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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Tolga Can

Approved for the Institute of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Institute

ii



ABSTRACT

A CONTEXT AWARE APPROACH FOR ENHANCING
GESTURE RECOGNITION ACCURACY ON

HANDHELD DEVICES

Hacı Mehmet Yıldırım

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Tolga K. Çapın

August, 2010

Input capabilities (e.g. joystick, keypad) of handheld devices allow users to inter-

act with the user interface to access the information and mobile services. How-

ever, these input capabilities are very limited because of the mobile convenience.

New input devices and interaction techniques are needed for handheld devices.

Gestural interaction with accelerometer sensor is one of the newest interaction

techniques on mobile computing.

In this thesis, we introduce solutions that can be used for automatically enhancing

the gesture recognition accuracy of accelerometer sensor, and as a standardized

gesture library for gestural interaction on touch screen and accelerometer sensor.

In this novel solution, we propose a framework that decides on suitable signal

processing techniques for acceleration sensor data for a given context of the user.

First system recognizes the context of the user using pattern recognition algo-

rithm. Then, system automatically chooses signal filtering techniques for recog-

nized context, and recognizes gestures. Gestures are also standardized for better

usage.

In this work, we also present several experiments which show the feasibility and

effectiveness of our automated gesture recognition enhancement system.

Keywords: Gestural interaction, gesture, computer graphics, accelerometer sen-

sor, signal processing.
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ÖZET

ÇEVRE FARKINDALIĞI TABANLI YAKLAŞIMLA
TAŞINABİLİR BİLGİSAYARLARDA İŞARET

TANIMASI HASSASİYETİNİN ARTTIRILMASI

Hacı Mehmet Yıldırım

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. Tolga K. Çapın

Ağustos, 2010

Mobil cihazların tuş takımı ve kontrol kolu gibi veri girişini sağlayan kabiliyet-

leri, kullanıcının kullanıcı ara birimi yoluyla bilgiye ve mobil servislere ulaşmasını

sağlar. Fakat bu veri girişi kabiliyetleri mobil kullanımdan dolayı sınırlıdır. Mo-

bil cihazlar için yeni veri giriş cihazları ve teknikleri gerekmektedir. İvme ölçer

kullanarak işaretlerle etkileşim mobil cihazlarda en yeni etkileşim yöntemlerinden

biridir.

Bu tezde önerilen çözüm, otomatik olarak ivme ölçer işaretlerinin tanınmasının

iyileştirilmesinde, dokunmatik ekran ve ivme ölçer işaretlerinin standart

kütüphanesi oluşturulmasında kullanılabilir.

Sunulan çözümde, ivme ölçer işaretlerini tanımak için uygun olan sinyal işleme

yöntemleri otomatik olarak belirlenmektedir. Öncelikle, sistem örüntü tanıma

algoritması kullanarak kullanıcının hareketini tanır. Daha sonra, sistem otomatik

olarak kullanıcı hareketine uygun veri işleme yöntemini seçer ve işaretleri algılar.

Ayrıca işaretler daha iyi kullanım için standart hale getirilmişlerdir.

Bu çalışmada ayrıca, önerilen otomatik işaret tanıma iyileştirme sisteminin etkili

ve uygulanabilir olduğunu gösteren birkaç kullanıcı testine de yer verilmektedir.

Anahtar sözcükler : İşaretlerle etkileşim, işaretler, bilgisayar grafiği, ivme ölçer,

sinyal işleme.
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Chapter 1

Introduction

Modern handheld devices enable users to access a wide variety of information

and communication services. Handheld devices are used by people of all ages,

occupations and abilities, who care about acquiring access to the information

and services, anytime anywhere. Input capabilities (e.g. joystick, touch screen,

keypad, accelerometer sensor and camera) of these devices allow users to interact

to access the information and services. These input capabilities are very limited

because of the mobile convenience.

Handheld devices have been pervasive in our daily lives because devices are

more capable of understanding the needs of the user and respond to them in

a more sensible manner. Their computational power, long battery life, video

processing capability, advanced display, GPS hardware, touch screen sensor, ac-

celeration sensor and camera have given the user a great opportunity to use them

across an increasing range of places and contexts. As mobile phones have be-

come more ubiquitous, they have also gained features such as internet browsing,

route navigation, music/video playing and office application capabilities. These

various kinds of capabilities, available in any contexts, allow user to enjoy the

service benefits anywhere they want. People interact with their mobile devices

any time, even while waiting for a bus on the platform, talking with friends on a

cafe, crossing a road on foot, cycling and travelling in car.

1



CHAPTER 1. INTRODUCTION 2

For mobile convenience, handheld devices do not have keyboard and touch-

pad developed for notebooks, instead they have keypad, stylus pen or touch

screen. Modern handheld devices also provide advanced input capabilities. Mul-

tiple touch screen and camera are the most popular and common advanced input

technologies. However, input capabilities of these devices are not limited to these

input devices. Accelerometer sensor can also be used as an input device to in-

teract with the handheld device, because of its ubiquitous support on handheld

devices.

The prevalence of the accelerometer is attributed to its numerous advantages

over other sensors. It is lightweight, small, and inexpensive. It consumes small

amounts of energy. It is self-operable, meaning that it does not require infras-

tructure for operation. This information can be used for contextual information

regarding user’s movement (e.g. walking, cycling, running) and the size and

moving directions detected from acceleration sensor can be used to classify user

gestures.

Motivation

The PC form factor cannot be used in smaller sizes. Hardware, input device, user

interface and interaction techniques need to be designed for mobile usage. User

cannot pay attention to the provided information by handheld device and interact

with the handheld device in a dynamic and complicated mobile environment.

Therefore, user interface, input devices and interaction techniques of the device

should be changed to have an effective usage while user is moving.

Desktop and notebook PCs’ input devices (e.g. mouse, keyboard, keypad

and touchpad) have standardized functions on the same input type. User does

not need to learn new interaction techniques when she changes the keyboard.

Right arrow key of all the keyboards have the same function on the user interface

or all the right button of all the mice have the same function. On the other

hand currently interaction techniques for handheld devices do not allow users

to interact with the device intuitively. Current interaction models for handheld

devices depend on buttons. This provides the user the functionality to use simple

menus but this is not very easy to use and it is not intuitive. To provide a more
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intuitive and easy to use interaction system for handheld devices touch screen and

acceleration sensor are used. Touch screen and accelerometer are used as gestural

input devices. These gestures are not standardized. User needs to learn every

gesture when changing the handheld device. Every handheld device has own

gesture library and gesture meanings; so, interaction with accelerometer sensor

and touch screen is not easy and learning the gesture library takes long time.

Unlike ordinary desktop and notebook PCs, handheld devices are not used

on the pre-assumed situations. When a desktop or a notebook PC is developed,

developers assume that these devices are used in a fixed state on a table, or on

a surface that is not moving and by people who is paying full attention. In spite

of the fact that handheld devices interaction techniques and user interfaces are

inherited from an ordinary desktop PC, handheld devices are not used in fixed

surface or in a stable state as in pre-assumed for desktop PC. For example a

handheld device user is in a situation that he is walking, maintaining awareness

of the surroundings, avoiding obstacles and using a device that is itself in motion.

To make the handheld device more user friendly, the gap between an assumption

for ordinary PCs (e.g. input by typing on a large keyboard which is fixed on the

desk) and an actual use case on the handheld device (e.g. input by typing on a

tiny keypad on the train) has to be closed.

Overview of the System

Handheld devices’ compact form has the advantages of mobility, but also imposes

limitations on the interaction methods that can be used. With handheld device’s

compact form, keyboards are so small, difficult and even impossible to use. On the

other hand, because of their compact form displays are so small, which makes it

harder to interact with the touch screen with fingers. Therefore, button based and

touch screen interaction is not sufficient and intuitive. In this study acceleration

based interaction method is examined and tested. This interaction method is very

intuitive because of the metaphor of realistically responding physical objects on

the user interface.

Compared to desktop computers the use of the handheld devices is more in-

timate because handheld devices have become a part of daily life. People use
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handheld devices in many different, dynamic and complicated mobile environ-

ments so designers do not have the luxury of forcing the user to assume the

position to work with these devices, as is the case with desktop computers. On

the other hand using acceleration based interaction techniques will fail on the dy-

namic environment because device could not recognize the command of the user

among the noisy environment. When the user needs to enter an acceleration based

gesture command to the device when running, device needs to have the ability to

identify the rhythmic movement due to running and the intended user command.

In this study we have proposed a context aware signal filtering technique to use

accelerometer based interaction technique in a dynamic environment.

Challenges

Developing a standardized gesture library for handheld devices using touch screen

and accelerometer sensor is a challenging job due to several reasons. First of all,

since the possible user range is wide, gesture library should be simple and intuitive

enough for the users with basic knowledge; however it should satisfy the needs

of a complex user at the same time. Secondly, all the gestures in gesture library

should be mapped into the real physical world. For example move gestures in the

library should be mapped to real world moving movements: gravity forces objects

to slide towards to the centre of the earth, this is a natural phenomenon. When

a table has an angle to the right, objects slide to the right due to the gravity

forces. In a handheld device, screen has an angle to the right to make the objects

on the screen slide to the right.

Developing a gesture recognizer with accelerometer sensor for handheld de-

vices is also a challenging job due to the noisy data of the acceleration sensor.

First of all, the user of the handheld device is not a stable state. Handheld de-

vice is used when walking, running, cycling, and etc. Due to the movement of

the device, signals of the accelerometer sensor are noisy. Secondly, accelerometer

sensors are not accurate; they produce noisy data, even if they are in a stable

state. Therefore, recognizing gestures by using these noisy data is challenging.

Summary of the Contributions The contributions of this thesis can be sum-

marized as follows:
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• A survey on context aware systems, signal processing of the acceleration

sensor, and gestural mode interaction techniques with handheld devices,

• A standardized gesture library for accelerometer sensor and touch screen to

combine all the known gestures and proposed functions of these gestures,

• An activity recognition system for handheld devices,

• A signal processing algorithm to automatically determine the proper signal

processing method according to the context of the user,

• A tool, for application developers, to recognize gestures by using signal

processing according to user’s context,

• An experimental study to evaluate the effectiveness of the proposed algo-

rithms.

Outline of the Thesis

• Chapter 2 presents a comprehensive investigation of the previous work on

the topic of User’s Context Aware Systems, signal processing of acceleration

data, and gestural mode and interaction techniques with handheld devices.

• In Chapter 3, architecture of our proposed system and subsystems for con-

text awareness and signal processing are explained in detail.

• In Chapter 4, our proposed subsystems for gesture design and gesture recog-

nition are explained in detail.

• Chapter 5 contains the result of an experimental evaluation of the proposed

system.

• Chapter 6 concludes the thesis with a summary of the current system and

future directions for the improvements on this system.



Chapter 2

Background

This chapter is mainly divided into three sections. In the first section, context

awareness systems are investigated, while the second section presents the signal

processing of the acceleration sensor signals. In the third section, gestural mode

of interaction with handheld devices is investigated.

