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ABSTRACT

SIZE MODULATION AND DEFECTS IN GRAPHENE
BASED RIBBONS: MAGNETISM AND CHARGE

CONFINEMENT

Mehmet Topsakal

M.S. in Material Science and Nanotechnology

Supervisor: Prof. Dr. Salim Çıracı

July, 2008

In this thesis, we investigated the effects of vacancy and heterojunction for-

mation on electronic and magnetic properties of graphene nanoribbons (GNRs)

by using first principles pseudopotential plane wave method within Density Func-

tional Theory. Graphene based materials are expected to be very important in

future technology. Through understanding of all the factors which influence their

physical properties is essential. We have shown that electronic and magnetic

properties of graphene nanoribbons can be affected by defect-induced itinerant

states. The band gaps of armchair nanoribbons can be modified by hydrogen

saturated holes. Defects due to periodically repeating vacancies or divacancies

induce metallization, as well as magnetization in non-magnetic semiconducting

nanoribbons due to the spin-polarization of local defect states. Antiferromagnetic

ground state of semiconducting zigzag ribbons can change to ferrimagnetic state

upon creation of vacancy defects, which reconstruct and interact with edge states.

Even more remarkable is that all these effects of vacancy defects are found to de-

pend on their geometry and position relative to edges. We also predicted that

periodically repeated junctions of graphene ribbons of different widths form mul-

tiple quantum well structures having confined states. These quantum structures

are unique, since both constituents of heterostructures are of the same material.

The width as well as the band gap, for specific superlattices are modulated in

direct space. Orientation of constituent nanoribbons, their widths, lengths and

the symmetry of the junction are some of the crucial structural parameters to en-

gineer electronic properties of these systems. Our further studies on nanoribbons

and nanoribbon superlattices showed the strong dependence of band gaps and

magnetic moments on applied uniaxial stress. This thesis presents an extensive

iii



iv

study of size modulation and defect formation on graphene nanoribbons.

Keywords: ab initio, density functional theory, graphene, graphene nanoribbons,

defects, elasticity, superlattices, confinement, multiple quantum well structures .



ÖZET

GRAFİN TABANLI MALZEMELERDE KALINLIKSAL
ÇEŞİTLENDİRMELER VE AĞ ÖRGÜ DELİKLERİ:

MANYETİZMA VE YÜK YOĞUNLAŞMASI

Mehmet Topsakal

Malzeme Bilimi ve Nanoteknoloji Enstitüsü , Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Salim Çıracı

Temmuz, 2008

Bu tezde grafin nanoşeritlerin elektronik ve manyetik özelliklerinin ağ örgü de-

liklere ve heterojen kesit oluşumuna göre nasıl değiştiğini pseudo potansiyelli

düzlem dalga metodlu yoğunluk fonksiyoneli teorisi ile inceledik. Grafin tabanlı

malzemelerin geleceğin teknolojisinde oldukça önemli bir yere sahip olması bek-

lenmektedir ve bu yüzden bu malzemenin fiziksel özelliklerini belirleyen faktölerin

iyi anlaşılması gerekmektedir. Biz gösterdik ki grafin şeritlerin elektronik ve

manyetik özellikleri delik sonucu oluşan dalga durumları yüzünden oldukça fazla

etkilenmektedir. Armchair türü grafin şeritlerin yasak enerji aralıkları hidrojenle

doyurulmuş delikler sayesinde modifiye edilebilmektedir. Bu delikler malzem-

eye metalik özellik kazandırabilmekte hatta manyetik olmayan armchair şeritlere

yerel manyetik özellikler dahi kazandırabilmektedir. Zigzag türü grafin şeritlerde

ise kenar durumlarının delik yüzünden oluşan durumlar ile etkileşmesi sonucu

antiferromagnetik halden ferrimagnetic hale geçiş gözlemlenmektedir. Daha

da ilginci bütün bu etkiler deliğin yapısına ve oluştuğu yere göre değişiklikler

göstermektedir. Deliklerden ayrı olarak bizler farklı kalınlıktaki grafin şeritlerin

birleştirilmesi ile oluşturulan grafin yapılarının çoklu kuantum kuyu yapılarının

oluşturduklarını da gösterdik. Yeni yapıyı oluşturan bileşenler aynı malzeme

olduğu için bu sistemler geleneksel heterojen yapılardan farklılık göstermektedir.

Heterojen sistemi oluşturan şeritlerin kalınlıkları ve boyları, birbirlerine olan kon-

umları, simetrileri heterojen sistemin elektronik özelliklerinin kontrol edilmesinde

önemli rol oynamaktadır. Daha ileriki çalışmalarımız, grafin şeritleri ve onların

farklı kalınlıklarının birleştirilmesi ile oluşturulan heterojen yapıların yasak en-

erji aralıklarının uygulanılan gerilme ile değiştiğini de göstermektedir. Bu tez

yukarıda anlattığımız bütün etkenlerin grafin şeritlerine olan etkilerinin ince-

lendiği kapsamlı bir çalışmayı sunmaktadır.
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çoklu kuantum kuyu yapıları .



Acknowledgement

I would like to express my deepest gratitude and respect to my supervisor
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Chapter 1

Introduction

Carbon is one of the most interesting elements in periodic table. It is found in

many phases and allotropes [1] such as graphite and diamond which are known

from ancient times and carbon nanotubes and fullerenes which have been dis-

covered in near history. Graphene, the honeycomb structure of sp2-hybridized

carbon atoms, which is the building block of graphite, CNTs, C60 and some other

forms of carbon, was presumed not to exist in free form while its allotropes have

been the subject of intensive research in past two decades.

Graphene is a strictly two-dimensional (2D) material; its stability has been

treated by Landau and Peierls [2, 3] . They concluded that any 2D crystals are

unstable by showing that , in the standard harmonic approximation, thermal

fluctuations should disturb the long-range order of the crystals and making them

melted at any temperature [4]. Also Mermin and Wagner drew similar conclusions

on the subject [5]. From the experimental point of view, thin films or similar

structures have lost their stability after a certain thickness, i.e 10-15 atomic layers,

segregating into islands or decomposing [6].

Unexpectedly, in 2004, scientists have managed to isolate 2D crystals of

graphene at room temperature [8] which was thought to be impossible for a long

time. Despite earlier theories against the exiastence of perfect 2D crystals, a de-

tailed analysis of thel problem beyond the harmonic approximation has led to the

1
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conclusion that the interaction between bending and stretching long-wavelenght

phonons could in principle stabilize atomically thin membranes through their de-

formation in the third dimension [7]. Indeed, Andre Geim, Kostya Novoselov and

co-workers produced two dimensional crystals of graphene by delicately cleaving

a sample of graphite with a sticky tape, and was able to visualize the new crystal

by using a simple optical microscope [8].

In the beginning, the graphene synthesis didn’t attract interest. Further in-

vestigations on graphene revealed some unusual properties and graphene is now

a subject of very intensive study. Following studies brought about several new

concepts into the condensed matter physics, such as charge carriers resembling

the Dirac spectrum for massles fermions [9], anomalous (integer and half inte-

ger ) quantum hall effect [10], ballistic transport at room temperature [8], chiral

tunnelling and the Klein paradox [11] ... some of which have been predicted

theoretically and verified experimentally.

The electrons of graphene somehow behave differently than ordinary electrons.

The special relativity tells us that the energy of a free particle is given by the

equation E=
√

m2c4 + p2c2 where m and p are the mass and momentum of the

particle respectively. For electrons corresponding to Bloch waves in a solid, the

mass m is called the “band mass”, and it is not necessarily equal to the mass of a

free electron. This band mass effects most of the electronic properties of metals

and semiconductors, such as their ability to carry electrical current. The interac-

tions between electrons and the honeycomb lattice of carbon atoms in graphene

causes the electrons to behave as if they have no mass. The energy relation turns

into E=pv for graphene where v is the “Fermi-Dirac velocity“. This linear rela-

tionship with momentum is just like the case for a photon. The only difference is

the magnitude of v which is 1/300 of the speed of light. Interestingly, these novel

properties provide a way to probe quantum electrodynamics (QED) phenomena

without the need of huge particle accelerators by measuring graphene’s electronic

properties.

In addition to the Dirac-fermion like spectrum of electrons in graphene, there

is another odd property that electrons can travel long distances without colliding
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with any impurities, even at room temperatures [8]. Carbon atoms have four

electrons available for bonding. By making 3 bonds in 2D hexagonal structure,

one unbound electron is free to wander through the crystal, attributing graphene

distinctive characteristics - excellent conductivity. In ordinary metals, electron

scattering leads to energy loss and this limits the abilities of today’s electronic

devices. In contrast graphene seems to be an exceptional choice for tomorrow’s

electronics.

