a botnet, a network of bots.

1

CHAPTER 1. INTRODUCTION 2

Such botnets are often abused as platforms to launch distributed denial of service

attacks, to send spam mails or to steal secret information.

Traditional means of defense against malware can be either host-based or

network-based. Today, the most preferable host-based defense systems are anti-

virus systems that periodically scan the computer to detect malware. The defense

provided by the anti-virus programs relies on pre-defined signatures that are sup-

posed to identify the malware. Unfortunately, such malware detection schemes

have limited capabilities [4] against bots that have a fast evolution which is dif-

ficult to be kept up by the anti-virus programs, since the pre-defined signatures

they made use of are generated with a manual effort. To mitigate this limi-

tation, another type of host-base defense systems, which use static [5, 18] or

dynamic [15, 38] code analysis techniques to extract the behavior of unknown

programs, have been proposed. Although these systems are able to identify the

malicious behavior correctly, because of their run-time overhead, they are not

reasonable enough to be applied to detect bots.

Contrary to host-based analysis techniques, the network-based analysis tech-

niques require the users of the computers to install neither an anti-virus program

nor an analysis platform. Typically, they deploy an intrusion detection system

(IDS) to monitor network traffic for signs that indicate the presence of the mal-

ware. Clearly, the same technique can be applied to detect bot-infected machines

in a network. The first system that tries to detect bot-infected machines by net-

work traffic analysis was BotHunter [10], a system that correlates three different

IDS alerts to identify bots. Unfortunately, the bot propagation model the authors

present is quite limited, since most of the stages that characterize a bot infection

consist of scanning activity and remote exploits. Therefore, the system cannot

detect bots that do not propagate by exploiting vulnerabilities, but using social

engineering techniques such as deceiving the user to open an attachment or click

a link on a web page.

Another recent system that analyzes network traffic to find signs for bot in-

fection is BotSniffer [11]. BotSniffer correlate the network activity of machines,

which are in the same network, to detect members of the same botnet. Since the

CHAPTER 1. INTRODUCTION 3

members of a botnet take the same command simultaneously, their response to

the command will be same as well. Thus, if there are enough amount of bots that

are members of the same botnet, the system is able to correlate the command and

response activity performed by the bots and botmaster to detect the insider bots.

Of course, the system has limited capabilities to detect individual bot-infected

machines. Because system requires observing at least two bots that behave same

in order to correlate a network activity.

We present a system that monitors network traffic to identify bot-infected

hosts too. However, our goal is to develop a more general detection model that

identifies single infected machines without depending on the bot propagation

vector. The unique characteristic that distinguishes the bots from other malware

is that they can be remotely controlled by a botmaster. When the botmaster

wants to start an activity, such as scanning activity, denial of service attack, etc.,

she simply sends the command to the bots and expects that the bots obey to

the command by carrying out some actions. In order to generate bot detection

models, we leverage the fact that all of the bots get a command and perform an

action as a response. Thus, we examine the network traffic to locate command and

response behaviors. Afterwards, we generate signatures from the commands that

are followed by bot responses. The signatures generated have the appropriate

format that can directly be deployed to popular IDSs, such as Bro [24] and

Snort [28]. Since our analysis focuses only on the command and response activity,

our system can detect bots completely independently from their spreading vector.

Also, we can detect bot-infected machines, even if there is only one in the network,

because the IDSs are capable of detecting malware without concerning the number

of infected machines.

There is a growing variety of different bot families which have different com-

mand sets and of course, different corresponding bot responses. Therefore, we

analyze different bot families individually and generate specific detection models

that are applicable only for the bots that are members of a specific bot family.

To this end, we cluster bot binaries in a way that the bot binaries belong to the

same bot family are grouped together. Once the bots are grouped, we insert the

data collected for each family as an input to our system.

CHAPTER 1. INTRODUCTION 4

Another salient feature of our system is that we can automatically generate

signatures by observing the network traffic generated by real bots that are cap-

tured in the wild. The real traffic is collected by executing each bot binary in a

controlled environment and recording its network activity. To this end, while a

bot is run in our test environment, we do not restrict the network accessibility of

the bot, but allow it to establish the connection to the botmaster. Since there is

no restriction, the bot can also perform the malicious activity that is commanded

by the botmaster. Therefore, we can observe all of the commands and responses

from the network captures.

Chapter 2

Botnets

2.1 Definition of Bots and Botnets

Basically, bot (also know as zombie or drone) is a compromised machine that

can be controlled by an attacker remotely. The bot binary might be installed on

the target machine either by exploiting a known vulnerability or by using social

engineering techniques such as deluding the Internet user to click a link that

might be send by an e-mail or MSN Messenger chat. As soon as the bot binary is

executed, it connects to the botmaster in order to get commands. The ability to

be remotely controlled and commanded is the most important property of bots

and this ability also distinguishes them from other malwares.

Botnet is a network that consists of several malicious bots that are con-

trolled by a commander. Typically, the bot controller, which is actually called as

botmaster, uses a command and control channel (C&C channel) in order to send

her commands that demand some malevolent activities to be performed. The

botnets have a reputation on the influential distributed denial of service attacks.

Since the more bots in the botnet, the more powerful attacks could be performed;

the botnets need a propagation mechanism to increase their population. Gener-

ally, they make use of some off-the-shelf propagation mechanisms that are also

used by existing worms.

5

CHAPTER 2. BOTNETS 6

2.1.1 Historical Evolution of Botnets

Bots, which are one of the most dangerous malwares nowadays, interestingly, were

invented for benign usage. The first bots were programs that worked in IRC [13]

network. In late 1980s, the IRC platform was developed for providing a chatting

service to several users, and bots were used to entertain users by offering them

game or message services. After a while, the attackers found a way to abuse bot

usage and waged IRCwars. The IRCwars were one of the first documented

distributed denial of service attacks.

In late 1999, SANS Institute researchers discovered remotely executable code

on thousands of Windows machines. They were inspired by remote control nature

of the code while they were naming the infected computers as robots, which is

shortened to bot later. Because the code was encrypted, the researchers could not

easily reverse-engineer it to determine what the purpose of the code was until the

bots did one-week-long distributed denial of service attack that targeted Amazon,

eBay and other secure ecommerce sites in February 2000.

The Table 2.1 provides a timeline that ranges from the first popular IRC

bot EggDrop to recently released peer-to-peer bot Storm. First malicious bots

used Microsoft IRC client, mIRC.exe, with slight modifications for commanding

the bots. Then, more modular, robust and effective bots that had their own

IRC clients were developed. Malicious bots have seen much development in the

recent years after the emergence of peer-to-peer bots. Some peer-to-peer bots

used existing protocols while the others developed new protocols to construct

their networks.

Now, botnets of more than a million compromised computers are found reg-

ularly in the wild, although they usually run in packs of 10 to 20,000 to avoid

detection. They have a very big ration in 50 top malware list of well-know mal-

ware analyzer companies. Thus, they can be referred as one of the most powerful

threats against Internet users.

CHAPTER 2. BOTNETS 7

Date Name Description
12/1993 EggDrop non-malicious IRC bot
04/1998 GTbot Malicious IRC bot based on MIRC
04/2002 SDbot Provided own IRC Client
10/2002 Agobot Robust, flexible, modular design
04/2003 Spybot Extensive feature set based on Agobot
03/2004 Phatbot P2P bot based on WASTE
03/2006 SpamThru P2P bot
04/2006 Nugache P2P bot
01/2007 Peacomm P2P bot based on Kademlia
10/2007 Storm Uses its own P2P network

Table 2.1: The Timeline of Bots

2.2 The Threat of the Botnets

The primary goals of botnets can be categorized as information dispersion and

information harvesting. Information dispersion includes the e-mail spamming at-

tacks and denial of service attacks. Information harvesting aims to obtain iden-

tity data, financial data, private data, e-mail address books or any type of data

may exist on the host. Although some of the botmasters construct their botnets

for fun or fame, most of them intent to get financial benefits. The information

dispersion has economic benefits because some companies may wish to pay the

botmaster in order to disperse spams that are used for sending advertisements.

The information harvesting also has direct economic benefits, since the revealed

secret information may allow the botmaster to get money directly.

Today, botnets constitute a big treat against Internet users. They perform

malicious activities that aim to steal important secret information, obstruct work-

ing of a system, make advertisements or send junk e-mails, etc. The most popular

and effective attacks performed by botnets are distributed denial of service at-

tacks, e-mail spamming attacks and phishing attacks. In addition, the botnets

might also be used for identity theft and click fraud as well.

CHAPTER 2. BOTNETS 8

2.2.1 Distributed Denial of Service Attacks

Botnets are widely used to perform distributed denial of service attacks (DDoS),

which can be significantly destructive if the size of the botnet is big enough. A

DDoS attack is an attack that targets either a computer or a network to make

a resource unavailable to its users. Typically, the loss of the service or network

connectivity is done by consuming the bandwidth of the network or overloading

the network stack in the computer. A DDoS attack can be performed in a number

of different ways. Some of them are listed as:

• Consuming the computational resources, e.g. bandwidth, disk space or

processor time.

• Corrupting the configuration information such as routing table configura-

tion.

• Disrupting the state information, such as unsolicited resetting of TCP ses-

sions.

• Corrupting the physical network components

• Obstructing the communication media in order to prevent the users from

communicating each other.

Today, it is very easy to mount DDoS attacks with the help of off-the-shelf

tools [8] . There are different kinds of attacks that target the connection oriented

Internet protocol TCP, the connectionless protocol UDP or protocols at higher

level in the network stack:

1. TCP SYN flooding : TCP SYN flooding attack is performed by sending

several connection requests to target computer in order to stress the pro-

cessing ability. The half open connections on the target machine exhaust

the data structures in the kernel. Thus, the computer cannot accept new

connections.

CHAPTER 2. BOTNETS 9

2. UDP flooding : The attacker aims to consume the network bandwidth and

computational resources by sending a large number of UDP packets to sev-

eral ports. While the UDP flooding attack can be used to perform DDoS

attacks, the attacker can get some important information, such as the ser-

vices working on specific ports, as well.

3. DDoS attacks targeting high-level protocols: Anymore, the DDoS attacks

are more dangerous, because they are not only restricted to web services.

By creating more specific attacks that target high-level protocols, more

efficient results can be obtained. The web spidering attack, which starts

from a given web site and then recursively requests all links on that site, is

a good example for DDoS attacks that targets high-level protocols.

In the past, several serious DDoS attacks were seen. In February 2000, an

attacker applied DDoS attacks to several e-commerce companies and web sites.

The attacks deactivated the service of the servers for several hours. In recent

years, the threat of the DDoS attacks turn into real cybercrime. For example, a

botnet targeted a betting company during the European soccer championship in

2004 and demanded money in exchange of letting the system operate again.

2.2.2 E-Mail Spamming

E-mail spamming, a.k.a. bulk e-mail or junk e-mail, is to send nearly identi-

cal messages to numerous recipients by e-mail. Generally, such messages have

commercial content. An e-mail is spam only if it is unsolicited and sent in bulk.

E-mail spams slowly but exponentially can grow to several billion messages a day.

Thus, now e-mail spamming is one of the most disturbing Internet activities. E-

mail addresses used by the spammers are collected by chat rooms, newsgroups,

websites and the malware that harvest e-mail addresses from the users’ address

books.

The 80% of the spam e-mails are sent by the botnets. Typically, bots start

a SOCKS v4/v5 proxy on the compromised host in order to use it for sending

CHAPTER 2. BOTNETS 10

spam e-mails. Obviously, a botnet with thousands of members can send a massive

amount of spam e-mails.

While mostly the bots are known to send spam mails, there are other kinds of

bots that are specifically used for collecting valid e-mail addresses from the wild.

Most of the spambots are used for collecting user addresses. Such spambots

are web crawlers that can gather e-mail addresses from Web sites, newsgroups,

special-interest group (SIG) postings, and chat-room conversations.

2.2.3 Phishing Mails

Phishing is a kind of identity theft which aims to compromise sensitive infor-

mation, such as passwords or credit card information, by masquerading as a

trustworthy entity in an electronic communication. Now, phishing attacks use

sophisticated social engineering techniques to persuade users to give their secret

information. There are different types of phishing attacks:

• Spoofing Mails and Web Sites : The earliest phishing attacks were e-mail

based. The attackers were trying to persuade the victim users to send their

passwords and account information by sending spoofed e-mails. Although

there are still many users that can be fooled, anymore most of them know

that sensitive information must not be sent by e-mails. Thus, the attackers

developed more sophisticated phishing techniques to deceive the victims.

One of the well-known phishing attacks combines both phishing mails and

web sites by sending mails that appear to come from a legitimate organi-

zation. After the user clicks a link in the mail, the e-mail directs the user

to a web site that looks identical to a familiar web site. Then, the user

perform his normal actions, such as logging into the site or sending account

information, which reveals all the secret information to the attacker.

