
A CIRCULAR LAYOUT ALGORITHM
FOR CLUSTERED GRAPHS

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Mehmet Esat Belviranlı

August, 2009



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Doğrusöz (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. İsmail Hakkı Toroslu

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Ali Aydın Selçuk

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii



ABSTRACT

A CIRCULAR LAYOUT ALGORITHM
FOR CLUSTERED GRAPHS

Mehmet Esat Belviranlı

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Uğur Doğrusöz

August, 2009

Visualization of information is essential for comprehension and analysis of the

acquired data in any field of study. Graph layout is an important problem in

information visualization and plays a crucial role in the drawing of graph-based

data. There are many styles and ways to draw a graph depending on the type of

the data. Clustered graph visualization is one popular aspect of the graph layout

problem and there have been many studies on it. However, only a few of them

focus on using circular layout to represent clusters. We present a new, elegant

algorithm for layout of clustered graphs using a circular style. The algorithm is

based on traditional force-directed layout scheme and uses circles to draw each

cluster in the graph. In addition it can handle non-uniform node dimensions. It is

the first algorithm to properly address layout of the quotient graph while consid-

ering inter-cluster relations as well as intra-cluster edge crossings. Experimental

results show that the execution time and quality of the produced drawings with

respect to commonly accepted layout criteria are quite satisfactory. The algo-

rithm has been successfully implemented as part of Chisio, version 1.1. Chisio

is an open source general purpose graph editor developed by i-Vis (information

visualization) Research Group of Bilkent University.

Keywords: Information Visualization, Graph Visualization, Graph Drawing,

Force Directed Graph Layout, Clustered Graphs, Circular Graph Layout.

iii



ÖZET

KÜMELENMİŞ ÇİZGELER İÇİN ÇEMBERSEL
YERLEŞİM ALGORİTMASI

Mehmet Esat Belviranlı

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Uğur Doğrusöz

Ağustos, 2009

Bilgi görselleme çeşitli çalışma alanlarından elde edilen verilerin anlaşılması

ve analizi açısından oldukça önemlidir. Çizge yerleşimi ise bilgi görsellemede

önemli bir problemdir ve çizge tabanlı bilgilerin görsellenmesinde önemli rol oy-

nar. Bilginin türüne bağlı olarak çizgeyi çizmenin pek çok tarz ve yöntemi vardır.

Kümelenmiş bilgi görselleme, çizge yerleşim probleminin popüler bir alanıdır ve

konu üzerinde pek çok çalışmalar olmuştur. Fakat bu çalışmalardan çok azı

kümeleri ifade etmek için dairesel yerleşim üzerine yoğunlaşmışdır. Bu çalışmada,

kümelenmiş çizgelerin dairesel tarzda yerleşimi için yeni bır algoritma sunulmak-

tadır. Algoritma, geleneksel güce-dayalı yerlesim şablonunu esas almakta ve

her bir kümeyi çizmek için daireler kullanmaktadır. Ayrıca değişebilir düğüm

büyüklüklerini desteklemektedir. Kümeler arası ve aynı zamanda da küme içi

kenar kesişimlerini göz önünde tutarak bölüm çizgesinin (küme düğümlerinin

oluşturduğu çizge) yerleşimini ele alan ilk algoritmadır. Deneysel sonuçlar,

hesaplama zamanı ve genelde kabul edilen yerleşim niteliği açısından algoritmanın

son derece başarılı olduğunu ortaya koymaktadır. Algoritma Chisio’nun (sürüm

1.1) bir parçası olarak başarıyla uygulanmıştır. Chisio, Bilkent Üniversitesi i-Vis

(bilgi görselleme) Araştırma Gurubu tarafından geliştirilmiş açık kaynak kodlu

ve genel amaçlı bir çizge düzenleyicidir.

Anahtar sözcükler : Görselleme, Çizge Görselleme, Çizge Çizimi, Çizge Yerleşimi,

Güce-dayalı Çizge Yerleşimi, Kümelenmiş Çizgeler, Çembersel Çizge Yerleşimi.

iv



Acknowledgement

I would like to express my gratitude to my supervisor Assoc. Prof. Dr. Uğur

Doğrusöz for his efforts in the supervision of the thesis.

I would like to express my special thanks to Prof. Dr. İsmail Hakkı Toroslu

and Asst. Prof. Dr. Ali Aydın Selçuk for showing keen interest to the subject

matter and accepting to read and review the thesis.

I would also like to express my gratitude to The Scientific and Technological

Research Council of Turkey, TUBITAK for their extensive support during my

two years of M.S. study.

v



Contents

1 Introduction 1

1.1 Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Visualization of clustered data . . . . . . . . . . . . . . . . . . . . 4

2 Definitions 8

3 Related Work 11

3.1 Force directed graph layout . . . . . . . . . . . . . . . . . . . . . 11

3.2 Circular graph layout . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Layout Algorithm 17

4.1 Underlying physical model . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Implementation 26

6 Experimental Results 30

6.1 Running time performance . . . . . . . . . . . . . . . . . . . . . . 30

vi



CONTENTS vii

6.2 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Conclusion 36

A Sample Drawings Produced by CiSE 37



List of Figures

1.1 Two drawings of the same computer network system [13]. . . . . . 2

1.2 A drawing that displays the processes running inside an online

shopping system, http://www.oreas.com. . . . . . . . . . . . . . . 3

1.3 A circular drawing, which displays relationship between peo-

ple, produced by a social network visualization tool, http://

www.neuroproductions.be/twitter friends network browser. . . . . 4

1.4 Cluster graph drawn from spoligotyping data of 344 TB cases cen-

sused in French Guiana over the 1996 - 2003 period [14]. . . . . . 6

1.5 Complement activation and regulation network drawn by

yFiles circular layout [33], http://www.proteolysis.org/proteases/

m goto network/net4 0908 . . . . . . . . . . . . . . . . . . . . . . 7

2.1 A sample clustered graph with 2 clusters {a, b} and {e, f, g}, and

unclustered nodes {c, d}. . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Two symmetric drawing samples ([2, 30] respectively). . . . . . . 13

