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ABSTRACT

PRICING AND HEDGING OF CONTINGENT CLAIMS
IN INCOMPLETE MARKETS

Ahmet Cama
Ph.D. in Industrial Engineering

Supervisor: Prof. Dr. Mustafa ¢. Pinar
August, 2010

In this thesis, we analyze the problem of pricing and hedging contingent claims in
the multi-period, discrete time, discrete state case. We work on both European

and American type contingent claims.

For European contingent claims, we analyze the problem using the concept of
a “\ gain-loss ratio opportunity”. Pricing results which are somewhat different
from, but reminiscent of, the arbitrage pricing theorems of mathematical finance
are obtained. Our analysis provides tighter price bounds on the contingent claim
in an incomplete market, which may converge to a unique price for a specific value
of a gain-loss preference parameter imposed by the market while the hedging
policies may be different for different sides of the same trade. The results are
obtained in the simpler framework of stochastic linear programming in a multi-

period setting. They also extend to markets with transaction costs.

Until now, determining the buyer’s price for American contingent claims
(ACC) required solving an integer program unlike European contingent claims
for which solving a linear program is sufficient. We show that a relaxation of
the integer programming problem which is a linear program, can be used to get
the buyer’s price for an ACC. We also study the problem of computing the lower
hedging price of an American contingent claim in a market where proportional
transaction costs exist. We derive a new mixed-integer linear programming for-
mulation for calculating the lower hedging price. We also present and discuss an
alternative, aggregate formulation with similar properties. Our results imply that
it might be optimal for the holder of several identical American claims to exercise
portions of the portfolio at different time points in the presence of proportional

transaction costs while this incentive disappears in their absence.

We also exhibit some counterexamples for some new ideas based on our work.

v



We believe that these counterexamples are important in determining the direction
of research on the subject.

Keywords: Contingent Claim, Option Pricing, Hedging, Arbitrage, Transaction
Cost, Stochastic Linear Programming, Mixed Integer Programming.



OZET

KOSULLU YUKUMLULUKLERIN EKSIK
PIYASALARDA FIYATLANDIRILMASI

Ahmet Camci
Endistri Miihendisligi, Doktora
Tez Yoneticisi: Prof. Dr. Mustafa ¢. Pinar
Agustos, 2010

Bu tez calismasinda kosullu yiiktimliiliikler i¢in ¢ok periyotlu, ayrik zamanlh ve
ayrik durumlu modellerde korunma ve fiyatlandirma problemlerini incelenmistir.
Hem Avrupa hem de Amerikan tipi kogullu yiikiimliiliikler iizerinde galigmalar
yapilmigtir.

Avrupa tipi kogullu ytikiimliiliikler i¢gin problem “X kazang-kayip orani firsati”
kavrami kullanmilarak analiz edilmistir. Arbitraj kavrami kullamilarak yapilan
caligmalarda elde edilen sonuglari animsatan ama bu sonuclardan farkli fiyat-
landirma sonuglar: tiiretilmistir. Yapilan ¢aligmalar sonucunda eksik piyasalarda
Avrupa tipi yiikkiimliiliikler i¢in arbitraj fiyatlamasina gore daha dar fiyat sinirlar
elde edilmistir. Kazang-kayip onceligi parametresinin 6zel bir degeri i¢in bu fiyat
sinirlarinin, alici ve saticinin korunma politikalar: birbirinden farkli olsa bile, tek
bir fiyata yakinsayabilecegi gosterilmistir. Sonuclar stokastik dogrusal program-
lama yaklagimiyla ¢ok periyotlu modellerde elde edilmistir. Bunlarin yaninda,

benzer sonuclar iglem maliyetlerini hesaba katilarak da elde edilmistir.

Daha once yapilan ¢alismalar sonucunda, Avrupa tipi bir kogullu s6zlesmenin
alic1 fiyatini elde etmek icin bir dogrusal eniyileme probleminin ¢oziilmesi yeter-
liydi. Bunun aksine, Amerikan tipi bir kogullu sozlesmenin alici fiyatin1 elde
etmek icin ise bir karigtk tamsayr eniyileme problemi ¢oziillmesi gerekiyordu.
Calismamizda bu karigik tamsayi1 eniyileme probleminin dogrusal eniyileme prob-
lemi olan bir gevsetmesinin Amerikan tipi kosullu sézlesmenin alic1 fiyatini belir-
lemek icin kullanilabilecegi gosterilmigtir. Amerikan tipi kogullu sozlesmelerin alt
korunma fiyati problemi i¢in ayrica orantisal igslem maliyetlerinin yer aldigi bir
piyasada ¢aligmalar yapilmigtir. Alt korunma fiyatini elde etmek igin bir karisik
tamsay1 dogrusal programlama modeli tiiretilmistir. Bu modele alternatif olarak,
benzer ozellikler gosteren ama daha biitiinsel bir model geligtirilmistir. Sonuglar,
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Vil

pivasada orantisal iglem maliyetleri bulunmasi durumunda, birden fazla ozdes
Amerikan tipi kogullu sézlesmeye sahip olan yatirimcinin, sahip oldugu bu kosullu
sozlesmelerin bazilarim farkli zamanlarda uygulayacagini gostermektedir.

Bu tezde ayrica, ¢calismalarin devami olabilecek bazi konularda karsit 6rnekler
sunularak gelecekte yapilacak caligmalar i¢in yon belirlenmesine ¢aligilmigtir.

Anahtar sozcikler: Kogullu Yiktumlilik, Opsiyon Fiyatlandirma, Korunma, Ar-
bitraj, Islem Maliyeti, Stokastik Dogrusal Eniyileme, Karigik Tamsay1 Program-
lama.
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Chapter 1

Introduction

A derivative security is a financial instrument whose payoff depends on the value
of some underlying instrument. This underlying instrument can be a traded asset
such as a stock or currency; or a measurable variable such as the temperature
of a certain location. Derivative securities are also categorized according to the
conditions of the agreement between the seller and the buyer of the derivative
security. A futures contract, which is a derivative security, is a contract between
two parties, where one of the parties agrees to buy (sell) the underlying instrument
from (to) the other side in a future date, with a price which is fixed at the
agreement date. This future date is called the maturity date and the price is
called the delivery (exercise) price of the contract. An option which is also a
type of a derivative security, differs from a futures contract in the sense that
the holder (buyer) of the option is not obliged to fulfill the conditions of the
contract. In other words, the holder of the option does not necessarily buy (sell)
the underlying security from (to) the seller of the option. Besides, the holder of
the option can buy or sell the underlying security (i.e. exercise the option) at or
before the maturity date of the option. An option which can only be exercised
at the maturity date is called a Furopean option, while an option which can be
exercised before or at the maturity date is called an American option. A call
(put) option gives the holder the right to buy (sell) the underlying instrument.

