VENDOR LOCATION PROBLEM

A THESIS
SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
In PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

By
Yüce Çınar
July, 2009

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Hande Yaman(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Mustafa Ç. Pınar

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Ayşegül Altın

Approved for the Institute of Engineering and Science:

Prof. Mehmet B. Baray
Director of the Institute

ABSTRACT VENDOR LOCATION PROBLEM

Yüce Çınar
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Hande Yaman

July, 2009

In this study, we aim to design a distribution system with the following components: the location of vendors, the number of vendors, the service region of the vendors, the number of vehicles and workers, and the assignment of demand points to these vendors and vehicles. We define our problem as a two-level capacitated discrete facility location problem with minimum profit constraints and call it Vendor Location Problem. In order to formulate the problem, two different objective functions are used: vendors's profit maximization and maximization of the demand covered. Integer linear programs for these two versions of the problem are formulated. Valid inequalities are used to strengthen the upper bounds. Finally, the performance of these models with different parameters are compared in terms of linear programming relaxation gap, optimality gap, CPU time, and the number of opened nodes for four different types of instances: instances with demand and profit which are independent of distance; profit function of distance; demand function of distance; demand and profit function of distance.

Keywords: Vendor location, two-level capacitated facility location problem, distribution system, minimum profit constraint, valid inequalities.

ÖZET
 BAYİ YER SEÇiMİ PROBLEMI

Yüce Çınar
Endüstri Mühendisliği, Yüksek Lisans
Tez Yöneticisi: Doç. Dr. Hande Yaman

Temmuz, 2009

Bu tez çalışması; bir firmanın bayileri için yer seçimi, bayi sayısı, bayi çalışan ve araç sayıları ile müşterilerin bayilere ve araçlara atanması kararlarını içeren bir dağıtım sistemi tasarımını amaçlamıştır. Problem literatürdeki iki aşamalı ve kapasiteli kesikli tesis yerleşim problemi olarak tanımlanmış ve Bayi Yer Seçimi Problemi olarak adlandırılmıştır. Bayi karını ve servis edilen talebi enbüyültmek olmak üzere iki farklı amaç fonksiyonu tanımlanmış ve bu iki problem için doğrusal tamsayı programları sunulmuştur. Geçerli eşitsizlikler eklenerek problemlerin üst limitleri düşürülmüş ve problemler çözümlenmiştir. Ayrıca, sayısal deneyler için dört farklı örnek grubu oluşturulmuştur: uzaklıktan bağımsız kar ve talep fonksiyonlarını; uzaklığa bağlı kar fonksiyonunu; uzaklığa bağlı talep fonksiyonunu; uzaklığa bağlı kar ve talep fonksiyonlarını içeren örnekler. Modeller oluşturulan örnek gruplarında parametreleri değiştirilerek doğrusal gevşetme farkı, eniyilik farkı, CPU süresi ve açılan düğüm sayısı bakımından karsılaştırılmıştır.

Anahtar sözcükler: Bayi yer seçimi, iki aşamalı kapasiteli tesis yerleşim problemi, dağıtım sistemi, minimum kar kısıtı, geçerli eşitsizlikler.

Acknowledgement

I would like to express my deepest and most sincere gratitude to my advisor and mentor, Assoc. Prof. Hande Yaman for her invaluable trust, guidance, encouragement and motivation during my graduate study. She has been supervising me with everlasting patience and interest from the beginning to the end.

I would like to express my special thanks to Prof. Mustafa Ç. Pınar and Asst. Prof. Ayşegül Altın for accepting to read and review this thesis and for their suggestions. Their remarks and recommendations have been very helpful.

I would like to thank Prof. İhsan Sabuncuoğlu and all other faculty members of the Department of Industrial Engineering at Bilkent University for their intellectual contributions and encouragement during both my undergraduate and graduate academic life.

I would like to thank to my friends Tuğçe Akbaş and Didem Batur for all wonderful time we cherished over the last three years. Without their academic and most importantly morale support things would have been much more difficult and boring. I wish to thank Gökay Eron and Sıtkı Gülten for their camaraderie and helpfulness.

I would like to thank Barış Noyan and Bige Ayan Ulusoy for their understanding and valuable comments on my career.

I want to express my heartily thanks to Cemil Baysal who have always supported and encouraged me and sincerely gave all the help and everlasting love.

Last but not least, I would like to express my gratitute to my mother Hümeyra Çınar, my sister Özge Çınar and my nephew Çınar Demir for their trust and motivation during my study. My father Atila Çinar deserves special mention for his everlasting support and love. I owe them a lot for every success I have in my life.

Contents

1 INTRODUCTION 1
1.1 Motivation 2
1.2 Problem Definition 3
1.3 Contribution 4
1.4 Contents 5
2 VENDOR SYSTEM IN TURKEY 6
2.1 LPG Company 6
2.2 Demijohn Water Company 8
3 LITERATURE SURVEY 11
4 MODEL DEVELOPMENT AND COMPLEXITY 19
4.1 Notation and Parameters 19
4.2 Decision Variables 20
4.3 Objective Functions 20
4.4 Constraints 21
4.5 Complexity 23
5 VALID INEQUALITIES 24
5.1 Lower bounds on the number of vehicles 24
5.2 Cover inequalities for vehicle capacity constraints 26
5.3 Cover inequalities for the minimum profit constraints 27
6 COMPUTATIONAL RESULTS 29
6.1 Models 29
6.2 Input Data and Parameter Selection 32
6.3 Comparison of Models 34
6.4 Solution Analysis of an Instance 38
7 CONCLUSION 43
A Tables of Computational Results 47

List of Figures

1.1 The Distribution System 3
$6.1 \quad q_{i j}$ function in terms of distance 33
6.2 Comparison of average cpu times for ProfitVLP 37
6.3 Comparison of average cpu times for CoverageLP 38
6.4 The solution of PM2 for ProfitVLP type A problem 39
6.5 The solution of PM3 for ProfitVLP type D problem 40
6.6 The solution of CM4 for CoverageVLP type A problem 41
6.7 The solution of CM2 for CoverageVLP type D problem 42

List of Tables

6.1 Constraints for model ProfitVLP 31
6.2 Constraints for model CoverageVLP 31
A. 1 LP gap, CPU time/ optimality gap and number of nodes of Prof- it $V L P$ in A type instances 48
A. 2 LP gap, CPU time/ optimality gap and number of nodes of Prof- itVLP in \mathbf{B} type instances 49
A. 3 LP gap, CPU time/ optimality gap and number of nodes of Prof- itVLP in \mathbf{C} type instances 50
A. 4 LP gap, CPU time/ optimality gap and number of nodes of Prof- it $V L P$ in \mathbf{D} type instances 51
A. 5 LP gap, CPU time/ optimality gap and number of nodes of Cov- erage $V L P$ in \mathbf{A} type instances 52
A. 6 LP gap, CPU time/ optimality gap and number of nodes of Cov- erage $V L P$ in \mathbf{B} type instances 53
A. 7 LP gap, CPU time/ optimality gap and number of nodes of Cov- erage $V L P$ in \mathbf{C} type instances 54
A. 8 LP gap, CPU time/ optimality gap and number of nodes of Coverage $V L P$ in \mathbf{D} type instances55

Chapter 1

INTRODUCTION

Recently, the importance of customer satisfaction has increased dramatically for the firms in the service sector. One of the key factor that has a big impact on customer satisfaction is the service time. Therefore, these firms pay more attention to production, logistics, and distribution management to create a competitive advantage over their competitors. Hence, vendor location decisions become an important component as a management concept that affect the service time excessively. Moreover, the design of distribution system is typically a costly and time-sensitive project. The main factors to be determined before locating facilities are the area of the location, the number of facilities, and capacity specifications.

In this thesis, we aim to design the distribution system for firms, which sell their products through vendors. This system design problem includes the decision on the location of their vendors, the service region of each vendor, the number of vehicles and workers for each vendor, and the assignments of customers to these vendors and vehicles. Customer/ demand point and facility/ vendor are used interchangeably hereafter.

1.1 Motivation

We consider a discrete facility location problem encountered by one of the major demijohn water sellers in Ankara. A few years ago, the company decided to introduce its own brand and wanted to locate a number of vendors and to determine disjoint sales regions for its vendors in a way that each vendor can achieve at least a minimum level of profit.

The sales of demijohn water works on a kind of membership of customers. Every brand has its own bottles. A customer who wants to buy the product of a given brand is charged for the first bottle. After the first purchase, the empty bottle is changed with a full bottle, and the customer is only charged as much as the price of the water. This discourages customers from switching frequently from a brand to another.

Before the company introduced its product, a detailed market analysis has been conducted to determine the criteria that the customers use in deciding which brand to buy and to forecast the demand for the new product. It has been observed that the customers valued the most, the quality of the water (taste, hygiene, chemical composition etc.) and the quality of the service. The quality of the service was strongly related to service times and the satisfaction was affected by the presence of competitors in the same region who could provide shorter service times.

It was concluded that the number of customers that the company could attract from a given region depended highly on the distance between the region and the vendor to which this region would be assigned to and the distances between the region and the vendors of competitor brands. Hence opening vendors at many locations could increase the market share of the company. However this could result in vendors with insufficient sales to achieve at least a minimum level of profit.

The distribution system of the company is depicted in Figure 1.1.

Figure 1.1: The Distribution System

1.2 Problem Definition

We aim to establish a distribution system for companies by deciding where to locate their vendors, the number of vehicles for each vendor as well as the assignment of customers to these vendors and vehicles.

We define the Vendor Location Problem (VLP) as follows. We are given a set of demand points which correspond to population zones and a set of possible locations for vendors. For each vendor, there is a maximum number of vehicles that this vendor can use. We are given the fixed cost of operating a vendor office (rent, insurance, salaries of employees at office etc.) at a given location and the
cost (including the salary of the driver) and capacity of a vehicle.
For a given demand point, there is a set of eligible vendors that can serve this demand point. Demands of demand points change according to the proximity to vendors and also the proximity of other brands' vendors in the region. Hence, the demand and the profit (sales revenue minus the transportation cost) a demand point generates depends on the vendor that serves it.

Now, the $V L P$ is to locate a given number of vendors and to assign each demand point to at most one vehicle of an eligible vendor such that capacities of vehicles are not exceeded and each vendor achieves a minimum level of profit. We consider two objective functions. In ProfitVLP, the aim is to maximize the total profit and in CoverageVLP, the aim is to maximize the coverage, i.e., the total demand served.

1.3 Contribution

In this study, we introduce two new two-level facility location problems, namely ProfitVLP and CoverageVLP, that are motivated by a real life problem. Different from the classical facility location problems, here we have minimum profit constraints for open facilities and capacity constraints for their vehicles. We investigate the computational complexity of these problems and prove that they are strongly NP-hard. We propose integer programming formulations, valid inequalities and extra constraints to be able to use the cutting planes of off-the-shelf integer programming solvers. We report the outcomes of a computational study where we used four types of instances which differ in their demand and profit functions. We investigate the effect of valid inequalities on linear programming relaxation bounds and solution times for these different types of instances. Finally, we analyze the optimal solutions of ProfitVLP and CoverageVLP and report how the differences in demand and profit functions effect the locations of facilities and their service regions for an example problem.

1.4 Contents

The remainder of the thesis is organized as follows:

In Chapter 2, we give information on two companies that use vendors for sales.

In Chapter 3, we provide a review of the literature in facility location problems by comparing our problem with these problems.

In Chapter 4, we formally define our problem and then propose an integer linear program to solve the problem exactly.

In Chapter 5, we derive some valid inequalities to strengthen the models presented in Chapter 4.

In Chapter 6, we will present four types of instances. Experimental results related with valid inequalities are given and discussed by comparing the models with each other.

In Chapter 7, we conclude the thesis by giving an overall summary of our contribution to the existing literature and list some possible future research directions.

Chapter 2

VENDOR SYSTEM IN TURKEY

We have interviewed two different firms which sell their products through vendors. The first company is in LPG (Liquefied Petroleum Gas) cylinder market in Turkey. The other one is a beverage company, who produces 19 L HOD-Demijohn water. Since we are not allowed to use their brand names, we call them as Company X and Y , respectively. In the following two sections, we give some general information about these companies and their vendor systems.

2.1 LPG Company

LPG cylinder companies sell their products through vendors. Distribution network is the most important issue to attract customers and meet customer satisfaction for this kind of companies.

The distribution network is composed of filling facilities and vendors. Vendors prefer managing the logistics by their own, although Company X provides free logistics. The reason behind it is that vendors want to order the products in the specified amount and time based on their needs rather than the fixed amount and
time the distribution centers determine. The vendors close to the filling facilities do not tend to keep inventory.

The distribution of the products to the customers depends on the type of customer. Customers of Company X can be categorized into three segments as individual subscribers, corporate customers, and the customers of secondary vendors. Individual and corporate customers make a phone call to make an order and the vendors bring their products via their own vehicles to replace the empty LPG cylinders with full ones. However, secondary vendors meet the demand of people in villages or suburbs without taking any order. Besides, in suburbs, the vehicles go around with the company's jingle to capture the consumer.

To locate the vendors, Company X does not take into account the distance between vendors. Therefore, customers sometimes complain about the imbalance of delivery time of each vendor. Since they have no region division for the vendors, customers are free to choose their own vendors. Sometimes, this leads to long delivery times and high transportation costs.

The most important factor affecting the delivery time is the number of vehicles. The number of vehicles each vendor has is not determined by company X and it changes from region to region. As vendors patronize more customers, the need for an extra vehicle occurs. Vendors assign one more vehicle as a result of increase in the complaints from customers about the delivery time. The aim of Company X is to minimize the number of vehicles without decreasing the service quality.

