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ABSTRACT

Noise Enhanced Parameter Estimation Using Quantized

Observations

Gökce Osman Balkan

M.S. in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Sinan Gezici

July 2010

In this thesis, optimal additive noise is characterized for both single and multi-

ple parameter estimation based on quantized observations. In both cases, first,

optimal probability distribution of noise that should be added to observations is

formulated in terms of a Cramer-Rao lower bound (CRLB) minimization prob-

lem. In the single parameter case, it is proven that optimal additive “noise” can

be represented by a constant signal level, which means that randomization of

additive signal levels (equivalently, quantization levels) are not needed for CRLB

minimization. In addition, the results are extended to the cases in which there

exists prior information about the unknown parameter and the aim is to min-

imize the Bayesian CRLB (BCRLB). Then, numerical examples are presented

to explain the theoretical results. Moreover, performance obtained via optimal

additive noise is compared to performance of the commonly used dither signals.

Furthermore, mean-squared error (MSE) performances of maximum likelihood

(ML) and maximum a-posteriori probability (MAP) estimates are investigated

in the presence and absence of additive noise. In the multiple parameter case,

the form of the optimal random additive noise is derived for CRLB minimiza-

tion. Next, the theoretical result is supported with a numerical example, where
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the optimum noise is calculated by using the particle swarm optimization (PSO)

algorithm. Finally, the optimal constant noise in the multiple parameter estima-

tion problem in the presence of prior information is discussed.

Keywords: Estimation, quantization, Cramer-Rao lower bound, noise enhanced

estimation, mean-squared error, maximum likelihood, maximum a-posteriori

probability, particle swarm optimization
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ÖZET

NİCEMLENMİŞ GÖZLEMLER KULLANARAK GÜRÜLTÜ İLE

GELİŞTİRİLMİŞ PARAMETRE KESTİRİMİ

Gökce Osman Balkan

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Sinan Gezici

Temmuz 2010

Bu tezde nicemlenmiş gözleme dayalı tekli ve çoklu parametre kestiriminde

eniyi ek gürültü tanımlanmıştır. Her iki durumda da ilk olarak gözleme ek-

lenmesi gereken eniyi gürültünün olasılık dağılımı Cramer-Rao alt sınırı (CRLB)

enküçültme problemi cinsinden formülleştirilmiştir. Tek parametreli durumda

eniyi ek “gürültünün” sabit bir sinyal seviyesi ile gösterilebildiği kanıtlanmıştır.

Bu da CRLB enküçültmesi için ek sinyal seviyelerinin rastgeleleştirilmesine

gerek olmadığı anlamına gelmektedir. Ayrıca bu sonuçlar, bilinmeyen parame-

tre hakkında ön bilginin mevcut olduğu ve Bayesian CRLB’nin (BCRLB)

enküçültmesinin amaçlandığı durumlara genişletilmiştir. Sonrasında kuramsal

sonuçları açıklamak için sayısal örnekler sunulmuştur. Bunun dışında, eniyi

gürültü ile elde edilen performans gelişimi sıkça kullanılan kıpırtı (dither) sinyal-

leri ile karşılaştırılmıştır. Ayrıca enbüyük olabilirlikli ve enbüyük sonsal olasılık

kestiricilerin ortalama hata kare performansları gürültü ile geliştirilmiş ve ek

gürültüsüz durumlar için karşılaştırılmıştır. Çoklu parametre durumunda CRLB

enküçültmesi için eniyi rastgele ek gürültünün şekli türetilmiştir. Ardından ku-

ramsal sonuç, eniyi gürültünün parçacık sürü eniyileştirmesi ile bulunduğu sayısal
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bir örnek ile desteklenmıştir. Son olarak, ön bilginin varsayıldığı çoklu parametre

kestirim probleminde eniyi sabit gürültü incelenmiştir.

Anahtar Kelimeler: Kestirim, nicemleme, Cramer-Rao alt sınırı, gürültü ile

geliştirilmiş kestirim, ortalama hata kare, enbüyük olabilirlik, enbüyük sonsal

olasılık, parçacık sürü eniyileştirmesi
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Chapter 1

INTRODUCTION

Although noise commonly degrades the performance of a system, some nonlinear

systems can benefit from addition of noise to their inputs or from increased noise

levels [1]-[4]. In detection theory, such noise benefits are observed for certain sub-

optimal detectors, which achieve improved detection performance in the presence

of additive noise [5], [6]. Recent studies quantify the noise benefits for suboptimal

detectors in the Bayesian, minimax, and Neyman-Pearson frameworks [5]-[11].

Noise benefits are also observed in the form of dithering in quantization sys-

tems (cf. [12] and references therein). It is shown in [13] that noise benefits can

be obtained in sigma-delta quantizer in terms of improved signal-to-noise ratio

(SNR). In addition, [14] reveals that the information transmitted in an array of

comparators is maximized at a certain ratio between the standard deviation of

the random input signal and that of the noise, where the cases of various prob-

ability distributions of the signal and the noise are considered. Furthermore,

parameter estimation based on 1-bit dithered quantization is studied in [12], and

an estimator that does not require any information about the dither signal and

the noise distribution is proposed.
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Additive noise benefits in parameter estimation problems are investigated

also in [15]-[17]. The frequency estimation problem in [15] reveals that, the

mean-squared error (MSE) of the optimal Bayesian estimator can decrease under

certain conditions, when the noise level is increased. Likewise, [16] considers

Bayesian estimation and provides examples of when raised noise levels result in

improved MSE performance. In [15] and [16], 1-bit quantizers are employed and

noise benefits are observed due to the nonlinear structure of the quantizers. In

another noise enhanced estimation study [17], the first and the second moments

of an estimator and a Bayesian cost function are used as performance criteria

and the general form of the optimal noise probability density function (p.d.f.) is

derived.

For some noise enhanced parameter estimation problems, asymptotical be-

haviors of the estimators make the Cramer-Rao lower bound (CRLB), equiv-

alently the Fisher information, an appealing metric for the quantification of

performance improvements via additive noise [4]. For example, maximization

of the Fisher information for parameter estimation based on quantized obser-

vations is studied in [18] by optimizing quantization intervals. In addition, the

dependence of the MSE of a mean estimator on the probability distribution of ob-

servation noise is investigated in [19] and theoretical lower bounds are provided.

In [20], parameter estimation based on observations from a multi-bit quantizer

is considered and additive controlled perturbation of the quantizer thresholds is

investigated. In particular, [20] shows that random dithering can significantly

reduce the CRLB for the mean estimation problem with 1-bit precision sampling.

Also, it is shown in [21] that the variance of an estimator that uses 1-bit quan-

tizer outputs can be made quite close to the variance of a clairvoyant estimator

that uses unquantized observations by an appropriate choice of the quantizer

threshold. Moreover, addition of noise to quantized measurements can provide

enhancement of the Fisher information for the estimation of the suprathreshold

input signals [22]. Furthermore, maximization of the Fisher information by both
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an appropriate choice of the quantizer threshold and additive noise is studied

in [23]. Finally, another related problem is the optimal quantization of ran-

dom variables according to the minimum MSE criterion, which differs from the

studies on noise enhanced parameter estimation that consider the CRLB as the

optimization metric [22].

Although the effects of additive noise on CRLBs have been investigated in

[20], [22] and [23], the optimal p.d.f. of additive noise that minimizes the CRLB

for parameter estimation based on quantized observations has not been obtained

before. In this thesis, a parameter estimation problem based on quantized ob-

servations is studied, where the aim to find the optimal p.d.f. of noise that

should be added to the observations before the quantizer in order to minimize

the CRLB for estimating the unknown parameter (see Figure 2.1). Unlike the

previous studies, an explicit CRLB minimization problem is formulated in terms

of the additive noise p.d.f., the quantization function, and the p.d.f. of the orig-

inal observation. In addition, the quantizer is modeled by a generic multi-bit

quantizer with arbitrary quantization levels.