If the price of the underlying instrument is greater than the strike price at the
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exercise date, the buyer of a call option can buy the underlying security at the
strike price and sell it from its prevailing price in the market resulting with an

instant profit. We call this profit as the payoff of the claim for the buyer.

In this thesis, we work on options for which the strike price is not defined. We
call such options as contingent claims. The payoff for the holder of a contingent
claim can be defined in any sort of correspondence with the value of the under-
lying instrument at the time of the agreement. Hence, contingent claims are a
more generalized version of options. Under this general setting many different
types of options can be modelled as special cases of our definition of a contingent
claim. European call and put options can be presented by a European contingent
claim when we set the payoff of the claim according to its strike price and the
price of the underlying security at the maturity date and by setting its payoff to
zero for the dates other than the maturity date. American call and put options
can be presented by an American contingent claim by setting the payoff of the
claim according to its strike price and the price of the underlying security for
all dates before its maturity. A Bermudan option is a type of American option
for which the holder can exercise the option at one of the specified dates until
its maturity. By setting an American contingent claim’s payoff to zero for the
dates that the Bermudan option could not be exercised and setting its payoffs
suitably elsewhere we can obtain a Bermudan option. Some of the options have
their payoffs calculated not only using the price of the underlying security at the
exercise date but according to the path followed by the price of the underlying
security until maturity. Such options are called path dependent options. Russian
and lookback options are examples of path dependent options. We can also ob-
tain path dependent options by setting the payoff of American contingent claims

appropriately.

Options have not been traded in the markets in a significant way until 1973,
when Chicago Board of Exchange (CBOE) started trading options. Since then,
options started to play a very important role in financial markets. This rise
has also showed its reflection in the theory of finance. Most of the literature
on derivative securities is based on the question of determining the price of an

option. Black and Scholes [7] have given the first widely accepted answer to
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this question. Their work is based on a no-arbitrage framework. Arbitrage is
defined as the profit of an investor without taking any risk. In other words, if a
portfolio strategy, which does not require an initial wealth and for which there is
no intermediary exogenous infusion (which is self-financing), has no probability
of loss but has a positive probability of profit in the end, it is said to create
an arbitrage opportunity for the investor following it. The idea is once such an
opportunity exists in the market every investor would try to make profit out
of that. Hence, the price of the portfolio would increase until it would provide
no arbitrage opportunity for the investors. Black and Scholes [7] works on a
simple model including a bond, a European option and an underlying stock.
They work on a continuous time framework where they assume the stock price
process to follow a geometric Brownian motion. They derive the price of the
option by determining the price of the portfolio which hedges the option to be
priced. Their results were generalized in Merton [45]. These two pioneering
works have many extensions in the literature. Leland [42] worked under the
setting where transaction costs exist. Broadie et al. [10] worked on the model
with some portfolio constraints. All these works are done in a complete market
setting (a market in which every option can be replicated) where the price for the
option is unique. However, the markets are almost never complete due to market
imperfections as discussed in Carr et al. [14]. When the markets are incomplete
not every option can be replicated, hence it is not possible to obtain the price
of an option by a replicating portfolio. El Karoui and Quenez [24] developed a
different idea for this problem. They considered the replication problem from
buyer’s and seller’s sides separately. The seller’s problem involved constructing
a portfolio strategy which requires a minimum initial wealth and for which the
portfolio has a value at least as large as the payoff of the option for any possible
outcome of the stock price process at the maturity date. This problem is called
the super-replication problem and its optimal value is called the seller’s price.
Conversely, the buyer’s problem involved constructing a maximum initial value
portfolio strategy which is dominated by the payoff of the claim at the maturity
date. The buyer’s price is the optimal value of buyer’s problem. They obtain
an interval instead of a unique value for the price of the option. However, this

interval might be very large in practice and determining the exact price of the
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option is still a problem. In order to overcome this problem another pricing
approach which has its roots from both arbitrage pricing theory and expected

utility theory has been developed.

Expected utility theory assumes that preferences of investors can be repre-
sented by expected utility functions which satisfy a set of axioms. The pricing
approach is based on equating the price of a claim to the expectation of the
product of the future payoff and the marginal rate of substitution of the repre-
sentative investor; see e.g. [16, 30, 36] for related recent work. The combination
of expected utility theory with arbitrage pricing resulted with several definitions
of performance criteria for a portfolio strategy. Opportunities satisfying these
performance criteria are called as good-deals or acceptable investments in the lit-
erature. Cochrane and Saa-Requejo [18] defines a good-deal as a portfolio strategy
having a high Sharpe ratio and derives the price bounds for an option in a market
which does not allow any such good-deal. Carr et al. [14], Roorda et al. [55],
and Kallsen [36] work under different definitions of good-deals in order to price
an option in an incomplete market. Bernardo and Ledoit [5] defines a good-deal
as a portfolio strategy having a high gain-loss ratio. In Chapter 2, we study the

pricing problem under their framework.

The literature on American option pricing has the same roots as the European
option pricing literature [45]. The owner of the American option has the right to
exercise the option at any time until maturity. Hence, the pricing problem consists
the optimal exercise strategy problem. The first expectation representation for
the price of an American option was shown in Harrison and Kreps [28]. There is
a vast literature building upon their work, e.g. [8], [17]. Pennanen and King [48]
worked on pricing American options in incomplete markets. Their results imply
that relaxing the feasible exercise set for the buyer of the option does not make
any impact on the pricing interval of the option. We build on their results by
correcting one of their proofs in Chapter 3. In Chapter 4 we revisit the problem
of pricing American contingent claims while incorporating transaction costs in

the model.
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In the second chapter of this thesis we work on the problem of pricing Euro-
pean contingent claims under the condition of no A\ gain-loss ratio opportunity
exists in the market. The A gain-loss ratio opportunity criterion is a performance
measure for a portfolio strategy and it is based on the gain-loss criterion defined
by Bernardo and Ledoit [5]. Under this setting we derive conditions for which
there is no A gain-loss ratio opportunity in the market. Bernardo and Ledoit [5]
derive same conditions in a one period model consisting of a bond and a stock.
They work on both finite and infinite state models. In our setting the market
may consist of several stocks in addition to a bond. Our model is a discrete time,
finite state model with finite number of periods. We also make studies on the
limiting values of the parameter A which could be helpful in understanding the
function of the parameter. Then we work on the pricing problem for European
contingent claims both from buyer’s and writer’s sides to derive martingale ex-
pressions representing the pricing interval for the claim. We extend our results to
markets with transaction costs. We have published the findings of this chapter
in [50].