3.2 A graph drawn by the algorithm in [7]. . . . . . . . . . . . . . . . 14

viii



LIST OF FIGURES ix

3.3 A sample drawing where individual clusters are nicely laid out but

the overall layout is bad (i.e. there are many inter-cluster edge

crossings) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 A sample clustered graph with 2 clusters {a, b} and {e, f, g},
and unclustered nodes {c, d} (left) and the corresponding physi-

cal model used by our algorithm (right). . . . . . . . . . . . . . . 18

4.2 Extraction of rotational force Au from the total force Fu acting on

a circular node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Calculation of total force F using spring, repulsion and gravity

forces (S, R and G respectively) acting on a node. . . . . . . . . . 21

5.1 Class diagram for Chisio L-level package and CiSE extension. . . . 28

5.2 Class diagram for Chisio graph model . . . . . . . . . . . . . . . . 29

6.1 A randomly generated graph laid out by our algorithm. (n = 40,

m/n = 1.2, mic/m = 0.20, dmax = 10 and dmin = 2) . . . . . . . . 31

6.2 Number of nodes (n) vs. execution time of our algorithm. (m/n =

1.5, mic/m = 0.10, dmax = 15 and dmin = 2) . . . . . . . . . . . . 32

6.3 Inter-cluster edge ratio (mic/m) vs. execution time of our algo-

rithm. (n = 500, m/n = 1.5, dmax = 15 and dmin = 2) . . . . . . . 32

6.4 Maximum cluster size (dmax) vs. execution time of our algorithm.

(n = 500, m/n = 1.5, dmin = 2 and mic/m = 0.10) . . . . . . . . . 33

6.5 Maximum-minimum cluster size discrepancy (dmax - dmin) vs. ex-

ecution time of our algorithm. (n = 500, m/n = 1.5, dmax = 44

and mic/m = 0.10) . . . . . . . . . . . . . . . . . . . . . . . . . . 34



LIST OF FIGURES x

6.6 Two layouts of the same graph: CiSE on the left and circular layout

of GLT on the right [13]. . . . . . . . . . . . . . . . . . . . . . . . 35

A.1 A drawing created by CiSE . . . . . . . . . . . . . . . . . . . . . 38

A.2 A drawing created by CiSE . . . . . . . . . . . . . . . . . . . . . 39

A.3 A drawing created by CiSE . . . . . . . . . . . . . . . . . . . . . 40

A.4 A drawing created by CiSE . . . . . . . . . . . . . . . . . . . . . 41

A.5 A drawing created by CiSE . . . . . . . . . . . . . . . . . . . . . 42

A.6 A drawing created by CiSE . . . . . . . . . . . . . . . . . . . . . 43

A.7 A drawing created by CiSE . . . . . . . . . . . . . . . . . . . . . 44

A.8 A drawing of a graph containing non-uniform node dimensions

created by CiSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.9 A drawing of a graph containing also un-clustured nodes as well as

clustered ones created by CiSE. Un-clustered nodes are represented

by circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.10 A drawing of a graph containing also un-clustured nodes as well as

clustered ones created by CiSE. Un-clustered nodes are represented

by circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



Chapter 1

Introduction

A graph is an abstract structure that is used to model relational information.

Many information visualization systems require graphs to be drawn so that in-

formation being modeled becomes human interpretable [13].

There are various graphical representations for graphs. Usually, vertices are

represented by symbols such as points, boxes or ellipses and edges are represented

by curves connecting the symbols that represent the associated vertices [6]. How-

ever, graphical representations vary greatly according to the application domain.

Even within a graphical representation schema, there are infinitely many ways to

draw a graph, by simply changing coordinates of nodes in the plane [13].

When drawing a graph, we would like to take into account a variety of aesthetic

criteria. For example, planarity and the display of symmetries are often highly

desirable in visualization applications [6]. In general, in order to improve the

readability of drawings, it is important to keep the number of crossings and

bends low. Also, to avoid wasting of space on screen or page, it is important to

keep area of the drawing as small as possible. Trade-offs are often necessary as

these are conflicting objectives [13].

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Two drawings of the same computer network system [13].

1.1 Aesthetics

Aesthetics is a subjective term, however it is possible to formalize it in our context.

An aesthetic property specifies a geometric asset of underlying graph that we

would like to highlight as much as possible. Commonly adopted aesthetics are

[6]:

• Crossings: Minimization of edge-edge crossings is one of the most important

aesthetic criteria. Ideally we would like to have crossing free drawings, how-

ever non-planar graphs do not admit one. Node-edge crossings should also

be minimized, although they are not as important as edge-edge crossings.

• Overlaps: Minimization of node-node overlaps is another important aes-

thetic criterion.

• Uniform Edge Length: Minimization of the variance of the lengths of the

edges.

• Symmetry: Maximize displayed symmetries in the graph.

• Area: Minimization of the total area of the drawing. The ability to gen-

erate drawings that use screen area efficiently is very important as screen



CHAPTER 1. INTRODUCTION 3

Figure 1.2: A drawing that displays the processes running inside an online shop-
ping system, http://www.oreas.com.

space is an important and generally very limited resource for visualization

applications.

• Separation of Clusters: In clustered graphs, clusters should be clearly sep-

arated from each other. Similarly, nodes inside a cluster should be close to

each other as much as possible in order to emphasize the grouping between

them.

Trying to satisfy all of these criteria is generally infeasible if not impossible,

as they are inherently conflicting. So one has to prioritize according to needs of

a particular application.



CHAPTER 1. INTRODUCTION 4

Figure 1.3: A circular drawing, which displays relationship between people, pro-
duced by a social network visualization tool, http://www.neuroproductions.be/
twitter friends network browser.