Carbon nanotubes and fullerenes have been studied extensively in the past

two decades. Many interesting properties have been revealed and remarkable

applications have been suggested. To a large extent, the electronic properties of

carbon nanotubes have their origins from graphene. So that graphene studies

can benefit from the relatively matured research on CNTs and fullerenes. A

quick adaptation can lead to improvement of carbon based electronics to reach

industrial stage. Unlike CNTs, graphene production seems to be relatively easy

and with the advance of new techniques large amounts of graphene quantities can

be produced.

1.1 Motivation

Graphene is an example of a truly two dimensional crystal with interesting prop-

erties. Carbon based materials are expected to be building block of tomorrow’s

technology. Carbon nanotubes can be metallic or semiconducting, depending

on their chirality. This could lead to a fully carbon-based elecronics. However,

the present lack of control on the chirality prevents carbon nanotubes from en-

gineering their electronic properties; and this is a major barrier to industrial

implementation. Recent studies indicate that graphene nanoribbons can be pro-

duced in a highly controlable manner unlike CNTs [12]. Graphene nanoribbons

appear to be superior to nanotubes.

In spite of the fact that the first graphene samples have been obtained in 2004,

some realistic applications have already been developed. A few interesting works
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may give the reader the idea about the endless applications and help the reader

to understand the high scientific interest on graphene.

The use of graphene based materials in nanoelectronics is one of the promising

areas. A graphene ballistic transistor is an application which first comes to mind.

Professor Andre Geim and Dr Kostya Novoselov from The School of Physics and

Astronomy at The University of Manchester claim to have created transistors

that are just one atom-thick and less than 50 atoms wide from a new class of

material [8, 13]. Graphene exhibits a pronounced response to perpendicular ex-

ternal electric field allowing one to built FETs. Crucially, the transistor operates

at room temperature making it potentially valuable for future electronic compo-

nents. Such circuits include the central element, or ”quantum dot”, semitrans-

parent barriers to control the movement of individual electrons, interconnects and

logic gates - all made entirely of graphene. Since the silicon based technologies are

approaching their fundamental limits, graphene may offer an exceptional choice.

The use of graphene powder in electric batteries is another promising applica-

tion. A huge surface-to-volume ratio and high conductivity provided by graphene

powder can lead to improve the efficiency of batteries, taking over from the carbon

nanofibres used in modern batteries. Carbon nanotubes have also been consid-

ered for this application but graphene powder has an important advantage of

being inexpensive to produce [14].

The use of graphene as sensor is also important. Again Gaim and col-

leagues, created micrometre-sized flakes of graphene by micromechanical cleavage

of graphite at the surface of oxidized silicon wafers. The researchers then used

electron beam lithography to make electrical contacts on the flake. A single flake,

around 10 micrometres across, was placed in a chamber and its electrical resis-

tance measured as dilute nitrogen dioxide was slowly leaked in. The researchers

observed distinct and discrete step changes in resistance, corresponding to single

molecules of the gas adsorbing to and desorbing from the graphene flake [15]..

Functionalization of graphene by adatoms can also provide endless applica-

tions. Chemical functionalization and substitutional doping have been investi-

gated for many years in nanotubes with the aim of tailoring their properties for
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sensing, transport, and chemical and optical applications. It is thus natural to do

a similar investigation for graphene. Hydrogen storage is one of the very active

research areas and it was theoretically predicted that lithium decorated graphene

can absorb a large amount of hydrogen [16]. On the other hand, transition metal

(TM) atom adsorption metallizes graphene and adds magnetic properties. It was

predicted that Fe and Ti adsorption can make graphene nanoribbons half-metallic

with 100 % spin polarization at Fermi level [17] providing a very important ma-

terial for spintronic applications.

Graphene nanoribbons are very narrow structures of graphene and might have

crucial importance in future nanotechnology applications. They might be building

blocks of graphene transistor networks that we mentioned above, half metallic

material for future spintronic devices [42]. The experimental synthesis of GNRs

with well defined shapes was recently done by some researchers [12]. Magnetic

edge states of graphene nanoribbons were predicted by some early theoretical

works [44] . Also the strong dependence of band gaps of graphene nanoribbons

with their widths was predicted by some first-principles calculations [41] and this

was proved by a recent experimental work [21] . However, to our knowledge, first-

principles calculations on the effects of vacancies and heterojunction formation of

graphene nanoribbons have not been performed. We believe that such analyses

are necessary for graphene nanoribbons. In this thesis we aim to explore the

electronic and magnetic properties of graphene ribbons with the hope of some

new device applications.

1.2 Organization of the Thesis

The thesis is organized as follows: Chapter 2 summarizes the basic properties

of graphene and graphene nanoribbons, Chapter 3 is devoted to the theoretical

background. In Chapter 4, our results are presented. Finally in Chapter 4,

important conclusion of thesis is summarized.



Chapter 2

Graphene and Graphene

Nanoribbons

Graphene, graphite, CNTs and fullerenes are categorized in carbon-based π elec-

tron systems in honeycomb network, which are distinguished from sp3-based

nanocarbon systems having a tetrahedral network such as diamond. With the

sp2 hybridization of one s-orbital and two p-orbitals results in a triangular planar

structure with a formation of a σ-bond between carbon atoms which are seperated

by 1.42 Å.

The perfect 2D graphene is an infinite network of hexagonal lattice, in contrast

to ideal graphene which is a nanosized flat hexagon network with the presence of

open edges around its periphery. The open edges become important for nanorib-

bons.

2.1 Structure of Graphene

The structure of graphene layers have been explored by using the high resolution

microscopy techniques such as Raman [19] and Rayleigh [20]. The graphene struc-

tures based on the hexagonal lattice of carbon atoms have been confirmed [13].

6
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Figure 2.1: Graphene, graphite, single-walled carbon nanotube (SWNT) and C60

structures make sp2 type bonding, whereas diamond makes sp3 type bonding.
Graphite can be viewed as a stack of graphene layers. Carbon nanotubes are
rolled up cylinders of graphene and fullerenes are the molecules consisting of
wrapped graphene by the introduction of pentagons on the hexagonal structure.
The diamond is a transparent crystal of tetrahedrally bonded carbon atoms and
crystallizes into the face centered cubic lattice structure.
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Once identied, graphene layers can be processed into nanoribbons by lithography

techniques [21].

One carbon atom in honeycomb structure bound to three neighbour through

strong, covalent bonds. This configuration gives exceptional structural rigidity

within its layers.

The structure is not a Bravais lattice but it can be seen as a triangular lattice

with a basis of two atoms per unit cell. The lattice vectors can be written as :

a1 =
a

2
(3,

√
3, 0) a2 =

a

2
(3,−

√
3, 0) (2.1)

where a ≈ 1.42 Å is the C-C distance. The reciprocal lattice vectors are given

by :

b1 =
2π

3a
(1,

√
3, 0) b2 =

2π

3a
(3,−

√
3, 0) (2.2)

The two points at the corners of graphene’s Brillouin zone (BZ) is of special

importance. They are named Dirac points. Their positions are given by:

K =

(
2π

3a
,

2π

3
√

3a
, 0

)
K’ =

(
2π

3a
,− 2π

3
√

3a
, 0

)
(2.3)

2.2 Synthesis

Graphene sheets (a single sheet or a few layer sheet) can mainly be prepared

by micromechanical cleaving of graphite crystals according to recent experiments

[8, 9, 10] or by epitaxial growth on silicon carbide (SiC) [22, 23]. The first method

can be used to obtain high quality of graphene sheets which are comparable to
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Figure 2.2: Left: Lattice structure of graphene made of two interpenetrating
hexagonal lattices ( a1 and a2 are lattice unit vectors, and δi , i=1,2,3 are the
nearest neighbor vectors); Right: corresponding Brillouin zone. The Dirac corners
sit at the K and K’ points.

that in graphite, but it is restricted by small sample dimensions and low visibility.

On the other hand, the second one is more suitable for large area fabrication and

is more compatible with current Si processing techniques for future applications.

Nevertheless, the epitaxial graphene was shown to interact with SiC by first

principles calculations [24, 25] and experiments [26, 27].

2.3 Electronic Properties of Graphene

The investigations of electronic properties of graphene trace back to 1946 when

P. R. Wallace wrote the first scientific paper on the band structure of graphene as

an approximation trying to understand the electronic properties of more complex,

three dimensional (3D) graphite. He did not use the word graphene and referred

to ”a single hexagonal layer ” [18]. The electrical properties of graphene can be

described by a conventional tight-binding model; in this model the energy of the

electrons with wavenumber k is

E = ±
√

γ2
0

(
1 + 4 cos2 πkya + 4 cos πkya · cos πkx

√
3a

)
(2.4)
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Figure 2.3: Band structure of the bare graphene calculated for the 2x2 unitcell.