In Chapter 2, the single parameter case of the noise enhanced estimation

problem is studied [4], [24]. First, the problem is formulated as a Fisher informa-

tion maximization problem, where the aim is to find the probability distribution

of the optimal additive noise. In the next step, the derivation of the theoretical

solution to the problem employing the convexity of the Fisher information of the

estimate is given. It is shown that the optimal additive noise can be represented

as a deterministic constant signal. Additionally, using similar derivations, it is

also shown that this result is also valid for the random parameter case, where

Bayesian CRLB (BCRLB) replaces CRLB. Then, three numerical examples are

presented in order to support the theoretical results for both fixed and ran-

dom parameter cases. For each example, the outcomes of theoretical results are
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compared with the effects of the common dithering signals. Finally, MSE per-

formance of asymptotically efficient maximum likelihood (ML) and maximum

a-posteriori probability (MAP) estimators are compared.

In Chapter 3, the multiple parameter version of the problem in Chapter 2 is

investigated. The problem is formulated as an optimization problem, in which

the parameters are deterministic and the p.d.f. of the additive noise maximiz-

ing the trace of the inverse Fisher information matrix is sought. By employing

Carathéodory’s theorem, the form of the p.d.f. of the optimal additive noise is

found. As the next step, a numerical example using the theoretical results is

studied. In the numerical example, the particle swarm optimization (PSO) tech-

nique is employed in order to find the characteristics of the optimal additive noise.

Next, the performance improvements in terms of MSE are investigated, where

the root-mean-squared errors (RMSEs) of the ML estimates for the cases with

optimal random noise enhanced, optimal constant noise enhanced and noiseless

observations are compared with their CRLBs. It is shown that a random additive

noise can result in better estimation performance than constant additive noise,

if more than one parameter in the observations is to be estimated. Finally, the

optimal constant additive noise is investigated for the random parameter case of

the problem.

In Chapter 4, the conclusions inferred from this noise enhanced parameter

estimation study are summarized and future works are discussed.
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Chapter 2

OPTIMAL ADDITIVE NOISE

IN SINGLE PARAMETER

ESTIMATION PROBLEMS

2.1 Problem Formulation

Consider a system in which a quantized version of observation x is used to es-

timate an underlying parameter θ [4]. Let pX(x; θ) represent the p.d.f. of the

observation, and φ(·) denote the quantizer. Instead of using observation x, a

noise modified version of the observation, x + n, can be used as in Figure 2.1

in order to improve the estimation accuracy of the system, where the additive

noise n is independent of the observation x [5], [6]. The aim is to obtain the

p.d.f. of n, denoted by pN(·), that maximizes the estimation accuracy of the

system in Figure 2.1. It is noted that this noise enhanced parameter estimation

problem can also be regarded as a dynamic bias control problem as in [20], when

n represents the control input for the quantizer bias.
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Figure 2.1: Block diagram of the system, where n denotes the additive noise that
is independent of the original observation x.

Suppose that quantizer φ(·) is an M -level quantizer that generates the quan-

tized observation vector y based on the noise modified input observation as

follows:

y = φ(x+ n) , (2.1)

where y = [y1 y2 · · · yL], x = [x1 x2 · · ·xL], n = [n1 n2 · · ·nL], and the quan-

tizer levels are determined by thresholds τ1, . . . , τM−1. Specifically, the relation

between the input and the output of the quantizer is described by

yj =



0 , if xj + nj ≤ τ1

1 , if τ1 < xj + nj ≤ τ2

...
...

M − 1 , if τM−1 < xj + nj

. (2.2)

Let pY(· ; θ) represent the probability mass function (p.m.f.) of the quantizer

output for a given value of θ. From (2.2), it can be obtained as

pY(i ; θ) = (2.3)∫
RL

P(τi1 − n1 < X1 ≤ τi1+1 − n1, . . . , τiL − nL < XL ≤ τiL+1 − nL) pN(n) dn

for i ∈ I , {0, 1, . . . ,M − 1}L, where il represents the lth component of i.

The additive noise component n in Figure 2.1 is optimized according to the

CRLB in this study [4]. In other words, the optimal noise p.d.f. that minimizes

the CRLB is sought for. The CRLB on the MSE of unbiased estimators θ̂ of θ
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is stated as

MSEθ

{
θ̂
}
≥ J−1

θ =

(
E

{(
∂ log pY(y; θ)

∂θ

)2
})−1

, (2.4)

where MSEθ

{
θ̂
}
= E

{
(θ̂(y)− θ)2

}
, Jθ is defined as the Fisher information [25],

and pY(· ; θ) is as in (2.3). Since the CRLB imposes a lower limit on the MSE of an

unbiased estimator and since certain estimators, such as the maximum likelihood

estimator, can (asymptotically) achieve the CRLB under certain conditions [25],

the aim in this study is to obtain the optimal p.d.f. of the additive noise that

minimizes the CRLB specified by (2.4). It should be noted that this approach

does not require any information about the estimator that is used after the

quantizer. If the aim is to minimize the MSE of a given suboptimal estimator,

then the approach in [17] can be employed.

As the CRLB is the inverse of the Fisher information, the optimal additive

noise p.d.f. can be formulated, from (2.4), as the solution of the following opti-

mization problem:

poptN (n) = argmax
pN(·)

E

{(
∂ log pY(y; θ)

∂θ

)2
}

. (2.5)

Since Y is equal to i with probability pY(i ; θ) as defined in (2.3), the problem

in (2.5) can be expressed as

poptN (n) = argmax
pN(·)

∑
i∈I

1

pY(i ; θ)

(
∂pY(i ; θ)

∂θ

)2

. (2.6)

As a special case of the generic problem formulation in (2.6), when both X

and N consist of independent components, it can be shown that the components

of the optimal additive noise can be calculated separately; i.e.,

poptNl
(n) = arg max

pNl
(·)

E

{(
∂ log pYl

(yl; θ)

∂θ

)2
}

, (2.7)

for l = 1, . . . , L, where pNl
(·) represents the marginal p.d.f. of the lth component

of the additive noise. If pYl
(i ; θ) denotes the probability that Yl is equal to i for

7



i = 0, 1, . . . ,M − 1, then (2.7) can be expressed as

poptNl
(n) = arg max

pNl
(·)

M−1∑
i=0

1

pYl
(i ; θ)

(
∂pYl

(i ; θ)

∂θ

)2

, (2.8)

for l = 1, . . . , L. In addition, if Y1, . . . , YL are independent and identically dis-

tributed (i.i.d.); that is, if pYl
(i ; θ) = pY (i ; θ) for l = 1, . . . , L, the optimization

problems in (2.8) become identical. In other words, in the i.i.d. case, the same

optimal noise value is added to each component of the original observation x.

2.2 Statistical Characterization of Optimal Ad-

ditive Noise

In order to investigate the statistical properties of the optimal additive noise in

(2.6), we first introduce the following functions:

Hθ
i (n) , P(τi1 − n1 < X1 ≤ τi1+1 − n1, . . . , τiL − nL < XL ≤ τiL+1 − nL) ,

(2.9)

Gθ
i(n) ,

∂Hθ
i (n)

∂θ
. (2.10)

It is noted from (2.3) that 0 ≤ Hθ
i (n) ≤ 1, ∀n, and that

∑
i∈I H

θ
i (n) = 1. Based

on the definitions in (2.9) and (2.10), the p.m.f. in (2.3) and its derivative with

respect to θ can be expressed as

pY(i ; θ) = E{Hθ
i (N)}, ∂pY(i ; θ)

∂θ
= E{Gθ

i(N)} . (2.11)

Then, the optimization problem in (2.6) becomes

poptN (n) = argmax
pN(·)

∑
i∈I

(
E
{
Gθ

i(N)
})2

E
{
Hθ

i (N)
} · (2.12)

In order to obtain the solution of (2.12), the following lemma is presented first

[4].
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Lemma 1: For the real-valued functions defined in (2.9) and (2.10),

∑
i∈I

(
E{Gθ

i(N)}
)2

E{Hθ
i (N)}

≤ max
n

{∑
i∈I

(
Gθ

i(n)
)2

Hθ
i (n)

}
(2.13)

is satisfied for all θ and all possible p.d.f.s pN(·) of N.