• Exploit Based Phishing Attacks: Exploit Based Phishing Attacks are more

sophisticated. They make use of known vulnerabilities to exploit the system

and then install a program that collects the sensitive information. A good

CHAPTER 2. BOTNETS 11

example for such programs is key-loggers which records all of the keys that

are pressed by the user in order to get secret information.

2.3 Characteristics of Botnets

The attributes that characterize bots are the remote control facility, the command

set that is used for several nefarious purposes and the spreading mechanism to

increase the population of the botnet. The remote control facility allows the

attacker to have full control over the infected machines. The remote control

mechanisms can be either centralized or decentralized. Centralized control mech-

anisms are divided into two categories: push style and poll style. There is only

one example for decentralized control mechanisms, which is used by the peer-

to-peer botnets. The command set defined for a botnet may comprise a wide

range of commands that intends to compromise important data, such as secret

information or e-mail address books, attack a target machine, send spam mails

etc. Generally most the botnets focus on implementing commands that lead the

bots to perform DDoS attacks or update themselves.

While remote control mechanism and commands differentiate bots from

worms, they have similar spreading mechanisms as worms have. Usually, in order

to propagate, the bots automatically scan some specific network ranges. If they

can find any vulnerability, they exploit it and afterwards, copy themselves to

the victim machine. Since machines that have Windows operating system have

so many vulnerabilities, bots generally attack Internet users who use Windows

operating system.

The attributes that distinguish the bots and characterize different bot families

are bot propagation mechanisms, command and control mechanisms, exploit and

attack mechanisms and obfuscation mechanisms. In the following sections, we

give detailed information about characteristics of bots.

CHAPTER 2. BOTNETS 12

2.3.1 Bot Propagation Mechanisms

The more compromised machines, the more effective the botnet is. Thus, prop-

agation of bots is a necessary step in bots’ lifecycle. Propagation refers to the

mechanism used for finding new vulnerable machines to take their possessions.

To this end, bots simply make use of some traditional scanning mechanism, such

as horizontal scanning or vertical scanning. Horizontal scanning mechanism scans

a single port in a specified address space, and on the other hand vertical scanning

mechanism scans a port range on single IP address. Since the main purpose of

the propagation is to infect machines as many as possible, to date, more sophisti-

cated propagation mechanisms have developed. Obviously, the botnet designers

adopt the strongest and the most efficient scanning schemes to their systems to

expand their capabilities.

The most well-known scanning mechanisms are:

• Random Scanning: The target to be scanned is determined by a random

number generator. Thus, efficiency of the scanning strictly depends on the

random number generator. Since it is quite difficult to develop a random

number generator that can find vulnerable hosts or valid IP addresses, the

random scanning is not effective enough.

• Permutation Scanning: The random scanning is inefficient because it pro-

duces overlaps. Permutation Scanning was designed to deal the problem of

overlaps at the random scanning. It makes use of simple cryptography to

make different malware samples generate different addresses. Simply, all of

the malware samples share a common pseudo random permutation and use

a private key to generate the addresses. Therefore, permutation scanning

relatively solves the overlapping address problem.

• Hit-List Scanning: It is a very fast method. However, since the whole hit-

list comes within the malware binary, the binary is very big. While the

binary is spreading, the size of it gets smaller. Because, the binary scans

only first n addresses in the list, and when it finds a vulnerable host, only

CHAPTER 2. BOTNETS 13

sends the remaining part of the list not all. Clearly, the reason for not

sending whole of the list is to avoid overlapping.

• Combining the Techniques: Some of the worms seen in the wild, such as

Warhol worm, uses the combination of permutation scanning and hit-list

scanning methods. The method is capable of attacking whole of the vul-

nerable machines in less than fifteen minutes.

Although there are botnets that use very sophisticated scanning methods, very

well-known bots, such as Agobot, SDBot, SpyBot and GTBot, still have simple

propagation schemes that consist of vertical and horizontal scanning. This means

that it may be possible to develop statistical finger printing methods to identify

bot scans. The only advantage of the bots over the worms is that the botmaster

can specify and change the address ranges that are randomly scanned when she

notices that the address range scanned is invalid or does not have any vulnerable

host.

2.3.2 Command and Control Mechanisms

Command and Control (C&C) mechanism refers to the command language and

control protocols used for managing the botnets remotely. The C&C mechanism is

the strongest attribute of the botnets, since the botmaster can define a command

set for her intentions. Moreover, if there is also an updating mechanism, she can

modify the command set by adding new commands or removing the ones that

are not necessary anymore. That is to say, the C&C brings a great flexibility to

the activities that can be performed by the bots. Nevertheless, C&C is also the

weakest link of the system. Thus, in order to find detection models for botnets,

the C&C mechanisms have to be analyzed in detail.

The common command and control infrastructure that is used for managing

the botnets is based on Internet Chat Relay (IRC): The attacker sets up a private

channel on an IRC server for her own purposes. The bots connect to that channel,

and behave according to the commands that are sent. Some of the attackers use

CHAPTER 2. BOTNETS 14

Figure 2.1: Botnets that have centralized command and control mechanisms

an HTTP server for commanding their bots. Obviously, the members of this

setup are called HTTP bots, since the C&C protocol is HTTP. Contrary to IRC

bots, HTTP bots do not connect to a channel and wait for the commands. They

periodically poll the server for new commands and act upon them. Although

HTTP bots and IRC bot differentiate from each other at the way of getting the

commands, both of them can be categorized as centralized botnets, since they

both get the commands from a central point. The Figure 2.1 shows the general

structure of centralized botnets. Lately, a new generation of botnets that use

P2P style communication appeared in the wild. Such botnets do not have any

centralized server that distributes the commands. Instead, all bots in the botnet

behave both like a server and a client. Thus, the C&C mechanism that are used

by P2P botnets are decentralized.

2.3.2.1 Push Style C&C

A typical setup for a botnet that has a push style C&C is shown in the Figure 2.2.

A central IRC server is used for the C&C, some of the botnets have more than

one IRC server as shown in the Figure 2.1. The reason for using multiple servers

CHAPTER 2. BOTNETS 15

Figure 2.2: Push Style C&C Mechanisms

to spread the commands is to continue the malicious activity even one of the

C&C servers is shut down or noticed by botnet trackers.

As soon as the bot binary is run in the victim machine, the bot connects to

an IRC server at a specific port and afterwards joins a predefined channel. The

attacker releases the commands from that channel and the bot acts as if it is

commanded. For example, if the botmaster sends a command that demands the

bots to do denial of service of a target machine, the bots start sending several

packets to the target. The time that the bots will stop the attack may be specified

either in the attack command or with in a new command that demands the attack

to be stopped.

Commands can be sent to the bots in several different ways:

• When the botmaster wants to send a command to only one bot, she can

send the command via PRIV MSG IRC command that has the bot’s user

name as a parameter.

• The PRIV MSG command can also be used for sending a broadcast com-

mand that will lead all of the connected bots act simultaneously. This is

done by passing the channel name as a parameter instead of a specific bot

name.

CHAPTER 2. BOTNETS 16

Figure 2.3: Poll Style C&C Mechanisms

• The channel’s topic name can be used to send the command to all of the

bots as well. When the botmaster wants to send the command, she simply

changes the topic of the channel by the TOPIC IRC command.

If the topic of the channel does not have any instruction, the bots are idle

in the channel, waiting for the commands. Another important issue that has to

be mentioned is authentication that should be done by the botmaster to have

a full control over the bots and the channel. Since the botmaster creates the

channel, she is the owner and has the rights to do whatever she wants. The IRC

servers require a username and password to authenticate the members. Thus, it

is enough to enter the correct username and password to get the full control to

start the malicious activities.

2.3.2.2 Poll Style C&C

In contrast to push based IRC C&C, HTTP bots use a poll based system. The

HTTP bots’ C&C mechanism is called poll based because of the periodic queries

done by the bots. The botmaster who intends to command her bots by HTTP

C&C simply runs a HTTP server that has a specific IP address and places the

CHAPTER 2. BOTNETS 17

command to a file that is queried periodically by the bots as it is shown in

Figure 2.3.

The poll based C&C mechanism is weaker than the push based systems, since

the botmaster does not have a real time control over the bots. That is to say,

the command can not be sent unless the bots query the server. Nevertheless,

there are well-known botnets, such as Bobax [32], that use the HTTP protocol

for command and control.

Since botnets with poll style command and control make use of the HTTP

protocol, the bots query the HTTP server with the GET command. Generally,

they also send their status information within the request. The status information

may consist of the ID of the bot, the operating system running on the victim ma-

chine, information about the connection type, the local time of the compromised

machine, etc.

2.3.2.3 P2P C&C

Botnets that have a peer-to-peer(P2P) structure are not managed in a centralized

manner. Thus, the C&C mechanism of such botnets is called decentralized. The

nodes in the botnet behave as both a server and a client. Therefore, the botmaster

can not be easily caught. Compared to botnets that have centralized C&C, it is

more robust. Because, even if some of the nodes in the network are shut down,

the gaps in the network are closed and the network continues its activities under

the control of the botmaster.

Most of the well-known P2P botnets use Overnet network. The Overnet

is a Kademlia based protocol, which provides a method to locate values that

correspond to given search keys. The bots do not directly send information to

each other, instead when the botmaster wants to send a command, she publishes a

piece of information i, using an identifier derived from the information. Every day

to get the commands, the bots search for 32 different keys, which are computed

with a function that takes the current date and a random number between 0

and 31 as a parameter. Since the attacker knows which keys are searched every

CHAPTER 2. BOTNETS 18

day, she publishes the command under one of those keys. Basically, after the

command is received by the bot, it starts the malicious activities.

2.3.3 Exploit and Attack Mechanisms

Since the botmaster wants to propagate whole over the Internet in order to in-

crease the population of her botnet, she applies some propagation strategies as

explained in Section 2.3.1. There are some different ways to compromise the

victim machine, such as exploiting a known vulnerability or deceiving the user

of the computer to click a link that might be sent via a chat program, a mail or

a phishing site. Infecting a machine by deceiving the user is quite simple, since

immediately after the user clicks the link, bot binary is downloaded and run. On

the other hand, infecting by exploits needs elaborate work. To compromise the

machine, firstly the exploit code that uses the vulnerability must be developed.

Then, in order to find machines that have the vulnerability, a scanning mecha-

nism has to be specified. Finally, to get the full control over the machine, the

exploit has to be applied.

Typically, the sophisticated bots, such as Agobot [referans], develop exploits

for several vulnerabilities. Clearly, if the bot has more than one exploit, it can

infect more vulnerable machines. Agobot has the exploits listed below:

1. Bagle scanner: Scans for backdoors on port 2745.

2. Dcom scanner: Scans for DCE-RPC buffer overflow.

3. MyDoom scanner: Scans for backdoor on port 3127.

4. Dameware scanner: Scans for the Dameware network administration tool

which is vulnerable.

5. NetBIOS scanner: Brute force password scanning for open NetBIOS shares.

6. Radmin scanner: Scans for Radmin buffer overflow.

7. MS-SQL scanner: Brute force password scanning for open SQL servers.

CHAPTER 2. BOTNETS 19

The most destructive attack performed by the botnets is the distributed denial

of service attack. Thus, most of the bots have the DDoS attack implemented.

Agobot is able to perform seven different types of DDoS attacks: UDP flood,

SYN flood, HTTP flood, PHAT SYN flood, PHAT ICMP flood, PHAT WONK

flood, targa3 flood.

2.3.4 Obfuscation Mechanisms

Obfuscation is defined as “The concealment of meaning in communication, mak-

ing it confusing and harder to interpret.” in Wikipedia. Thus, the term

obfuscation refers to the mechanism to hide the commands that are sent by

the botmaster.

Formerly, almost all of the botnets used clear text protocols that did not hide

the communication traffic between botmaster and bots. After the threat of the

botnets was realized, the researchers started to look for ways to detect and prevent

botnets’ malicious activities. They did reverse engineering of the C&C protocols

to produce signatures that can be deployed on the vantage points of the networks.

Obviously, in order to make their system undetectable, attackers obfuscated the

commands with some predefined keys. Anymore, it was difficult to understand

the content of the command and for what reason it was sent. Fortunately, they

did not estimate that the obfuscation they applied was useless unless they change

the key each time the command is sent. When they always use the same key to

obfuscate the command, even though it is difficult to transform it to the clear

text, the obfuscated command could still be used to generate a signature. Of

course, the attackers who have got a sophisticated knowledge about encryption

use strong encryption techniques to obfuscate the C&C. To date, none of the

detection models are able to detect botnets that uses encryption.

CHAPTER 2. BOTNETS 20

2.4 Real World Examples for Botnets

2.4.1 IRC Bots

The most prominent IRC bots are Agobot, SDBot, SpyBot and GtBot. We will

take a closer look at Agobot, which is the most sophisticated IRC Bot that has

several advanced features, and SDBot.

