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ABSTRACT

PRICING AND HEDGING OF CONTINGENT CLAIMS
IN INCOMPLETE MARKETS

Ahmet Camcı

Ph.D. in Industrial Engineering

Supervisor: Prof. Dr. Mustafa Ç. Pınar

August, 2010

In this thesis, we analyze the problem of pricing and hedging contingent claims in

the multi-period, discrete time, discrete state case. We work on both European

and American type contingent claims.

For European contingent claims, we analyze the problem using the concept of

a “λ gain-loss ratio opportunity”. Pricing results which are somewhat different

from, but reminiscent of, the arbitrage pricing theorems of mathematical finance

are obtained. Our analysis provides tighter price bounds on the contingent claim

in an incomplete market, which may converge to a unique price for a specific value

of a gain-loss preference parameter imposed by the market while the hedging

policies may be different for different sides of the same trade. The results are

obtained in the simpler framework of stochastic linear programming in a multi-

period setting. They also extend to markets with transaction costs.

Until now, determining the buyer’s price for American contingent claims

(ACC) required solving an integer program unlike European contingent claims

for which solving a linear program is sufficient. We show that a relaxation of

the integer programming problem which is a linear program, can be used to get

the buyer’s price for an ACC. We also study the problem of computing the lower

hedging price of an American contingent claim in a market where proportional

transaction costs exist. We derive a new mixed-integer linear programming for-

mulation for calculating the lower hedging price. We also present and discuss an

alternative, aggregate formulation with similar properties. Our results imply that

it might be optimal for the holder of several identical American claims to exercise

portions of the portfolio at different time points in the presence of proportional

transaction costs while this incentive disappears in their absence.

We also exhibit some counterexamples for some new ideas based on our work.
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We believe that these counterexamples are important in determining the direction

of research on the subject.

Keywords: Contingent Claim, Option Pricing, Hedging, Arbitrage, Transaction

Cost, Stochastic Linear Programming, Mixed Integer Programming.



ÖZET

KOŞULLU YÜKÜMLÜLÜKLERİN EKSİK
PİYASALARDA FİYATLANDIRILMASI

Ahmet Camcı

Endüstri Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Mustafa Ç. Pınar

Ağustos, 2010

Bu tez çalışmasında koşullu yükümlülükler için çok periyotlu, ayrık zamanlı ve

ayrık durumlu modellerde korunma ve fiyatlandırma problemlerini incelenmiştir.

Hem Avrupa hem de Amerikan tipi koşullu yükümlülükler üzerinde çalışmalar

yapılmıştır.

Avrupa tipi koşullu yükümlülükler için problem “λ kazanç-kayıp oranı fırsatı”

kavramı kullanılarak analiz edilmiştir. Arbitraj kavramı kullanılarak yapılan

çalışmalarda elde edilen sonuçları anımsatan ama bu sonuçlardan farklı fiyat-

landırma sonuçları türetilmiştir. Yapılan çalışmalar sonucunda eksik piyasalarda

Avrupa tipi yükümlülükler için arbitraj fiyatlamasına göre daha dar fiyat sınırları

elde edilmiştir. Kazanç-kayıp önceliği parametresinin özel bir değeri için bu fiyat

sınırlarının, alıcı ve satıcının korunma politikaları birbirinden farklı olsa bile, tek

bir fiyata yakınsayabileceği gösterilmiştir. Sonuçlar stokastik doğrusal program-

lama yaklaşımıyla çok periyotlu modellerde elde edilmiştir. Bunların yanında,

benzer sonuçlar işlem maliyetlerini hesaba katılarak da elde edilmiştir.

Daha önce yapılan çalışmalar sonucunda, Avrupa tipi bir koşullu sözleşmenin

alıcı fiyatını elde etmek için bir doğrusal eniyileme probleminin çözülmesi yeter-

liydi. Bunun aksine, Amerikan tipi bir koşullu sözleşmenin alıcı fiyatını elde

etmek için ise bir karışık tamsayı eniyileme problemi çözülmesi gerekiyordu.

Çalışmamızda bu karışık tamsayı eniyileme probleminin doğrusal eniyileme prob-

lemi olan bir gevşetmesinin Amerikan tipi koşullu sözleşmenin alıcı fiyatını belir-

lemek için kullanılabileceği gösterilmiştir. Amerikan tipi koşullu sözleşmelerin alt

korunma fiyatı problemi için ayrıca orantısal işlem maliyetlerinin yer aldığı bir

piyasada çalışmalar yapılmıştır. Alt korunma fiyatını elde etmek için bir karışık

tamsayı doğrusal programlama modeli türetilmiştir. Bu modele alternatif olarak,

benzer özellikler gösteren ama daha bütünsel bir model geliştirilmiştir. Sonuçlar,
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piyasada orantısal işlem maliyetleri bulunması durumunda, birden fazla özdeş

Amerikan tipi koşullu sözleşmeye sahip olan yatırımcının, sahip olduğu bu koşullu

sözleşmelerin bazılarını farklı zamanlarda uygulayacağını göstermektedir.

Bu tezde ayrıca, çalışmaların devamı olabilecek bazı konularda karşıt örnekler

sunularak gelecekte yapılacak çalışmalar için yön belirlenmesine çalışılmıştır.

Anahtar sözcükler : Koşullu Yükümlülük, Opsiyon Fiyatlandırma, Korunma, Ar-

bitraj, İşlem Maliyeti, Stokastik Doğrusal Eniyileme, Karışık Tamsayı Program-

lama.
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Chapter 1

Introduction

A derivative security is a financial instrument whose payoff depends on the value

of some underlying instrument. This underlying instrument can be a traded asset

such as a stock or currency; or a measurable variable such as the temperature

of a certain location. Derivative securities are also categorized according to the

conditions of the agreement between the seller and the buyer of the derivative

security. A futures contract, which is a derivative security, is a contract between

two parties, where one of the parties agrees to buy (sell) the underlying instrument

from (to) the other side in a future date, with a price which is fixed at the

agreement date. This future date is called the maturity date and the price is

called the delivery (exercise) price of the contract. An option which is also a

type of a derivative security, differs from a futures contract in the sense that

the holder (buyer) of the option is not obliged to fulfill the conditions of the

contract. In other words, the holder of the option does not necessarily buy (sell)

the underlying security from (to) the seller of the option. Besides, the holder of

the option can buy or sell the underlying security (i.e. exercise the option) at or

before the maturity date of the option. An option which can only be exercised

at the maturity date is called a European option, while an option which can be

exercised before or at the maturity date is called an American option. A call

(put) option gives the holder the right to buy (sell) the underlying instrument.

If the price of the underlying instrument is greater than the strike price at the

1



CHAPTER 1. INTRODUCTION 2

exercise date, the buyer of a call option can buy the underlying security at the

strike price and sell it from its prevailing price in the market resulting with an

instant profit. We call this profit as the payoff of the claim for the buyer.

In this thesis, we work on options for which the strike price is not defined. We

call such options as contingent claims. The payoff for the holder of a contingent

claim can be defined in any sort of correspondence with the value of the under-

lying instrument at the time of the agreement. Hence, contingent claims are a

more generalized version of options. Under this general setting many different

types of options can be modelled as special cases of our definition of a contingent

claim. European call and put options can be presented by a European contingent

claim when we set the payoff of the claim according to its strike price and the

price of the underlying security at the maturity date and by setting its payoff to

zero for the dates other than the maturity date. American call and put options

can be presented by an American contingent claim by setting the payoff of the

claim according to its strike price and the price of the underlying security for

all dates before its maturity. A Bermudan option is a type of American option

for which the holder can exercise the option at one of the specified dates until

its maturity. By setting an American contingent claim’s payoff to zero for the

dates that the Bermudan option could not be exercised and setting its payoffs

suitably elsewhere we can obtain a Bermudan option. Some of the options have

their payoffs calculated not only using the price of the underlying security at the

exercise date but according to the path followed by the price of the underlying

security until maturity. Such options are called path dependent options. Russian

and lookback options are examples of path dependent options. We can also ob-

tain path dependent options by setting the payoff of American contingent claims

appropriately.

Options have not been traded in the markets in a significant way until 1973,

when Chicago Board of Exchange (CBOE) started trading options. Since then,

options started to play a very important role in financial markets. This rise

has also showed its reflection in the theory of finance. Most of the literature

on derivative securities is based on the question of determining the price of an

option. Black and Scholes [7] have given the first widely accepted answer to
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this question. Their work is based on a no-arbitrage framework. Arbitrage is

defined as the profit of an investor without taking any risk. In other words, if a

portfolio strategy, which does not require an initial wealth and for which there is

no intermediary exogenous infusion (which is self-financing), has no probability

of loss but has a positive probability of profit in the end, it is said to create

an arbitrage opportunity for the investor following it. The idea is once such an

opportunity exists in the market every investor would try to make profit out

of that. Hence, the price of the portfolio would increase until it would provide

no arbitrage opportunity for the investors. Black and Scholes [7] works on a

simple model including a bond, a European option and an underlying stock.

They work on a continuous time framework where they assume the stock price

process to follow a geometric Brownian motion. They derive the price of the

option by determining the price of the portfolio which hedges the option to be

priced. Their results were generalized in Merton [45]. These two pioneering

works have many extensions in the literature. Leland [42] worked under the

setting where transaction costs exist. Broadie et al. [10] worked on the model

with some portfolio constraints. All these works are done in a complete market

setting (a market in which every option can be replicated) where the price for the

option is unique. However, the markets are almost never complete due to market

imperfections as discussed in Carr et al. [14]. When the markets are incomplete

not every option can be replicated, hence it is not possible to obtain the price

of an option by a replicating portfolio. El Karoui and Quenez [24] developed a

different idea for this problem. They considered the replication problem from

buyer’s and seller’s sides separately. The seller’s problem involved constructing

a portfolio strategy which requires a minimum initial wealth and for which the

portfolio has a value at least as large as the payoff of the option for any possible

outcome of the stock price process at the maturity date. This problem is called

the super-replication problem and its optimal value is called the seller’s price.

Conversely, the buyer’s problem involved constructing a maximum initial value

portfolio strategy which is dominated by the payoff of the claim at the maturity

date. The buyer’s price is the optimal value of buyer’s problem. They obtain

an interval instead of a unique value for the price of the option. However, this

interval might be very large in practice and determining the exact price of the
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option is still a problem. In order to overcome this problem another pricing

approach which has its roots from both arbitrage pricing theory and expected

utility theory has been developed.

Expected utility theory assumes that preferences of investors can be repre-

sented by expected utility functions which satisfy a set of axioms. The pricing

approach is based on equating the price of a claim to the expectation of the

product of the future payoff and the marginal rate of substitution of the repre-

sentative investor; see e.g. [16, 30, 36] for related recent work. The combination

of expected utility theory with arbitrage pricing resulted with several definitions

of performance criteria for a portfolio strategy. Opportunities satisfying these

performance criteria are called as good-deals or acceptable investments in the lit-

erature. Cochrane and Saa-Requejo [18] defines a good-deal as a portfolio strategy

having a high Sharpe ratio and derives the price bounds for an option in a market

which does not allow any such good-deal. Carr et al. [14], Roorda et al. [55],

and Kallsen [36] work under different definitions of good-deals in order to price

an option in an incomplete market. Bernardo and Ledoit [5] defines a good-deal

as a portfolio strategy having a high gain-loss ratio. In Chapter 2, we study the

pricing problem under their framework.

The literature on American option pricing has the same roots as the European

option pricing literature [45]. The owner of the American option has the right to

exercise the option at any time until maturity. Hence, the pricing problem consists

the optimal exercise strategy problem. The first expectation representation for

the price of an American option was shown in Harrison and Kreps [28]. There is

a vast literature building upon their work, e.g. [8], [17]. Pennanen and King [48]

worked on pricing American options in incomplete markets. Their results imply

that relaxing the feasible exercise set for the buyer of the option does not make

any impact on the pricing interval of the option. We build on their results by

correcting one of their proofs in Chapter 3. In Chapter 4 we revisit the problem

of pricing American contingent claims while incorporating transaction costs in

the model.



CHAPTER 1. INTRODUCTION 5

In the second chapter of this thesis we work on the problem of pricing Euro-

pean contingent claims under the condition of no λ gain-loss ratio opportunity

exists in the market. The λ gain-loss ratio opportunity criterion is a performance

measure for a portfolio strategy and it is based on the gain-loss criterion defined

by Bernardo and Ledoit [5]. Under this setting we derive conditions for which

there is no λ gain-loss ratio opportunity in the market. Bernardo and Ledoit [5]

derive same conditions in a one period model consisting of a bond and a stock.

They work on both finite and infinite state models. In our setting the market

may consist of several stocks in addition to a bond. Our model is a discrete time,

finite state model with finite number of periods. We also make studies on the

limiting values of the parameter λ which could be helpful in understanding the

function of the parameter. Then we work on the pricing problem for European

contingent claims both from buyer’s and writer’s sides to derive martingale ex-

pressions representing the pricing interval for the claim. We extend our results to

markets with transaction costs. We have published the findings of this chapter

in [50].

In the third chapter of this thesis we work on the American contingent claim

pricing problem. We work on the same setting as Pennanen and King [48]. We

give a correct proof of a theorem which was proposed in [48]. The implication

of this theorem is that we need to solve a linear programming problem instead

of a mixed-integer programming problem in order to find the buyer’s price of an

American contingent claim. We obtain pricing results in the form of martingales.

We show that our results remain valid under the existence of dividends. We have

published the findings of Chapter 3 in [13].

In Chapter 4 we work on the American contingent claim pricing problem in a

market in which transaction costs exist. We derive integer programming problems

in order to determine the lower bound for the price of an American contingent

claim. We show by a counterexample that linear relaxation problems of the

derived integer programming models cannot be used to determine the buyer’s

price of the contingent claim. We also prove the result of Chapter 3 again using

the models derived in this chapter. We believe this part of the thesis reveals that

the research on American contingent claim pricing in a discrete time, finite state
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model has to involve the deeper study of integer programming models. We have

published the findings of Chapter 4 in [51].

Finally, we outline our contributions, exhibit some counterexamples and future

research directions in Chapter 5.



Chapter 2

Expected Gain-Loss Pricing and

Hedging of European Contingent

Claims by Linear Programming

An important class of pricing theories in financial economics are derived under

no-arbitrage conditions. In complete markets, these theories yield unique prices

without any assumptions about individual investor’s preferences. In other words,

the pricing of assets relies on the availability and the liquidity of traded assets

that span the full set of possible future states. Ross [56, 57] proves that the

no-arbitrage condition is equivalent to the existence of a linear pricing rule and

positive state prices that correctly value all assets. This linear pricing rule is

the risk neutral probability measure in the Cox-Ross option pricing model. For

example Harrison and Kreps [28] showed that the linear pricing operator is an

expectation taken with respect to a martingale measure. However, when markets

are incomplete state prices and claim prices are not unique. Since markets are

almost never complete due to market imperfections as discussed in Carr et al. [14],

and characterizing all possible future states of economy is impossible, alternative

incomplete pricing theories have been developed.

7



CHAPTER 2. GAIN-LOSS PRICING OF ECC 8

In an incomplete financial market with no arbitrage opportunities, a notice-

able feature of the set of risk neutral measures is that the value of the cheapest

portfolio to dominate the pay-off at maturity of a European contingent claim

(ECC) coincides with the maximum expected value of the (discounted) pay-off of

the claim with respect to this set. This value, which may be called the writer’s

price, allows the writer to assemble a hedge portfolio that achieves a value at

least as large as the pay-off to the claim holder at the maturity date of the claim

in all non-negligible events. The writer’s price is the natural price to be asked

by the writer (seller) of a European contingent claim and, together with the bid

price obtained by considering the analogous problem from the point of view of

the buyer, forms an interval which is sometimes called the “no-arbitrage price

interval” for the claim in question.

A writer may nevertheless be induced for various reasons to settle for less than

the above price to sell a claim with pay-off FT ; see e.g., chapters 7 and 8 of [26]

for a discussion and examples showing that the writer’s price may be too high.

In such a case, he/she will not be able to set up a portfolio dominating the claim

pay-off almost surely, which implies that he/she will face a positive probability

of “falling short”, i.e., his/her hedge portfolio will take values VT smaller than

those of the claim on a non-negligible event. Thus, the writer will need to choose

his/her hedge portfolio (and selling price) according to some optimality criterion

to be decided. The gain-loss pricing criterion of our study inspired by the gain-

loss ratio criterion of Bernardo and Ledoit [5] suggests to choose the portfolio

which gives the best value of the difference of expected positive final positions

and a parameter λ (greater than one) times the expected negative final positions,

E[(VT −FT )+]−λE[(VT −FT )−], aimed at weighting “losses” more than “gains”.

This criterion gives rise to a new concept different from the ordinary arbitrage,

the “λ gain-loss ratio opportunity”, i.e., a portfolio which can be set up at no cost

but yields a positive value for the difference between gains and “λ-losses”. In this

chapter, we show that the price processes in a multiple period, discrete time, finite

state financial market do not admit a λ gain-loss ratio opportunity if and only if

there exists an equivalent martingale measure with an additional restriction. As

for the maximum and minimum no-arbitrage prices, we determine the maximum
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and minimum prices which do not introduce λ gain-loss opportunities in the

market. Thus, a new price interval (the “λ gain-loss price interval”) is determined,

generally contained in the no-arbitrage interval (thus more significant from an

economical point of view since it is more restrictive). These prices converge to

the no-arbitrage bounds in the limit as the gain-loss preference parameter goes to

infinity (and hence, the investor essentially looks for an arbitrage). On the other

extreme, our results show that the market may actually arrive at a consensus

about the pricing rule, i.e., as the gain-loss preference parameter goes down to

the smallest value not allowing a λ gain-loss ratio opportunity, the writer and

buyer’s no-λ gain-loss ratio opportunity prices of a European contingent claim

may converge to a single value, hence potentially providing a unique price for the

contingent claim in an incomplete market. However, in the incomplete market

setting, the same pricing rule leads to different hedging policies for different sides

of the same trade. This is an important finding as it will result in different

demand and supply schemes for the replicating assets. An attractive feature of

our results is that all derivations and computations are carried out using linear

programming models derived from simple stochastic programming formulations,

which offer a propitious framework for adding additional variables and constraints

into the models as well as the possibility of efficient numerical processing; see the

book [6] for a thorough introduction to stochastic programming.

Our concept of λ gain-loss ratio opportunity is akin to the notion of a good-

deal that was developed in a series of papers by various authors [15, 18, 34, 61].

For example in Cochrane and Saa-Requejo [18], the absence of arbitrage is re-

placed by the concept of a good deal, defined as an investment with a high Sharpe

ratio. While they do not use the term “good-deal”, Bernardo and Ledoit [5] re-

place the high Sharpe ratio by the gain-loss ratio. These earlier studies are carried

out using duality theory in infinite dimensional spaces in [15, 34, 61], usually in

single period models. Working with single period models is not necessarily a

limitation since dynamic models with a fixed terminal date can be viewed as one-

period models with investment choices taking values in suitable spaces. Recent

work on risk measures and portfolio optimization, e.g. [26], adopts this approach
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to formulate single period problems using function spaces rich enough to be ex-

tended to multiperiod or continuous time markets; see section 8 of Staum [61]

for a discussion. In this regard, the contribution of this chapter is to make ex-

plicit which consequences can general single period results have when applied to

multiperiod discrete space markets.

We note that a second class of pricing theories relies on the Expected Utility

framework which posits that if preferences satisfy a number of axioms, then they

can be represented by an expected utility function. This framework requires the

specification of investor preferences through usually non-linear utility functions;

see Chapter 1 of [31]. This model equates the price of a claim to the expectation

of the product of the future payoff and the marginal rate of substitution of the

representative investor; see e.g. [16, 30, 36] for related recent work. Recent papers

by Cochrane and Saa-Requejo [18], Bernardo and Ledoit [5], Carr et al. [14] and

Roorda et al. [55] and Kallsen [36] unify these two classes of pricing theories

and value options in an incomplete market setting. In this chapter, we work with

linear programming models, and avoid the non-linearities encountered with utility

functions. Our notion of gain-loss ratio opportunity is also related to prospect

theory of Kahneman and Tversky [35] proposed as an alternative to expected

utility framework. In prospect theory, it is presumed based on experimental

evidence that gains and losses have asymmetric effects on the agents’ welfare

where welfare, or utility, is defined not over total wealth but over gains and

losses; see Grüne and Semmler [27] and Barberis et al. [1] for details on the use

of the gain-loss function as a central part of welfare functions in asset pricing.