Proof: Consider a function of two variables defined as f(Z) = Z2
1/Z2, where

Z = [Z1 Z2]. The Hessian of f(Z) is calculated as

Hf =

 2/Z2 −2Z1/Z
2
2

−2Z1/Z
2
2 2Z2

1/Z
3
2

 , (2.14)

which results in αTHfα = 2(α1Z2 − α2Z1)
2/Z3

2 ≥ 0 for all α = [α1 α2]
T and

Z2 ≥ 0, implying that Hf is positive semidefinite; hence, f(Z) is convex for

Z2 ≥ 0. Therefore, Jensen’s inequality implies that

(E{Z1})2

E{Z2}
≤ E

{
Z2

1

Z2

}
(2.15)

for Z2 ≥ 0. If we define Z1 , Gθ
i(N) and Z2 , Hθ

i (N), (2.15) becomes(
E{Gθ

i(N)}
)2

E{Hθ
i (N)}

≤ E

{(
Gθ

i(N)
)2

Hθ
i (N)

}
(2.16)

for all pN(·), θ and i, since Hθ
i (n) ≥ 0, ∀n, i, θ, by definition (cf. (2.9)). As the

inequality in (2.16) is valid for all i’s, we obtain

∑
i∈I

(
E{Gθ

i(N)}
)2

E{Hθ
i (N)}

≤ E

{∑
i∈I

(
Gθ

i(N)
)2

Hθ
i (N)

}
, (2.17)

for all pN(·) and θ. Finally, as the expression on the right-hand-side of (2.17) is

never larger than max
n

{∑
i∈I

(Gθ
i (n))

2

Hθ
i (n)

}
, the result in the lemma is obtained. �

Lemma 1 states that for each possible noise p.d.f. pN(n), the Fisher informa-

tion
∑

i∈I
(E{Gθ

i (N)})
2

E{Hθ
i (N)} can never be larger than the maximum of

∑
i∈I

(Gθ
i (n))

2

Hθ
i (n)

over

all possible noise values, n. In other words, Lemma 1 states that randomization

among different noise values cannot improve (increase) the objective function in

(2.12). This result leads to the following proposition.

9



Proposition 1: The optimal noise p.d.f. in (2.12) can be expressed as

poptN (n) = δ(n− no) , (2.18)

where

no = argmax
n

∑
i∈I

(
Gθ

i(n)
)2

Hθ
i (n)

. (2.19)

Proof: Since the result in Lemma 1 holds for any pN(·), the following in-

equality can be obtained:

max
pN(·)

{∑
i∈I

(
E{Gθ

i(N)}
)2

E{Hθ
i (N)}

}
≤ max

n

{∑
i∈I

(
Gθ

i(n)
)2

Hθ
i (n)

}
. (2.20)

Therefore, the maximum value of the objective function in (2.12) can never be

larger than the expression on the right-hand-side of (2.20). However, this upper

bound is achievable for pN(n) = δ(n−no), where no is defined as in (2.19). Hence,

the optimal additive noise can be expressed as specified in the proposition. �

Proposition 1 states that for any additive noise that has a p.d.f. with multi-

ple mass points, there always exists a corresponding constant “noise” level that

provides an equal or smaller CRLB. In addition, it is noted from Lemma 1 and

Proposition 1 that a constant additive “noise” component is optimal irrespective

of the number of quantization levels (M) and the dimension of the observation

vector (L). In addition, no assumption is imposed on the p.d.f. of the original

observation, x.

For the special case in which X and N consist of independent components,

the formulation in (2.8) leads to

poptNl
(n) = δ(n− nl) , nl = argmax

n

M−1∑
i=0

(
Gθ

l,i(n)
)2

Hθ
l,i(n)

, (2.21)

for l = 1, . . . , L, where

Hθ
i,l(n) , P(τi − n < Xl ≤ τi+1 − n) , (2.22)

Gθ
i,l(n) , ∂Hθ

i,l(n)/∂θ . (2.23)

10



In other words, optimal additive noise can be calculated for each component

separately in that case.

2.3 Optimal Additive Noise in the Presence of

Prior Information

In Section 2.2, the optimal additive noise is calculated for a given value of θ.

Although the value of θ is unknown in practice, the theoretical analysis in the

previous section is useful in two aspects. First, it provides theoretical perfor-

mance limits for unbiased estimators that perform parameter estimation based

on quantized observations. In other words, the maximum Fisher information at

the output of the quantizer in Figure 2.1 is obtained when the optimal additive

noise specified by Proposition 1 is employed for each value of θ. Second, the

theoretical results in the previous section form a basis for more practical results,

and the ideas can be extended to the cases of unknown parameters. In the fol-

lowing, it is assumed that the exact value of θ is unknown, but its p.d.f., denoted

by w(θ), is known a priori. Then, it is shown that the results in Lemma 1 and

Proposition 1 can be extended to characterize the optimal additive noise.

In the presence of prior p.d.f. w(θ) for the unknown parameter θ, the Bayesian

CRLB (BCRLB), also known as the posterior CRLB [26], imposes a lower bound

on the MSE of any estimator θ̂, which can be a biased or unbiased estimator, as

[25], [27], [28]

MSE
{
θ̂
}
= E

{
(θ̂(y)− θ)2

}
≥ (JD + JP)

−1 , (2.24)

where JD and JP represent the information obtained from the data (observations)

and from the prior knowledge, respectively, and are given by

JD = E

{(
∂ log pY(y; θ)

∂θ

)2
}

, JP = E

{(
∂ logw(θ)

∂θ

)2
}

. (2.25)

11



It is important to note that JD in (2.25) differs from Jθ in (2.4) due to the fact

that the expectation is over both y and θ in the former whereas it is only over y

in the latter.

Since JP depends only on the prior p.d.f., it is independent of the additive

noise component. Therefore, the optimal additive noise p.d.f. is defined to be

the one that maximizes JD. Then, similar to (2.5) and (2.6), the optimal additive

noise p.d.f. can be formulated as

poptN (n) = argmax
pN(·)

∫
w(θ)

∑
i∈I

1

pY(i ; θ)

(
∂pY(i ; θ)

∂θ

)2

dθ . (2.26)

In other words, the aim now becomes maximizing the average of Fisher infor-

mation Jθ (cf. (2.4)-(2.6)) for different parameter values. Since pY(i ; θ) =

E{Hθ
i (N)} and ∂pY(i ;θ)

∂θ
= E{Gθ

i(N)} as defined in Section 2.2, (2.26) can also

be expressed as

poptN (n) = argmax
pN(·)

∫
w(θ)

∑
i∈I

(
E
{
Gθ

i(N)
})2

E
{
Hθ

i (N)
} dθ . (2.27)

Then, the following proposition presents the p.d.f. of the optimal additive noise.

Proposition 2: The optimal noise p.d.f. in (2.27) can be expressed as

poptN (n) = δ(n− no) , where

no = argmax
n

∫
w(θ)

∑
i∈I

(
Gθ

i(n)
)2

Hθ
i (n)

dθ . (2.28)

Proof: Consider the inequality in (2.17), which is valid for all θ and pN(·).

Since it holds for all θ values, the following inequality can be obtained:∫
w(θ)

∑
i∈I

(
E{Gθ

i(N)}
)2

E{Hθ
i (N)}

dθ ≤ E

{∫
w(θ)

∑
i∈I

(
Gθ

i(N)
)2

Hθ
i (N)

dθ

}
(2.29)

for all pN(·). Therefore, the maximum value of the objective function in (2.27)

can be bounded from above as

max
pN(·)

∫
w(θ)

∑
i∈I

(
E{Gθ

i(N)}
)2

E{Hθ
i (N)}

dθ ≤ max
pN(·)

E

{∫
w(θ)

∑
i∈I

(
Gθ

i(N)
)2

Hθ
i (N)

dθ

}
.