2.1 Context Awareness

2.1.1 Definition of the word “Context”

The word context is defined as “the situation within which something exists or

happens, and that can help explain it” [23]. However, this definition cannot help

to understand the concept in computer engineering. The term context is used

in different areas of computer science, such as context sensitive user interface,

context search, contextual perception, and so on. In this section, only the con-

text used by applications in mobile computing is examined. Researchers have

attempted to define the term in computer engineer point of view. In literature

the term context aware appeared in Schilit and Theimer [65] for the first time.

The authors described the term as location, identities of nearby people, objects

and changes to those objects. In another study, Schmidt et al. define context

6
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as “the knowledge about user’s and IT device’s state, including surroundings,

situation, and to a less extent, location” [66]. Dey defines context as [2]:

“Any information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered relevant to

the interaction between a user and an application, including the user and

application itself.”

Researchers divide the term “context” into categories for better understand-

ing. Schilit divides context into three categories [64]:

• Computing context, such as network bandwidth, network connectivity, net-

work cost and nearby resources such as printers.

• User context, such as user’s location, social situation, mood, people nearby.

• Physical context, such as light level, noise level, temperature.

Chen adds the fourth category in context [15]:

• Time context, such as time of the day, week, month, season and year.

2.1.2 Location Aware Systems

We focus on user context and in this subsection context aware systems are inves-

tigated. Early work in context awareness focused on location aware systems. The

history of context aware systems started when Want et al. introduced the Active

Badge Location System [75], which is considered to be one of the first context

aware applications. Want et al. have designed a system presenting the location

of the users to the receptionist. The receptionist forwards the phone calls to the

user’s nearest telephone, by tracking the user’s location. This study shows that

context aware systems are very useful and could be used for the practical usage.
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After Active Badge system with the help of digital telephony, systems that au-

tomatically forward the phone calls have been designed. After using the system,

designers have observed that people want to have more control on forwarded calls.

For example, people prefer not to take calls when they are having a meeting; thus

more complex and intelligent context aware systems are needed.

Researchers have developed a similar system to the Active Badge System

that forwards messages instead of phone calls. Munoz et al. have presented a

context aware system that support information management of a hospital [52]. All

personal of the hospital is equipped with mobile devices with the context aware

system to write messages. These messages are sent when specified circumstances

are occurred. For example a user can identify a message that should be delivered

to the first doctor who enters room number 115 between 8:00 am and 9:00 am.

The contextual elements of the system are location, time, and role of the user.

After the success of Active Badge System, Bennet et al. have designed a new

system called Teleporting [10], which dynamically maps the user interface onto

the resources of the surrounding computer systems. This system is based on the

Active Badge System and can track the user location while they move around.

A new version of the system has been developed by Harter et al. that uses a

new location tracking system called the Bat [33]. The Bat uses both ultrasonic

and radio signals to precisely locate the user. Pham et al. have also developed

a similar context aware system that is aimed to augment mobile devices with

the computational power of the surrounding resources. This system is called

Composite Device Computing Environment [58], uses location aware application

to locate the mobile device.

After the Bat system, researchers have tried to find new precise and effective

location detection systems. One of these researhers is Want. Want et al. have

designed a system that detects the location of the user, by the wireless network

system and faces of the users are displayed at the location of the people on the

map [76], [77]. This map is updated in every few seconds to locate people easily.

Another similar approach to the location aware systems is a shopping asistant.

Asthane et al. have introduced a system that uses a wireless location awareness
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system to assist to the shoppers [6]. The wireless location aware system detects

the location of the shopper within the store and guides the shopper through the

store. System helps user to locate items, provide details about the items, and

points the items on sale. Another asistant has been developed by Dey et al [22].

This asistant is not for shoppers, instead of them the system serves for confer-

ence presenters. The asistant uses the user’s current location, current time and

schedule of presentations to examine the conference schedule, user’s current lo-

cation and user’s research interest to suggest the presentations to attend. When

the user enters the presentation room, the asistant automatically displays infor-

mation about the presenter and the presentation. Integrated audio and video

recorders record the presentation for later retrieval.

Tourist guides are one of the applications of location aware systems. Long

et al. have designed and developed a tourist guide called the Cyberguide [46].

The system is an electronic tourist guide that is equipped with a context aware

system. The guide uses GPS and infrared sensors for indoor and outdoor location

awareness, and provides information services for users about the current location

and suggests places. The guide also keeps a trip diary using the location and

time information of the user. Abowd et al. have also developed a tourist guide

[1] that provides information services about the current location. this guide uses

location and time awareness. Another tourist guide is the GUIDE system [19] that

developed by Davies et al. at the University of Lancester. GUIDE is an electronic

tourist guide for visitors to the city of Lancester , England. The system is context

sensitive. For the museums, small scaled indoor versions of the tourist guides are

developed [9], [69], [55]. In these small scaled versions, location and orientation

information is used to understand the context of the users.

One of the popular application of location aware systems is logging the users’

activities. Researchers at University of Kent at Canterbury [56], [57] have de-

veloped a system that automatically record information about workers. System

uses user’s location, time information and displays workers location on a map.

Another logging application is ComMotion [50]. Marmasse et al. have developed

a system that is called the ComMotion [50]. The system uses both user’s location

and current time. When a user arrives at a pre-entered destination a reminder
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message is created. The ComMotion is also used for logging the location of the

users. The message delivered via voice synthesis without requiring the user to

hold the device and read the message on screen.

2.1.3 Activity Aware Systems

After location aware systems, the need to know about the activity of the user

has appeared and researchers focused on activity aware systems. One of the first

studies on activity aware systems is based on an office assistant. Yan et al. [81]

have developed a system that is an assistant for the offices. System uses office

owner’s current activity and schedule. System interacts with the visitors and

manages the office owner’s schedule. System uses pressure sensitivity sensors to

detect visitors, which are activated when a visitor is approaching. It adapts the

system according to contextual information such as identity of the visitor, office

owner’s schedule, and office owner’s status.

Activity aware systems are very useful and accurate when they are mobile.

One of the first mobile activity aware systems have designed by Randell. The

system uses a single biaxial accelerometer to identify the activity of user [60].

System is worn in a trouser pocket. Randell have tried to minimize number of

accelerometer devices needed so a single biaxial accelerometer sensor is used. To

identify the activity of the user neural network analysis is used. The recognizer

calculates the RMS and integrated values over the last two seconds for both axes

to recognize context of the user. The system identifies six activities: walking, run-

ning, sitting, walking upstairs, downstairs, and standing. Mantyjarvi et al. [48]

have also applied neural networks to human motion recognition. Their feature

vector is created with principle component analysis and independent component

analysis from a pair of triaxial acceleration sensor attached to the left and right

hips. Gyorbiro et al. have developed another mobile system that recognizes and

records user’s activities using a mobile device [31]. The context awareness is used

for life logging. The system uses wireless device called MotionBand [38]. Main

applications are life logging and calculating energy consumption for sportsmen.
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Gyorbiro is not the only one who studies about activity aware systems in mo-

bile devices. Siewiorek has also designed and implemented mobile context aware

systems. The system is called SenSay (sensing and saying). Sensay is a con-

text aware mobile phone that adapts to dynamically changing environment and

physiological states [67]. Accelerometer sensor, light sensor, and microphone are

located various parts of the user to identify user’s context. Sensay adjusts ringing

volume level, or vibration according to user’s context. The system also provides

the caller with feedback of the current status of the user.

One of the important areas of motion recognition is healthcare. Jin et al.

have developed a health care system that uses an accelerometer sensor to identify

the context of the user [36]. Context of the user is used to recognize emergency

situations. System uses an arm band that is embedded with an accelerometer.

Arm band collects accelerometer sensor data containing the longitudinal acceler-

ation average, the transverse acceleration average, the longitudinal acceleration

mean of absolute difference. Chen et al. [16] also have implemented a mobile

device based system for multiple vital signs monitoring. The system can detect

if a monitored patient falls using a wireless acceleration sensor. The system can

alert care provider. Another healthcare study has been done by Mantyjarvi [51].

In this study, accelerometers are used to detect symptoms of Parkinson’s disease.

Researchers have realized that activity aware systems are very useful for patients,

and patients need to be observed by nurses. Lustrek et al. have developed a fall

detection system that do the observation of patients automatically, called the

Confidence. The system uses user’s activity. The Confidence monitors the user’s

activity and raises an alarm if a fall is detected, system warns of changes in

behavior that may indicate a health problem [47].

Lately, wireless accelerometer sensors have become available, enabling mea-

surements in more comfortable settings. Bao et al. have presented a study about

activity recognition from user annotated acceleration data. In this study context

awareness algorithms are developed and evaluated to detect physical activities.

System uses five small biaxial accelerometer sensors worn simultaneously on dif-

ferent parts of the body [7]. Decision table, instance based learning, C4.5 decision

tree, and naive bayes classifier from Weka Machine Learning Algorithms Toolkit
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are used to classify acceleration sensor data. Twenty everyday activities are tried

to be detected. Utilizing the same toolkit but only a single triaxial accelerometer

worn in the pelvic region, Ravi et al. [61] have studied the performance of base

level classifier algorithms.

2.1.4 Hybrid Aware Systems

Information about location or activity of the user is important. However, know-

ing only one of them is not enough for some applications. Application need to

know about activity of the user, location of the user, nearby people, and nearby

objects at the same time. One of the first studies about hybrid aware systems

is about publishing user information. Voelker et al. have developed a system

called Mobisaic [73]. Mobisaic is an extended standard web browser that sup-

ports active documents. Active documents are the web pages with the embedded

environment variables. Environment variables are location, activity, nearby peo-

ple, and nearby objects. Whenever the environment variables change, the system

updates the webpage of the user.

Brown et al. [13] have also designed and developed a context aware system

that can detect user’s location, nearby people and nearby objects. The system

can send messages to people who don’t have a paging device. The system can

detect the closest person and route the message to the closest person with a

paging device. Brown et al. [12] also developed a system that can locate a book

and broadcast a message to the nearer people to the book, whoever encounters

this book will pick it up for the requester. This context aware system uses user’s

location, nearby people and objects.

Another hybrid context aware system has been designed and developed

Schmidt et al. The system is called Technology for Enabling Awareness (TEA)

[66] system. Application detects user’s activity, light level, pressure and proxim-

ity of other people. In a mobile device, system adapts the font size to the user

activity. A larger font size is used when user is moving and a smaller font size is

used when user is stationary. TEA also changes the current profile according to
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the user’s context. Mobile device adjusts the ring volume level, vibrate, silent de-

pending on whether the mobile device is in hand, on a table, or in a suitcase. Lee

and Mase [43] have also developed an activity and location aware system using

combination of biaxial accelerometer, compass and gyroscope. The classification

technique is based on a fuzzy logic reasoning method.

2.2 Signal processing of acceleration sensor data

Modern handheld devices enable users to access a wide variety of information

and communication services. Handheld devices are used by people of all ages,

occupations and abilities, who care about acquiring access to the information

and services anytime anywhere. Input capabilities (e.g. joystick, touch screen,

keypad, accelerometer sensor and camera) of these devices allow users to inter-

act with the user interface to access to the information and services. However,

these input capabilities are very limited and some of them are not very accurate.

This section examines the studies on how to treat the signal of input devices to

recognize gestures in an accurate way.