The organization of this chapter is as follows. In section 2.1 we review the

stochastic process governing the asset prices and we lay out the basics of our

analysis. Section 2.2 gives a characterization of the absence of a λ gain-loss ratio

opportunity in terms of martingale measures. We consider a related problem in

section 2.3 where the investor in search of a λ gain-loss ratio opportunity would

also like to find the λ gain-loss ratio opportunity with the limiting value of the

parameter λ. Here we re-obtain a duality result which turns out be essentially

the duality result of Bernardo and Ledoit in a multi-period but finite probability

state space setting. In section 2.4 we analyze the pricing problems of writers and
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buyers of European contingent claims under the λ gain-loss ratio opportunity

viewpoint. We extend our results to markets with transaction costs in section

2.5. We use simple numerical examples to illustrate our results.

2.1 The Stochastic Scenario Tree, Arbitrage

and Martingales

Throughout our work we follow the general probabilistic setting of [40] where we

model the behavior of the stock market by assuming that security prices and other

payments are discrete random variables supported on a finite probability space

(Ω,F , P ) whose atoms ω are sequences of real-valued vectors (asset values) over

the discrete time periods t = 0, 1, . . . , T . For a general reference on mathematical

finance in discrete time, finite state markets the reader is referred to Pliska [52].

We assume the market evolves as a discrete, non-recombinant scenario tree (hence,

suitable for incomplete markets) in which the partition of probability atoms ω ∈ Ω

generated by matching path histories up to time t corresponds one-to-one with

nodes n ∈ Nt at level t in the tree. The set N0 consists of the root node n = 0,

and the leaf nodes n ∈ NT correspond one-to-one with the probability atoms

ω ∈ Ω. In the scenario tree, every node n ∈ Nt for t = 1, . . . , T has a unique

parent denoted π(n) ∈ Nt−1, and every node n ∈ Nt, t = 0, 1, . . . , T − 1 has a

non-empty set of child nodes C(n) ⊂ Nt+1. The set of all ascendant nodes and all

descendant nodes of a node n are denoted A(n), and D(n), respectively, in both

cases including node n itself. We denote the set of all nodes in the tree by N . The

probability distribution P is obtained by attaching positive weights pn to each

leaf node n ∈ NT so that
∑

n∈NT
pn = 1. For each non-terminal (intermediate

level) node in the tree we have, recursively,

pn =
∑

m∈C(n)

pm, ∀ n ∈ Nt, t = T − 1, . . . , 0. (2.1)

Hence, each intermediate node has a probability mass equal to the combined mass

of the paths passing through it. The ratios pm/pn, m ∈ C(n) are the conditional

probabilities that the child node m is visited given that the parent node n = π(m)
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has been visited. This setting is chosen as it accommodates multi-period pricing

for future different states and time periods at the same time, employing realization

paths in the valuation process. It is a framework that allows to address the

valuation problem with incomplete markets and heterogeneous beliefs which are

very stringent assumptions in the classical valuation theory. In this respect, it

improves our understanding of valuation in a simple, yet complete fashion.

A random variable X is a real valued function defined on Ω. It can be lifted

to the nodes of a partition Nt of Ω if each level set {X−1(a) : a ∈ R} is either

the empty set or is a finite union of elements of the partition. In other words,

X can be lifted to Nt if it can be assigned a value on each node of Nt that is

consistent with its definition on Ω [40]. This kind of random variable is said to

be measurable with respect to the information contained in the nodes of Nt. A

stochastic process {Xt} is a time-indexed collection of random variables such that

each Xt is measurable with respect to Nt. The expected value of Xt is uniquely

defined by the sum

EP [Xt] :=
∑
n∈Nt

pnXn.

The conditional expectation of Xt+1 on Nt is a random variable taking values

over the nodes n ∈ Nt, given by the expression

EP [Xt+1|Nt] :=
∑

m∈C(n)

pm

pn

Xm.

Under the light of the above definitions, the market consists of J + 1 tradable

securities indexed by j = 0, 1, . . . , J with prices at node n given by the vector

Sn = (S0
n, S

1
n, . . . , S

J
n ). We assume as in [40] that the security indexed by 0 has

strictly positive prices at each node of the scenario tree. Furthermore, the price of

the security indexed by 0 grows by a given factor in each time period. This asset

corresponds to the risk-free asset in the classical valuation framework. Choosing

this security as the numéraire, and using the discount factors βn = 1/S0
n we define

Zj
n = βnS

j
n for j = 0, 1, . . . , J and n ∈ N , the security prices discounted with

respect to the numéraire. Note that Z0
n = 1 for all nodes n ∈ N , and βn is a

constant, equal to, βt, for all n ∈ Nt, for a fixed t ∈ [0, . . . , T ].

The amount of security j held by the investor in state (node) n ∈ Nt is denoted
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θj
n. Therefore, to each state n ∈ Nt is associated a vector θn ∈ RJ+1. We refer

to the collection of vectors θn for all n ∈ N as Θ. The value of the portfolio at

state n (discounted with respect to the numéraire) is

Zn · θn =
J∑

j=0

Zj
nθ

j
n.

We will work with the following definition of arbitrage: an arbitrage is a sequence

of portfolio holdings that begins with a zero initial value (note that short sales

are allowed), makes self-financing portfolio transactions throughout the planning

horizon and achieves a non-negative terminal value in each state, while in at least

one terminal state it achieves a positive value with non-zero probability. The

self-financing transactions condition is expressed as

Zn · θn = Zn · θπ(n), n > 0.

The stochastic programming problem used to seek an arbitrage is the following

optimization problem (P1):

max
∑

n∈NT

pnZn · θn

s.t. Z0 · θ0 = 0

Zn · (θn − θπ(n)) = 0, ∀ n ∈ Nt, t ≥ 1

Zn · θn ≥ 0, ∀ n ∈ NT .

If there exists an optimal solution (i.e., a sequence of vectors θn for all n ∈
N ) which achieves a positive optimal value, this solution can be turned into an

arbitrage as demonstrated by Harrison and Pliska [29].

We need the following definitions.

Definition 1. If there exists a probability measure Q = {qn}n∈NT (extended to

intermediate nodes recursively as in (2.1)) such that

Zt = EQ[Zt+1|Nt] (t ≤ T − 1) (2.2)

then the vector process {Zt} is called a vector-valued martingale under Q, and Q

is called a martingale probability measure for the process. If one has coordinate-

wise Zt ≥ EQ[Zt+1|Nt], (t ≤ T − 1) (respectively, Zt ≤ EQ[Zt+1|Nt], (t ≤ T − 1)

the process is called a super-martingale (sub-martingale, respectively).



CHAPTER 2. GAIN-LOSS PRICING OF ECC 14

Definition 2. A discrete probability measure Q = {qn}n∈NT
is equivalent to a

(discrete) probability measure P = {pn}n∈NT
if qn > 0 exactly when pn > 0.

King proved the following (c.f. Theorem 1 of [40]):

Theorem 1. The discrete state stochastic vector process {Zt} is an-arbitrage

free market price process if and only if there is at least one probability measure Q

equivalent to P under which {Zt} is a martingale.

The above result is the equivalent of Theorem 1 of Harrison and Kreps [28]

in our setting.

2.2 Gain-Loss Ratio Opportunities and Martin-

gales

In our context a λ gain-loss ratio opportunity is defined as follows. For n ∈ NT

let Zn · θn = x+
n −x−n where x+

n and x−n are non-negative numbers, i.e., we express

the final portfolio value at terminal state n as the sum of positive and negative

positions (x+
n denotes the gain at node n while x−n stands for the loss at node n).

Assume that there exist vectors vectors θn for all n ∈ N such that

Z0 · θ0 = 0

Zn · (θn − θπ(n)) = 0, ∀ n ∈ Nt, t ≥ 1

and

EP [X+]− λEP [X−] > 0,

for λ > 1, where X+ = {x+
n }n∈NT

, and X− = {x−n }n∈NT
. This sequence of

portfolio holdings is said to yield a λ gain-loss ratio opportunity (for a fixed value

of λ). This formulation is similar to Bernardo and Ledoit [5] gain-loss ratio, and

the Sharpe ratio restriction of Cochrane and Saa-Requejo [18]. Yet, it makes the

problem easier to tackle within the framework of linear programming. Moreover,

the parameter λ can be interpreted as the gain-loss preference parameter of the
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individual investor. As λ gets bigger, the individual’s aversion to loss is becoming

more and more pronounced, since he/she begins to prefer near-arbitrage positions.

As λ gets closer to 1, the individual weighs the gains and losses equally. In the

limiting case of λ being equal to 1 the pricing operator (equivalent martingale

measure) is unique if it exists. In fact, the pricing operator may become unique

at a value of λ larger than one, which is what we expect in a typical pricing

problem.

Consider now the perspective of an investor who is content with the existence

of a λ gain-loss ratio opportunity although an arbitrage opportunity does not

exist. Such an investor is interested in the solution of the following stochastic

linear programming problem that we refer to as (SP1):

max
∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n

s.t. Z0 · θ0 = 0

Zn · (θn − θπ(n)) = 0, ∀ n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0, ∀ n ∈ NT ,

x+
n ≥ 0, ∀ n ∈ NT ,

x−n ≥ 0, ∀ n ∈ NT .

If there exists an optimal solution (i.e., a sequence of vectors θn for all n ∈ N )

to the above problem that yields a positive optimal value, the solution is said

to give rise to a λ gain-loss ratio opportunity (the expected positive terminal

wealth outweighing λ times the expected negative final wealth). If there exists

a λ gain-loss ratio opportunity in SP1, then SP1 is unbounded. We note that

by the fundamental theorem of linear programming, when it is solvable, SP1 has

always a basic optimal solution in which no pair x+
n , x−n , for all n ∈ NT , can be

positive at the same time.

We will say that the discrete state stochastic vector process {Zt} does not

admit a λ gain-loss ratio opportunity (at a fixed value of λ) if the optimal value of

the above stochastic linear program is equal to zero. Clearly, if λ tends to infinity

we essentially recover King’s problem P1. It is a well-accepted phenomenon that

every rational investor is ready to lose if the benefits of the gains outweigh the
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costs of the losses [35]. It is also reasonable to assume that the rational investor

will try to limit losses. This type of behavior excluded by the no-arbitrage setting

is easily modeled by the Expected Utility approach and in prospect theory. Our

formulation allows investors to take reasonable risks without explicitly specifying

a complicated utility function while it converges to the no-arbitrage setting in the

limit. It is easy to see that an arbitrage opportunity is also a λ gain-loss ratio

opportunity, and that absence of a λ gain-loss ratio opportunity (at any level

λ) implies absence of arbitrage. It follows from Theorem 1 that if the market

price process does not admit a λ gain-loss ratio opportunity then there exists an

equivalent measure that makes the price process a martingale.

Definition 3. Given λ > 1 a discrete probability measure Q = {qn}n∈NT
is λ-

compatible to a (discrete) probability measure P = {pn}n∈NT
if it is equivalent to

P (Definition 2) and satisfies

max
n∈NT

pn/qn ≤ λ min
n∈NT

pn/qn.

Theorem 2. The process {Zt} does not admit λ gain-loss ratio opportunity (at a

fixed level λ > 1) if and only if there exists a probability measure Q λ-compatible

to P which makes the discrete vector price process {Zt} a martingale.

Proof. We prove the necessity part first. We begin by forming the dual problem

to SP1. Attaching unrestricted-in-sign dual multiplier y0 with the first constraint,

multipliers yn, (n > 0) with the self-financing transaction constraints, and finally

multipliers wn, (n ∈ NT ) with the last set of constraints we form the Lagrangian

function:

L(Θ, X+, X−, y, w) =
∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n

+y0Z0 · θ0 +
T∑

t=1

∑
n∈Nt

ynZn · (θn − θπ(n))

+
∑

n∈NT

wn(Zn · θn − x+
n + x−n )

that we maximize over the variables Θ, X+, and X− separately. From these
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separate maximizations we obtain the following:

y0Z0 =
∑

n∈C(0)

ynZn (2.3)

ymZm =
∑

n∈C(m)

ynZn, ∀ m ∈ Nt, 1 ≤ t ≤ T − 1, (2.4)

pn ≤ yn ≤ λpn, ∀n ∈ NT , (2.5)

where we got rid of the dual variables wn in the process by observing that maxi-

mizations over θn, (n ∈ NT ) yield the equations

(wn − yn)Zn = 0,∀n ∈ NT ,

and since the first component Z0
n = 1 for all states n, we have yn = wn, (n ∈ NT ).

Therefore, we have obtained the dual problem that we refer to SD1 with an

identically zero objective function and the constraints given by (2.3)–(2.4)–(2.5).

Now let us observe that problem SP1 is always feasible (the zero portfolio in

all states is feasible) and if there is no λ gain-loss ratio opportunity, the optimal

value is equal to zero. Therefore, by linear programming duality, the dual problem

is also solvable (in fact, feasible since the dual is only a feasibility problem). Let

us take any feasible solution yn, (n ∈ N ) of the dual system given by (2.3)–

(2.4)–(2.5). Since the first component, Z0
n is equal to 1 in each state n, we have

that

ym =
∑

n∈C(m)

yn, ∀ m ∈ Nt, 1 ≤ t ≤ T − 1. (2.6)

Since yn ≥ pn, it follows that yn is a strictly positive process such that the sum

of yn over all states n ∈ Nt in each time period t sums to y0. Now, define the

process qn = yn/y0, for each n ∈ N . Obviously, this defines a probability measure

Q over the leaf (terminal) nodes n ∈ NT . Furthermore, we can rewrite (2.4) with

the newly defined weights qn as

qmZm =
∑

n∈C(m)

qnZn, ∀ m ∈ Nt, 1 ≤ t ≤ T − 1,

with q0 = 1, and all qn > 0. Therefore, by constructing the probability measure

Q we have constructed an equivalent measure which makes the price process {Zt}
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a martingale according to Definition 1. By definition of the measure qn, we have

using the inequalities (2.5)

pn ≤ qny0 ≤ λpn,∀n ∈ NT ,

or equivalently,

pn/qn ≤ y0 ≤ λpn/qn,∀n ∈ NT ,

which implies that qn, n ∈ NT constitute a λ-compatible martingale measure.

This concludes the necessity part.

Suppose Q is a λ-compatible martingale measure for the price process {Zt}.
Therefore, we have

qmZm =
∑

n∈C(m)

qnZn, ∀ m ∈ Nt, 1 ≤ t ≤ T − 1,

with q0 = 1, and all qn > 0, while the condition maxn∈NT
pn/qn ≤ λ minn∈NT

pn/qn

holds. If the previous inequality holds as an equality, choose the right-hand

(or, the left-hand) of the inequality as a factor y0 and set yn = qny0 for

all n ∈ Ω. If the inequality is not tight, any value y0 in the interval

[maxn∈NT
pn/qn, λ minn∈NT

pn/qn] will do. It is easily verified that yn, n ∈ N
so defined satisfy the constraints of the dual problem SD1. Since the dual prob-

lem is feasible, the primal SP1 is bounded above (in fact, its optimal value is

zero) and no λ gain-loss ratio opportunity exists in the system.

As a first remark, we can immediately make a statement equivalent to The-

orem 2: The price process (or the market) does not have a λ gain-loss ratio

opportunity (at fixed level λ) if and only if there exists an equivalent measure Q

to P such that:
maxn∈NT

pn/qn

minn∈NT
pn/qn

≤ λ (2.7)

or, equivalently
maxn∈NT

qn/pn

minn∈NT
qn/pn

≤ λ (2.8)

or,
maxω

dQ
dP

(ω)

minω
dQ
dP

(ω)
≤ λ (2.9)



CHAPTER 2. GAIN-LOSS PRICING OF ECC 19

using the Radon-Nikodym derivative, and that Q makes the price process a mar-

tingale. Clearly, posing the condition as such introduces a nonlinear system of

inequalities, whereas our equivalent dual problem SD1 is a linear programming

problem. We observed that a similar observation for single period problems was

made in a technical note [44] although the language and notation of this reference

is very different from ours.

As a second remark, we note that if we allow λ to tend to infinity we find

ourselves in King’s framework at which point Theorem 1 is valid. Therefore, this

theorem is obtained as a special case of Theorem 2.

Example 1. Let us now consider a simple single-period numerical example. Let

us assume for simplicity that the market consists of a riskless asset with zero

growth rate, and of a stock. The stock price evolves according a trinomial tree

as follows. Assume the riskless asset has price equal to one throughout. At time

t = 0, the stock price is 10. Hence Z0 = (1 10)T . At the time t = 1, the

stock price can take the values 20, 15, 7.5 with equal probability. Therefore, at

node 1 one has Z1 = (1 20)T ; at node 2 Z2 = (1 15)T and finally at node 3

Z3 = (1 7.5)T . In other words, all β factors are equal to one. It is easy to see that

the market described above is arbitrage free because we can show the existence of

an equivalent martingale measure, e.g., q1 = q2 = 1/8 and q3 = 3/4. Now, setting

up and solving the problems SP1 and/or SD1, we observe that for all values of

λ ≥ 6, no λ gain-loss ratio opportunity exists in the market. However, for values

of λ strictly between one and six, the primal problem SP1 is unbounded and the

dual problem SD1 is infeasible. Therefore, λ gain-loss ratio opportunities exist.

As λ gets smaller, eventually the feasible set of the dual problem reduces to

a singleton, at which point an interesting pricing result is observed as we shall

see in section 2.4. First, we investigate the problem of finding the smallest λ not

allowing λ gain-loss ratio opportunities in the next section.
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2.3 Seeking out The Highest Possible λ in a

Gain-Loss Ratio Opportunity Framework

We have assumed thus far that the parameter λ was decided by the agent (writer

or buyer) before the solution of the stochastic linear programs of the previous

section. However, once a λ gain-loss ratio opportunity is found at a certain

level of λ it is legitimate to ask whether λ gain-loss ratio opportunities at higher

levels of λ continue to exist. In fact, it is natural to wonder how far up one

can push λ before λ gain-loss ratio opportunities cease to exist. Therefore, it is

relevant, while seeking λ gain-loss ratio opportunities, to consider the following

optimization problem LamP1:

sup λ

s.t.
∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n > 0

Z0 · θ0 = 0

Zn · (θn − θπ(n)) = 0, ∀ n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0, ∀ n ∈ NT ,

x+
n ≥ 0, ∀ n ∈ NT ,

x−n ≥ 0, ∀ n ∈ NT .

Notice that problem LamP1 is a non-convex optimization problem, and as such

is potentially very hard. However, it can be posed in a form suitable for numerical

processing as we claim by the next proposition.

Proposition 1. LamP1 is equivalent to the following problem LamPr under the

assumption that a λ gain-loss ratio opportunity exists for some λ > 1

sup

∑
n∈NT

pnx
+
n∑

n∈NT
pnx−n

s.t. Z0 · θ0 = 0

Zn · (θn − θπ(n)) = 0, ∀ n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0, ∀ n ∈ NT ,

x+
n ≥ 0, ∀ n ∈ NT ,

x−n ≥ 0, ∀ n ∈ NT .
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Proof. We should first note that the assumption of the existence of a λ gain-

loss ratio opportunity for some λ > 1 implies that LamP1 and LamPr have

both non-empty feasible sets and their optimal values are greater than 1. We

can see this fact by the problem SP1 and the definition of a λ gain-loss ratio

opportunity (see problem SP1 and the paragraph following it) based on SP1.

Assume that the optimal value of LamP1 is the finite number λ̄ and the optimal

value of LamPr is greater than λ̄. Then, problem LamPr must have a feasible

solution Θ, X+, X− which has an objective value λ′ that is greater than λ̄ by the

definition of a supremum. Then we see that Θ, X+, X−, λ′ − ε with ε < λ′ − λ̄

constitute another feasible solution to LamP1 with the objective value λ′ − ε.