[18].

with the nearest-neighbour-hopping energy γ0 ≈ 2.8 eV. + and − corresponds

to the π∗ and π energy bands, respectively. Figure 2.3 shows the band structure of

2D graphene. The energy dispersion around K is linear in momentum, E = h̄kvf ,

as if the relation for relativistic particles (like photons). In this case the role of

the speed of light is given by the Fermi velocity vf ≈ c/300. Because of the

linear spectrum, one can expect that particles in graphene behave differently

from those in usual metals and semiconductors, where the energy spectrum can

be approximated by a parabolic dispersion relation.

2.4 Graphene Nanoribbons

Graphene nanoribbons can be thought of as single wall CNTs cut along a line

parallel to their axis and then unfolded into a planar geometry. There are two

main shapes for graphene nanoribbon edges, namely armchair and zigzag edges.

We can cut a graphene sheet in two different line with a difference of 30 ◦ in

the axial direction between the two edge orientations to produce armchair and
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Figure 2.4: Graphene nanoribbons terminated by (a) armchair edges and (b)
zigzag edges, indicated by filled circles. The unitcells are emphasized by dashed
lines. The width “N” of ribbons are defined the number of carbon atoms in a
unit cell.

zigzag graphene nanoribbons (see Fig. 2.4 ). If a ribbon is restricted by one of

these edges, it is defined either as an armchair GNR (AGNR) or as a zigzag GNR

(ZGNR) (see Fig. 2.4 (a &b ).

The ribbon width can be defined by the number of carbon atoms in the prim-

itive unit cell. Dashed rectangle in Fig. 2.4-a shows an armchair graphene

nanoribbon containing 20 carbon atoms in its unitcell. This ribbon can be la-

belled as AGNR (20). On the other hand the ribbon in part (b) can be labelled as

ZGNR (10) since it has zigzad shaped edges. Similar to the carbon nanotubes the

width plays a crucial role on the electronic and magnetic properties of graphene

nanoribbons.



Chapter 3

Density Functional Method

Our research performed on graphene based materials deals mostly with struc-

tural, electronic and magnetic properties. These properties can be obtained ap-

proximately by solving Schrödinger equation with periodic boundary conditions.

The existence of a band gap in the band structure may give us some idea about

the semiconducting or insulator behaviour of the system. Also the the broken

degeneracy of spin-up and spin-down bands might give us information about

the magnetization in the structure. Density Functional Method with Transla-

tional Periodicity can provide us structural, electronic and magnetic properties

of graphene nanoribbons and this section will give a brief information about it.

Density functional theory has been very popular for calculations in solid state

physics since the 1970s. In many cases DFT with the local-density approxima-

tion gives quite satisfactory results, for solid-state calculations, in comparison to

experimental data at relatively low computational costs when compared to other

ways of solving the quantum mechanical many-body problem. The success of

density functional theory (DFT) not only encompasses standard bulk materials

but also complex materials such as proteins and carbon nanotubes.

Although density functional theory has its conceptual roots in the Thomas-

Fermi Approximation, DFT was put on a firm theoretical footing by the

12
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Hohenberg-Kohn theorems in 1964 [28, 29] (after Pierre Hohenberg and Wal-

ter Kohn). The first of these demonstrates the existence of a one-to-one mapping

between the ground state electron density and the ground state wavefunction of a

many-particle system. Further, the second H-K theorem proves that the ground

state density minimizes the total electronic energy of the system. This was almost

40 years after Schrodinger (1926) had published his pioneering paper marking the

beginning of wave mechanics. Unfortunately in almost all cases except for the

simple systems like He or H, this equation was too complex to allow a solution.

DFT is an alternative approach to the theory of electronic structure, in which

the electron density distribution ρ(r) rather than many-electron wave function

plays a central role. In the spirit of Thomas-Fermi theory [30, 31], it is suggested

that a knowledge of the ground state density of ρ(r) for any electronic system

uniquely determines the system.

3.1 Hohenberg-Kohn Formulation

The first Hohenberg-Kohn theorem is an existence theorem, stating that the

mapping exists. That is, the H-K theorems tell us that the electron density

that minimizes the energy according to the true total energy functional describes

all that can be known about the electronic structure. The Hohenberg-Kohn

theorems relate to any system consisting of electrons moving under the influence

of an external potential V(r). The Hohenberg-Kohn [28] formulation of DFT can

be explained by two theorems:

Theorem 1: The external potential is univocally determined by the electronic

density, except for a trivial additive constant.

Since ρ(r) determines V(r), then this also determines the ground state wave-

function and gives the full Hamiltonian for the electronic system. So that ρ(r)

determines implicitly all properties derivable from H through the solution of the

time-dependent Schrödinger equation.

Theorem 2: The minimal principle can be formulated in terms trial charge
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densities, instead of trial wavefunctions.

The ground state energy E could be obtained by solving the Schrödinger

equation directly or from the Rayleigh-Ritz minimal principle:

E = min
〈Ψ̃|H|Ψ̃〉
〈Ψ̃|Ψ̃〉

(3.1)

Using ρ̃(r) instead of Ψ̃(r) was first presented in Hohenberg and Kohn. For a

non-degenerate ground state, the minimum is attained when ρ̃(r) is the ground

state density. And energy is given by the equation:

EV [ρ̃] = F [ρ̃] +

∫
ρ̃(r)V (r)dr (3.2)

with

F [ρ̃] = 〈Ψ[ρ̃]|T̂ + Û |Ψ[ρ̃]〉 (3.3)

and F [ρ̃] requires no explicit knowledge of V(r).

These two theorems form the basis of the DFT. The main remaining error

is due to inadequate representation of kinetic energy and it will be cured by

representing Kohn-Sham equations.

3.2 Kohn-Sham Equations

The Kohn-Sham equations are a set of eigenvalue equations within density func-

tional theory. Kohn and Sham introduced a method based on the Hohenberg-

Kohn theorem that enables one to minimise the functional E[ρ] by varying ρ

over all densities containing N electrons. Thomas and Fermi gave a prescription

for constructing the total energy in terms only of electronic density by using

the expression for kinetic, exchange and correlation energies of the homogeneous

electron gas to construct the same quantities for the inhomogeneous system [29].

This was the first time that the Local Density Approximation (LDA) was used.

But this model is a severe shortcoming since this does not hold bound states and

also the electronic structure is absent.
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W.Kohn and L.Sham then proposed that the kinetic energy of the interact-

ing electrons can be replaced with that of an equivalent non-interacting system

which can be calculated easily. With this idea, the density matrix ρ(r, r′) of an

interacting system can be written as sum of the spin up and spin down density

matrices,

ρs(r, r
′) =

∞∑

i=1

ni,sΦi,s(r)Φ
∗
i,s(r

′) (3.4)

Where ni,s ar the occupation numbers of single particle orbitals, namely

Φi,s(r). Now the kinetic energy term can be written as Eq.

T =
2∑

s=1

∞∑

i=1

ni,s〈Φi,s| −
∇2

2
|Φi,s〉 (3.5)

This expression can be developed by considering that the Hamiltonian has no

electron-electron interactions and thus eigenstates can now be expressed in the

form of Slater determinant. By using this argument the density is written as

ρ(r) =
2∑

s=1

Ns∑

i=1

|ϕi,s(r)|2 (3.6)

and the kinetic term becomes

T [ρ] =

2∑

s=1

Ns∑

i=1

〈ϕi,s| −
∇2

2
|ϕi,s〉 (3.7)

Now, we can write the total energy of the system in terms only of electronic

density as follows,

EKohn−Sham[ρ] = T [ρ] +

∫
ρ(r)v(r)dr +

1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′| drdr′ + EXC [ρ] (3.8)
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This equation is called the Kohn-Sham Equations After writing main equa-

tion, now the solution of the Kohn-Sham equations can be achieved by applying

the same iterative procedure, in the same way of Hartree and Hartree-Fock equa-

tions. As a remark after all, in this approximation we have expressed the density

functional in terms KS orbitals which minimize the kinetic energy under the

fixed density constraint. In principle these orbitals are a mathematical object

constructed in order to render the problem more tractable, and do not have a

sense by themselves.

3.3 Exchange and Correlation

If we know the exact expression for the kinetic energy including correlation effects,

then we can use the original definition of the exchange-correlation energy E0
XC [ρ]

which does not contain kinetic contributions.