One of the important studies in signal processing of acceleration data has been

presented by Jang et al. [35], focusing on how to recognize gestures precisely by

signal processing. They have proposed a system that is used in mobile devices and

interaction of the system is made by acceleration gestures. The purpose of using

gesture recognition in mobile devices is to provide easy and convenient interfaces.

The application uses low pass filtering, thresholding, high pass filtering, boundary

filtering, debouncing filtering to filter acceleration data to precisely recognize

gestures.

Wieringen et al. have developed a fall detection and medical patient moni-

toring device [72]. The system monitors the user’s activity and raises an alarm

or calls the operator for help if a fall is detected. The goal of this research is

to develop a wearable sensor device that uses an accelerometer for monitoring

the movements of the user to detect falls. The data coming from accelerometer
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sensor is processed in real time. In the system, low pass filtering and thresh-

olding is used to filter the accelerometer data. On another study, Marinkovic

et al. [49] have presented another fall detection and medical patient monitoring

system. The fall detection is done by monitoring subsystem in the form of body

area sensor network. System uses thresholding and high pass filtering to filter

the acceleration sensor data.

Liu et al. have presented a new technique to recognize acceleration gestures

[45]. This new technique is called uWave. The uWave is an efficient gesture

recognition algorithm that uses a triaxial acceleration sensor. Unlike statistical

methods, uWave requires a single training sample for each gesture pattern. The

system allows the users to employ personalized gestures and physical manipula-

tions. Thresholding is used for signal processing of the acceleration sensor data.

Liu et al. have also proposed a system that allows users to authentication on

uWave with a single triaxial acceleration sensor [44]. In the study, authors report

a series of user studies that evaluate the feausibility and usability of user authen-

tication with a single triaxial acceleration sensor. The authentication system also

uses thresholding for signal filtering.

Agrawal et al. have presented a system called PhonePoint Pen [4] that uses

the built in accelerometer in mobile device to recognize human hand writing. A

user can write short messages and draw simple diagrams in air by holding the

mobile device like a pen. The system uses a single triaxial acceleration sensor.

To recognize user’s handwriting system needs to filter the background noise. To

filtering noisy data the PhonePoint Pen system smooth the accelerometer readings

by applying a moving average over the last n readings (n is seven in the study).

Tanviruzzaman et al. have proposed an adaptive solution to secure the au-

thentication process of mobile devices. The system is called ePet [70]. Gait

and location information are used for authentication process. The mobile device

learns the attributes of the owner like his voice, hand geometry, user’s daily walk-

ing patterns, user’s specific gestures and remembers those to continually check

against the stealing. The ePet uses single triaxial accelerometer and GPS module

to record gait and location information. Authors used high-pass filtering on the
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accelerometer’s raw data to get rid of the gravitational effects and find out the

instantaneous movement of the device.

Zang et al. have presented a novel gesture recognition method [84]. It is

designed and implemented for keyless handheld devices. The system contains

a trixial accelerometer sensor and a single chip microcontroller which is used

for gesture recognition. User moves the mobile device in air like a pen and

initializes gesture or writes letters. System uses a basic signal filtering technique.

Accelerometer raw data is filtered by a threshold. The system also keeps the first

peak that appeared in the sequence of the raw acceleration data and filters the

second or third peaks which will output an unwanted result.

2.3 Gestural mode and interaction techniques

in mobile devices

2.3.1 Experimental User Interfaces

Handheld devices of these days, are more capable of understanding the needs of

the user and respond them in a more sensible manner. Their computational power

and hardware properties like acceleration sensors, cameras, graphic hardware, etc.

give the designer and programmer a great opportunity to design much more user

friendly user interfaces. The proposed solution to the problem is developing a

dynamic user interface with gestural mode of interaction. Related studies about

dynamic user interfaces and gestural mode of interaction are discussed below.

In a study by Kane [40], contextual factors are taken into account and a walk-

ing user interface (WUI) is designed. The author claims that contextual factors

such as walking reduce the user performance. According to this assumption, he

changed the button size and layout of the UI, and tested on different users for

dynamic button sizes and different layouts. When in walking mode, buttons are

extended in size. Results show that using dynamic UI increases the usability.
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In another study by Kane [39], a conceptual study is done. In this study,

he uses device sensors to get environmental factors. For different environmental

factors, different UI components are launched. Environmental factors can be

crowded places, bumpy bus, noisy places or device in pocket. Different solutions

for different environments are proposed such as increasing font size, or voice

activation enabling.

Yamabe et. al. [79] studied on a similar topic. In his study, he detects the

movement by acceleration sensor and uses it in two different applications. The

first application uses the font size. If the user is stationary then font size is small

and user can see more text on the screen. If the user starts to walk then font size

increases, therefore, readability increases. A similar method is used for an image

viewer. If the user is stationary, the image is small and if the user is moving then

the image becomes bigger. This study covers only font size, and a complete UI

has not been studied.

Yamabe et. al. [80] has reported a second study that needs less attention

on car map navigation systems. This study is a good example of experimental

interfaces. UI displayed for the user what to do next instead of a complex map

and navigation information.

2.3.2 Experimental Interaction Techniques

As handheld devices become more popular, studying direct manipulation inter-

faces for different applications becomes important. Although applications with

a direct manipulation interface are highly used by many people on PCs, still

some problems exist due to the limitations of mobile environments. One of the

proposed solutions is developing a gesture based direct manipulation interface.

This interface serves the purpose of navigating over user interface elements and

documents more efficiently.

One of the first researches on interaction techniques is the Chameleon Sys-

tem [27], [28]. This system uses accelerometer sensors to understand the physical
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orientation and movement of a small palmtop. The system consists of a small

palmtop and a workstation. The palmtop device has accelerometers so the inter-

action is done via the palmtop and calculations are carried on the workstation

side. Design of the system allows detection of x, y, z coordinates and pitch, yaw,

roll rotations of the palmtop.

After Chameleon system, more advanced interaction devices have been an-

nounced. One such system is the peephole metaphor system by Yee [82]. This

system uses a handheld device with a small display. With this small display, users

can see large documents, maps and images by moving the device. Device is seen

like a window to the document and the user moves this window to see the unseen

part of the document. This device has a display and a mouse-like control and

input device to understand the two-axis movement of the display. This system

does not use accelerometer sensors, but it has a new interaction technique to see

larger documents than the screen itself.

Another interaction technique was proposed by Eslambolchilar [25]. The tech-

nique is called Speed Dependent Automatic Zooming (SDAZ). This system has

a handheld device to display the document and an accelerometer sensor to un-

derstand the orientation of the system. The system uses a dynamic approach to

manipulate the documents. The level of detail that is seen by the users is not the

same when the document is moving and standing. In other words, the system

decreases the level of detail of the document when it is scrolled fast. Decreasing

the level of detail is done by zooming out and when user stops scrolling, the zoom

level is increased to allow the user to view the document.

Another study carried by Decle and Hachet [20] showed that using touch

screen as a trackball can be efficient for users to control 3D data in screen. They

used touch screen to get the thumb movement performed on screen and use it as

a virtual trackball. As an example, user can directly manipulate a 3D sculpture

around its axis.

Another study, using tilt control to navigate over documents has been done

by Hinckley [34]. Hinckley made an experiment to examine various interaction

techniques. Users of the tilt control system learned the device, and mastered the
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control of the device in a short time but they had complaint about missing the

target and the low accuracy of the system. The tilt control users have found the

system difficult to use for longer periods.

2.3.3 Gesture Based Interaction

There have been various proposed solutions for gesture based interaction. These

studies generally are carried for mouse, accelerometer sensor or touch screen de-

vices. The following studies are capable of handling the needs of handheld devices.

One of the first studies on using accelerometer as an input device is tilting oper-

ations by Rekimoto [62]. He uses tilting and button pressing for menu selection

and map browsing. Instead of using classical input method such as keyboard and

mouse, tilting is used as an input method. Cylindrical menu and pie menu have

been designed and implemented to test the tilting operations. Also, he has tested

the tilting operations on a map browser to see how it is on navitagating on a

large 2D space. Tilting gesture is designed to use the mobile device only with

one hand so only one hand is required to hold and control the device. In this

study acceleration sensor is used like a joystick. Acceleration sensor is used as an

external input device not an integrated one. Only four basic joystick movement

gestures are implemented. The system is also used for displaying 3d objects in

a 2d screen. This system understands the rotation of the device and user can

examine the various sides of the virtual 3d object on the handheld display.

Joselli et al. have proposed a framework for touch and accelerometer gesture

recognition called gRmobile [37]. The gRmobile uses hidden Markov model for

recognition of gestures. This study tries to fulfill a gap on user interaction by

providing a framework for gesture recognition through touch input or motion

input. The gRmobile can be used for games and programs. In order to test the

accuracy of the recognition, a data set of gestures has been created and tested by

four different users.

Wobbrock et al. have presented a simple gesture recognizer to use in input

devices such as touch screen or accelerometer [78]. The system is a geometric
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template matcher that means given gesture is compared with predefined gestures.

The main idea of the study is developing a simple recognizer and in this study

very simple and cheap recognizer is developed. The system is all hundred lines

of code. After developing the system a user study has been performed with ten

subjects.

On gesture interaction there are several studies targeting stylus usage or mouse

usage. Bhandari [11] has proposed a research for gesture usage on mobile devices.

This work is more an investigation and experiment whether the gestures are us-

able and efficient for mobile systems. The study used an approach inspired by

participatory design, which allows end users to choose the correct gestures for dif-

ferent tasks. In the study a low fidelity but high resolution prototype of a mobile

device is creates. This mobile device with a big screen and no key is developed

and used as an experimental device. Bhandari focuses on studying the effects of

gestures on camera operation and picture management operations.Results were

promising, since gestures were found very usable by participants.

A number of research efforts have explored to use of accelerometer sensors to

provide additional input degree of freedom for navigation tasks on mobile devices.

Small and Harrison [68], [32] have proposed systems that the user can interact

with the display of the system to manipulate the document. Input of the systems

is the orientation and the position of the display.

Harrison et al. [32] have also used accelerometer sensor as an input device to

control the user interface of the mobile device. This study is a conceptual one to

understand the basics of tilt control. In this study, acceleration sensor and device

is examined together so user tilts the device not an external acceleration sensor.

To test the tilt control a book viewer and a sequential list are implemented. Only

four basic joystick movement gestures are implemented. After the user studies,

paper claims that tilt control is a natural way to interact with the computers and

tilt control provide a real-world experience. Similar to Harrison’s study, Small

and Ishii proposes a spatially aware portable display which use movements and

rotations in a physical space to control navigation in the digital space within

[68]. In the study a virtual window is designed and implemented to navigate on
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a virtual space. Accelerometer sensor is used to understand the movement of the

device. Only rotation movements are used as gestures.

An advanced study about the built-in sensor devices has been made by

Bartlett [8]. Bartlett proposed a handheld electronic photo album that uses pan-

ning and tilting gestures to interact with the album. A mobile device is designed,

implemented and constructed on the study. This device has an integrated ac-

celeration sensor to understand the rotational movement of the device and shake

gesture. Users can browse the photos by changing the rotation of the device. User

can navigate through the menus and select the menu item by gestures. Bartlett

made a study with the implementation of the system. Some participants of the

study found the device very natural, whereas other participants found the sensor

based approach more confusing.