1.2 Visualization of clustered data

Clustering is the assignment of a set of observations into subsets (called clusters)

so that observations in the same cluster are similar in some sense. Clustering of

data is a commonly used practice in many fields including bioinformatics, com-

puter networks, machine learning, data mining, statistics, VLSI design, image

analysis and social networks (Figures 1.2 through 1.5) [31]. Since clustering di-

vides related information into groups, it provides a good means of handling size

complexity for those fields which are obliged to deal with large amounts of data.

Clustering is used as a method of complexity management also in graph vi-

sualization. Since the data is split into smaller parts, it is easier to visualize the



CHAPTER 1. INTRODUCTION 5

data in small partitions instead of a large chunk, therefore reducing the complex-

ity of the drawing process. On the other hand clustering puts further constraints

on the visualization requirements. The drawing should keep the clusters together

and tight as well as neatly displaying the relations between each of them, thus

increasing the readability of the graph.

In the past years, there have been many studies on clustered layouts [24].

However, most of these studies focus more on cluster generation using techniques

such as geometric clustering [9, 20, 21, 27, 29] and graph theoretic clustering

[5, 9, 19, 20, 21, 25, 27]. Only a few of them actually consider the layout of an

already clustered graph by using orthogonal and straight line drawings [10, 11].

However these methods are not sufficient to separate clusters hence cannot display

clustered data clearly. On the other hand, in industry, various tools which handle

cluster graph layout exist [1, 2, 17, 30, 33]. Besides the algorithms specifically

targeted at clustering, compound graph layout algorithms can also be specialized

to visualize clusters by drawing each cluster into separate compounds with a fixed

depth level of one [23, 24]. Comparing all of these algorithms, clustered data can

be represented with circular style best in terms of aesthetics criteria.

Effective analysis of the underlying data in graph visualization is only pos-

sible with sound automatic layout capabilities of such systems. In this thesis,

we present a new algorithm for automatic layout of clustered graphs in circular

fashion. The algorithm is unique in the sense that it properly addresses layout

of the quotient graph (the graph composed of clusters and their relations) while

considering inter-cluster relations as well as intra-cluster edge crossings. This is

achieved with a novel approach that applies force directed schemes on circular

drawings. The algorithm is successfully implemented as a part of Chisio, ver-

sion 1.1. Chisio is developed and released by i-Vis (information visualization)

Research Group of Bilkent University.

The rest of the thesis is organized as follows: Definitions, Related Work,

Layout Algorithm, Implementation, Experimental Results and Conclusion.



CHAPTER 1. INTRODUCTION 6

Figure 1.4: Cluster graph drawn from spoligotyping data of 344 TB cases censused
in French Guiana over the 1996 - 2003 period [14].



CHAPTER 1. INTRODUCTION 7

Figure 1.5: Complement activation and regulation network drawn by yFiles circu-
lar layout [33], http://www.proteolysis.org/proteases/m goto network/net4 0908



Chapter 2

Definitions

A graph G is defined by two finite sets V and E, where the elements of V are

the nodes of G, and the elements of E are the edges of G. A clustered graph is a

graph G = (V,E) with a partition C = {C1, C2, · · · , Ck} on the node set, where

each Ci, i = 1, · · · , k corresponds to a cluster, Ci ∩ Cj = ∅ for all i, j = 1, · · · , k,

k ≥ 1, and V =
k∑

i=1

C ∪ Ck+1, and Ck+1 denotes potentially empty unclustered

node set.

An edge is called an intra-cluster edge if both its ends belong to the same

cluster; an inter-cluster edge, otherwise.

Given a clustered graph G, its quotient graph G = (V , E) is defined by merging

each cluster into a single node, where:

V = C ∪ Ck+1 and

(vi, vj) ∈ E ⇔ i 6= j ∧ (∃ v ∈ Ci, w ∈ Cj (v, w) ∈ E)

Unclustered nodes are assumed to belong to the distinguished cluster Ck+1. We

call the nodes of the quotient graph corresponding to clusters, circle or cluster

nodes. Similarly, a node of a clustered graph that belongs to a cluster is called

on-circle or in-cluster node. An on-circle node is a child of the circle that it

is placed on. On-circle nodes with neighbors outside the cluster are called out-

nodes. If a node is not on-circle, then it is called non-on-circle node. (i.e. it is

8



CHAPTER 2. DEFINITIONS 9

either a circle or an unclustered node)

Given a cluster graph G, the following terminology will be used to refer to

node lists in the rest of the paper:

• all nodes : all nodes in G and its quotient graph

V(G) = V (G) ∪ V(G),

• circle nodes : all nodes in quotient graph corresponding to clusters

Vc(G) = {vi | vi ∈ V(G) ∧ 1 ≤ i ≤ k},

• on-circle nodes : all clustered nodes in G

Vo(G) = {u | u ∈ V (G) ∧ u ∈
k∑

i=1

Ci},

• non-on-circle nodes : all but on-circle nodes

Vo(G) = V(G)−Vo(G) = Ck+1 ∪ V(G).

For instance, for the sample clustered graph in Figure 2.1, we have

V(G) = {a, b, c, d, e, f, g, 1, 2}
Vc(G) = {1, 2}
Vo(G) = {a, b, e, f, g}
Vo(G) = {c, d, 1, 2}



CHAPTER 2. DEFINITIONS 10

Figure 2.1: A sample clustered graph with 2 clusters {a, b} and {e, f, g}, and
unclustered nodes {c, d}.



Chapter 3

Related Work

As we stated in the previous section, good drawings of graphs involve some sort

of prioritization of a set of aesthetic criteria. There is no universal algorithm that

will generate beautiful drawings for every kind of application-graph. Therefore

there are many algorithms in the literature that try to generate good automatic

drawings of family of graphs.

There has been a great deal of work done on general graph layout [6] and it is

possible to classify these algorithms under various titles. However, only the two

types of layouts described below is related to this study.

3.1 Force directed graph layout

In force directed layout, graph to be laid out is represented as a physical model

and a simulation of this model is done with a feasible accuracy. That is graph

layout problem is solved via simulating a physical system.