The customers mainly make their decisions for which brand to choose according to three criteria: reliability that comes from the name of the brand, price, and delivery time. The aim of the company is to keep the lead time of delivery of products below half an hour, but it changes between 20 and 60 minutes due to the reasons mentioned above.

If a vendor cannot compensate its costs and make enough profit due to decrease in demand, then it has to be merged with one of the neighboring vendors.

It may happen that Company X locates its vendors in the same area and this may create serious risk in terms of vendor's profitability and customer satisfaction. This can cause a vendor to be out of business since it is not possible to cover the costs. In 2008, seven vendors closed their businesses, and three vendors were merged to compensate the costs.

2.2 Demijohn Water Company

One of the most proper example for selling products through vendors is demijohn water companies. In Turkey, there are more than 400 brands in the demijohn sector. To understand the vendor system, we interviewed one of these brands, which we call Company Y.

The distribution network of Company Y has distribution centers in cities who supply demijohns for vendors. There are two distribution centers in Ankara: the east region distribution center and the west region distribution center. Each of these centers provides supply to 17 vendors. The separation is based on the amount of demand and region.

These distribution centers order demijohn waters to the company once a day. The delivery time for demijohns for reaching the distribution centers from the factory is 24 hours. Vendors give their orders to the distribution centers at the end of the working day to have the products at the beginning of the next day. Generally, the distribution center is responsible for logistics of the demijohns to the vendors, unless the vendor is willing to receive from the stock warehouse thanks to the proximity. The west distribution center has 4 trucks with capacities $100,300,450$, and 700 demijohns. Most of the time, one trip per truck per day is enough, if necessary they assign the trucks for a second trip through a day, starting with the smallest truck. Distribution centers have the safety stock which is enough for a daily demand. The sale of a distribution center is 2300-2500 demijohns per day on the average. It can change in the range of 10% and 15%.

Vendors are responsible to deliver products to customers via their own vehicles. The process of receiving an order from a customer starts when the customer calls the responsible vendor to leave a message of his/her request to the vendor's computer. Then, the request is directed to the deliveryman who is responsible for that region. The deliveryman brings the full bottle to the customer's adress and takes the empty bottle to take it back to the vendor.

The service regions of the vendors are strictly separated from each other and the vendors are prohibited to serve in an other vendor's district. Company decides about the vendor locations with respect to the demands of the regions. First, they choose elite districts to serve and then they decide about the remaining regions.

Moreover, the region of the each vendor's vehicles is also determined and even if the delivery takes less time, customers of a deliveryman cannot be served by another deliveryman working for the same vendor. To shorten the delivery time and to minimize the transportation cost, vehicles assigned to each part of the vendor's region have specific points to wait in their service area. They are not allowed to return back to their vendors during the day before finishing all demijohns loaded on their vehicles.

Another important issue is to decide about the number of vehicles since it affects the delivery time. In the demijohn water sector, each vendor has a different number of vehicles. Regarding that shipping 50-60 demijohns in a day is ideal and more than 80-90 can be shipped by a vehicle, the vendor starts with a vehicle at first. As the vendor patronizes more customers, they augment the number of vehicles in order to have acceptable delivery time.

One of the distribution centers of Company Y has vendors with 1 to 6 vehicles that can be loaded 3 times and accomplish at most 3 tours in a day. The average number of vendor's vehicles is 3 . If a vendor cannot afford to buy more vehicles and demand cannot be met within reasonable service times, the need for an extra vendor in that region occurs. This is called "vendor split". Each vendor has to compensate its cost and to continue his business. If a customer is far from the other customers of the vendor, advertisements or promotions are applied to capture more customers at that region to cover the costs. The vendor does
not accept the demand if there is still not enough demand in that direction to compensate its own cost.

Although the number of vehicles and delivery times are crucial for vendors to attract the customers, Company Y does not control vendors in terms of delivery time, unless customers deliver a complaint to the company. However, the sales of vendors are inspected and necessary precautions are taken if any loss occurs. In addition to this, Company Y follows the shifts to other brands and tries to get information which other brands customers prefer to Company Y.

Apart from the delivery time, the reasons customers choose the specific brand of demijohn water are reliability of the brand, price, taste, and some emotional factors. For example, the deliveryman has an affect on the process of deciding the demijohn water to buy. They are strictly prohibited to enter customer's house and must be neat. Moreover, customers in Turkey are not tightly coupled with a brand. The regions with well-educated customers have steady sales. However, the demand of less-educated customers is more sensitive due to promotions, free-ofcharge exchange demijohns or campaigns. The importance given to price differs according to region.

Chapter 3

LITERATURE SURVEY

There is a wide variety of location problems in the literature. Generally, distribution, transportation and telecommunication are the most important areas for facility location problems. The need for locating facilities arises both in private and public sector. In private sector, industrial firms, retail facilities or banks have to locate their facilities and for the latter one, government agencies decide on the location of schools, hospitals, fire stations, and ambulances.

Location Problems were first introduced in 1909 by Alfred Weber [19] who studied the problem of locating a warehouse in the plane on which the customers are spatially distributed with the objective of minimizing the total walking distance of customers to the facility. More realistic models and algorithms were introduced in the mid-1960s.

Facility Location Problems can be classified regarding various criteria. Klose and Drexl [14] classified facility location problems using the following criteria:

1. The space of location designs

Location problems are divided into two groups according to the space of d-dimensional real space and network location space. Both two groups are subdivided into continuous and discrete location problems. In location problems with continuous space, facilities can be located anywhere in the
space or on the network. However, facilities are sited at the points in a finite set in discrete location problems.

ReVelle and Eiselt [15] stated in their survey that distances in real spaces are often calculated using metric Minkowski distances. The most focused distance types are Rectilinear distances, Euclidean metric and Chebyshev metric.

In network location problems, shorthest path is the method for calculating the distance between nodes which presented by Dijkstra [9].

Our problem is a discrete location problem in 2-dimensional real space and we use Euclidean metric to compute the distances between facilities and customers.
2. Classes of location objectives

Eiselt and Laporte [10] examined different objective functions for location models. They categorized objective functions into three groups: pull, push and balance objectives. First, if the aim is to locate facilites close to the customers, it is a pull objective. Minisum, maximum capture, minimax and covering problems are the major classes of problems of pull objectives. When the aim is to maximize sales, revenue and customers captured, maximum capture objectives arise. If the issue is to minimize the maximum distance, minimax objectives are used. Max cover and min (cost) cover problems are the two version of covering objectives. In max cover problems, the idea is that facilities are located to maximize the demand captured with a fixed number of facilities. Min (cost) cover problems aim to cover the whole demand with a variable number of facilites by satisfying the distance constraint.

Push objectives aims to locate undesirable facilities. Finally, balance objectives try to balance distances between facilites and customers, i.e., minimize the variability of the distribution of distances.

Generally, public sector aims to increase the accessibility of facilities e.g., minimizing the maximum distance between facilities and customers. However, private sector chooses to maximize profits or minimize cost. We define
two objective functions including both two groups for our problem: maximizing profit and maximizing coverage.

3. Product type

Problems can include single-product or multi-product. In single-product models, there is a homogeneous product which does not differ in terms of cost, quality, capacity or demand attributes. All products are homogeneous in our problem.
4. Demand type

In location problems, demand can be classified as elastic and inelastic demand. In inelastic demand, spatial decision does not influence demand. On the contrary, if demand is elastic, it may change according to proximity. Elastic demand is usually a component of competitive facility location problems.

In Competitive location, private sectors' organizations struggle to be close to the customers in order to attract them to their retailers. Characteristics of this problem are various and one of the important component is objective function which is generally based on the utility function. Aboolian et al. [2] suggested a spatial interaction model with multiple facilities, elastic concave demand and multiple design characteristics for competitive location problem. They solved the model for a real life example to locate a set of retail facilities in Toronto, Canada. They used Tangent- Line Approximation (TLA) by adopting the piecewise linear function to linearize the nonlinear concave model for medium-size instances. They also developed an ascent heuristic for larger problems.

Berman and Drezner [4] studied the multiple facility location problem on a network. They define stochastic demand function as distance dependent, that is to say, it decreases as distance increases. Their objective function is to maximize the demand. They developed heuristic algorithms that are ascent algorithm, tabu search and simulated annealing and concluded that the best approach is simulated annealing.

We model both the demand and the profit as a function of distance. In contrast to these studies mentioned above, we model demand using a piecewise linear function.
5. Planning period and data type

In facility location problems, static and dynamic models are studied in the literature. Static models optimize the system for a time period. In dynamic models, multiple periods are considered, data varies over time and it is possible to relocate the system components in the given planning horizon. Our problem is a static location problem.

In terms of certainty, static models can be divided into deterministic and probabilistic models. Deterministic models ignore the uncertainty. However, probabilistic models' data is not known with certainty.

Brotcorne et al. [5] worked on ambulance location and relocation models. After they mentioned how the emergency services operate, they presented static and dynamic models for ambulance location problems. They concluded that fast heuristics and sufficient computing power make the dynamic models useful in real life. The Location Set Covering Model (LSCM) of Toregas et al. [18] aimed to minimize the number of ambulances so as to cover all demand points. The objective of Maximal covering location problem (MCLP) studied by Church and ReVelle [7] is to maximize coverage with limited resource available.

6. Routing

ReVelle and Laporte [16] presented Location Routing Problems considered as plant location problems with spatial interaction. These models simultaneously locate facilities and construct routes of delivery and/or collection. There are the Median Tour (MTP) and Covering Tour Problems (CTP), the Newspaper Delivery Problem (NDP) and Multiple Tour Plant Location Problems (MTLP) in this category. The Median Tour Problem introduced by Current and Schilling [8] is the extension of the Generalized Traveling Salesman Problem. Its objective is to minimize both the length of the Hamiltonian tour among facilities and the sum of radial distances between
remaining sites and the closest facility. Current and Schilling [8] works on Covering Tour Problem which is a version of MTP. Mailbox location is the application of MTP and CTP.

In the Newspaper Delivery Problem, Jacobsen and Madsen [13] aimed to minimize the total length of all tours. Primary tours through a subset of sites and secondary tours associating sites to the primary tours are computed.

Finally, Multiple Tour Plant Location Problem corresponds the NDP, but there are no tours between facilities and there is a fixed charge for opening facilities.

Although our problem includes delivery/collection process, we cannot construct a route for vehicles as in the case of MTP, CTP, NDP and MTLP, since customer's order triggers the delivery/collection process.
7. Capacity constraints

If the model has no capacity constraints, it is called uncapacitated facility location problem (UFLP). If facilities have capacity constraints, then the problem is called capacitated facility location problem (CFLP).

Models with capacity constraints are separated into two groups: singlesource and multiple-source. In capacitated facility location problems with single-source, each customer has to be served by only one facility.

In the literature, one of the common way of solving CFLP is to use Lagrangian Heuristics. Holmberg et al. [12] suggested a Lagrangian Heuristic including a strong primal heuristic and a branch-and-bound for CFLP with single sourcing (SSCFLP). They use subgradient optimization in Lagrangian Heuristic and repeated matching in primal heuristic. To relax the set of constraints, they chose assignment constraints, so they worked on knapsack problems. They concluded that Primal heuristic with Lagrangian relaxation is a very efficient method since Lagrangian relaxation provides strong lower bounds and primal heuristic finds optimal or near optimal solutions quickly.

In our problem, vehicles of vendors have capacity limits, so our problem is capacitated.

Albareda et al. [3] introduced a new problem called Capacity and Distance Constrained Plant Location Problem (CDCPLP) which is an extension of discrete capacitated plant location problem. They propose mathematical formulations and a solution technique for this problem. Their problem has the following properties:

- After customers are assigned to facilities, each customer is also assigned to a vehicle.
- There are plant capacities and upper bounds on the total distance traveled by each vehicle.
- Demands are not divisible.

They proposed alternative mathematical models that minimize the total cost: the fixed cost for opening plants, the vehicle utilization cost and the assignment cost. They add some inequalities to their first alternative to avoid symmetries that arise since vehicles are identical.

In the first model, they suggested a bilevel model that minimizes required the vehicles to satisfy the assigned customer demands by separating the problem to Bin Packing Problems.

Second, they proposed a relaxed model for CDCPLP to generate good lower bounds by changing the capacity constraints with surrogate aggregated capacity constraints and adding valid inequalities. They improve tabu search based heuristic with three levels of search: plant-level, assignment level and packing-level. The results show that tabu search heuristic provides optimal or near optimal solutions within reasonable computational times.

Our problem is related with CDCPLP in many points. VLP has similar properties mentioned above except the second item. In our problem, not facilities but vehicles have capacity limits and we do not set upper bounds on total distances traveled. Besides, we have an additional constraint which provides the minimum profit of each vendor. Although we
have no constraint on total distance traveled, demands are decreasing as distance between vendors and demand points is increasing in VLP. Furthermore, we set a distance restriction for each vendor that is allowed to serve a customer.
8. Hierarchical stages

Hierarchical location problems occur in many areas such as health care, industrial and telecommunication network contexts. In industrial context, goods start to move from manufacturing plants to warehouses and from warehouses to demand points. Although supply chain concept comes up at this point, the difference between supply chain and location problems is that primary consideration is to focus on the design and secondary issue is operation in location problems like as in hierarchical location problems.

In hierarchical facility location problems, there are k levels representing the different type of facilites having interaction. Şahin and Süral [17] reviewed the hierarchical facility location problems. First, they focused on four attributes of this type of problems: flow-pattern, service varieties, spatial configuration and objective. According to these attributes, they mention the real life applications of hierarchical facility location problems such as healthcare system, solid waste management system, production-distribution system, education system, emergency medical service (EMS) system and telecommunication networks. They give mathematical formulations of these problems based on above attributes and solution methods.