In the third chapter of this thesis we work on the American contingent claim
pricing problem. We work on the same setting as Pennanen and King [48]. We
give a correct proof of a theorem which was proposed in [48]. The implication
of this theorem is that we need to solve a linear programming problem instead
of a mixed-integer programming problem in order to find the buyer’s price of an
American contingent claim. We obtain pricing results in the form of martingales.
We show that our results remain valid under the existence of dividends. We have
published the findings of Chapter 3 in [13].

In Chapter 4 we work on the American contingent claim pricing problem in a
market in which transaction costs exist. We derive integer programming problems
in order to determine the lower bound for the price of an American contingent
claim. We show by a counterexample that linear relaxation problems of the
derived integer programming models cannot be used to determine the buyer’s
price of the contingent claim. We also prove the result of Chapter 3 again using
the models derived in this chapter. We believe this part of the thesis reveals that

the research on American contingent claim pricing in a discrete time, finite state
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model has to involve the deeper study of integer programming models. We have

published the findings of Chapter 4 in [51].

Finally, we outline our contributions, exhibit some counterexamples and future

research directions in Chapter 5.



Chapter 2

Expected (Gain-Loss Pricing and
Hedging of European Contingent

Claims by Linear Programming

An important class of pricing theories in financial economics are derived under
no-arbitrage conditions. In complete markets, these theories yield unique prices
without any assumptions about individual investor’s preferences. In other words,
the pricing of assets relies on the availability and the liquidity of traded assets
that span the full set of possible future states. Ross [56, 57| proves that the
no-arbitrage condition is equivalent to the existence of a linear pricing rule and
positive state prices that correctly value all assets. This linear pricing rule is
the risk neutral probability measure in the Cox-Ross option pricing model. For
example Harrison and Kreps [28] showed that the linear pricing operator is an
expectation taken with respect to a martingale measure. However, when markets
are incomplete state prices and claim prices are not unique. Since markets are
almost never complete due to market imperfections as discussed in Carr et al. [14],
and characterizing all possible future states of economy is impossible, alternative

incomplete pricing theories have been developed.
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In an incomplete financial market with no arbitrage opportunities, a notice-
able feature of the set of risk neutral measures is that the value of the cheapest
portfolio to dominate the pay-off at maturity of a European contingent claim
(ECC) coincides with the maximum expected value of the (discounted) pay-off of
the claim with respect to this set. This value, which may be called the writer’s
price, allows the writer to assemble a hedge portfolio that achieves a value at
least as large as the pay-off to the claim holder at the maturity date of the claim
in all non-negligible events. The writer’s price is the natural price to be asked
by the writer (seller) of a European contingent claim and, together with the bid
price obtained by considering the analogous problem from the point of view of
the buyer, forms an interval which is sometimes called the “no-arbitrage price

interval” for the claim in question.

A writer may nevertheless be induced for various reasons to settle for less than
the above price to sell a claim with pay-off Fr; see e.g., chapters 7 and 8 of [26]
for a discussion and examples showing that the writer’s price may be too high.
In such a case, he/she will not be able to set up a portfolio dominating the claim
pay-off almost surely, which implies that he/she will face a positive probability
of “falling short”, i.e., his/her hedge portfolio will take values Vi smaller than
those of the claim on a non-negligible event. Thus, the writer will need to choose
his/her hedge portfolio (and selling price) according to some optimality criterion
to be decided. The gain-loss pricing criterion of our study inspired by the gain-
loss ratio criterion of Bernardo and Ledoit [5] suggests to choose the portfolio
which gives the best value of the difference of expected positive final positions
and a parameter A\ (greater than one) times the expected negative final positions,
E[(Vr — Fr)+] — AE[(Vp — Fr)_], aimed at weighting “losses” more than “gains”.
This criterion gives rise to a new concept different from the ordinary arbitrage,
the “\ gain-loss ratio opportunity”, i.e., a portfolio which can be set up at no cost
but yields a positive value for the difference between gains and “A-losses”. In this
chapter, we show that the price processes in a multiple period, discrete time, finite
state financial market do not admit a A gain-loss ratio opportunity if and only if
there exists an equivalent martingale measure with an additional restriction. As

for the maximum and minimum no-arbitrage prices, we determine the maximum
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and minimum prices which do not introduce A gain-loss opportunities in the
market. Thus, a new price interval (the “\ gain-loss price interval”) is determined,
generally contained in the no-arbitrage interval (thus more significant from an
economical point of view since it is more restrictive). These prices converge to
the no-arbitrage bounds in the limit as the gain-loss preference parameter goes to
infinity (and hence, the investor essentially looks for an arbitrage). On the other
extreme, our results show that the market may actually arrive at a consensus
about the pricing rule, i.e., as the gain-loss preference parameter goes down to
the smallest value not allowing a A gain-loss ratio opportunity, the writer and
buyer’s no-A gain-loss ratio opportunity prices of a European contingent claim
may converge to a single value, hence potentially providing a unique price for the
contingent claim in an incomplete market. However, in the incomplete market
setting, the same pricing rule leads to different hedging policies for different sides
of the same trade. This is an important finding as it will result in different
demand and supply schemes for the replicating assets. An attractive feature of
our results is that all derivations and computations are carried out using linear
programming models derived from simple stochastic programming formulations,
which offer a propitious framework for adding additional variables and constraints
into the models as well as the possibility of efficient numerical processing; see the

book [6] for a thorough introduction to stochastic programming,.

Our concept of A gain-loss ratio opportunity is akin to the notion of a good-
deal that was developed in a series of papers by various authors [15, 18, 34, 61].
For example in Cochrane and Saa-Requejo [18], the absence of arbitrage is re-
placed by the concept of a good deal, defined as an investment with a high Sharpe
ratio. While they do not use the term “good-deal”, Bernardo and Ledoit [5] re-
place the high Sharpe ratio by the gain-loss ratio. These earlier studies are carried
out using duality theory in infinite dimensional spaces in [15, 34, 61], usually in
single period models. Working with single period models is not necessarily a
limitation since dynamic models with a fixed terminal date can be viewed as one-
period models with investment choices taking values in suitable spaces. Recent

work on risk measures and portfolio optimization, e.g. [26], adopts this approach
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to formulate single period problems using function spaces rich enough to be ex-
tended to multiperiod or continuous time markets; see section 8 of Staum [61]
for a discussion. In this regard, the contribution of this chapter is to make ex-
plicit which consequences can general single period results have when applied to

multiperiod discrete space markets.