In the basic model, nodes are represented as charged particles that repel each

other and edges are represented with springs. The energy level of a node is

determined from the forces acting on it. The spring embedder tries to minimize

the global energy level by moving the nodes in the direction of the forces. Global

11



CHAPTER 3. RELATED WORK 12

energy level, which is the sum of all energy levels of the nodes, is computed after

each iteration of the system to determine if the total energy is below a certain

amount.

The accuracy and reality of this basic system is a trade off between perfor-

mance and quality. Generally, for performance reasons only one node is displaced

at a time [18].

It is always possible to include additional physical factors in the model to

have more realistic hence better resulting systems, like [13]:

• Magnetic forces: These are generally used to enforce a flow in to the draw-

ing. For example; in directed graphs it is possible to emphasis the flow if

all edges are interpreted as compasses that align themselves according to a

magnetic field [28].

• Gravitational forces: These are generally used to produce more compact

drawings. As spring forces are only effective within components and re-

pulsive forces can make the drawing only bigger. Basic model should be

extended to be able to minimize inter component space. Hence gravita-

tional forces are introduced. All nodes are attracted to the mass center of

all the other nodes [2].

• Acceleration: It is also possible to add mass related factor momentum into

the model. This factors adds the previous velocity of a node to the move-

ment being calculated for an iteration. Acceleration is generally added to

improve running time performance as well as quality.

• Temperature: The basic model with its extensions described until now can

settle with a local minima. To overcome this problem it is possible to use

controlled amount of randomness. Researchers in optimization theory use

a technique from statistical mechanics called simulated annealing allowing

for changes into states with higher energy. With this addition calculated

node movement is disturbed with a relatively minor random vector to avoid

being trapped at a local energy minimum. At the beginning the magnitude



CHAPTER 3. RELATED WORK 13

of this random vector is bigger, as the simulation matures the system is

cooled down meaning magnitude of the force is reduced in order to stabilize

the final layout [12].

Figure 3.1: Two symmetric drawing samples ([2, 30] respectively).

Force directed layout algorithms are very popular and successful. They reveal

structural properties like symmetries, cycles and trees nicely. They have reason-

ably fast implementations utilizing Barnes-Hut trees and similar data structures.

However force directed layout algorithms do not guarantee anything about the

final drawing and unit edge length assumption may introduce serious problems

for some graphs. An excellent analysis for different approaches to force directed

layout is given in [6].

3.2 Circular graph layout

Circular drawing has been an interesting and popular area of research on layout

algorithms. Circular graph layout algorithms aim to produce an outer-planar

drawing of a given graph where vertices lie on a fixed circle, connected with

non intersecting edges lying inside the circle [32]. Since finding an outer-planar

embedding of a graph is an NP-hard problem [22], several heuristics developed to



CHAPTER 3. RELATED WORK 14

Figure 3.2: A graph drawn by the algorithm in [7].

find approximate solutions to the problem [4, 8, 16, 22]. Most of the algorithms are

based on incremental crossing-aware placement of vertices around the circle. Once

vertices are initially placed, some post processing applied in order to decrease the

total number of edge crossings.

Majority of the circular layout algorithms place the given nodes on a single

circle, hence ignoring visualization of any clustered data. Only two of them

take clusters into account by using the given cluster information [7, 26]. These

algorithms position the nodes on the same circle only if they are assigned to the

same cluster therefore resulting in the drawing of one circle per cluster. The study

in [26] partially supports circular layout of clustered data when the quotient graph

is a tree. The only study that completely addresses layout of arbitrary quotient

graph using circles is [7]. However, this algorithm has a major drawback that

it places non-tree parts of the quotient graph around a single large ”backbone”

circle when the cluster graph is cyclic. Such a placement of clusters around a big

circle results in additional inter-cluster edge crossings (see Figure 3.2).

Circular drawing of clustered data differs in several ways from the drawing of

unclustered data. In the former, the major concern is to position the circles and

the nodes inside the circles, so that number of edge crossings is kept minimal.



CHAPTER 3. RELATED WORK 15

Since multi-cluster layout introduces two more crossing types, inter-cluster - intra-

cluster and inter-cluster - inter-cluster edges, nodes around the circle and also

the circle itself should be properly positioned in order to reduce these types of

crossings as well as keeping the circular layout inside the clusters optimal (see

Figure 3.3).

Multi-cluster layout divides the problem of drawing a large single piece of data

into smaller problems, thus reducing the complexity of visualization requirements.

However, on the other hand, clustered layout introduces the positioning problem

of clusters and nodes as described above. Recognizing the trade off, this study

addresses an algorithm “aware” of inter-cluster edges, in order to aesthetically

and efficiently display clustered graph information using a circle for each cluster.



CHAPTER 3. RELATED WORK 16

Figure 3.3: A sample drawing where individual clusters are nicely laid out but
the overall layout is bad (i.e. there are many inter-cluster edge crossings)



Chapter 4

Layout Algorithm

4.1 Underlying physical model

A basic force-directed layout algorithm with certain extensions to satisfy the

clustering conventions in circular drawings has been chosen. Basic idea of the

layout algorithm is to simulate a physical system in which nodes are assumed

to be physical objects with certain “electrical charge”, connected via “springs”

of a pre-specified desired length. Objects pull or repel each other depending on

current lengths of any connected springs. In addition, relatively minor repulsion

forces act on any pair of objects that are “too close” to each other to avoid node-

to-node overlaps. Furthermore, we assume “gravitational forces” to keep graph

components together.

In order to handle varying node sizes (especially larger cluster nodes) and

avoid overlaps with neighboring nodes, calculation of distances are based on the

borders of nodes, as opposed to their centers [15]. Thus the optimal layout is

regarded as the state of this system, in which total energy is minimal. The use of

extra constraints is implemented by introducing extra properties to the physical

model used by the spring embedder, trying to obey the basic (mainly Newtonian)

laws of physics:

17



CHAPTER 4. LAYOUT ALGORITHM 18

Figure 4.1: A sample clustered graph with 2 clusters {a, b} and {e, f, g}, and
unclustered nodes {c, d} (left) and the corresponding physical model used by our
algorithm (right).