(2.30)

12



Since the upper bound in (2.30) is always smaller than or equal to

max
n

{∫
w(θ)

∑
i∈I

(Gθ
i (n))

2

Hθ
i (n)

dθ

}
, the following result is obtained:

max
pN(·)

∫
w(θ)

∑
i∈I

(
E{Gθ

i(N)}
)2

E{Hθ
i (N)}

dθ ≤ max
n

{∫
w(θ)

∑
i∈I

(
Gθ

i(n)
)2

Hθ
i (n)

dθ

}

=

∫
w(θ)

∑
i∈I

(
Gθ

i(no)
)2

Hθ
i (no)

dθ , (2.31)

where no is as defined in (2.28). Since the upper bound in (2.31) can be achieved

for pN(n) = δ(n− no), the result in the proposition is obtained. �

Proposition 2 states that among all possible p.d.f.s for the additive noise com-

ponents, a p.d.f. with a single mass point (that is, a constant “noise” component)

minimizes the BCRLB. Therefore, adding the optimum noise to the observation

is equivalent to shifting the threshold levels of the quantizer, which is a simple

operation since no randomization among different noise values is needed.

2.4 Numerical Results

2.4.1 CRLB Optimization for Different Parameter Types

In this section, we investigate three examples, in which different types of pa-

rameters in the scalar observations (which have symmetric Gaussian mixture

probability distribution consisting of two components) are to be estimated. In

addition, the additive noise taken as a constant signal as the consequence of

Proposition 1.

13



Example 1. Mean of Symmetric Gaussian Mixture Components

Consider a scalar observation x in Figure 2.1 with a Gaussian mixture p.d.f.

given by

pX(x; θ) = 0.5γ(x;−θ, σ2) + 0.5γ(x; θ, σ2) , (2.32)

where

γ(x; θ, σ2) , 1√
2π σ

exp

{
−(x− θ)2

2σ2

}
. (2.33)

Then, Hθ
i (n) in (2.9) can be expressed as

Hθ
i (n) = FX(τi+1 − n; θ)− FX(τi − n; θ) (2.34)

for i = 0, 1, . . . ,M − 1, where the cumulative distribution function (c.d.f.) of X

for a given value of θ is calculated as

FX(x; θ) = 0.5Q

(
−x+ θ

σ

)
+ 0.5Q

(
−x− θ

σ

)
, (2.35)

with Q(a) = 1√
2π

∫∞
a

e−0.5t2dt denoting the Q-function. Also, Gθ
i (n) in (2.10)

can be calculated as the derivative of Hθ
i (n) with respect to θ. In addition, the

quantizer in (2.2) is modeled as a 4-level quantizer (i.e., M = 4) specified by

thresholds τ1 = −3, τ2 = 0 and τ3 = 3.

First, optimal additive noise is investigated for given values of θ. The plot in

Figure 2.2 investigates the CRLB versus constant “noise” levels for θ = 1 and

θ = 3, where σ = 1 is used. Specifically, the inverse of the objective function in

(2.12) is plotted against the additive “noise” level, n. It is observed for θ = 3

that the optimal additive “noise” value is equal to zero, which means that the

additive “noise” cannot reduce the CRLB of the system in that case. However,

for θ = 1, the minimum CRLB is achieved for n = ±1.496, which shows that

additive “noise” n can result in a smaller CRLB. In addition, Figure 2.3 plots

the CRLB versus θ for various values of the additive “noise”, n. It is observed

that the minimum CRLB is achieved by different n values over different ranges

14
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Figure 2.2: Example 1: CRLB versus additive “noise” n for various values of the
mean parameter θ.
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Figure 2.3: Example 1: CRLB versus θ for various values of additive “noise” n.

of parameter θ. It can also be concluded that if a rough estimate of θ is available

beforehand, an n value that is optimal around that estimate can be selected as a

(close-to) optimal additive “noise” component for the given estimation problem.

In addition, Figure 2.4 illustrates CRLB versus σ for n = 0 and n = nopt,

where θ = 1 is used. It is observed that no additive noise is required to minimize

the CRLB for 1.9 ≤ σ ≤ 4.7. Otherwise, the CRLB is improvable. It can be

concluded that the improvability of the CRLB for a given value of a parameter

depends on the probability distribution of the observation. As shown in [20, 22,

23], it is possible to improve the estimation accuracy by increasing the variance

of the observation, which can be achieved via Gaussian dithering in this example

as explained in Section 2.4.2. However, increasing the variance after adding the

optimal constant signal (noise) degrades the estimation performance.
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Figure 2.4: Example 1: CRLB versus σ for n = 0 and n = nopt.
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Next, for the problem setting described above, it is assumed that the prior

p.d.f. of θ is specified as

w(θ) = λ exp {−λθ} (2.36)

for θ ∈ [0,∞), where λ = 1. From (2.25), the Fisher information obtained from

the prior information is calculated as

JP = λ2 (2.37)

= 1. (2.38)

In Figure 2.5, the BCRLB is plotted versus n, where the BCRLB is calculated

as (JP+JD)
−1, with JD denoting the value of the objective function in (2.28) for

various values of n. It is observed from the figure that the minimum BCRLB is

achieved at n = ±1.463. In addition, since there exists prior information in this

scenario, the theoretical limits are lower than those in the previous scenario in

which no prior information on θ exists.

Example 2. Mean of Symmetric Gaussian Distributed Observation

In the second example, we use the same problem setting as the previous one

except that the scalar observation x has the following probability distribution:

pX(x; θ) = 0.5γ(x;−µ− θ, σ2) + 0.5γ(x;µ− θ, σ2) . (2.39)

In this case, the c.d.f. of X for a given value of θ in (2.9) can be expressed as

FX(x; θ) = 0.5Q

(
−x− µ− θ

σ

)
+ 0.5Q

(
−x+ µ− θ

σ

)
. (2.40)

Here, θ is a location parameter, which implies

pX(x; θ) = pX(x− θ) . (2.41)

In addition, Gθ
i (n) and Hθ

i (n) become

Gθ
i (n) = pX(τi+1 − n− θ)− pX(τi − n− θ) (2.42)

Hθ
i (n) = FX(τi+1 − n− θ)− FX(τi − n− θ) (2.43)

18
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Figure 2.5: Example 1: BCRLB versus n when θ is Gaussian distributed with
unit mean and variance.
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using (2.41). As a result, the Fisher information for a given θ can be expressed

as

Jθ(n) =
3∑

i=0

(pX(τi+1 − n− θ)− pX(τi − n− θ))2

FX(τi+1 − n− θ)− FX(τi − n− θ)
, (2.44)

and

Jθ(n) = J(n+ θ) (2.45)

is valid. Hence, the optimal noise minimizing the CRLB for a given θ depends

on the value of θ such that J(nopt + θ)−1 gives the minimum CRLB. Plotting

CRLB versus n for θ = 0 and θ = 0.5, where µ = 1 and σ = 1 are used, we

observe that optimum additive “noise” values are found as n = ±1.49 and n =

0.5± 1.49 respectively, as expected. The result of using a location parameter to

be estimated is clearly illustrated in Figure 2.7 for different additive “noise” levels

and θ. It can be concluded that the sum of the additive “noise” and θ determines

the CRLB, if θ is a location parameter. Therefore, the amount of change in

the optimal additive “noise” is the same as the parameter. Additionally, the

variation of the optimal additive “noise” with respect to the standard deviation

of the Gaussian mixture components can be seen in Figure 2.8. It is seen that

no additive “noise” is needed for σ ≥ 1.59. The conclusions for the Figure 2.4

are also valid for Figure 2.8.

Next, we assume that θ is random and has the p.d.f.

w(θ) = exp
{
−(θ − µθ)

2/(2σ2
θ)
}
/(
√
2π σθ) , (2.46)

where µθ = 0 and σθ = 0.2. From (2.25), it can be shown that JP = σ−2
θ = 25.