But, this contradicts with the assumption that λ̄ is the optimal value of LamP1

since λ′− ε > λ̄. Hence, if LamP1 has a finite optimal value, LamPr cannot have

an optimal value greater than that. Conversely, assume that the optimal value

of LamPr is the finite number λ̄ and the optimal value of LamP1 is greater than

that. Then, LamP1 must have a feasible solution Θ, X+, X−, λ′ which has an

objective value λ′ that is greater than λ̄. Then, Θ, X+, X− constitute another

feasible solution to LamPr with the objective value greater than λ′ thus greater

than λ̄. Again, this contradicts with our assumption that λ̄ is the optimal value

of LamPr. Hence, if LamPr has a finite optimal value, LamP1 cannot have an

optimal value greater than that. Using these facts we conclude that, if one of the

problems has a finite optimal value the other one also has the same optimal value

and if one of them is unbounded, the other one is also unbounded. It proves that

they are equivalent when there is a λ gain-loss ratio opportunity.

Notice that as a result of the homogeneity of the equalities and inequalities

defining the constraints of problem LamPr, if Θ, X+, X− is feasible for LamPr,

then so is κ(Θ, X+, X−) for any κ > 0, and the objective function value is constant

along such rays.

Under the assumption

Assumption 1. The price process {Zt} is arbitrage-free, i.e., there does not exist

feasible Θ, X+, X− with EP [X+] > 0 and EP [X−] = 0,
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we can now take one step further and say that problem LamPr is equivalent

to problem LamPL:

max
∑

n∈NT

pnx
+
n

s.t.
∑

n∈NT

pnx
−
n = 1

Z0 · θ0 = 0

Zn · (θn − θπ(n)) = 0, ∀ n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0, ∀ n ∈ NT ,

x+
n ≥ 0, ∀ n ∈ NT ,

x−n ≥ 0, ∀ n ∈ NT .

This equivalence can be established using the technique described on pp. 151

in [9] as follows. Let us take a solution Θ, X+, X− to LamPr, with ξ− =∑
n∈NT

pnx
−
n . It is easy to see that the point 1

ξ−
(Θ, X+, X−) is feasible in LamPL

with equal objective function value. For the converse, let Ψ = (Θ, X+, X−) be

a feasible solution to LamPr, and let Ξ = (Θ̄, X̄+, X̄−) be a feasible solution to

LamPL. It is again immediate to see that Ψ + tΞ is feasible in LamPr for t ≥ 0.

Furthermore, we have

lim
t→∞

EP [X+ + tX̄+]

EP [X− + tX̄−]
= EP [X̄+],

which implies that we can find feasible points in LamPr with objective values

arbitrarily close to the objective function value at Ξ.

We can now construct the linear programming dual of LamPL using Lagrange

duality technique which results in the dual linear program (HD1) in variables

yn, (n ∈ N ) and V :

min V

s.t. ymZm =
∑

n∈C(m)

ynZn, ∀ m ∈ Nt, 0 ≤ t ≤ T − 1

pn ≤ yn ≤ V pn, ∀n ∈ NT .

Ley Y (V ) denote the set of {yn} that are feasible in the above problem for a given

V . Notice that, for V1 < V2, one has Y (V1) ⊆ Y (V2), assuming the respective
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sets to be non-empty. Hence, the optimal value of V is the minimum value such

that the associated set Y (V ) is non-empty.

The dual can also be re-written as (HD2):

min max
n∈NT

yn

pn

s.t. ymZm =
∑

n∈C(m)

ynZn, ∀ m ∈ Nt, 0 ≤ t ≤ T − 1

pn ≤ yn, ∀n ∈ NT .

Let Y denote the set of feasible solutions to the above problem. We summarize

our findings in the proposition below.

Proposition 2. Under Assumption 1 we have

1. Problem LamP1 is equivalent to problem LamPL.

2. When optimal solutions exist, for any optimal solution Θ∗, (X+)∗, (X−)∗, λ∗

of LamP1, we have that 1
EP [(X−)∗]

(Θ∗, (X+)∗, (X−)∗) is optimal for LamPL.

3. When optimal solutions exist, for any optimal solution Θ∗, (X+)∗, (X−)∗

of LamPL and any κ > 0, we have that κ(Θ∗, (X+)∗, (X−)∗), EP [(X+)∗]
EP [(X−)∗]

is

optimal for LamP1.

4. The supremum λ∗ of λ is equal to miny∈Y maxn∈NT

yn

pn
.

The last item of the above proposition is essentially the duality result of

Bernardo and Ledoit (c.f. Theorem 1 on page 151 of [5]) which they prove for

single period investments but using an infinite-state setup.

By way of illustration, setting up and solving the problem LamPL for the

trinomial numerical example of the previous section, one obtains the largest value

of λ as six, as the optimal value of the problem LamPL. This is the smallest value

of λ that does not allow a λ gain-loss ratio opportunity. Put in other words, it is

the supremum of all values of λ allowing a λ gain-loss ratio opportunity.
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2.4 Financing of European Contingent Claims

and Gain-Loss Ratio Opportunities: Posi-

tions of Writers and Buyers

Now, let us take the viewpoint of a writer of European contingent claim F which is

generating pay-offs Fn, (n > 0) to the holder (liabilities of the writer), depending

on the states n of the market (hence the adjective contingent). The following

is a legitimate question on the part of the writer: what is the minimum initial

investment needed to replicate the pay-outs Fn using securities available in the

market with no risk of positive expected terminal wealth falling short of λ times

the expected negative terminal wealth? King [40] posed a similar question in the

context of no-arbitrage pricing, hence for preventing the risk of terminal positions

being negative at any state of nature. Here, obviously we are working with an

enlarged feasible set of replicating portfolios, if not empty.

Let us now pose the problem of financing of the writer who opts for the λ gain-

loss ratio opportunity viewpoint rather than the classical arbitrage viewpoint.

The writer is facing the stochastic linear programming problem WP1

min Z0 · θ0

s.t. Zn · (θn − θπ(n)) = −βnFn, ∀ n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0, ∀ n ∈ NT ,∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n ≥ 0

x+
n ≥ 0, ∀ n ∈ NT ,

x−n ≥ 0, ∀ n ∈ NT ,

as opposed to King’s financing problem

min Z0 · θ0

s.t. Zn · (θn − θπ(n)) = −βnFn, ∀ n ∈ Nt, t ≥ 1

Zn · θn ≥ 0, ∀ n ∈ NT .

Let us assume that a price of F0 is attached to a contingent claim F . The

following definition is useful.
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Definition 4. A contingent claim F with price F0 is said to be λ-attainable if

there exist vectors θn for all n ∈ N satisfying:

Z0 · θ0 ≤ β0F0,

Zn · (θn − θπ(n)) = −βnFn, ∀ n ∈ Nt, t ≥ 1

and

EP [X+]− λEP [X−] = 0.

Proposition 3. At a fixed level λ > 1, assume the discrete vector price process

{Zt} does not have a λ gain-loss ratio opportunity. Then the minimum initial in-

vestment W0 required to hedge the claim with no risk of expected positive terminal

wealth falling short of λ times the expected negative terminal wealth satisfies

W0 =
1

β0

max
y∈Y (λ)

∑
n>0 ynβnFn

y0

where Y (λ) is the set of all y ∈ R|N | satisfying the conditions (2.3)– (2.4)–(2.5),

i.e., the feasible set of SD1.

Proof. Let us begin by forming the linear programming dual of problem WP1.

Forming the Lagrangian function after attaching multipliers vn, (n > 0), wn, (n ∈
NT ) (all unrestricted-in-sign) and V ≥ 0 we obtain

L(Θ, X+, X−, v, w, V ) = Z0 · θ0 + V (λ
∑

n∈NT

pnx
−
n −

∑
n∈NT

pnx
+
n )

+
T∑

t=1

∑
n∈Nt

vn

(
Zn · (θn − θπ(n)) + βNFn

)
+

∑
n∈NT

wn(Zn · θn − x+
n + x−n )

that we maximize over the variables Θ, X+, and X− separately again. This
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results in the dual problem WD2.1

max
∑
n>0

vnβnFn

s.t. Z0 =
∑

n∈C(0)

vnZn

vmZm =
∑

n∈C(m)

vnZn, ∀ m ∈ Nt, 1 ≤ t ≤ T − 1

V pn ≤ vn ≤ V λpn, ∀n ∈ NT ,

V ≥ 0.

We observe that no feasible solution to WD2.1 could have a V -component equal

to zero as this would lead to infeasibility in the v-component. Therefore, it is easy

to see that the dual is equivalent to the linear-fractional programming problem

(that we refer to as WD2.2) using the equivalences V = 1/y0 and vn = yn/y0:

max

∑
n>0 ynβnFn

y0

s.t. ymZm =
∑

n∈C(m)

ynZn, ∀ m ∈ Nt, 0 ≤ t ≤ T − 1

pn ≤ yn ≤ λpn, ∀n ∈ NT .

However, the feasible set of the previous problem is identical to the feasible set

Y (λ) of the dual SD1 in Proposition 1. Therefore, if the price process {Zt} does

not admit a λ gain-loss ratio opportunity, then there exists a feasible solution to

the dual SD1, and hence, a feasible solution to the dual problems WD2.2 and

WD2.1. Since WD2.1 is feasible and bounded above, the primal problem WP1 is

solvable by linear programming duality theory. Hence, the result follows.

Notice that in the previous proof we obtained two equivalent expressions for

the dual problem of WP1, namely the dual problem in the statement of the

Proposition 3 or WD2.2, which is a linear-fractional programming problem, and

the linear programming problem WD2.1 that is used for numerical computation.

For future reference, we refer to the feasible set of WD2.1 as Q(λ), and to its

projection on the set of v’s as Q̄(λ). It is not difficult to verify that Q̄(λ) is

the set of martingale measures λ-compatible to P . Since we observed that no
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optimal (in fact, feasible) solution to WD2.1 could have a V -component equal to

zero as this would lead to infeasibility in the v-component, by the complementary

slackness property of optimal solutions to the primal and the dual problems in

linear programming, we should have in all optimal solutions (Θ, X+, X−) to the

primal:

EP [X+]− λEP [X−] = 0.

We immediately have the following.

Corollary 1. At fixed level λ > 1, assume the discrete vector price process {Zt}
does not allow λ gain-loss ratio opportunity. Then, contingent claim F priced at

F0 is λ-attainable if and only if

β0F0 ≥ max
y∈Y (λ)

∑
n>0 ynβnFn

y0

.

In the light of the above, the minimum acceptable price to the writer of the

contingent claim F is given by the expression

Fw
0 =

1

β0

max
y∈Y (λ)

∑
n>0 ynβnFn

y0

. (2.10)

Let us now look at the problem from the viewpoint of a potential buyer. The

buyer’s problem is to decide the maximum price he/she should pay to acquire the

claim, with no risk of expected positive terminal wealth falling short of λ times

the expected negative terminal wealth. This translates into the problem

max −Z0 · θ0

s.t. Zn · (θn − θπ(n)) = βnFn, ∀ n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0, ∀ n ∈ NT ,∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n ≥ 0,

x+
n ≥ 0, ∀ n ∈ NT ,

x−n ≥ 0, ∀ n ∈ NT .

The interpretation of this problem is the following: find the maximum amount

needed for acquiring a portfolio replicating the proceeds from the contingent claim
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without the risk of expected negative wealth magnified by a factor λ exceeding the

expected positive terminal wealth. By repeating the analysis done for the writer

(that we do not reproduce here), we can assert that the maximum acceptable

price F b
0 to the buyer in our framework is given by the following, provided that

the price process {Zt} does not admit λ gain-loss ratio opportunity (at fixed level

λ):

F b
0 =

1

β0

min
y∈Y (λ)

∑
n>0 ynβnFn

y0

. (2.11)

Therefore, for fixed λ > 1 and P , we can conclude that the writer’s minimum

acceptable price and the buyer’s maximum acceptable price in a market without

λ gain-loss ratio opportunity constitute a λ gain-loss price interval given as

[
1

β0

min
y∈Y (λ)

∑
n>0 ynβnFn

y0

;
1

β0

max
y∈Y (λ)

∑
n>0 ynβnFn

y0

].

We could equally express this interval as

[
1

β0

min
v,V ∈Q(λ)

Ev[
T∑

t=1

βtFt];
1

β0

max
v,V ∈Q(λ)

Ev[
T∑

t=1

βtFt]]

where the optimization is over all martingale measures λ-compatible to P . This

is the interval of prices which do not induce either the buyer or writer to engage

in buying or selling the contingent claim. They can also be thought of as bounds

on the price of the contingent claim. Let us recall that the no-arbitrage pricing

interval obtained by King [40] corresponds to

[
1

β0

min
q∈Q̄

Eq[
T∑

t=1

βtFt];
1

β0

max
q∈Q̄

Eq[
T∑

t=1

βtFt]];

where Q̄ is the set of q ∈ R|N | satisfying

Z0 =
∑

n∈C(0)

qnZn

qmZm =
∑

n∈C(m)

qnZn, ∀ m ∈ Nt, 1 ≤ t ≤ T − 1

and

qn ≥ 0 ∀n ∈ NT .
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Clearly, for fixed λ we have the inclusion Q̄(λ) ⊂ Q̄ using the positivity of V .

Hence, the pricing interval obtained above is a smaller interval in width in com-

parison to the arbitrage-free pricing interval of [40]. Notice that the two intervals

will become indistinguishable as λ tends to infinity. The more interesting ques-

tion is the behavior of the interval as λ is decreased. Before we examine this issue

we consider some numerical examples.

Example 2. Consider the same simple market model of Example 1 in Section

2.2. We assume a contingent claim on the stock, of the European Call type

with a strike price equal to 9 is available. Therefore, we have the following

pay-off structure: F1 = 11, F2 = 6, F3 = 0, corresponding to nodes 1, 2 and

3, respectively. Computing the no-arbitrage bounds using linear programming,

one obtains the interval of prices [2.0; 2.2] corresponding to the buyer and to the

writer’s problems respectively. For λ = 8, the price interval for no λ gain-loss

ratio opportunity is [2.09; 2.14]. For λ = 7, the interval becomes [2.10; 2.13].

Finally, for λ = 6, which is the smallest allowable value for λ below which the

above derivations lose their validity, the interval shrinks to a single value of 2.125,

since both the buyer and the writer problems return the same optimal value.

Therefore, for two investors that are ready to accept an expected gain prospect

that is at least six times as large as an expected loss prospect, it is possible to

agree on a common price for the contingent claim in question. In this particular

example, the problem HD1 for λ∗ = 6 which is the optimal value for λ, possesses

a single feasible point y = (2.66, 0.33, 0.33, 2)T . Dividing the components by 2.66

which is the component y0, we obtain the unique equivalent martingale measure

(1/8, 1/8, 3/4)T (which is also λ-compatible) leading to the unique price of the

contingent claim.

Interestingly, the hedging policies of the buyer and the writer at level λ∗ = 6

need not be identical. For the writer an optimal hedging policy is to short 6.75

units of riskless asset at t = 0 and buy 0.887 units of the stock. If node 1 were to

be reached, the hedging policy dictates to liquidate the position in both the bond

and the stock. In case of node 2, the position in the stock is zeroed out, and a

position of 0.562 units in the bond is taken. Finally at node 3, the position in
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the stock is zeroed out, but a short position of 0.094 units remains in the riskless

asset. For the buyer an optimal hedging policy is to buy 5.625 units of riskless

asset at t = 0 and short 0.775 units of the stock. At time t = 1 if node 1 were

to be reached, the hedging policy dictates to pass to a position of 1.125 units in

the bond, and to a zero position in the stock. In case of node 2, all positions

are zeroed out. At node 3, the position in the stock is zeroed out while a short

position of 0.187 units remains in the riskless asset.

Example 3. Let us now consider a two-period version of the previous example.

The market is again described through a trinomial structure. Let the asset price

be as in Example 1 and 2 for time t = 1. At time t = 2, from node 1 at which the

price is 20, the price can evolve to 22, 21 and 19 with equal probability, thereby

giving the asset price values at nodes 4, 5 and 6. From node 2 at which the price

takes value equal to 15, the price can go to 17 or 14 or 13 with equal probability,

resulting in the asset price values at nodes 7, 8 and 9. Finally, from node 3, we

have as children nodes the node 10, node 11 and node 12, with equally likely

asset price realizations equal to 9, 8 and 7, respectively. Therefore, the trinomial

tree contains 9 paths, each with a probability equal to 1/9. The riskless asset

is assumed to have value one throughout. It can be verified that this market is

arbitrage free.

Solving for the supremum of λ values allowing a λ gain-loss ratio opportunity,

we obtain 14.5.

Now, let us assume we have a European Call option F on the stock with strike

price equal to 14, resulting in pay-off values F4 = 8, F5 = 7, F6 = 5 and F7 = 3

where the index corresponds to the node number in the tree (all other values Fn

are equal to zero). The no-arbitrage bounds yield the interval [0.33, 1.2] for this

contingent claim. The no-λ gain-loss ratio opportunity intervals go as follows:

for λ = 17 one has [0.86; 1.00], for λ = 16, [0.9; 0.99], for λ = 15 [0.94; 0.98].

For the limiting value of λ∗ = 14.5 the bounds again collapse to a single price of

0.9718 attained at the same λ-compatible martingale measure q4 = q5 = 0.028,

q6 = 0.085, q7 = 0.042, q8 = q9 = q10 = 0.028, q11 = 0.324 and q12 = 0.408.
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Node B S
0 −4.056 0.503
1 −14 1
2 7.13 −0.243
3 −4.563 0.57
8 3.729
9 3.972

10 0.57
12 −0.57

Table 2.1: The writer’s optimal hedge policy for λ = 14.5.

Node B S
0 −0.915 −0.006
1 −80.465 3.972
2 14 −1
3 −15.324 1.915
4 14.915
5 9.944
9 1

10 1.915
12 −1.915

Table 2.2: The buyer’s optimal hedge policy for λ = 14.5.

Two tables, Table 2.1 and Table 2.2, summarize the optimal hedge policies

of the writer and the buyer, respectively, when the single price is reached. We

only report the results for nodes where non-zero portfolio positions are held. The

symbols B and S stand for the riskless asset and the stock, respectively. Again,

the hedge policies are quite different, but result in an identical price.

Returning to the issue of the behavior of the price interval when λ decreases,

consider solving the problem LamPL or its dual HD1 (or HD2) for computing

the smallest λ which does not allow gain-loss ratio opportunities, i.e., λ∗ which

is the supremum of values of λ yielding a λ gain-loss ratio opportunity. If one

solves the dual problem HD1 to obtain as optimal solutions V ∗, y∗, and if this

solution is the unique feasible solution to the linear program HD1, i.e., if the
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set of equations and inequalities defining the constraints of HD1 for the fixed

value of V ∗ admit a unique solution vector y∗, then this immediately implies that

the no-λ gain-loss ratio opportunity pricing bounds at level λ = V ∗, i.e., the

bounds 1
β0

miny∈Y (λ)

∑
n>0 ynβnFn

y0
and 1

β0
maxy∈Y (λ)

∑
n>0 ynβnFn

y0
coincide since both

problems possess the common single feasible point y∗. However, the following

example shows that the bounds do not have to coincide for the smallest λ value

for which there are no λ gain-loss ratio opportunities in the market.

Example 4. Let us assume that the market consists of a riskless asset with zero

growth rate, and two stocks. The stock price evolves according to a quadrinomial

tree with one period as follows. At time t = 0, the stock price is 10 for both of

the stocks. Hence Z0 = (1 10 10)T . At the time t = 1, the first stock’s price can

take the values 10, 10, 15, 5 and the second stock’s price can take values 14, 2,

9, 11 with probabilities 0.25, 0.2, 0.5 and 0.05, respectively. Therefore, at node 1

one has Z1 = (1 10 14)T with p1 = 0.25; at node 2 Z2 = (1 10 2)T with p2 = 0.2;

at node 3 Z3 = (1 15 9)T with p3 = 0.5 and finally at node 4 Z4 = (1 5 11)T

with p4 = 0.05. The payoff structure of the contingent claim to be valued is

F1 = 10, F2 = 0, F3 = 0, F4 = 0 We find that the minimum λ value which does

not allow λ gain-loss ratio opportunities in the market is 10. However, for λ = 10,

the price interval of the option for no λ gain-loss ratio opportunity is [2.5; 5.26].

The above example shows that pricing interval does not necessarily reduce to

a single point for the smallest λ. Then, we pose the question for a market in

which there is only one bond and one risky asset. Example 5 shows that there is

no unique price even under this simple setting.