Our problem can be seen as a hierarchial facility location problem where customers are level 0 , vehicles are level 1 and vendors are level 2. According to the attributes they defined, our problem is single-flow, since a customer to be served by the highest-level facility goes to a level 1 first and then passes through level 2 which is a vendor. Moreover, our problem is nonnested in terms of service varieties, since facilities at each level offer different services. According to spatial configuration, our system is coherent, because each vehicle belongs to a vendor.

Another study about hierarchical facility location problem was conducted by Aardal et al. [1]. They studied the two-level uncapacitated facility
location (TUFL) problem. After they improved for multi-commodity flow formulations of TUFL, they compared them with one-level uncapacitated facility location problem. They presented new families of facets and valid inequalities for TUFL. They discussed useful inequalities for computational purposes for alternative models they developed.

Moreover, Chardaire et al. [6] also studied hierarchical facility location problem. They presented upper and lower bounds for the two-level simple plant location problem. They characterized their problem for two-level concentrator access network in telecommunications industry. First, they introduce a simplified version of the two-level simple plant location problem. They assumed that there is no capacity constraint and all concentrators are of the same type. They developed an effective simulated annealing algorithm for this model to improve some of the upper bounds of Lagrangian relaxation algorithm. Then, they presented improved model formulation for the two-level simple plant location problem. Although both formulations' linear programming relaxation have the same optimal value, improved formulation was tightened using a family of polyhedral cuts that define facets of the convex hull of integer solutions.

Our formulations are an extension of the formulations presented in the two papers mentioned above. We have additional constraints which are capacity and minimum profit.

Chapter 4

MODEL DEVELOPMENT AND COMPLEXITY

In this chapter, we introduce the notation and then present formulations for our problem. Then we prove that both problems are strongly NP-hard.

4.1 Notation and Parameters

Let I be the set of demand points and J be the set of possible locations for vendors. For a demand point $i \in I, J_{i}$ is the set of vendors that can serve i. In our problem, we define J_{i} to be the set of vendors whose travel time i does not exceed a given bound. We also define $I_{j}=\left\{i \in I: j \in J_{i}\right\}$ for $j \in J$.

We denote with f_{j} the fixed cost of the vendor office and with v_{j} the fixed cost of a vehicle for a vendor located at $j \in J$. We define $\rho_{\text {min }}$ to be the minimum profit a vendor should achieve.

We denote with p the number of vendors to be located. The vendor at location $j \in J$ may have up to $k_{j}^{\max }$ vehicles. Let $K_{j}=\left\{1, \ldots, k_{j}^{\max }\right\}$ for $j \in J$. The capacity of a vehicle is equal to γ.

Demand point $i \in I$ has demand $q_{i j}$ and generates profit $\rho_{i j}$ if it is served by the vendor at location $j \in J_{i}$.

4.2 Decision Variables

After defining the parameters, we introduce the decision variables used to formulate the problem. We define y variables to open facilities, z variables to indicate a purchase of a vehicle for facilities, and finally x variables to assign customers to facilities and vehicles.

$$
x_{i j k}:= \begin{cases}1, & \text { if demand point } i \text { is assigned to vehicle } k \text { of vendor } j \\ 0, & o . w\end{cases}
$$

$\forall i \in I, j \in J_{i}, k \in K_{j}$

$$
z_{j k}:= \begin{cases}1, & \text { if vendor } j \text { uses vehicle } k \\ 0, & o . w\end{cases}
$$

$$
\forall j \in J, k \in K_{j}
$$

$$
y_{j}:= \begin{cases}1, & \text { if a vendor is located at location } j \\ 0, & o . w\end{cases}
$$

$$
\forall j \in J
$$

4.3 Objective Functions

We have two different objective functions. First one is:

$$
\max \sum_{i \in I} \sum_{j \in J_{i}} \sum_{k \in K_{j}} \rho_{i j} x_{i j k}-\sum_{j \in J} \sum_{k \in K_{j}} v_{j} z_{j k}-\sum_{j \in J} f_{j} y_{j} .
$$

First objective function aims to maximize profit, which consists of three terms: the revenue of facilites after deducting the transportation cost between demand points and facilites, the fixed vehicle cost, and the fixed facility cost.

Our second objective function which is to maximize the coverage of demand is the following:

$$
\max \sum_{i \in I} \sum_{j \in J_{i}} \sum_{k \in K_{j}} q_{i j} x_{i j k}
$$

4.4 Constraints

Constraints of our model are as follows.

$$
\begin{align*}
& \sum_{j \in J_{i}} \sum_{k \in K_{j}} x_{i j k} \leq 1 \quad \forall i \in I \tag{4.1}\\
& \sum_{j \in J} y_{j}=p \tag{4.2}\\
& \sum_{k \in K_{j}} x_{i j k} \leq y_{j} \quad \forall i \in I, j \in J_{i} \tag{4.3}\\
& \sum_{i \in I_{j}} q_{i j} x_{i j k} \leq \gamma z_{j k} \quad \forall j \in J, k \in K_{j} \tag{4.4}\\
& \sum_{i \in I_{j}} \rho_{i j} \sum_{k \in K_{j}} x_{i j k} \geq \sum_{k \in K_{j}} v_{j} z_{j k}+\left(\rho_{m i n}+f_{j}\right) y_{j} \quad \forall j \in J \tag{4.5}\\
& x_{i j k} \in\{0,1\} \quad \forall i \in I, j \in J_{i}, k \in K_{j} \tag{4.6}\\
& z_{j k} \in\{0,1\} \quad \forall j \in J, k \in K_{j} \tag{4.7}\\
& y_{j} \in\{0,1\} \quad \forall j \in J . \tag{4.8}
\end{align*}
$$

Constraints (4.1) ensure that a demand point is assigned to at most one vehicle of one eligible vendor. Constraint (4.2) states that the number of vendors to be located is p. If a vendor is not located at a given location, then a demand point cannot be served by any of its vehicles due to constraints (4.3). Constraints (4.4) are capacity constraints for vehicles. At the same time, they ensure that demand points are not assigned to vehicles which are not in use. Constraints (4.5) ensure that each vendor makes a profit of at least $\rho_{\text {min }}$ units.

Constraint (4.6), Constraint (4.7) and Constraint (4.8) are binary constraints for the variables x, y, z.

Moreover, there is the additional restriction that if a vendor is located at a given demand point, then the demand of this point should be served by itself. To handle this, we added the constraint

$$
\begin{equation*}
\sum_{k \in K_{j}} x_{j j k}=y_{j} \quad \forall j \in J \tag{4.9}
\end{equation*}
$$

Since the vehicles are identical, there is symmetry in the set of feasible solutions and multiple representations for the same solution. To reduce this symmetry, following constraints can be added:

$$
\begin{array}{ll}
z_{j}=x_{j j 1} & \forall j \in J_{i} \\
x_{j j 1}=y_{j 1} & \forall j \in J_{i} . \tag{4.11}
\end{array}
$$

As a result, we have the following integer linear programming formulations:

ProfitVLP

$\max \sum_{i \in I} \sum_{j \in J_{i}} \sum_{k \in K_{j}} \rho_{i j} x_{i j k}-\sum_{j \in J} \sum_{k \in K_{j}} v_{j} z_{j k}-\sum_{j \in J} f_{j} y_{j}$
s.t.

$$
\text { s.t. }(4.1)-(4.11) .
$$

Coverage VLP

$$
\max \sum_{i \in I} \sum_{j \in J_{i}} \sum_{k \in K_{j}} q_{i j} x_{i j k}
$$

s.t.
s.t. (4.1)-(4.11).

4.5 Complexity

Now, we investigate the complexity of the problems.
Theorem 1. ProfitVLP and CoverageVLP are strongly NP-hard.

Proof. We prove that decision versions of ProfitVLP and CoverageVLP are NP-complete in the strong sense by a reduction from the decision version of the bin packing problem.

Given a finite set of items U, a size $s_{i} \in \mathbb{Z}_{+}$for each $i \in U$, a positive integer bin capacity B and a positive integer κ, the decision version of the bin packing problem is defined as follows. Is there a partition of set U into $U_{1}, \ldots, U_{\kappa}$ such that $\sum_{i \in U_{u}} s_{i} \leq B$ for all $u=1, \ldots, \kappa$? This problem is NP-complete in the strong sense (see problem [SR1] in Garey and Johnson [11]).

First remark that when $v_{j}=f_{j}=0$ for all $j \in J$ and $\rho_{i j}=q_{i j}$ for all $i \in I$ and $j \in J_{i}$, problems ProfitVLP and CoverageVLP become the same problem. Hence in the remaining part of the proof, we only consider CoverageVLP.

We define the decision version of Coverage $V L P$ as follows. Given the parameters of the problem and a positive constant Φ, does there exist a feasible solution with coverage at least Φ ? This problem is in NP.

Given an instance of the bin packing problem, let J be a singleton, $I=I_{1}=U$, $p=1, v_{1}=0, f_{1}=0, \rho_{\min }=0, k_{1}^{\max }=\kappa, \rho_{i 1}=q_{i 1}=s_{i}$ for $i \in I, \gamma=B$, $\Phi=\sum_{i \in I} q_{i 1}$. Now there exists a solution to the decision version of the bin packing problem if and only if there exists a solution to the decision version of CoverageVLP. Hence, the decision version of CoverageVLP is NP-complete in the strong sense.

Chapter 5

VALID INEQUALITIES

In this chapter, we propose some valid inequalities for both versions of the $V L P$. Let F be the set of solutions that satisfy constraints (4.1)-(4.11). We use some substructures in the formulation to derive our valid inequalities.

5.1 Lower bounds on the number of vehicles

Albareda-Sambola et al.[3] propose the optimality cuts $\sum_{k \in K_{j}} z_{j k} \geq y_{j}$ for $j \in J$. These inequalities imply that if a vendor is located then it should use at least one vehicle. In our problem, since we have minimum profit constraints, in some cases we can obtain tighter bounds on the number of vehicles to be used by a vendor. Besides the resulting inequalities are valid inequalities.

For $j \in J$ and a positive integer m, consider the following problem:

$$
\begin{aligned}
\delta_{j}(m)=\max & \sum_{i \in I_{j}} \sum_{k=1}^{m} \rho_{i j} \alpha_{i k}-\sum_{k=1}^{m} v_{j} \beta_{k}-f_{j} \\
\text { s.t. } & \sum_{k=1}^{m} \alpha_{i k} \leq 1 \quad \forall i \in I_{j} \\
& \sum_{i \in I_{j}} q_{i j} \alpha_{i k} \leq \gamma \beta_{k} \quad \forall k=1, \ldots, m \\
& \alpha_{i k} \in\{0,1\} \quad \forall i \in I_{j}, k=1, \ldots, m \\
& \beta_{k} \in\{0,1\} \quad \forall k=1, \ldots, m
\end{aligned}
$$

This problem maximizes the total profit for vendor j if vendor j can use at most m vehicles. Let m_{j} be the smallest integer with $\delta_{j}\left(m_{j}\right) \geq \rho_{\text {min }}$. Then for vendor j to achieve a minimum level of profit of $\rho_{\text {min }}$ units, it should have at least m_{j} vehicles. If m_{j} is a positive integer which is less than or equal to $k_{j}^{\max }$, then the inequality $\sum_{k \in K_{j}} z_{j k} \geq m_{j} y_{j}$ is a valid inequality. If m_{j} does not exist or if $m_{j}>k_{j}^{\max }$, then vendor j cannot be profitable. Hence we can set $y_{j}=0$.

The above problem is a single sourcing capacitated facility location problem which is an NP-hard problem. As a result, computing the $\delta_{j}(m)$ values may be quite time consuming. Hence we propose a way of computing lower bounds on m_{j} values.

Proposition 1. Let $j \in J$ and $\sigma_{j}=\max _{i \in I_{j}} \frac{\rho_{i j}}{q_{i j}}$. The inequality

$$
\begin{equation*}
\sum_{k \in K_{j}} z_{j k} \geq\left\lceil\frac{\rho_{\min }+f_{j}}{\sigma_{j} \gamma-v_{j}}\right\rceil y_{j} \tag{5.1}
\end{equation*}
$$

is valid.

Proof. For $j \in J, \sigma_{j} q_{i j} \geq \rho_{i j}$ for all $i \in I_{j}$. Multiplying constraints (4.4) with σ_{j} and summing over $k \in K_{j}$ yields $\sum_{i \in I_{j}} \sigma_{j} q_{i j} \sum_{k \in K_{j}} x_{i j k} \leq \sigma_{j} \gamma \sum_{k \in K_{j}} z_{j k}$. Since $\sigma_{j} q_{i j} \geq \rho_{i j}$ for all $i \in I_{j}$, this implies $\sum_{i \in I_{j}} \rho_{i j} \sum_{k \in K_{j}} x_{i j k} \leq \sigma_{j} \gamma \sum_{k \in K_{j}} z_{j k}$. Now combining this with constraint (4.5), we obtain

$$
\sigma_{j} \gamma \sum_{k \in K_{j}} z_{j k} \geq \sum_{i \in I_{j}} \rho_{i j} \sum_{k \in K_{j}} x_{i j k} \geq \sum_{k \in K_{j}} v_{j} z_{j k}+\left(\rho_{\min }+f_{j}\right) y_{j}
$$

which gives

$$
\left(\sigma_{j} \gamma-v_{j}\right) \sum_{k \in K_{j}} z_{j k} \geq\left(\rho_{\min }+f_{j}\right) y_{j}
$$

This implies that if $y_{j}=1$, i.e., if a vendor is located at location j, then $\sum_{k \in K_{j}} z_{j k} \geq \frac{\rho_{\min }+f_{j}}{\sigma_{j} \gamma-v_{j}}$. Since the left hand side is integer in a feasible solution, we can round up the right hand side.