The behavior of the BCRLB with respect to the additive “noise” is plotted in

Figure 2.9. It is observed from the figure that the minimum BCRLB is achieved

at n = ±1.487.
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Figure 2.6: Example 2: CRLB versus additive “noise” n for various values of the
mean-shift parameter θ.
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Figure 2.7: Example 2: CRLB versus θ for various values of additive “noise” n.
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Figure 2.8: Example 2: CRLB versus σ for n = 0 and n = nopt.
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Figure 2.9: Example 2: BCRLB versus additive “noise” n for various values of
the mean-shift parameter θ.
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Example 3. Variance of Symmetric Gaussian Distributed Observation

In our third example, we consider a scalar observation x, whose p.d.f. and c.d.f.

are given by

pX(x; θ) = 0.5γ(x;−µ, θ2) + 0.5γ(x;µ, θ2) , (2.47)

and

FX(x; θ) = 0.5Q

(
−x+ µ

θ

)
+ 0.5Q

(
−x− µ

θ

)
, (2.48)

respectively, where µ = 0.2. This time, the threshold values of the 4-level quan-

tizer are set to τ1 = −1, τ2 = 0 and τ3 = 1. In Figure 2.10, the CRLB is plotted

versus additive “noise” for θ = 0.3 and θ = 1. For θ = 0.3, it is observed that

the CRLB is minimized by the additive noise n = ±0.498. However, for θ = 1,

the additive “noise” level required for CRLB minimization is zero. In addition,

Figure 2.11 depicts the CRLB versus θ for different noise levels. Similar to Fig-

ure 2.3 in the Example 1, it is observed that the additive “noise” level required

to minimize the CRLB changes for different values of θ. This result can be also

seen in Figure 2.12, where the optimal additive “noise” level differs from zero for

0.51 ≤ σ ≤ 1.51. Since the behavior of CRLB versus σ for n = 0 and n = nopt is

similar to Figures 2.4 and 2.8, we can draw the same conclusions for Figure 2.12.

Assuming that θ is a random parameter having exponential distribution with

parameter λ; that is,

w(θ) = λ exp {−λ(θ − ζ)} , (2.49)

where θ ∈ [ζ,∞) and ζ ∈ R+ is the shift variable, we consider the BCRLB for

the estimate of θ. Choosing λ = 1 and ζ = 0.3, the information obtained from

the prior knowledge is computed as

JP = λ2 (2.50)

= 1 . (2.51)
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Figure 2.10: Example 3: CRLB versus additive “noise” n for various values of
the standard deviation of the Gaussian mixture components θ.

26



1 2 3 4 50.5 1.5 2.5 3.5 4.5
10

−1

10
0

10
1

10
2

10
3

θ

C
R

LB

 

 

n = 0
n = n

opt

Figure 2.11: Example 3: CRLB versus θ for various values of additive “noise” n.
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Figure 2.12: Example 3: CRLB versus θ for n = 0 and n = nopt.
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Figure 2.13: Example 3: BCRLB versus additive “noise” n for various values of
the standard deviation parameter θ.

In Figure 2.13, the variation of the BCRLB with respect to n is shown, and it is

observed that the minimum BCRLB is achieved at n = ±0.4730.

2.4.2 Comparison with Common Dithering Techniques

In some related studies in the literature, the benefits of additive “noise” in non-

linear systems are observed by employing random noise, which can be Gaussian

or uniformly distributed [12], [15], [20], [16], [22], [23]. In this section, we com-

pare the optimal CRLB values obtained with optimal additive constant signal

to the additive noise models, which are used in common dithering techniques,

namely, Gaussian dithering and uniform dithering [20, 29]. As a Gaussian dither
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Table 2.1: Optimal Gaussian dithering and uniform dithering versus optimal
additive “noise” for Example 1.

σopt
N ϵ = 1 ϵ = 0.5 ϵ = 0.25 ϵ = 0 Optimal

CRLB (θ = 1) 6.888 (σopt
N =0.645) 6.566 7.302 7.575 7.675 1.924

CRLB (θ = 3) 1.571 (σopt
N =0) 2.146 1.705 1.604 1.571 1.571

BCRLB 0.8683 (σopt
N =0) 0.8762 0.8705 0.8689 0.8683 0.7573

signal, zero mean additive Gaussian noise with a standard deviation σN is em-

ployed. Since the random observations in our examples in the previous section

have a Gaussian mixture distribution, the standard deviation of the sum of the

observation and the additive noise can be described as

σX+N =
√

σ2 + σ2
N (2.52)

where σ is the variance of the Gaussian mixture components of X. The standard

deviation of the optimal additive Gaussian noise can be found as

σopt
N =

√
(σopt

X+N)
2 − σ2 (2.53)

where (σopt
X+N)

2 represents the variance of the observation combined with the

optimal noise. Since adding zero mean additive Gaussian noise has the same

effect as increasing the variance, we can consider Figures 2.4, 2.8 and 2.12 as a

comparison of the effects of the additive Gaussian noise and additive constant

signal on the CRLB. In these figures, we can also consider the σ value yielding

the minimum CRLB as σopt
X+N . Using σ values in these examples, we can find

σopt
N for the optimal additive Gaussian noise. In addition to the Gaussian noise,

additive uniform noise between −ϵ and ϵ is compared to additive constant noise.

The results in Table 2.1, 2.2 and 2.3 reveal that the performance improvement in

single parameter estimation by additive constant noise is significantly superior

to Gaussian and uniform dithering.
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Table 2.2: Optimal Gaussian dithering and uniform dithering versus optimal
additive “noise” for Example 2.

σopt
N ϵ = 1 ϵ = 0.5 ϵ = 0.25 ϵ = 0 Optimal

CRLB (θ = 0) 3.142 (σopt
N =0.247) 3.162 3.136 3.144 3.148 2.300

CRLB (θ = 0.5) 2.880 (σopt
N =0) 3.087 2.929 2.892 2.880 2.300

BCRLB 0.0395 (σopt
N =0.142) 0.0395 0.0395 0.0395 0.0395 0.0393

Table 2.3: Optimal Gaussian dithering and uniform dithering versus optimal
additive “noise” for Example 3.

σopt
N ϵ = 1 ϵ = 0.5 ϵ = 0.25 ϵ = 0 Optimal

CRLB (θ = 0.3) 0.2551 (σopt
N =0.279) 1.218 0.352 0.3411 0.3621 0.1369

CRLB (θ = 1) 1.0186 (σopt
N =0) 2.149 1.234 1.069 1.0186 1.0186

BCRLB 0.3810 (σopt
N =0) 0.6425 0.4266 0.3919 0.3810 0.2877

2.4.3 ML and MAP Estimation Performance

For the estimation performance evaluation in practical cases, we compare our

results with the performance of the maximum likelihood (ML) estimator for the

fixed parameter case and maximum a-posteriori probability (MAP) estimator for

the random parameter case. ML and MAP estimates are known to be asymp-

totically efficient [25]. This means that

lim
l→+∞

E
{
(θ̂ML(y)− θ)2

}
= JD

−1 (2.54)

and

lim
l→+∞

E
{
(θ̂MAP (y)− θ)2

}
= (JD + JP)

−1 (2.55)

for l = 1, . . . , L, where L is the number of observations, y = [y1 y2 · · · yL] and

θ̂ML(y) and θ̂MAP (y) are the ML and MAP estimates of parameter θ, respectively.

Therefore, it is expected that the asymptotical performance of both estimators

will improve with the reduced CRLB and BCRLB. The ML and MAP estimates

for a parameter θ are defined as

θ̂ML(y) = argmax
θ

pY(y; θ) (2.56)
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and

θ̂MAP (y) = argmax
θ

pY(y; θ)w(θ) , (2.57)

respectively. For the i.i.d. case of the observations, the p.d.f. of Y is calcu-

lated as pY(y; θ) =
∏L

l=1 pY (y; θ) and the Fisher information obtained from the

data becomes JD = LJθ, where J is the Fisher information obtained from one

observation Y . The probability distribution of Y can be expressed as

pY (i; θ) = FX(τi+1 − n; θ)− FX(τi − n; θ) . (2.58)

For the fixed and random parameter cases, we have performed a series of Monte

Carlo trials in order to evaluate the MSEs of the ML and MAP estimates of

parameter θ, where the settings of the first example in Section 2.4.1 are employed.

For the evaluation of the ML and MAP estimator performance, L realizations of

the observation Y are generated for θ = 1 in the fixed parameter case and for an

exponential distributed random θ characterized by the p.d.f.

w(θ) = λ exp {−λθ} , (2.59)

where λ = 1, in the random parameter case. The RMSEs of both estimates with

and without optimal noise enhancement are compared to their lower bounds in

Figure 2.14 and Figure 2.151. The asymptotic efficiency of the ML and MAP

estimates are evident in the figures, since they approach to their lower bounds

for an increasing number of observations. Furthermore, since noise enhancement

reduces the CRLB (BCRLB), it is observed that the MSE performances of the

estimators significantly improve. Hence, the optimization of the CRLB using

additive noise can be an effective alternative to the optimization of the MSE of

the estimate itself.