Due to the limitations in the user interface, designing a single buttoned game

is extremely difficult. One of the new interaction techniques is investigated by

Chemini and Coulton. Chemini et al. have presented a new interaction mecha-

nism that uses accelerometer sensor [14]. The system uses gestures for interaction.

Authors present the design and user trials for a novel motion controlled 3d multi-

player space game. The results show that the experience of using an accelerometer

as an input device is seen fun and intuitive for expert and beginner users.

Another accelerometer based interaction technique has designed by O’Neill.

O’Neill et al. have presented a patient information system based on gesture

interaction [54]. They developed a gestural input system that provides a common

interaction technique across mobile and wearable computing devices. Gestural

input system is combined with speech output. The system is tested whether

or not the absence of a visual display impairs usability in kind of multimodel

application and the system is tested whether or not usability of the gestural

mode of interaction is enough to interact with the devices. As a result of the

study, gestural mode of interaction is found very intuitive and much more easy

to learn and do. Lantz et al. have also presented a system that supports gestural

interaction with mobile devices [42]. A pocket pc with a triaxial accelerometer

sensor is used as the experimental platform. Dynamic movement primitives are
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used to learn the limit cycle behavior associated with the rhythmic gesture.

Applications using accelerometer have been studied by researchers. One of

the examples is a photo album browser. Cho et al. have presented a photo album

browser on mobile devices to browse, search and view photos efficiently by gestu-

ral input [17], [18]. The system enables users to browse and search photos more

fluently and efficiently by gestural interaction. The system uses continuous input

from a triaxial accelerometer sensor to create tilting gestures and a multimodal

(visual, audio and vobrotactile) display. Cho et al. compare this tilt based inter-

action method with a button based interaction method by a quantitative usability

criteria and subjective experience. The proposed gestural input improves the us-

ability. Users understand the interaction with tilt based input easily because of

the metaphor of realistically responding physical objects. Another application

using accelerometer is a musical instrument. Essl et al. proposed an accelerom-

eter sensor based integrated mobile phone instrument [26]. The system is called

ShaMus. ShaMus is a sensor based approach to turning mobile device into a

musical instrument. ShaMus has two sensors, accelerometer and magnetometer.

Accelerometer sensor is used a gesture recognizer. The gestures that are entered

to the device are interpreted like musical notes. Three kind of gestures (striking,

shaking, and sweeping) are designed and implemented.

Not all the applications use accelerometer. One example is TinyMotion. Wang

et al. have presented TinyMotion [74], which is an application that recognizes

hand movement of the user. TinyMotion is a software approach for detecting

a mobile phone user’s hand movements. Recognition is done in real time by

analyzing image sequences captured by the built in camera. TinyMotion is used to

capture entered text on air. System uses handwriting recognition to recognize text

on air, and TinyMotion is used as a joystick for gaming purposes. The system is

also used as gesture recognition system for controlling the mobile device. Wang et

al. design and implement a contact viewer application, a map browser application,

a tetris game, a snake game, and a handwriting recognition application. A user

study with 17 participants is done after implementing the applications.
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System for Enhancing Gesture

Recognition Accuracy

3.1 Architecture

In this work, we propose a gesture recognition system that understands the con-

text of the handheld device’s user and adjusts different signal filtering technique

to acceleration sensor data according to the context of the user. In this system,

a standard gesture library is also designed to have a user friendly device. The

system automatically understands the activity of the user by pattern recognition

algorithm. The system we propose presents an algorithm for automatically se-

lecting the proper signal filtering technique for the current context of the user

and the filtering algorithm that provide better and more accurate noise filtering.

In the system, while automatically selecting the proper signal filtering tech-

nique for the current context of the user, we consider the acceleration on x, y

and z coordinate of the handheld device. The system takes the above items as

an input and calculates the current activity of the user. According to the current

activity of the user, proper signal filtering techniques are determined. Hence, our

system can be considered as a context aware system. Context aware systems are

described in Chapter 2.

22
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Figure 3.1: Overall System Architecture.

The general architecture of the automatical signal filtering enhancement pro-

cess can be seen in Figure 3.1. Our approach first determines the current activity

of the user on acceleration data with the help of pattern recognition algorithms.

The next stage is to decide on proper signal filtering technique. After selecting

the proper signal filtering technique, we apply these techniques to acceleration

data on x, y and z coordinates. In the next stage, by using filtered acceleration

data, gestures are recognized. Recognized gestures are turned to gesture events

and sent to the user interface of application.

Our approach first determines the current activity of the user on acceleration

data with the help of the pattern recognition algorithm. Context information

provided from context awareness part of the system is used to decide on proper

signal filtering technique to enhance gesture recognition accuracy. Using context

information on gesture recognition part of the system to change the state machines

to enhance gesture recognition accuracy is an alternative way. The alternative

way has three basic problems. The first problem is about the noisy data of

the accelerometer sensor. Accelerometers are not accurate devices; they produce

noisy data, even if they are in a stable state. Due to the movement of the user,

signals of the accelerometer are also noisy. To enhance the gesture recognition

rate noisy data need to be filtered. The second problem with this method is
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feasibility. Gestures are recognized in a standard way, independent from activity

of the user, because gestures are always the same. The user performs the gesture

always in same movements. While walking, running or standing, the user does

not need to change the way of performing the gesture. Therefore, changing the

state machines of gesture recognition part does not enhance the recognition rate,

and lower the usability of the device. The last problem with the alternative

way is about the performance. Using context information in higher level of the

system reduces the performance of the system. The performance in filtering is 5

ms, despite all the filters are active. The performance in gesture recognition is

lower than filtering (20 ms) despite there is no complicated state machine in this

stage. If context information is used in gesture recognition state, complicated

state machines are needed. Changing simple state machines to the complicated

ones dramatically reduces the performance.

3.2 Context Awareness

Our approach to the context awareness problem is modeling of the contexts with

statistics from training data. Samples of sensor data taken from each context

are examined to estimate probability densities corresponding to contexts. Once

the densities are calculated, the probability of being in a certain context can

be computed. To classify the acceleration data into distinct classes we employ

a Bayesian classifier. In this section we introduce the activity labels, feature

selection, and we examine the classification algorithm we use.

The architecture of the context awareness system can be seen in Figure 3.2.

Our context awareness system first performs feature extraction on acceleration

data. The next stage is to classify the extracted features. After classification

process, the system decides the context information. Input of the context aware

system is acceleration data and the output is context information.
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Figure 3.2: Architecture of the Context Awareness Step.

3.2.1 Activity Labels

Seven activities are studied. These are standing still, walking, sitting, lying,

running, stairing up and stairing down activities. These activities are selected to

include a range of common everyday activities. Acceleration values over time for

listed activities can be found in Figure 3.3, 3.4 3.5, 3.6, 3.7, 3.8, 3.9.

Figure 3.3: Acceleration over time in stair down activity.
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Figure 3.4: Acceleration over time in stair up activity.

3.2.2 Features

The Bayesian classification algorithm does not work well when only acceleration

raw data samples are used [30]. Algorithm performance can be considerably

increased with the use of appropriate features. As features, we use running mean

and covariance. The mean of acceleration is used because it is one of the most

accessible measures of time series data [83]. Mean acceleration is composed of

three axial components, the means of x-axis (µx), y-axis (µy) and z-axis (µz)

movements. Use of mean of acceleration features has been shown to result in

accurate recognition of activities [29], [5]. Covariance is selected because it is

different in all the activities [71], [41]. Mean (µ) and covariance (Σ) equations

[24] can be seen on Eq. 3.1 and Eq. 3.2.

µ̂ =
1

n

n∑
k=1

xk (3.1)

Σ̂ =
1

n

n∑
k=1

(xk − µ̂) (xk − µ̂)T (3.2)
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Figure 3.5: Acceleration over time in standing activity.

It is important to stress that the strength of these features discussed are

person specific. These features allow recognition of user’s activities. However,

one person walking can give the same results as another person running [60].

Features are computed on 256 sample windows of acceleration data with 128

samples overlapping between consecutive windows. At a sampling frequency of

30 Hz, each window represents 8.5 seconds. Mean and covariance features are

extracted from the sliding windows signals for activity recognition. Feature ex-

traction on siding windows with %50 overlap has demonstrated success in the

past works [21], [71]. A window of several seconds is used to sufficiently capture

cycles in activities such as walking, running, or stairing down. The 256 sample

window size enabled fast computation of mean and covariance.

3.2.3 Modelling Activities

To classify the acceleration data into distinct classes we employ a naive Bayes

classifier. In this part we examine the naive Bayes classification algorithm. Naive

Bayes classification is based on Bayes’ rule from basic probability theory. Other,

more complex, classifiers are available. However, we chose naive Bayes as our

machine learning method because it is effective at classifying acceleration data
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Figure 3.6: Acceleration over time in sitting activity.

[63] and classification using a trained model is computationally inexpensive [63].

Naive Bayes classifier also requires a small amount of training data to estimate

the parameters necessary for classification. Because independent variables are

assumed, only the variances of the variables for each class need to be determined

and not the entire covariance matrix. Naive Bayes classifiers have worked quite

well in many complex real-world situations. The Naive Bayes algorithm affords

fast, highly scalable model building and scoring. It scales linearly with the number

of predictors and rows.

Bayes’ rule states that the probability of a given activity and an n-dimensional

feature vector x = 〈x1, ....xn〉 can be calculated as in Eq. 3.3.

p (a|x) =
p(x|a)

p(x)
(3.3)

p (a) denotes the a-priori probability of the given activity. The a-priori prob-

ability p (x) of data is just used for normalization. Since we are not interested in

the absolute probabilities but rather the relative likelihoods, we can neglect p (x).

Assuming that the different components xi of the future vector x are independent,

we obtain a naive Bayes classifier which can be written as in Eq. 3.4.
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Figure 3.7: Acceleration over time in running activity.

p (a|x) =
n∏
i=1

p (xi|a) (3.4)

To calculate the statistical model, we use the calculations similar to the ones

in Cakmakci’s study [71]. We will assume that each context can be character-

ized with normal density with mean (µ) and covariance matrix (Σ) (Eq. 3.1 and

Eq. 3.2). Once we have µ and Σ that estimates representing the distribution of

each sample class, we can compute the Mahalanobis distance in order to classify

sensor data in relation to the modeled data. We will choose the context class

where the sensor data has a maximal probability of belonging that class. Eq. 3.5

[71] shows the calculation of the context for a given sensor input.

max(p(contextk|sensordata)) = max(p(sensordata|contextk)p(contextk)) (3.5)

We substitute previously assumed normal density and take the logarithm of

both sides and classify by taking the maximum for the log-like likelihood of each
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Figure 3.8: Acceleration over time in lying activity.

context class. This will make the mathematical manipulation easier since a Gau-

sian is in form ex in the following Eq. 3.6 [71]:

max(p (contextk|sensordata)) = ln

 1

(2π)
d
2 |Σxi |

1
2

e−
1
2

(xi−µk)T Σ−1(xi−µk)p(context)

(3.6)

Which leads to the following Eq. 3.7 [71]:

max(p (contextk|sensordata)) = max(−1

2
(xi − µk)TΣ−1(xi − µk)) (3.7)

−max(−d
2
ln(2π)− 1

2
ln |Σk|+ ln(p(contextk)))

We can ignore the additive constants such as the d
2
ln(2π) and ln(p(contextk)))

in the case where all contexts are equally likely in Eq. 3.7. We are left with the

maximum of the negative Mahalanobis distance plus the negative logarithm of

the determinant, which is equal to the minimum of the Mahalanobis distance

with the logarithm of the covariance’s determinant added in the following Eq. 3.8

[71]:
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Figure 3.9: Acceleration over time in walking activity.

max(p(contextk|sensordata)) = min(ln |Σk|+ (xi − µk)TΣ−1(xi − µk)) (3.8)

3.3 Signal Filtering

The processing capacity of the handheld device is very crucial. Therefore, filtering

algorithms should not be CPU intensive and number of the accelerometers should

be minimum (one in this paper). The signal filtering techniques that are used are

similar to Jang’s work [35]. The signal filtering system can be seen in Figure 3.10.