• Agobot: Agobot is the best-known family in all of the IRC Bots. It has

several variants, such as Phatbot, Forbot and XtrmBot and the antivirus

vendors claim that there are 1500 more. Agobot was published in 2004 and

pretty soon after it, so many variants started to appear in the wild. The

code of Agobot, which has a very high abstract design that allows adding

new features such as new commands or new scanners for new vulnerabil-

ities, was written in C++. Although most of the Agobot variants use an

IRC server to set up the C&C mechanism, some of them use peer-to-peer to

protocols to construct a decentralized C&C mechanism. Typically, Agobot

variants have more than one spreading, DDoS attack or update mechanisms

and since they have abstract design, always it is possible to add more.

Moreover to the features about the bot characteristics, they have features

to kill the antivirus programs or malware monitoring systems installed on

the infected machine. Agobot and its variants use the packet sniffing library

libpcap to sniff the traffic passing through the network adapter of the victim

machine. They use NTFS Alternate data stream to hide the malware and

offer rootkit capabilities. The reverse engineering of the binary is almost

impossible, since they use functions to detect debuggers and encrypt the

configuration files of the binary. Agobot binary activates itself just after

doing a speed test for Internet connectivity. They connect to a specific

server, then send and receive data. This feature of Agobot reveals informa-

tion about the count of the machines infected by Agobot. In 2004, 300.000

unique IP addresses were identified per day.

CHAPTER 2. BOTNETS 21

• SDBot: Most of the active bots that are seen in the wild are either SDBot

or its variants, such as RBot, UrBot, UrXBot and SpyBot. Since its source

is public too, it has several variants as well. The source code does not

have a good design as Agobot. Nevertheless, most of the botmasters use

its code. It provides a rich set of features as Agobot provide. Most of

the SDBot variants use the IRC C&C, however there are some that use

HTTP C&C mechanisms. Currently, identity theft and stealing sensitive

information is a big threat against Internet users. Spybot, which is a variant

of SDBot, provides a rich command set to get sensitive information about

the compromised machines.

2.4.2 Storm

The most famous P2P bot currently spreading in the wild is known as Peacom,

Nuwar or Zhelatin. Because of its devastating success, it was given the name

Storm worm. Unlike the worms and all common IRC bots, which propagate by

exploiting remote code execution vulnerabilities in the network services, storm

worm merely propagate by using e-mails. The e-mail body contains a text that

tries to deceive the user to click a link or open an attachment. If the user is

deceived, the malware is downloaded to the users machine. The propagation

vector of storm botnet is analyzed with the help of spamtraps. The reports on the

spamtrap archives show that storm is quite active and can generate a significant

amount of spam, which is 10% of the spam generated whole over the world.

Storm worm has a sophisticated malware binary, since it uses several advanced

techniques. Each time the storm binary is downloaded from the same source,

the size of the binary changes and it means that storm worm uses a kind of

polymorphism. Moreover, the binary packer that is used by the storm is the

most advanced seen in the wild and it uses a rootkit in order to hide its presence

on the infected machine.

The first version of Strom uses OVERNET, a Kademlia-based [21] P2P dis-

tributed hash tables(DHT) routing protocol, as the C&C mechanism. In October

CHAPTER 2. BOTNETS 22

2007, Storm botnet changed its communication network from OVERNET to its

own P2P network, which is called as Stromnet. The new network is identical to

OVERNET except for the fact that each message is XOR encrypted.

In order to find other infected peer, the storm bot searches for specific keys

that help the bot to distinguish between regular and infected peers in the OVER-

NET. The key is generated by a function f(d, r), where d is the current day and

r is a random number that takes values between 1 and 32, thus there can be 32

different keys per day. Since the botmaster is aware of the keys that are searched

by the bots every day, she issues the commands to specific keys. If the command

is issued to a key, the search result of the key is the command that triggers a kind

of attack behavior, such as e-mail spamming.

In order to track Storm botnet, the researchers leverage the fact that some

specific keys are searched every day [12]. As a result of the research on storm

botnet tracking, they estimate lower and upper bound for the count of storm

infected machines. Their assertion is that the lower bound is about 5.000− 6.000

and upper bound is about 45.000− 80.000.

Chapter 3

System Overview

The aim of our system is to develop network-based detection models in order

to identify bot-infected machines. We take the network traffic captures that are

produced by real bots as input, and as the output we create couple of detection

models that are capable of detecting infected machines in a network.

Our bot detection model consists of three states. The first state is called

the idle state where bots perform nothing but wait idle for the commands. The

detection model switches to the second state only if a command that is sent by

the botmaster is matched. In other words, the second state indicates that the

command, which may result the bot to start a denial of service attack, spamming

or other malicious activities, is received by the bot. We expect that immediately

after the command is received, the bot performs an activity as a response. Thus,

the detection model switches to the third state if a response behavior is detected.

Typically, the bots react immediately thereafter the command is received, how-

ever there are exceptions. Therefore, if the response activity is not observed

in t seconds, the detection model switches to the idle state again. The experi-

ments showed that the time threshold of 100 seconds is reasonable to observe the

response.

We give a system overview in the following sections that explain the phases

of the system in an ordered fashion.

23

CHAPTER 3. SYSTEM OVERVIEW 24

3.1 Running The Bot Samples

Since the input of our system is network traffic captures that are likely to have

the network activities performed by real bots, we had to run the bot samples in a

controlled environment that allows the bot binaries to establish connections with

the botmaster. To this end, we run each bot binary in the controlled environment

for a period of several days and capture the network traffic produced in that

period. The bot binaries are collected in the wild, for example, via honeynet

systems such as Nepenthes [1], or through Anubis [3], a malware collection and

analysis platform. Thus, the network traces analyzed by our system have the real

command and control traffic produced by real bots and real botmasters.

The bot binaries are run in VMware [34] virtual machines that have fully-

patched Windows XP with service pack 2 for a period of time. At the same time,

in order to prepare the input of our system, the network traces that are produced

by the bots are captured and recorded. Approximately, the running duration

of the virtual machines averages out of four days, which is an empirically chosen

time duration that makes it possible to observe the bot commands and responses.

The Chapter 4 gives more detail about the phase where the network traces are

captured.

3.2 Clustering Bot Families

We define a bot family as a set of bots that use the same command and control

mechanism and perform similar responses to the similar commands. That is

to say, a command of a specific family always triggers the same behavior on the

bots that are members of the family. Therefore, different bot families use different

commands in order to perform their malicious activities. For example, while an

IRC bot uses .advscan to start a scanning activity, the other one uses asc.

A signature that is responsible of detecting a specific behavior can be gener-

ated only if the commands that trigger the behavior have some commonalities.

CHAPTER 3. SYSTEM OVERVIEW 25

Since different bot families use different commands, the bot samples that produce

the input of our system have to be partitioned to construct different bot families.

This partitioning can be performed either manually, based on malware names as-

signed by virus scanners, or automatically, based on behavioral similarities that

are observed when the malware is run in host-based malware analysis systems.

We have made use of a malware clustering system, which is an extension to Anu-

bis that analyzes the execution traces of malware to find behavioral similarities.

However, the clustering of the bot families needs some manual effort too. We are

not responsible for making the perfect clustering of the bots which is rather a

prerequisite step for our system.

3.3 Finding Bot Responses in the Network Cap-

tures

Since the bot responses are more visible than bot commands that are generally

sent in some short TCP or UDP packets, instead of tracing the signs of bot

commands in the network traffic captures, we try to locate the bot responses. In

order to identify the behavioral changes in the network traffic, we analyze the

captures relying on some network properties, as described in Chapter 5. The

network properties that are able to identify the behavioral changes are; the count

of packets, the total size of the packets, the count of packets that are sent by

couple of specific protocols, the count of non-ascii characters and count of packets

that have unique ports or ip addresses. As long as the botmaster does not perform

time-bombs, a bot command is followed by a bot response in a certain amount

of time. The experiments show that generally the bot response is performed in

maximum 100 seconds after the command is issued. Thus, we cut the 100 seconds

long traffic capture that precedes the bot response. Since these network snippets

are likely to include the bot commands, we use them as the input to the signature

generation algorithm which tries to find common tokens within the snippets that

belong to different bot samples.

CHAPTER 3. SYSTEM OVERVIEW 26

3.4 Extracting Behavioral Profiles

We assume that network snippets that are extracted from bot samples, which

belong to the same bot family, and lead to the same response, contain relevant

commands. Clearly, different reactions should be caused by different commands.

For example, the network snippets that are followed by a scanning behavior should

include the commands that lead the bots to perform scanning activity, not the

others. Obviously, if we can group the network snippets that have the same

behavioral profile, we may extract some commonalities that allow us generate

signatures that are able to detect the bots that performs a specific behavior.

In order to gather related network snippets together, we use a clustering

algorithm [7]. The hierarchical clustering algorithm clusters the network snippets

according to their behavioral profiles. The clustering is stopped when the minimal

distance between any two clusters exceeds a threshold. Once the clustering step

is finished, the snippets in each behavioral cluster are ready to be analyzed for

finding common tokens in order to construct the signatures.

3.5 Generating Signatures

The last step of our system is signature generation, as described in Chapter 6

in detail. We generate token subsequence signatures from the command tokens

observed in snippets that have the same behavioral profile. Since our signatures

can also be defined as regular expressions, they can easily be deployed to the well-

known intrusion detection systems, such as Bro and Snort. As we have mentioned

before, our detection scheme has three states. The signature generation phase

outputs the signatures that can be used for the second state. For the third phase,

we leverage the knowledge that we get from the behavioral profiles. In other

words, in our current system, a bot detection model consists of a set of tokens

that represent the bot command, followed by a network-level description of the

expected response.

Chapter 4

Experimental Setup

In order to produce signatures, which are used for detecting bot-infected ma-

chines, we need to analyze network traffic produced by bots. Thus, the first step

to be accomplished in our project is to capture network traces that have the

communication between bots and the botmaster. To this end, we run each bot

binary in a controlled environment for a period of time and capture the network

traffic produced in that period. The bot binaries mentioned above are collected

in the wild, for example, via honeynet systems such as Nepenthes [1], or through

Anubis [3], a malware collection and analysis platform.

In the following sections, we explain how the bot binaries are collected, how

the environment that is used for running the bot binaries is built and how we

capture the network traces in detail.

4.1 Collecting Bot Binaries

Malware is software designed to infiltrate or damage a computer system without

the owner’s informed consent. There are different kinds of malware seen in the

wild such as computer viruses, worms, Trojan horses, rootkits, spyware, dishonest

adware etc. The most dangerous ones are the malware which can spread all over

27

CHAPTER 4. EXPERIMENTAL SETUP 28

the network by jumping from one machine to another. Unfortunately, the treat

of malware is not against only the individual computers, but more important

networks. Especially thereafter botnets occurred in the Internet; they started to

control thousands of computers for their nefarious purposes such as performing

denial of service attacks to crash a target system.

To construct a defense against malware, intrusion detection systems and an-

tivirus systems analyze the malware samples. Then, they make use of the anal-

ysis results to generate signatures that identify particular malware. Of course,

collecting the malware and analyzing it is not a trivial task, especially if they

require manual effort. Thus, to provide high degree of automation on these steps,

honeynet systems are developed. Today, the most popular malware collecting

technology is Honeypot technology. A honeypot is a trap set to detect, deflect, or

in some manner counteract attempts at unauthorized use of resource. Honeypots

can be classified on their level of involvement:

• Low-interaction honeypots simulates only services that cannot be exploited

to get complete access to the honeypot, which makes the risk of being

compromised very low. Generally, they simulate one part of the operating

system such as the network stack. The honeyd [26] is a good example for this

kind of honeypots. Although low-interaction honeypots are more limited,

they are useful to gather information at a higher level, e.g., learn about

attack patterns, propagating vector.

• High-interaction honeypots simulates all of the aspects of an operating sys-

tem. Thus, the attacker can compromise whole of the system and launch

her attacks without any restriction. High-interaction honeypots allow the

analyzer to study the attacker’s behavior in more detail. The most common

example for this kind of honeypot is Honeynet [2].

The bot binaries analyzed in our project is collected via Nepenthes and Anu-

bis, which are explained in more detail below.

CHAPTER 4. EXPERIMENTAL SETUP 29

4.1.1 The Nepenthes Platform

Nepenthes is a low-interaction honeypot which has a high degree of expressiveness.

It is not a honeypot by itself but a platform to deploy honeypot modules that

are called vulnerability modules. The nepenthes can be easily configured by

vulnerability modules into a honeypot for many different types of vulnerabilities.

The flexibility of nepenthes allows deploying features that are not impossible to be

analyzed by high-interaction honeypots. For example, since emulation can mimic

general traffic patterns of network communication to behave either like Linux or

Windows, nepenthes can emulate the vulnerabilities of different operating systems

or architectures in a single machine or during a single attack.

Nepenthes platform is able to collect malware that is currently spreading in

the wild on a large-scale. The HTTP bot and some of IRC bot binaries that are

used in our experiments are mostly collected by nepenthes.