Example 5. Let us assume that the market consists of a riskless asset with

zero growth rate, and a stock. There are 2 periods and the stock price evolves

irregularly for both periods. At the first period the tree branches into 2 nodes

and at the second period the tree branches into 3 nodes for both of the nodes at

t = 1, i.e., node 1 branches into nodes 3, 4, 5 and node 2 branches into nodes 6,

7, 8 at period 2. At time t = 0, the stock price is 8. Hence Z0 = (1 8)T . At the

time t = 1, the stock’s price can take the values 5, 10. Therefore, at node 1 one
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has Z1 = (1 5)T and at node 2 Z2 = (1 10)T . At time t = 2, the stock’s price

can take the values 2, 6, 10 with probabilities 0.2, 0.1 and 0.1, respectively, given

that its price was 5 at time t = 1 and 13, 11, 8 with probabilities 0.05, 0.05 and

0.5, respectively, given that its price was 10 at time t = 1. Therefore, at node 3

one has Z3 = (1 2)T with p3 = 0.2; at node 4 Z4 = (1 6)T with p4 = 0.1; at node

5 Z5 = (1 10)T with p5 = 0.1; at node 6 Z6 = (1 13)T with p6 = 0.05; at node 7

Z7 = (1 11)T with p7 = 0.05; and at node 8 Z8 = (1 8)T with p8 = 0.5. The payoff

structure of the claim to be valued is F3 = 3, F8 = 3 and 0 elsewhere. We find

that the minimum λ value which does not allow λ gain-loss ratio opportunities

in the market is 5. However, for λ = 5, the price interval of the option for no λ

gain-loss ratio opportunity is [1.38; 1.56].

The natural question at this point is what happens if we work with a simpler

setting. The following theorem shows that the martingale measure is unique for

the smallest λ when there is only a bond and a risky stock in the market with

just one period (no intermediary trading is allowed) under a minimal structural

assumption on the stochastic scenario tree.

Theorem 3. Assume that there is a bond and a risky stock in the market con-

sisting of one period such that for all n ∈ N1 (the leaf nodes) Z1
n 6= Z1

π(n) (or

Z1
n 6= Z1

0). Then, at the smallest value λ∗, Y (λ) is a singleton.

Proof. Let L = |N1| be the number of leaf nodes. Let us view the problem of

computing the smallest λ such that Y (λ) has a solution, as a parametric feasibility

problem with parameter λ. In other words, for fixed λ ≥ 1 we are interested to

determine whether the restriction AL onto the L-dimensional space composed of

yn for all n ∈ N1 (i.e., RL) of the set A = {yn : y0Z0 =
∑

n∈C(0) ynZn}, has non-

empty intersection with the L-dimensional box Hλ = {yn : pn ≤ yn ≤ λpn, ∀n ∈
N1.}.

Notice that AL defines an affine set in the L-dimensional space of “leaf vari-

ables”.

If the smallest value λ∗ of λ, such that AL ∩Hλ is not empty, is equal to one,

the theorem clearly holds because the set of solutions is necessarily a singleton
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in this case. So, we assume λ∗ > 1. Let us fix some λ > 1 such that AL ∩Hλ is

non-empty and is not a singleton. There are two cases to consider.

Case 1 There exist two “distinct”, meaning all components different, L-vectors,

y1 and y2, in AL ∩ Hλ. In this case, λ can be reduced since AL ∩ Hλ is a

convex set and any convex combination of y1 and y2 is also in the set.

Case 2 There are no “distinct” L-vectors y1 and y2 say, in AL∩Hλ. For this case,

we first observe that there must be i ∈ N1 such that y1
i = y2

i ,∀y1, y2 ∈ AL∩
Hλ. Otherwise, we would be able to find a set of vectors {y1, y2, . . . , yk : @i ∈
N1, y

a
i = yb

i ,∀a, b ∈ {1, . . . , k}}. Then, we could take a convex combination

of these vectors in AL ∩Hλ, which is a distinct vector with {y1, y2, . . . , yk}.
This contradicts with the assumption of case 2. Our second observation is

there must be i ∈ N1 such that yi = pi,∀y ∈ AL∩Hλ. Otherwise, we would

find a set of vectors {y1, y2, . . . , yk : @i ∈ N1, y
a
i = pi,∀a ∈ {1, . . . , k}}

and we could get a convex combination of these vectors y′ such that @i ∈
N1, y

′
i = pi. One can see that ȳ : ȳi = 0,∀ ∈ N1 is a feasible solution to the

equations defining the set A. Then, we could take a convex combination of

y′ and ȳ which is distinct with y′ and which is in AL ∩ Hλ, contradicting

the assumption of case 2. After these two observations we need to analyze

the system of equations defining the set A. For a risky asset and a bond

there are just two equations. The first one is y0 =
∑

n∈C(0) yn. The second

one is y0Z
1
0 =

∑
n∈C(0) ynZ

1
n. A solution of these two equations satisfies∑

n∈C(0) yn(Z1
n − Z1

0) = 0. Let αn = (Z1
n − Z1

0);∀n ∈ N1. Note that our

structural assumption implies that αn 6= 0;∀n ∈ N1. Let us say that i ∈ N1

is such that yi = pi,∀y ∈ AL ∩Hλ and y be any vector in AL ∩Hλ. First

assume that αi > 0. Consider any j ∈ N1. If αj > 0 then yj = pj.

Otherwise, we could find ε small enough such that when we decrease yj by

ε and increase yi by αjε/αi resulting in another solution in AL ∩ Hλ with

yi 6= pi, which is a contradiction. Conversely, if αj < 0 then yj = λpj.

Otherwise, we could find ε small enough such that increasing yj by ε and

increasing yi by −αjε/αi we could get another solution in AL ∩ Hλ with

yi 6= pi which is again a contradiction. A similar argument follows for the

case αi < 0. Therefore there can only be a unique solution for this case
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contradicting with the assumption AL ∩Hλ is not a singleton.

Therefore, Case 2 cannot occur, i.e., we are always in Case 1 i.e., λ can be

reduced, if AL ∩Hλ is not a singleton.

A consequence of the above reasoning is that if λ cannot be reduced, i.e., λ = λ∗,

then AL ∩Hλ must be a singleton.

Notice that the analysis of the writer’s and buyer’s hedging problems can also

be done using a simple utility function and the conjugate duality framework of

convex optimization [53]. The utility function corresponding to no-arbitrage is

given as

uw(v) = v − Iv≥0(v)

where Iv≥0 is the indicator function of convex analysis which equals zero if

v ≥ 0, and +∞ otherwise. Our problems involving the gain-loss objective func-

tion (and/or constraint) could alternatively be modeled using the equally simple

piecewise-linear utility function

u(v) =

{
v if v ≥ 0

λv if v < 0.

Then, all our results could be obtained using the concave conjugate function u∗

given by

u∗(y) = inf
v

(yv − u(v))

which is finite in our case (in fact, zero) provided that 1 ≤ y ≤ λ, which are

exactly the constraints showing up in our dual problems where the argument of

the u∗ function is precisely yn/pn. However, the path taken in the present work

through linear programming duality is simpler and more accessible.

In closing this section we point out that Bernardo and Ledoit’s gain-loss ratio

results that were obtained in a single-period, non-linear optimization framework

are very similar to the approach described above. We showed that similar results

can be obtained in a multi-period (finite probability), linear optimization setting,

which is simpler yet much more intuitive.
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2.5 Proportional Transaction Costs

The problem of hedging and pricing contingent claims in the presence of trans-

action costs was investigated in e.g. [23, 30, 33]. In [23], it was assumed that

the cost of trading a stock (excluding the numéraire) is proportional to the price.

We assume that the proportional transaction costs for buying and selling a stock

are different, and there is no transaction cost for the numéraire. An investor who

buys one share of stock j when the stock price (discounted with respect to the

numéraire) is Zj
n pays Zj

n(1+ η) whereas upon selling the investor gets Zj
n(1− ζ),

where η and ζ are both in [0, 1). Let us now denote the components of Zn corre-

sponding to the indices from 1 to J , as the vector Z̄n. Similarly, we refer to the

components of Zn corresponding to the indices from 1 to J , as the vector Z̄n, and

as θ̄n to the portfolio positions corresponding to all these stocks excluding the

numéraire, for node n of the scenario tree. Then, the arbitrage problem which

will be referred as TC1 becomes the following:

max
∑

n∈NT

pnZn · θn

s.t. θ0
0 + Z̄0 · θ̄0 + ηZ̄0 · t+0 + ζZ̄0 · t−0 = 0

θ0
n − θ0

π(n) + Z̄n · (θ̄n − θ̄π(n)) + ηZ̄0 · t+n + ζZ̄0 · t−n = 0, ∀ n ∈ Nt, t ≥ 1

Zn · θn ≥ 0, ∀ n ∈ NT ,

θ̄0 = t+0 − t−0

θ̄n − θ̄π(n) = t+n − t−n , ∀ n ∈ Nt, t ≥ 1

t+n , t−n ≥ 0, ∀ n ∈ N .

where t+n and t−n are vectors in <J
+ denoting number of shares bought and sold,

respectively at node n. The following theorem, which is equivalent to Theorem 4

of [40] states the conditions for no-arbitrage in a market with transaction costs.

Theorem 4. The discrete state stochastic vector process {Zt} is an arbitrage

free market price process if and only if there is at least one probability measure

Q equivalent to P , which, extended to intermediate nodes recursively as in (2.1),

makes the process {Zt} fulfill the condition

(1− ζ)Z̄t ≤ EQ[Z̄T |Nt] ≤ (1 + η)Z̄t, ∀t ≤ T − 1. (2.12)
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The proof is omitted. It is not hard to see that for η = ζ = 0 one recovers the

statement of Theorem 1.

The λ gain-loss ratio opportunity seeking investor (at a fixed λ) is interested

in solving the problem TC2:

max
∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n

s.t. θ0
0 + Z̄0 · θ̄0 + ηZ̄0 · t+0 + ζZ̄0 · t−0 = 0

θ0
n − θ0

π(n) + Z̄n · (θ̄n − θ̄π(n)) + ηZ̄0 · t+n + ζZ̄0 · t−n = 0, ∀ n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0, ∀ n ∈ NT

θ̄0 = t+0 − t−0

θ̄n − θ̄π(n) = t+n − t−n , ∀ n ∈ Nt, t ≥ 1

t+n , t−n ≥ 0, ∀ n ∈ N
x+

n ≥ 0, ∀ n ∈ NT

x−n ≥ 0, ∀ n ∈ NT .

The counterpart of Theorem 2 in this case becomes the following.

Theorem 5. The discrete state stochastic vector process {Zt} is a λ gain-loss

ratio opportunity free market price process at level λ if and only if there is at least

one probability measure Q, λ-compatible to P , which, extended to intermediate

nodes recursively as in (2.1), makes the process {Zt} fulfill condition (2.12).

Proof. We prove the necessity part first. Assume that the market is λ gain-loss

ratio opportunity free . We see that the fourth and the fifth constraints can be

used to get rid of variables θ̄ in the formulation of TC2. Since θ̄n − θ̄π(n) = t+n −
t−n , ∀ n ∈ Nt, t ≥ 1 and θ̄0 = t+0 − t−0 , it becomes θ̄n = t+n − t−n + t+0 − t−0 , ∀ n ∈ N1.

Using the same reasoning we have θ̄n =
∑

m∈A(n)(t
+
m − t−m), ∀ n ∈ N . Then TC2

becomes:
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max
∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n

s.t. θ0
0 + Z̄0 · (t+0 − t−0 ) + ηZ̄0 · t+0 + ζZ̄0 · t−0 = 0

θ0
n − θ0

π(n) + Z̄n · (t+n − t−n ) + ηZ̄n · t+n + ζZ̄n · t−n = 0, ∀ n ∈ Nt, t ≥ 1

θ0
n + Z̄n ·

∑
m∈A(n)

(t+m − t−m)− x+
n + x−n = 0, ∀ n ∈ NT

t+n , t−n ≥ 0, ∀ n ∈ N
x+

n ≥ 0, ∀ n ∈ NT

x−n ≥ 0, ∀ n ∈ NT .

The dual of this problem is the following feasibility problem:

min 0

s.t. vn =
∑

m∈S(n)

vm, ∀ n ∈ Nt, 0 ≤ t ≤ T − 1

(1 + η)vnZ̄n −
∑

m∈D(n)∩NT

vmZ̄m ≥ 0, ∀ n ∈ N

(1− ζ)vnZ̄n −
∑

m∈D(n)∩NT

vmZ̄m ≤ 0, ∀ n ∈ N

pn ≤ vn ≤ λpn, ∀n ∈ NT .

If there is no λ gain-loss ratio opportunity, the optimal value of TC2 is equal to

zero. Therefore, by linear programming duality, the dual problem is also solvable

(in fact, feasible since the dual is only a feasibility problem). Let us take any

feasible solution vn, (n ∈ N ) of the dual problem. Since vn ≥ pn, it follows that

vn is a strictly positive process such that the sum of vn over all states n ∈ Nt

in each time period t sums to v0. Now, define the process qn = vn/v0, for each

n ∈ N . Obviously, this defines a probability measure Q over the leaf (terminal)

nodes n ∈ NT and it extends to intermediate nodes recursively as in (2.1) as

an implication of the first constraint in the dual problem. Furthermore, we can

rewrite the second and the third constraints of the dual problem with the newly
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defined weights qn as

(1 + η)qnZ̄n −
∑

m∈D(n)∩NT

qmZ̄m ≥ 0, ∀ n ∈ N

(1− ζ)qnZ̄n −
∑

m∈D(n)∩NT

qmZ̄m ≤ 0, ∀ n ∈ N

with q0 = 1, and all qn > 0. Therefore, by constructing the probability measure

Q we have constructed an equivalent measure which makes the process {Zt}
fulfill condition (2.12). By definition of the measure qn, we have using the last

constraint of the dual problem

pn ≤ qnv0 ≤ λpn,∀n ∈ NT ,

or equivalently,

pn/qn ≤ v0 ≤ λpn/qn,∀n ∈ NT ,

which implies that qn, n ∈ NT constitute a measure λ-compatible to P . This

concludes the necessity part.

Suppose Q is a probability measure λ-compatible to P , which extends to

intermediate nodes recursively as in (2.1) and which makes the process {Zt}
fulfill condition (2.12). Therefore, we have

(1 + η)qnZ̄n −
∑

m∈D(n)∩NT

qmZ̄m ≥ 0, ∀ n ∈ N

(1− ζ)qnZ̄n −
∑

m∈D(n)∩NT

qmZ̄m ≤ 0, ∀ n ∈ N

with q0 = 1, and all qn > 0, while the condition maxn∈NT
pn/qn ≤ λ minn∈NT

pn/qn

holds. If the previous inequality holds as an equality, choose the right-hand

(or, the left-hand) of the inequality as a factor v0 and set vn = qnv0 for

all n ∈ N . If the inequality is not tight, any value v0 in the interval

[maxn∈NT
pn/qn, λ minn∈NT

pn/qn] will do. It is easily verified that such defined

vn, n ∈ N satisfy the constraints of the dual problem. Since the dual problem is

feasible, the primal TC2 is bounded above (in fact, its optimal value is zero) and

no λ gain-loss ratio opportunity exists in the system.
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For η = ζ = 0 one recovers Theorem 2.

Now, the no-arbitrage price bounds of the previous section are computed by

solving

min θ0
0 + Z̄0 · θ̄0 + ηZ̄0 · t+0 + ζZ̄0 · t−0

s.t. θ0
n − θ0

π(n) + Z̄n · (θ̄n − θ̄π(n)) + ηZ̄0 · t+n + ζZ̄0 · t−n = −βnFn, ∀ n ∈ Nt, t ≥ 1

Zn · θn ≥ 0, ∀ n ∈ NT

θ̄0 = t+0 − t−0

θ̄n − θ̄π(n) = t+n − t−n , ∀ n ∈ Nt, t ≥ 1

t+n , t−n ≥ 0, ∀ n ∈ N ,

for the writer, and

max −θ0
0 − Z̄0 · θ̄0 − ηZ̄0 · t+0 − ζZ̄0 · t−0

s.t. θ0
n − θ0

π(n) + Z̄n · (θ̄n − θ̄π(n)) + ηZ̄0 · t+n + ζZ̄0 · t−n = βnFn, ∀ n ∈ Nt, t ≥ 1

Zn · θn ≥ 0, ∀ n ∈ NT

θ̄0 = t+0 − t−0

θ̄n − θ̄π(n) = t+n − t−n , ∀ n ∈ Nt, t ≥ 1

t+n , t−n ≥ 0, ∀ n ∈ N ,

for the buyer. These bounds are also obtained using the dual expressions:

[
1

β0

min
q∈Q̃(η,ζ)

EQ[
T∑

t=1

βtFt];
1

β0

max
q∈Q̃(η,ζ)

EQ[
T∑

t=1

βtFt]].

where Q̃(η, ζ) is the (closure of) set of measures Q equivalent to P such that the

process {Z̄t} satisfies condition (2.12). The proofs are omitted for these results

since they are similar to the proof of our next result.

Now, let us consider the no λ gain-loss ratio opportunity bounds obtained

from the perspective of the buyer and the writer by going through the usual
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problems in the hedging space:

min θ0
0 + Z̄0 · θ̄0 + ηZ̄0 · t+0 + ζZ̄0 · t−0

s.t. θ0
n − θ0

π(n) + Z̄n · (θ̄n − θ̄π(n)) + ηZ̄0 · t+n + ζZ̄0 · t−n = −βnFn, ∀ n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0, ∀ n ∈ NT∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n ≥ 0

θ̄0 = t+0 − t−0

θ̄n − θ̄π(n) = t+n − t−n , ∀ n ∈ Nt, t ≥ 1

t+n , t−n ≥ 0, ∀ n ∈ N
x+

n ≥ 0, ∀ n ∈ NT

x−n ≥ 0, ∀ n ∈ NT ,

for the writer, and

max −θ0
0 − Z̄0 · θ̄0 − ηZ̄0 · t+0 − ζZ̄0 · t−0

s.t. θ0
n − θ0

π(n) + Z̄n · (θ̄n − θ̄π(n)) + ηZ̄0 · t+n + ζZ̄0 · t−n = βnFn, ∀ n ∈ Nt, t ≥ 1

Zn · θn − x+
n + x−n = 0, ∀ n ∈ NT∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n ≥ 0

θ̄0 = t+0 − t−0

θ̄n − θ̄π(n) = t+n − t−n , ∀ n ∈ Nt, t ≥ 1

t+n , t−n ≥ 0, ∀ n ∈ N
x+

n ≥ 0, ∀ n ∈ NT

x−n ≥ 0, ∀ n ∈ NT ,

for the buyer. We see that the fourth and the fifth constraints can be used to get

rid of variables θ̄ in the formulation of the above problem. Since θ̄n− θ̄π(n) = t+n −
t−n , ∀ n ∈ Nt, t ≥ 1 and θ̄0 = t+0 − t−0 , it becomes θ̄n = t+n − t−n + t+0 − t−0 , ∀ n ∈ N1.

Using the same reasoning we have θ̄n =
∑

m∈A(n)(t
+
m − t−m), ∀ n ∈ N . Then we
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obtain the following linear program:

min θ0
0 + Z̄0 · (t+0 − t−0 ) + ηZ̄0 · t+0 + ζZ̄0 · t−0

s.t. θ0
n − θ0

π(n) + Z̄n · (t+n − t−n ) + ηZ̄n · t+n + ζZ̄n · t−n = −βnFn, ∀ n ∈ Nt, t ≥ 1

θ0
n + Z̄n ·

∑
m∈A(n)

(t+m − t−m)− x+
n + x−n = 0, ∀ n ∈ NT∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n ≥ 0

t+n , t−n ≥ 0, ∀ n ∈ N
x+

n ≥ 0, ∀ n ∈ NT

x−n ≥ 0, ∀ n ∈ NT .

The dual problem of this program is

max
∑
n>0

vnβnFn

s.t. v0 = 1

vn =
∑

m∈C(n)

vm, ∀ n ∈ Nt, 0 ≤ t ≤ T − 1

(1 + η)vnZ̄n −
∑

m∈D(n)∩NT

vmZ̄m ≥ 0, ∀ n ∈ N

(1− ζ)vnZ̄n −
∑

m∈D(n)∩NT

vmZ̄m ≤ 0, ∀ n ∈ N

V pn ≤ vn ≤ V λpn, ∀n ∈ NT ,

V ≥ 0.