We note that a second class of pricing theories relies on the Expected Utility
framework which posits that if preferences satisfy a number of axioms, then they
can be represented by an expected utility function. This framework requires the
specification of investor preferences through usually non-linear utility functions;
see Chapter 1 of [31]. This model equates the price of a claim to the expectation
of the product of the future payoff and the marginal rate of substitution of the
representative investor; see e.g. [16, 30, 36] for related recent work. Recent papers
by Cochrane and Saa-Requejo [18], Bernardo and Ledoit [5], Carr et al. [14] and
Roorda et al. [55] and Kallsen [36] unify these two classes of pricing theories
and value options in an incomplete market setting. In this chapter, we work with
linear programming models, and avoid the non-linearities encountered with utility
functions. Our notion of gain-loss ratio opportunity is also related to prospect
theory of Kahneman and Tversky [35] proposed as an alternative to expected
utility framework. In prospect theory, it is presumed based on experimental
evidence that gains and losses have asymmetric effects on the agents’ welfare
where welfare, or utility, is defined not over total wealth but over gains and
losses; see Grine and Semmler [27] and Barberis et al. [1] for details on the use

of the gain-loss function as a central part of welfare functions in asset pricing.

The organization of this chapter is as follows. In section 2.1 we review the
stochastic process governing the asset prices and we lay out the basics of our
analysis. Section 2.2 gives a characterization of the absence of a A gain-loss ratio
opportunity in terms of martingale measures. We consider a related problem in
section 2.3 where the investor in search of a A gain-loss ratio opportunity would
also like to find the A gain-loss ratio opportunity with the limiting value of the
parameter A. Here we re-obtain a duality result which turns out be essentially
the duality result of Bernardo and Ledoit in a multi-period but finite probability

state space setting. In section 2.4 we analyze the pricing problems of writers and
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buyers of European contingent claims under the A\ gain-loss ratio opportunity
viewpoint. We extend our results to markets with transaction costs in section

2.5. We use simple numerical examples to illustrate our results.

2.1 The Stochastic Scenario Tree, Arbitrage

and Martingales

Throughout our work we follow the general probabilistic setting of [40] where we
model the behavior of the stock market by assuming that security prices and other
payments are discrete random variables supported on a finite probability space
(Q, F, P) whose atoms w are sequences of real-valued vectors (asset values) over
the discrete time periods ¢t = 0,1,...,T. For a general reference on mathematical
finance in discrete time, finite state markets the reader is referred to Pliska [52].
We assume the market evolves as a discrete, non-recombinant scenario tree (hence,
suitable for incomplete markets) in which the partition of probability atoms w € )
generated by matching path histories up to time ¢ corresponds one-to-one with
nodes n € N; at level ¢ in the tree. The set N consists of the root node n = 0,
and the leaf nodes n € Np correspond one-to-one with the probability atoms
w € Q. In the scenario tree, every node n € N, for t = 1,...,T has a unique
parent denoted 7(n) € N;_1, and every node n € N;, t = 0,1,...,T — 1 has a
non-empty set of child nodes C(n) C N;y1. The set of all ascendant nodes and all
descendant nodes of a node n are denoted A(n), and D(n), respectively, in both
cases including node n itself. We denote the set of all nodes in the tree by N'. The
probability distribution P is obtained by attaching positive weights p, to each
leaf node n € Ny so that ) Ny Pn = 1. For each non-terminal (intermediate

level) node in the tree we have, recursively,
Pu=> D, YEN, t=T-1,.,0. (2.1)
meC(n)

Hence, each intermediate node has a probability mass equal to the combined mass
of the paths passing through it. The ratios p,,/p,, m € C(n) are the conditional

probabilities that the child node m is visited given that the parent node n = m(m)
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has been visited. This setting is chosen as it accommodates multi-period pricing
for future different states and time periods at the same time, employing realization
paths in the valuation process. It is a framework that allows to address the
valuation problem with incomplete markets and heterogeneous beliefs which are
very stringent assumptions in the classical valuation theory. In this respect, it

improves our understanding of valuation in a simple, yet complete fashion.

A random variable X is a real valued function defined on Q. It can be lifted
to the nodes of a partition A; of Q if each level set {X '(a) : a € R} is either
the empty set or is a finite union of elements of the partition. In other words,
X can be lifted to N if it can be assigned a value on each node of N; that is
consistent with its definition on Q [40]. This kind of random variable is said to
be measurable with respect to the information contained in the nodes of N;. A
stochastic process { X, } is a time-indexed collection of random variables such that
each X, is measurable with respect to N;. The expected value of X, is uniquely

defined by the sum

EP[X)] == pXa.
neN;

The conditional expectation of X;,; on N; is a random variable taking values
over the nodes n € N, given by the expression

EP[X, 1 |N] = Doy .

meC(n) Pn

Under the light of the above definitions, the market consists of J + 1 tradable
securities indexed by 5 = 0,1,...,J with prices at node n given by the vector
S, = (S%,SE ..., S7). We assume as in [40] that the security indexed by 0 has
strictly positive prices at each node of the scenario tree. Furthermore, the price of
the security indexed by 0 grows by a given factor in each time period. This asset
corresponds to the risk-free asset in the classical valuation framework. Choosing
this security as the numéraire, and using the discount factors 3, = 1/5° we define
Zi = 3,58 for j = 0,1,...,J and n € N, the security prices discounted with
respect to the numéraire. Note that Z° = 1 for all nodes n € N, and 3, is a

constant, equal to, 3y, for all n € N, for a fixed t € [0,...,T].

The amount of security j held by the investor in state (node) n € N, is denoted
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7. Therefore, to each state n € N; is associated a vector 6, € R7TL. We refer

to the collection of vectors 6, for all n € N as ©. The value of the portfolio at

state n (discounted with respect to the numéraire) is

J
Zy 0, =Y Z)0%.