Figure 3.10: Signal Filtering System Architecture.

There are two kinds of data that we use for gesture recognition. One is
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dynamic acceleration (vibration of the device) and the other is static acceleration

(gravity or tilt of the device). We will use two kinds of approach: one signal

processing approach for static acceleration, another for dynamic acceleration.

3.3.1 Static Acceleration

Static acceleration can detect position changes from device’s early status. Static

acceleration decides which direction the position has changed, compared to its

original position. Two filters are used for static acceleration: low pass filtering

and thresholding. The steps of signal processing for static acceleration can be

seen in Figure 3.11.

Figure 3.11: The steps of signal processing for static acceleration.

Low pass filtering

Low pass filtering is a process to make signal changes consecutive by processing

trivial movement. First order Butterworth filter is used to filter the data because

calculations in the filter are not CPU intensive and this filter is an effective one

[35]. The gain G(w) of an n-order Butterworth low pass filter is given in Eq. 3.9.

G2(w) =
G2

0

1 + ( w
wc

)2n
(3.9)

Where n is order of filter, wc is the cutoff frequency, and G0 is the DC gain

(gain at zero frequency). Cutoff frequency changes according to the context

information. Emprically calculated cutoff frequency of the activity labels can be

seen in Table 3.1.
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Thresholding

If detected signals are lower than a threshold value, then such signals are ignored.

A threshold range is defined and only input data outside this range is considered.

This threshold range is ±0.2G. Jang and Park define [35] this threshold range to

be ±0.2G based on applied experiments and simply discard the acceleration data

inside this range. This ±0.2G range should be changed according to the context

information. Emprically calculated threshold values of the activity labels can be

seen in Table 3.1.

Table 3.1: Threshold and cutoff frequency values of the activity labels.

Activity Label Threshold Value(G) Cutoff Frequency(G)

Standing Still 0.20 1.20

Walking 0.30 1.40

Sitting 0.10 1.00

Lying 0.15 1.10

Running 0.40 1.70

Stairing Up 0.35 1.50

Stairing Down 0.35 1.50

3.3.2 Dynamic Acceleration

Dynamic acceleration happens when a sudden movement or a short shock is

transmitted to accelerator. Three filters are used for dynamic acceleration: high-

pass filtering, boundary filtering and debouncing filtering. The steps of signal

processing for dynamic acceleration are shown in Figure 3.12.

Figure 3.12: The steps of signal processing for dynamic acceleration.

High pass filtering
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A highpass filter is the just opposite of a lowpass filter: to offer easy passage of a

high frequency signal and difficult passage to a low frequency signal. Butterwoth

Filter is used for high pass filtering. The gain G(w) of an n-order Butterworth

filter is given in Eq. 3.9. Cutoff frequency changes according to the context

information. Emprically calculated cutoff frequencies according to the activity

labels can be seen on Table 3.2.

Boundary Filtering

It is a process to eliminate trivial signals to prevent unwanted gestures arising

from slight vibration or movements. Between α− β are eliminated. This α− β
range changes according to context information. Emprically calculated α− β
range according to the activity labels can be seen in Table 3.2.

Debouncing Filtering

This is a process not to recognize several peaks as gestures. It ignores multiple

peaks. The Intensity of this process changes according to context information.

Emprically calculated intensity values are shown in Table 3.2.

Table 3.2: α− β range, cutoff frequency values and intensity of debouncing filter

of the activity labels.

Activity Labels α− β Range Intensity Cutoff Frequency

Standing Still -0.20 to 0.20 0.2 0.2

Walking -0.30 to 0.30 0.3 0.3

Sitting -0.10 to 0.10 0.1 0.1

Lying -0.15 to 0.15 0.1 0.1

Running -0.40 to 0.40 0.35 0.3

Stairing Up -0.35 to 0.35 0.25 0.2

Stairing Down -0.35 to 0.35 0.25 0.2



Chapter 4

Gesture Design and Gesture

Recognition

4.1 Gesture Design

Despite the fact that accelerometer sensor and touch screen are used as gestural

input devices, the gestures defined for these devices are not standardized. The

user needs to learn every gesture when changing the handheld device. Every

handheld device has own gesture library and gesture meanings so interaction

with touch screen and accelerometer sensor are not easy to learn and learning the

gesture libraries takes long time. Since the possible user range is wide, gesture

library should be simple and intuitive enough for the users with basic knowledge;

however it should satisfy the needs of a complex user at the same time. In this

study we proposed a standardized gesture library for accelerometer sensor and

touch screen to combine all the gestures and name the functions of these gestures.

In this study, gestures are studied as an interaction mode adding more mean-

ing to usage of a handheld device. When designing a gesture we need to find

a real world example of using the handheld device. The abstraction of the user

interface of the handheld devices has a wide gap. To narrow this gap, meaningful

gestures need to be designed.

35
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4.1.1 Gesture Design Principles

When we are designing the accelerometer gestures, we use the design principles

in Prekopcsak’s work [59]. Four design principles are examined for an everyday

gesture interface: ubiquity, unobtrusiveness, adaptability and simplicity. The

design of the accelerometer gestures is an iterative process, because new ideas rise

after every finished development step. The following is the four design principles

that we use when designing the accelerometer gestures.

Ubiquity

The gesture interface should be available everywhere, not restricted to time

and place. Most gesture recognizer systems are usually based on video cameras,

which makes them immovable and they only works well in controlled environ-

ments. Developed gestures are designed to use everywhere and anytime, when

walking, running, lying, and etc.

Unobtrusiveness

Unobtrusive or inconspicuous means that we barely notice that we are using

an interface[59]. The gestures should be used without special controllers or gloves

and with everyday clothes. Our gestures are very intuitive and do not need special

devices or clothes.

One of the most important features is to cover interface details from the user.

Thus, we need to avoid special rules for the use of the system. Most accelerometer

based prototypes have a button with which the user presses at the start and at

the end of the gesture. It is extremely reliable but can be disturbing. In our

design, there is no need for a button as the gestures are automatically extracted

from the continuous sensor data stream.

Another very important feature is the response time. Usability engineering

books suggest that response time should be as low as 100ms[53]. Our gesture

recognition time is between 1-100 ms.

Adaptability
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All possible functions of the gestures need to be considered when designing

a gesture interface, therefore the users can use the gestural interface in every

application in a single meaning. Designing a universal gesture set is good design

principle because users do not need to learn new gestures when they change the

application or device. The users also do not need to learn about the meaning of

all the gestures because meanings are same independent from application.

Simplicity

The interface should be easy to learn and use in a few minutes. The system

shouldn’t have high expectations about the user, and provide feedback about

successful gesture recognition. As gesture recognition will never reach 100%, it is

important to inform the user about what is happening with the system. Successful

recognition can be signed with a visual feedback, so the user instantly realizes if

it is needed to repeat the gesture.

4.1.2 Accelerometer Gestures

We have designed five gesture types. These are ‘primitive’, ‘move’, ‘page’, ‘global’

and ‘other’ gesture types. Primitive acceleration events are joystick movements.

When we design the primitive acceleration events, we map the mobile device to

a joystick. User moves the stick of the joystick device to have a move event, this

movement is same on the mobile device. Mobile device is thought as the stick

of the joystick. When user moves the mobile device, move events are created.

Also primitive acceleration events are designed considering the gravity forces.

Gravity forces objects to slide towards to the centre of the earth, this is a nature

phenomenon. If a table has an angle to the right, objects on the table slide to the

right due to the gravity forces. In joystick movements, screen has an angle to the

right/left/up /down to make the objects on the screen slide to the right/left/up

/down. Primitive acceleration events can be seen in Table 4.1
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Table 4.1: Joystick Movements

Gesture Type Gesture Name Accelerometer Movements

Acc Event Primitive Event In X-Z plane, angle to +x.

Acc Event Primitive Event In X-Z plane, angle to -x.

Acc Event Primitive Event In X-Z plane, angle to +y.

Acc Event Primitive Event In X-Z plane, angle to -y.

The move gesture types are the gestures that we are using to map the arrow

keys of the keyboard. These gestures designed to move the indicator. When user

needs to move an object in a specified direction, she throws it to that direction.

Like in a real world, move gestures have the same principle. User throws indicator

to move it. These gestures are throwing actions, user throws indicator to desired

direction. So indicator jumps to that direction. Move gesture type can be seen

in the following Table 4.2

Table 4.2: Move Gesture Type

Gesture Type Gesture Name Accelerometer Movements Plane

Move GSRight X-Y

Move GSLeft X-Y

Move GSDown X-Y

Move GSUp X-Y

The page type of gestures is designed to handle more complex gestures than

simple movement gestures. They are designed to map keyboard’s page up, page

down, end and home buttons and extended to the current usage of applications.

The gestures in this type generally map to complex movements in applications.

This type of gestures are basically same as the move gestures but not a single
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move gesture is enough; the user needs to do move gesture more than one to

initialize the page gesture. Page gesture can be seen on Table 4.3

Table 4.3: Page Gesture Type

Gesture Type Gesture Name Accelerometer Movements Plane

Page GSPageRight X-Y

Page GSPageLeft X-Y

Page GSPageDown X-Y

Page GSPageUp X-Y

The global type of gestures is designed to handle global functions of the appli-

cations such as enter, exit. The enter gesture is one of the global gestures. ’Click’

on the mouse, ’tap’ on the touch screen is a standard way to enter. On the

accelerometer gesture system, one standard gesture is needed to map the ’click’

and ’tap’. When user taps the touch screen, device has a movement to back and

forward. So this motion is used to map the enter gesture.

The next global gesture is exit gesture. ’X’ is a common character to indicate

exit and/or close functions. When user draw ’X’ to the air with the mobile

device, it means user want to call exit gesture. Global gesture type can be seen

on following Table 4.4
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Table 4.4: Global Gesture Type

Gesture Type Gesture Name Accelerometer Movements Plane

Global GSEnter Y-Z

Global GSExit X-Z

The last type of the gesture is other type of gestures. This type of gestures

is designed to handle other type of functions such as zoom in and zoom out.

This type of gestures makes users feel they are screwing/unscrewing or opening

up/closing up the pictures and documents to make them bigger/smaller [11] and

make users feels they are pulling/pushing the pictures or documents from each

side, to make them expands/smaller under the pulling/pushing forces.