4.1.2 ANUBIS:Analyzing Unknown Binaries

Anubis is a public service for analyzing Windows executable binaries. The bi-

naries that are analyzed daily by Anubis are either collected by honeypots or

spamtraps, or submitted by public users. It tries to extract behaviors of the ex-

ecutables with special focus on analysis of the malware. To this end, the binary

executable is run in an emulated environment and its security-relevant actions

are monitored.

The features analyzed by Anubis are;

• Analysis of Registry Activities

• Analysis of File Activities

• Analysis of Process Activities

• Analysis of Windows Service Activities

CHAPTER 4. EXPERIMENTAL SETUP 30

• Analysis of Network Activities

• Native API aware Analysis

• Unobtrusive Analysis

• Complete View of the PC System

Anubis distinguishes itself from other malware analysis platforms such as Nor-

man Sandbox [23] and CWSandbox [35] with the last two features listed above.

Latest malware samples that are seen in the wild check the running environment

to find out whether it is a virtual machine or not. Then, they behave differently

according to the result of the test to thwart detection. While Norman Sanbox

and CWSanbox can be detected by the simple redpill program [29] that checks

for the presence of VMWare, Anubis passes the test without detection.

The next generation malware analysis platforms will not be confined to moni-

tor API calls and have complete view of the PC system by analyzing CPU register

values and tracking memory accesses. At the present, none of the malware analy-

sis platforms mentioned above has this ability. Anubis is designed to be extensible

to the requirements that are possible to appear in the future.

Most of the IRC bot binaries that we experiment and analyze are collected

by Anubis.

4.2 Running the Bot Binaries

To create bot detection models, our system requires analyzing the network traffic

generated by actual bots. To this end, we run each of the bot binaries in a

controlled environment for several days. The goal is to collect enough amount of

network traffic that consists of commands that are sent by the botmaster and the

responses of the bot. Our experiments show that most of the bot samples have

commands that trigger responses within five days. Thus, all of the binaries are

run for five days.

CHAPTER 4. EXPERIMENTAL SETUP 31

Obviously, the more bot binaries are run, the more diverse set of commands

are found. Thus, it is necessary to design the execution environment to support

running as many parallel bot instances as possible. One approach could be start-

ing several bot binaries inside a single operating system. However, we prefer to

start each binary on its own operating system, since there is a possibly to appear

an interference between different malware. To this end, we have large number of

operating system installation that run parallel in the same machine. The power-

ful server, which has Intel Xeon 1.86GHz Quadcore processors, 8 GB of memory,

and 300 GB of Raid5 disk space, makes it possible to run several virtual machines

at the same time.

Unfortunately, latest malware samples check the running environment to find

out whether it is a real computer or a virtual machine. According to the result,

they behave different. Since, we need to observe actual behaviors of bots; it is

a crucial task to choose the most appropriate virtual machine environment. We

have analyzed VMware [34], Xen [36] and Qemu [27] that are briefly described in

the following sections.

4.2.1 Virtual Machine Monitors (VMMs) and Emulators

Virtual Machine Monitors (VMMs) and emulators provide simulation of hardware

so that, the guest software can run in it as if it is executed in real hardware. Popek

and Goldberg [25] define a virtual machine as ”an efficient, isolated duplicate of

the real machine” and specify three the key characteristics of it as:

• Equivalence: The software running in the VMM should equivalently perform

all of the possible actions that can be done in the real environment.

• Resource control: The VMM must be in complete control of the virtualized

resources.

• Efficiency: Statistically a big amount of the instructions could be executed

directly in the hardware without VMM interception. Furthermore, there

must not be minor decrease in the running speed.

CHAPTER 4. EXPERIMENTAL SETUP 32

The third characteristic distinguishes the emulators and VMMs, since emula-

tors do not execute code directly on hardware without interception unlike VMMs.

Thus, the emulators cause a decrease in speed.

4.2.1.1 VMware

The VMware consists of a layer of software that is directly on the host operating

system. This layer creates virtual machines and contains a VMM that manages

hardware resources dynamically and of course transparently so that multiple op-

erating systems can run concurrently on a single physical computer.

VMware introduces full virtualization of x86 systems, in order to transform

them into general purpose, shared hardware infrastructure that offers full iso-

lation, mobility and operating system choice for application environments. In

this way, VMware virtual machines become highly portable between computers,

because every host looks nearly identical to the guest. VMware supports guest op-

erating systems for Microsoft Windows, Linux, Sun Solaris, FreeBSD, and Novell

NetWare.

4.2.1.2 Qemu

Qemu is an open source PC emulator written by Fabrice Bellard. To achieve a

high execution speed, it relies on a dynamic binary translation. Basically, the

dynamic translator converts the target CPU instruction to host instruction set

at runtime. The dynamic translation works in terms of basic block. The idea is

to translate the code block by block, and execute the block after each translation

is done. Obviously, the reason of doing dynamic translation is that it is more

efficient to operate one block instead of only one instruction.

Generally, it is difficult to port dynamic translators because the code gen-

erator must be re-implemented for each new system. Qemu has a simple and

efficient solution that is accomplished by just concatenating pieces of machine

code generated offline by the GNU C Compiler [9].

CHAPTER 4. EXPERIMENTAL SETUP 33

In conjunction with CPU emulation, Qemu also provides a set of device mod-

els, allowing it to run a variety of unmodified guest operating systems, thus it can

be viewed as a hosted virtual machine monitor. It also provides an accelerated

mode for supporting a mixture of binary translation (for kernel code) and native

execution (for user code), in the same fashion as VMware Workstation and Mi-

crosoft Virtual PC. Qemu can also be used purely for CPU emulation for user

level processes; in this mode of operation it is most similar to valgrind.

4.2.1.3 Xen

Xen is a free virtual machine monitor that works in x86 architectures [37]. One of

the most important properties of Xen is its para-virtualization capability. Para-

virtualization provides a software interface to the virtual machines which is similar

but not identical to the underlying hardware. Para-virtualization performs very

high performance, even on architectures that are not easily virtualized. This

approach requires the kernel of the operating system to be modified and ported

to run Xen.

Xen has a multi-layered structure in which the lowest and most privileged

layer is reserved for Xen itself. Since the aim of this design is to host multiple

operating systems, Xen manages each of the operating systems in different vir-

tual machines, which are called domains. Domain 0 is created automatically for

privileged management purposes. Domain 0 creates other domains and manages

their virtual machines.

4.2.2 Running Environment: Virtual Machine

The collected bot binaries are run in fully-patched Windows XP with service

pack 2. To avoid traffic generated by the operating system, the automatic Win-

dows update is disabled, as well as the Web Proxy Auto-Discovery (WPAD),

which causes noisy HTTP traffic during our experiments. By further removing

unnecessary Windows components, each bot instance is able to run with 64 MB

CHAPTER 4. EXPERIMENTAL SETUP 34

of main memory each. Using this setup, we are able to run up to 50 virtual

machine instances simultaneously on our server.

We created three identical windows XP images that work in Xen, Qemu and

VMware. Then, in order to make the system work with the images, we in-

stalled additional packages to the host machine that has Debian with 2.6.18-5-

686-bigmem kernel. We installed VMware Server 1.0.4, Qemu PC Emulator 0.8.2

and Xen 2.6.18. VMware and Qemu basically install new libraries and tools to

start the images. However, it is not so easy to run Xen since we need to modify

the kernel.

The next step was to test redpill program in the images that run in VMware,

Qemu and Xen. The results are given in Table 4.1. As it can be seen, Redpill

could detect only VMware not the others.

VMMs Redpill test
VMware detected
Xen undetected
Qemu undetected

Table 4.1: The Virtual Machines detected and undetected by the Redpill program

Redpill is a program, as seen in Figure 4.1, that simply checks the address of

the interrupt descriptor table. To avoid the confliction, virtual machine monitors

move the interrupt descriptor table of the virtual operating system to another

safe place in the memory. Thus, if the malware checks the address of the inter-

rupt descriptor table by using SIDT instruction, it can easily detect the presence

of virtual machine. Repill is not able to detect emulated systems, since they in-

tercept the instructions and translate them to a corresponding set of instructions

for the host operating system. That is to say, the emulators do not change the

interrupt descriptor table’s address.

Although the VMware was detected by Redpill, we have chosen to use VMware

as the virtual machine monitor because of its graphical management interface that

allowed us to administrate several virtual machines at the same time. Moreover,

experiments showed that most of the current bot samples do not use virtual

machine detection tools.

CHAPTER 4. EXPERIMENTAL SETUP 35

int swallow_redpill () {
unsigned char m[2+4], rpill[] = "\x0f\x01\x0d\x00\x00\x00\x00\xc3";

((unsigned)&rpill[3]) = (unsigned)m;
((void(*)())&rpill)();
return (m[5]>0xd0) ? 1 : 0;

}

Figure 4.1: The code segment that checks the IDT location in the memory.

4.2.3 Starting Mutliple Virtual Machines

There are two possible ways to start multiple virtual machines at the same time:

First is to copy a template instance 50 times and second is to take the snapshots

of a base instance. Since our system has enough amounts of memory and disk, we

could choose both of them. We have implemented both schemes, however used

the first scheme to collect the traffic used to generate signatures.

VMware keeps the virtual machine in a file that has vmdk extension. The

virtual machines can be configured by the configuration files, which has the vmx

extension. In the figure 4.2, the template configuration file is shown.

One VMware virtual machine is created with the code in Figure 4.3. As it

mentioned before, firstly the VMware template image is copied to a directory that

is reserved for one instance. Then, the configuration file named Sanbox.vmx is

prepared. The parameters to be configured are:

• Memory Size: 64K memory is reserved for each of the instances.

• Display Name: The name of the bot from the view of virtual machine

monitor (a.k.a. host).

• Computer Name: The name of the bot from the view of operating system

(a.k.a. guest)

• VMnet Device Name: VMware allows binding only 30 virtual machines’

network adapters to the same vmnet device, for example /dev/vmnet0.

Since we had to create network adapters for 50 virtual machines, we created

one more vmnet device /dev/vmnet1 and bound last 20 of the network

CHAPTER 4. EXPERIMENTAL SETUP 36

config.version = "8"
virtualHW.version = "4"
scsi0.present = "TRUE"
memsize = "<memsize>"
ide0:0.present = "TRUE"
ide0:0.fileName = "Sandbox.vmdk"
ide1:0.present = "TRUE"
ide1:0.fileName = "auto detect"
ide1:0.deviceType = "cdrom-raw"
floppy0.present = "FALSE"
Ethernet0.present = "TRUE"
Ethernet0.connectionType = "custom"
Ethernet0.vnet = "/dev/<vmnet>"
displayName = "<displayname>"
guestOS = "winxppro"
priority.grabbed = "normal"
priority.ungrabbed = "normal"

ide0:0.redo = ""
ethernet0.addressType = "generated"

ide1:0.autodetect = "TRUE"

ide1:0.startConnected = "FALSE"
tools.syncTime = "FALSE"

checkpoint.vmState = ""
checkpoint.vmState.readOnly = "FALSE"

workingDir = "."

machine.id = "<computername>,<IP>,<md5>"

Figure 4.2: The configuration of VMware virtual machine.

adapters to it. Thus, in the configuration, the vmnet device that is used

has to be specified.

• MD5: The md5 checksum of the bot binary to be executed in the virtual

machine.

• IP: IP address to be assigned to virtual machine.

The last step is to start the virtual machine and boot the operating system in it.

As soon as the operating system is booted, a script is executed. This script is

responsible of making the network settings such as setting the IP address of the

CHAPTER 4. EXPERIMENTAL SETUP 37

network interface and specifying the default gateway. Then, the script downloads

the bot binary that has the MD5 checksum that was passed as an argument via

the virtual machine configuration file. Afterwards, it executes the malware and

leaves the operating system to it.

cp -r template /var/vm/bot$1
cd /var/vm/bot$1/
sed "s/<memsize>/64/g" Sandbox.vmx -i
sed "s/<displayname>/bot$1/g" Sandbox.vmx -i
sed "s/<computername>/bot$1/g" Sandbox.vmx -i

if [$1 -le 30]
then sed "s/<vmnet>/vmnet0/g" Sandbox.vmx -i
else sed "s/<vmnet>/vmnet2/g" Sandbox.vmx -i

fi
sed "s/<md5>/$2/g" Sandbox.vmx -i

sed "s/<IP>/$3/g" Sandbox.vmx -i

vmware-cmd -s register /var/vm/bot$1/Sandbox.vmx
vmrun start ./Sandbox.vmx

Figure 4.3: Creating and running a virtual machine.

4.3 Capturing Network Traces

Each of the guest virtual machines is assigned a static, public IP address. As our

goal is to capture all possible commands and their responses that are sent either

by the bots or the botmaster, restricting the network accessibility would have

been a wrong decision. Nevertheless, we have to apply some firewall rules, since

attacking the network of the university is not a desirable situation. To this end,

we block the traffic between the bot and two networks of Technical University of

Vienna (TU1 and TU2). Another undesirable situation would have been allowing

bots to propagate at the network that is reserved for our bot samples. Because,

the packets sent for infecting our bots would have made noise in our captured

traffic that is used to find the commands come from the botmaster. Thus, we

block also the traffic that flows inside the local network.