1In Figure 2.14, the RMSE of the ML estimate in the absence of additive noise can get lower

than the CRLB for small numbers of observations, since it turns out to be a biased estimator

in those cases.
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Figure 2.14: RMSE versus CRLB for ML estimates with and without additive
“noise”. The observations are generated for θ = 1.
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Figure 2.15: RMSE versus BCRLB for MAP estimates with and without additive
“noise”. The observations are generated for w(θ) = λ exp {−λθ} with θ ∈ [0,∞).
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2.5 Conclusions

In this chapter, it has been proven that in the noise enhanced estimation prob-

lem based on quantized observations, the best improvement can be obtained by

adding the optimal constant “noise” among all possible dither signals, when the

aim is to improve the estimation performance in terms of CRLB. Since Propo-

sitions 1 and 2 state that optimal additive “noise” can be represented by a con-

stant signal level, it has been concluded that the CRLB (BCRLB) is minimized

by shifting the original observation, which can also be interpreted as shifting the

thresholds of the quantizer by a constant value (cf. (2.2)). In other words, among

all possible p.d.f.s for the additive noise in Figure 2.1, the ones with a single mass

point, i.e., constant “noise” levels, can be used to achieve the minimum CRLB

(BCRLB). Therefore, randomization among different noise components are not

necessary to obtain the lowest bounds, which is a useful result for practical im-

plementations.

In Section 2.4, where three examples of different parameter types have been

investigated, it has been seen that the improvability of the estimation accuracy in

terms of CRLB (BCRLB) and the optimal additive “noise” level depends on the

probability distribution of the observation. For some observation p.d.f.s, additive

noise may degrade the estimation performance. However, this can be interpreted

as poptN (n) = δ(n), which is still consistent with our theoretical results.

Moreover, the comparison of Gaussian and uniform dithering with optimal

additive constant “noise” in the aforementioned examples reveals that the opti-

mal additive constant “noise” outperforms these dithering types in every case,

which confirms our theoretical results.

Finally, it has been observed that reducing the CRLB and the BCRLB can

yield significant improvements of the MSE performance of asymptotically efficient

estimators such as ML and MAP estimators.
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Chapter 3

OPTIMAL ADDITIVE NOISE

IN MULTIPLE PARAMETER

ESTIMATION PROBLEMS

3.1 Problem Formulation

Consider the multi-parameter version of the system in Figure 2.1, where the

vector parameter θ = [θ1 · · · θK ] is to be estimated instead of a single parameter.

As in the previous chapter, the noise modified version of the observation is to

be used as in Figure 3.1 in order to enhance the estimation performance of the

system, where the additive noise n and the observation x are independent of

each other. The aim is the same as in the previous chapter, which is to find

the optimal probability distribution of the noise that minimizes the estimation

accuracy of the system in Figure 3.1.

In this chapter, the following representations are used: x, n, y and φ(·) are

defined as in Section 2.1, but x and y are characterized by p.d.f.s pX(x;θ) and

pY(y;θ). The relation between the input and the output of the quantizer is
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Figure 3.1: The block diagram of the quantization process of the noise enhanced
signal and estimation of a set of parameters of the input signal.

described as in the (2.2). Hence, the p.d.f. of Y can be written as

pY(i ;θ) = (3.1)∫
RL

P(τi1 − n1 < X1 ≤ τi1+1 − n1, . . . , τiL − nL < XL ≤ τiL+1 − nL) pN(n) dn .

Note that the difference between (3.1) and (2.3) lies in the fact that θ in (3.1) is

a vector parameter.

The aim is to obtain the optimal additive noise p.d.f. that minimizes the

CRLB. A generic expression for the CRLB on the covariance matrix of unbiased

estimators of θ is stated as [30]

Cov(θ̂) ≥ J−1
θ , (3.2)

where Cov(θ̂) ≥ J−1
θ means that Cov(θ) − J−1

θ is positive semidefinite, Jθ is

defined as the Fisher information matrix (FIM) given by

Jθ = E
{
(∇θ log pY(i ;θ)) (∇θ log pY(i ;θ))

T
}

(3.3)

with

∇θ log pY(i ;θ) ,
[
∂ log pY(i ;θ)

∂θ1
· · · ∂ log pY(i ;θ)

∂θK

]T
. (3.4)

As a special case, if the components of X and N are independent, the quantizer

output y has independent components, as well. Therefore, the FIM in (3.3) can

be expressed as [30]

Jθ =
L∑
l=1

JYl
θ , (3.5)
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where JYl
θ represents the FIM due to the lth observation; that is,

JYl
θ = E

{
(∇θ log pYl

(i ;θ)) (∇θ log pYl
(i ;θ))T

}
. (3.6)

Note that (3.5) reduces to

Jθ = LJY1
θ , (3.7)

when Y1, . . . , YL are independent and identically distributed (i.i.d.).

The CRLB in (3.2) imposes a lower bound on the mean-squared error (MSE)

of an unbiased estimator. Specifically, the MSE of an unbiased estimator is

limited by the trace of the CRLB matrix, as shown in the following equations

[30]:

MSE = E
{
∥θ̂(y)− θ∥2

}
=

K∑
i=1

E
{
(θ̂i(y)− θi)

2
}

(3.8)

=
K∑
i=1

Var(θ̂i) (3.9)

≥
K∑
i=1

[
J−1
θ

]
ii
= trace

{
J−1
θ

}
. (3.10)

Note that the unbiasedness property of the estimator is employed to obtain (3.9)

from (3.8), and (3.2) and (3.5) are used to obtain the lower bound in (3.10). For

independent X and N components, (3.10) reduces to

trace


(

L∑
l=1

JYl
θ

)−1
 . (3.11)

From (3.6) and (3.10), the p.d.f. of the optimal additive noise can be calculated

from

poptN (n) = arg min
pN(·)

trace

{(
E
{
(∇θ log pY(i ;θ)) (∇θ log pY(i ;θ))

T
})−1

}
,

(3.12)

where pY(· ;θ) is as in (3.1). After some manipulation, (3.12) can also be ex-

pressed as

poptN (n) = arg min
pN(·)

trace


(∑

i∈I

1

pY(i ;θ)
DY,i

θ

)−1
 , (3.13)
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where I , {0, 1, . . . ,M − 1}L and DY,i
θ is a K ×K matrix with its element in

row k1 and column k2 being given by[
DY,i

θ

]
k1k2

=
∂pY(i ;θ)

∂θk1

∂pY(i ;θ)

∂θk2
. (3.14)

For independent Y components, the optimal additive noise can be characterized

with the p.d.f.

poptN (n) = arg min
pN(·)

trace


(

L∑
l=1

M−1∑
i=0

1

pYl
(i ;θ)

DYl,i
θ

)−1
 , (3.15)

where DYl,i
θ is a K ×K matrix with its element in row k1 and column k2 being

given by [
DYl,i

θ

]
k1k2

=
∂pYl

(i ;θ)

∂θk1

∂pYl
(i ;θ)

∂θk2
. (3.16)

When Y1, . . . , YL are i.i.d., pYl
(i;θ) = pY (i;θ) for l = 1, . . . , L can be used to

reduce (3.13) to

poptN (n) = arg min
pN (·)

trace


(

M−1∑
i=0

1

pY (i ;θ)
DY,i

θ

)−1
 . (3.17)

Note that in the i.i.d. case, the same noise n is added to all components of x. In

other words, a scalar variable can be considered as in (3.17), which results in a

significantly simpler optimization problem than that in (3.13).

3.2 Optimal Noise in the Absence of Prior In-

formation

First, the following functions are introduced:

Hθ
i (n) , P(τi1 − n1 < X1 ≤ τi1+1 − n1, . . . , τiL − nL < XL ≤ τiL+1 − nL) ,

(3.18)

Gθk
i (n) , ∂Hθ

i (n)

∂θk
, for k = 1, . . . , K. (3.19)
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Note that (3.18) and (3.19) are the multiple parameter versions of (2.9) and

(2.10). Based on the definitions in (3.18) and (3.19), the marginal p.m.f. in (3.1)

and its partial derivatives can be expressed as

pY(i ;θ) = E{Hθ
i (N)} ,

∂pY(i ;θ)

∂θk
= E{Gθk

i (N)} . (3.20)

with 0 ≤ Hθ
i (n) ≤ 1 and

∑
i∈I H

θ
i (n) = 1.