=

We will work with the following definition of arbitrage: an arbitrage is a sequence
of portfolio holdings that begins with a zero initial value (note that short sales
are allowed), makes self-financing portfolio transactions throughout the planning
horizon and achieves a non-negative terminal value in each state, while in at least
one terminal state it achieves a positive value with non-zero probability. The

self-financing transactions condition is expressed as
L+ gn =7, Hﬂ-(n), n > 0.

The stochastic programming problem used to seek an arbitrage is the following
optimization problem (P1):
max Z Py - O

nENT
s.t. ZU . 00 =0

Zn (0 —Ory)) =0, Ve N, t > 1
ZnenZO, vneNT-

If there exists an optimal solution (i.e., a sequence of vectors 6,, for all n €
N) which achieves a positive optimal value, this solution can be turned into an

arbitrage as demonstrated by Harrison and Pliska [29].

We need the following definitions.

Definition 1. If there exists a probability measure Q = {qn}nen, (extended to

intermediate nodes recursively as in (2.1)) such that
Z, =EP[Z, N (t < T —1) (2.2)

then the vector process {Z;} is called a vector-valued martingale under Q, and @
1s called a martingale probability measure for the process. If one has coordinate-
wise Zy > ER[Zy 1[N, (t < T — 1) (respectively, Z; < E9[Z, 1| Ny, (t < T —1)

the process is called a super-martingale (sub-martingale, respectively).
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Definition 2. A discrete probability measure Q = {qn}neny 1S equivalent to a

(discrete) probability measure P = {py }neny if ¢ > 0 exactly when p, > 0.

King proved the following (c.f. Theorem 1 of [40]):

Theorem 1. The discrete state stochastic vector process {Z;} is an-arbitrage
free market price process if and only if there is at least one probability measure ()

equivalent to P under which {Z;} is a martingale.

The above result is the equivalent of Theorem 1 of Harrison and Kreps [28]

in our setting.

2.2 Gain-Loss Ratio Opportunities and Martin-

gales

In our context a A gain-loss ratio opportunity is defined as follows. For n € Np
let Z,, -0, = x} —x, where 27 and z;, are non-negative numbers, i.e., we express
the final portfolio value at terminal state n as the sum of positive and negative
positions (z; denotes the gain at node n while x;, stands for the loss at node n).

Assume that there exist vectors vectors 6,, for all n € N such that
ZO . 90 =0

Zn-(en—eﬁ(n))zo, VneN,t>1

and

EP[XT] — AEP[X 7] > 0,
for A > 1, where X* = {2}, eny, and X~ = {z },ens,. This sequence of
portfolio holdings is said to yield a A gain-loss ratio opportunity (for a fixed value
of A). This formulation is similar to Bernardo and Ledoit [5] gain-loss ratio, and
the Sharpe ratio restriction of Cochrane and Saa-Requejo [18]. Yet, it makes the
problem easier to tackle within the framework of linear programming. Moreover,

the parameter \ can be interpreted as the gain-loss preference parameter of the
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individual investor. As \ gets bigger, the individual’s aversion to loss is becoming
more and more pronounced, since he/she begins to prefer near-arbitrage positions.
As X\ gets closer to 1, the individual weighs the gains and losses equally. In the
limiting case of A being equal to 1 the pricing operator (equivalent martingale
measure) is unique if it exists. In fact, the pricing operator may become unique
at a value of A\ larger than one, which is what we expect in a typical pricing

problem.

Consider now the perspective of an investor who is content with the existence
of a A gain-loss ratio opportunity although an arbitrage opportunity does not
exist. Such an investor is interested in the solution of the following stochastic

linear programming problem that we refer to as (SP1):

max Y par) — A Y pat,

neNT neNy

s.t. Zo-0p=0
Zn - (0 —Ory) =0, Ve N, t>1
Zy 0, —xf +x, =0, VneNp,
zh >0, VneNp,
z, >0, VneNr
If there exists an optimal solution (i.e., a sequence of vectors 6, for all n € N)
to the above problem that yields a positive optimal value, the solution is said
to give rise to a A gain-loss ratio opportunity (the expected positive terminal
wealth outweighing A\ times the expected negative final wealth). If there exists
a A gain-loss ratio opportunity in SP1, then SP1 is unbounded. We note that
by the fundamental theorem of linear programming, when it is solvable, SP1 has
always a basic optimal solution in which no pair x;}, z, , for all n € Np, can be

positive at the same time.

We will say that the discrete state stochastic vector process {Z;} does not
admit a A gain-loss ratio opportunity (at a fixed value of \) if the optimal value of
the above stochastic linear program is equal to zero. Clearly, if A tends to infinity
we essentially recover King’s problem P1. It is a well-accepted phenomenon that

every rational investor is ready to lose if the benefits of the gains outweigh the
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costs of the losses [35]. It is also reasonable to assume that the rational investor
will try to limit losses. This type of behavior excluded by the no-arbitrage setting
is easily modeled by the Expected Utility approach and in prospect theory. Our
formulation allows investors to take reasonable risks without explicitly specifying
a complicated utility function while it converges to the no-arbitrage setting in the
limit. It is easy to see that an arbitrage opportunity is also a A gain-loss ratio
opportunity, and that absence of a A gain-loss ratio opportunity (at any level
A) implies absence of arbitrage. It follows from Theorem 1 that if the market
price process does not admit a A gain-loss ratio opportunity then there exists an

equivalent measure that makes the price process a martingale.

Definition 3. Given A > 1 a discrete probability measure Q = {qn fneny is A-
compatible to a (discrete) probability measure P = {p, }neny,. if it is equivalent to
P (Definition 2) and satisfies

Imax p [tn < min p /q

Theorem 2. The process {Z;} does not admit A gain-loss ratio opportunity (at a
fized level X > 1) if and only if there exists a probability measure Q A-compatible

to P which makes the discrete vector price process {Z;} a martingale.

Proof. We prove the necessity part first. We begin by forming the dual problem
to SP1. Attaching unrestricted-in-sign dual multiplier yo with the first constraint,
multipliers y,, (n > 0) with the self-financing transaction constraints, and finally
multipliers w,, (n € Nr) with the last set of constraints we form the Lagrangian

function:

LO, X" X" yw) = Z Pa — A Z DPn,

neNT neNy

T
+y0ZO ’ ‘90 + Z Z ynZn ’ (‘gn - ‘97r(n))

t=1 neN;

+ Z wp(Zy - 0, — b + 1)

nENT

that we maximize over the variables ©, X*, and X~ separately. From these
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separate maximizations we obtain the following:

yOZO - Z ynZn (23)
neC(0)
YnZm =), YnZn, VM EN, 1<t <T —1, (2.4)
neC(m)
Pn < Yn < )‘pn7 Vn € NT) (25)

where we got rid of the dual variables w,, in the process by observing that maxi-

mizations over 6, (n € Nr) yield the equations
(Wp — Yn)Zn = 0,¥n € N,

and since the first component Z° = 1 for all states n, we have y,, = w,, (n € N7).
Therefore, we have obtained the dual problem that we refer to SD1 with an

identically zero objective function and the constraints given by (2.3)—(2.4)—(2.5).