We deployed a firewall named GhostWall [30] in each virtual machine. The

firewall rules applied can be seen from the Table 4.2.

CHAPTER 4. EXPERIMENTAL SETUP 38

Description Rule Local IP Local Port Remote IP Remote Port
Gateway Allow all any any IP-of-gateway any
Host Allow all any any IP-of-host any
Anubis Allow all any any IP-of-Anubis any
Broadcast(BC) Allow all BC-IP any Broadcast-IP any
Local Network Block all any any Local Network any
DNS 1 Allow all any any IP-of-dns1 any
DNS 2 Allow all any any IP-of-dns2 any
TU1 Block all any any TU-network1 any
TU2 Block all any any TU-network2 any

Table 4.2: The firewall rules of each VMware virtual machine

The network traces were captured in the host machine during five days. Un-

fortunately, two times the attackers noticed that we were doing research about

botnets. To avoid us getting information about their activities, they tried to crash

our host machine by doing denial of service attacks. As soon as we noticed the

denial of service behavior in our traffic, we stopped the virtual machines. Thus,

we could not run all of the bot binaries for five days. Approximately, the running

duration of the virtual machines averages out of four days.

In order to capture the traffic, we make use of tcpdump [33], which can print

out the packet contents that pass through a specified network interface. When

the appropriate parameters are used, the captured traffic by tcpdump can be

written to a file for later analysis. Moreover, the undesired traffic such as ARP

packets, the packets generated because of the communication between the host

and virtual machine, can be filtered out.

Immediately thereafter the fifty virtual machines are booted, the tcpdump

on the host machine starts capturing the traffic into a PCAP file. Capturing

process continues until the virtual machines are killed. As the tcpdump listens

to the traffic passing through the network interface that is bound to all of the

network adapters of fifty virtual machines, the PCAP file contains the traffic

belongs to all of them. Since our aim was to find the commands sent by the

botmaster and the reponse of the bot, analyzing the traffic capture that belongs

to an individual bot would be reasonable. To this end, the PCAP file was later

CHAPTER 4. EXPERIMENTAL SETUP 39

split up according to the IP addresses of the virtual machines. Since there are no

other applications that run and generate network traffic, the bot accounts for all

observed network traffic under the virtual machine’s IP address.

Chapter 5

Analysis of the Network Traffic

The most powerful and also the weakest property of botnets is the necessity for

communication between bots and botmaster. This property is powerful, because

it improves the malware’s ability by adding the property of manageability. Thus,

the malware can be controlled by the attacker in order to perform her nefarious

purposes. On the other hand, the network traffic generated by the communication

makes the system weak against intrusion detection systems deployed at vantage

points of network. The reason is that they can easily detect bot-infected machines

if they manage to find some commonalities at command and control protocol. The

most well-known intrusion detection systems to date are Snort [28] and Bro [24].

Their defense strategy is to monitor the network traffic and alert the network

administrator when a predefined suspicious activity is detected. Since our goal

is to detect bot-infected machines by analyzing network traffic for presence of

signs that indicate the infection, we can make use of such intrusion detection

systems. Obviously, wiser botnet designers are aware of the weakest link of their

system. Therefore, they find some solutions to elude intrusion detection systems.

One possible solution is either to obfuscate or to encrypt the command and

control protocol in order to avoid malware analyzers to find commonalities at

the communication protocol. Although encryption makes malware undetectable

against intrusion detection systems that have a content-based detection scheme,

there is an open door to find network-based detection strategies since network

40

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 41

traffic of a bot includes command and response behavior all the time.

To gather more information about bots, we have done elaborate analysis of the

network captures, since the goal of our system is to create network level detection

strategies for bot-infected machines. The analysis consists of counting packets and

finding the total amount of data carried by the packets on a time interval that

can be tuned to make either more general or more specific analysis. Although

it seems too simple, astonishingly it revealed so much significant information

about behaviors of bots. Especially, the graphics that are sketched from the data

produced by the analysis helped us to observe a diverse set of bot activities.

We have analyzed the network traffic captures with two different approaches.

First, to get a general opinion about the communication performed by bots, we

sketched graphics for whole capture without focusing on individual connections.

As a result of this analysis, we were able to identify activities such as scanning or

denial of service attacks. However, without focusing on individual connections it

is not possible to get information about the command and control mechanisms.

To this end, we have also done connection based analysis. The connection base

analysis let us bot activities such as downloads, updates, spamming, etc.

In this chapter, we will not only give detailed description of our network anal-

ysis but also present the results of analysis that reveals very interesting activities

performed by bots.

5.1 Aggregate Analysis

The idea behind analyzing the traffic captures in a generalized fashion is to find

a protocol independent detection scheme. To this end, we analyze all of the flows

in the network traffic captures aggregately. Therefore, statistics that is evaluated

for a time period includes all of the traffic flows in that interval. Basically,

we analyze the network traffic produced by a bot in order to locate commands

and their corresponding bot responses in the traffic. Thus, we try to recognize

behavioral changes by examining the traffic according to some network properties:

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 42

• Count of packets: We count number of UDP and TCP packets sent and

received. We examine the traffic by counting the packets to detect scanning

activities or denial of service attacks.

• Count of packets that belong to a specific protocol : We count number of

packets that belong to a specific protocol, such as HTTP , SMTP , FTP

etc. , to observe activities carried out in that protocol.

• Count of different IP addresses: We count the number of different connec-

tions or connection attempts to identify address scanning behaviors.

• Count of different Port numbers: We count the number of different desti-

nation ports in the packets in order to identify port scanning behaviors.

• Size of data transferred : We sum the size of the packets that are carried

to identify downloads.

• The count of non-ascii characters: We sum number of non-ascii characters

in the packets to observe binary downloads.

We have produced statistic data for each property listed above and then,

sketched graphics to visualize behavioral changes. The graphics were sketched

with three different time intervals, 10, 100 and 1000 seconds. The graphics with 10

seconds time interval was too specific, because very small changes, which prevent

us to recognize the significant behavioral changes, are also handled. On the other

hand, the graphics that have 1000 seconds time interval were too general that

hid some important activities. Thus, we have chosen 100 seconds time interval

in our analysis, since it produced the most reasonable values that allowed us see

most of the important activities carried out by bots.

The Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6

show the graphics that are sketched from a captured network traffic that consists

of an IRC bot’s network activities.

The graphic in the Figure 5.1 shows alteration of the packet count in every

100 seconds. Generally, as soon as the bot is run in the infected machine, it

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 43

Figure 5.1: Packet count per 100 seconds

tries to connect the botmaster and afterwards, goes into the state of waiting for

commands. The first spike at the 1000th second may be explained as either an

update or the initial connection phase of the bot. Clearly, the most striking part

of the graphic is the activity performed between 7000th and 160000th seconds.

The activity is probably either a DDoS attack or a scanning performed to find

new vulnerable machines, since the bots typically send several packets per second

within DDoS attacks or scanning activities. After the activity is finished at the

160000th second, the graphic shows a regular activity that probably is the activity

of exchanging PING− PONG packetsd between the bot and the IRC server.

The Figure 5.2 shows the cumulative packet size change. The graphic is

sketched with the intent of observing downloads. At about the 160000th second,

there is a spike, which can not be observed from the Figure 5.1. The reason of

the spike is a download that may be an update for the bot. The attack interval

can also be recognized from the graphic, since after the 50000th second, there is

a continuous block whose average packets size is bigger than the other blocks.

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 44

Figure 5.2: Cumulative packet size per 100 seconds

Figure 5.3: Count of HTTP packets per 100 seconds

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 45

Figure 5.4: Count of unique IP addresses per 100 seconds

The Figure 5.3 is sketched either to observe the downloads that are done by

the HTTP protocol or to differentiate IRC bots from HTTP bots. Since the bot

is an IRC bot, it has not got frequent HTTP connections as it can be seen from

the graphic. The spike that was observed in Figure 5.2 exists in the graphic that

counts the HTTP packet as well. Thus, the download that is seen at about the

160000th second was done by using the HTTP protocol.

The graphics in the Figure 5.4 and Figure 5.5 are sketched to observe scans.

There are two types of scanning mechanisms: the address scanning and the port

scanning. Address scanning mechanism (a.k.a. horizontal scanning) scans a single

port in a specified address space. The address scanning activity can be recognized

by observing the graphic that counts packets with unique IP addresses, since

starting connection attempts to different IP addresses will cause a spike in the

graphic. Port scanning mechanism (a.k.a vertical scanning) scans a port range on

a single IP address. Thus, because of the same reason that is described before, the

port scanning activity can be observed from the graphic that count packets with

unique port numbers. The scanning performed in the traffic capture is address

scanning as it can be seen from the Figure 5.4. Obviously, we do not expect to see

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 46

Figure 5.5: Count of port numbers per 100 seconds

the port scanning activity in the Figure 5.5, however two of the graphics show the

same behavior, because of the weakness of the aggregate analysis. The aggregate

analysis does not distinguish between the packets that are sourced by the bot and

the victim machine. Thus, it also counts the unique port numbers that belong to

the bot. Even though the bot scans an address range with the same destination

port number, the source port number changes in every packet. The change at

the source port number increases the count of unique port numbers. That is the

reason of the similarity in the graphics.

The graphic in the Figure 5.6 shows number of non-ascii characters trans-

formed in 100 seconds. The property of counting binary characters is used for

making more precise decisions about downloads. While the file that is down-

loaded might be an executable, it might be a configuration file as well. Thus,

the graphics are sketched in order to distinguish the executables from the normal

files. After we analyze the Figure 5.6, we can accurately claim that the download

at the 160000th second was an executable.

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 47

Figure 5.6: Number of non-ascii characters per 100 seconds

5.2 Connection Based Analysis

The connection based analysis examines the connections separately. The aim of

the analysis is to get the information that cannot be obtained by the aggregate

analysis. The aggregate analysis does not deal with different protocols in a generic

manner. That is to say, in order to observe the activities performed by a specific

protocol, such as HTTP, FTP, SMTP or UDP, we have to decide the port number

that we want to analyze. Since, the botnets may use unknown protocols for

their command and control; we cannot guess which port to listen without any

pre-knowledge. Thus, the aggregate analysis is a restricted to analyze only the

well-known protocols. Obviously, this property is its one of the major drawbacks.

On the other hand, the connection based analysis has relatively more generic

approach, since it produces statistics for each of the connection with a protocol

independent manner.

In contrary to the aggregate analysis, the connection based analysis examines

the traffic according to only two properties that are simply based on packet count

and amount of the data per connection. The Figure 5.7 and Figure 5.8 show the

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 48

Figure 5.7: Count of Packets per connection

Figure 5.8: Amount of data flows per connection

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 49

graphics that are sketched for these properties. Since we are able to observe the

attributes of each connection, such as the source and destination’s IP addresses

and port numbers, actually we can get all of the protocol specific information

that we can get from aggregate analysis. Moreover, we have the opportunity to

observe the status of other important unknown connections.

The connection based analysis filters half connections out and examines the

remaining connections. Thus, the packets that belong to either scanning or DDoS

attacks are not shown in the graphics. Since we can observe such attacks from

the graphics that are sketched by the aggregate analysis, we choose to filter

out them and focus on other important activities by doing connection based

analysis. Connection based analysis rather aims to get more information about

the connections that have the bot C&C and then, to find the connection that

leads the bot to perform a specific attack.

Typically, the C&C communication is performed in a long term connection,

since the bots connect to a channel and wait for command in an idle state unless a

command is issued by the botmaster. This behavior can clearly can be seen from

the graphic in the Figure 5.7. Probably, the long term connection that has the

destination address as 218.25.36.7 : 7000 has the C&C communication. Another

interesting thing that can be interpreted is the possible time interval that DDoS

attack or scanning is performed. In the graphic the long term connection ends

at about 160000th second and afterwards, any other long term connection does

not exist. There are two possible reasons for that: first is that the bot finishes

its network activities and second an attack, which consists of half connections, is

started.

The graphic in the Figure 5.8 is mainly sketched in order to observe downloads

in detail. The aggregate analysis concludes that at about the 160000th second, a

download activity is performed. The connection based analysis not only approves

that conclusion, but also shows information about the destination machine the

file is downloaded from. As it can be seen from the graphic, the destination

address is 83.238.1.10 : 80.

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 50

(a) Source IP:Port - Destination IP:Port (b) Source IP - Destination IP/Port

(c) Source IP - Destination Port (d) Source IP - Destination IP

Figure 5.9: IP and Port Specific Connection Based Analysis of an IRC Bot

5.2.1 Detailed Connection Based Analysis Based on IP

Addresses and Port Numbers

The connection based analysis gives good results for bot samples that produce

relatively simple traffic traces. For example, the IRC bots generally do not have

complicated network activities, since they only connect to one or more IRC chan-

nels or servers. Thus, there are a few connections in the graphic that allows us

to interpret the behavior of the bots. Unfortunately, most of the bots produces

complicated network traffics that consist of numerous connections, which make

the graphic impossible to be interpreted as it can be seen from the Figure 5.10.