For $j \in J, \sigma_{j}$ can be computed in $O\left(\left|I_{j}\right|\right)$ time.

5.2 Cover inequalities for vehicle capacity constraints

For $i \in I, j \in J_{i}$, and $k \in K_{j}$, inequality

$$
\begin{equation*}
x_{i j k} \leq z_{j k} \tag{5.2}
\end{equation*}
$$

is a valid inequality. These inequalities are often dominated by cover inequalities that may be generated using the knapsack structure of the capacity constraints (4.4) for the vehicles. Cover inequalities that are valid for each of these knapsack constraints are also valid for F. Let $j \in J, k \in K_{j}$, and $C \subseteq I_{j}$ be such that $\sum_{i \in C} q_{i j}>\gamma$. Then the cover inequality $\sum_{i \in C} x_{i j k} \leq(|C|-1) z_{j k}$ is a valid inequality.

Most of the integer programming solvers recognize knapsack constraints and use cover inequalities as cutting planes. So here we limit our attention to some lifted cover inequalities that are not many in number so that they can be added to the formulation before giving it to the solver.

For a given location $j \in J$, we first consider all demand points with demand larger than half of the capacity of a vehicle. Then we know that at most one of these points may be assigned to a given vehicle of vendor j. This leads to the following set of inequalities.

Proposition 2. For $j \in J$ and $k \in K_{j}$, the lifted cover inequality

$$
\begin{equation*}
\sum_{i \in I_{j}: q_{i j}>\frac{\gamma}{2}} x_{i j k} \leq z_{j k} \tag{5.3}
\end{equation*}
$$

is valid for F.

Proof. Easy.

Next, we generate lifted cover inequalities for each demand point $i \in I_{j}$ with demand not more than half the capacity.

Proposition 3. Let $i \in I_{j}$ be such that $q_{i j} \leq \frac{\gamma}{2}$. Define $C_{i j}=\left\{l \in I_{j}: q_{i j}+q_{l j}>\right.$ $\gamma\}$. Then the lifted cover inequality

$$
\begin{equation*}
x_{i j k}+\sum_{l \in C_{i j}} x_{l j k} \leq z_{j k} \tag{5.4}
\end{equation*}
$$

is valid for F.

Proof. If $x_{i j k}=1$, then as $q_{i j}+q_{l j}>\gamma$ for each $l \in C_{i j}$, none of these demand points can be served by the same vehicle. If $x_{i j k}=0$, then as $q_{l j}+q_{m j}>\gamma$ for l and m in $C_{i j}$, we know that $\sum_{l \in C_{i j}} x_{l j k} \leq z_{j k}$.

Notice that if $C_{i j}$ is empty, then inequality (5.4) reduces to (5.2).

5.3 Cover inequalities for the minimum profit constraints

Finally, we propose cover inequalities for the minimum profit constraints. This is done by complementing sums of assignment variables and rewriting the minimum profit constraints as 0-1 knapsack constraints.

Proposition 4. Let $j \in J, S_{1} \subseteq I_{j}$, and $S_{2} \subseteq K_{j}$ with $\left|S_{2}\right| v_{j}+\left(\rho_{\text {min }}+f_{j}\right)>$ $\sum_{i \in I_{j} \backslash S_{1}} \rho_{i j}$. The inequality

$$
\begin{equation*}
\sum_{k \in S_{2}} z_{j k} \leq \sum_{i \in S_{1}} \sum_{k \in K_{j}} x_{i j k}+\left(\left|S_{2}\right|-1\right) y_{j} \tag{5.5}
\end{equation*}
$$

is valid.

Proof. Let $j \in J$. For $i \in I_{j}$, define the variable $\bar{x}_{i j}=1-\sum_{k \in K_{j}} x_{i j k}$. Notice that $\bar{x}_{i j}$ is a $0-1$ variable. Now the minimum profit constraint (4.5) can be rewritten as

$$
\sum_{i \in I_{j}} \rho_{i j} \geq \sum_{i \in I_{j}} \rho_{i j} \bar{x}_{i j}+\sum_{k \in K_{j}} v_{j} z_{j k}+\left(\rho_{\min }+f_{j}\right) y_{j}
$$

which is a knapsack inequality. Suppose that $y_{j}=1$. Let $S_{1} \subseteq I_{j}$ and $S_{2} \subseteq$ K_{j}. If $\sum_{i \in S_{1}} \rho_{i j}+\left|S_{2}\right| v_{j}+\left(\rho_{\min }+f_{j}\right)>\sum_{i \in I_{j}} \rho_{i j}$, then the cover inequality $\sum_{i \in S_{1}} \bar{x}_{i j}+\sum_{k \in S_{2}} z_{j k} \leq\left|S_{1}\right|+\left|S_{2}\right|-1$ is valid.

We can rewrite this inequality as $\sum_{i \in S_{1}}\left(1-\sum_{k \in K_{j}} x_{i j k}\right)+\sum_{k \in S_{2}} z_{j k} \leq$ $\left|S_{1}\right|+\left|S_{2}\right|-1$ which simplifies to $\sum_{k \in S_{2}} z_{j k} \leq \sum_{i \in S_{1}} \sum_{k \in K_{j}} x_{i j k}+\left|S_{2}\right|-1$. If $y_{j}=0$, then $x_{i j k}=0$ for all $i \in I_{j}$ and $k \in K_{j}$ and $z_{j k}=0$ for all $k \in K_{j}$. Hence inequality (5.5) is valid.

Chapter 6

COMPUTATIONAL RESULTS

In this chapter, we describe the test data and report the outcomes of two experiments. In the first experiment, we investigate for which sizes we can solve the formulations to optimality in reasonable times and the effect of valid inequalities on the quality of LP relaxation upper bound and the solution times. In the second experiment, we compare the solutions for the two versions of the problem for different parameters.

6.1 Models

Let ProfitM0 and CoverageM0 be the models presented in Chapter 4 as ProfitVLP and CoverageVLP respectively.

Let ProfitM1 and CoverageM1 be the models ProfitM0 and CoverageM0 strengthened with valid inequalities (5.1).

The fact that if a vendor is located at a demand point, then the point should use its first vehicle can further be used to obtain stronger lifted cover inequalities
for the first vehicles:

$$
\begin{align*}
& \sum_{i \in I_{j} \backslash\{j\}: q_{i j}+q_{j j}>\gamma} x_{i j 1}=0 \quad \forall j \in J \tag{6.1}\\
& \sum_{i \in I_{j} \backslash\{j\}: q_{i j}>\frac{\gamma-q_{j j}}{2}} x_{i j 1} \leq z_{j 1} \quad \forall j \in J \tag{6.2}\\
& x_{i j 1}+\sum_{l \in I_{j} \backslash\{j\}: q_{i j}+q_{l j}>\gamma-q_{j j}} x_{l j 1} \leq z_{j 1} \quad \forall j \in J, i \in I_{j} \backslash\{j\}: q_{i j} \leq \frac{\gamma-q_{j j}}{2} \tag{6.3}
\end{align*}
$$

We add the above cover inequalities for the first vehicles and inequalities (5.3) and (5.4) for the remaining vehicles to models ProfitM1 and CoverageM1 and call the resulting models ProfitM2 and CoverageM2, respectively.

Moreover, we remove constraints (4.5) from models ProfitM2 and CoverageM2 and add the following variables and constraints to obtain models ProfitM3 and CoverageM3:

$$
\begin{align*}
& \bar{x}_{i j}=1-\sum_{k \in K_{j}} x_{i j k} \quad \forall i \in I, j \in J \tag{6.4}\\
& \sum_{i \in I_{j}} \rho_{i j} \bar{x}_{i j}+\sum_{k \in K_{j}} v_{j} z_{j k}+\left(\rho_{\min }+f_{j}\right) y_{j} \leq \sum_{i \in I_{j}} \rho_{i j} \quad \forall j \in J \tag{6.5}\\
& \bar{x}_{i j} \in\{0,1\} \quad \forall i \in I, j \in J \tag{6.6}
\end{align*}
$$

The aim is to enable the solver to see the knapsack structure in the minimum profit constraints so that it can generate cover inequalities as presented in Chapter 5.

Next, we obtain models ProfitM4 and CoverageM4 by adding inequalities (6.7) to models ProfitM3 and CoverageM3, respectively.

$$
\begin{equation*}
z_{j k} \leq y_{j} \quad \forall j \in J, k \in K_{j} \tag{6.7}
\end{equation*}
$$

After we analyzed the results, we tested one more formulation for each problem type. We see that the CPU time usually increases in ProfitVLP, when we add
cover inequalities for vehicle capacity constraints (Constraints (5.3) - (5.4) and (6.1) - (6.3)). We generate model ProfitM5 by removing these constraints from model ProfitM4.

Observing the best results for CoverageVLP in terms of CPU time, we see that the most beneficial one is Constraints (6.7). So, we add only this constraints to model CoverageM0 to derive model CoverageM5.

To sum up, the constraints of models ProfitVLP and CoverageVLP (Cov$\operatorname{er} V L P)$ are listed in Tables 6.1 and 6.2 respectively.

ProfitM0	ProfitM1	ProfitM2	ProfitM3	ProfitM4	ProfitM5
$(4.1)-(4.11)$	$(4.1)-(4.11)$	$(4.1)-(4.11)$	$(4.1)-(4.4)$	$(4.1)-(4.4)$	$(4.1)-(4.4)$
			$(4.6)-(4.11)$	$(4.6)-(4.11)$	$(4.6)-(4.11)$
	$5.1)$	$(5.1)-(5.3)$	$(5.1)-(5.3)$	$(5.1)-(5.3)$	(5.1)
		$(6.1)-(6.3)$	$(6.1)-(6.6)$	$(6.1)-(6.7)$	$(6.4)-(6.7)$

Table 6.1: Constraints for model ProfitVLP

CoverM0	CoverM1	CoverM2	CoverM3	CoverM4	CoverM5
$(4.1)-(4.11)$	$(4.1)-(4.11)$	$(4.1)-(4.11)$	$(4.1)-(4.4)$	$(4.1)-(4.4)$	$(4.1)-(4.11)$
			$(4.6)-(4.11)$	$(4.6)-(4.11)$	
	$5.1)$	$(5.1)-(5.3)$	$(5.1)-(5.3)$	$(5.1)-(5.3)$	
		$(6.1)-(6.3)$	$(6.1)-(6.6)$	$(6.1)-(6.7)$	(6.7)

Table 6.2: Constraints for model CoverageVLP

For each value of $p, k^{\max }$, and $\rho_{\text {min }}$, we have four different types of instances with different demand and profit structures. In \mathbf{A} type problems, we take $q_{i j}=q_{i}$ and $\rho_{i j}=\rho_{i}$ for all $j \in J_{i}$ and $i \in I$. So in \mathbf{A} type instances, the demand and profit are independent of the distance between the demand point and its vendor.

In \mathbf{B} type problems, we take $q_{i j}=q_{i}$ and $\rho_{i j}=c_{i j} q_{i}$ for all $j \in J_{i}$ and $i \in I$ where $c_{i j}$ is the unit profit that vendor j gains if it serves demand point i and is a function of the distance between i and j.

In \mathbf{C} type problems, we take $q_{i j}$ to be a function of the distance between i and j and $\rho_{i j}=c q_{i j}$ for all $j \in J_{i}$ and $i \in I$ where c is the unit profit and does not depend on distances. In this case, we let $q_{i j}=q_{i}$ for vendors j that are within a short traveling time of i and then let $q_{i j}$ decrease with the distance between i and j for other eligible vendors.

Finally in \mathbf{D} type instances, we take both the demands and the profits as functions of the distances.

6.2 Input Data and Parameter Selection

We are required to design the distribution system for HOD-Demijohn Water brand that will enter the market. We use the data from this demijohn water company. The data includes 84 demand points, their estimated demands, the distances, and cost parameters. Demand points are the customers buying HODDemijohn water and facilites are the vendors of this new brand. The set of possible locations for the vendors is the same as the set of demand points.

We define that the distance between the vendor and the customer, $d_{i j}$, is allowed to be at most 10 km . Therefore, we construct the set J_{i} as following:

$$
J_{i}:=\left\{j: d_{i j} \leq 10\right\} \quad \forall i \in I
$$

We are given the daily demand of points, q_{i} by the HOD-Demijohn water company. Since the waiting time is crucial for customers, we define the demand, $q_{i j}$ demonstrated in Figure 6.1, as a function of the distance $d_{i j}$ between demand points and vendors as follows:

$$
q_{i j}:= \begin{cases}q_{i}, & \text { if } d_{i j} \leq 5 \\ q_{i}\left(1.5-0.1 d_{i j}\right), & \text { if } 5<d_{i j} \leq 10\end{cases}
$$

$$
\forall i \in I, j \in J_{i}
$$

Figure 6.1: $q_{i j}$ function in terms of distance

Company determines the fixed facility cost f_{j}; the vehicle cost v_{j} including the 5 years forward purchase cost, depreciation, tax, maintenance and the personnel salary; and the profit of each product, m, which is independent of the distance between the demand point and its vendor.

The unit profit that vendor j gains if it serves demand point i is equal to $c_{i j}$ and is defined as follows:

$$
c_{i j}:=\left(m-u d_{i j}\right) \quad \forall i \in I, j \in J_{i} .
$$

Transportation cost for each product, u, is obtained by dividing the fuel cost of 1 km by the vehicle's capacity, γ.

Finally, we set the daily capacity of each vehicle γ to 60 , since every vehicle has 20 bottles capacity and can be reloaded at most 3 times in a day.