Denote the feasible set of the above dual problem by Q̃(λ, η, ζ), i.e., the set of

probability measures vn and positive V such that

(1− ζ)Z̄t ≤ Ev[Z̄T |Nt] ≤ (1 + η)Z̄t, ∀t ≤ T − 1

and V pn ≤ vn ≤ V λpn, ∀n ∈ NT .

By setting y0 = 1/V and yn = vn/V , and simplifying we obtain the following

equivalent program:
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max

∑
n>0 ynβnFn

y0

s.t. yn =
∑

m∈C(n)

ym, ∀ n ∈ Nt, 0 ≤ t ≤ T − 1

(1 + η)ynZ̄n −
∑

m∈D(n)∩NT

ymZ̄m ≥ 0, ∀ n ∈ N

(1− ζ)ynZ̄n −
∑

m∈D(n)∩NT

ymZ̄m ≤ 0, ∀ n ∈ N

pn ≤ yn ≤ λpn, ∀n ∈ NT .

Denote the feasible set of the previous problem Ỹ(λ, η, ζ). Going through a

similar derivation for the buyer’s case (omitted for brevity) we have proved the

following result.

Proposition 4. The price interval of a contingent claim for no λ gain-loss ratio

opportunity at level λ is

[
1

β0

min
q,V ∈Q̃(λ,η,ζ)

EQ[
T∑

t=1

βtFt];
1

β0

max
q,V ∈Q̃(λ,η,ζ)

EQ[
T∑

t=1

βtFt]]

or, equivalently

[
1

β0

min
y∈Ỹ(λ,η,ζ)

∑
n>0 ynβnFn

y0

;
1

β0

max
y∈Ỹ(λ,η,ζ)

∑
n>0 ynβnFn

y0

].

Obviously, the no λ gain-loss ratio opportunity bounds are tighter compared

to the no-arbitrage bounds. Notice that Q̃(λ, 0, 0) and Ỹ(λ, 0, 0) coincide with

Q(λ) and Y (λ), respectively.

Example 6. Considering the same problem as in example 2 with η = ζ = 0.1, the

supremum of the values of λ allowing a λ gain-loss ratio opportunity opportunity

is computed to 3.715 (notice the drop from 6 in the case of no transaction costs).

The no-arbitrage interval for the contingent claim is found to be [1.2; 3.08]. At

λ = 4, the no λ gain-loss ratio opportunity interval is [2.83; 2.98]. At λ = 3.715

which is the limiting value, the common bound is equal to 2.97. The unique

measure leading to this common price is given as q1 = q2 = 0.175 and q3 = 0.65.



CHAPTER 2. GAIN-LOSS PRICING OF ECC 44

2.6 Conclusion

In this chapter, we studied the problem of pricing and hedging contingent claims

in incomplete markets in a multi-period linear optimization (discrete-time, finite

probability space) framework. We developed an extension of the concept of no-

arbitrage pricing (λ gain-loss ratio opportunity) based on expected positive and

negative final wealth positions, which allow to obtain arbitrage only in the limit

as a gain-loss preference parameter tends to infinity. We analyzed the resulting

optimization problems using linear programming duality. We showed that the

pricing bounds obtained from our analysis are tighter than the no-arbitrage pric-

ing bounds. This result, in line with the Bernardo and Ledoit [5] single period

results, was also obtained for a multi-period model in the computationally more

tractable linear programming environment. Our results indicated that for a lim-

iting value of risk aversion parameter that can be computed easily, a unique price

for a contingent claim in incomplete markets may be found (although this is not

guaranteed) while different hedging schemes exist for different sides of the same

trade. We also extended our results to markets with transaction costs.



Chapter 3

Pricing American Contingent

Claims by Stochastic Linear

Programming

Mathematical programming tools, especially stochastic programming (see [59] for

a recent survey) are becoming increasingly useful as an entry point for studying

the specialized methods of mathematical finance [25, 40, 48]. In this chapter, we

are interested in the pricing of American Contingent Claims (ACC) as well as their

special cases, in a multi-period, discrete time, discrete state space framework.

In the area of pricing contingent claims research concentrates mainly on defin-

ing and characterizing the range of contingent claim prices consistent with the

absence of arbitrage. This range is determined by the upper hedging and the lower

hedging prices, also known as the superreplication and subreplication bounds as

we discuss in Chapter 2. In the absence of arbitrage, the upper hedging price is

the value of the least costly self-financing portfolio strategy composed of market

instruments whose pay-off is at least as large as the contingent claim pay-off.

This price can also be interpreted from the perspective of a writer (seller) of the

contingent claim as the smallest initial wealth required to replicate the contin-

gent claim pay-off at expiration in a self-financed manner. Hence, we refer to the

45
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upper hedging price as the writer’s price as well. Similarly, the lower hedging

price is the value of the most precious self-financing portfolio strategy composed

of market instruments whose pay-off is dominated by the contingent claim pay-

off at expiration. The lower hedging price can also be interpreted as the largest

amount the contingent claim buyer can borrow (in the form of cash or by short-

selling stocks) to acquire the claim while paying off his/her debt in a self-financed

manner using the contingent claim pay-off at expiration [17]. Hence, we refer to

this price as the buyer’s price as well as the lower hedging price. For European

contingent claims, which can only be exercised at expiration, the upper and lower

hedging prices are usually expressed as supremum and infimum, respectively, of

the expectation of the discounted contingent claim pay-off (at expiration) over all

probability measures that make the underlying stock price a martingale. We di-

rect the reader to the book by Föllmer and Schied [26] for an in-depth treatment

of pricing contingent claims in discrete time.

Similar expectation expressions were developed by Harrison and Kreps [28]

and Chalasani and Jha [17] for American contingent claims, which can be ex-

ercised at any time until expiration. However, the possibility of early exercise

complicates the expressions where one has to take supremums over all stopping

times which represent potential exercise strategies of the contingent claim buyer.

In particular, the upper hedging price is the supremum of the expectation of the

discounted contingent claim pay-off (at some time between now and expiration)

over all stopping times and all probability measures that make the underlying

stock-price process a martingale. While the upper hedging price can be cast as a

linear programming problem in discrete time [17, 48], the lower hedging price is

harder to compute. It is the supremum over all stopping times of the infimum of

the expected discounted contingent claim pay-off (at some time between now and

expiration) over all probability measures that make the underlying stock price

process a martingale. More precisely, the lower hedging price of an American

contingent claim is given by an expression of the form

max
τ∈T

min
P∈P

EP [Fτ ]

where T is the set of stopping times, P is the set of all martingale measures, and

Fτ is the discounted contingent claim pay-off at time τ ; see e.g., Theorem 12.4 of
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[17].

Against this background, Pennanen and King [48] showed that the above

expression for the lower hedging price can also be cast as

min
P∈P

max
τ∈T

EP [Fτ ]

by interchanging the order of the max and min after observing that the outer

maximization over the set T of stopping times can be replaced by maximization

over a set of randomized stopping times, a central notion in [17] (see also the

definition of the sets E and Ẽ just before Theorem 7 in this chapter) and con-

vex duality theory. From an optimization point of view, Pennanen and King’s

characterization of the set of the lower hedging price for ACCs follows from a

representation of the buyer’s price as the optimal value of a linear programming

problem in the hedging space of the buyer, instead of posing the same hedging

problem over integer valued variables. This important observation opens the way

to harnessing the well-developed linear programming algorithms and software for

the calculation of the buyer’s price for ACCs. However, while their result is cor-

rect, their proof has a serious gap that we shall explain in section 3.2 through

a counterexample. In this chapter we present an alternative proof of this result.

After defining the buyer’s problem similarly to the one in [48] we formulate an in-

teger programming problem for the buyer’s price. Then, we prove that the bound

from the buyer’s perspective can be computed by solving a linear program. This

result gives a correct alternative proof of Theorem 3 of [48]. Independently, Fl̊am

[25] proves a similar result for the contingent claim writer’s price using consider-

ations of total unimodularity. However, as discussed above the computation of

the lower and upper hedging prices leads to different problems where it appears

that the buyer’s problem is harder to analyze. In fact, Pennanen and King [48]

also give an analysis of the writer’s pricing problem. Hence, we concentrate on

the buyer’s problem in our work. Our proof uses direct construction of an in-

tegral optimal solution from a fractional solution. The result remains valid for

dividend paying stocks as well. The significance of the result stems from the fact

that there exist linear programming algorithms with a computational complexity

bounded above by a low order polynomial in the number of variables and con-

straints for computing a solution to ε-accuracy; see Section 6 of [3]. In practice,
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one has access to numerous software packages capable of handling very large in-

stances of linear programs with dimensions reaching hundred thousand variables

and constraints. Based on our experiences with European index options [49],

multi-period hedging problems with approximately 70,000 variables and 22,000

equality, and 40,000 inequality constraints can be solved very quickly using the

GAMS/CPLEX solver [11, 19].

3.1 The Stochastic Scenario Tree and American

Contingent Claims

We will use all the concept and the notation which is described in Section 2.1.

At this point we need to define an ACC in our framework. Besides, additional

notation will be defined. An ACC F is a financial instrument generating a real-

valued stochastic (cash-flow) process (Ft)t=0,...,T . At any stage t = 0, . . . , T , the

holder of an ACC may decide to take Ft in cash and terminate the process.

Using this definition, an American call option on a stock S with strike price K

corresponds to F = S − K. American put is obtained by reversing the sign of

F . We can define a European call option with maturity T by setting Ft = 0 for

t 6= T . Bermudan call options having exercise date set G ⊂ {1, . . . , T} can be

defined by setting Ft = 0 for t /∈ G.

The market consists of J + 1 tradable securities indexed by j = 0, 1, . . . , J

with prices at node n given by the vector Sn = (S0
n, S

1
n, . . . , S

J
n ). We assume as

in [48] that the security indexed by 0 has strictly positive prices at each node of

the scenario tree. This asset might also be considered as the risk-free asset in the

classical valuation framework, in which case its price would be same at each node

belonging to the same time period.

The number of shares of security j held by the investor in state (node) n ∈ Nt

is denoted θj
n. Therefore, to each state n ∈ Nt is associated a vector θn ∈ RJ+1.
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The value of the portfolio at state n is

Sn · θn =
J∑

j=0

Sj
nθ

j
n.

In our finite probability space setting an American contingent claim F gener-

ates payoff opportunities Fn, (n ≥ 0) to its holder depending on the states n of

the market.

We use Figure 3.1 to illustrate the stochastic scenario tree. In this example

there are only three periods. At the first period, which is denoted by t = 0, stock

prices are known, so there is only one node at this period. The index of this node

is 0. This node branches to three nodes at the second period. The three possible

states for the second period are respresented by three nodes: the upper node is

indexed by 1, the middle node is indexed by 2 and the lower node is indexed by

3. Then, each node in the second period branches to three nodes at the third

period. Hence, there are nine nodes at the third period. These nodes are indexed

in the same fashion from 4 to 12. We assume that there are only two financial

instruments in the market: a stock and a bond. Bond price is assumed to be 1

for each node, which means that the risk free interest rate is zero. The number

inside each node represents the price of the stock at that node. The number next

to a node represents the payoff of some fictitious contingent claim at that node.

There is not a fixed delivery price for this contingent claim. Hence, its payoff

is greater at node 6 than its payoff at node 7 although the price of the stock is

greater at node 6. We will use this toy scenario tree and contingent claim as a

counterexample below after the proof of Theorem 6.

For further details on arbitrage-free pricing of European and American contin-

gent claims using stochastic linear programming we refer the reader to [25, 40, 48].
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Figure 3.1: The tree representing the counterexample to the proof in [48].

3.2 The Main Result

We will now give a new proof of Theorem 3 of [48]. An arbitrage seeking buyer’s

problem can be formulated as the following problem that we will refer as AP1.

max V

s.t. S0 · θ0 = F0e0 − V

Sn · (θn − θπ(n)) = Fnen, ∀ n ∈ Nt, 1 ≤ t ≤ T

Sn · θn ≥ 0, ∀ n ∈ NT∑
m∈A(n)

em ≤ 1, ∀ n ∈ NT

en ∈ {0, 1} , ∀ n ∈ N .
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The definition of variables en is as follows:

en =

{
1, if the ACC is exercised at node n

0, o.w.

}
The optimal value of V is the largest amount that a potential buyer is willing to

disburse for acquiring a given American contingent claim F . The computation

of this quantity via the above integer programming problem is carried out by

construction of a least costly (adapted) portfolio process replicating the proceeds

from the contingent claim by self-financing transactions using the market-traded

securities in such as way to avoid any terminal losses. The integer variables and

related constraints represent the one-time exercise of the American contingent

claim; see [48] for further details.

A linear programming relaxation of AP1 is the following problem AP2:

max V

s.t. S0 · θ0 = F0e0 − V

Sn · (θn − θπ(n)) = Fnen, ∀ n ∈ Nt, 1 ≤ t ≤ T

Sn · θn ≥ 0, ∀ n ∈ NT∑
m∈A(n)

em ≤ 1, ∀ n ∈ NT

en ≥ 0, ∀ n ∈ N .

Theorem 6. There exists an optimal solution to AP2 with en ∈ {0, 1} , ∀ n ∈ N .

Proof. Assume that AP2 has an optimal solution V ∗, e∗ and θ∗ such that e∗n /∈
{0, 1} for some n ∈ N .

Case 1: We will first consider the case where e∗ has a value not equal to 0 or

1 for the root, which is the starting node of the tree (i.e. e∗0 /∈ {0, 1}). In order

to deal with this case, we will form the Lagrangian function for AP2. That is

L(V, e, θ, x, y, z) = V − y0[S0 · θ0 − F0e0 + V ]−
∑

n∈N\{0}

yn[Sn · (θn − θπ(n))− Fnen]

+
∑

n∈NT

xnSn · θn −
∑

n∈NT

zn[
∑

m∈A(n)

em − 1].
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After rearranging the above function we have

L(V, e, θ, x, y, z) = (1− y0)V +
∑

n∈NT

(xn − yn)Sn · θn +
∑

n∈N\NT

θn · [
∑

m∈C(n)

ymSm − ynSn]

+
∑
n∈N

[ynFn −
∑

m∈D(n)∩NT

zm]en +
∑

n∈NT

zn.

Then the dual problem of AP2 can be formulated as

min
∑

n∈NT

zn

s.t. y0 = 1

[xn − yn]Sn = 0, ∀ n ∈ NT∑
m∈C(n)

ymSm = ynSn, ∀ n ∈ N\NT

ynFn −
∑

m∈D(n)∩NT

zm ≤ 0, ∀ n ∈ N

xn, zn ≥ 0, ∀ n ∈ NT .

Since Sn 6= 0, second constraint implies that xn = yn, ∀ n ∈ NT . Thus the dual

problem can be rearranged as

min
∑

n∈NT

zn

s.t. y0 = 1∑
m∈C(n)

ymSm = ynSn, ∀ n ∈ N\NT

ynFn −
∑

m∈D(n)∩NT

zm ≤ 0, ∀ n ∈ N

yn, zn ≥ 0, ∀ n ∈ NT .

We have an optimal solution to AP2 with e∗0 /∈ {0, 1}. Then complementary

slackness implies that the third constraint of the above program should be sat-

isfied as an equality for the corresponding optimal solution of the dual problem

(i.e., y0F0 −
∑

m∈NT
zm = 0). Since y0 = 1, we have F0 =

∑
m∈NT

zm. Thus, the

optimal solution to the dual problem is found to be F0. Then, by strong duality

we know that F0 is the optimal value of AP2. One can easily show that a feasible

solution to AP2 is e0 = 1, V = F0 and all the other variables as zeros (each
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θn as a zero vector) with objective value F0. This is an optimal solution with

en ∈ {0, 1} , ∀ n ∈ N , thus the proof for the first case is complete.

Case 2: Now assume that optimal solution e∗ is such that e∗0 = 0 and e∗n /∈
{0, 1} for some n ∈ N . Let I = {i|e∗i /∈ {0, 1}, i ∈ N}. Let G = {g|g ∈
I,A(g) ∩ I = {g}}. Let w be the element with the smallest time index (that is

closest to the root) in G. Note that e∗n = 0, ∀ n ∈ A(w)\{w} in this case. Also,

let k denote the time index for node w.

Claim: One can always find an optimal solution to AP2 with ew ∈ {0, 1} and

ei = 0 for all i ∈ A(w)\{w}.
To prove the claim we will consider the following two linear programs to which

we will refer as AR1 and AR2 respectively:

max ew

s.t. Sw · (θw − θ∗π(w)) = Fwew

Sn · (θn − θπ(n)) = Fnen, ∀ n ∈ D(w)\{w}
Sn · θn ≥ 0, ∀ n ∈ NT ∩ D(w)∑

m∈A(n)∩D(w)

em ≤ 1, ∀ n ∈ NT ∩ D(w)

en ≥ 0, ∀ n ∈ D(w),

min ew

s.t. Sw · (θw − θ∗π(w)) = Fwew

Sn · (θn − θπ(n)) = Fnen, ∀ n ∈ D(w)\{w}
Sn · θn ≥ 0, ∀ n ∈ NT ∩ D(w)∑

m∈A(n)∩D(w)

em ≤ 1, ∀ n ∈ NT ∩ D(w)

en ≥ 0, ∀ n ∈ D(w).

Let us denote the optimal solution of AR1 as θ̄D(w), ēD(w) and to AR2 as

θ̃D(w), ẽD(w). If the optimal value of AR1 is 1, then we see that (θ̄D(w), θ
∗
N\D(w)),

(ēD(w), e
∗
N\D(w)) form another optimal solution of AP2 with ew = 1. For this op-

timal solution we have ew = 1 and ei = 0, ∀ i ∈ A(w)\{w} (we have also ei = 0,
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for all i ∈ D(w)\{w} for this solution). Similarly, if the optimal value of AR2 is 0,

then (θ̃D(w), θ
∗
N\D(w)), (ẽD(w), e

∗
N\D(w)) form another optimal solution of AP2 with

ew = 0. Then, for this optimal solution we have ei = 0, for all i ∈ A(w). So, our

claim will be proved if we can show that AR2’s having an optimal value greater

than 0 implies that the optimal value of AR1 is 1. To show that we will consider

the dual problems of AR1 and AR2. The dual problems DAR1 and DAR2 of

AR1 and AR2, respectively, are

min
∑

n∈NT∩D(w)

zn + ywSw · θ∗π(w)

s.t.
∑

m∈C(n)

ymSm = ynSn, ∀ n ∈ D(w)\NT

−ywFw +
∑

n∈NT∩D(w)

zn ≥ 1

ynFn −
∑

m∈D(n)∩NT

zm ≤ 0, ∀ n ∈ D(w)\{w}

yn, zn ≥ 0, ∀ n ∈ NT ∩ D(w),

max −
∑

n∈NT∩D(w)

zn − ywSw · θ∗π(w)

s.t.
∑

m∈C(n)

ymSm = ynSn, ∀ n ∈ D(w)\NT

−ywFw +
∑

n∈NT∩D(w)

zn ≥ −1

ynFn −
∑

m∈D(n)∩NT

zm ≤ 0, ∀ n ∈ D(w)\{w}

yn, zn ≥ 0, ∀ n ∈ NT ∩ D(w).

We will denote the optimal value of AR2 by α, which is equal to the optimal value

of DAR2. We know that α ≤ 1. Assume that α > 0. Then by complementary

slackness we know that the second constraint of DAR2 must be satisfied as an

equality at the corresponding optimal solution, since ew 6= 0 at the optimal

solution of AR2. Then at the optimal solution of DAR2, we have

0 >
∑

n∈NT∩D(w)

zn + ywSw · θ∗π(w) ≥ −ywFw +
∑

n∈NT∩D(w)

zn = −1. (3.1)
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Moreover, we must have yw ≥ 0 for any feasible solution of DAR1 and DAR2.