• Each cluster/circle is represented by a “meta-node” of circular shape, on

which sits a round shaped track on its periphery. The physical entities

for each member node of a cluster is assumed to be either fixed (pinned

down to its owner circle) or flexible to move around (via swapping with

their neighbors) the track on which they sit as needed by the different steps

of the algorithm. In any case, the on-circle nodes move with their owner

circle nodes. This fulfills the requirement of member nodes being on the

periphery of the owner circle.

• A center of gravity in the middle of the bounding rectangle of the current

drawing is assumed. All unclustered nodes and cluster nodes (all nodes

except member nodes of a cluster) are attracted towards this center. This

should keep disconnected parts of a graph together.

Figure 4.1 illustrates the basics of our physical model with an example.



CHAPTER 4. LAYOUT ALGORITHM 19

4.2 Algorithm

We assume that the graph to be laid out is a clustered graph G = (V,E) with

clusters C = {C1, C2, · · · , Ck}, unclustered nodes Ck+1, and quotient graph G, all

using adjacency list representations. Layout specific data and functionality are

kept in these structures as well. In addition, we assume special mechanisms for

efficient iteration over necessary graph objects exist.

Our algorithm named CiSE (Circular Spring Embedder) is composed of four

major steps preceded by an initialization phase:

Initialization: This is where the necessary structures for layout along with

quotient graph of the graph to be laid out are constructed.

• Step 1: In this step each cluster is laid out independently using a circular

layout algorithm of your choice (e.g. [16]).

• Step 2: Here we determine the “skeleton” of the layout by laying out the

quotient graph. The specific algorithm to use for this step depends on the

structure of the quotient graph. If it is always a tree, a radial layout is

ideal. For the general case, best choice seems to be a regular spring em-

bedder. Note however that the dimensions of nodes of this graph will be

non-uniform, requiring extra attention.

• Step 3: In this step, our aim is to reposition/rotate circles according to the

location of their out-nodes and inter-cluster edges incident on these nodes.

However, nodes on the circles are not allowed to move individually. They

are assumed to be “pinned down” to their owner circles. After this step, a

draft layout of the whole graph is obtained.

• Step 4: The difference between this step and the previous one is that,

we allow nodes on circles to move with respect to their parent circle (as



CHAPTER 4. LAYOUT ALGORITHM 20

Figure 4.2: Extraction of rotational force Au from the total force Fu acting on a
circular node.

well as moving with them) by swapping them with their neighbors. Two

neighboring on-circle nodes are swapped only if the operation does not

increase the edge crossing count.

Steps 3 and 4 make up the core of our algorithm. In the following, we describe

how we calculate and make use of different kinds of forces (Figure 4.2, 4.3) as

part of a modified spring embedder implemented with these steps.

The formula for calculating the spring force for edge e = (u, v) is

Fs =
(λ− ||pu − pv||)2

η
~pupv,

where λ is the ideal edge length, η is the elasticity constant of the edge, and

pu and pv are positions of nodes u and v, respectively. Ideal edge length of an

inter-cluster edge should be chosen to be a reasonable factor larger than an intra-

cluster one to better separate the clusters. Non-uniform node dimensions require

force calculations to be based on clipping points rather than node centers. The



CHAPTER 4. LAYOUT ALGORITHM 21

Figure 4.3: Calculation of total force F using spring, repulsion and gravity forces
(S, R and G respectively) acting on a node.

following method is used for calculating spring forces acting on each edge’s ends:

algorithm CalcSpringForces(Graph G, int step)

1) for each e = (u, v) ∈ E(G) do

2) idealLength := λ

3) if step = 4 or e is an inter-cluster edge then

4) cu := u.boundRect ∩
LineSegment(u.center, v.center)

5) cv := v.boundRect ∩
LineSegment(u.center, v.center)

6) S := (idealLength− ||cu − cv||)2/η · ~cucv
7) Su += S

8) Sv −= S

Notice that spring forces for intra-cluster edges are ignored during step 3 as

we assume the nodes to be fixed (i.e. those forces would have canceled each other

if they were to be transferred to their owner circles).

The overall time complexity of this method is Θ(|EM |) as all steps inside the

for-loop can be processed in Θ(1) steps.



CHAPTER 4. LAYOUT ALGORITHM 22

Node-to-node repulsion forces are calculated using the formula

Fr =
α

||pu − pv||2
~pupv,

where α is the repulsion constant. Similar to spring forces, repulsion forces require

us to make clipping point calculations for nodes of non-uniform size based on the

line passing through nodes’ centers:

algorithm CalcRepulsionForces(Graph G,

int step)

1) for each pair of nodes u, v ∈ V (G) do

2) if (u, v ∈ Vo(G) and u.owner = v.owner then

3) cu := u.boundRect ∩
LineSegment(u.center, v.center)

4) cv := v.boundRect ∩
LineSegment(u.center, v.center)

5) if ||cu − cv|| < REPULSION RANGE then

6) R := α/||cu − cv||2

7) Ru += R

8) Rv −= R

Steps 6-10 are handled in Θ(1) steps, which are executed a total of maxi-

mum O(|V M |2) times, making the overall complexity of the method O(|V M |2).
However, since a node pair affect each other only when they are below a certain

geometric distance and within the same graph, the average complexity is expected

to be asymptotically lower than this.

Gravitation forces have fixed magnitude and they are always towards the

center of the bounding rectangle of the owner graph:

algorithm CalcGravitationForces(Graph G)

1) for each u ∈ Vo(G) do

2) center := G.boundRect

3) calculate gravitation force G towards center

4) Gu += G



CHAPTER 4. LAYOUT ALGORITHM 23

The overall time complexity of this method is Θ(|V M |) as all steps inside the

for-loop can be processed in Θ(1) time.