Based on (3.18) and (3.19), the optimization problem in (3.13) can be ex-

pressed as

poptN (n) = arg min
pN(·)

trace


(∑

i∈I

1

E{Hθ
i (N)}

DY,i
θ

)−1
 , (3.21)

where DYl,i
θ in (3.14) is given by[

DY,i
θ

]
k1k2

= E
{
G

θk1
i (N)

}
E
{
G

θk2
i (N)

}
· (3.22)

Then, the following proposition describes the form of the optimal noise p.d.f.

Proposition 3: Assume that Hθ
i (·) in (3.18) and Gθk

i (·) in (3.19) are con-

tinuous functions and that the additional noise components take finite values

specified by nl ∈ [al, bl], l = 1, . . . , L, for some finite al and bl. Then, the optimal

additive noise p.d.f. in (3.21) can be expressed as

poptN (n) =

(ML−1)(K+1)+1∑
j=1

λj δ(n− nj) , (3.23)

where λj ≥ 0 and
∑(ML−1)(K+1)+1

j=1 λj = 1.

In addition, if the observation vector and the additive noise vector both consist

of i.i.d. components, then each component of the optimal additive noise has the

same p.d.f. that is in the form of

poptN (n) =

(M−1)(K+1)+1∑
j=1

νj δ(n− nj) , (3.24)

where νj ≥ 0 and
∑(M−1)(K+1)+1

j=1 νj = 1.
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Proof: Optimization problems that involve functions of expectations of a

number of functions have been investigated in various studies in the literature

[5], [6], [31], [32]. Under the conditions in the proposition, it can be shown

that the optimal solution of (3.21) can be represented by a randomization of at

most (ML − 1)(K + 1) + 1 different noise values as a result of Carathéodory’s

theorem [33], [34]. Hence, the optimal additive noise PDF can be expressed as

in (3.23). The number (ML − 1)(K +1)+ 1 of mass points comes from the facts

that there are a total of K + 1 different functions for a given value of i ∈ I;

namely, Hθ
i (·), G

θ1
i (·), . . . , GθK

i (·), and that there are ML − 1 different functions

corresponding to different values of i. It should be noted that −1 is used since∑
i∈I H

θ
i (n) = 1 and Gθk

i (n) = ∂Hθ
i (n)/∂θk.

In the case of i.i.d. observations and i.i.d. components of the additive noise,

the problem is separable as shown in (3.17). In that case, there are (K+1)(M−1)

different functions, resulting in (K + 1)(M − 1) + 1 mass points as a result of

Carathéodory’s theorem; hence, the expression in (3.24) follows. �

Proposition 3 states that discrete probability distributions with a finite num-

ber of mass points solve the optimal additive noise problem under certain con-

ditions. Therefore, it implies that it is not necessary to search over all possible

probability distributions in order to obtain the optimal noise, which simplifies

the optimization problem significantly. In the next section, this result is used

in numerical evaluations to calculate the probability distribution of the optimal

additive noise.
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3.3 Numerical Results

Consider a scalar observation x in Figure 3.1 with a Gaussian mixture distribu-

tion that consists of p components expressed as

pX(x; θ1, θ2) =

p∑
k=1

akγ(x;µk − θ1, θ
2
2) , (3.25)

where

γ(x; θ1, θ
2
2) ,

1√
2π θ2

exp

{
−(x− θ1)

2

2θ22

}
. (3.26)

In this case, Hθ
i (n) in (3.18) is expressed as Hθ

i (n) = FX(τi+1 − n; θ1, θ2) −

FX(τi − n; θ1, θ2) for i = 0, 1, . . . ,M − 1, where the c.d.f. of X for a given value

of θ = [θ1 θ2]
T is calculated as

FX(x; θ1, θ2) =

p∑
k=1

ak Q

(
−x+ µk − θ1

θ2

)
. (3.27)

Also, Gθ1
i and Gθ2

i can be obtained in a straightforward manner as the derivatives

of Hθ
i with respect to θ1 and θ2, respectively. In addition, the quantizer has three

levels (i.e., M = 3), which are specified by the thresholds τ1 = −8 and τ2 = 8.

First, the optimal additive noise is investigated for p = 3, a = [0.4 0.4 0.2]T ,

µ = [−4 − 1 4]T and θ = [0 2]T . Using these values, the p.d.f. of X given in

(3.25) becomes

pX(x; θ1 = 0, θ2 = 2) = 0.4γ(x;−4, 4) + 0.4γ(x;−1, 4) + 0.2γ(x; 4, 4) , (3.28)

which is depicted in Figure 3.2. According to Proposition 3, the optimal solution

is in the form of

poptN (n) =
7∑

j=1

νj δ(n− nj) . (3.29)

The optimization problem in (3.21) simplifies based on (3.29), and it can be

solved by using global optimization techniques such as particle-swarm optimiza-

tion (PSO) [35]-[38], genetic algorithms and differential evolution [39]. In this
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Figure 3.2: The p.d.f. of the Gaussian mixture distributed observation X.

43



work, the optimal solution is searched by using the PSO algorithm. The PSO

algorithm can be described as follows. Consider the minimization of an objective

function f(.) over parameter q. A set of parameters are called particles and

their values {qi}Pi=1 express the positions of the particles, where P is called the

population size (i.e., the number of particles). First, the particles are generated.

Then, iterations are performed, where at each iteration the position of each par-

ticle is updated with the addition of the velocity vectors υi to the last position

of the particle according to the following equations [35]:

υk+1
i = χ

(
ωυk

i + c1ρ
k
i1

(
pk
i − qk

i

)
+ c2ρ

k
i2

(
pk
g − qk

i

))
, (3.30)

qk+1
i = qk

i + υk+1
i , (3.31)

for i = 1, . . . , P , where k is the iteration index, χ is the constriction factor, ω is

the inertia weight, which controls the effects of the previous history of velocities

on the current velocity, c1 and c2 are the cognitive and social parameters, respec-

tively, and ρki1 and ρki2 are independent uniformly distributed random variables in

the range of [0, 1] [36]. In (3.30), pk
i denotes the particle position corresponding

to the smallest f(q) value until the kth iteration of the ith particle, and pk
g rep-

resents the position achieved at the global minimum among all the particles until

the kth iteration. After a number of iterations, pk
g is selected as the optimizer of

the optimization problem.

By employing various approaches, such as penalty functions, PSO can be

extended to constrained optimization problems [37], [38]. In the penalty function

approach, the particle position is set to a large value, if it becomes infeasible.

In order to find the optimal solution for (3.29), the objective function in (3.17)

can be rewritten as n

ν

 = arg min
0≤νj≤1∑7
j=1 νj=1

nj∈[a,b]

trace


(

2∑
i=0

1∑7
j=1 νjH

θ
i (nj)

DY,i
θ

)−1
 , (3.32)
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Figure 3.3: The p.d.f. of the optimal additive noise.

where
[
DY,i

θ

]
k1k2

= (
∑7

j=1 νjG
θk1
i (nj))(

∑7
j=1 νjG

θk2
i (nj)). The mass points of the

optimal noise p.d.f., nj, and their weights νj are taken as the position of the

particles. Performing 500 iterations for 50 particles, χ = 0.72984, ω linearly

decreasing from 1.2 to 0.1 with respect to the number of iteration, c1 = 2.05,

c2 = 2.05, −a = b = 12 , the optimal probability distribution of the additive

noise is found as poptN (n) = 0.6371 δ(n − 1.2970) + 0.3629 δ(n − 2.0224), where

ν3 = ν4 = ν5 = ν6 = ν7 = 0 in (3.29), as depicted in Figure 3.3.