This follows from the following fact. We have yn ≥ 0, ∀n ∈ NT ∩ D(w). Then,

since S0
n > 0 for all n, we have yn ≥ 0, ∀n ∈ NT−1 ∩D(w) by the first constraints

of DAR1 and DAR2. Similarly, we can show the same successively for (T −
2), (T − 3), . . . , k. So, we have yw ≥ 0. Then, using the second inequality of (3.1)

we have ∑
n∈NT∩D(w)

zn + ywSw · θ∗π(w) ≥ −ywFw +
∑

n∈NT∩D(w)

zn

ywSw · θ∗π(w) ≥ −ywFw

Sw · θ∗π(w) ≥ −Fw

where the last step follows from yw ≥ 0. Then, for DAR1 at any feasible solution

we have

1 ≤ −ywFw +
∑

n∈NT∩D(w)

zn ≤ ywSw · θ∗π(w) +
∑

n∈NT∩D(w)

zn

whence we see that the optimal solution of DAR1 cannot be less than 1. It is

easy to see by AR1 that optimal value of DAR1 cannot be greater than 1 either.

Hence, we conclude that the optimal value of DAR1 and therefore that of AR1,

is 1. This completes the proof of our claim.

Using the claim we see that there always exists an optimal solution to AP2 with

ew ∈ {0, 1} and ei = 0 for all i ∈ A(w). So, one can eliminate all the nodes

having time index k in I by applying the above procedure. Then, proceeding

successively with the nodes in (k + 1)st, (k + 2)nd . . . (T )th time indices one can

find an optimal solution for AP2 with en ∈ {0, 1} , ∀ n ∈ N . We note that, at

each step the size of I might increase, but no nodes with a time index less than

or equal to that of the node eliminated at that particular step can show up in I

at the next step. This completes the proof of the theorem.

In their proof Pennanen and King [48] claim that for an optimal solution

of AP2 if the contingent claim is exercised partially at a node, then there is

another optimal solution in which the contingent claim is fully exercised at that

node. However, we have discovered counterexamples to this claim by computer

experimentation. For some special cases, one can show, contrary to this claim,
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that there is another optimal solution where the claim is not exercised at that

node, but no optimal solution exists in which the claim is fully exercised at that

node.

For a counterexample to the claim of [48] let us return to the example of

the fictitious contingent claim in Figure 3.1 at the end of Section 3.1. We wrote

a simple GAMS code to construct and solve the buyer’s problem (the linear

programming relaxation of it) using CPLEX Version 9.0.2 with the data given

in the example. The optimal value, i.e., the buyer’s price, of this problem is 2.

CPLEX 9.0.2 reports a fractional optimal solution of this problem where we have

e1 = 0.625. We show the non-zero variables of this solution in Table 3. Here, θnj

denotes the number of shares of security j (j = 0 for the bond and j = 1 for the

stock) held by the investor at node n. Besides, en is the variable for the execution

time of the contingent claim.

Opt. Value θ00 θ01 θ10 θ11 θ20 θ21 θ50 e1 e4 e5 e7 e8 e9

2 6 -0.8 83.125 -4.375 9 -1 4 0.625 0.375 0.375 1 1 1

Table 3.1: The optimal values of variables in the counterexample (the remaining
variables have value zero).

If the proof in [48] were correct, according to their argument, we would have

another optimal solution to this problem with e1 = 1. However when we add

the constraint e1 = 1 and solve the same problem again, we see that the optimal

solution becomes 1.8. This is contradicting the argument in [48]. While this

example is based on a fictitious contingent claim, it illustrates the difficulty of

defining an optimal “rational” exercise policy. These difficulties are also discussed

in [17]. In this example, it appears that the buyer could exercise early at node 1,

and take away 9 units since there is a possibility of not getting anything should

the process end at node 6. However, such an early exercise is not optimal as

the example shows. Such examples (one can find others that are similar) remain

difficult to construct, but they clearly demonstrate the gap in the proof of [48].

Returning to the consequences of Theorem 6, this result shows that one can
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always find a feasible solution to AP1 that gives the optimal value of the relaxed

problem AP2. Then, since the optimal value of a problem cannot be better than

the optimal value of its relaxation we say that optimal value of AP1 can be found

by solving AP2.

One major implication of this result is the passage to a linear programming

problem from an NP-hard integer programming problem that is potentially very

difficult to solve in practice. Linear programming algorithms with a computa-

tional complexity bounded above by a low order polynomial in the number of

variables and constraints for computing a solution to ε-accuracy are well known

and well studied; see Section 6 of [3]. For practical computation, the problem

AP2 has |N |(J + 2) + 1 variables and |N |+ 2|NT | constraints in addition to |N |
non-negativity constraints. In practice, the state-of-the-art linear programming

solvers can easily handle instances where the cardinality of N is 22, 200 and the

cardinality of NT is 20, 000 [49].

A second implication is that one can use duality to get expressions for the

buyer’s price of the ACC in terms of martingale measures and stopping times as

pointed out in the introduction. These aforementioned two results are given in

[48]. Here we re-iterate the second major implication in detail, for the sake of

completeness. For simplicity, we assume w.l.o.g. that S0
n = 1,∀n = 1, . . . , T . We

assume an interest-free environment. However, the more general case is easy to

implement using the discounted price process of [40]. We will need the buyer’s

price of a ECC in order to find that of an ACC. The buyer’s price of an ECC is

derived in [40]. We will briefly show the derivation here. Under the assumption

of an interest-free environment, the buyer’s problem for an ECC with payoffs Fn

is

max V

s.t. S0 · θ0 = F0 − V

Sn · (θn − θπ(n)) = Fn, ∀ n ∈ Nt, 1 ≤ t ≤ T

Sn · θn ≥ 0, ∀ n ∈ NT .
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The dual problem of this program is

min
∑
n∈N

ynFn

s.t. y0 = 1∑
m∈C(n)

ymSm = ynSn, ∀ n ∈ N\NT .

yn ≥ 0, ∀ n ∈ NT .

Then, the buyer’s price of an ECC can be expressed as

min
Q∈Q̃

∑
n≥0

qnFn (3.2)

where Q̃ denotes the closure of the set of all martingale measures equivalent to

P , i.e., the set

Q̃ = {q | q0 = 1, qnSn =
∑

m∈C(n)

qmSm, ∀n ∈ N\NT ; 0 ≤ qn, ∀n ∈ NT}.

Define the sets

E = {e | e is (Ft)
T
t=0-adapted,

T∑
t=0

et ≤ 1 and et ∈ {0, 1} P -a.s.},

Ẽ = {e | e is (Ft)
T
t=0-adapted,

T∑
t=0

et ≤ 1 and et ≥ 0 P -a.s.}.

One common way to describe exercise strategies of ACCs is by stopping times.

These are functions τ : Ω → {0, . . . , T} ∪ {+∞} such that {ω ∈ Ω | τ(ω) =

t} ∈ Ft, for each t = 0, . . . , T . The relation et = 1 ⇔ τ = t defines a one-to-one

correspondence between stopping times and decision processes e ∈ E. The set

of stopping times will be denoted by T . The set Ẽ corresponds to the set of

randomized stopping times discussed extensively in [17].

Theorem 7. ([48])If there is no arbitrage in the market price process, the buyer’s

price for American contingent claim F can be expressed as

max
τ∈T

min
Q∈Q̃

EQ[Fτ ] = min
Q∈Q̃

max
τ∈T

Eq[Fτ ]. (3.3)
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Proof. If we set e fixed in AP1 and maximize with respect to θ, we have a Eu-

ropean contingent claim with payoffs Ftet for t = 0, 1, . . . , T . Then, by (3.2), for

the buyer’s price of this ECC, we have

min
Q∈Q̃

EQ[
T∑

t=0

Ftet].

Then, maximizing with respect to e, for the buyer’s price of the ACC we have

max
e∈E

min
Q∈Q̃

EQ[
T∑

t=0

Ftet].

The correspondence between stopping times and the process e ∈ E implies that

the buyer’ s price for the ACC can be expressed as the left hand side of equation

(3.3) since maximization over T is equivalent to maximization over E after making

the appropriate change in the objective function. By Theorem 6, instead of last

expression we can use

max
e∈Ẽ

min
Q∈Q̃

EQ[
T∑

t=0

Ftet]. (3.4)

Since Ẽ and Q̃ are bounded convex sets, by Corollary 37.6.1 of [53] we can change

the order of max and min without changing the value. Then, for each fixed Q ∈ Q̃,

the objective in (3.4) is linear in e. So the maximum over Ẽ is attained at an

extreme point of Ẽ. We know that the extreme points of Ẽ are the elements of

the set E. Thus, we reach the expression on the right hand side in (3.3).

We can extend our result for stocks that pay dividends or interest. We assume

that there is no dividend associated with S0. We have the following corollary

(proven here for the first time, to the best of the authors’ knowledge).

Corollary 2. If each security j = 1, . . . , J pays dividend payments Dj
n in node

n, under the assumption of no arbitrage in the market price process, the buyer’s

price Fb for an American contingent claim F can be expressed as

Fb = max
τ∈T

min
Q∈Q̃′

EQ[Fτ ] = min
Q∈Q̃′

max
τ∈T

Eq[Fτ ]

where

Q̃′ = {q | q0 = 1, qnSn =
∑

m∈C(n)

qm(Sm + Dm), ∀n ∈ N\NT ; 0 ≤ qn, ∀n ∈ NT}.
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Proof. If dividends are paid, self-financing constraints of AP1 becomes

Sn · (θn − θπ(n))−Dn · θπ(n) = Fnen, ∀ n ∈ Nt, 1 ≤ t ≤ T.

The rest of the argument, including the proof of Theorem 6 follows as it is in the

case of stocks without dividends.

3.3 Conclusion

In this chapter, we presented an alternative proof of an interesting and important

result announced by Pennanen and King [48] on the computation of the buyer’s

price of an American contingent claim by linear programming instead of 0-1

integer programming. We included a numerical example that helps illustrate

some important arguments related to our proof. We also showed that the result

is unaffected by dividend payments. While European contingent claim prices were

known to be computable using linear programming, the result opens the way to

computing the prices of American contingent claims also by linear programming,

which allows the numerical solution of very large multi-period hedging problems.



Chapter 4

Integer Programming Models for

Pricing American Contingent

Claims under Transaction Costs

The purpose of this chapter is to examine, using integer programming, the prob-

lem of computing a fair price (in the sense of not allowing arbitrage) for the holder

(buyer) of an American contingent claim in a discrete-time finite state incomplete

market model where the stock trades incur transaction costs proportional to the

magnitude of the trade. Since American contingent claims allow the holder to

exercise the claim at any point during its lifetime as opposed to their European

counterparts which can only be exercised at maturity, the computation of a fair

price also involves the choice of an optimal exercise strategy, which opens the

way to modeling with binary variables. King [40] showed the connections be-

tween linear programming and modern techniques of contingent claim pricing in

mathematical finance in the context of European claims. The main contribution

of this chapter is to further the bond between finite dimensional optimization and

mathematical finance by adding two integer programming models to the list of

finite-dimensional optimization approaches useful for pricing contingent claims in

financial markets.

61
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It is well-known that a fair price for the buyer (lower hedging price) of a

European contingent claim in frictionless markets can be found by computing the

minimum value of the expectation of the discounted option pay-off at maturity

with respect to probability measures that make the underlying stock price process

a martingale. The fair price to the seller (upper hedging price) is then found by

calculating the maximum value of the above expectation over the same set of

measures. When the market is complete, i.e., when the martingale measure is

unique, the buyer and seller prices coincide. This phenomenon also occurs when

the pay-off from the contingent claim at maturity can be perfectly replicated by

the existing instruments in the market. These results are the main building blocks

of mathematical finance and go back to Harrison and Kreps [28], and Harrison

and Pliska [29]. In continuous trading models, the replication argument is at

the heart of the celebrated Black-Scholes formula; see Black and Scholes [7] and

Merton [45].

Similar expectation representations for American claims have been given also

for the first time in Harrison and Kreps [28]. These expressions involve the max-

imization over a set of stopping times of the minimum of discounted expected

pay-off at the point of stopping over all martingale measures for the buyer of the

American claim, and the maximization over a set of stopping times of the maxi-

mum of discounted expected pay-off at the point of stopping over all martingale

measures for the seller of the American claim. No arbitrage pricing of American

claims was first studied by Bensoussan [4] and Karatzas [37] for complete markets

in continuous time. A good reference for continuous time pricing of American

contingent claims is Detemple [22]; see also the survey by Myeni [46]. The book

by Föllmer and Schied [26] contains a thorough discussion of pricing and hedging

American claims in discrete time but infinite state space setting. A derivation of

these formulae in a discrete-time, finite state probability context can be found in

Chalasani and Jha [17] and King [40].

In the presence of transaction costs proportional to the magnitude of the

stock trades it is usually the case that perfect replication is impossible, and

therefore the markets become incomplete. Furthermore, it was shown by Soner
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et al. [60] and Levental and Skorohod [43] that for a European call option writ-

ten on a stock in continuously trading markets the seller’s price is equal to the

initial stock price, and the hedging strategy is a simple buy-and-hold strategy.

However, in discrete-time trading under proportional transaction costs hedging

strategies that are non-trivial can be found. The papers by Jouini and Kallal

[33], Cvitanic and Karatzas [20], El Karoui and Quenez [24] concentrate on the

computation of the no-arbitrage prices in continuous time for European claims

under transaction costs, while Koehl, Pham and Touzi [41], Jaschke [32] and Ortu

[47] obtain similar results in discrete time, and Edirisinghe et al. [23] give a dy-

namic programming algorithm for European option pricing under different forms

of trading frictions. Karatzas and Kou [38] study no-arbitrage pricing and hedg-

ing of ACCs in continuous time under portfolio constraints, and Buckdahn and

Hu [12] consider jump diffusions for the stock price process in a similar context.

Davis and Zariphopoulou [21] study utility maximization for pricing American

claims. Bouchard and Temam [8] extend and generalize the discrete-time results

of Chalasani and Jha for the upper hedging price to general discrete time markets

in an infinite state space setting. In a separate line of work, Tokarz and Zastaw-

niak [62] develop efficient dynamic programming algorithms for pricing American

options in discrete time under small transaction costs, and Roux and Zastawniak

[58] extend previous work by removing the restriction on transactions costs. It

is important to note that Roux and Zastawniak [58] allow a revision of portfo-

lio positions before new prices are revealed. This feature of their formulation

enables them to work with path independent portfolio and exercise strategies.

However, as illustrated and discussed in [23], path independent strategies can be

sub-optimal hedging strategies in the presence of transaction costs. Our models

in this chapter allow a revision of the portfolio (and exercise) only after new prices

are revealed, and are based on path dependent strategies.

In Chalasani and Jha [17], Bouchard and Temam [8] and Pennanen and King

[48], the seller price (the upper hedging price) is thoroughly studied. In this chap-

ter, we focus on the lower hedging problem and give a new (to the best of our

knowledge) integer programming formulation for computing the lower hedging

price, departing from a max-min expression of Chalasani and Jha for the lower
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hedging price. Then we exhibit a numerical example showing that a linear re-

laxation might lead to a non-zero duality gap. This result implies that it might

be optimal for the holder of several identical ACCs to exercise them partially

at different time points. We also prove that for frictionless markets, the linear

programming relaxation is exact. Hence, there is no incentive for the holder of

ACCs not facing transaction costs to exercise them partially. We also give an

alternative, aggregated, formulation which relaxes an assumption of Chalasani

and Jha, and has properties similar to those of the former while it has a reduced

number of variables. The two formulations are, in general not equivalent unless

the market is frictionless. All formulations and results of this chapter are easily

extended to allow dividend paying stocks.

4.1 Preliminaries

Throughout this chapter, we refer to the optimal value of an optimization problem

P as opt(P ). All the notation and properties of the stochastic tree described in

section 2.1 will be used in this chapter. Additional notation is defined below.

We denote the set of all nodes except the root by N 1, and the set of all

nodes except the root node and the leaf nodes by N̄ . In this chapter the set

A(n) denotes the collection of ascendant nodes or the unique path leading to

node n (excluding itself) from node 0. In section 2.1 node n was included in

A(n). We also use the notation t(n) to denote the time period that the node

n belongs to, D(n) for all descendants of node n (including node n itself), and

D(n, t) := D(n) ∩Nt to mean the period t descendants of node n for t > t(n).

The market consists of a riskless asset (cash account) and a risky security with

prices at node n given by the scalar Sn. We assume the cash account appreciates

in value by a factor R ≥ 1 in each period. Transaction costs are modeled as

follows: at node n, selling one share of stock the investor gets Sn(1−µ), and has

to disburse Sn(1 + λ) upon acquisition of one share of stock. Our choice of two

instruments is by no means a limitation of our models, and all the development in
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this chapter can be re-iterated for a financial market with several risky securities

and a claim with pay-off contingent on the values of several securities.

All the information given for an ACC in section 3.1 and for stopping times in

section 3.2 is also valid in this chapter. We also need the following definition:

Definition 5. For any probability measure P and exercise strategy (stopping time)

τ , we say that P is a (λ, µ, τ)-approximate martingale measure, if P-almost surely,

S∗t (1− µ) ≤ EP[S∗τ |Nt] ≤ S∗t (1 + λ) ∀t < τ (4.1)

where S∗t denotes the discounted stock price StR
−t. We use P(λ, µ, τ) to denote

the set of all (λ, µ, τ)-approximate martingale measures.

The buyer’s objective is to compute the largest amount it can borrow against

the ownership of the claim while picking a suitable exercise time for the claim

and covering this debt by self-financing portfolio transactions in the financial

market (here represented by cash and the risky asset) using the proceeds from

the claim at the chosen date of exercise. In other words, the buyer’s strategy is to

find the maximum amount, x∗ say, he/she can borrow (by short selling stock) to

acquire the claim and with the remaining cash to initiate a self-financing, adapted

portfolio trading strategy and a stopping time (exercise strategy) τ such that at

time τ the value of the portfolio and the pay-off from the claim are sufficient

to close all short positions to avoid any losses. The buyer has to enforce this

strategy over all paths. It is clear (see also Theorem 8.2 [17]) that if the buyer

can acquire the claim for a price inferior to x∗, then this constitutes an arbitrage

opportunity for the buyer as follows. The buyer still borrows x∗, acquires the

claim for a price p < x∗, ending up with the difference x∗ − p at time 0, follows

the optimal self-financing portfolio strategy and the exercise strategy to repay

the debt in all states of the world. Since the details are worked out in [17], we

direct the reader to section 8 of that reference.

Since for a fixed exercise strategy, the valuation of the claim can be expressed

as an expectation using convex duality theory, the following max-min expression

for the lower hedging price hlow(λ, µ, F ) of an ACC F was given in Theorem 12.2
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of Chalasani and Jha [17]:

hlow(λ, µ, F ) = max
τ∈T

min
P∈P(λ,µ,τ)

EP[F ∗
τ ] (4.2)

where F ∗
t denotes the discounted ACC pay-off FtR

−t. This price is finite if and

only if the market is arbitrage free in the sense of Chalasani and Jha (see definition

on p. 53 of [17] and Theorem 13.1), which we assume to be the case in sections

4.2, 4.3, and 4.4.

In closing this section, we note three assumptions present in [17]: (a) debt

must be repaid in cash, (b) no transaction cost is incurred when a portfolio is

liquidated to settle a debt, and (c) no new portfolio positions are taken at period

T . While not stated explicitly in [17] it is clearly the case that Chalasani and Jha

are interested in path dependent portfolio and exercise strategies which we also

adopt. The numerical example at the opening of section 4.2 below illustrates the

importance of this point.

4.2 The Formulation

Before we go into the derivation of a new mixed-integer programming formulation

for computing the lower hedging price, we shall consider a small numerical exam-

ple. Consider a two period example in Figure 4.1 where we assume for simplicity

that the cash account does not generate any interest. The numbers inside the

circles are the node numbers. The numbers next to nodes in the tree are the

stock prices. The stock price is initially 10 at t = 0. It either goes up to 15 or

down 7 at t = 1 with some probabilities. If it is equal to 15 at t = 1, then either

it goes up to 18 or down to 14 at t = 2. If it is equal to 7 at t = 1, then either

it goes up to 13 or down to 4 at t = 2. This gives a non-recombinant stochastic

tree with node 0 as the root, node 1 (up to 15) and node 2 (down to 7) at t = 1.

At t = 2, from node 1, the tree evolves to either node 3 (up to 18 from 15) or to

node 4 (down to 14 from 15); from node 2 it evolves to either node 5 (up to 13

from 7) or to node 6 (down to 4 from 7). We assume λ = µ = 0.01. We want

to calculate the lower hedging price of an American call option with strike price
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Figure 4.1: A numerical example for P 1(0.01, 0.01).

equal to 10 (an at-the-money American call).