In each iteration, once all kinds of forces are calculated, we add them up to

determine the total force on each node as follows:

algorithm CalcTotalForces(Graph G, int step)

1) for each u ∈ V(G) do

2) Fu := Su +Ru +Gu

3) for each u ∈ Vo(G) do

4) if in swap preparation phase then

5) Du+ = Horizontal(Fu)

6) o := u.owner

7) Fo+ = (Fu)

8) Ao+ = Horizontal(Fu)

9) Fu := 0

The main steps 3 and 4 using earlier ones make up the core of our algorithm:

algorithm PerformStep3-4(Graph G, int step)

1) Initialize(G)

2) iter := maxIterCount[step]

3) error := 0

4) while (iter > 0 and

error > errorThreshold[step]) do

5) CalcSpringForces(G, step)

6) CalcRepulsionForces(G, step)

7) CalcGravitationForces(G)

8) CalcTotalForces(G, step)

9) MoveNodes(G, step)

10) iter := iter − 1



CHAPTER 4. LAYOUT ALGORITHM 24

algorithm MoveNodes(Graph G, int step)

1) for each u ∈ Vo(G) do

2) if u ∈ Vc(G) then

3) move it using Fu / # nodes in u

4) else

5) move it using Fu

6) if u ∈ Vc(G) then

7) rotate it using Au / # nodes in u

8) if step = 4 and in swap phase then

9) for each u ∈ Vo(G) do

10) determine safe and unsafe node pairs to swap

11) perform swap

12) for each u ∈ Vo(G) do

13) Du := 0

Once all forces have been calculated during an iteration, we move each node

with respect to the total force acting upon it. Movement occurs in three ways:

translation, rotation and swap. Prior to all types of movements, a factor of the

current temperature is applied on the total force as part of the global cooling

schema.

Translation is for only non-on-circle nodes. Circle nodes translate together

with its on-circle nodes, hence total forces acting on a circle node should be

divided by the children count. Additionally, circle nodes are rotated in the average

rotation amount contributed by their children.

Swaps are performed during step 4 only inside swap phases. Swap operation

is divided into two types: safe and unsafe. Participants of safe swaps are on-circle

nodes which are not classified as out nodes. Such pairs are safe to swap because

no inter-cluster edge crossings would be introduced after a swap. However, unsafe

swaps might cause inter-cluster edge crossings, since an unsafe pair consists of at

least one out-node. If no crossings would be introduced, then an unsafe swap is

also allowed.



CHAPTER 4. LAYOUT ALGORITHM 25

A quick analysis of the algorithm reveals that the running time of layout of a

compound graph is O(k · |V M |2) where k is the number of iterations required to

reach an energy minimal state.



Chapter 5

Implementation

The proposed layout algorithm has been developed and tested within Chisio 1.1,

an open source software released in 2009 by Information Visualization Research

Group at Bilkent University [3]. The development environment is Sun’s Java

SDK 1.5 and Microsoft Windows XP operating system on an ordinary personal

computer (Pentium D 2.8 GHz CPU and 3 GB memory).

Chisio is a general purpose graph editing and layout tool supporting standard

graph editing facilities like zoom, scroll, add/remove graph objects, move and

resize. With the help of the extensible framework provided by Chisio for layout

algorithm developers, we have easily conducted our study on this platform. Our

algorithm has been added to supported layouts list of Chisio under the name

“CiSE” (Circular Spring Embedder).

In order to adapt our algorithm to Chisio, we needed to extend the basis

model provided by Chisio layout package (Figure 5.1). The basis model is a

simple structure where algorithms keep geometry and topology information for

the layout elements during the layout. It is called ”L-level” and consists of simple

graph objects like nodes and edges. The CiSE model extends this basis model

by defining layout-specific objects like circles, clustered and un-clustered nodes,

node pairs and edges.

26



CHAPTER 5. IMPLEMENTATION 27

Since L-level objects are special to layout operations, Chisio does not use

them for actual rendering operation. Instead, Chisio has its own representation

of graph objects, Chisio graph model (Figure 5.2), which needs to be synchronized

with L-level objects before and after layout. More clearly, geometry and topology

information is transferred from Chisio graph model to L-level objects prior to the

layout. Similarly, after layout (and during layout as well if animation is enabled),

the information is written back to the Chisio model, hence allowing Chisio to

update the visual representation of the graph properly.



CHAPTER 5. IMPLEMENTATION 28

Figure 5.1: Class diagram for Chisio L-level package and CiSE extension.



CHAPTER 5. IMPLEMENTATION 29

Figure 5.2: Class diagram for Chisio graph model



Chapter 6

Experimental Results

6.1 Running time performance

We have performed experiments on execution time of our layout algorithm on

randomly generated graphs with one of several parameters changing for each set.

For each test, a random graph has been generated with the provided parameters:

• n: total number of nodes,

• m/n: proportion of edges to number of nodes,

• mic/m: proportion of inter-cluster edges to number of all edges,

• dmax: maximum cluster size,

• dmin: minimum cluster size,

In order to create a random clustered graph, first we generate the nodes and

distribute them to clusters while respecting maximum cluster size and number

of on-circle nodes divided by number of all nodes ratio. Then we create edges

between the nodes in different clusters with a total count of mic times and leaving

rest for inter-cluster edges. Each test is executed 10 times and the average is

taken. Figure 6.1 shows an example of a randomly generated clustered graph. ‘

30



CHAPTER 6. EXPERIMENTAL RESULTS 31

Figure 6.1: A randomly generated graph laid out by our algorithm. (n = 40,
m/n = 1.2, mic/m = 0.20, dmax = 10 and dmin = 2)

From the theoretical analysis given earlier, a quadratic behavior of execution

time is expected. The experiments validate this argument (Figures 6.2).

We have also performed a test set to see how the proportion of inter-cluster

edges to all edges affects the execution time (Figure 6.3). Running time seems

to be affected when the ratio is very low. This is due to the fact that, layout

of the quotient graph converges very quickly when there are very few number

of inter-cluster edges. However, early convergence does not exist when the ratio

gets bigger, therefore resulting in varying timings independent from the ratio.