The last gesture is isFront gesture. This gesture indicate that phone is upside

down or else. Other type of gestures can be seen on Table 4.5

Table 4.5: Other Gesture Type

Gesture Type Gesture Name Accelerometer Movements Plane

Other GSSquare X-Z

Other GSCcSquare X-Y

Other GSIsFront When device is turned front or back, X-Y

this gesture is triggered.
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4.1.3 Touch Screen Gestures

The very basic touch screen data is coordinates on a plane (screen) and the value

of whether an object is touching on the surface or not. By using these primitive

data we can build complex input systems such as continuous movement events

and gestures libraries. To activate the basic touch screen functionality, the user

simply touches the screen and the system understands the point of touch, is the

object still pressed or not, the object is moved on the screen without releasing it.

By this way our data is generated.

Primitive touch screen events are created according to the direct manipulation

principles. When a user wants to point, activate or perform whatever action is

possible at that time, he/she just touches the screen where the object is on the

screen. Since touch screen is capable of 2D input and we have to use a touched/not

touched state the only primitive event generated by touch screen is the current

location generated by a touch of an object on the screen. Primitive acceleration

events can be seen in Table 4.6

Table 4.6: Touch Screen Event

Gesture Type Gesture Name Touch Screen Action

Touch Event Primitive Touch Event Touch on a location of the screen

The move gesture types are the gestures that we are using to map the arrow

keys of the keyboard. These gestures designed to move the indicator. Drawing a

line to a direction to represent a gesture is a natural drawing habit. Since usage

of touch screen is a reflection to drawing or writing, this gesture is selected to

reflect everyday habits most naturally.

User can draw line to right, left, up and down direction to specify related

gesture. Move gesture type of touch screen can be seen on the following Table 4.7
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Table 4.7: Move Gesture Type

Gesture Type Gesture Name Touch Screen Action

Move GSRight

Move GSLeft

Move GSDown

Move GSUp

This type of gestures is the easiest of two-level gestures since it requires least

effort. They are designed to map keyboard’s page up, page down, end and home

buttons and extended to the current usage of applications. Tapping is natural

since it reminds clicking. Combining it with direct one-way movement gives us

less effort two level gesture. It also reminds one level direction gestures and so

this gesture can be used in similar works.

User can perform this type of gestures in four directions, right, left, up and

down direction to specify related gesture. Page gesture type of touch screen can

be seen on the following Table 4.8

Table 4.8: Page Gesture Type

Gesture Type Gesture Name Touch Screen Action

Page GSPageRight

Page GSPageLeft

Page GSPageDown

Page GSPageUp
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The global type of gestures is designed to handle global functions of the ap-

plications such as enter, exit. GSEnter gesture is to simulate enter situations or

double clicking situations for mouse. Since mouse is fairly close to touch screen,

describing double clicking with double tapping is reasonable. On the other hand,

in most operating systems, double tapping is the way to use entering.

The second gesture in this type is GSExit. Cross symbol is generally accepted

to express exit situations. So the idea while defining GSExit gesture like this was

to represent common sense. Also exit includes an x letter in it. This strengthens

the feeling of drawing an X to exit. Global gesture type can be seen on following

Table 4.9

Table 4.9: Global Gesture Type

Gesture Type Gesture Name Touch Screen Action

Global GSEnter

Global GSExit

The last type of the gesture is other type of gestures. This type of gestures

is designed to handle other type of functions such as Tap, Erase, Putting Space,

etc.

GSTap gesture is directly driven from touch screen enabled operating systems.

It generally is used to click left button of mouse. Since it requires the least effort,

it is the easiest gesture to perform. GSTapnWait gesture is directly driven from

touch screen enabled operating systems. It generally is used to demonstrate

the right button of mouse. Since it requires the least effort after just tapping,

GSTapnWait is selected to perform options property.

Besides one or two level gestures we also thought that we need higher level

gestures to identify complex inputs. These gestures should not be confused with
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low-level gestures. Square was the easiest four-level gesture since it includes both

directions in a smooth manner. GSSquare and GSCcSquare are defined that way.

GSSpace gesture is defined to express common space symbol in writing. It

also gives the expression to separate things. So the reason to define GSSpace this

way was both for describing a routine or giving the feeling to put a space.

GSErase is defined to express common scratch out movement in writing. It

also gives the expression to blacken on something. So the reason to define GSErase

this way was both for describing a routine or giving the feeling of scratching out.

GSNewLine gesture is defined to handle new line input. It is defined as the

symbol of new line in computer keyboard. It is easy to perform since it is a two

level gesture. A set of all other gesture type can be seen on Table 4.10

Table 4.10: Other Gesture Type

Gesture Type Gesture Name Touch Screen Action

Other GSTap

Other GSTapnWait

Other GSSquare

Other GSCcSquare

Other GSSpace

Other GSErase

Other GSNewLine
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4.1.4 Standardized Gesture Library

This part of the section explains the core of the study. Previous gesture systems

do not include a combined gesture library to abstract different types of inputs.

For a point of view of a designer or a coder, it is very important to see the input

as one type of event instead of different device events. Different type of input

methods can be intended to create the same type of events. So combining these

two inputs allows the designer to deal with the problem only and not to consider

different type of devices. He/she only deals with the intended action. For example

a right draw in touch screen and a right move in acceleration sensor can mean

the same input. So instead of dealing with two libraries and getting the input

separately, the coder just gets the intended action from the event queue.

As mentioned earlier, the system is thought as a complete library. This gives

us the opportunity to enhance adaptability. We also worked on the grouping

of the gestures. This was to help the designer or coder to adapt the intended

gestures and eliminate the others.

While combining these different gestures the primary concern was the com-

patibility. Both inputs from different input devices should be intended to perform

the same type of functionality. With this manner, we consider which actions and

movements are understood as synonym and as a result we created a general ges-

ture as a mapping of the both real life action. Some gestures for different input

devices do not have a synonym gesture. In that case, a general gesture still is

created but only that device can create that general gesture. Thus two different

types of gestures are combined in a general and abstract gesture library. More

input devices can be added to the system. A list of Move gestures for both touch

screen and acceleration sensor can be seen on Table 4.11



CHAPTER 4. GESTURE DESIGN AND GESTURE RECOGNITION 46

Table 4.11: Move Gesture Type

Standardized Gesture Touch Screen Acceleration Sensor Acc. Plane

GSRight X-Y

GSLeft X-Y

GSDown X-Y

GSUp X-Y

A list of Page gestures for both touch screen and acceleration sensor can be

seen on Table 4.12

Table 4.12: Page Gesture Type

Standardized Gesture Touch Screen Acceleration Sensor Acc. Plane

GSPageRight X-Y

GSPageLeft X-Y

GSPageDown X-Y

GSPageUp X-Y

A list of Global gestures for both touch screen and acceleration sensor can be

seen on Table 4.13
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Table 4.13: Glocal Gesture Type

Standardized Gesture Touch Screen Acceleration Sensor Acc. Plane

GSExit X-Z

GSEnter Y-Z

A list of Other gestures for both touch screen and acceleration sensor can be

seen on Table 4.14 Remember that some of the gestures cannot be performed

with one of the input devices.

Table 4.14: Other Gesture Type

Standardized Gesture Touch Screen Acceleration Sensor

GSTap Not Available

GSTapnWait Not Available

GSSquare

GSCcSquare

GSSpace Not Available

GSErase Not Available

GSNewLine Not Available

GSIsFront Not Available When device is turned front or back.
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4.1.5 Application Function Suggestion

Application designers are not limited to design functions to assign for the gestures

but we suggest some functions for the gestures. In the following Tables 4.15, 4.16,

4.17, 4.18, 4.19, 4.20 the function suggestions for the specified applications can

be found.

Table 4.15: The Function Suggestions for the Specified Applications on Primitive

Events

Gesture Type Gesture Name Application Function Suggestion

Acc Event Primitive Right Games: Move object to right.

Operating Systems: Move cursor to the right.

Acc Event Primitive Left Games: Move object to left.

Operating Systems: Move cursor to the left.

Acc Event Primitive Up Games: Move object to up.

Operating Systems: Move cursor to the up.

Acc Event Primitive Down Games: Move object to down.

Operating Systems: Move cursor to the down.
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Table 4.16: The Function Suggestions for the Specified Applications on Move

Gestures

Gesture Type Gesture Name Application Function Suggestion

Move GSRight Media Player: Fast forward.

Web Browser: Move page right.

Photo Album: Move image right.

MMI: Move cursor right.

Calendar: Move cursor right.

Contacts: Move cursor right.

Move GSLeft Media Player: Rewind.

Web Browser: Move page left.

Photo Album: Move image left.

MMI: Move cursor left.

Calendar: Move cursor left.

Contacts: Move cursor left.

Move GSUp Media Player: Volume up.

Web Browser: Move page up.

Photo Album: Move image up.

MMI: Move cursor up.

Calendar: Move cursor up.

Contacts: Move cursor up.

Move GSDown Media Player: Volume down.

Web Browser: Move page down.

Photo Album: Move image down.

MMI: Move cursor down.

Calendar: Move cursor down.

Contacts: Move cursor down.
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Table 4.17: The Function Suggestions for the Specified Applications on Page

Gestures

Gesture Type Gesture Name Application Function Suggestion

Page GSPageRight Media Player: Next track.

Web Browser: Page left.

Photo Album: Go to last image.

MMI: -.

Calendar: Next month.

Contacts: Page right.

Page GSPageLeft Media Player: Previous track.

Web Browser: Page right.

Photo Album: Go to first image.

MMI: -.

Calendar: Previous month.

Contacts: Page left.

Page GSPageUp Media Player: -.

Web Browser: Page up.

Photo Album: Previous image.

MMI: Previous page of icons.

Calendar: Previous year.

Contacts: Page up.

Page GSPageDown Media Player: -.

Web Browser: Page down.

Photo Album: Next image.

MMI: Next page of icons.

Calendar: Next year.

Contacts: Page down.
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Table 4.18: The Function Suggestions for the Specified Applications on Global

Gestures

Gesture Type Gesture Name Application Function Suggestion

Global GSEnter Media Player: Play/Stop.

Web Browser: Enter (For selected forms).

Photo Album: Full screen/Normal window.

MMI: Enter

Calendar: Enter

Contacts: Enter

Global GSExit Media Player: Exit.

Web Browser: Exit.

Photo Album: Exit.

MMI: Exit.

Calendar: Exit.

Contacts: Exit.
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Table 4.19: The Function Suggestions for the Specified Applications on Other

Gestures

Gesture Type Gesture Name Application Function Suggestion

Other GSTap Media Player: Pause.

Web Browser: Click (On widget).

Photo Album: -.

MMI: Click.

Calendar: Click.

Contacts: Click.

Other GSTapnWait Media Player: -.

Web Browser: Request context menu.

Photo Album: Request context menu.

MMI: Request context menu.

Calendar: Request context menu.

Contacts: Request context menu.

Other GSSquare Media Player: -.

Web Browser: Zoom in.

Photo Album: Zoom in.

MMI: -.

Calendar: Year¿Month¿Day view switch.

Contacts: Show detailed view.

Other GSCcSquare Media Player: -.

Web Browser: Zoom out.

Photo Album: Zoom out.

MMI: -.