E0
XC [ρ] =

1

2

∫ ∫
ρ(r)ρ(r′)

| (r − r′) | [g(r, r′) − 1]drdr′ (3.9)

In this equation E0
XC [ρ] is the exchange-correlation energy without kinetic

contributions. For writing the exchange-correlation energy EXC [ρ] as a function

of ρ, we redefine Eq. 3.9 by considering the non-interacting expression for the

kinetic energy TR[ρ] in the following way,

EXC [ρ] = E0
XC [ρ] + T [ρ] − TR[ρ] (3.10)

In this equation second term is interacting kinetic energy with correlation ef-

fects, while the last term corresponds to non-interacting kinetic energy. These

two term can be considered as a modification to two-body correlation function

g(r, r′) in Eq. 3.9. Updated two-body correlation function is now called as

average of pair correlation function, and the exchange-correlation energy with ki-

netic contribution can be written as,
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EXC [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

| (r − r′) | [g̃(r, r′) − 1]drdr′ (3.11)

where g̃(r, r′) can be expressed as follows,

g̃(r, r′) = 1 −
∑

σ | (ρσ(r, r′) |2)
ρ(r)ρ(r′)

+ ˜gc(r, r′) (3.12)

For further simplification for EXC [ρ], the exchange-correlation hole ˜gxc(r, r′)

is defined

˜gxc(r, r′) = ρ(r′)[g̃(r, r′) − 1] (3.13)

so EXC [ρ] becomes,

EXC [ρ] =
1

2

∫ ∫
ρ(r) ˜gxc(r, r′)

| (r − r′) | drdr′ (3.14)

After indicating fundamental equations of DFT theory now we can introduce

to Local Density Approximation (LDA) and Generalized Gradient Approximation

(GGA)

3.3.1 Local Density Approximation (LDA)

The local density approximation has been the most widely used approximation

to handle exchange correlation energy. It has be proposed in the seminal paper

by Kohn and Sham, but the philosophy was already present in Thomas-Fermi

theory. In Local Density Approximation, the exchange-correlation energy of an

electronic system is constructed by assuming that the exchange-correlation energy

per electron at a point ρ in the electron gas, is equal to the exchange-correlation

energy per electron in a homogeneous electron gas that has the same electron

density at the point ρ. In fact LDA based on two main approximations, (1) The
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pair function is approximated by that of the homogeneous electron gas density

ρ(r) corrected by the density ratio ρ(r)/ρ(r′) to compansate the fact that the

LDA exchange-correlation hole is now centered at r instead of r′ (2) The LDA

exchange-correlation hole interacts with the electronic density at r, and is centered

at r. But as we know that the real exchange-correlation hole is actually centered

at r′ instead r.

3.3.2 Generalized Gradient Approximation (GGA)

Although the the LDA was the universal choice for ab-initio calculations on amor-

phous systems, there were well known problems with the approximation: (1) First

of all in the local density approximation the optical gap is always poorly esti-

mated (normally underestimated). Of course, this does not affect ground state

properties like charge density, total energy and forces, but it serious problem for

calculations of conduction states, as for example in the case of transport or opti-

cal properties.(2) In strongly (electronically) inhomogeneous systems such as SiO,

the basic assumption of weak spatial variation of the charge density is not well

satisfied, hence the LDA has difficulty. (3) The LDA assumes that the system

is paramagnetic; the local spin density approximation [32] (LSDA) (in which

a separate “spin up” and “spin down” density functional is used) is useful for

systems with unpaired spins, as for example a half filled state at the Fermi level.

Several workers, but especially Perdew [33], have worked on next

step to the LDA: inclusion of effects proportional to the gradient of

the charge density. Recent improvements along these ways are called

Generalized Gradient Approximations (GGA), it seems that these have led to

significant improvements in SiO [34], and intermolecular binding in water is

better described with GGA than in the LDA. In some ways the GGA has been

disappointing; on very precise measurements on molecules the results have been

mixed. But overall, the GGA seems to be an improvement over the conventional

LDA.

In GGA exchange-correlation energy can be written as follows,
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EXC [ρ] =

∫
ρ(r)ǫXC [ρ(r)]dr +

∫
FXC [ρ(r,∇ρ(r))]dr (3.15)

where the function FXC is asked to satisfy the formal conditions.

GGA approximation improves binding energies, atomic energies, bond lengths

and bond angles when compared the ones obtained by LDA. In our calculations,

we used the GGA approximation [35].

3.4 Periodic Supercells

By using the represented formalisms observables of many-body systems can be

transformed into single particle equivalents. However, there still remains two

difficulties: A wave function must be calculated for each of the electrons in the

system and the basis set required to expand each wave function is infinite since

they extend over the entire solid. For periodic systems both problems can be

handled by Bloch‘s theorem [36].

3.4.1 Bloch‘s Theorem

Bloch theorem states that in a periodic solid each electronic wave function can

be written as:

Ψi(r) = ui(r)e
ikr (3.16)

where uk has the period of crystal lattice with uk(r) = uk(r+T). This part can

be expanded using a basis set consisting of reciprocal lattice vectors of the crystal.

ui(r) =
∑

G

ak,Gei(G)r (3.17)

Therefore each electronic wave function can be written as a sum of plane waves

Ψi(r) =
∑

G

ai,k+Gei(k+G)r (3.18)
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3.4.2 k-point Sampling

Electronic states are only allowed at a set of k-points determined by boundary

conditions. The density of allowed k-points are proportional to the volume of the

cell. The occupied states at each k-point contribute to the electronic potential

in the bulk solid, so that in principle, an finite number of calculations are needed

to compute this potential. However, the electronic wave functions at k-points

that are very close to each other, will be almost identical. Hence, a single k-

point will be sufficient to represent the wave functions over a particular region

of k-space. There are several methods which calculate the electronic states at

special k points in the Brillouin zone [37]. Using these methods one can obtain

an accurate approximation for the electronic potential and total energy at a small

number of k-points. The magnitude of any error can be reduced by using a denser

set k-points.

3.4.3 Plane-wave Basis Sets

According to Bloch‘s theorem, the electronic wave functions at each k-point can

be extended in terms of a discrete plane-wave basis set. Infinite number of plane-

waves are needed to perform such expansion. However, the coefficients for the

plane waves with small kinetic energy (h̄2/2m)|k+ G|2 are more important than

those with large kinetic energy. Thus some particular cutoff energy can be de-

termined to include finite number of k-points. The truncation of the plane-wave

basis set at a finite cutoff energy will lead to an error in computed energy. How-

ever, by increasing the cutoff energy the magnitude of the error can be reduced.

We carried out convergence tests with respect to the cut-off energy or the number

of plane waves used in the expansion of Bloch states.
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3.4.4 Plane-wave Representation of Kohn-Sham Equa-

tions

When plane waves are used as a basis set, the Kohn-Sham(KS) [29] equations

assume a particularly simple form. In this form, the kinetic energy is diagonal

and potentials are described in terms of their Fourier transforms. Solution pro-

ceeds by diagonalization of the Hamiltonian matrix. The size of the matrix is

determined by the choice of cutoff energy, and will be very large for systems that

contain both valence and core electrons. This is a severe problem, but it can

be overcome by considering pseudopotential approximation. Large Hamiltonian

matrices are diagonalized using iterative methods, which do not require large

computer memory.



Chapter 4

Results

4.1 Introduction and Motivation

Graphene nanoribbons (GNRs) are just geometrically terminated forms of perfect

2D graphene where the electrons are confined in two direction and free to move

in third direction. At this point, let us define that our graphene nanoribbon lies

on the x-y plane. The width is defined along the y-axis and the length is defined

along the x-axis as seen in Fig. 4.1 (a).

The homogeneous nanoribbons are the structures that have the same width

throughout the ribbon length. The formation of vacancies in AGNRs is not a rare

situation [46, 47] and have remarkable effects on electronic and magnetic proper-

ties. On the other hand, heterogeneous nanoribbons can be obtained by differing

the ribbon width and composition at junctions. Fig. 4.1 (a), (b), (c) shows the

forms of graphene ribbon structures that we have investigated in this thesis. Ex-

tensive first principles calculations have been performed on various heterostruc-

tres and quite interesting results have been obtained. Initial investigations of

uniform GNRs ((Fig. 4.1-a)) have been performed for a proper understanding of

modified structures (Fig. 4.1 (b), (c)).