In order to compare the performance of the 2-mass point optimal noise to

the one mass point noise, which can also be achieved by shifting the quantizer

thresholds, the constant noise performance is also computed as shown in Figure

3.4. The optimal CRLB is achieved with the constant noise nopt = 0.3750. The

CRLB values for the optimal noise distribution, the optimal constant noise and no
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Figure 3.4: CRLB versus additive constant noise n.
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Table 3.1: CRLB values for optimal additive random noise, optimal additive
constant noise and without additive noise.

poptN (n) n = nopt n = 0
CRLB 63.6959 70.5280 72.4618

noise cases are given in Table 3.1. In conclusion, the performance of the system

in Figure 3.1 is still improvable with a additive constant noise; however, the

optimal random noise outperforms the additive constant noise in this example.

Moreover, it can be inferred that employing a random noise may result in a

better performance enhancement than adding a constant signal or shifting the

quantizer thresholds, if our aim is to achieve the best performance enhancement

in terms of CRLB at the estimation of multiple parameters.

For the estimation performance evaluation in practical cases, we consider the

MSE of the ML estimates of parameters θ1 and θ2, which is calculated as

MSE = E
{
(θ̂1(y)− θ1)

2
}
+ E

{
(θ̂2(y)− θ2)

2
}
. (3.33)

Since ML estimates are efficient, it is expected that the MSE of the ML estimates

asymptotically achieves the CRLB. The ML estimates of the two parameters are

calculated as

θ̂ML(y) = argmax
θ1,θ2

pY(y; θ1, θ2) . (3.34)

For i.i.d. case of the observations, the pd.f. of Y is calculated as pY(y; θ) =∏L
l=1 pYl

(yl; θ). For fixed parameters θ = [0 2]T , using the same settings of the

example considered for the comparison of the CRLB values, we have performed a

series of Monte Carlo trials in order to evaluate the MSE for the ML estimates of

parameter θ. As in Section 2.4.3, L realizations of observation Y are generated

for the evaluation of the ML estimator performance. The RMSE of the estimates

computed for the optimal random noise, the optimal constant noise and no noise

cases are compared to their CRLBs in Figure 3.5. As expected, the estimation

performance obtained by adding optimal random noise outperforms the optimal
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Figure 3.5: RMSE versus CRLB for ML estimates with optimal additive random
noise, constant noise and without additive noise. Observations are generated for
θ1 = 0 and θ2 = 2.

constant noise, which results a slight improvement in comparison to the no noise

case.

3.4 Optimal Additive Constant Noise in the

Presence of Prior Information

In some practical cases, prior information for the parameters to be estimated

can be available. Then, the generic expression for the CRLB on the covariance

matrix of the estimators of θ in (3.2) becomes

Cov(θ̂) ≥ J−1 , (3.35)
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with J = Jθ + JP, where Jθ denotes the Fisher information obtained from the

data expressed as in (3.3) and JP from the prior knowledge described as

JP = E
{
(∇θ logw(θ)) (∇θ logw(θ))

T
}
. (3.36)

Note that in the Bayesian case, the expectation operator E {·} in (3.3) is over

both y and θ. As a special case, if the components of X and N are independent,

the FIM can be still rewritten as in (3.5), where (3.6) is valid. For the case in

which prior information for the parameters exist, BCRLB imposes a lower limit

on the MSE as shown in the following equation:

MSE ≥
K∑
i=1

[
J−1
]
ii
= trace

{
(Jθ + JP)

−1
}

. (3.37)

Since we are looking for the optimal additive constant noise, the p.d.f. of the

optimal additive constant noise and optimal noise level can be calculated as

poptN (n) = δ(n− no) , (3.38)

no = trace
{
(Jθ + JP)

−1
}

. (3.39)

After some manipulation, (3.39) can also be expressed as

no = argmin
n

trace


(∑

i∈I

1

pY(i ;θ)
DY,i

θ + JP

)−1
 , (3.40)

where I , {0, 1, . . . ,M − 1}L and DY,i
θ is a K ×K matrix defined as in (3.14).

For independent Y components, the optimal additive noise can be characterized

with the p.d.f.

no = argmin
n

trace


(

L∑
l=1

M−1∑
i=0

1

pYl
(i ;θ)

DYl,i
θ + JP

)−1
 , (3.41)

where DYl,i
θ is a K ×K matrix with its element in row k1 and column k2 being

given by (3.16).

When Y1, . . . , YL are i.i.d., pYl
(i;θ) = pY (i;θ) for l = 1, . . . , L can be used to

reduce (3.13) to

no = argmin
n

trace


(

M−1∑
i=0

1

pYl
(i ;θ)

DY,i
θ + JP

)−1
 . (3.42)
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Figure 3.6: BCRLB versus additive constant noise n.

Consider the Bayesian version of the example given in Section 3.3, where the

parameters are characterized with the p.d.f.s

w1(θ1) =
exp

{
−(θ1 − µθ1)

2/(2σ2
θ1
)
}

(
√
2π σθ1)

(3.43)

and

w2(θ2) = λ exp {−λ(θ2 − ζ)} , (3.44)

with θ1 ∈ R, θ2 ∈ [ζ,∞), µθ1 = 0, σθ1 = 1, ζ = 0.5 and λ = 1. The lower

bound on the MSE of the estimates is depicted in Figure 3.6. The best noise

enhanced estimation performance is achieved at no = −3.140, which shows that

the estimation accuracy in the Bayesian case of the multiple parameter estimation

problem in Section 3.2 can be improved by adding a constant noise or shifting

quantizer thresholds.
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3.5 Conclusions

In this chapter, it has been shown that the optimal additive noise, which max-

imizes the estimation performance (in terms of the CRLB) of multiple parame-

ters based on quantized observations in the absence of the prior information, is

a random noise with a discrete probability distribution. In addition, it has been

observed that the number of mass points in this discrete probability distribution

depends on the numbers of quantization levels, parameters and observations.

The estimation performance improvement achieved via optimal additive random

noise can outperform the optimal additive constant noise or shifting quantizer

thresholds. This result can be also verified in terms of the MSE, since the MSE of

the estimators achieves the CRLB asymptotically under certain conditions [30].

In addition, it has been shown that the multiple parameter estimation perfor-

mance in the presence of prior information can be improved by adding a constant

noise or shifting quantizer thresholds.
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Chapter 4

CONCLUSIONS AND FUTURE

WORK

4.1 Concluding Remarks

In this thesis, noise benefits in parameter estimation problems based on quan-

tized observations have been studied in order to achieve the optimal performance

in terms of CRLB and BCRLB. In the single parameter estimation problem, it

has been proven that the optimal noise, which should be added to the obser-

vation before quantization in order to maximize the estimation accuracy, is a

constant signal both in the absence and presence of prior information. In ad-

dition, numerical results have shows that constant “noise” always outperforms

Gaussian and uniform dither signals. The benefit of this result can also be seen

in the MSE performance of the asymptotically efficient estimators such as ML

and MAP estimators. It can be concluded that for the optimal estimation per-

formance, no randomization among different noise components is required, which

can also be interpreted as shifting quantizer thresholds and is a very useful result

for practical implementations.
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On the other hand, if multiple parameters are to be estimated, then the op-

timal additive noise may not be expressed as a constant signal. Instead, the

optimal additive noise can be characterized with a p.m.f., whose number of mass

points depends on the numbers of quantizer levels, observations, and parame-

ters. In this case, the optimal additive random noise results in better estimation

accuracy than optimal additive constant noise. This result can also be seen nu-

merically in the MSE performance of the ML estimator. Furthermore, in the

presence of prior information, it has been shown that a additive constant noise

can be beneficial to the multiple parameter estimation accuracy.

4.2 Future Work

In Section 3.4, the optimal additive constant noise, which enhances the esti-

mation performance for multiple parameters nested in quantized observations,

is investigated in terms of a BCRLB minimization problem. As future work,

the theoretical derivation of the optimal additive random noise can be rigor-

ously studied. Also, the effects of the noise enhanced estimation accuracy to the

MSE performance of an asymptotically efficient estimator are worth being in-

vestigated. Furthermore, the optimal noise in the single and multiple parameter

estimation problems in Chapters 2 and 3 may also be formulated in terms of

other bounds such as Weiss-Weinstein, Barankin, Abel or Bhattacharya bounds,

and estimation performance achieved via optimal noise based on these bounds

can be compared.
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