Now let us observe that problem SP1 is always feasible (the zero portfolio in
all states is feasible) and if there is no A gain-loss ratio opportunity, the optimal
value is equal to zero. Therefore, by linear programming duality, the dual problem
is also solvable (in fact, feasible since the dual is only a feasibility problem). Let
us take any feasible solution y,,(n € N) of the dual system given by (2.3)-
(2.4)-(2.5). Since the first component, Z° is equal to 1 in each state n, we have
that

Ym= D> Y VMEN,1<t<T -1 (2.6)

neC(m)
Since y, > pn, it follows that y, is a strictly positive process such that the sum
of y, over all states n € N, in each time period ¢ sums to 7. Now, define the
process ¢, = Yn/Yo, for each n € N'. Obviously, this defines a probability measure
Q over the leaf (terminal) nodes n € Np. Furthermore, we can rewrite (2.4) with

the newly defined weights ¢, as
GnmZm = GZn, VM EN, 1<t <T 1,
neC(m)

with gy = 1, and all ¢,, > 0. Therefore, by constructing the probability measure

@ we have constructed an equivalent measure which makes the price process {Z;}
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a martingale according to Definition 1. By definition of the measure g,, we have

using the inequalities (2.5)
Pn < GnYo < Apn,Vn € N,

or equivalently,
Pn/@n < Yo < APn/qn, V1 € N,

which implies that g¢,,n € Np constitute a A-compatible martingale measure.

This concludes the necessity part.

Suppose @ is a A\-compatible martingale measure for the price process {Z;}.

Therefore, we have

GmZm =Y nZn, VmEN, 1<t <T—1,
neC(m)
with gy = 1, and all ¢, > 0, while the condition max,enr,. Pn/¢n < Amin,ens. Pn/qn
holds. If the previous inequality holds as an equality, choose the right-hand
(or, the left-hand) of the inequality as a factor yp and set y, = ¢,yo for
all n € Q. If the inequality is not tight, any value g, in the interval
[max,eny Pn/Gn, A Milgens, Pn/qn) will do. Tt is easily verified that y,, n € N
so defined satisfy the constraints of the dual problem SD1. Since the dual prob-
lem is feasible, the primal SP1 is bounded above (in fact, its optimal value is

zero) and no A gain-loss ratio opportunity exists in the system. O]

As a first remark, we can immediately make a statement equivalent to The-
orem 2: The price process (or the market) does not have a A\ gain-loss ratio
opportunity (at fixed level \) if and only if there exists an equivalent measure @

to P such that:
maXnENT pn/Qn

minnENT pn/Qn

<\ (2.7)

or, equivalently
MaXneNy Gn/Pn

minnGNT Qn/pn

<A (2.8)

or,
d
max, gp () _ (2.9)

min, Z—g(w) N
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using the Radon-Nikodym derivative, and that ) makes the price process a mar-
tingale. Clearly, posing the condition as such introduces a nonlinear system of
inequalities, whereas our equivalent dual problem SD1 is a linear programming
problem. We observed that a similar observation for single period problems was
made in a technical note [44] although the language and notation of this reference

is very different from ours.

As a second remark, we note that if we allow A\ to tend to infinity we find
ourselves in King’s framework at which point Theorem 1 is valid. Therefore, this

theorem is obtained as a special case of Theorem 2.

Example 1. Let us now consider a simple single-period numerical example. Let
us assume for simplicity that the market consists of a riskless asset with zero
growth rate, and of a stock. The stock price evolves according a trinomial tree
as follows. Assume the riskless asset has price equal to one throughout. At time
t = 0, the stock price is 10. Hence Z, = (1 10)T. At the time ¢t = 1, the
stock price can take the values 20, 15, 7.5 with equal probability. Therefore, at
node 1 one has Z; = (1 20)7; at node 2 Z, = (1 15)7 and finally at node 3
Z3 = (17.5)T. In other words, all 3 factors are equal to one. It is easy to see that
the market described above is arbitrage free because we can show the existence of
an equivalent martingale measure, e.g., ¢ = ¢o = 1/8 and g3 = 3/4. Now, setting
up and solving the problems SP1 and/or SD1, we observe that for all values of
A > 6, no A\ gain-loss ratio opportunity exists in the market. However, for values
of A strictly between one and six, the primal problem SP1 is unbounded and the

dual problem SD1 is infeasible. Therefore, A gain-loss ratio opportunities exist.

As X\ gets smaller, eventually the feasible set of the dual problem reduces to
a singleton, at which point an interesting pricing result is observed as we shall
see in section 2.4. First, we investigate the problem of finding the smallest A not

allowing A\ gain-loss ratio opportunities in the next section.
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2.3 Seeking out The Highest Possible A in a
Gain-Loss Ratio Opportunity Framework

We have assumed thus far that the parameter A\ was decided by the agent (writer
or buyer) before the solution of the stochastic linear programs of the previous
section. However, once a A\ gain-loss ratio opportunity is found at a certain
level of A it is legitimate to ask whether A gain-loss ratio opportunities at higher
levels of A continue to exist. In fact, it is natural to wonder how far up one
can push A\ before \ gain-loss ratio opportunities cease to exist. Therefore, it is
relevant, while seeking A gain-loss ratio opportunities, to consider the following

optimization problem LamP1:

sup A

s.t. Z Pa — A Z pn, >0

neNT neNr
ZO : 90 - 0
Zn-(en—eﬂ(n)) =0,VneN,t>1

Zyp -0, —axt +x, =0, VneNy,
flf: > 0, VTLENT,
ZL‘; ZO, VRENT.

Notice that problem LamP1 is a non-convex optimization problem, and as such
is potentially very hard. However, it can be posed in a form suitable for numerical

processing as we claim by the next proposition.