Another experiment we have conducted was on the effect of cluster sizes on

execution time (Figure 6.4). When there are bigger clusters, quotient graph

tends to be smaller which results in faster layout times for the cluster graph. On

the other hand, layout of individual circles takes longer due to increasing size

of clusters. However, since the complexity of the algorithm [16] used for inner

layout of circles is linear, the time loss for this operation is compensated by the

cluster graph layout, which is quadratic. As a result, an increase in cluster sizes

results in a decrease in the overall running time.



CHAPTER 6. EXPERIMENTAL RESULTS 32

Figure 6.2: Number of nodes (n) vs. execution time of our algorithm. (m/n = 1.5,
mic/m = 0.10, dmax = 15 and dmin = 2)

Figure 6.3: Inter-cluster edge ratio (mic/m) vs. execution time of our algorithm.
(n = 500, m/n = 1.5, dmax = 15 and dmin = 2)



CHAPTER 6. EXPERIMENTAL RESULTS 33

Figure 6.4: Maximum cluster size (dmax) vs. execution time of our algorithm.
(n = 500, m/n = 1.5, dmin = 2 and mic/m = 0.10)

The last observation we made was on the effect of the difference between

maximum and minimum cluster sizes on execution time (Figure 6.5). The purpose

of this test is to observe how uniformity of cluster sizes affects the results. As it

can be seen from the resulting chart, non-uniformity has a positive effect on the

execution time. Differences between cluster sizes help the nodes move more freely

during quotient graph layout. In other words, smaller clusters can more easily

move around bigger circles, hence approaching to convergence faster by relaxing

more edges on each iteration.

6.2 Quality

In our experiments, quality of the layout algorithm is also inspected according

to the aesthetic criteria defined in Section 1.1. In general, the results produced

by the algorithm are satisfactory in terms of node-node overlapping and drawing



CHAPTER 6. EXPERIMENTAL RESULTS 34

Figure 6.5: Maximum-minimum cluster size discrepancy (dmax - dmin) vs. execu-
tion time of our algorithm. (n = 500, m/n = 1.5, dmax = 44 and mic/m = 0.10)

area. Nodes almost never overlap due to repulsion forces. On the other hand,

they stay sufficiently sufficiently close to each order, resulting in a tight and

compact drawing. Drawing area is uniformly occupied by clusters preserving the

symmetry of the visualization.

On the other hand, it is difficult to state edge lengths to be uniform. This is

due to two main reasons:

• Intra-cluster edges usually have varying lengths because of the circular po-

sitioning of nodes. Since minimizing edge crossings is highest priority and

nodes are placed at a fixed distance from each other, the edge lengths will

inevitably vary according to the order of nodes around the circle.

• Inter-cluster edges might sometimes be arbitrarily long because of the un-

achievable swaps. Swaps are requested as a result of opposite spring forces

caused by long incident edges acting on two on-circle nodes. Since highest

priority is minimizing edge crossings, we never swap those two nodes if the



CHAPTER 6. EXPERIMENTAL RESULTS 35

swap would introduce new edge crossings. However, if such swaps were

performed, spring forces acting on these nodes would relax by the help of

shortened inter-cluster edge lengths. In other words, such a precaution

on swap operations prevents new edge crossings at the cost of longer edge

lengths than the desired.

For a better evaluation of the layout quality, we compared our algorithm with

the circular clustered layout algorithm in the Graph Layout Toolkit (GLT)[7].

Since the details of this algorithm implemented as part of a commercial tool are

not available, we have compared our algorithm with theirs for one of the two

similar graphs provided in their papers. (Figure 6.6). As you can see, the major

drawback of their algorithm is that when the cluster graph is cyclic, non-tree parts

of the cluster end up on a single large backbone circle in the middle, introducing

many inter-cluster edge crossings. Also notice that inter-cluster edges are very

long compared to their intra-cluster counterparts.

Figure 6.6: Two layouts of the same graph: CiSE on the left and circular layout
of GLT on the right [13].

The algorithm in [26], on the other hand, is able to handle clustered layout

only when the quotient graph is a tree, therefore we did not include this algorithm

in the comparison.



Chapter 7

Conclusion

In this study, we have presented a new algorithm for layout of clustered graphs in

a circular fashion. To our knowledge, this is the first layout algorithm that uses

a force directed scheme in order to create circular drawings of clustered graphs.

It addresses layout of the quotient graph and can handle non-uniform node di-

mensions. The main novelty of our work is the use of a modified spring embedder

that treats clusters and edges between them as part of a physical system while

keeping circular layout for each cluster at an optimal quality level. The algo-

rithm produces successful results in terms of both time complexity and aesthetics

criteria.

On the other hand, there is still room for improvement. In order to reach

convergence earlier, oscillations caused by repetitive swaps between same nodes

in consecutive iterations should be carefully studied. Although there are sev-

eral checks for preventing them, more advanced handling of the cases where such

oscillations might occur should be performed. Moreover, any improvements on

clipping point/rectangle calculations would end up in a considerable decrease in

overall running time because spring and repulsion force computations heavily de-

pend on clipping point/rectangle detection. Another improvement for the current

system would be to support multi-level or recursively structured clustered graphs.

36



Appendix A

Sample Drawings Produced by

CiSE

37



APPENDIX A. SAMPLE DRAWINGS PRODUCED BY CISE 38

Figure A.1: A drawing created by CiSE



APPENDIX A. SAMPLE DRAWINGS PRODUCED BY CISE 39

Figure A.2: A drawing created by CiSE



APPENDIX A. SAMPLE DRAWINGS PRODUCED BY CISE 40

Figure A.3: A drawing created by CiSE



APPENDIX A. SAMPLE DRAWINGS PRODUCED BY CISE 41

Figure A.4: A drawing created by CiSE



APPENDIX A. SAMPLE DRAWINGS PRODUCED BY CISE 42

Figure A.5: A drawing created by CiSE



APPENDIX A. SAMPLE DRAWINGS PRODUCED BY CISE 43

Figure A.6: A drawing created by CiSE



APPENDIX A. SAMPLE DRAWINGS PRODUCED BY CISE 44

Figure A.7: A drawing created by CiSE



APPENDIX A. SAMPLE DRAWINGS PRODUCED BY CISE 45

Figure A.8: A drawing of a graph containing non-uniform node dimensions cre-
ated by CiSE.