Calendar: Day¡Month¡Year view switch.

Contacts: Show general view.
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Table 4.20: The Function Suggestions for the Specified Applications on Other

Gestures

Gesture Type Gesture Name Application Function Suggestion

Other GSSpace Media Player: -.

Web Browser: Page down.

Photo Album: Slide show.

MMI: -.

Calendar: -.

Contacts: -.

Other GSErase Media Player: -.

Web Browser: -.

Photo Album: Delete.

MMI: -.

Calendar: Delete item’s meetings.

Contacts: Delete contact.

Other GSNewLine Media Player: -.

Web Browser: -.

Photo Album: Photo shoot.

MMI: -.

Calendar: Shortcut to add new meeting.

Contacts: Shortcut to add new contact.

Other GSIsFront Media Player: Mute/Unmute.

Web Browser: -.

Photo Album: -.

MMI: -.

Calendar: -.

Contacts: -.

4.2 Gesture Recognition

The gesture recognizer should:
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• be resilient to variations in sampling due to movement speed or sensing,

• support optional and configurable rotation, scale, and position invariance,

• require no advanced mathematical techniques (e.g., matrix inversions,

derivatives, integrals),

• be easily written in few lines of code,

• be fast enough for interactive purposes.

With these goals in mind, we describe the gesture recognizer. For primitive

acceleration gesture type, static acceleration data is used. Therefore, we need

to calculate the angle of the device from static acceleration data. Changing of

the angle of the device creates primitive gesture types. A simple trigonometric

calculation based on the unit circle (Figure 4.1) is used when trying to determine

the tilt angle of the device. Although gravitational acceleration is limited to

1G by definition, the accelerometer we have used (Phidget Accelerometer [3])

measures both static and dynamic acceleration up to 3G, and can easily output

values greater than 1G during a tilt measurement if the device is in motion.

Accelerations in excess of 1G are not valid during tilt measurements; values should

be limited to this maximum to ensure that the formula below remains appropriate

[3].

Figure 4.1: The unit circle representation of acceleration data.
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The unit circle represents the maximum gravitational acceleration of 1G. A

line drawn from the origin out to the unit circle then represents the acceleration

vector of the device in a given axis. For that axis, the angle Θ, which represents

the tilt angle of the device in that axis, can be calculated using the length of the

hypotenuse and the distance of the end point of the hypotenuse from the axis in

question (labeled o, which represents the value of acceleration reported by the

device). The formula [3] can be seen on can be seen on Eq. 4.1.

Θ = arcsin(o/h) (4.1)

In an example, the device reports the acceleration of axis 0 to be 0.7071G.

The calculation of arcsin(0.7071G/1G) yields the result of 45 degree.

To recognize the move gesture type, we use dynamic acceleration data. We

use a finite state machine. Move gesture recognizer finite state machine can be

seen in Figure 4.2.

Figure 4.2: Move type GSRight gesture recognizer finite state machine.

To recognize move gesture type we examine dynamic acceleration data on X

and Y coordinates. Acceleration data on x axis need to be positive increasing and

then need to be positive decreasing to recognize GSRight. States and coordinate

axis that are needed to recognize move gesture type can be seen on Table 4.21.

Page gestures are multi level move gestures. When two sequential gsright gestures

are entered, system identifies the gesture as GSPageright. And this recognition
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is same for all the page gestures. Two sequential GSLeft is GSPageleft. Two

sequential GSDown is GSPagedown and two sequential GSUp is GSPageup.

Table 4.21: States and coordinate axis that are needed to recognize move gesture

type.

Move gesture Type Axis States that are needed

GSRight X positive increasing then positive decreasing.

GSLeft X negative increasing then negative decreasing.

GSUp Y positive increasing then positive decreasing.

GSDown Y negative increasing then negative decreasing.

To recognize the enter gesture type, we use dynamic acceleration data. We

use a finite state machine. Enter gesture recognizer finite state machine can be

seen in Figure 4.3. GSEnter is a tab gesture. Since system needs to identify the

positive increasing and positive decreasing sequentially on Z axis.

Figure 4.3: Global type GSEnter gesture recognizer finite state machine.

To recognize the exit gesture type, we use dynamic acceleration data. We use

a finite state machine. Exit gesture recognizer finite state machine can be seen

in Figure 4.4. GSExit is more complicated then move gestures or enter gesture.

The gesture is on X axis. System recognizes the exit gesture by the sequential

movements of negative increasing, negative decreasing, positive increasing and

positive decreasing.
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Figure 4.4: Global type GSExit gesture recognizer finite state machine.

To recognize the square gesture type, we use dynamic acceleration data. We

use a finite state machine. Square gesture recognizer finite state machine can be

seen in Figure 4.5. Recognition of square and counter clockwise square gesture

type is different from the other gestures. Square and counter clockwise square is

recognized on both X and Y axis. System recognizes the square gesture by the

sequential movements of negative increasing on X axis, negative increasing on Y

axis, positive increasing on X axis and positive increasing on Y axis. States and

coordinate axis that are needed to recognize square and counter clockwise square

can be seen on Table 4.22.
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Figure 4.5: Other type GSSquare gesture recognizer finite state machine.

Table 4.22: States and coordinate axis that are needed to recognize other gesture

type.

Move gesture Type Axis States that are needed

GSSquare X and Y negative increasing on X axis,

then negative increasing on Y axis,

then positive increasing on X axis,

then positive increasing on Y axis.

GSCCSquare X and Y positive increasing on X axis,

then negative increasing on Y axis,

then negative increasing on X axis,

then positive increasing on Y axis.

Recognition of Isfront gesture is relatively easy. If static value Z axis of the

device is positive, gesture is created with boolean front = true. If static value Z

axis of the device is negative, gesture is created with boolean front = false.



Chapter 5

Experiments and Evaluations

In order to evaluate the success of the proposed gesture recognition accuracy

enhancement system, we have performed a number of objective and subjective

experimental studies. In this chapter, we discuss these experimental studies and

their results in detail.

In this study, we selected two objective and one subjective experiment. One

experiment is to evaluate the accuracy of the context aware part of the system,

the other is to test the gesture recognition accuracy enhancement system and

the last one is to evaluate the interaction method, subjectively. The following

sections present detailed information about these experiments.

5.1 Context Aware Experiment

The purpose of this experiment is to test the accuracy of the context aware part

of the system. The details of this experiment are explained in the following

subsections.

Subjects

The objective experiment was performed on 9 subjects: 6 males and 3 females

59
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with a mean age of 24.8. They were voluntary graduate and undergraduate

students with computer science background. The purpose of the experiment was

not explained to the subjects.

Procedure

In this experiment, an experimental setup similar to the one in Bao’s study [7]

is used. On two consecutive days each test person participated in a data collection

session. In each session they performed each activity once for approximately two

minutes while they are reading text on the screen. We trimmed several seconds

off the start/end to balance the data for our analysis and we used 5 window size

data in the middle. The data collected in the first session is used for training the

context aware part of the system and the data collected in the second session is

used for testing the context aware part.

Results and Discussion

Context aware classifier was trained and tested using two protocols: within-

person and cross-person protocols. Under the within person protocol, for each of

the nine people, we built a model using their own first session data and tested

their second session data. This user-specific training protocol was repeated for all

nine subjects. The mean accuracy was 92.0%. The classification accuracy results

on within person protocol can be seen on Table 5.1. Aggregate confusion matrix

for context aware part of the system under the within-person protocol can be

seen on Table 5.2.
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Table 5.1: Classification accuracy results on within-person and cross-person pro-

tocol.

Activity Label Accuracy on Within-Person Accuracy on Cross-Person

Lying 97.7% 95.8%

Running 88.8% 77.7%

Sitting 100% 97.7%

Standing 97.7% 97.7%

Stair Down 82.2% 77.7%

Stair Up 86.6% 80.0%

Walking 91.1% 84.4%

Overall 92.0% 87.6%

Table 5.2: Aggregate confusion matrix for context aware part of the system under

the within-person protocol.

a b c d e f g classified as

44 00 00 01 00 00 00 a = lying

00 45 00 00 02 03 00 b = running

00 00 45 00 00 00 00 c = sitting

00 00 01 45 00 00 00 d = standing

00 00 00 00 37 07 01 e = stair down

00 00 00 00 03 39 03 f = stair up

00 00 00 00 00 04 41 g = walking

Under the second protocol, cross-person protocol, we built models based only

on other people. For each of the nine people, we trained the classifier using

data from the first session of the other eight people, and tested on person’s

second session data. The mean accuracy under the second protocol is 87.6%. The

classification accuracy results on cross-person protocol can be seen on Table 5.1.
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Aggregate confusion matrix for context aware part of the system under the cross-

person protocol can be seen in Table 5.3.

Table 5.3: Aggregate confusion matrix for context aware part of the system under

the cross-person protocol.

a b c d e f g classified as

43 00 00 02 00 00 00 a = lying

00 36 00 00 04 05 00 b = running

00 00 44 01 00 00 00 c = sitting

00 00 01 44 00 00 00 d = standing

00 00 00 00 35 08 02 e = stair down

00 00 00 00 04 36 05 f = stair up

00 00 00 00 02 05 38 g = walking

The results show that within-person model achieved a mean classification

accuracy of 92.0%. This accuracy means that highly accurate classification is

possible with only a small amount of training data from the subjects. Cross-

person model had a mean accuracy of 87.6%. This shows that accurate activity

classification could be achieved without the need to collect training data from

new users.

5.2 Gesture Recognition Experiment

We have also performed an experiment to test the accuracy of the recognition.

In this experiment, the subjects were asked to perform gestures when they are

walking, running, stairing up, stairing down, lying, standing and sitting.

Subjects

For the gesture recognition task, 9 subjects: 6 males and 3 females with a

mean age of 24.8 were participated in the experiment. The subjects were among
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the voluntary graduate and undergraduate students who have computer science

background. They were not informed about the purpose of the experiment.

Procedure

For this experiment, subjects were asked to participate in seven consecutive

test sessions for two days. In day one, system was running with context aware

filtering and in the second day system was running with a fixed filtering. In fixed

filtering the values of threshold, cutoff frequency, and the intensity of debouncing

filter were the average values of the context aware filtering. The parameters of

fixed filtering can be seen on Table 5.4. In each session they were asked to perform

all the listed acceleration gestures on Table 5.5 for five times while they are

reading text on the screen. Before all the sessions, subjects were given free time

to practice gestures. In the first session, subjects were performed gestures while

they were sitting. On the other sessions, while they were standing, lying, stairing

up, stairing down, running, and walking. Each session took approximately 4

minutes. In each session, each subject perform 19 gesture for 5 times. There are

seven sessions, and 9 subjects so 5985 performed gesture is examined in this test.

Table 5.4: Paramaters of the fixed filter.

Parameter Value

Threshold Value(G) 0.25

Lowpass Filter Cutoff Frequency(G) 1.35

α− β Range -0.25 to 0.25

Intensity of Debouncing Filter 0.22

Highpass Filer Cutoff Frequency 0.20
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Table 5.5: Tested gestures.