We predicted superlattice structures of graphene nanoribbons of alternating

22
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Figure 4.1: The ribbons are periodic along the x-axis. The width is defined
along y-axis. (a) An armchair graphene nanoribbon without any vacancy and
size modulation. (b) An armchair graphene nanoribbon having several defects in
its structure with different types and positions. (c) A superlattice of graphene
nanoribbon which was formed with a combination of wide and narrow AGNR.
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widths leading to confined states. We presented an extensive discussion of various

kinds of superlattice geometries and corresponding electronic structure. In partic-

ular, we found that the periodically repeating heterostructures of BN/Graphene

armchair nanoribbon result in multiple quantum well structures with minibands

and confined states. This is a 1D analog of 2D, pseudomorphic or commensurate

semiconductor superlattices. These superlattices have been subject of very active

study since 1980s and have led to the discovery of integer and fractional quan-

tum Hall effects, quantum ballistic transport with quantized conductance and

other exceptional properties of electrons in lower dimensionality. In addition,

several novel devices fabricated from AlAs/GaAs or Si/Ge quantum structures

have displayed outstanding device performance.

Our study performed on defected GNRs have also shown that the band gap

and magnetic state of any armchair or zigzag nanoribbons can be modified by

single or multiple vacancies (holes). The effects of these defects depend on their

symmetry, repeating periodicity and positions. When combined with various

properties of nanoribbons these results can initiate a number of interesting ap-

plications.

We believe that our results are important for further studies, since the

graphene ribbons can now be produced with precision having widths sub 10 nm

[12] and nanodevices can be fabricated thereof [38].

4.2 Method of Calculations

Here we present specific parameters used in the calculations related with graphene

ribbons using the Viena ab initio Simulation package (VASP) [39]. We have per-

formed first-principles plane-wave calculations within density functional theory

DFT using ultrasoft pseudopotentials. The exchange correlation potential has

been approximated by generalized gradient approximation GGA using PW91

functional. For partial occupancies, we use the Methfessel-Paxton smearing

method. The adopted smearing width is 0.1 eV for the atomic relaxation and
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0.01 for the accurate band structure analysis and density of state calculations.

All structures have been treated within a supercell geometry using the periodic

boundary conditions. Calculations have been performed in momentum space

by using periodically repeating tetragonal supercell with the lattice constants ,

as = bs = 10 Å whereby interaction of nearest neighbors in the y and z directions

are negligible. Convergence tests have been performed with respect to the energy

cut-off and number of k-points. A plane-wave basis set with kinetic energy of

up to 500 eV has been used. 35-1-1 k-points in the Brioullin zone are used in

the k-space within the Monkhorst-Pack scheme [40] . Ribbons are built from the

perfect graphite geometry with an initial C-C distance of 1.42 Å. All atomic posi-

tions and lattice constants are optimized by using the conjugate gradient method

where total energy and calculated Hellmann-Feynman atomic forces are mini-

mized. The criterion of convergence for energy is chosen to be 10−5 eV between

two ionic steps, and the maximum force allowed on each atom is 0.05 eV/ Å.

4.3 Armchair and Zigzag Graphene Nanorib-

bons

The geometry of armchair nanoribbons and their bond lengths are illustrated on

Fig. 4.2 (a). We have investigated the bond length deviations of nanoribbons from

2-D perfect graphene after ionic relaxation. It was seen that the final structures

didn’t change considerably from the ideal honeycomb pattern with C-C length of

1.42 Å , and H terminations with C-H length of 1.1 Å. Fig.- 4.2 shows the bond

lengths of several graphene ribbons. C-C bond lengths close to the edges are

relatively narrower (≈ 14%) especially for bare ribbons which have dangling bonds

on the edges. The minimum bond length is around 1.23 Å for bare-AGNR(10).

The terminations of those edges with hydrogen atoms release the narrow bonds

and make them similar to the bulk bonds which are around 1.43 Å. On the other

hand narrower AGNRs have slightly wider unit cell lengths and the length of unit

cell decreases gradually with the number of atoms in each cell as seen in Fig. 4.2

(b).
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Figure 4.2: Deviations of bond lengths (a) and unit cell length (b) for some of
graphene nanoribbons. (a) The bare and hydrogen terminated ribbons are shown
on the left and right, respectively. The distances are in units of Å and small balls
corresponds to H atoms. (b) Deviation of unit cell length for some AGNRs. The
structure gets narrower with the increase in the width of the ribbon.

4.4 Width Dependence of Graphene Nanorib-

bons and Hydrogen Passivation

We have defined the width of our nanoribbons in Section 2.4. Similar to the

carbon nanotubes, which are just rolled up structures of graphene nanoribbons,

the band gaps of AGNRs are inversely proportional to the ribbon width “w”.

This variation is understood more easily if we categorize the ribbon width into

three distinct families such as N = 6m − 2 , 6m , 6m + 2 (m being an integer)

where N is the number of carbon atoms in primitive unit cell. All AGNR(N) are

semiconductors and their band gap, Eg, vary with N. It is small for N=6m−2 , but

from 6m to 6m+2 it increases and passing through a maximum it becomes again

small at the next minimum corresponding to 6m− 2. As Eg oscillates with N its

value decreases eventually to zero as N →∞ which is case for perfect 2D graphene.

On the other hand, band gaps of ZGNRs decrease steadily with the width of the

ribbon. The variation of energy band gaps of bare and hydrogenated ribbons for

AGNRs and ZGNRs as a function of N is plotted in Fig. 4.3. Our results are
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in good agreement with some other first principles calculations obtained by LDA

method [41, 43]. These calculations will be useful for our further results that we

will an in following sections.

The band gap values of bare AGNR(10) and AGNR(14) shown in Fig. 4.4

(a) and (b) are significantly different and are of 0.44 and 1.10 eV, respectively.

Two different kinds of bands are distinguished by their charge density plots.

These are bands of states having charge density uniformly distributed across the

ribbon and those of edge states having their charge localized at both edges of

the ribbon. Owing to the interaction between two edges of the narrow ribbon,

the bands of edge states split. Upon termination of the carbon dangling bonds

by hydrogen atom, the edge states disappear, and the energy band gaps are

modified. While hydrogen terminated AGNR(10) has a narrow band gap of 0.39

eV, hydrogen terminated AGNR(14) has a wide band gap of 1.57 eV. The 6m−2

family which has the smallest band gap have been predicted to have 0 eV band

gap by some theoretical calculations [44, 45]. But all of our DFT calculations

show the existence of a band gap.

4.5 Mechanical Properties of Graphene Nanorib-

bons

In this section, we explore the mechanical properties of graphene nanoribbons.

The stability and electro-mechanical properties of nanoribbons are crucial for

their possible use in future nanoelectronics. The rate of change of the band gap

with strain, ǫ = ∆c/c (∆c being the change of lattice constant under uniaxial

stress along the x−axis.) in Fig. 4.5(a), i.e. ∂Eg/∂ǫ is significant and its sign

changes with N . We also calculated the variation of total energy with strain,

ǫ and its second derivative with respect to strain, κ
′

= ∂2ET /∂ǫ2 (in units of

eV/cell). Results summarized in Fig. 4.5 (b) and (c) indicate that graphene

nanoribbons are quasi 1D, stiff materials. For example, κ
′

=351 eV/cell for

ZGNR(6). Interestingly, ZGNR(N) appear to be stiffer than AGNR(n) for the

same n. These values can be compared with κ
′

=127 eV/cell calculated for linear
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Figure 4.3: Calculated variation of band gaps of AGNR(N) ZGNR(N) as a func-
tion of ribbon width N for (a) armchair and (b) zigzag ribbons. The band struc-
ture of some of ribbons are shown on the right.
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Figure 4.4: (a) Bare and hydrogen terminated AGNR(10): Atomic geometry,
electronic band structure and isosurface charge densities of edge and “uniform”
states. The primitive unit cell is delineated with dashed lines and includes N=10
carbon atoms. Carbon and hydrogen atoms are shown by large and small balls.
(b) Same for AGNR(14).
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Figure 4.5: (a) Variation of band gaps Eg of AGNR and ZGNR, with the tensile
strain, ǫ. (b) Variation of the total energy of AGNR with ǫ and its second
derivative with respect to ǫ, i.e. κ

′

[ eV/cell]. (c) Same as (d) for ZGNR. All
data in this figure are calculated using first-principles methods.

carbon chain and confirm the robustness of heterostructures.