APPENDIX A. SAMPLE DRAWINGS PRODUCED BY CISE 46

Figure A.9: A drawing of a graph containing also un-clustured nodes as well as
clustered ones created by CiSE. Un-clustered nodes are represented by circles.



APPENDIX A. SAMPLE DRAWINGS PRODUCED BY CISE 47

Figure A.10: A drawing of a graph containing also un-clustured nodes as well as
clustered ones created by CiSE. Un-clustered nodes are represented by circles.



Bibliography

[1] Govisual Software Libraries. Oreas GmbH., Köln, Germany.

http://www.oreas.com/.

[2] Aisee User Manual. AbsInt Angewandte Informatik GmbH., Saarbruecken,

Germany, 2000-2005. http://www.aisee.com/.

[3] Chisio: Compound or hierarchical graph visualization tool.

http://www.cs.bilkent.edu.tr/ ivis/chisio.html, 2007.

[4] M. Baur and U. Brandes. Crossing reduction in circular layouts. Technical

Report 2004-14, Universitat Karlsruhe (TH), Fakultat fur Informatik, 2004.

[5] D. Beyer. Ccvisu: automatic visual software decomposition. In ICSE Com-

panion ’08: Companion of the 30th international conference on Software

engineering, pages 967–968, New York, NY, USA, 2008. ACM.

[6] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing,

Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[7] U. Dogrusöz, B. Madden, and P. Madden. Circular layout in the Graph Lay-

out Toolkit. In GD ’96: Proceedings of the Symposium on Graph Drawing,

pages 92–100, London, UK, 1997. Springer-Verlag.

[8] P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered net-

works. Ars Combinatoria, page 21(A):8998, 1986.

[9] G. Erhard. Graphs as structural models: The application of graphs and

multigraphs in cluster analysis. Advances in system analysis vol. 4, 1988.

48



BIBLIOGRAPHY 49

[10] Q. Feng. Algorithms for Drawing Clustered Graphs. PhD thesis, 1997.

[11] Q.-W. Feng, R. F. Cohen, and P. Eades. How to draw a planar clustered

graph. In COCOON ’95: Proceedings of the First Annual International

Conference on Computing and Combinatorics, pages 21–30, London, UK,

1995. Springer-Verlag.

[12] A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for

undirected graphs. In R. Tamassia and I. Tollis, editors, GD ’94, volume

894 of Lecture Notes in Computer Science, pages 388–403. Springer-Verlag,

1995.

[13] E. Giral. A layout algorithm for undirected compound graphs. PhD thesis,

Computer Engineering Department, Bilkent University, 2005.

[14] V. Guernier, C. Sola, K. Brudey, J. F. Guegan, and N. Rastogi. Use of

cluster-graphs from spoligotyping data to study genotype similarities and

a comparison of three indices to quantify recent tuberculosis transmission

among culture positive cases in french guiana during a eight year period.

BMC Infectious Diseases, 8(1):46+, April 2008.

[15] D. Harel and Y. Koren. Drawing graphs with non-uniform vertices. In

Working Conference on Advanced Visual Interfaces (Proc. AVI’02), pages

157–166. ACM Press, 2002.

[16] H. He and O. Skora. New circular drawing algorithms. In Workshop on

Information Technologies - Applications and Theory (ITAT04), 2004.

[17] JViews User’s Guide. 94253 Gentilly Cedex, France, 2002.

http://www.ilog.com.

[18] T. Kamada and S. Kawai. An algorithm for drawing general undirected

graphs. Information Processing Letters, 31(1):7–15, April 1989.

[19] G. Karypis, V. Kumar, and V. Kumar. A parallel algorithm for multilevel

graph partitioning and sparse matrix ordering. Journal of Parallel and Dis-

tributed Computing, 48:71–95, 1998.



BIBLIOGRAPHY 50

[20] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs. The Bell system technical journal, 49(1):291–307, 1970.

[21] M. Lorr. Cluster analysis for social scientists / Maurice Lorr. Jossey-Bass,

San Francisco :, 1st ed. edition, 1983.

[22] E. Makinen. On circular layouts. International Journal of Computer, 1988.

[23] A. Quigley and P. Eades. Fade: Graph drawing, clustering, and visual

abstraction. pages 77–80. 2001.

[24] S. C. R. Brockenauer. Drawing Graphs Methods and Models, Chapter 8.

Drawing Clusters and Hierarchies. Springer Berlin / Heidelberg, 2001.

[25] H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM J. Sci.

Comput, 18:1436–1445, 1995.

[26] J. M. Six and I. G. Tollis. A framework and algorithms for circular drawings

of graphs. Journal of Discrete Algorithms, 4(1):25 – 50, 2006.

[27] H. Spath. Cluster analysis algorithms for data reduction and classifcation of

objects. Horwood, 1980.

[28] K. Sugiyama and K. Misue. A simle and unified method for drawing graphs:

Magnetic-spring algorithm. In R. Tamassia and I. Tollis, editors, Graph

Drawing (Proc. GD ’94), volume 894 of Lecture Notes in Computer Science,

pages 364–375. Springer-Verlag, 1995.

[29] S. Teng. Points, spheres, and separators: A unifed geometric approach to

graph partitioning. PhD thesis, School of Computer Science, Carnegie Mellon

University, 1991.

[30] Tom Sawyer Visualization Documentation. Tom Sawyer Software, Oakland,

CA, USA, 1992-2005. http://www.tomsawyer.com.

[31] Wikipedia. Cluster analysis. http://en.wikipedia.org/wiki/Cluster analysis,

2009.

[32] Wikipedia. Planar graph. http://en.wikipedia.org/wiki/Planar graph, 2009.



BIBLIOGRAPHY 51

[33] yFiles User’s Guide. yWorks GmbH, D-72076 Tübingen, Germany, 2002.

http://www.yworks.de.