Using the above parameters, we change the number of opened facilities $p=$
$\{4,6,8\}$, the maximum number of vehicles $k_{j}^{\max }=\{6,8,10\}$, and the minimum profit value $\rho_{\text {min }}=\{50,100,150\}$ to see the effects of changes in parameters p, $k_{j}^{\text {max }}$, and $\rho_{\text {min }}$.

6.3 Comparison of Models

In this section, we will give the comparison among our models in terms of LP relaxation gaps, CPU times or final IP gaps for unsolvable instances, and the number of branch and cut nodes. Also, the effects of valid inequalities are analyzed. We try to analyze which formulation is better in which cases.

All models are solved using GAMS 22.5 and CPLEX 11.0.0 on an AMD Opteron 252 processor (2.6 GHz) with 2 GB of RAM operating under the system CentOS (Linux version 2.6.9-42.0.3.ELsmp). We have a time limit of one hour.

In Tables A.1-A. 4 in the Appendix, we report the results for ProfitVLP and the four types of instances, $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D}, respectively. Tables A.5-A. 8 in the Appendix are the results for CoverageVLP and the four types of instances, \mathbf{A}, \mathbf{B}, \mathbf{C}, and \mathbf{D}, respectively. For each instance and model, we report the percentage gap between the upper bound obtained by solving the linear programming relaxation of the corresponding model and the best lower bound for the integer problem in the column LP Gap. Then we report the cpu times in seconds. If the problem is not solved to optimality in one hour, then we report the remaining percentage gap in parenthesis. Finally, we report the number of nodes in the branch-and-cut tree for each model and instance. The best results are marked bold.

Each table has a summary, where we can see the averages of linear programming relaxation gaps, final optimality gaps, cpu times, number of nodes, the number of instances solved to optimality with each model, and the number of times each model was among the best for the considered criterion.

In the rest of the thesis, ProfitM0-ProfitM5 and CoverageM0-CoverageM5 are
abbreviated as PM0-PM5 and CM0-CM5, respectively.
Comparing models ProfitVLP and CoverageVLP in general, it is clear that for CoverageVLP we can reach optimality more quickly than for ProfitVLP. LP relaxation gap, which is measured as ($100 *$ (LPoptimal - IPoptimal)/IPoptimal), is smaller for Coverage $V L P$ than the one for ProfitVLP with valid inequalities.

Both problems ProfitVLP and CoverageVLP were infeasible for $\rho=150, p=8$ and all 4 demand and profit structures. These instances are removed from the results.

For the LP relaxation gap of model ProfitVLP for type A problems, PM4 gives the best results in all the instances. On the average, $P M 4$ reduces the LP relaxation gap from 55.14% to 4.45%. The CPU times and the number of opened nodes are also less in PM4 than in other models on average. However, PM3 has the highest number of best solutions over 24 instances in terms of CPU times and the number of opened nodes. PM3, PM4, and PM5 solve all problems whereas PM0, PM1, and PM2 cannot. It is clear that PM3 has better CPU times for $\rho_{\text {min }}=150$. Results of the model ProfitVLP for type A problems are shown in Table A.1.

Table A. 2 gives the LP relaxation gaps, CPU times, and the number of opened nodes of ProfitVLP for type B problems. PM4 improves LP relaxation gaps for these instances as well. PM3 has better average CPU times. PM2 being the third on average in terms of CPU times has the largest number of results with the smallest CPU times, since problems with $\rho_{\text {min }}=50$ are solved most quickly with this formulation. However, it cannot reach optimality in one instance with $\rho_{\text {min }}=100$. Formulations which can reach optimality in all instances are only PM3, PM4 and PM5 like in ProfitVLP for type A problems. PM4 has the best average performance in terms of the number of opened nodes.

When we generate the demand function in terms of distance between demand points and facilities as in models ProfitVLP for type C and D problems, it gets harder to reach optimality. For the LP relaxation gap of type C, PM4 has the best results except for three instances where it could not
reach optimality. According to CPU times, PM0 has the smallest value with a slight diffence from PM5. The smallest final IP gap which is calculated by (100 * (Bestpossible - IPsolution)/Bestpossible) is given by PM5 that is 0.78% wheras it is 0.83% for $P M 0$. However, the formulation reaching the optimality most frequently is PMO. PM0 can solve 7 instances to optimality, and others can solve $3,4,5,6$, and 5 instances, respectively. On the other hand, PM5 gives the smallest CPU times in 11 out of 24 instances, which is the best result among all of the six model types. PM4 gives the smallest number of opened nodes on the average and the largest number of best solution in terms of opened nodes over 24 instances. Table A. 3 includes the results of model ProfitVLP for type \mathbf{C} problems.

The last type of instances are type \mathbf{D} for ProfitVLP problems. From Table A.4, the smallest average LP relaxation gap is obtained using PM4, which has the best results in 18 out of 24 instances. Analyzing the CPU times and final IP gaps for unsolvable instances, we see that PM5 has the smallest CPU time, 2794.21 sec. 9 instances can be solved by PM5, while others can solve fewer number of instances. PM5 giving the best solutions in 8 instances also has the largest number of best solution. According to final IP gaps, it is in the second place with 0.93%. However, the difference between the first one, PM1, is 0.01%. PM3 has the best results in 10 instances on average in terms of the number of opened nodes.

We can conclude that PM5 generally leads shorter CPU times not for all types of models, but for Profit VLP type \mathbf{C} and \mathbf{D} problems.

For CoverageVLP, the LP relaxation gap is about 1% and the best model for it is CM4 in all instances and all model types. Although it seems that the decrease in LP gap relaxation is provided due to Constraint (6.7), the same results cannot be obtained when only Constraint (6.7) is added. So, we can conclude that although the most helpful one is Constraint (6.7), other constraints also help to decrease the LP relaxation gap.

When we compare the CPU times of model CoverageVLP for type A problems, CM4 decreases the CPU time from 521.64 sec . to 114.03 sec . This formulation

Figure 6.2: Comparison of average cpu times for ProfitVLP
can solve all instances, whereas others cannot. However, the best solutions are obtained in 7 instances with CM4, as CM5 can solve 8 instances within the smallest CPU time. CM4 also opens the least number of nodes with a huge difference from other formulations. The results of model CoverageVLP for type A problems are seen in Table A.5.

Results of problem CoverageVLP for type B instances indicate that CM4 has the smallest average CPU time with 190.60 sec . This formulation not only solves all of the 24 instances within 1 hr and gives the quickest results for 9 instances. CM5 gives the best results in terms of CPU times on 8 instances, but its average CPU time is 420.15 sec ., which is about two times of CM4. In addition to its superiority in CPU times, CM4 also opens the least number of nodes on the average. This outcome does not change in 16 instances. The results of CoverageVLP for type \mathbf{B} problems are presented in Table A.6.

CoverageVLP for type \mathbf{C} and \mathbf{D} problems can reach optimality within 1 hr in most of the models unlike ProfitVLP. On the average, CoverageVLP has the smallest CPU time in CM5 with 68.41 sec . for type \mathbf{C} problems which are solved to optimality by all of the formulations. CM4, which gives the best results for CoverageVLP for type A and \mathbf{B} problems, is in the second place with 96.23. 8 out of 24 instances get the smallest CPU time with CM5. However, CM4 has the
least number of nodes in 20 instances over 24 and provides opening fewer number of nodes on the average. The results are shown in Table A.7.

Finally, we analyze the results of Coverage $V L P$ for type \mathbf{D} problems in Table A.8. None of the models except CM3 and CM4 can reach optimality within 1 hr in 2 instances. CM4 has the smallest average CPU time with 129.62 sec., but only 3 instances prove the optimality most quickly by CM4. CM3 is the best one in this criterion with 6 instances. However, there is a slight difference between CM3 and CM4's CPU time in 6 instances, which get the best results with CM3. Like the CPU time, average number of opened nodes is the least in CM4 and it has the best results in 15 instances.

Figure 6.3: Comparison of average cpu times for CoverageLP

6.4 Solution Analysis of an Instance

We select an instance to analyze the solution for type \mathbf{A} and type \mathbf{D} problems. The instance has $\rho_{\text {min }}=100, k_{j}^{\max }=8$ and $p=6$. The best results in terms of CPU time are obtained in PM2, PM3, CM4 and CM2 for the problems of ProfitVLP for type A, ProfitVLP for type D, CoverageVLP for A and CoverageVLP for D respectively. The solutions of ProfitVLP for type A, ProfitVLP for type D,

CoverageVLP for type A and CoverageVLP for type D problems are shown on a map in Figure 6.4, 6.5, 6.6 and 6.7 respectively.

Figure 6.4: The solution of PM2 for Profit $V L P$ type A problem
Comparing the solutions of problems, we see that demand points assigned to the same vendor lie close to each other in both ProfitVLP and CoverageVLP type \mathbf{D} problems, wheras some demand points serviced from same vendor are seperated from the group in ProfitVLP and CoverageVLP for type A problems.

Moreover, uncovered demands which are white regions in the figures are less in type \mathbf{D} problems than type \mathbf{A}. The amounts of uncovered demand are 526, 113, 328, and 98 in ProfitVLP for type A, ProfitVLP for type D, CoverageVLP for type \mathbf{A} and CoverageVLP for type \mathbf{D} problems respectively.

Figure 6.5: The solution of PM3 for Profit $V L P$ type D problem

CoverageVLP problem types provide service to more demand points according to corresponding ProfitVLP. Besides, 1152.70, 1214.32, 1032.20 and 992.36 are total profits of ProfitVLP for type A, ProfitVLP for type D, CoverageVLP for type \mathbf{A} and CoverageVLP for type \mathbf{D} problems.

Figure 6.6: The solution of CM4 for CoverageVLP type A problem

Figure 6.7: The solution of CM2 for CoverageVLP type \mathbf{D} problem

Chapter 7

CONCLUSION

In this thesis, we considered the Vendor Location Problem (VLP). The problem is to decide where to locate vendors, the number of vehicles each vendor should have, and the assignments of customers to these vendors and vehicles.

Firstly, we developed an linear integer program for VLP with profit (Profit $V L P$) and coverage (CoverageVLP) maximization objectives. We construct four different types of problems. In A type problems, demand and profit are independent of distance between vendors and demand points. In \mathbf{B} type problems, profit is a function in terms of distance. In \mathbf{C} type problems, demand is a function of the distance. In this case, demand decreases as the distance between customers and facilities increases. In \mathbf{D} type problems, both the demand and the profit are functions of the distance. All problems are extensions of two-level facility location problem with capacity and minimum profit constraints.

Since both problems are NP-Hard, we added valid inequalities to the models in order to get optimal solutions at faster times and reduce the linear programming relaxation gap. We have four groups of valid inequalities: lower bounds on the number of vehicles, cover inequalities for vehicle capacity constraints, cover inequalities for the minimum profit, and vehicle-vendor inequalities.

We added above inequalities to all our problems one by one to see the effects
of inequalities. The models with valid inequalities are tested by changing p, $k_{j}^{\max }$ and $\rho_{\text {min }}$ parameters. All problems are solved within a time limit of 1 hour. Although valid inequalities reduce the linear programming relaxation gap, the effect of valid inequalities differ in each instance in terms of the CPU time. However, we can conclude that CoverageVLP is easier to solve than ProfitVLP. Moreover, ProfitVLP type \mathbf{C} and type \mathbf{D} problems, which include the demand as a function of the distance between demand points and vendors make the problem harder. As a result, optimality is attained for all instances except for some of ProfitVLP type \mathbf{C} and type \mathbf{D} problems within the given 1 hour time limit.

A future research direction may be to investigate different demand and profit functions.

Another future research may be to develop a heuristic for ProfitVLP type \mathbf{C} and \mathbf{D} problems, since we cannot reach optimality for some instances within 1 hour.

Finally, another future research may be an extension of Vendor Location Problem in competitive location context where other brands also have vendors. In our study, we construct profit and coverage profit maximization objectives. VLP in competitive location context can have multi-objective functions.

Bibliography

[1] Aardal K., Labbé M., Leung J., Queyranne M., On the two-level uncapacitated facility location problem. INFORMS J. Comput., 8, pages 289-301, 1996.
[2] Aboolian R., Berman O., Krass D., Competitive facility location and design problem. European Journal of Operational Research, 182, pages 40-62, 2007.
[3] Albareda-Sambola M., Fernández E., Laporte G., The capacity and distance constrained plant location problem. Computers \mathcal{E} Operations Research, 36, pages 597-611, February 2009.
[4] Berman O., Drezner Z., Location of congested capacitated facilites with distance-sensitive demand. IIE Transaction, 38, pages 213-221, 2006.
[5] Brotcorne L., Laporte G., Semet F., Ambulance location and relocation models. European Journal of Operational Research, 147, pages 451-463, 2003.
[6] Chardaire P., Lutton J.-L., Sutter A., Upper and lower bounds for the twolevel simple plant location problem. Annals of Operations Research, 86, pages 117-140, 1999.
[7] Church R.L., Revelle C.S., The maximal covering location problem. Papers of the Regional Science Association, 32, pages 101-118, 1974.
[8] Current J.R., Schilling D.A., The Median Tour and Maximal Covering Tour Problems. European Journal of Operational Research, 73, pages 114-126, 1994.
[9] Dijkstra E.W., A note on two problems in connection with graphs. Numerische Mathematik 1, pages 269-271, 1959.
[10] Eiselt H.A., Laporte G., Objectives in location problems. In:Drezner, Z., Facility Location: A Survey of Applications and Methods. Springer-Verlag, pages 151-180, 1995.
[11] Garey M.R., Johnson D.S., Computers and Intractability, A Guide to the Theory of NP-Completeness, Freeman, 1979.
[12] Holmberg M., Rönnqvist M., Yuan D., An exact algorithm for the capacitated facility location problems with single sourcing. European Journal of Operational Research, 113, pages 544-559, 1999.
[13] Jacobsen S.K., Madsen O.B.G., A Comparative Study of Heuristics for a Two-level Location-Routing Problem. European Journal of Operational Research , 5, pages 378-387, 1980.
[14] Klose A., Drexl A., Facility location models for distribution system design. European Journal of Operational Research, 162, pages 4-29, 2005.
[15] ReVelle C.S., Eiselt H.A., Location analysis: A synthesis and survey. European Journal of Operational Research, 165, pages 1-19, 2005.
[16] Revelle C.S., Laporte G., The Plant Location Problem: New Models and Research Prospects. Operation Research, vol. 44, no. 6, pages 864-874, December 1996.
[17] Şahin G., Süral H., A review of hierarchial location models. Computers © Operations Research, 165, pages 1-19, 2005.
[18] Toregas C.R., Swain R., Revelle C.S., Bergman L., The location of emergency service facilities. Operations Research, 19, pages 1363-1373, 1971.
[19] Weber A., Uber den Standort der Industrien, 1909; translated as Alfred Weber's Theory of the Location of Industries, University of Chicago, 1929.