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 51

(a) Source IP:Port - Destination IP:Port (b) Source IP - Destination IP:Port

(c) Source IP - Destination Port (d) Source IP - Destination IP

Figure 5.10: IP and Port Specific Connection Based Analysis of an HTTP Bot

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 52

To simplify the graphics, we have made three more different analysis by modi-

fying the connection tuple, which consists of source ip(SRC-IP), source port(SRC-

P), destination ip(DST-IP) and destination port(DST-P). Thus, we have four

different types of connection based analysis:

• (SRC-IP,SRC-P,DST-IP,DST-P): The connection consists of all of the

members of a normal connection. Thus, the graphics analyze all of the

connections separately. This analysis is applied to only IRC bots, since

they generally have a few connections in their network traffic traces.

• (SRC-IP,DST-IP,DST-P): The analysis aims to find bots that have polling

based C&C mechanisms. In the graphic, the connections that have the

same destination address are shown in the same line.

• (SRC-IP,DST-IP): The analysis is done to observe frequently used desti-

nation IP addresses.

• (SRC-IP,DST-P): The analysis is done to observe frequently used destina-

tion port numbers.

We have sketched the graphics for two different bot samples by using all of

the analysis strategies described above. Figure 5.9 shows network activities of an

IRC bot. As it can be seen, the graphics that are sketched with the statistics

that are produced with four of the approaches do not make a difference, since

the IRC bots have a few long term connections and the response to the com-

mand issued by the botmaster in their traffic. On the other hand the Figure 5.10

shows the graphics for an HTTP bot sample. The first graphic is too compli-

cated that nothing can be interpreted because all of the connections are handled

separately. Obviously, other analysis schemes produce more promising graphics.

The (SRC-IP,DST-IP,DST-P) analysis shows that the bot frequently connects to

some different servers. The (SRC-IP,DST-P) analysis shows that the bot most

frequently connects to the port number 80 and four outsiders frequently connect

to the port 11314 on the machine the bot runs. And finally, the (SRC-IP,DST-IP)

analysis shows the frequently connected hosts.

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 53

5.3 Observing Bots That Have Different Types

of C&C Mechanisms

To date, there are three different types of C&C mechanisms: push style C&C,

poll style C&C and P2P style C&C, which are are described in Section 2.3.2

in detail. In the following sections, we will give the conclusions that we get

from the network analysis that are done for botnets with different types of C&C

mechanisms.

5.3.1 Push Style Bots

The botnets that have push style C&C mechanisms have a central server to

control bots. The bots connect to the central server and wait for the commands

and this behavior constitutes the main characteristic of push style C&C. Thus, as

soon as the bot is run in the compromised machine, it starts a network activity

by trying to establish the connection to the central server. The network captures

we have collected includes all of the traffic traces produced by the bot starting at

the bot’s run time. The Figure 5.1 proves that the bot really starts some network

activities, as soon as it is run.

Since the main characteristic of push style bots is that the bots connect to

a server and wait for the commands, obviously the traffic consist of long term

connections and one of these connections have the C&C communication that

might trigger the bot do an attack. The Figure 5.7 approves the existence of the

main characteristic of push style bots.

5.3.2 Poll Style Bots

The botnets that have poll sytle C&C mechanisms have a centralized control over

the bots as the botnets with push style C&C mechanisms have. However, the

bots do not connect to a server and wait for the commands in an idle status.

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 54

Figure 5.11: HTTP bots’ characteristics

They poll the server for the commands. That is to say, they frequently connect

to the server and check whether a command is issued or not.

The HTTP bots have a poll style C&C mechanism. They use the HTTP

protocol to communicate with the botmaster. The botmaster installs a HTTP

server and the bots frequently queries the server for the commands. The graphic

in the Figure 5.11 shows the polling characteristic of HTTP bots.

5.3.3 P2P Bots

The P2P botnets do not have a centralized C&C mechanism; instead they have

a decentralized C&C mechanism where the bots behave both as a server and a

client. Thus to interpret the P2P bots’ behaviors, neither the aggregate analysis

nor the connection based analysis can be directly applied. The P2P bots that

we have examined use a Kademlia based P2P C&C mechanism. When the bot

sample is run in the compromised machine, it tries to join to the botnet. First, it

creates a unique identity and declares itself to the botnet. Then, they exchange

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 55

Figure 5.12: Count of packets produced by the storm sample for each connection

some information to construct the network to get or send the commands that are

published by the botmaster. We could collect the network traffic just for about

three minutes, because the P2P botnets produce an extreme amount of network

traffic. Thus, the analysis interval for the graphics is 10 seconds.

We have analyzed Storm, which is the most well-known P2P today. The

Figure 5.12 and Figure 5.13 shows the graphics produces with connection based

analysis. As it can be seen, there are too many different connections that do

not allow us to extract some information from the graphics. The only interesting

thing is the sudden peak seen between 120th and 140th seconds. It may be

the time interval where the command is published, since it is different than the

regular activity of the bot.

The Figure 5.14 and Figure 5.15 shows the graphics that are sketched with

aggregate analysis. Unfortunately, either the count of packets or the data trans-

ferred do not show any interesting information.

Generally, storm is known with its spamming attacks. The Figure 5.16 has

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 56

Figure 5.13: Amount of data transfered in each connection by the storm sample

Figure 5.14: Total count of packets produced by the storm bot

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 57

Figure 5.15: Cumulative amount of data produce by the storm bot

Figure 5.16: Count of SMTP packets produced by the storm bot

CHAPTER 5. ANALYSIS OF THE NETWORK TRAFFIC 58

Figure 5.17: Count of non-ascii characters sent and received by the storm bot

the graphic that is sketched with the data produced by counting the smtp packets

transferred. The graphic clearly shows that the bot starts the spamming activity

at the 120th second.

The storm bot uses UDP for its C&C protocol that is Kademlia based as

mentioned before. Thus, the C&C protocol is a binary protocol as the graphic

in the Figure 5.17 shows. Unfortunately, this characteristic of storm bot makes

it impossible to detect downloads by counting the non-ascii characters in the

network traffic capture.

Chapter 6

Signature Generation

Traditional means of defense against bots rely on anti-virus software installed

on user machines. Unfortunately, they have a limited detection scheme, which

strictly depends on predefined signatures. Clearly, it is very difficult to update

the signatures fast enough to keep up the speed of botnet evolution. The network

administrators prefer to have a full control over the network they are responsible

for. Installing anti-virus software or a malware scanner on the host machines

prevents the administrator from observing the status of the computers, since host

specific security gives the users independence. Unfortunately, there is always

a possibility to have either careless or attacker users inside the network who

makes the system vulnerable to bots or other malwares. Thus, the network

administrators make use of intrusion detection systems (IDS) that can be installed

on a vantage point at the network.

An IDS is responsible of monitoring either the inbound or the outbound traffic

that flows on the machine it is installed on. While it is monitoring the traffic, it

searches for known signatures that correspond to malicious traffic. If a malicious

content tries to pass through the network, the IDS may either raise an alarm to

inform the administrator or drop the connection to prevent the malicious traffic

reach the victim.

To date, there are two well-known intrusion detection systems: Bro [24] and

59

CHAPTER 6. SIGNATURE GENERATION 60

Snort [28]. While Snort uses only content-based signatures to detect the malware,

Bro uses both content-based and network-based signatures. Network based signa-

tures are also called as behavioral signatures, since they are used for monitoring

network behaviors of the machines. Network-based signatures are typically de-

signed for detecting scans or denial of service attacks that may either be sourced

by a local machine or a remote machine. Clearly, the content-based signatures

are used for matching known patterns that come within the transferred packets.

The signature matching techniques applied by Snort and Bro are:

• String matching at arbitrary payload offsets

• String matching at fixed payload offsets

• Matching regular expressions

The goal of our system is to create detection models for various bot families,

as described in Chapter 3. The detection models involve generating content-based

signatures that can be deployed to IDS systems such as Bro [24] and Snort [28].

Normally, the content-based signatures are generated with manual effort. The

malware analysts examine malware samples and try to find some common pat-

terns that can identify malware. A number of systems [14, 31, 20, 22] have been

proposed that are able to automatically generate signatures to detect worms.

The worm signatures consist of some tokens that are extracted from the worm

executable itself. Contrary to signatures for other malware, signatures to detect

bots do not consist of bot executable, but the commands that are issued by the

botmaster. To date, an automated signature generation scheme for bots does not

exist. Thus, with our system, we aim to fill this gap.

6.1 Signature Quality

Ideally, a signature generated for a specific command that belongs to a bot family

should detect all of the members of the family as soon as the specific command is

CHAPTER 6. SIGNATURE GENERATION 61

issued. Moreover, the signature must not match other traffic patterns that do not

belong to the communication between the bot and the botmaster. The quality of

the signatures is evaluated with two concepts: sensitivity and specificity.

• Sensitivity: The sensitivity of a signature is related to the rate of the true

positives. In traffic that consists of both bot C&C and normal traffic, the

fraction of bot C&C flows matched constitutes the true positives. Sensitivity

is reported as t ∈ [0, 1], the fraction of true positives. Clearly, a sensitive

signature has approximately t ' 1.

• Specificity: The specificity of a signature is related to the rate of the false

positives. In a mixed traffic, the fraction of none bot C&C flows matched

constitutes the false positives. Specificity is reported as (1 − f) ∈ [0, 1],

where f is the fraction of false positives. The ideal signatures have to be

specific enough that they do not produce any false positives.

In practice, it is impossible to have perfect sensitivity and perfect specificity

together, since these two concepts have a tension between themselves. That is to

say, when a signature generation scheme tries to achieve the perfect sensitivity, it

looses the perfect specificity. Thus, the signature generation scheme tries to have

the balance between sensitivity and specificity by finding the most reasonable

values for each.

6.2 Content-Based Signatures

We have analyzed various kinds of content-based signature generation

schemes [14, 31, 20, 22] and decided to generate token subsequence signatures

since they can also be deployed as regular expressions to known intrusion detec-

tion systems, such as Bro and Snort. In the flowing section, we briefly explain

the content-based signature generation schemes to date.

CHAPTER 6. SIGNATURE GENERATION 62

6.2.1 Substring Signatures

Honeycomb [17], Autograph [14] and EarlyBird [31] provide automatically gener-

ated pattern-based signatures that are used for detecting worms. The signatures

are single substring signatures that are produced from worm executables. Unfor-

tunately, single substring signatures have very high false positives rate unless the

signature is long enough. Since, it is difficult to ensure the existence of such a

long substring; the single substring signatures are not specific enough.

Since the single substring signatures are not specific enough to identify worms,

which mostly consists of binary data that rarely have commonalities with benign

traffic; they are too general for signatures that must consist of bot C&C as well.

Typically, IRC bots use clear-text C&C and the longest common substrings found

are generally some strings that are likely seen in the normal web traffic. For ex-

ample, advscan command basically triggers scanning activity on bots. Supposing

that the longest common substring produced is scan, the signature clearly will

trigger so many false positives. We do not prefer to use the single substring signa-

tures, because we want the quality of the signature to be high enough that it does

not generate so many false alarms that may disturb the network administrators.

6.2.2 Conjunction Signatures

Conjunction signatures are one of the signature generation schemes provided by

Polygraph [22]. The signatures consist of a set of tokens and they are matched

only if all of the tokens in the set are found in the packet, in any order.

6.2.3 Token Subsequence Signatures

Token subsequence signatures consist of a set of tokens as conjunction signatures.

However, the token subsequence signatures have an ordered set of tokens. The

signature is matched only if all of the tokens in the set are found in an ordered

fashion. Obviously, the quality of token subsequence signatures are better, since

CHAPTER 6. SIGNATURE GENERATION 63

the necessity to match only tokens in order decreases the count of false positives.

The most important property of the token subsequence signatures is that the

signatures can be deployed as regular expressions to the current intrusion de-

tection systems without any effort. We have used token subsequence signature

scheme to generate signatures for bot C&C, because of two reasons: first is that

they can be expressed easily as regular expressions and second is that the signa-

tures are very specific to bot C&C that do not trigger so many false positives.

6.2.4 Bayes Signatures

Bayes signatures consist of a set of tokens as well as the token subsequence and

conjunction signatures. Each of the tokens is associated with a score and an over-

all threshold. In contrast with the exact matching offered by the other schemes,

bayes signatures provide a probabilistic matching. For each of the tokens a prob-

ability score is computed and only if the score is over a threshold, the token is

added to the signature.

6.3 Signature Generation Algorithms

As it is mentioned before, we have preferred the token subsequence signatures

because they can be expressed as regular expressions and the count of false posi-

tives they generate are relatively low. To generate token subsequence signatures,

a couple of off-the-shelf algorithms can be used. In the following sections, we

describe some algorithms we have made use of.