Proposition 1. LamP1 is equivalent to the following problem LamPr under the
assumption that a A gain-loss ratio opportunity exists for some A > 1
ZTLGNT pnx:;

ZnENT pnmﬁ
s.t. Z() . 90 =0

Zn~(6n—67r(n)) =0,VneN,t>1

sup

Zyp Op—axt + 2, =0, VneNp,
J,’j; >0, VTLENT,
z, >0, VneNr.
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Proof. We should first note that the assumption of the existence of a A gain-
loss ratio opportunity for some A > 1 implies that LamP1 and LamPr have
both non-empty feasible sets and their optimal values are greater than 1. We
can see this fact by the problem SP1 and the definition of a A gain-loss ratio
opportunity (see problem SP1 and the paragraph following it) based on SPI.
Assume that the optimal value of LamP1 is the finite number A and the optimal
value of LamPr is greater than X\. Then, problem LamPr must have a feasible
solution ©, X, X~ which has an objective value X that is greater than A by the
definition of a supremum. Then we see that ©, X+, X~ N — e with € < X — )
constitute another feasible solution to LamP1 with the objective value ' — e.
But, this contradicts with the assumption that A is the optimal value of LamP1
since ' — e > \. Hence, if LamP1 has a finite optimal value, LamPr cannot have
an optimal value greater than that. Conversely, assume that the optimal value
of LamPr is the finite number A and the optimal value of LamP1 is greater than
that. Then, LamP1 must have a feasible solution ©, X", X, X which has an
objective value )\ that is greater than A. Then, ©, X+, X~ constitute another
feasible solution to LamPr with the objective value greater than A’ thus greater
than A\. Again, this contradicts with our assumption that ) is the optimal value
of LamPr. Hence, if LamPr has a finite optimal value, LamP1 cannot have an
optimal value greater than that. Using these facts we conclude that, if one of the
problems has a finite optimal value the other one also has the same optimal value
and if one of them is unbounded, the other one is also unbounded. It proves that

they are equivalent when there is a A gain-loss ratio opportunity. O

Notice that as a result of the homogeneity of the equalities and inequalities
defining the constraints of problem LamPr, if ©, Xt X~ is feasible for LamPr,
then sois k(0, X, X ) for any k > 0, and the objective function value is constant

along such rays.

Under the assumption

Assumption 1. The price process {Z;} is arbitrage-free, i.e., there does not exist
feasible ©, X, X~ with EY[X*] > 0 and EF[X~] =0,
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we can now take one step further and say that problem LamPr is equivalent

to problem LamPL:

max E Pt

neNT
s.t. anmgzl
neNy
Zo-60p =0
Zn-(én—e,r(n)) =0,VneN,t>1
Zp- 0, —axt + 2, =0, VneNp,
l‘:: >0, VHENT,
z, >0, VneNr.

This equivalence can be established using the technique described on pp. 151
in [9] as follows. Let us take a solution ©, X", X~ to LamPr, with £~ =
Y Ny PnTy, - 1t is easy to see that the point 5%(@, X, X7) is feasible in LamPL
with equal objective function value. For the converse, let ¥ = (©, X, X~) be
a feasible solution to LamPr, and let = = (0, X+, X ) be a feasible solution to
LamPL. It is again immediate to see that W + t= is feasible in LamPr for ¢ > 0.
Furthermore, we have

EP[XT +¢tXT]

li — =E"[X*
e o I

which implies that we can find feasible points in LamPr with objective values

arbitrarily close to the objective function value at =.

We can now construct the linear programming dual of LamPL using Lagrange
duality technique which results in the dual linear program (HD1) in variables
Yn, (n € N) and V:

min V
s.t. YnZm = Y YnZn, VM EN,,0<t<T —1
necC(m)
D < Yn < Vpp, Vn € Np.

Ley Y (V') denote the set of {y, } that are feasible in the above problem for a given
V. Notice that, for V; < V5, one has Y (V;) C Y (V4), assuming the respective
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sets to be non-empty. Hence, the optimal value of V' is the minimum value such

that the associated set Y (V') is non-empty.
The dual can also be re-written as (HD2):

. Yn
min max —
nGNT pn

St YnZm= O YnZn, YMEN,0<t<T -1
neC(m)
Pn < Yn, Y1 € Np.

Let Y denote the set of feasible solutions to the above problem. We summarize
our findings in the proposition below.

Proposition 2. Under Assumption 1 we have

1. Problem LamP1 is equivalent to problem LamPL.

2. When optimal solutions exist, for any optimal solution ©* (X T)* (X ~)* \*
of LamP1, we have that W(@*’ (X)*,(X7)*) is optimal for LamPL.

3. When optimal solutions exist, for any optimal solution ©* (X1)* (X~)*

of LamPL and any x > 0, we have that k(©*, (XT)*, (X~ )*) {&ﬁ

*

"]
]

&

optimal for LamP1.

4. The supremum \* of A is equal to minycy maxpeps, o

The last item of the above proposition is essentially the duality result of
Bernardo and Ledoit (c.f. Theorem 1 on page 151 of [5]) which they prove for

single period investments but using an infinite-state setup.

By way of illustration, setting up and solving the problem LamPL for the
trinomial numerical example of the previous section, one obtains the largest value
of \ as six, as the optimal value of the problem LamPL. This is the smallest value
of A that does not allow a A gain-loss ratio opportunity. Put in other words, it is

the supremum of all values of A allowing a A gain-loss ratio opportunity.
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2.4 Financing of European Contingent Claims
and Gain-Loss Ratio Opportunities: Posi-

tions of Writers and Buyers

Now, let us take the viewpoint of a writer of European contingent claim F which is
generating pay-offs F,, (n > 0) to the holder (liabilities of the writer), depending
on the states n of the market (hence the adjective contingent). The following
is a legitimate question on the part of the writer: what is the minimum initial
investment needed to replicate the pay-outs F), using securities available in the
market with no risk of positive expected terminal wealth falling short of A times
the expected negative terminal wealth? King [40] posed a similar question in the
context of no-arbitrage pricing, hence for preventing the risk of terminal positions
being negative at any state of nature. Here, obviously we are working with an

enlarged feasible set of replicating portfolios, if not empty.

Let us now pose the problem of financing of the writer who opts for the A gain-
loss ratio opportunity viewpoint rather than the classical arbitrage viewpoint.