Appendix A

Tables of Computational Results

Parameters			LP Gap (\%)						CPU Time (sec.)/Optimality Gap(\%)						Number of Nodes					
$\rho_{\text {min }}$	$k^{\text {max }}$	p	PM0	PM1	PM2	PM3	PM4	PM5	PM0	PM1	PM2	PM3	PM4	PM5	PM0	PM1	PM2	PM3	PM4	PM5
50	6	4	76.77	76.77	29.21	29.21	6.48	6.48	397.61	203.00	284.25	454.59	261.57	177.23	29387	13208	14983	28200	13612	8503
50	8	4	48.05	48.05	8.56	8.56	5.89	25.8	411.81	127.10	562.07	2874.28	866.48	1002.29	20792	7760	26693	103257	23868	33420
50	10	4	42.51	42.51	3.92	3.92	3.92	42.31	244.58	153.81	32.81	12.25	9.46	43.52	27254	17360	3119	248	85	780
50	6	6	58.36	58.3	9.26	9.26	5.04	21.57	116.99	110.11	123.83	196.02	166.54	110.79	3847	2575	4269	4660	3846	2894
50	8	6	50.91	0.91	4.80	4.80	4.15	50.91	1180.66	568.44	60.53	112.02	91.72	653.58	49637	20099	929	162	1683	28500
50	10	6	49.93	49.93	4.12	4.12	4.12	49.93	287.11	772.12	149.12	84.97	215.28	407.10	14542	25647	1890	1496	2853	10654
50	6	8	5. 24	24	. 01	01	1.91	55.24	128.86	143.02	105.59	161.81	130.32	285.60	2767	880	1437	209	1617	3476
50	8	8	55.09	5.09	1.93	1.93	1.93	55.09	262.26	280.51	286.32	218.60	318.31	471.21	5330	3551	569	224	3228	6962
50	10	8	55.09	55.09	1.93	1.93	1.93	55.09	2062.02	996.55	1013.52	871.82	838.39	1068.3	57867	20087	19222	17513	8925	21266
100	6	4	76.77	76.77	29.21	29.21	6.48	6.48	99.38	224.41	214.90	226.33	174.20	161.32	6639	13122	10132	12692	9235	7816
100	8	4	48.05	48.05	8.56	8.56	5.89	25.82	907.42	330.63	1712.14	718.57	630.69	859.88	58284	13090	96939	39225	26042	9542
100	10	4	42.51	51	3.92	3.92	3.92	42.31	93.30	67.80	20.82	10.61	7.48	30.33	7063	3413	504	274	64	533
100	6	6	58.36	58.36	9.26	9.26	5.04	21.57	85.56	168.24	108.66	113.17	248.37	121.41	1947	7306	3870	2791	5043	2483
100	8	6	50.91	0.91	4.77	4.77	4.12	50.91	565.66	593.62	73.19	80.21	117.88	312.07	18574	24299	1034	1032	1598	12511
100	10	6	93	49.93	4.09	09	4.09	49.93	6.92	292.73	176.99	100.61	139.74	477.56	777	1112	444	131	16	14364
100	6	8	55.24	55.24	1.84	1.84	1.82	55.24	270.22	159.86	330.99	310.32	408.94	285.72	4837	2495	4595	3669	4189	2963
100	8	8	55.24	55.24	1.84	1.84	1.84	55.24	3259.19	1315.94	608.58	460.38	467.88	472.78	66262	30370	10986	3431	4171	4406
100	10	8	55.24	55.24	1.84	1.84	1.84	55.24	(0.05)	(0.05)	(0.05)	741.72	897.38	742.00	54635	50175	47481	4803	5475	549
150	6	4	76.77	76.77	29.21	29.21	6.48	6.48	427.28	205.37	340.14	142.27	166.03	132.58	34745	10641	23289	6411	7191	5580
150	8	4	48.05	48.05	8.56	8.56	5.89	25.82	282.47	883.12	976.47	961.01	164.50	398.14	20508	46832	54511	38617	5468	22293
150	10	4	42.51	42.51	3.92	3.92	3.92	42.31	27.77	25.76	19.65	9.84	36.53	52.64	738	690	638	160	555	661
150	6	6	61.23	61.23	11.02	11.02	6.85	23.77	242.70	256.54	141.90	97.67	125.62	120.08	11248	6592	4629	1580	1757	3557
150	8	6	55.77	55.77	7.06	7.06	6.76	55.77	366.69	249.83	619.59	52.91	139.67	108.36	10633	11690	23780	652	666	198
150	10	6	54.73	54.73	6.35	6.3	6.3	54.73	979.08	2620.63	(0.04)	202.62	279.85	163.29	35910	64156	115684	877	928	81
Average Avg. Opt. Gap(\%) \# of Solved Ins. (/24) \# of Best Solutions(/24)			55.14	55.14	8.22	8.22	4.45	38.92	691.24	597.88	631.76	383.94	287.62	360.74	23051	17027	19984	11604	5573	10411
			(0.00)						(0.00)	(0.00)	(0.00)	(0.00)	(0.00)							
			23						23	22	24	24	24							
			10		10	24	3	2	4	3	10	4	1	2	4	2	9	4	3	

Table A.1: LP gap, CPU time/ optimality gap and number of nodes of ProfitVLP in A type instances

arameters			LP Gap (\%)						ime (sec.)/Optimality Gap(\%)						Number of Nodes					
$\rho_{\text {min }}$	$k^{\text {max }}$	p	PM0	PM1	PM2	PM3	PM4	PM5	PM0	PM1	PM2	PM3	PM4	PM5	PM0	PM1	PM2	PM3	PM4	PM5
50	6	4	77.61	77.61	29.38	29.38	6.93	7.78	118.79	243.27	403.13	435.34	394.87	157.66	6510	14967	26960	26043	23355	6967
50	8	4	76	48.76	8.72	8.72	6.04	26.82	1004.05	2726.00	858.60	664.81	140.27	483.59	73179	103608	66030	33633	3897	16495
50	10	4	43.51	43.51	4.32	4.32	4.32	43.31	. 74	185.76	10.28	19.22	20.70	54.16	4358	10526	278	396	68	90
50	6	6	59.28	59.28	9.42	9.42	5.33	22.89	378.75	173.11	108.48	302.37	206.38	204.76	17782	8094	4562	7770	5924	10605
50	8	6	52.04	52.04	5.12	5.12	4.55	52.02	368.67	119.70	149.56	71.49	147.88	165.26	14233	4161	5163	1678	2169	5203
50	10	6	51.17	51.17	4.53	4.53	4.53	51.17	1969.78	350.27	118.53	144.66	203.60	1920.13	82051	13989	2111	2356	4122	51737
50	6	8	57.31	57.31	2.38	2.38	2.21	57.23	277.26	308.33	101.84	172.87	178.26	213.94	7455	5374	1530	2400	1923	2837
50	8	8	56.75	56.75	2.03	2.03	2.02	56.74	245.46	285.58	147.91	314.23	417.90	306.81	151	4682	2970	4010	4293	4268
50	10	8	56.75	56.75	2.04	2.04	2.04	56.75	765.83	680.23	428.27	563.48	1128.88	847.33	16686	13179	5266	6304	9672	9794
100	6	4	77.61	77.61	29.38	29.38	6.93	7.78	625.21	392.02	168.70	187.98	204.20	698.42	49140	29850	10168	8666	14426	6520
100	8	4	48.76	48.76	8.72	8.72	6.04	26.82	371.98	836.81	356.90	782.17	568.03	340.19	25341	37881	18964	34894	22507	14522
100	10	4	43.51	43.51	4.32	4.32	4.32	43.31	148.09	44.02	8.64	17.50	39.84	68.94	10875	1288	307	348	576	1074
100	6	6	59.28	59.28	9.41	9.41	5.33	22.89	201.71	256.55	218.15	239.38	428.11	180.65	10180	10857	8823	9104	18007	6085
100	8	6	52.10	52.10	5.11	5.11	4.53	52.08	626.96	380.98	398.19	75.75	167.60	246.32	49338	28355	40180	1286	3042	10095
100	10	6	51.23	51.23	4.52	4.52	4.52	51.23	9.51	338.08	222.25	148.77	189.52	755.32	28173	22321	9924	242	3587	25125
100	6	8	58.33	58.32	2.81	2.81	2.70	58.25	861.99	1562.33	1284.50	661.40	506.51	447.86	30967	35979	24283	678	4620	6645
100	8	8	57.53	57.53	2.29	2.29	2.27	57.53	(0.21)	(0.03)	2493.71	743.06	775.63	1250.77	80039	112763	56433	7183	7549	14744
100	10	8	57.31	57.31	2.15	2.15	2.15	57.31	(0.06)	(0.01)	(0.05)	1384	1296.7	1069.77	70320	87082	101959	913	9011	11935
150	6	4	77.61	77.61	29.38	29.38	6.93	7.78	1263.	07.18	154.69	217.05	214.49	156.04	76293	6924	7789	11128	12527	6577
150	8	4	48.76	48.76	8.72	8.72	6.04	26.82	1382.5	2057.22	869.85	508.54	795.61	407.60	86130	120951	42405	31613	32705	19499
150	10	4	43.51	43.51	4.32	4.32	4.32	43.31	147.35	32.47	2.35	11.43	18.68	77.87	13428	550	685	214	339	1622
150	6	6	61.61	61.61	10.30	10.30	6.71	24.69	544.47	132.41	117.53	120.22	167.07	94.94	19639	4502	3275	2975	4778	3757
150	8	6	56.82	56.82	6.78	6.78	6.50	56.80	(0.01)	125.11	1006.17	88.80	124.49	152.24	113245	901	53107	664	660	1605
150	10	6	55.87	55.87	6.15	6.15	6.15	55.87	111.98	(0.00)	167.07	138.64	53.78	137.25	2345	89894	3173	743	573	76
Average Avg. Opt. Gap(\%) \# of Solved Ins.(/24) \# of Best Solutions(/24)			56.38	56.38	8.43	8.43	4.73	40.30	951.44	922.41	558.98	333.91	349.55	434.91	37161	32028	20681	8823	7943	9965
			(0.01)						(0.00)	(0.00)	(0.00)	(0.00)	(0.00)							
			21						21	23	24	24	24							
			8			24	1		1	9	6	2	5	1		7	6	5	5	

Table A.2: LP gap, CPU time/ optimality gap and number of nodes of ProfitVLP in B type instances