Gesture Type Gesture Name

Joystick JRight

JLeft

JUp

JDown

Move GSRight

GSLeft

GSUp

GSDown

Page GSPageRight

GSPageLeft

GSPageUp

GSPageDown

Global GSEnter

GSCopy

GSPaste

GSExit

GSSquare

GSCcSquare

GSIsfront

Results and Discussion

The recognition accuracy for each activity label is shown on Table 5.6 and

5.7. These results show a high fidelity recognition rate of our gesture recognition

enhancement system with an average recognition rate of 79.81%. The system

increases the accuracy of gesture recognition between 8% and 32% according to

the activity. These results also show that the system has the lowest recognition

rate of 71.58% (32% higher than fixed filtering) in running, and system has the

highest recognition rate of 87.02% (8% higher than fixed filtering) in standing.

The enhancement system has a recognition rate of 88% while the user is
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standing and 84% while sitting. The recognition rates in sitting and standing

is higher than the other activities. Therefore, the system should be used when

the user is sitting or standing. The system has the lowest recognition rate (71%)

while running. This recognition rate means that gesture based interaction is not

very accurate while the user is running, walking, stairing up, or stairing down.

The recognition enhancement system has better results on primitive accelera-

tion gesture type (98%) and move gesture type (90%). This means that primitive

and move gesture type are very accurate to use in everyday life. Page, global

and other gesture types have a recognition accuracy of 73%. This accuracy rate

means these gestures are not suitable to use in applications.

Table 5.6: The recognition accuracy with context aware filtering for activity

labels.

Recognition Accuracy (%)

Activity Labels Joystick Move Page Global Average

Walking 96.67 89.44 85.56 59.05 78.95

Standing 100.0 96.67 93.89 70.16 87.02

Stair Up 97.22 86.11 81.67 58.10 77.19

Stair Down 97.78 84.44 81.11 57.46 76.61

Running 93.33 77.78 73.33 54.60 71.58

Sitting 99.44 97.22 94.44 63.17 84.56

Lying 97.22 93.89 92.22 62.86 82.81

Overall 97.38 89.36 86.31 60.75 79.81
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Table 5.7: The recognition accuracy with fixed filtering for activity labels.

Recognition Accuracy (%)

Activity Labels Joystick Move Page Global Average

Walking 79.44 72.22 63.33 42.86 64.46

Standing 90.56 87.22 84.44 60.63 80.71

Stair Up 80.56 71.11 65.00 43.49 65.04

Stair Down 79.44 66.67 65.00 42.22 63.33

Running 71.11 58.33 51.67 36.19 54.32

Sitting 92.22 89.44 86.67 55.87 81.05

Lying 85.00 82.78 80.56 49.52 74.46

Overall 82.61 75.39 70.95 47.25 69.05

When subjects are standing, there is less noise data and subjects are more

comfortable when they are moving their hands so recognition rate of the system

is the highest. When subjects are running, there is more noisy data because

of the running movements and system has the lowest recognition rate. Stair

up and stair down movements has nearly same recognition rate because these

two activity labels are very similar according to acceleration data. From our

experiment, it is clear that our system performs very well for gesture recognition,

recognizing them at more than 79% accuracy overall. Another finding is that our

enhancement system performs well even when user is moving.

When subject are performing the listed gestures, the system was monitored to

analyse the system performance. The system consists of three main parts, which

are context awareness, filtering, and gesture recognition. The time that is spent

during the gesture recognition can be seen on Table 5.8.
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Table 5.8: The system performance (in milliseconds) during gesture recognition

in activities standing(a), sitting(b), lying(c), stairing down(d), stairing up(e),

running(f), and walking(g).

Part of the system a b c d e f g Average

Context Awareness 160 165 170 180 190 200 195 180

Filtering 3 4 5 5 6 7 5 5

Gesture Recognition 18 20 17 20 20 22 23 20

5.3 Subjective Experiment

We have also performed a subjective experiment to evaluate the usage of the

system. In this experiment, the subjects were asked to perform all the gestures

While they were walking, running, etc. and answer the survey questions.

Subjects

For the subjective experiment, 7 subjects: 4 males and 3 females with a

mean age of 23.7 participated in the experiment. The subjects were among the

voluntary graduate and undergraduate students who have computer science back-

ground.

Procedure

For this experiment, subjects were asked to participate in seven consecutive

test sessions. In each session they were asked to perform all the listed acceleration

gestures on Table 5.5. In the first session, subjects were performed gestures while

they were sitting. In the other sessions, while they were standing, lying, stairing

up, stairing down, running, and walking. Each session took approximately 4

minutes. After the session, they were asked the following questions:

• How friendly is the interaction method? (1: least 5: most)
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• Which gesture type(s) would you prefer to use in a device? (Joystick, move,

page, global or other gesture type)

• In which activities do you prefer to use the system? (Walking, standing,

running, stair up, stair down, lying or sitting)

• In which activities do you prefer to use the system least? (Walking, stand-

ing, running, stair up, stair down, lying and sitting)

Results and Discussion

According to the users’ answers to the questions stated above, the users found

the sensor-based interface 80% user-friendly. Six of seven users prefer to use

joystick and move gestures in an application. One user prefers joystick, move

and page gestures in an application. All the users prefer to use the system when

they are sitting or standing. Five users did not like to use the system when they

are running. Two users did not like to use the system when they are running,

stairing up and stairing down.

Six of seven users prefer to use primitive and move gesture types because the

recognition enhancement system has better recognition results on primitive (98%

accuracy) and move (90% accuracy) gesture types. This means better recognition

accuracy enhance usage of the device. Therefore, the users prefer to use accurate

gestures. All the users prefer to use system while they are sitting or standing,

because the system has a recognition rate of 88% while the user is standing and

84% while sitting. The recognition rates in sitting and standing are higher than

other activities. Five users did not like to use the system while they were running.

This is because the system has the lowest recognition rate of 71% while running.

5.4 Applications

In this part we present two applications that we integrated the gesture recognition

accuracy enhancement system to show example usage of acceleration sensor based

interaction technique.
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Photo Album Application

Displaying a large photo on a small screen has been a problem on handheld

devices. Small screen makes the usage of scroll bars difficult. We propose to use

accelerometer based gesture to handle the inputs for scrolling events. Therefore,

we have implemented a photo album application. Controlling this application is

intuitive. Gravity forces objects to slide towards to the centre of the earth, this

is a nature phenomenon. If a table has an angle to the right, objects on the table

slide to the right due to the gravity force. In this application when your device

has an angle to the right (primitive gesture type) photo moves to the right like a

real object.

We specifically focus on the application for navigating over several photo

thumbnails in a photo album and browsing the photo selected. Screen shots of the

photo album application can be seen in Figure 5.1, Figure 5.2. This application

provides a showcase of modalities provided by accelerometer based gestures. It

aims to enable the users to view the photos taken by high resolution cameras

in their original dimensions. The same approach can easily be mapped to other

similar applications such as map viewing.

Figure 5.1: Photo album application is in thumbnail mode.

Photo album application has two modes, one is to see thumbnail of the photos

(thumbnail mode) and the other one is to see the actual photo (full-view mode).

In thumbnail mode, GSRight, GSLeft gestures are used to navigate over photos.

GSEnter is used to change the mode to the full-view mode. GSExit is used to

close the application. In full-view mode, JRight, JLeft, JUp and JDown is used

to navigate over photo. Gsexit is to use to change the mode to thumbnail mode.
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Figure 5.2: Photo album application is in full-view mode.From left to right, image
is moving right.

Media Browser Application

When defining gestures, we have tried to find more realistic and general pur-

pose gestures that can be mapped to other applications as well. As an illustration,

the gestures can be mapped to a media browser application. Instead of viewing

thumbnails of photos, users can see different album covers. A specific album can

be selected just like photo selection and the user can revert to album covers like

reverting to thumbnails of photos. Finally, the gestures for scrolling a photo can

be used navigate over songs in the selected album. This simple example shows

that the proposed solution can be generalized to developing various applications

for mobile devices.

In this application, the user can navigate over media files such as music files

and photos. In the main screen of the application the user can select music files

or photos with GSLeft and GSRight gestures. In photo mode of the application,

user can navigate over photos with GSUp and GSDown gestures and navigate

over photo album with GSPageLeft, GSPageRight, GSPageUp and GSPageDown

gestures. GSExit is to used to exit to the main screen and gsenter is used to select

the media file. Media browser application screen shot can be seen in Figure 5.3.
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Figure 5.3: Media browser application. From left to the right, music album view,
main screen and photo album view.
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Conclusion and Future Work

In this work, we proposed a framework that enhances the gesture recognition

accuracy in a given content. For this purpose, we have developed a system that

automatically decides on the suitable signal processing techniques for accelera-

tion sensor data for a given context of the user. First system recognizes the

context of the user using pattern recognition algorithm. Then, system automat-

ically chooses signal filtering techniques for recognized context, and recognizes

gestures. Gestures are also standardized for better usage. In this automatic ges-

ture recognition accuracy enhancement framework, we consider several factors:

context of the user, and signal type of the acceleration data.

We tested our system by the help of objective experimental studies. We had

two experiments to test the accuracy of the context aware part and to test the

accuracy of gesture recognition. To test the context aware part of the system we

used within-person model and cross-person model. According to the results of

the experiments, within-person model achieved a mean classification accuracy of

92.0%. This accuracy means that highly accurate classification is possible with

only a small amount of training data from the subjects. Cross-person model had

a mean accuracy of 87.6%. This shows that accurate activity classification could

be achieved without the need to collect training data from new users. To test

the accuracy of gesture recognition, we have examined nearly 6000 acceleration

72
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gestures. The result of the test shows a high fidelity recognition rate of the ges-

ture recognition enhancement system with an average recognition rate of 79.81%.

These results also show that system has the lowest recognition rate of 71.58%

in running, and system has the highest recognition rate of 87.02% in standing

activity.

We have designed 17 gestures for accelerometer sensor based interaction. The

average recognition rate of the system is 80%. However, the recognition enhance-

ment system has better results on primitive acceleration gesture type (98%) and

move gesture type (90%). This means that primitive and move gesture type are

very accurate to use in everyday life. Page, global and other gesture types have

a recognition accuracy of 73%. This accuracy rate means these gestures are not

suitable to use in applications.

We have tested the enhancement system in seven activity conditions. These

are standing, sitting, lying, walking, stairing up, stairing down and running.

The average recognition rate of the system is 80%. The enhancement system

has a recognition rate of 88% while the user is standing and 84% while sitting.

The recognition rates in sitting and standing is higher than the other activities.

Therefore, the system should be used when the user is sitting or standing. The

system has the lowest recognition rate (71%) while running. This recognition

rate means that gesture based interaction is not very accurate while the user is

running, walking, stairing up, or stairing down.

One possible future direction for our system is to implement more pattern

recognition algorithms for context aware part of the system such as neural net-

works, k-nearest neighbor and hidden Markov model. Moreover, the signal pro-

cessing part should be extended and more signal filtering methods should be

implemented. Another idea for the future work is to train the classifier with

more labels such as cycling and travelling by car and analyze the accuracy of the

system under these activities. Furthermore, the current system is designed to

enhance only gesture recognition which means that context information is used

only for signal processing of acceleration data. Hence, it can be extended for user

interface adaptation for different contexts to increase viewability of displayed



CHAPTER 6. CONCLUSION AND FUTURE WORK 74

information.
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