6.3.1 Longest Common Substring Algorithm

The longest common substring problem is to find the longest string that is a

substring of all of the strings in a set. The algorithm can be generalized to find

more than one common substring from the set. As a preprocessing step before

CHAPTER 6. SIGNATURE GENERATION 64

signature generation, we extract common tokens that are restricted to have a

minimum length. The reason of performing a preprocessing step is to speed up

the signature generation step by taking the useless tokens out. To this end, the

generalized longest common subsequence algorithm (a.k.a k-common substring

algorithm) finds all of the tokens with a minimum length λ that occur in at least

κ out of the total n snippets of a behavioral cluster.

The longest common substring algorithm can be solved with three different

approaches: first by making use of generalized suffix trees, second by making

use of suffix arrays and the last by dynamic programming. We have evaluated

all of the algorithms and experiments showed that suffix trees and suffix arrays

are more effective and faster than the dynamic programming algorithm. Thus,

we have implemented the system by using suffix trees and arrays not by using

dynamic programming approach.

6.3.1.1 Suffix Trees

A suffix tree (a.k.a PAT tree) is a data structure that positions all of the suffixes of

a given string in a way that allows for a particularly fast implementation of many

important string operations. Constructing the tree for a string takes time and

space linear in the length of the string. Although the suffix tree of a string needs

more space than the space needed for the string itself, the speedup it provides

makes the algorithm reasonable to be used for several purposes.

A generalized suffix tree is a suffix tree that contains a set of strings. The most

important functionality of generalized suffix trees is that it can be used to solve

longest commons subsequence problem for a set of strings. The problem is solved

by locating all of prefixes of the strings in one suffix tree and then, finding the

deepest internal nodes which has leaf nodes from all the strings in the subtree

below it. The Figure 6.1 shows the generalized suffix tree constructed for two

strings: abbab and aabab. To differentiate the strings the strings are padded

with unique string terminators, such as $1 or $2. As it can be seen from the

Figure 6.1, the longest common substring is the characters on the path whose

CHAPTER 6. SIGNATURE GENERATION 65

Figure 6.1: Generalized Suffix Tree Representation of two strings, abbab and
aabab

CHAPTER 6. SIGNATURE GENERATION 66

leaf node has both 1 and 2 and is the deepest in the tree. The longest common

substring of the strings abbab and aabab is bab that is on the path with filled

nodes.

We have made use of a generic suffix tree library, libstree [16] that is written

in C programming language. The library can handle different types of data

structures as elements of the string that may consist of also non-ascii characters.

The suffix tree generation in the library is implemented using the algorithm by

Ukkonen. Since the libstree can handle multiple strings per the suffix tree, it may

be used to find longest common substrings, which we need.

6.3.1.2 Suffix Arrays

The suffixes
a b a c d a c b b
a c b b
a c d a c b b
b
b a c d a c b b
b b
c b b
c d a c b b
d a c b b

Table 6.1: The suffix array constructed for the string abacdacbb

To find the signatures, we have made use of some piece of code already exists in

Polygraph [22], which uses suffix trees to extract the tokens. After polygraph was

published, Li et. al. published Hamsa [20] which also aims to generate signatures

for polymorphic worms. In their paper, the authors claim that by using suffix

arrays instead of suffix trees, the speed of generating the signature significantly

increases. Thus, we have decided to implement the signature generation code

also by using suffix arrays to see if they are actually right.

A suffix array is an array giving the suffixes of a string in lexicographical

order. For example, nine characters long string abacdacbb has nine suffixes and

CHAPTER 6. SIGNATURE GENERATION 67

the suffix array constructed for the string is shown in the Table 6.1. Suffix array

of a string can be used as an index to quickly locate all possible substrings within

the string. Since the substrings are sorted in lexicographical order, by using the

binary search easily the substring can be found.

The suffix arrays can also be used for finding the longest common substrings

between two strings, since searching for arbitrary strings is very fast with suffix

arrays. After we implemented the longest common substrings problem with suffix

arrays, we have seen that it increases the performance as authors of Hamsa claim.

6.3.2 Longest Common Subsequence Algorithm

The longest common subsequence problem is finding the longest subsequence that

exists in all of the strings in a set. Thus, the tokens sequence signatures for the

bot C&C can be generated by making use of the longest common subsequence

algorithm. A subsequence of two strings is an ordered sequence of bytes that do

not need to be contiguous. For example, the longest common subsequence of two

strings xxxsmp1xxxxsmp2xxx and ysmp1yyyysmp2yy is smp1smp2.

The typical solution to longest common subsequence algorithm is done by

dynamic programming and the solution for two strings X1..n and Y1..m is given

as:

LCS(X1..i,Y1..j)=





φ if i=0 or j=0

LCS(X1..i−1,Y1..j−1)+xi ifxi=yj

LCS(max(LCS(X1..i,Y1..j−1),LCS(X1..i−1,Y1..j))) else

(6.1)

CHAPTER 6. SIGNATURE GENERATION 68

6.4 Generating Signatures for Detecting the

Bots

Signature generation phase is the last step of our system, which firstly analyzes

the bot network captures according to properties described in Section 5.1 to

specify the behavioral changes. We make the assumption that the bot command

that triggers the behavioral change is issued maximum in 100 seconds before

the behavioral change is recognized. Thus, the signature generation concentrates

on the network capture generated between the time of behavioral change and

100 seconds before it. We call that 100 seconds network capture preceding the

behavioral change as network traffic snippet.

The input to the signature generation algorithm is a set of clustered net-

work traffic snippets that are associated with specific behavioral profiles. The

behavioral profile of such a cluster represents a bot activity, such as scanning,

e-mail spamming or one of the other malicious activities that are explained in

Section 2.2. We assume that all of the botmasters who use the C&C mechanism

of a specific bot family should use the same commands. Thus, all of the bots

that belong to the same family should behave the same when they get the same

command. That is to say, the network traffic snippets that have the same be-

havioral profile should include the commands that are similar to others in the

cluster. These similar commands constitute the token signatures that are used

to detect bot C&C communication.

Hereinafter, when we mention about a set of snippets, it must be understood

that the set has snippets that have the same behavioral profiles. Because we

cannot locate the exact time where the command is issued, we examine all of

the data transferred in 100 seconds interval. Obviously, the data consists of a

mixture of network traffic with different packets belong to different protocols.

The signature generation algorithm is responsible for arranging the snippets such

that those are put together in a cluster that likely contain the same command.

As mentioned in Section 6.2, to extract common substrings from network

CHAPTER 6. SIGNATURE GENERATION 69

snippets that belongs to a behavioral cluster, we leverage the existing signa-

ture generation techniques. We experimented with different signature generation

schemes and decided to stay with token subsequence signatures as produced by

Polygraph [22].

Token extraction is performed in two phases: First, we cluster the payloads

in the snippets according to their similarities, and second, we find the longest

common subsequence in each cluster separately. We leverage the agglomerative

hierarchical clustering algorithm implemented in Polygraph, with several modi-

fications. Polygraph computes a score that is dependent on the common tokens’

false positive rate, which is defined as the token sequence’s matching rate on

an innocuous pool. As there is no innocuous pool in our setup, we define the

similarity score S between two payloads, P1 and P2, that have n common tokens

t1, . . . , tn, as follows:

S =
n∑

i=1

(
len(ti)

len(P1)
+

len(ti)

len(P2)

)
/2 (6.2)

The clustering phase starts after we put each payload into a separate cluster.

Then, similar clusters are successively merged into larger clusters. Two clusters

are merged only if the payloads in the clusters have a similarity score greater than

a minimum threshold that is empirically chosen to prevent the system from ag-

gressively removing tokens from the signatures, as this leads to over-generalization

and the loss of relevant information.

Basically, the clustering is done by the following steps;

1 Creating separate clusters for each of the payloads that are transferred in

the snippets that belongs to a specific behavioral cluster.

2 Extracting common tokens for each possible pair in the input set and at

the same time, calculating the score from the extracted common tokens.

3 Sorting the pairs according to their scores to find a starting point for merg-

ing.

4 As long as there are unmerged pairs,

CHAPTER 6. SIGNATURE GENERATION 70

1 Choosing the pair with highest score, merging the clusters that own

the payloads of the pair and removing the pair from the unmerged

pairs list

2 Searching other unmerged pairs to find the pairs that have one of the

members of the recently merged pair. If it is found and the other

payload does not decrease the score of the cluster to be under the

threshold, when it is also merged to the cluster, merging it too

3 Sorting unmerged pairs

The algorithm above chooses the clusters to be merged with a greedy method.

Since the greedy approach may reach local minimum instead of global minimum,

the noise in the snippets may prevent producing ideal signatures. Such problems

generally occur while generating signatures for IRC bots. As it is known, IRC

servers send long topic packets when a client connects. The topic packets may

consist of the name of the server, the name of the channel, list of the connected

user names and some advertisement. Coincidentally, the long topics packets may

have highest similarity score with the packets that have the command. Obviously,

this coincidental similarity may lead to lose the command substring and produce

signatures that consist of just channel properties. Nevertheless, we have used the

greedy method and most of the time generated signatures have reasonably good

quality.

The final step of the signature generation is to generate the token subsequence

signatures. After the clustering of the payloads is finished, we have some clusters

that have similar payloads. To find the token subsequence signatures, we find the

longest common subsequences in each cluster separately.

Chapter 7

Evalution

The purpose of the evaluation is to demonstrate that our system can generate

content-based signatures that are capable of detecting bot-infected machines with

a low false positive rate. To this end, we analyzed a sample set of 283 bots. 251

of the samples are obtained via Anubis and afterwards, executed in our traffic

environment over a period of 43 days. The remaining 32 traffic captures include

Storm traffic and they are generated seperately at the University of Mannheim.

Bot family #Models #Token sequences
IRC1 2 12
IRC2 2 7
IRC3 2 10
IRC4 4 14
IRC5 7 31
IRC6 2 5
HTTP 2 6
STORM 1 11
TOTAL 22 96

Table 7.1: Numbers of detection models and total numbers of token sequences
generated for each bot family.

Using the 258 samples, which are clustered into 6 IRC, 1 HTTP and 1 Storm

families, we have produced 22 behavioral profiles. Table 7.1 shows the number of

71

CHAPTER 7. EVALUTION 72

behavioral profiles generated for each bot family and the number of content-based

signatures that identify each behavioral profile.

Figure A.1 shows one of the content-based signatures that identifes a behav-

ioral profile for an IRC bot family. This signature consists of 7 token sequences

that are generated from the network snippets which have the traffic captured

before the response activity. Generally, only one of the token sequences has the

command issued by the botmaster. For example, the sixth token sequence in the

Figure A.2 has the .asc command and some parameters for it.

The signatures in the Figure A.6 and Figure A.7 prove that our system can

not only produce signatures for IRC bots, but also the HTTP bots. Since the

HTTP bots use poll-style C&C mechanism, the bot can get the command only

if it demands it from the botmaster. Typically, the bots send some information

about the compromised machine by passing some parameters to the command

server. The signatures that are produced from the outbound traffic may also

identify the behavior. Thus, the signatures for HTTP bots are generated for

both inbound and outbound traffic.

Finally, we could also produce a signature for storm bots. Normally, producing

signatures for Strom bots is a challenging task, because the botmaster does not

use a central server to send the commands and the commands sent are XOR

encrypted. Thus, it is impossible to generate signatures that identify a Storm

command. Nevertheless, we have analyzed the output produced for Strom bots.

Even though the signatures do not include tokens that are a part of the attack

command, they include some tokens that shows the command is issued as it can

be seen from the Figure A.8.

7.1 Signature Quality

In order to understand whether the signatures we produce for each family are

useful or not, we evaluated the quality of them in two steps. In the first step, we

compared our signatures with human-generated signatures, which were written

CHAPTER 7. EVALUTION 73

by human experts. Of course, we expect to find significant similarity between

them.

As it can be clearly seen from the signatures generated in Appendix A, we

have three types of signatures:

• Very specific signatures: The token sequences contain substrings of a specific

botnet’s communication protocol. Clearly, these signatures will likely not

cause false positives. However, they may only detect bots that belong to

a specific botnet, not the other bots that are a member of the same bot

family.

• Very generic signatures: The token sequences contain substrings that are

related to the communication protocol that is made use of for C&C. For

example, if the botnet uses IRC protocol for C&C, the signatures may

contain only substrings that are used also in benign IRC communication.

Obviously, this type of token sequences cause high false positive rate.

• Command signatures: The token sequences contain substring that are a

part of the command issued by the botmaster.