Parameters				LP Gap (\%)					CPU Time (sec.)/Optimality Gap(\%)						Number of Nodes					
$\rho_{\text {min }}$	$k^{\text {max }}$	p	PM0	PM1	PM2	PM3	PM4	PM5	PM0	PM1	PM2	PM3	PM4	PM5	PM0	PM1	PM2	PM3	PM4	PM5
50	6	4	36.40	36.40	34.53	34.53	3.99	3.99	415.66	545.82	908.56	808.90	235.64	137.35	21173	29775	25878	16029	4582	5389
50	8	4	13.23	13.23	11.75	11.75	11.27	12.69	(0.20)	(0.77)	(1.46)	1823.53	(1.39)	(0.39)	263317	210493	33642	55561	113821	195620
50	10	4	13.27	13.27	11.80	11.80	11.80	13.27	(1.31)	(2.43)	(2.19)	(3.42)	(1.38)	(1.16)	153821	125472	46926	64855	58345	115305
50	6	6	21.78	21.78	17.42	17.42	14.10	14.80	(0.06)	(0.02)	(1.82)	(0.23)	2466.03	(0.35)	89914	81063	22019	25754	25452	66734
50	8	6	12.88	12.88	9.04	9.04	9.04	12.88	1029.34	(0.86)	(1.15)	(0.16)	(0.02)	(0.68)	33616	52149	25086	65312	41496	57322
50	10	6	12.88	12.88	9.04	9.04	9.04	12.88	(0.88)	(0.81)	(0.71)	(0.86)	(0.81)	(0.58)	60059	55828	24680	31578	22146	67819
50	6	8	18.37	18.37	11.74	11.74	10.90	17.56	(1.72)	(1.47)	(1.30)	(4.04)	(5.18)	(0.68)	29311	25123	18448	17679	24301	57322
50	8	8	16.49	16.49	9.96	9.96	9.96	16.49	(0.63)	(0.74)	(1.19)	(1.10)	(1.01)	(0.55)	22195	21204	15233	14515	14275	21764
50	10	8	16.53	16.53	10.01	10.01	10.01	16.53	(1.05)	(1.26)	(1.74)	(1.96)	(1.76)	(1.18)	21175	21012	12847	11431	13802	18843
100	6	4	36.40	36.40	34.53	34.53	3.99	3.99	901.64	1212.46	690.56	1312.17	227.35	157.72	44662	52312	21072	23443	3208	5496
100	8	4	13.23	13.23	11.75	11.75	11.27	12.69	3191.66	(0.81)	(0.67)	(0.75)	(0.58)	(0.39)	119696	182370	183491	72687	67202	217651
100	10	4	13.27	13.27	11.80	11.80	11.80	13.27	(3.44)	(2.10)	(2.07)	(2.41)	(2.58)	(1.37)	94767	153907	61780	52502	42564	116855
100	6	6	21.78	21.78	17.41	17.41	14.10	14.80	(0.58)	(0.02)	(0.06)	(0.41)	2271.14	1773.18	111839	75878	32600	28226	27477	24158
100	8	6	12.88	12.88	8.95	8.95	8.95	12.88	(0.74)	(0.47)	(0.55)	(0.06)	(0.52)	(0.48)	69973	73212	43094	68349	41428	85315
100	10	6	12.88	12.88	8.95	8.95	8.95	12.88	(0.66)	(0.59)	(0.96)	(0.76)	(0.78)	(0.81)	87953	57383	25728	26137	46347	49519
100	6	8	20.07	20.07	13.44	13.44	12.61	19.38	(1.68)	(1.32)	(0.64)	(1.49)	(2.55)	1.97	29552	23039	17985	14123	18713	22312
100	8	8	16.49	16.49	9.95	9.95	9.95	16.49	(0.53)	(0.30)	(2.43)	(0.81)	(1.58)	(0.91)	23977	27750	13911	11026	11332	15121
100	10	8	16.53	16.53	10.00	10.00	10.00	18.40	(2.09)	(1.31)	(1.82)	(2.36)	(1.17)	(2.99)	20528	18319	9930	11658	9690	17731
150	6	4	36.40	36.40	34.53	34.53	3.99	3.99	350.66	1091.24	783.26	3397.84	213.28	126.14	17131	61934	24382	106412	3816	4747
150	8	4	13.23	13.23	11.75	11.75	11.27	12.69	2749.68	(0.73)	(0.95)	3295.62	3170.46	(0.57)	245267	114423	85248	91799	118125	189367
150	10	4	13.27	13.27	11.80	11.80	11.80	13.27	(1.16)	(2.20)	(2.20)	(2.19)	(1.25)	(1.16)	149194	132028	52135	82438	50298	153399
150	6	6	21.78	21.69	17.20	17.20	14.10	14.80	1725.05	(0.02)	2271.70	(0.39)	(0.52)	1430.80	46143	67638	31197	26376	32231	17171
150	8	6	14.34	14.34	10.18	10.18	10.18	14.34	(1.34)	(1.34)	(1.18)	(0.99)	(1.55)	(1.14)	80373	82554	52963	44136	42435	77732
150	10	6	14.34	14.34	10.18	10.18	10.18	14.34	(1.86)	(1.77)	(1.77)	(1.77)	(1.41)	(1.49)	48787	58336	30143	34224	53502	67901
Average Avg. Opt. Gap(\%) \# of Solved Ins.(/24) \# of Best Solutions(/24)			18.28	18.28	14.49	14.49	10.14	13.24	2982.99	3268.79	3194.00	3293.33	3057.75	3001.11	78518	75133	37934	41510	36941	69608
									(0.89)				(0.78)							
			7						3	4	5	6	5							
			13		13	24	3	5	2	1	3		11	8			4	11	1	

Table A.3: LP gap, CPU time/ optimality gap and number of nodes of ProfitVLP in \mathbf{C} type instances

Parameters			LP Gap (\%)						CPU Time (sec.)/Optimality Gap(\%)						Number of Nodes					
$\rho_{\text {min }}$	$k^{\text {max }}$	p	PM0	PM1	PM2	PM3	PM4	PM5	PMO	PM1	PM2	PM3	PM4	PM5	PM0	PM1	PM2	PM3	PM4	PM5
50	6	4	36.72	36.72	34.79	34.79	4.31	4.77	561.12	488.34	633.79	1956.61	232.02	160.37	28765	25766	15534	34652	5139	7266
50	8	4	13.44	13.44	11.93	11.93	11.47	12.93	1164.72	455.10	(0.28)	(1.16)	(1.09)	2809.47	67315	28114	94733	100649	56289	170833
50	10	4	13.48	13.48	11.98	11.98	11.98	13.48	(3.12)	(2.15)	(2.67)	(2.30)	(1.64)	(2.26)	100368	110347	68070	28127	66041	111921
50	6	6	21.92	21.92	17.43	17.43	13.98	14.99	(0.01)	(0.01)	(0.60)	(0.70)	1757.17	2004.23	84878	98031	62948	22232	14977	26490
50	8	6	13.27	13.27	9.32	9.32	9.32	13.27	(1.58)	(0.74)	(0.73)	(0.54)	(0.71)	(0.09)	81713	56679	29972	30236	45316	72111
50	10	6	13.27	13.27	9.32	9.32	9.32	13.27	(1.04)	(0.75)	(0.86)	(0.79)	(0.62)	(0.82)	52052	47068	19260	18872	40327	57108
50	6	8	20.76	20.76	13.77	13.77	12.87	19.97	(3.12)	(2.14)	(2.17)	(2.63)	(4.98)	(2.56)	32632	29856	21022	16450	26431	29340
50	8	8	17.01	17.01	10.25	10.25	10.25	17.01	(1.10)	(0.90)	(1.36)	(1.71)	(1.25)	(1.53)	29339	18631	13130	15488	12540	22387
50	10	8	17.03	17.03	10.27	10.27	10.27	17.01	(1.33)	(1.62)	(1.69)	(1.61)	(2.39)	(3.12)	23767	20408	11139	11722	13368	20784
100	6	4	36.72	36.72	34.79	34.79	4.31	4.77	3386.70	507.64	1106.28	1203.65	698.44	164.79	121859	20229	30277	20402	13817	7294
100	8	4	13.44	13.44	11.93	11.93	11.47	12.93	1712.80	(1.62)	3393.36	(0.21)	3577.48	2669.71	143447	187751	115416	91689	133343	154873
100	10	4	13.48	13.48	11.98	11.98	11.98	13.48	(2.29)	(2.14)	(3.88)	(1.46)	(2.42)	(0.82)	150628	127016	61970	70603	47248	164907
100	6	6	21.92	21.92	17.42	17.42	13.98	14.99	(0.58)	(0.01)	(0.01)	(0.58)	1718.09	1618.76	90554	77487	56953	24518	14288	17998
100	8	6	13.27	13.27	9.21	9.21	9.21	13.27	(0.71)	(0.09)	(0.32)	3097.56	(0.91)	(0.64)	72710	67244	35361	40838	80211	71418
100	10	6	13.27	13.27	9.21	9.21	9.21	13.27	(0.93)	(1.19)	(0.81)	(0.73)	(0.81)	(0.73)	48044	44638	31362	31477	21707	52541
100	6	8	20.60	20.60	13.74	13.74	12.86	19.86	(1.25)	(0.47)	(0.04)	(2.09)	(2.89)	(1.35)	28266	29342	28226	15084	18162	19170
100	8	8	17.01	17.01	10.24	10.24	10.24	17.01	(0.60)	(0.78)	(0.76)	(2.54)	(1.35)	(1.71)	25717	19918	13032	10990	14204	20374
100	10	8	17.01	17.01	10.24	10.24	10.24	17.01	(1.10)	(1.22)	(1.29)	(2.77)	(3.31)	(1.22)	22651	17197	11800	10205	11563	18160
150	6	4	36.72	36.72	34.79	34.79	4.31	4.77	419.46	290.98	801.11	1717.41	224.96	178.18	23992	14481	38333	27987	4510	7150
150	8	4	13.44	13.44	11.93	11.93	11.47	12.93	2384.95	(0.62)	(1.68)	932.03	(0.53)	1703.53	118142	116417	99826	32216	110576	113171
150	10	4	13.48	13.48	11.98	11.98	11.98	13.48	(2.10)	(2.74)	(2.99)	(1.81)	(2.42)	(2.40)	118407	194520	49374	75712	64753	86667
150	6	6	22.45	22.45	17.82	17.82	14.60	15.60	(0.72)	(0.01)	(0.00)	(2.17)	3056.64	1750.43	59335	83396	46790	19144	25628	22813
150	8	6	14.78	14.78	10.49	10.49	10.49	14.78	(1.40)	(1.33)	(1.48)	(1.35)	(0.83)	(1.41)	80001	83067	53054	39108	43934	53446
150	10	6	14.78	14.78	10.49	10.49	10.49	14.78	(1.86)	(1.61)	(1.45)	(1.44)	(1.53)	(1.71)	48006	61615	24584	26854	36213	61914
Average Avg. Opt. Gap(\%) \# of Solved Ins.(/24) \# of Best Solutions(/24)			18.72	18.72	14.81	14.81	10.44	13.73	3101.29	3072.64	3247.35	3221.22	3019.44	2794.21	68858	65801	43007	33965	38358	57922
									(0.92)		(1.19)	(1.24)	(0.93)							
			6						4	4	5	7	9							
			13		13	24	4		3	1	5	4	8	1		5	10	7	1	

Table A.4: LP gap, CPU time/ optimality gap and number of nodes of ProfitVLP in D type instances

Parameters			LP Gap (\%)							CPU Time (sec.)/Optimality Gap(\%)					Number of Nodes					
$\rho_{\text {min }}$	$k^{\text {max }}$	p	CM0	CM1	CM2	CM3	CM4	CM5	CMO	CM1	CM2	CM3	CM4	CM5	CMO	CM1	CM2	CM3	CM4	CM5
50	6	4	54.24	53.24	53.83	53.83	1.91	1.91	261.90	175.16	374.14	246.76	146.60	113.41	19701	13054	25542	11277	8610	6198
50	8	4	23.05	23.05	22.71	22.71	1.58	7.26	255.51	811.10	801.58	260.04	51.14	203.96	17862	53197	71304	15729	2597	8852
50	10	4	5.77	5.77	5.66	5.66	0.62	5.64	17.32	10.26	14.79	24.50	15.63	8.96	863	811	745	654	715	629
50	6	6	30.68	30.68	30.34	30.34	1.31	5.78	85.34	61.67	89.38	88.92	79.11	53.68	4634	2807	3692	2097	1910	1710
50	8	6	9.27	9.27	9.27	9.27	1.15	9.27	71.74	49.29	39.93	99.65	68.32	42.57	1907	843	685	1333	570	752
50	10	6	0.00	0.00	0.00	0.00	0.00	0.00	6.21	3.54	1.74	2.69	1.71	0.61	211	20	0	0	0	0
50	6	8	9.21	9.21	9.21	9.21	0.44	9.21	1329.72	1996.49	(0.29)	(0.30)	106.77	148.13	233085	32144	40052	31589	625	3298
50	8	8	0.00	0.00	0.00	0.00	0.00	0.00	3.79	16.66	4.00	13.34	12.14	33.74	0	250	0	8	10	380
50	10	8	0.00	0.00	0.00	0.00	0.00	0.00	5.16	13.68	5.78	6.94	5.64	3.02	80	150	0	0	0	134
100	6	4	54.24	54.24	53.70	53.70	1.91	1.91	219.06	209.80	183.54	339.86	131.53	88.21	16737	15631	9254	13453	6647	2866
100	8	4	23.05	23.05	22.69	22.69	1.58	7.26	571.61	696.36	1687.35	543.48	78.93	888.37	32944	29950	66906	35824	6046	49649
100	10	4	5.77	5.77	5.66	5.66	0.62	5.64	22.05	19.96	7.91	15.94	7.65	16.25	1326	945	257	690	544	1141
100	6	6	30.68	30.68	30.34	30.34	1.31	5.78	44.16	63.87	75.78	112.94	97.16	52.00	1473	2951	2647	2710	2328	1069
100	8	6	9.44	9.44	9.44	9.44	1.32	9.44	58.18	67.67	87.82	214.85	32.86	50.73	1426	2435	830	4594	425	1163
100	10	6	0.00	0.00	0.00	0.00	0.00	0.00	8.88	4.77	2.19	3.38	1.66	1.28	381	67	0	0	0	0
100	6	8	9.78	9.78	9.78	9.78	0.96	9.78	3412.02	(0.63)	(0.57)	(0.57)	952.09	3014.50	29703	30739	30454	27678	8222	35885
100	8	8	0.88	0.88	0.00	0.00	0.00	0.33	(0.88)	220.31	25.54	142.29	199.87	(0.33)	12777	1615	40	557	800	14182
100	10	8	0.00	0.00	0.00	0.00	0.00	0.00	131.76	625.47	73.83	20.53	22.89	202.88	1516	7030	519	103	30	2267
150	6	4	54.24	54.24	53.62	53.62	1.91	1.91	105.72	189.55	262.52	242.02	137.16	92.46	8900	15466	18429	8928	6324	5142
150	8	4	23.05	23.05	22.69	22.69	1.58	7.26	947.77	88.44	238.58	1361.99	113.91	235.52	44811	5313	11125	40893	6276	9365
150	10	4	5.77	5.77	5.66	5.66	0.62	5.64	19.76	23.46	20.99	8.33	13.13	13.19	1085	1275	968	576	611	800
150	6	6	31.32	31.32	29.10	29.10	1.78	6.30	387.94	96.44	108.43	87.50	130.49	146.91	21164	2363	3592	1955	2730	1854
150	8	6	12.38	12.38	10.35	10.35	3.69	12.38	765.14	(0.34)	759.93	198.72	171.76	505.64	24278	78776	18036	963	809	18144
150	10	6	6.99	6.99	5.08	5.08	5.08	6.99	188.60	916.46	189.82	135.33	158.56	278.16	3086	18242	642	480	491	4892
Average Avg. Opt. Gap(\%) \# of Solved Ins.(/24) \# of Best Solutions(/24)			16.66	16.66	16.21	16.21	1.22	4.99	521.64	565.15	510.66	473.76	114.03	408.10	11248	13170	12738	8420	2388	7099
									(0.04)	(0.04)	(0.04)	(0.04)	(0.00)	(0.01)						
									23	22	22	22								
			5	5	7	7	24	8	2	1	2	4	7	8	1	1	6	5	10	9