Using expression (4.2) and evaluating different possibilities, one can find that

the optimal value accurate to six digits is 2.435125 and attained using the fol-

lowing optimal exercise strategy: exercise if the stock price evolves to node 1 at

t = 1, exercise at t = 2 if the stock price evolves to node 5. Notice that the

optimal strategy is a path dependent exercise strategy. In fact, the two path

independent exercise strategies that are of interest in this example, e.g., exercise

only at t = 1 or only at time t = 2 are both sub-optimal with objective function

values 1.812500 and 2.415296, respectively. This example is contradicting with

a well known result in the literature which shows its never optimal to exercise

an American option in the absence of dividend payments. However, the example

shows that, in the existence of transaction costs this result remains no more valid.
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Now, we are ready to derive a formulation for the lower hedging price. First

let us deal with the inner minimization for a fixed exercise strategy that is treated

as a constant. We use binary variables en to denote exercise decisions, i.e., the

ACC is exercised at node n if en = 1, and is not exercised at node n if en = 0.

Since the ACC can only be exercised once over each path (scenario) in the tree,

one has to enforce the restriction:∑
m∈A(n)∪{n}

em ≤ 1, ∀ n ∈ NT . (4.3)

The above is in one-to-one correspondence with the stopping time definitions in

section 3.2. We use E to denote the set of all binary valued en, n ∈ N satisfying

(4.3).

Now, for a given set of fixed values e∗n for en, n ∈ N respecting the above

restriction (4.3), since the optimal exercise strategy is a not necessarily a path

independent strategy, we must allow for the possibility that all time periods

1, . . . , T are eligible to be picked as the stopping time τ over a given path as long

as there is at most one exercise period over all paths. Therefore, we express the

inner minimization problem in (4.2) taking into account all exercise possibilities

as:

min
qn,n∈N

∑
n∈N\{0}

qne
∗
nF

∗
n + e∗0F0

subject to the restrictions

qnS
∗
n(1− µ) ≤

∑
m∈D(n,t′)

qmS∗m ≤ qnS
∗
n(1 + λ)∀n ∈ Nt,∀t < t′, and t′ ∈ [1, . . . , T ],

qn =
∑

m∈C(n)

qm∀n ∈ Nt,∀t ∈ [0, . . . , T − 1],

q0 = 1,

qn ≥ 0,∀n ∈ NT .

Let Q(λ, µ) denote the set of probability measures Q = {qn}n∈N satisfying the

above constraints. Hence, we can rewrite expression (4.2) as:

max
e∈E

min
Q∈Q(λ,µ)

∑
n∈N\{0}

qnenF
∗
n + e0F0 (4.4)
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Now, attaching Lagrange multipliers b0 to the last constraint, bn to each of the

second set of constraints for n ∈ N \ {0}, and (non-negative) dt′
n and ut′

n to each

of the first set of constraints, we obtain the Lagrange function

L(qn, bn, u
t′

n , dt′

n) =
∑

n∈N\{0}

qne
∗
nF

∗
n + e∗0F0 +

T∑
t′=1

∑
t<t′

∑
n∈Nt

dt′

n [qnS
∗
n(1− µ)−

∑
m∈D(n,t′)

qmS∗m] +

T∑
t′=1

∑
t<t′

∑
n∈Nt

ut′

n [
∑

m∈D(n,t′)

qmS∗m − qnS
∗
n(1 + λ)] +

∑
n∈N\{0}

bn(qn −
∑

m∈C(n)

qm) + b0(
∑

m∈C(0)

qm − 1).

and are ready to compute the dual problem through

max
bn,ut′

n ,dt′
n

min
qn

L(qn, bn, u
t′

n , dt′

n).

After rearranging and minimizing the Lagrange function separately over each

qn ≥ 0 for all n ∈ N we obtain the Lagrange dual problem

max −b0 +
T∑

t=1

(dt
0S0(1− µ)− ut

0S0(1 + λ)) + e∗0F0

s.t. bn ≤ Rbπ(n) + e∗nFn +
∑

m∈A(n)

Sn(ut(n)
m − dt(n)

m )+

T∑
t=t(n)+1

Sn((1− µ)dt
n − (1+λ)ut

n),∀n ∈ N̄ ,

0 ≤ Rbπ(n) + e∗nFn +
∑

m∈A(n)

Sn(uT
m − dT

m), ∀ n ∈ NT

with the non-negativity constraints on all the variables ut
n, d

t
n, for all n ∈ N and

all t ∈ [0, 1, . . . , T ].

The above problem combined with the outer maximization over e ∈ E yields
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the problem P 1(λ, µ)

max −b0 +
T∑

t=1

(dt
0S0(1− µ)− ut

0S0(1 + λ)) + e0F0

s.t. bn ≤ Rbπ(n) + enFn +
∑

m∈A(n)

Sn(ut(n)
m − dt(n)

m )+

T∑
t=t(n)+1

Sn((1− µ)dt
n − (1+λ)ut

n),∀n ∈ N̄ ,

0 ≤ Rbπ(n) + enFn +
∑

m∈A(n)

Sn(uT
m − dT

m), ∀ n ∈ NT

1 ≥
∑

m∈A(n)∪{n}

em ∀ n ∈ NT

en ∈ {0, 1} , ∀ n ∈ N

and the non-negativity constraints on all the variables ut
n, d

t
n, for all n ∈ N and

all t ∈ [0, 1, . . . , T ].

Hence, we have proved the following.

Theorem 8. hlow(λ, µ, F ) = opt(P 1(λ, µ)).

This problem has a very clear hedging interpretation. We view the non-

negative variable ut
n as a long position in the risky asset acquired at node n for

liquidation at time period t. Similarly we let non-negative variable dt
n denote a

short position in the risky asset open at node n to be closed at time period t. We

view bn as the cash position at node n. The first set of constraints express the

following balance requirement for each “interior” (non-leaf nodes also excluding

the root node) node: cash available from the parent node (magnified by the inter-

est) plus pay-off from the option in case of exercise and proceeds from short sales

after accounting for transaction costs, and proceeds from liquidation of earlier

long positions (without incurring transaction costs) should be sufficiently large

to balance new long positions destined for liquidation in future time points (with

transaction costs) and closing of short positions earlier established at no transac-

tion cost. A similar interpretation holds for the leaf nodes where no transaction

costs are involved, since no new positions are acquired. These hedging constraints
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are in one-to-one correspondence with the hedging strategy of the buyer as an-

nounced on p. 52–53 of [17]: the buyer starts out by borrowing a certain amount

at time 0 to acquire the ACC, and chooses a path dependent exercise strategy

from which he/she obtains a certain pay-off with which to close his/her initial

debt.

Now, let us return to the numerical example introduced at the beginning

of this section. When we solve the problem as a mixed-integer programming

problem we obtain the following hedging strategy: short sell 0.502917 shares of

stock at time t = 0 to be closed (without transaction costs) at time t = 1, with

the proceeds of this short sale (0.502917 × 9.9) acquire the American call for

2.435125, and keep the remaining 2.54375 in the cash account. If the stock price

moves up at time t = 1, exercise the option to collect 5, and using the cash

position coming from node 0, close the short position. If the stock moves down,

do not exercise, close the short position from node 0, and acquire a new short

position in the stock of the order of 1/3 shares to be closed at time t = 2. This

leaves 11
3

in cash. If the stock moves up to 14, exercise the option, and with the

total cash close the short position in the stock. If the stock price moves down to

4, just close the short position using the available cash.

Suppose that the stock makes dividend payments Dn at node n. Then model

P 1(λ, µ) is modified as follows:

max −b0 +
T∑

t=1

(dt
0S0(1− µ)− ut

0S0(1 + λ)) + e0F0

s.t. bn ≤ Rbπ(n) + enFn +
∑

m∈A(n)

(Sn + Dn)(ut(n)
m − dt(n)

m )+

T∑
t=t(n)+1

Sn((1− µ)dt
n − (1+λ)ut

n),∀n ∈ N̄ ,

0 ≤ Rbπ(n) + enFn +
∑

m∈A(n)

(Sn + Dn)(uT
m − dT

m), ∀ n ∈ NT

1 ≥
∑

m∈A(n)∪{n}

em ∀ n ∈ NT

en ∈ {0, 1} , ∀ n ∈ N

and the non-negativity constraints on all the variables ut
n, d

t
n, for all n ∈ N and
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all t ∈ [0, 1, . . . , T ]. Now, for a given set of fixed values for en, n ∈ N the inner

minimization problem in (4.2) becomes:

min
qn,n∈N

∑
n∈N\{0}

qnenF
∗
n + e0F0

subject to the restrictions

qnS
∗
n(1− µ) ≤

∑
m∈D(n,t′)

qm(S∗m + D∗
m) ≤ qnS

∗
n(1 + λ)∀n ∈ Nt,∀t < t′,

and t′ ∈ [1, . . . , T ],

qn =
∑

m∈C(n)

qm∀n ∈ Nt,∀t ∈ [0, . . . , T − 1],

q0 = 1,

qn ≥ 0,∀n ∈ NT .

Let QD(λ, µ) denote the set of probability measures Q satisfying the above con-

straints. Hence, in the presence of dividend payments we can modify the ex-

pression (4.2) for the lower hedging price, now referred to as hd
low(λ, µ, F ). Let

PD(λ, µ, τ) denote the set of all measures such that P-almost surely we have

S∗t (1− µ) ≤ EP[S∗τ + D∗
τ |Nt] ≤ S∗t (1 + λ) ∀t < τ. (4.5)

Hence, we state the following theorem without proof.

Theorem 9.

hd
low(λ, µ, F ) = max

e∈E
min

Q∈QD(λ,µ)

∑
n∈N\{0}

qnenF
∗
n + e0F0

= max
τ∈T

min
P∈PD(λ,µ,τ)

EP[F ∗
τ ].

In the next section we investigate a relaxation of P 1(λ, µ) in connection with

randomized stopping times.
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4.3 Randomized Stopping Times and Relax-

ation

Chalasani and Jha [17] (section 9) and Pennanen and King [48] obtained pricing

expressions for the seller of an ACC in terms of randomized stopping times. A

randomized stopping time [2, 17] is a non-negative adapted process (in our case,

node function) Z with the property that on every path ω one has

T∑
t=0

Z(ωt) = 1.

That is, the sum of random variables Z0, Z1, . . . , ZT is equal to 1 on every path.

When a randomized stopping time Z is used to describe an exercise strategy, we

can think of the value Zn at node n as the probability of exercise at node n given

that node n has been reached.

Stopping times are degenerate randomized stopping times. A stopping time

τ corresponds to the randomized stopping time Zτ whose values are restricted to

lie in the set {0, 1} and defined as follows for any ω ∈ Ω, and t ∈ {0, 1, . . . , T}:

Zτ (ωt) =

{
1 if τ(ω) = t,

0 otherwise.

The ordinary (or pure) stopping times are extreme points of the convex set of

randomized stopping times, or the set Z of randomized stopping times is the

convex hull of the set T stopping times.

In our setting the set Ẽ of randomized stopping times corresponds to the set

of en such that en ∈ [0, 1] for all n ∈ N satisfying the inequalities (4.3). The

practical meaning of passing from stopping times to randomized stopping times

as allowable exercise strategies is the possibility of different exercise times for a

portfolio of identical ACCs. For a single ACC, a randomized stopping time based

exercise strategy can be interpreted as the probabilities of exercise at nodes n

with a fractional en value.

Chalasani and Jha also proposed in Remark 12.3 of [17] a formula for the lower

hedging price using randomized stopping times. The use of randomized stopping
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times in the hedging policy as advocated by Chalasani and Jha [17] implies the

following linear programming relaxation P 2(λ, µ) of P 1(λ, µ):

max −b0 +
T∑

t=1

(dt
0S0(1− µ)− ut

0S0(1 + λ)) + e0F0

s.t. bn ≤ Rbπ(n) + enFn +
∑

m∈A(n)

Sn(ut(n)
m − dt(n)

m )+

T∑
t=t(n)+1

Sn((1− µ)dt
n − (1+λ)ut

n),∀n ∈ N̄ ,

0 ≤ Rbπ(n) + enFn +
∑

m∈A(n)

Sn(uT
m − dT

m), ∀ n ∈ NT

1 ≥
∑

m∈A(n)∪{n}

em ∀ n ∈ NT

en ∈ [0, 1], ∀ n ∈ N

and the non-negativity constraints on all the variables ut
n, d

t
n, for all n ∈ N and

all t ∈ [0, 1, . . . , T ]. In other words, the relaxation P 2(λ, µ) leads to a new price

h′low(λ, µ, F ) := opt(P 2(λ, µ)). Chalasani and Jha in Remark 12.3 of [17] hinted

that a relaxation of hlow(λ, µ, F ) based on randomized stopping times yields the

same value as hlow(λ, µ, F ). They did not give an explicit formulation nor a proof

of this statement. However, in our relaxation using randomized stopping times,

one cannot in general expect to find an integer optimal hedge policy by solving

the relaxed problem, i.e., hlow(λ, µ, F ) can be smaller than h′low(λ, µ, F ). To see

this it suffices to go back to the small example of section 4.2. When we solve this

example as a linear program, we obtain an optimal value equal to 2.450000, which

is higher than the value we obtained earlier. This higher value is obtained by the

following fractional exercise policy: 2/3 exercise at node 1, and 1/3 exercise at

node 3 or node 4, and full exercise at node 5 as before.

On the other hand, in all computational experience, the linear programming

relaxation is either exact, or leads to very small duality gaps that are easily closed

by off-the-shelf state-of-the-art solvers.

It is clear from the example above that it may be beneficial to the holder of a

portfolio of identical ACCs to exercise portions of the portfolio at different time

points.
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4.4 The Frictionless Case

We know from Chapter 3 that when λ = µ = 0 (the frictionless case), the linear

programming relaxation model AP2 of AP1 yields the same optimal value as

AP1. We prove a similar result under this setting here.

Theorem 10. The optimal value of P 2(0, 0) is equal to the optimal value of

P 1(0, 0). Furthermore, there exists an optimal solution to P 2(0, 0) with en ∈
{0, 1} , ∀ n ∈ N .

Proof. We prove directly the second statement which implies the first one. As-

sume that P 2(0, 0) has an optimal solution with the component e∗ of the form

e∗n /∈ {0, 1} for some n ∈ N .

Case 1: We will first consider the case where e∗ has a value not equal to 0 or

1 for the root node of the tree (i.e. e∗0 /∈ {0, 1}). In order to deal with this case,

we will form the dual problem of P 2(0, 0) which can be formulated as

min
∑

n∈NT

zn

s.t.
∑

m∈C(0)

ym = 1/R∑
m∈C(n)

ym = yn/R, ∀ n ∈ N \ NT ∪ {0}∑
m∈C(n)

ymSm = ynSn, ∀ n ∈ N \ NT

ynFn −
∑

m∈D(n)∩NT

zm ≤ 0, ∀ n ∈ N

yn, zn ≥ 0, ∀ n ∈ NT .

We have an optimal solution to P 2(0, 0) with e∗0 /∈ {0, 1}. Then complementary

slackness implies that the fourth constraint of the above program corresponding

to the root node should be satisfied as an equality for the corresponding optimal

solution of the dual problem (i.e., y0F0 −
∑

m∈NT
zm = 0). Since y0 = 1, we have

F0 =
∑

m∈NT
zm. Thus, the optimal solution to the dual problem is found to be
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F0. Then, by strong duality we know that F0 is the optimal value of P 2(0, 0).

One can easily show that a feasible solution to P 2(0, 0) is e0 = 1, and all the

other variables as zeros with objective value F0. This is an optimal solution with

en ∈ {0, 1} , ∀ n ∈ N , thus the proof for the first case is complete.

Case 2: Now assume that optimal solution e∗ is such that e∗0 = 0 and e∗n /∈
{0, 1} for some n ∈ N . Let I = {i|e∗i /∈ {0, 1}, i ∈ N}. Let G = {g|g ∈
I,A(g) ∩ I = {g}}. Let w be the element with the smallest time index (that is

closest to the root) in G. Note that e∗n = 0, ∀ n ∈ A(w) in this case. Also, let k

denote the time index for node w.

Claim: One can always find an optimal solution to P 2(0, 0) with ew ∈ {0, 1}
and ei = 0 for all i ∈ A(w).

To prove the claim we will consider the following two linear programs to which

we will refer as AR1 and AR2 respectively, where we define Nw
T = NT ∩ D(w),

and the symbols with ∗ refer to variables that are treated as constants (within

the confines of the proof) :
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max ew

subject to

bw ≤Rb∗π(w)+ewFw+
∑

m∈A(w)

Sn(ut(w)∗
m −dt(w)∗

m ) +
T∑

t=t(w)+1

Sw(dt
w − ut

w),

bn ≤Rbπ(n)+ enFn +
∑

m∈A(w)

Sn(ut(n)∗
m − dt(n)∗

m ) +
∑

m∈A(n)\A(w)

Sn(ut(n)
m − dt(n)

m ) +
T∑

t=t(n)+1

Sn(dt
n − ut

n),

∀n ∈ D(w) \ {w}

0 ≤ Rbπ(n) + enFn +
∑

m∈A(w)

Sn(uT∗
m − dT∗

m ) +
∑

m∈A(n)\A(w)

Sn(uT
m − dT

m), ∀ n ∈ Nw
T

1 ≥
∑

m∈A(n)∪{n}

em ∀ n ∈ Nw
T

en ≥ 0, ∀ n ∈ D(w),

min ew

subject to

bw ≤Rb∗π(w)+ewFw+
∑

m∈A(w)

Sn(ut(w)∗
m −dt(w)∗

m ) +
T∑

t=t(w)+1

Sw(dt
w − ut

w),

bn ≤Rbπ(n)+ enFn +
∑

m∈A(w)

Sn(ut(n)∗
m − dt(n)∗

m ) +
∑

m∈A(n)\A(w)

Sn(ut(n)
m − dt(n)

m ) +
T∑

t=t(n)+1

Sn(dt
n − ut

n),

∀n ∈ D(w) \ {w}

0 ≤ Rbπ(n) + enFn +
∑

m∈A(w)

Sn(uT∗
m − dT∗

m ) +
∑

m∈A(n)\A(w)

Sn(uT
m − dT

m), ∀ n ∈ Nw
T

1 ≥
∑

m∈A(n)∪{n}

em ∀ n ∈ Nw
T

en ≥ 0, ∀ n ∈ D(w).
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For convenience we collect the values of bn, ut
n and dt

n in a vector θ. Let us

denote the optimal solution of AR1 as θ̄D(w), ēD(w) and the optimal solution of AR2

as θ̃D(w), ẽD(w). If the optimal value of AR1 is 1, then we see that (θ̄D(w), θ
∗
N\D(w)),

(ēD(w), e
∗
N\D(w)) form another optimal solution of P 2(0, 0) with ew = 1. For this

optimal solution we have ew = 1 and ei = 0, ∀ i ∈ A(w) (we have also ei = 0, for

all i ∈ D(w)\{w} for this solution). Similarly, if the optimal value of AR2 is 0,

then (θ̃D(w), θ
∗
N\D(w)), (ẽD(w), e

∗
N\D(w)) form another optimal solution of P 2(0, 0)

with ew = 0. Then, for this optimal solution we have ei = 0, for all i ∈ A(w).

So, our claim will be proved if we can show that AR2’s having an optimal value

greater than 0 implies that the optimal value of AR1 is 1. To show that we will

consider the dual problems of AR1 and AR2. The dual problems DAR1 and

DAR2 of AR1 and AR2, respectively, are

min
∑

n∈Nw
T

zn + yw

Rb∗π(w) + Sw

∑
m∈A(w)

T∑
t=t(w)

(ut∗
m − dt∗

m)


s.t. R(

∑
m∈C(n)

ym) = yn, ∀ n ∈ D(w) \ Nw
T∑

m∈C(n)

ymSm = ynSn, ∀ n ∈ D(w) \ Nw
T

−ywFw +
∑

n∈Nw
T

zn ≥ 1

ynFn −
∑

m∈D(n)∩NT

zm ≤ 0, ∀ n ∈ D(w) \ {w}

zn ≥ 0, ∀ n ∈ Nw
T ,

yn ≥ 0, ∀ n ∈ D(w),
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max −
∑

n∈Nw
T

zn − yw

Rb∗π(w) + Sw

∑
m∈A(w)

T∑
t=t(w)

(ut∗
m − dt∗

m)


s.t. R(

∑
m∈C(n)

ym) = yn, ∀ n ∈ D(w) \ Nw
T∑

m∈C(n)

ymSm = ynSn, ∀ n ∈ D(w) \ Nw
T

−ywFw +
∑

n∈Nw
T

zn ≥ −1

ynFn −
∑

m∈D(n)∩NT

zm ≤ 0, ∀ n ∈ D(w) \ {w}

zn ≥ 0, ∀ n ∈ Nw
T ,

yn ≥ 0, ∀ n ∈ D(w).