4.6 Monitoring of band gap and magnetic state

of graphene nanoribbons through vacancies

Recent studies have shown that vacancies created on 2D graphene by high-energy

electron or ion irradiation can induce magnetism in a system consisting of only

sp-electrons[48, 49]. It has been argued that Stoner magnetism with high TC orig-

inates from the spin-polarized extended states induced by the vacancy defects,

while RKKY coupling is suppressed. These effects of defects on 1D semiconduct-

ing graphene nanoribbons should be more complex and interesting, because their

band gap, magnetic state and symmetry are expected to intervene.
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A hole can be created when carbon atoms at the corners of any hexagon of an

armchair ribbon are removed and subsequently remaining six two-fold coordinated

carbon atoms are terminated with hydrogen atoms. Fig. 4.6 shows that the

electronic structure of AGNR(34) is strongly modified by such a hole placed at

the center of the ribbon. The hole (see Fig. 4.6 (b)) repeats itself at each

supercell which comprises six primitive cells corresponding to a repeat period of

l=6. This ribbon having a periodic hole (or defect) is specified as AGNR(N ;l)

and has non-magnetic ground state. Despite large separation of periodic defect

which hinders their direct coupling such a strong modification of the band gap

is somehow unexpected. However, it is an indirect effect and occurs since the

itinerant states of band edges are modified by the defect. At the end, the direct

band gap at the Γ-point has widened from 0.09 eV to 0.40 eV because a defect

situated at the center of the ribbon. In contrast, the band gap of bare AGNR(38),

which is normally larger than that of bare AGNR(34), is reduced if the same hole

is introduced at its center ( see Fig. 4.7 (b)). In addition, localized states around

the defect have formed flat bands near the edge of valence andconduction bands

because of their reduced coupling.

It is even more interesting that the effect of hexagonal defect is strongly de-

pendent on its position relative to the both edges of the nanoribbon as depicted

in Fig. 4.7. As shown in Fig. 4.7 (b), the changes in band gap depend on N of

AGNR (in the family specified as 6m + q, q being -2, 0 and +2) as well as on the

position of the hole. As shown in Fig. 4.7 (b), the effects of defect decrease with

increasing repeat periodicity l.

We found that larger holes with different geometry and rotation symmetry

can result in diverse electronic structure and confined states. It should be noted

that a repeating hole can also modify the mechanical properties. For example,

the stiffness of a ribbon is reduced by the presence of a hole. The force constant,

κ = ∂2ET /∂c2 (c being the lattice constant) calculated for AGNR(34;6) with a

hole at its center (κ = 6.03 eV/Å) is found to be smaller than that without a

hole κ =7.50 eV/Å).

Another defect, a divacancy created in AGNR(22) can cause to a dramatic
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Figure 4.6: (a) Atomic configuration and band structure of AGNR(N=34,l=6)
without a hole consisting of six carbon vacancies. Charge density isosurfaces of
selected states are given on the right. (b) Atomic configuration, band structure
and charge density isosurfaces of selected states of AGNR(N=34,l=6) with a
hole consisting of six carbon vacancies. Carbon atoms, which have coordination
number lower than 3 are terminated by hydrogen atoms.
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Figure 4.7: (a) Four distinct positions of a hole in the ribbon are indicated by
numerals. (b) Variations of band gaps of AGNR(N ,l) with the position of defect
and with repeat periodicity, l. ”V“ stands for the vacancy.
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change in the electronic state of the ribbon when it is repeated with the periodicity

of l=5. Such an armchair ribbon is specified as AGNR(22;5). The divacancy first

relaxes and forms an eight fold ring of carbon atoms which is adjacent to six

hexagons and two pentagons. In Fig. 4.8 (a) we see that the non-magnetic

and semiconducting AGNR(22) with band gap of EG=0.18 eV becomes a non-

magnetic metal, since a flat band derived from the defect occurs below the top

of the valance band edge and causes to a metallic state.

The effect of a single carbon vacancy becomes even more interesting. A single

vacancy created in AGNR(22) is relaxed and the three-fold rotation symmetry

is broken due to Jahn-Teller distortion. At the end, a nine-sided ring forms

adjacent to a pentagon as shown in Fig. 4.8 (b). Owing to the spin-polarization

of the sp2-dangling bond on the two-fold coordinated carbon atom and adjacent

orbitals at the defect site the system obtains an unbalanced spin. In fact, the

difference of total charge density corresponding to states of different spin states,

i.e. ∆ρT = ρ↑

T − ρ↓

T is non-zero and exhibits a distribution shown in Fig. 4.8

(b). Because of unbalanced spin, AGNR(22;5) gains a net magnetic moment of

µ=1 µB per cell. This attributes a magnetic state to the nanoribbon, which was

nonmagnetic otherwise.

Furthermore, the spin degeneracy of some bands related with this defect is

broken and spin-up and spin-down bands are split. The dispersive, non-magnetic

band at the edge of the valence band becomes partially emptied, since its electrons

are transferred to the flat spin bands below. Eventually, the semiconducting

ribbon becomes metallic.

Not only armchair, but also zigzag nanoribbons are strongly affected by de-

fects due to single and multiple vacancies. The magnetic state and energy band

structure of these ribbons depend on the type and geometry of the defects. In

Fig. 4.9 (a)-(c), the effect of a defect generated from the single vacancy with a

repeat periodicity of l=8 is examined in ZGNR(14;8) for three different positions.

The total energy is 0.53 eV lowered when the defect is situated at the edge rather

than at the center of the ribbon.

ZGNR(14;8) has a net magnetic moment of µ=1.94 µB when the defect is
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Figure 4.8: (a) Metallization of the semiconducting AGNR(22) by the formation
of divacancies with repeat period of l=5. (b) Magnetization of the non-magnetic
AGNR(22) by a defect due to the single carbon atom vacancy with the same
repeat periodicity. Solid (blue) and dashed (red) lines are for spin-up and spin-
down bands; solid (black) lines are nonmagnetic bands.
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Figure 4.9: Vacancy and divacancy formation in an antiferromagnetic semicon-
ductor ZGNR(14) with repeat period of l=8. Calculated total energy, ET (in
eV/cell), net magnetic moment, µ (in Bohr magneton µB/cell), band gap be-

tween spin-up(down) conduction and valence bands, E
↑(↓)
G ) are shown for each

case.
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situated at the center of the ribbon and hence its antiferromagnetic ground state

has changed to ferrimagnetic state through the magnetic moment of the single

vacancy. Otherwise, µ becomes zero, when the position of the defect deviates

from the center. For example, in Fig. 4.9 (b) and (c) the sum of the magnetic

moments of the edge states is not zero, but the net magnetic moment per unit

cell becomes zero only after the spins of the defect is added. Even if the net

magnetic moment µ=0, ZGNR(14,8) does not have an antiferromagnetic ground

state due to the presence of single vacancy. The edge states, each normally

having equal but opposite magnetic moments, become ferrimagnetic when a defect

is introduced. The total magnetic moment of the supercell vanish only after

the magnetic moment of defect has been taken into account. Since the spin-

degeneracy has been broken, one can define E↑

G and E↓

G for majority and minority

spin states. Not only the magnetic state, but also the band gap of zigzag ribbons

in Fig. 4.9 are affected by the symmetry and the position of the defect relative

to edges. In Fig. 4.9 (d)-(f) two defects associated with two separated vacancy

and a defect associated with a relaxed divacancy exhibit similar behaviors.

An important issue to be addressed is the breakdown of Lieb’s theorem[50]

for those zigzag ribbons. According to Lieb’s theorem, the net magnetic moment

per cell is determined with the difference in the number of atoms belonging to

different sublattices, and it shall be either µ=1 µB or 2 µB for the cases in Fig. 4.9.

None of the cases in Fig. 4.9 is in agreement with Lieb’s theorem. Here one can

consider two features, which may be responsible for this discrepancy. First is

the strong Jahn-Teller distortion and relaxation of carbon atoms at the close

proximity of the defect. As a result some dangling sp2-bonds reconstructed to

form C-C covalent bonds. The lowering of the total energy, a driving force for

such reconstruction, is as high as 0.5-0.6 eV/cell. Second is the interaction with

the magnetic edge states, which becomes effective for narrow ZGNRs.
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4.7 Superlattice Structures of Graphene Nanorib-

bons: confined states

After investigating the homogeneous nanoribbons whose band gaps change with

their width, we constructed periodically repeating heterojunctions made of dif-

ferent widths. Our studies based on extensive first-principles calculations have

shown that periodically repeating heterojunctions made of graphene ribbons of

different widths (and hence different band gaps) can form multiple quantum well

structures. These superlattices are unique since both size and energy band gap,

even the magnetic ground state for specific structures vary periodically in direct

space. As a consequence, in addition to the propagating states, specific states are

localized in certain regions. Localization increases and turns to a complete con-

finement when the extent of the ribbons with different widths increases. Widths,

lengths, chirality of constituent ribbons and the symmetry of the junction pro-

vide variables to engineer quantum structures with novel electronic and transport

properties.In particular, finite-size quantum structures can be combined to design

various devices, such as resonant tunnelling double barrier (RTDB) or asymmet-

ric Aharonov-Bohm loops. Once these devices are functionalized with transition

metal atoms, the broken spin-degeneracy of states with energies En(k, ↑) and

En(k, ↓), can be used for spintronics applications [17] .

The superlattices that we consider in this section are labelled as

AGSL(n1,n2;s1,s2) which are made by the segments of AGNR(n1) and AGNR(n2).