[^0]| Parameters | | | | | LP Gap (\%) | | | | | CPU Time (sec.)/Optimality Gap(\%) | | | | | | Number of Nodes | | | | |
| :---: |
| $\rho_{\text {min }}$ | $k^{\text {max }}$ | p | CM0 | CM1 | CM2 | CM3 | CM4 | CM5 | CMO | CM1 | CM2 | CM3 | CM4 | CM5 | CM0 | CM1 | CM2 | CM3 | CM4 | CM5 |
| 50 | 6 | 4 | 54.24 | 54.24 | 53.75 | 53.75 | 1.91 | 1.91 | 193.65 | 249.32 | 443.58 | 229.15 | 182.90 | 93.13 | 16136 | 19605 | 26851 | 9866 | 5938 | 5315 |
| 50 | 8 | 4 | 23.05 | 23.05 | 22.69 | 22.69 | 1.58 | 7.26 | 217.40 | 250.88 | 1371.16 | 326.72 | 100.75 | 653.08 | 15880 | 24977 | 58418 | 19454 | 6358 | 28674 |
| 50 | 10 | 4 | 5.77 | 5.77 | 5.66 | 5.66 | 0.62 | 5.64 | 18.51 | 16.73 | 14.12 | 8.75 | 19.83 | 5.49 | 1125 | 898 | 658 | 622 | 968 | 498 |
| 50 | 6 | 6 | 30.68 | 30.68 | 30.34 | 30.34 | 1.31 | 5.78 | 85.60 | 70.00 | 108.38 | 91.01 | 85.15 | 92.55 | 5087 | 3068 | 4460 | 2661 | 2254 | 3648 |
| 50 | 8 | 6 | 9.27 | 9.27 | 9.27 | 9.27 | 1.15 | 9.27 | 46.20 | 58.52 | 70.34 | 126.16 | 35.54 | 43.66 | 1618 | 962 | 666 | 920 | 410 | 733 |
| 50 | 10 | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.78 | 3.43 | 1.96 | 1.58 | 1.49 | 1.62 | 20 | 49 | 0 | 0 | 0 | 0 |
| 50 | 6 | 8 | 9.21 | 9.21 | 9.21 | 9.21 | 0.44 | 9.21 | 993.46 | 2832.36 | (0.31) | 997.20 | 106.86 | 85.75 | 13939 | 34035 | 38492 | 10581 | 974 | 874 |
| 50 | 8 | 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 71.84 | 73.22 | 9.42 | 26.15 | 17.15 | 23.76 | 845 | 786 | 20 | 50 | 10 | 400 |
| 50 | 10 | 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 10.22 | 6.66 | 4.26 | 5.42 | 5.18 | 6.82 | 220 | 59 | 0 | 0 | 0 | 190 |
| 100 | 6 | 4 | 54.24 | 54.24 | 53.65 | 53.65 | 1.91 | 1.91 | 193.65 | 351.52 | 270.66 | 303.63 | 138.82 | 58.47 | 16136 | 24076 | 15971 | 10857 | 7955 | 2824 |
| 100 | 8 | 4 | 23.05 | 23.05 | 22.69 | 22.69 | 1.58 | 7.26 | 217.40 | 2141.64 | 300.77 | 1272.10 | 77.90 | 446.48 | 15880 | 129486 | 23257 | 73610 | 5558 | 24236 |
| 100 | 10 | 4 | 5.77 | 5.77 | 5.66 | 5.66 | 0.62 | 5.64 | 17.30 | 22.74 | 11.46 | 20.61 | 15.67 | 11.45 | 978 | 1065 | 714 | 653 | 968 | 902 |
| 100 | 6 | 6 | 30.68 | 30.68 | 30.28 | 30.28 | 1.31 | 5.78 | 67.19 | 63.94 | 113.23 | 106.41 | 76.37 | 65.47 | 3114 | 2682 | 6621 | 2508 | 1761 | 2360 |
| 100 | 8 | 6 | 9.44 | 9.44 | 9.44 | 9.44 | 1.32 | 9.44 | 108.21 | 79.64 | 145.11 | 173.98 | 52.91 | 100.91 | 3842 | 2313 | 1113 | 1836 | 521 | 4664 |
| 100 | 10 | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.27 | 14.70 | 2.25 | 2.51 | 1.48 | 5.31 | 418 | 492 | 0 | 0 | 0 | 89 |
| 100 | 6 | 8 | 9.78 | 9.78 | 9.78 | 9.78 | 0.96 | 9.78 | (0.44) | (0.46) | (0.47) | (0.36) | 2115.30 | 2009.85 | 29528 | 29173 | 31932 | 21391 | 15394 | 18291 |
| 100 | 8 | 8 | 0.88 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | (0.88) | 1016.32 | 2016.47 | 686.79 | 481.46 | 1789.27 | 20365 | 11097 | 6476 | 1574 | 1477 | 10274 |
| 100 | 10 | 8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.14 | 725.10 | 343.28 | 42.00 | 11.03 | 58.59 | (1.14) | 7686 | 3190 | 100 | 20 | 19 | 15575 |
| 150 | 6 | 4 | 54.24 | 54.24 | 53.62 | 53.62 | 1.91 | 1.91 | 113.95 | 233.72 | 227.44 | 259.32 | 95.73 | 73.11 | 7836 | 18333 | 12214 | 10286 | 3105 | 4149 |
| 150 | 8 | 4 | 23.05 | 23.05 | 22.69 | 22.69 | 1.58 | 7.26 | 1028.98 | 598.60 | 160.18 | 232.00 | 71.69 | 18.17 | 68400 | 32616 | 8133 | 13838 | 4084 | 5525 |
| 150 | 10 | 4 | 5.77 | 5.77 | 5.66 | 5.66 | 0.62 | 5.64 | 23.13 | 23.08 | 9.60 | 10.04 | 8.53 | 18.17 | 1200 | 1301 | 491 | 466 | 645 | 776 |
| 150 | 6 | 6 | 31.32 | 31.32 | 28.23 | 28.23 | 1.76 | 6.30 | 100.34 | 52.67 | 162.01 | 62.76 | 64.42 | 96.12 | 7090 | 1542 | 7745 | 1524 | 1489 | 2055 |
| 150 | 8 | 6 | 13.14 | 13.14 | 10.29 | 10.29 | 4.12 | 13.14 | 310.53 | 312.13 | 879.47 | 195.80 | 107.40 | 450.92 | 9465 | 3899 | 14650 | 903 | 457 | 4974 |
| 150 | 10 | 6 | 8.34 | 8.34 | 5.63 | 5.63 | 5.55 | 8.34 | 545.08 | 269.56 | 348.89 | 157.98 | 653.42 | 208.04 | 5125 | 2907 | 773 | 438 | 1353 | 2306 |
| AverageAvg. Opt. Gap(\%)$\# \text { of Solved Ins.(/24) }$\# of Best Solutions(/24) | | | 16.71 | 16.71 | 16.19 | 16.19 | 1.26 | 5.11 | 512.58 | 528.53 | 579.71 | 371.14 | 190.60 | 420.15 | 10497 | 14525 | 10823 | 7669 | 2571 | 5806 |
| | | | (0.06) | | | | | | (0.02) | (0.03) | | (0.00) | (0.05) | | | | | | |
| | | | 22 | | | | | | 23 | 22 | 23 | 24 | 23 | | | | | | |
| | | | 5 | 6 | 6 | 6 | 24 | 8 | | 3 | 2 | 2 | 9 | 8 | | | 3 | 6 | 16 | 4 |

Table A.6: LP gap, CPU time/ optimality gap and number of nodes of CoverageVLP in \mathbf{B} type instances

Table A.7: LP gap, CPU time/ optimality gap and number of nodes of CoverageVLP in \mathbf{C} type instances

Parameters			LP Gap (\%)						CPU Time (sec.)/Optimality Gap(\%)						Number of Nodes					
$\rho_{\text {min }}$	$k^{\text {max }}$	p	CMO	CM1	CM2	CM3	CM4	CM5	CMO	CM1	CM2	CM3	CM4	CM5	CM0	CM1	CM2	CM3	CM4	CM5
50	6	4	25.73	25.73	25.71	25.71	1.19	1.19	353.54	609.85	598.64	758.12	259.94	92.84	17552	34889	17870	20915	7610	4460
50	8	4	2.12	2.12	2.12	2.12	1.73	1.73	47.49	19.55	35.59	11.86	15.30	47.08	7082	2734	4079	1497	1449	5086
50	10	4	0.00	0.00	0.00	0.00	0.00	0.00	0.41	0.42	0.97	0.92	0.99	0.52	0	0	0	0	0	0
50	6	6	9.33	9.33	9.32	9.32	4.20	4.40	565.19	349.39	510.66	2235.29	490.20	669.14	15258	10412	18273	36960	5097	8462
50	8	6	0.00	0.00	0.00	0.00	0.00	0.00	1.16	0.51	0.90	1.09	0.91	1.30	70	0	0	0	0	0
50	10	6	10.91	0.00	0.00	0.00	0.00	0.00	2.04	1.88	0.98	1.11	1.20	1.25	69	51	0	0	0	39
50	6	8	3.20	3.20	3.12	3.12	1.46	2.67	48.02	36.32	113.23	113.57	104.06	119.09	3000	1902	3122	1808	1366	6319
50	8	8	0.04	0.04	0.02	0.02	0.02	0.04	2.39	2.92	1.06	0.86	0.70	3.69	156	270	0	0	0	342
50	10	8	0.04	0.04	0.02	0.02	0.02	0.04	4.06	3.19	0.86	0.86	0.80	5.31	363	255	0	0	0	400
100	6	4	25.73	25.73	25.71	25.71	1.19	1.19	334.94	430.85	779.60	2111.85	243.26	110.99	15638	23082	27070	47622	7012	4881
100	8	4	2.12	2.12	2.12	2.12	1.73	1.73	22.64	36.73	17.40	38.84	107.88	45.60	6179	5577	1087	4738	11227	6980
100	10	4	0.00	0.00	0.00	0.00	0.00	0.00	0.56	0.48	0.87	0.86	0.88	0.54	0	0	0	0	0	0
100	6	6	9.33	9.33	9.32	9.32	4.20	4.40	269.34	637.17	633.62	1841.72	468.53	186.58	9873	14758	10579	26504	5138	3494
100	8	6	0.00	0.00	0.00	0.00	0.00	0.00	3.58	1.58	1.17	1.60	1.19	2.98	365	46	0	0	0	474
100	10	6	0.00	0.00	0.00	0.00	0.00	0.00	5.05	5.59	5.35	1.24	1.32	2.94	486	500	474	0	0	61
100	6	8	3.68	3.64	2.99	2.99	1.82	1.82	420.18	321.45	206.31	415.81	311.55	395.33	35763	16979	8808	4794	3219	18690
100	8	8	1.21	1.21	0.64	0.64	0.64	0.68	(0.23)	(0.05)	(0.28)	41.16	86.22	(0.31)	104629	69792	94567	515	952	97678
100	10	8	1.21	1.21	0.64	0.64	0.64	1.21	(0.32)	(0.31)	(0.29)	123.07	85.88	(0.32)	117575	65763	60112	1633	1493	118411
150	6	4	25.73	25.73	25.71	25.71	1.19	1.19	1801.76	345.84	447.40	1900.28	187.28	105.06	94078	17714	18728	54512	4178	5010
150	8	4	2.12	2.12	2.12	2.12	1.73	1.73	14.85	60.46	40.80	13.44	39.14	70.16	1580	5394	6144	1782	4801	8268
150	10	4	0.06	0.06	0.06	0.06	0.06	0.06	4.72	6.56	5.40	2.53	3.87	6.35	827	559	569	161	254	760
150	6	6	9.33	9.27	8.98	8.98	4.20	4.40	431.83	363.12	985.60	1289.40	697.38	187.72	10803	8963	23610	14116	5708	3302
150	8	6	0.13	0.13	0.04	0.04	0.04	0.13	2.34	1.72	2.53	0.92	1.04	7.82	141	50	20	0	0	240
150	10	6	0.13	0.13	0.04	0.04	0.04	0.13	0.72	1.60	1.34	1.46	1.37	0.81	0	23	0	0	0	0
Average			5.49	5.03	4.94	4.94	1.09	1.20	480.71	434.89	482.94	454.49	129.62	385.98	18395	11655	12296	9065	2479	12223
	Opt. Ga								(0.02)	(0.01)	(0.02)	(0.00)	(0.00)	(0.03)						
\# of	Solved Ins								22	22	22	24	24	22						
\# of Best Solutions(/24)			6	7	13	13	24	14	2	4	4	6	3	5	4	3	8	12	15	7

Table A.8: LP gap, CPU time/ optimality gap and number of nodes of CoverageVLP in \mathbf{D} type instances

[^0]: Table A.5: LP gap, CPU time/ optimality gap and number of nodes of CoverageVLP in A type instances