We will denote the optimal value of AR2 by α, which is equal to the optimal

value of DAR2. We know that α ≤ 1. Assume that α > 0. Then by complemen-

tary slackness we know that the third constraint of DAR2 must be satisfied as

an equality at the corresponding optimal solution, since ew 6= 0 at the optimal

solution of AR2. Then at the optimal solution of DAR2, we have

0 >
∑

n∈Nw
T

zn + yw(Rb∗π(w) + Swθ∗π(w)) ≥ −ywFw +
∑

n∈Nw
T

zn = −1, (4.6)

where we denote by θ∗π(w) the term
∑

m∈A(w)

∑T
t=t(w)(u

t∗
m − dt∗

m). Then, using the

second inequality of (4.6) we have∑
n∈Nw

T

zn + yw(Rb∗π(w) + Swθ∗π(w)) ≥ −ywFw +
∑

n∈Nw
T

zn

yw(Rb∗π(w) + Sw · θ∗π(w)) ≥ −ywFw

Rb∗π(w) + Sw · θ∗π(w) ≥ −Fw

where the last step follows from yw ≥ 0. Then, for DAR1 at any feasible solution

we have

1 ≤ −ywFw +
∑

n∈Nw
T

zn ≤ yw(Rb∗π(w) + Swθ∗π(w)) +
∑

n∈Nw
T

zn
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whence we see that the optimal solution of DAR1 cannot be less than 1. It is

easy to see by AR1 that optimal value of DAR1 cannot be greater than 1 either.

Hence, we conclude that the optimal value of DAR1 and therefore that of AR1,

is 1. This completes the proof of our claim.

Using the claim we see that there always exists an optimal solution to P 2(0, 0)

with ew ∈ {0, 1} and ei = 0 for all i ∈ A(w). So, one can eliminate all the nodes

having time index k in I by applying the above procedure. Then, proceeding

successively with the nodes in (k + 1)st, (k + 2)nd . . . (T )th time indices one can

find an optimal solution for P 2(0, 0) with en ∈ {0, 1} , ∀ n ∈ N . We note that at

each step the cardinality of I might increase, but no nodes with a time index less

than or equal to that of the node eliminated at that particular step can appear

again in I at the next step. This completes the proof of the theorem.

The above theorem implies the formula

hlow(0, 0, F ) = max
Z∈Z

min
Q∈Q(0,0)

EQ[F ∗
Z ]. (4.7)

Following the same proof technique as in Theorem 4 of [48] we can also interchange

the max and the min in the above expression, and replace randomized stopping

times with ordinary stopping times as a result of the theorem above. Notice that

Q(0, 0) coincides with the set of measures M that make the stock price process

a martingale [17, 40, 48], i.e., the set of {qn}, for all n ∈ N such that

qnS
∗
n =

∑
m∈C(n)

S∗mqm∀n ∈ Nt,∀t ∈ [0, . . . , T − 1],

qn =
∑

m∈C(n)

qm∀n ∈ Nt,∀t ∈ [0, . . . , T − 1],

q0 = 1,

qn ≥ 0,∀n ∈ NT .
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Hence, in an arbitrage free market we re-obtain the well-known expressions

hlow(0, 0, F ) = max
Z∈Z

min
Q∈Q(0,0)

EQ[F ∗
Z ]

= max
Z∈Z

min
Q∈M

EQ[F ∗
Z ]

= max
τ∈T

min
Q∈M

EQ[F ∗
τ ]

= min
Q∈M

max
τ∈T

EQ[F ∗
τ ]

= min
Q∈M

max
Z∈Z

EQ[F ∗
Z ].

We note that the proof of the previous theorem also gives a procedure for con-

structing an integer optimal hedge policy by solving a series of smaller linear

programs. Finally, the theorem remains valid in the presence of dividend pay-

ments as can be routinely verified.

4.5 Another Formulation

In an unpublished manuscript [48], Pennanen and King proposed another, more

compact (with a reduced number of continuous variables), mixed-integer pro-

gramming formulation for computing the buyer’s price to an American claim in a

frictionless market. This is the formulation that we have used in Chapter 3. In the

present section we extend their formulation to include proportional transaction

costs.

The Pennanen and King formulation uses “position” variables θn for the stock

as opposed to the “flow” variables ut
n, d

t
n of P 3(λ, µ). Translating this formulation

to our setting we pose the hedging problem of the buyer of ACC as the following
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problem P 3(λ, µ)

max −β0 − S0θ0 − S0φ0(θ0, λ, µ) + F0e0

s.t. Fnen = βn −Rβπ(n) + Sn(θn − θπ(n))+

Snφn(θn − θπ(n), λ, µ), ∀ n ∈ N 1

0 ≤ βn + Snθn,∀ n ∈ NT

1 ≥
∑

m∈A(n)∪{n}

em, ∀ n ∈ NT

en ∈ {0, 1} , ∀ n ∈ N ,

where θn represents the portfolio position in the stock at node n, βn represents

the cash position at node n, φn is the transaction cost function:

φn(x, λ, µ) =

{
λx if x ≥ 0

−µx otherwise

and the first set of constraints represent the balance of monetary flow at each

node of the tree except the root node, i.e., the self-financing portfolio transac-

tions. The second set of constraints expresses the requirement to finish off with

non-zero positions at all leaf nodes. The formulation is consistent with the arbi-

trage definitions of [48] after the necessary adjustments for transaction costs are

made. The buyer price is finite in an arbitrage free market; [48]. Note that this

formulation allows to take positions in the final period, and penalizes all changes

of portfolio unlike in assumptions (b) and (c) of P 1(λ, µ).

While the above problem involves a nonlinearity, it can be transformed into
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an equivalent linear integer programming model as in [23]:

max −β0 − S0θ0 − S0(λζ+
0 + µζ−0 ) + F0e0

s.t. Fnen = βn −Rβπ(n) + Sn(θn − θπ(n))+

Sn(λζ+
n + µζ−n )∀ n ∈ N 1

θ0 = ζ+
0 − ζ−0

θn − θπ(n) = ζ+
n − ζ−n , ∀ n ∈ Nt, t ∈ {1, . . . , T}

0 ≤ βn + Snθn,∀ n ∈ NT

1 ≥
∑

m∈A(n)∪{n}

em, ∀ n ∈ NT

ζ+
n , ζ−n ≥ 0, ∀ n ∈ N

en ∈ {0, 1} , ∀ n ∈ N .

The optimal value is the largest amount that a potential buyer can borrow for

acquiring a given American contingent claim F . The buyer’s strategy is to con-

struct a least costly (adapted) portfolio process under transaction costs to cover

his/her debt replicating the proceeds from the contingent claim by self-financing

transactions using the market-traded securities in such a way to avoid any termi-

nal losses. The integer variables and related constraints represent the one-time

exercise of the American contingent claim as in previous sections. Pennanen and

King [48] elaborate on the formulation without transaction costs, and establish

that any price lower than the optimal value of P 3(0, 0) leads to an arbitrage.

Dividend payments can be accommodated by subtracting the term θπ(n)Dn from

the right hand side of the first set of constraints.

The two formulations P 1(λ, µ) and P 3(λ, µ) are neither identical nor equiv-

alent. To see this, it suffices to observe that model P 3(λ, µ) does not respect

assumptions (b) and (c) of model P 1(λ, µ), namely that no transaction cost is

involved in liquidating a position to settle a debt and no positions are taken

at the leaf nodes. With model P 3(λ, µ), all changes in the stock positions are

penalized through transaction costs. Solving the same valuation example as in

section 4.2 using P 3(λ, µ) we obtain a buyer’s price of 2.416151 which is smaller

than the price 2.435125 we obtained using P 1(λ, µ). Since P 3(λ, µ) removes as-

sumption (b) it leads to bigger losses in transaction fees, and renders the same

American call option less valuable. Note that P 3(λ, µ) in its linearized form, has
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Figure 4.2: A numerical example for P 3(0.01, 0.01).

four variables per node, as opposed to P 1(λ, µ) where each node n contributes

1 + 2(T − t(n)) continuous variables to the total. However, model P 3(λ, µ) has

an additional set of |NT |+ |N | constraints.

It is a legitimate question to ask whether the linear programming relaxation

P 4(λ, µ) of P 3(λ, µ) is exact in the sense of resulting in the same price as P 3(λ, µ).

The answer is negative. The numerical example for the financial market with zero

interest rate and stock prices evolving as in Figure 4.2 (the numbers on top of

the nodes are the stock prices and the numbers inside the nodes are the node

numbers) for an American call option with strike equal to 10 gives a buyer’s price

of 2.118810 while the LP relaxation gives a fractional optimal solution with value

2.142805.
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Another question of interest is the nature of the relationship between P 3(0, 0)

and P 1(0, 0). These models are in fact equivalent, although not identical.

Theorem 11. opt(P 1(0, 0)) = opt(P 2(0, 0)) = opt(P 3(0, 0)) = opt(P 4(0, 0)).

Proof. From Theorem 6, we know that opt(P 3(0, 0)) = opt(P 4(0, 0)). We also

know from Theorem 10 of this chapter that opt(P 1(0, 0)) = opt(P 2(0, 0)). How-

ever, after some evident simplifications the linear programming dual of P 4(0, 0)

is the problem

min
∑

n∈NT

zn

s.t.
∑

m∈C(0)

ym = 1/R

R(
∑

m∈C(n)

ym) = yn, ∀ n ∈ N \ NT ∪ {0}∑
m∈C(n)

ymSm = ynSn, ∀ n ∈ N \ NT

ynFn −
∑

m∈D(n)∩NT

zm ≤ 0, ∀ n ∈ N

yn, zn ≥ 0, ∀ n ∈ NT ,

which is exactly the dual of P 2(0, 0).

In closing the section, we note that the observation opt(P 3(0, 0)) =

opt(P 4(0, 0)) was first proposed in [48] and proved in Chapter 3. It was also

communicated to us [63] that the algorithms of Roux and Zastawniak [58] yield

essentially a similar conclusion for the frictionless case, namely that the friction-

less case is computationally “easier” although this is not stated explicitly in their

paper. The reader is reminded, however, that they are using path independent

strategies.
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4.6 Conclusion

In this chapter, departing from a formula in [17] for the lower hedging price of an

ACC, we developed an integer programming formulation for computing the price

in question as well as an optimal hedge policy for the buyer of the ACC in finite

state discrete time markets with transaction costs. The formulation has a linear

relaxation which fails to be exact, but which is, at least in our experiments, very

close to the integer optimal value. The linear relaxation turns out to be exact

in the absence of transaction costs. We also proposed another formulation which

relaxes an assumption of [17]. The second formulation has similar properties. A

common feature that emerges from these formulations is that in the presence of

proportional transaction costs, the holder of a portfolio of identical ACCs might

have an incentive to exercise partially his/her claims at different time points

whereas this incentive disappears in frictionless markets.



Chapter 5

Conclusion

In this chapter we firstly summarize our findings in our thesis. Then we show

counterexamples for some extension of our work. Finally, we point possible further

research directions.

5.1 Concluding Remarks

In this thesis we studied the problem of pricing European and American type

contingent claims in a multi-period discrete-time, finite probability space frame-

work.

In the second chapter, we studied the problem of pricing European contingent

claims under no λ gain-loss ratio opportunity condition. This condition is more

restricted than the classical no-arbitrage condition in the sense that it eliminates

a greater set of portfolio strategies from the market. We analyzed the resulting

optimization problems using linear programming duality and obtained results

based on martingales. We showed that the pricing bounds obtained from our

analysis are tighter than the no-arbitrage pricing bounds. This result, in line

with the Bernardo and Ledoit [5] single period results, was also obtained for a

multi-period model in the computationally more tractable linear programming

87
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environment. We derived a program in order to obtain the lowest level of the risk

aversion parameter for which the option pricing problems would yield a legitimate

pricing interval. Besides, we showed that for a limiting value of risk aversion

parameter that can be computed easily, a unique price for a contingent claim

in incomplete markets may be found although this is not guaranteed. We also

extended our results to markets with transaction costs.

In the third chapter we presented an alternative proof of an interesting and

important result announced by Pennanen and King [48] on the computation of the

buyer’s price of an American contingent claim by linear programming instead of

0-1 integer programming. We included a numerical example that helps illustrate

some important arguments related to our proof. We obtained the martingale

result for the buyer’s price of the American option. We also showed that the

result is unaffected by dividend payments.

In the fourth chapter, departing from a formula in [17] for the lower hedging

price of an ACC, we developed an integer programming formulation for computing

the price in question as well as an optimal hedge policy for the buyer of the ACC

in finite state discrete time markets with transaction costs. The formulation has a

linear relaxation which fails to be exact, but which is, at least in our experiments,

very close to the integer optimal value. The linear relaxation turns out to be exact

in the absence of transaction costs. We also proposed another formulation which

relaxes an assumption of [17]. The second formulation has similar properties. A

common feature that emerges from these formulations is that in the presence of

proportional transaction costs, the holder of a portfolio of identical ACCs might

have an incentive to exercise partially his/her claims at different time points

whereas this incentive disappears in frictionless markets.

5.2 Counterexamples

In this section, we will exhibit some counterexamples for some future research

directions which are based on our findings in the previous chapters of this thesis.
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5.2.1 Expected Gain-Loss Pricing and Hedging of Amer-

ican Contingent Claims

One of the most straightforward research directions to go under the light of our

findings in this thesis is combining Chapter 2 and Chapter 3 in order to have

an improved result for the problem of pricing ACCs in incomplete markets. In

Chapter 2 we consider the problem of pricing an ECC under the no λ gain-loss

ratio opportunity condition. In Chapter 3 we deal with the problem of finding

the lower bound of the pricing interval of an ACC in an arbitrage-free market.

As we claim in Chapter 2, the λ gain-loss ratio opportunity condition is more

restrictive than the arbitrage condition, hence using it as a basis for the pricing

problem of an ECC, one can obtain a tighter pricing interval for the claim that

is to be priced. Actually this is also true for the ACC pricing problem.

The mixed-integer programming formulation that should be used in order to

find the buyer’s price of an ACC under no λ gain-loss ratio opportunity condition

is as follows:

max V

s.t. S0 · θ0 = F0e0 − V

Sn · (θn − θπ(n)) = Fnen, ∀ n ∈ Nt, 1 ≤ t ≤ T

Sn · θn − x+
n + x−n = 0, ∀ n ∈ NT ,∑

n∈NT

pnx
+
n − λ

∑
n∈NT

pnx
−
n ≥ 0∑

m∈A(n)

em ≤ 1, ∀ n ∈ NT

x+
n , x−n ≥ 0, ∀ n ∈ NT ,

en ∈ {0, 1} , ∀ n ∈ N .

Note that we use the notation of Chapter 3 in this formulation. The main

question to investigate here is (as it was for the problem in Chapter 3) whether

the problem obtained by relaxing the variables en n ∈ N . of this mixed-integer

program is equivalent (i.e. both problems have the same optimal value) to itself or

not. Because, if the relaxation problem, which is a linear programming problem,
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is equivalent to the original problem, we can obtain similar results to those we

have obtained in Chapter 3 for this new setting. However our studies resulted with

a counterexample to this idea which shows that the original and the relaxation

problems are not equivalent. Let us consider the example in Figure 5.1. In this

example there is only one bond and the underlying asset in addition to the ACC

to be priced. The price of the bond is equal to 1 at each node. The numbers

inside each node in the tree represents the price of the stock at that node. For

the non-terminal nodes, the numbers above each node represents the payoff of the

ACC (if exercised) at that node. For the terminal nodes, the first number next

to the node represents the payoff of the ACC and the second number represents

the probability associated with that node.
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Figure 5.1: A counterexample for the problem of pricing ACCs under no λ gain-
loss ratio opportunity condition

If we solve the above optimization model by using the parameter values in
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Figure 5.1 and using λ = 17 we obtain an optimal result of 5.176. Besides,

if we solve the linear relaxation of the above optimization problem using the

same parameters, we obtain an optimal solution of 5.179. This proves that two

optimization problems are not equivalent. Hence, we cannot progress in the

manner of Chapter 3 under this setting. However, we discuss a different approach

for this case in the next section as a possible future research direction.

5.2.2 Pricing of ACCs with Multiple Exercise Rights

In this thesis we consider the problem of pricing American and European type

contingent claims. However there are many types of contingent claims which are

traded in the market. Some of these contingent claims give multiple exercise op-

portunities to the holder of the claim. Swing options, which are mostly used in

energy markets are an example of such type of contingent claims. As an introduc-

tory step to the pricing problem of these contingent claims we have considered the

problem of pricing an ACC with multiple exercise rights under no-arbitrage con-

dition. If the holder of the contingent claim has k (note that k ≤ T + 1 where T

denotes the last period) number of exercise rights until the maturity of an ACC,

the buyer’s pricing problem becomes the following mixed-integer programming

problem:

max V

s.t. S0 · θ0 = F0e0 − V

Sn · (θn − θπ(n)) = Fnen, ∀ n ∈ Nt, 1 ≤ t ≤ T

Sn · θn ≥ 0, ∀ n ∈ NT∑
m∈A(n)

em ≤ k, ∀ n ∈ NT

en ∈ {0, 1} , ∀ n ∈ N .

We use the notation of Chapter 3 in this formulation. We consider the linear

relaxation of this problem which is obtained by just removing the last constraint
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and adding 0 ≤ en ≤ 1;∀ n ∈ N instead of that. We have expected that these

two problems would be equivalent. If this was the case we could use our results

as a basis for our future studies in swing options. However, the counterexample

represented by Figure 5.2 shows that two problems do not necessarily have the

same optimal value. In this example there is only one bond and the underlying

asset in addition to the ACC to be priced. There are 2 exercise rights for the

owner of this ACC. The price of the bond is equal to 1 at each node. The numbers

inside each node in the tree represents the price of the stock at that node. The

numbers next to the nodes represent the payoff of the ACC (if exercised) at that

node.
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Figure 5.2: A counterexample for the problem of pricing ACCs with multiple
exercise rights

The optimal value of the original mixed-integer programming problem is 4.636

and of the linear relaxation problem is 4.882 with the parameter values shown in
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Figure 5.2. This proves that the two optimization problems are not equivalent.

Therefore, we need to develop the problem in a different direction as it is discussed

in the next section.

5.3 Future Research Directions

There are still many aspects to be examined regarding the pricing and hedging

problems for ACCs. Under the light of the counterexamples of the previous

section we can say that tackling with the difficulties of integer programming seems

inevitable for the progress of the research in the area. As a future research, we

can examine the problems of pricing ACCs under no λ gain-loss ratio opportunity

condition and pricing ACCs with multiple exercise rights in detail, in order to

obtain efficient cuts and solution algorithms for the mixed-integer programming

problems. Determining the complexity of the problems is another issue that we

can examine.

There is another type of contingent claim introduced by Kifer [39] which is

called a game (Israeli) option. This contingent claim resembles an ACC. The

holder of the claim has the right to exercise and get the payoff of the claim

whenever he wants until the maturity of the claim. But for the game options, the

writer has the right to terminate the contract at any time until maturity of the

claim, whence he pays the payoff of the claim in addition to a penalty cost. They

are called game options because the conditions of the contract looks like a game

between the buyer and the seller. Kifer [39] examines the problem in both discrete

and continuous time settings under no-arbitrage condition however they use one

stock and one bond in their model. We can examine the problem in our stochastic

scenario tree setting in order to determine the pricing interval for the claim. The

first step would be constructing the mixed-integer programming model. Then,

we would again work on the relaxations in order to prove that solving a linear

programming problem is sufficient to determine the pricing interval. Failure of

this step would lead us to the search for efficient cuts and solution algorithms for

the problem.
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