Here, s1 and s2 specify the length of segments in terms of their numbers of unit

cells . Fig. 4.10 (a) shows a superlattice AGSL(10,14;3,3). It is a combination of

AGNR(10) and AGNR(14) to form a periodic AGNR(10)/AGNR(14) junction.

4.7.1 AGSL(10,14;s1,s2) Family

Hydrogen passivated AGNR(10) is a direct band gap material with a band gap

of 0.39 eV. AGNR(14) is also a direct band gap material with a band gap of

1.57 eV. The combined heterostructure with a symmetric junction has a band
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Figure 4.10: Formation of a graphene nanoribbon heterostructres
AGSL(10,14;3,3). (a) Atomic structure of AGSL(n1 = 10, n2 = 14; s1 = 3,
s2 = 3). The superlattice unit cell and primitive unit cell of each segment
are delineated. (below) Band structures of constituent segments (b)-(c) and
superlattice (d) with band gaps of 0.39, 1.57 and 0.65 eV respectively.
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gap of 0.65 eV. The band structure of constituent segments and the supercell is

shown in Fig. 4.10. Upon junction formation, dramatic changes occur in the band

structure of this superlattice. Highest valance and lowest conduction bands are

dispersive, but bands below and above the dispersive ones are simply flat. These

flat states are also represented by sharp peaks in density of states ( DOS) plots

( see Fig. 4.11 (a)). The isosurface charge density plots distinguish the different

characters of these bands. For example, as highest valance band states propagate

across the superlattice, the states of the second (flat) band are confined to the

wider part of AGSL(10,14;3,3) consisting of AGNR(14) segment. These flat band

states are identified as confined states.

Normally, a particular state, which is propagating in one region (or segment) is

confined if it cannot find a matching state in the adjacent region having the same

energy. For a superlattice of small n1 or n2, spacings between energy levels are

significant and hence localization of states in one of the regions is more frequent.

This argument, which is relevant for superlattices of long constituent segments,

may not be valid for short segments (or small s1 and s2). The confined states have

been treated earlier in commensurate or pseudomorphic junctions of two different

semiconductors, which form a periodically repeating superlattice structure [51].

These superlattices have grown layer by layer and form a sharp lattice matched

interface. Owing to the band discontinuities at the interface, they behave as

if a multiple quantum well structure obeying the Effective Mass Theory. Two

dimensional conduction band electrons (valence band holes) confined to the well

display a number of electronic and optical properties. In the present case, both the

band gap and the size (width) of the graphene ribbon are periodically modulated

in direct space and carriers are one dimensional. On the other hand the atomic

arrangement and lattice constants at both sides of the junction are identical; the

hetero character concerns only the width of the ribbons at different sides.

Electronic and transport properties of graphene multiple quantum well struc-

tures can be controlled by a number of structural parameters. In addition to n1,

n2, s1, s2, symmetry of the junction, ∆n = n2 − n1, even-odd disparity of n1/2

and n2/2, type of the interface between two different ribbons and the shape of the

superlattice (namely sharp rectangular or smooth wavy) influence the properties.
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Figure 4.11: (a) Band structure of AGSL(10,14;3,3) with flat bands correspond-
ing to confined states. (b) Isosurface charge density of propagating and confined
states. (c) Density of States (DOS) of AGSL(10,14;3,3) with sharp peaks corre-
sponding to confined states.
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As shown in Fig. 4.12 superlattice band gaps decrease as s1 increase from 3 to

8. This is a clear evidence for quantum size effect. In terms of the weight of the

states in the segment s2, i.e.
∫

s2

|Ψ(r)|2dr, we see that the confinement of states

increases with increasing s1; but it disappears for s1=s2=1 ( see Fig. 4.17 (a)).

Confinement increases with increasing s1 = s2 and hence with increasing barrier

width, since the penetration of states into the barrier decreases ). For example,

AGSL(10,14;s1,s2) has Eg=0.66,0.48,0.38,0.32,0.27 eV for s2=3 and s1=3,4,5,6,7,

respectively. Conversely, Eg=0.72,079,0.83,0.84 eV for s1=3 and s2=4,5,6,7, re-

spectively. On the other hand, the energy of the flat-band states confined to s2

and their weight are practically independent of s1.

4.7.2 AGSL(10,18;s1,s2) Family

In this section, we investigate the effects of changing n1 from 14 to 18. Two

nanoribbons containing 10 and 18 carbon atoms in their unit cell are merged.

Note that AGNRs can be constructed by using two different unit cells (i.e. those

consisting of complete hexagons or of incomplete hexagons). A junction with

complete hexagons is preferred in order to prevent a lonely carbon atom at the

interface. For AGSL with reflection symmetry the narrow region is made by unit-

cells having complete or incomplete hexagons depending on whether (n2−n1)/4 is

an even or odd number, respectively. Variation of ∆n = n1 −n2 results in a wide

variety of electronic structures. For example, in contrast to AGSL(10,14;3,3) the

highest valence and lowest conduction bands of AGSL(10,18;3,3) are flat bands

with Eg=0.70 eV; dispersive bands occur as second valence and conduction band

having a gap of 1.18 eV between them. Fig. 4.14 shows the band structure of

AGSL(10,18;3,3) with flat bands corresponding to confined states. Since the first

valance and conduction are confined in wider region of the structure, this ribbon

can act as a resonant tunneling double barrier diode. The narrow regions act as

a barrier and wider region as a quantum well. As seen from Fig. 4.14 we have

complete confinement of charges for some of states in wider region. On the other

hand, the states which are mostly confined in narrower region can penetrate to

the wider regions. The variation of s1 for AGSL(10,18;s1,s2) family have similar
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Figure 4.12: (a) The variation of narrower region (s1) of AGSL(10,14;3,3) from 3
to 8 while the wider part remains the same. (b) The variation of band structures.
(c) The numerical values for energy gaps Eg, ∆1, ∆2. Eg is the actual band gap of
the structure which comes from a dispersive state. ∆1 is the band gap of highest
localized state while ∆2 is the band gap for the next dispersive state. As seen
above, the energy of the flat-band states (∆1) confined to s2 and their weight are
practically independent of s1.
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Figure 4.13: (a) The variation of wider region (s2) of AGSL(10,14;3,3) from 3 to 8
while the narrower part remains the same. (b) The variation of band structures.
(c) Eg, ∆1, ∆2. Eg is the actual band gap of the structure which comes from
a dispersive state. ∆1 is the band gap of highest localized state while ∆2 is the
band gap for the next dispersive state. In this case, Eg slightly changes while ∆1

decreases due to quantum size effect.
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consequences to the AGSL(10,14;s1,s2). Again we see that the confinement of

states increase with increasing s1. As shown in Fig. 4.15 superlattice band gaps

decrease as s1 increase from 3 to 7. On the other hand, the energy of the flat-band

states confined to s2 and their weight are practically independent of s1. As shown

in Fig. 4.16 the band gaps of localized conductance and valance states decrease

with the increase in s2. These findings reveal that charge confinement in size

modulated graphene nanoribbons is closely related with structural parameters of

heterostructure.

4.7.3 Other Structures

Figure 4.17 shows some of other structures. Large amount of electrical prop-

erties can be obtained by differing n1, n2, s1, s2, the symmetry of the junction,

∆n = n2 − n1, even-odd disparity of n1/2 and n2/2 and the type of the interface

between two different ribbons. For example figure 4.17 (a) shows the analysis

of AGSL(10,14;1,1). It contains only one unit cell of AGNR(10) and AGNR(14)

segments. As seen from the figure, the charge confinement that we investigated

in section 4.7.1 is completely destroyed. The flat states in band structure and

sharp peaks in DOS are missing. All states near Fermi level are propagating

throughout the ribbon.

Figure 4.17 (b) shows the antisymmetric superlattice. Again it consists of

AGNR(10) and AGNR(14) segments. One of the edges is straight while the

other one is alternating. Interstingly, the charge confinement still survives. This

is one of the evidences for the robustness of charge confinement in size modulated

graphene nanoribbons.