The signatures that we have generated for each behavioral profile have at

least one token sequence that has the command that we are looking for. We have

compared the command signatures with the human-generated signatures that are

deployed to Snort. All of our token sequences that fall into the third category are

nearly the same as the Snort signatures. For example,the corresponding Snort

signatures of (’@admin.’, ’ PRIVMSG #’, ’# :.advscan ’, ’ -’, ’

n’) is |2E|advscan|20.t

As a second step, we analyze the capability of our system to detect novel

binaries. We have deployed our signatures to a Bro sensor in front of several

malware analysis machines. None of the malware samples that are executed in the

analysis machines are the bot samples we have executed in our test environment.

In total approximetaly 800 malwares are executed and our system detected 19

bots. Thus, our system is capable of detecting bot-infected machines.

CHAPTER 7. EVALUTION 74

7.2 Real World Deployement

In order to evaluate our signatures to find the false positive rate, we have deployed

them on a Bro sensor which is in front of a university network which consists of

several student computers. During a testing period of 24 hours, the sensor mon-

itored millions of connections. In total, the signatures triggered 402 times, with

five different signatures matching on the network traffic. We have observed that

some of the token sequences that fall in to the second category(very generic sig-

natures) matched the benign traffic. Since for our system is not enough only to

match the content-based signatures, we did not alert such matches. Our system

alerts only if the response behavior is also observed after the content-based sig-

natures is detected. Our system raised only one false alert, because by chance

our signatures matched the traffic produced by eDonkey file sharing program

and since the file sharing programs produce dense traffic, we recognized it as a

scanning. Nevertheless, one false positive is acceptable especially in such a large

network. We can conclude that our signatures can detect bot-infected machines

with a low false positive rate.

Chapter 8

Conclusion

Today, botnets constitute a big treat against Internet users. They perform mali-

cious activities that aim to steal important secret information, obstruct working

of a system, make advertisements or send junk e-mails, etc. In this thesis, we

present a system that monitors network traffic in order to examine it for signs

that indicate the presence of bot-infected machines. To this end, we propose a

detection model that focuses on the most distinguishing characteristic of bots

that they receive commands and carry out some corresponding activities. In or-

der to create our detection models, we observe the network traffic. Based on

these observations we generate content-based and network-based signatures that

can be deployed to known intrusion detection systems. Our approached relies

on neither the bot spreading vector nor specific bot properties such as the com-

mand and control protocol. Thus, we were able to generate signatures for various

bot families that use different command and control protocols, IRC, HTTP or

P2P. Finally, the experiments showed that our system is capable of detecting

bot-infected machines with a low false positive rate.

75

Bibliography

[1] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. C. Freiling. The

Nepenthes Platform: An Efficient Approach to Collect Malware. In 9th

Symposium on Recent Advances in Intrusion Detection (RAID), pages 165–

184, 2006.

[2] E. Balas and C. Viecco. Towards a Third Generation Data Capture Archi-

tecture for Honeynets. In 6th IEEE Information Assurance Workshop. West

Point, 2005.

[3] U. Bayer. Anubis: Analyzing Unknown Binaries. http://analysis.

seclab.tuwien.ac.at/.

[4] M. Christodorescu and S. Jha. Testing Malware Detectors. In ACM Inter-

national Symposium on Software Testing and Analysis (ISSTA), 2004.

[5] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant. Semantics-

Aware Malware Detection. In IEEE Symposium on Security and Privacy

(Oakland), 2005.

[6] D. Dagon, G. Gu, C. Lee, and W. Lee. A Taxonomy of Botnet Structures.

In Annual Computer Security Applications Conference (ACSAC), 2007.

[7] M. de Hoon, S. Imoto, J. Nolan, and S. Miyano. Open Source Clustering

Software. Bioinformatics, 20(9), 2004.

[8] D. Dietrich. Distributed Denial of Service(DDoS) Attacks/tools. http:

//staff.washington.edu/dittrich/misc/ddos/, 2005.

76

BIBLIOGRAPHY 77

[9] T. F. S. Foundation. the GNU Compiler Collection. http://gcc.gnu.org.

[10] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. BotHunter: De-

tecting Malware Infection Through IDS-Driven Dialog Correlation. In 16th

Usenix Security Symposium, 2007.

[11] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botnet Command

and Control Channels in Network Traffic. In 15th Annual Network and

Distributed System Security Symposium (NDSS), 2008.

[12] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Measurements

and Mitigation of Peer-to-Peer based Botnets: A Case Study on Storm

Worm. In First Usenix Workshop on Large-Scale Exploits and Emergent

Threats(LEET’08), 2008.

[13] C. Kalt. Internet relay chat: Architecture. RFC2810.

[14] H. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm

Signature Detection. In 13th USENIX Security Symposium, pages 271–286,

August 2004.

[15] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer. Behavior-

based Spyware Detection. In 15th Usenix Security Symposium, 2006.

[16] C. Kreibich. libstree-A generic suffix tree library. http://www.icir.org/

christian/libstree/.

[17] C. Kreiblich and J. Crowcroft. Honeycomb - creating intrusion detection

signatures using honeypots. In the Scond Workshop on Hot Topics in

Networks(HotNets-II), November 2003.

[18] C. Kruegel, W. Robertson, and G. Vigna. Detecting Kernel-Level Rootk-

its Through Binary Analysis. In Annual Computer Security Applications

Conference (ACSAC), 2004.

[19] J. Leyden. Rise of the Botnets. http://www.theregister.co.uk/2004/

09/20/rise_of_the_botnets/, 2004.

BIBLIOGRAPHY 78

[20] Z. Li, M. Sanghi, Y. Chen, M. Kao, and B. Chavez. Hamsa: Fast Sig-

nature Generation for Zero-day Polymorphic Worms with Provable Attack

Resilience. In IEEE Symposium on Security and Privacy, 2006.

[21] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer information

system based on the XOR metric. In 1st Workshop on Peer-to-Peer Sys-

tems(IPTPS), March 2002.

[22] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating

Signatures for Polymorphic Worms. In IEEE Symposium on Security and

Privacy, pages 226–241, 2005.

[23] Norman. Norman Sandbox: Malware Analyzer. http://www.norman.com/

microsites/nsic/.

[24] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time.

Computer Networks, 31, 1999.

[25] G. Popek and R. Goldberg. Formal Requirements for Virtualizable Third

Generation Architectures. Communications of the ACM, 17(7):412 – 421,

July 1974.

[26] N. Provos. A Virtual Honeypot Framework. In 13th USENIX Security Sym-

posium, pages 1–14, 2004.

[27] Qemu. Qemu Open Source Processor Emulator. http://fabrice.bellard.

free.fr/qemu/, 2008.

[28] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In 13th

Systems Administration Conference (LISA), 1999.

[29] J. Rutkowska. Red Pill... or how to detect VMM using (almost) one

CPU instruction. http://www.invisiblethings.org/papers/redpill.

html, 2004.

[30] G. Security. GhostWall FireWall. http://www.ghostsecurity.com/

ghostwall/.

BIBLIOGRAPHY 79

[31] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm finger-

printing. In 6th ACM/USENIX Symposium on Operating System Design and

Implementation(OSDI), December 2004.

[32] J. Stewart. Bobax trojan analysis. http://www.secureworks.com/

research/threats/bobax/, 2004.

[33] C. L. Van Jacobson and S. McCanne. Tcpdump. http://www.tcpdump.

org/.

[34] VMware. VMware: Virtualization, Virtual Machine and Virtual Server Con-

solidation. http://www.vmware.com/.

[35] C. Willems, T. Holz, and F. Freiling. CWSandbox: Towards automated

dynamic binary analysis. IEEE Security and Privacy, 5(2), 2007.

[36] Xen. Citrix Xen. http://www.xensource.com, 2008.

[37] Xen. Xen v3.0 User’s Manual. http://www.cl.cam.ac.uk/research/srg/

netos/xen/readmes/user/user.html, 2008.

[38] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing

system-wide information flow for malware detection and analysis. In ACM

Conference on Computer and Communication Security (CCS), 2007.

Appendix A

Signatures Generated for Bot

Families

[(’ PRIVMSG #’, ’ :.scanstop -s\n’),
(’:lex!lex@lex.net ’, ’ #lounge ’),
(’lex!lex@lex.net’, ’\n’),
(’ QUIT :Ping timeout’, ’\n’),
(’.anticrew.org’, ’\n’),
(’ PRIVMSG #’, ’ :.asc’, ’ 5 0 ’, ’.x.x’, ’ -s’, ’\n’),
(’.net’, ’ PRIVMSG #lounge :’, ’\n’)]

Figure A.1: The signature for one of the behavioral clusters of IRC-1

[(’:h3x-’, ’!h3x-’, ’ PRIVMSG ##X## :Accepted’, ’\n’),
(’:Aeolus!evil@feeling.nasty’, ’\n’),
(’ ##’, ’## :.adv.start asn ’, ’0 ’, ’ 0’, ’ -b -s\n’)]

Figure A.2: The signature for one of the behavioral clusters of IRC-2

[(’ TOPIC #dc :xvvv asn139 150 0 0 -b -r -s’, ’\n’),
(’ QUIT :Connection reset by peer\n’,),
(’:SW!~h4cktsInt@room PRIVMSG #d’, ’ :x’, ’\n’),
(’:SW!~h4cktsInt@’, ’ MODE #d’, ’ +o SW’, ’\n’),
(’.479B98E9.IP MODE #dial# +o ’, ’\n’)]

Figure A.3: The signature for one of the behavioral clusters of IRC-3

80

APPENDIX A. SIGNATURES GENERATED FOR BOT FAMILIES 81

[(’@admin.’, ’ PRIVMSG #’, ’# :.advscan ’, ’ -’, ’\n’),
(’!TsInternetUser@’, ’.com’, ’\n’)]

Figure A.4: The signature for one of the behavioral clustera of IRC-4

[(’CONNECT ’, ’.’, ’.’, ’:25 HTTP/1.0\n’),
(’\x05\x01\x00\x03’, ’m’, ’.’, ’o’, ’o’, ’.com\x00\x19\n’),
(’:eheh!Y@hoo.net PRIVMSG #rs2 :=’, ’6i’, ’2’, ’W’, ’Lb’, ’L’,
’o’, ’4’, ’t’, ’cX’, ’k’, ’5’, ’\r\n’),

(’:’, ’!Y@hoo.net PRIVMSG #’, ’ :’, ’ps’, ’a’, ’n’, ’o’, ’m’, ’\n’),
(’:eheh!Y@hoo.net PRIVMSG #rs2 :=’, ’6’, ’m’, ’a’, ’F2’, ’0’, ’x’,
’UO’, ’f’, ’v’, ’S’, ’M’, ’C’, ’m’, ’\n’),

(’:EH!Y@hoo.net PRIVMSG #rs :=’, ’f’, ’a’, ’t’, ’gA’, ’M’, ’O’,
’k’, ’N’, ’A’, ’m’, ’9’, ’B\r\n’)]

Figure A.5: The signature for one of the behavioral clusters of an IRC bot which
has an obfuscated C&C.

[(’HTTP/1.1 .*\r\nDate: .*, 2.* Jan 2008 .* GMT\r\nServer: Apache\r\n.*on.*:
.*\r\nContent-Length: .*\r\nContent-Type: text/html.*\r\n\r\n<.*HTML.*ET.*
HT.*EN.*">\r<.*>\r<.*bo.*>\r<.*me.*="h.*om.*">.*</.*>\r</.*>\n.*),

(.*CONNECT smtp.*.google.com:25 HTTP/1.0\n.*),
(.*:tis!yano@admin.siwatech.com .* #siwa.*\n.*)]

Figure A.6: The signature for the inbound traffic of the HTTP bot

[(.*GET /reg?u=1.*&v=187&s=.*&su=.*&p=0&e=0&o=0&a=0&wr=75 HTTP/1.1\r\n
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)\r\nHost:
.*.org\r\nCache-Control: no-cache\n.*)]

Figure A.7: The signature for the outbound traffic of the HTTP bot

[(’P\xfe\x00’, ’\xe3\x0f\xee1\xd6"\x8a.\x94>\x13\x87n\xd8}\xd4W’,
’Q’, "\xeeQ\x19’\xb5o\x96G\xf0\xb5/=)\xf3B\xfc;^H\x0b\x97C"),

(’?\xb8\x00’, ’\xe3\x11\x1aQ\xde@\xa4H\xaeT.\xa1\x9a\xe4\x85\x90Mo’,
’\x01\x00\x00\x00\x02\x01\x00\x01’, ’.mpg;size=’),

(’P\xfe\x00’, ’\xe3\x0fv\xbfj\xb5\x19\xbd#\xc9\xa1\x16\xf6^\x03D\xc2\xe4’),
(’P\xfe\x00’, ’\xe3\x11’, ’\x01\x00\x00\x00\x02\x01\x00\x01’, ’.mpg;size=’),
(’\xe3\x0f\x1aQ\xde@\xa4H\xaeT.\xa1\x9a\xe4\x85\x90Mo’,),
(’\xe3\x0f\xb7\x00\xab\xf6Z\xfed\r\xe2W7\x9fD\x85\x03\%’,)]

Figure A.8: The signature for storm