The superlattice shown in Fig. 4.17 (c) is a member of another family which

is wider than AGSL(10,14;3,3). The charge confinement is still observed. But

the positions of completely localized states are further from Fermi level than

AGSL(10,14;3,3). Fig. 4.17 (d) shows n2=13 form of the structure shown in part

(c). With the richness of structural parameters of armchair graphene nanorib-

bon heterostructres one can find a desired geometry for the fabrication of novel
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Figure 4.14: (a) Band structure of AGSL(10,18;3,3) with flat bands correspond-
ing to confined states. (b) Isosurface charge density of propagating and confined
states. (c) Density of states (DOS) of AGSL(10,18;3,3) with sharp peaks corre-
sponding to confined states.
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Figure 4.15: (a) The variation of narrower region (s1) of AGSL(10,18;3,3) from
3 to 7 while the wider part remains the same. (b) The variation of band struc-
tures. (c) The numerical values for energy gaps ∆1, ∆2. ∆1 is the band gap of
highest valance and first conductance state while ∆2 is the band gap for the next
dispersive states. As seen above, the energy of the flat-band states (∆1) confined
to s2 and their weight are practically independent of s1.
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Figure 4.16: (a) The variation of wider region (s2) of AGSL(10,18;3,3) from
3 to 7 while the narrower part remains the same. (b) The variation of band
structures. (c) The numerical values for energy gaps ∆1, ∆2. ∆1 is the band
gap of highest valance and first conductance state while ∆2 is the band gap for
the next dispersive states. In this case, ∆2 oscillates while ∆1 decreases due to
quantum size effect.
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nanodevices.

4.7.4 Mechanical Properties of Superlattices

The rate of change of band gaps with strain, ǫ = ∆c/c (∆c being the change of

lattice constant under uniaxial stress along the x−axis.) of nanoribbon super-

lattice structures is also a notable feature, which may be interesting for future

stress-gauge device applications. In Fig. 4.18 (f) and Fig. 4.18 (g) we present our

results for the variation of Eg and other relevant gaps of the nanoribbon super-

lattice AGSL(10,14;3,3) and also its constituent AGNR’s for the sake of compar-

ison. Strong dependence on ǫ is impressive. That these superlattice structures

are quasi 1D stiff materials is shown by the variations of their total energies ET

with respect to ǫ in Fig. 4.18 (h). The force constant of the superlattice calcu-

lated by κS = ∂2ET /∂c2 is in good agreement with the equivalent force constant

κeq,SL = (s1/κn1
+ s2 + κn2

)−1 calculated in terms of the force constants of the

constituent nanoribbons κn1
and κn2

. This shows that elastic properties of super-

lattices comply with Hooke’s law for small ∆n = n2 −n1. It is also interesting to

note that the force constant of AGNR(14,3), κ = 11.57 eV/Å, can be compared

with that of carbon linear chain κ = 26.24 eV/Å.

4.7.5 Compositional Modulation of Heterostructres

The confined states have been treated earlier in commensurate or pseudomorphic

junctions of two different semiconductors, which form a periodically repeating

2D superlattice structure [51]. These superlattices have grown layer by layer

and formed a sharp lattice matched interface. Owing to the band discontinuities

at the interface, they behave as if a multiple quantum well structure according

to the Effective Mass Theory [52]. Two dimensional conduction band electrons

(valence band holes) confined to the wells have displayed a number of electronic

and optical properties [53, 54, 55, 56]. In Fig. 4.19, we present a 1D analog of the

2D semiconductor superlattices through compositional modulated nanoribbons.

BN honeycomb ribbon and graphene ribbon of the same width are lattice matched
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Figure 4.17: Other superlattice structures made by varying the geometrical pa-
rameters. (a) is an example of very small superlattice where the charge confine-
ment is destroyed. (b) is an example of antisymmetric superlattice where charge
confinement still survives. (c) & (d) are some of other structures.



CHAPTER 4. RESULTS 51

Figure 4.18: (a) Variation of band gaps Eg of constituent AGNR’s with the tensile
strain ǫ. (b) Same for the nanoribbon superlattice AGSL(10,14:3,3). (c) Variation
of the total energy ET with respect to ǫ, and the force constant, κSC [in eV/Å]
for AGSL(10,14;3,3) and its constituent nanoribbons. (d) Illustration of Hooke’s
law. When two nanoribbons with different force constant, κ , is merged. The
resulting structure’s force constant,κSC , can be estimated according to Hooke’s
law. In our case, the calculated κ value (4.31 eV/Å) is slightly less than the real
value (4.54 eV/Å)
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and can form superlattices with multiple quantum well structure with confined

states. We considered a periodic junction of the segment of armchair BN ribbon

with n1=18 and s1=3 to the segment of armchair graphene with n2=18 and s2=3

to form a superlattice structure. While periodic BN and graphene ribbons by

themselves have band gaps of ∼5 eV and 0.8 eV, respectively, the band gap of

BN/AGNR(18) is only 0.8 eV indicating a normal (type-I) band alignment. Under

these circumstances, a state propagating in one segment becomes confined if its

energy coincides with the band gap of the adjacent BN segment. In Fig. 4.19 (b),

the dispersive minibands and non-dispersive quantum well states are clearly seen.

That these quantum well states are confined in the graphene zone (which has

small band gap as compared to the band gap of BN ribbon) are demonstrated

by isosurface plots of charge densities. In contrast to the confined states, the

propagating states have charge densities in both graphene and BN zones of the

superlattice. This is another class of heterostructure obtained from graphene

based ribbons and their functions can even be advanced by implementing the size

modulation in addition to the compositional one.
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Figure 4.19: One-dimensional superlattice structure formed from the junction
of BN and graphene armchair nanoribbons. (a) Atomic structure and superlat-
tice parameters. (b) Band structures of constituent BN and graphene armchair
nanoribbons having 18 atoms in their unit cells and the band structure of the
superlattice BN(18)/AGNR(18) each segment having 3 unit cells (s1 = s2 = 3).
(c) Energy band diagram in real space forming multiple quantum wells, QW, in
graphene segments (zones). Isosurface charge densities of states confined to QW’s
and propagating states are presented for selected bands.



Chapter 5

Conclusions

Wide range of magnetic and electronic properties of graphene nanoribbons keep

the promise of novel nanoscale devices for future applications. The design and

fabrication of these devices based on graphene nanoribbons require a proper un-

derstanding all the factors that inuence its electronic and magnetic properties.

The geometry and vacancy defects are crucial for physical properties of GNRs.

The geometry is determined by length, width, edge chirality. Modications of

physical properties can be caused by different edge terminations, hetrojunction

or defect formations in the ribbon’s body. In this thesis, we examined how these

factors affect the electronic and magnetic properties of graphene nanoribbons.

A detailed analysis of bare and hydrogenated ribbons with armchair and zigzag

edge chirality have been performed. We have verified that the chirality and width

of graphene nanoribbons are the two main factors defining the electronic and

magnetic properties by our calculations. The inverse proportionality of band

gaps with the ribbon width is a characteristic feature for both armchair and

zigzag shaped nanoribbons. Our studies reveal that vacancy formation is also a

factor influencing the electronic and magnetic properties. An armchair graphene

nanoribbon is a nonmagnetic material throughout its structure. But our stud-

ies show that a single defect can provide an induced magnetism on it. On the

other hand, a zigzag shaped graphene nanoribbon has an antiferromagnetic order

and a single defect can break that order leading to a ferrimagnetic ground state.
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Two different electronic states are distinguished: These are: (i) itinerant states

perturbed by defects, (ii) defect induced states. While the former is dispersive,

the latter give rise to flat bands. The reconstruction and spin-polarization of the

orbitals at the close proximity of the defect give rise to net magnetic moments,

which, in turn, change the magnetic ground state of the defect-free ribbon. Even

a semiconductor armchair ribbon can be turned into a metallic ribbon through

defect formation. By manipulating the defect formation through irradiation one

can tune the electronic and magnetic properties of graphene nanoribbons. Mod-

ulation of band gaps of graphene nanoribbons are also possible through defect

formation. For example the band gap of an armchair graphene nanoribbon having

34 carbon atom in its unit cell can be changed from 0.1 eV to a 0.4 eV by forming

a hexagonal defect in the middle of the ribbon. Our further analysis showed that

modulation of band gaps depends on the position of the defect created on the

ribbon.

We showed that periodically repeated junctions of segments of graphene

nanoribbons with different widths can form stable superlattice structures. This

is a one-dimensional analog of two-dimensional, pseudomorphic or commensurate

semiconductor superlattices. These new type of heterostructures show a clear ev-

idence of charge confinement in multiple quantum well structures obtained from

graphene nanoribbons. Orientation of constituent nanoribbons, their width and

length, the symmetry of the junction are some of the structural parameters to

engineer electronic properties of these structures. We have performed very de-

tailed analysis of these parameters. Our results revealed that energy band gap

and confined states of the superlattices are modulated in real space by varying the

geometrical parameters. We also show that in addition to the size modulation, pe-

riodically repeating heterostructures of BN/Graphene armchair nanoribbon can

also result in multiple quantum well structures with minibands and confined

states.

Together with the unique electronic and transport properties of graphene,

the quantum-well structures of graphene ribbons offer a basis for investigating

problems in nanoscale physics and realizing graphene-based electronics.
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