The writer is facing the stochastic linear programming problem WP1

min ZO . 90
s.t. A (9n — eﬂ(n) = —0.F,, Vné€ M,t >1
Zp 0, —xt +x, =0, VneNp,

> parf =AY pary >0

neNr neNr

~—

[

>0, Vne Ny,
>0, \V/’I"LGNT,

T

SR

T

as opposed to King’s financing problem

min Zy - 0y
s.t. /e <9n — Gw(n)) = —ﬁnFn, Vne M,t >1
Znen > O, V?’LENT.

Let us assume that a price of Fj is attached to a contingent claim F. The

following definition is useful.
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Definition 4. A contingent claim F with price Fy is said to be \-attainable if
there exist vectors 0, for alln € N satisfying:

Zy - 0y < Bolko,

Zn(en_eﬂ'(n)) = _ﬁnFna vne-/\/tatz 1

and
EP[XT] — AEP[X ] = 0.

Proposition 3. At a fized level X > 1, assume the discrete vector price process
{Z;} does not have a A gain-loss ratio opportunity. Then the minimum initial in-
vestment Wy required to hedge the claim with no risk of expected positive terminal

wealth falling short of A times the expected negative terminal wealth satisfies

Wy = — max
Bo vey (N Yo

where Y () is the set of all y € RN satisfying the conditions (2.3)- (2.4)-(2.5),
i.e., the feasible set of SD1.

Proof. Let us begin by forming the linear programming dual of problem WP1.
Forming the Lagrangian function after attaching multipliers v, (n > 0), w,, (n €

N7) (all unrestricted-in-sign) and V' > 0 we obtain

L(@,X+,X_,v,w,V) = ZOQO"_V()‘ anl‘;— anl’j;)

nENT nENT
T
t=1 neN;
+ Z Wn(Zp - 0 — b + 1)
nGNT

that we maximize over the variables ©, X, and X~ separately again. This
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results in the dual problem WD2.1

max Z UnOn

n>0

S.t. Z() - Z UnZn

nec(0)
Ul = Y 0nZy, VM EN, 1<t <T —1
neC(m)
Vpn < vp < VApa, Vn € Ny,

vV >0.

We observe that no feasible solution to WD2.1 could have a V-component equal
to zero as this would lead to infeasibility in the v-component. Therefore, it is easy
to see that the dual is equivalent to the linear-fractional programming problem

(that we refer to as WD2.2) using the equivalences V = 1/yy and v, = y,,/yo:

n nFn
max —Z”>Oy b
Yo
s.t. YnZm = Y YnZn, VM EN,,0<t<T —1
necC(m)

Pn < Yn < Apn, V1 € N,

However, the feasible set of the previous problem is identical to the feasible set
Y (A) of the dual SD1 in Proposition 1. Therefore, if the price process {Z;} does
not admit a \ gain-loss ratio opportunity, then there exists a feasible solution to
the dual SD1, and hence, a feasible solution to the dual problems WD2.2 and
WD2.1. Since WD2.1 is feasible and bounded above, the primal problem WP1 is

solvable by linear programming duality theory. Hence, the result follows. O

Notice that in the previous proof we obtained two equivalent expressions for
the dual problem of WP1, namely the dual problem in the statement of the
Proposition 3 or WD2.2, which is a linear-fractional programming problem, and
the linear programming problem WD2.1 that is used for numerical computation.
For future reference, we refer to the feasible set of WD2.1 as Q(A), and to its
projection on the set of v’s as Q(\). It is not difficult to verify that Q(\) is

the set of martingale measures A-compatible to P. Since we observed that no
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optimal (in fact, feasible) solution to WD2.1 could have a V-component equal to
zero as this would lead to infeasibility in the v-component, by the complementary
slackness property of optimal solutions to the primal and the dual problems in
linear programming, we should have in all optimal solutions (0, X, X ™) to the
primal:

EP[X*] - AEF[X "] = 0.
We immediately have the following.

Corollary 1. At fized level A > 1, assume the discrete vector price process {Z}
does not allow \ gain-loss ratio opportunity. Then, contingent claim F' priced at
Fy is A-attainable if and only if

n TLFTL
B Fy > max —W,
yeEY (A) Yo

In the light of the above, the minimum acceptable price to the writer of the

contingent claim F'is given by the expression

Fo = L sl

—— 2.10
Bo yey (N Yo ( )

Let us now look at the problem from the viewpoint of a potential buyer. The
buyer’s problem is to decide the maximum price he/she should pay to acquire the
claim, with no risk of expected positive terminal wealth falling short of A times

the expected negative terminal wealth. This translates into the problem

max —ZO : (90
s.t. Ly (Qn — eﬂ(n)) = ﬂnFn, Vne ./\[t,t >1
ZyO0p—xt + 2, =0,VneNT,

Z pnl'j; - A Z pnx; Z 07

neNT neNy

> 0, VTLENT,
>0, Vn e Nr.

+
mn
n

X

The interpretation of this problem is the following: find the maximum amount

needed for acquiring a portfolio replicating the proceeds from the contingent claim
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without the risk of expected negative wealth magnified by a factor A exceeding the
expected positive terminal wealth. By repeating the analysis done for the writer
(that we do not reproduce here), we can assert that the maximum acceptable
price F{ to the buyer in our framework is given by the following, provided that
the price process {Z;} does not admit A gain-loss ratio opportunity (at fixed level
A):

(2.11)

Therefore, for fixed A > 1 and P, we can conclude that the writer’s minimum
acceptable price and the buyer’s maximum acceptable price in a market without

A gain-loss ratio opportunity constitute a A gain-loss price interval given as

i . Zn>0 ynﬁnFn . i Zn>0 ynﬁnFn
[— min === "———; — max ==,
Bo yey () Yo Bo yey () Yo

We could equally express this interval as

[— min E ZﬁtFt max E ZﬁtFt

By v,VeQ(x Bo v,VeQ(r

where the optimization is over all martingale measures A-compatible to P. This
is the interval of prices which do not induce either the buyer or writer to engage
in buying or selling the contingent claim. They can also be thought of as bounds
on the price of the contingent claim. Let us recall that the no-arbitrage pricing

interval obtained by King [40] corresponds to

[ min E9| ZﬂtFt ﬁ_ maXEq ZﬁtFt

0 q€Q

where Q is the set of ¢ € RW! satisfying

- Y 4z

neC(0)

qum: Z ann,vaM,létST—l

neC(m)
and
¢n > 0Vn € Nr.
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Clearly, for fixed A we have the inclusion Q(\) C Q using the positivity of V.
Hence, the pricing interval obtained above is a smaller interval in width in com-
parison to the arbitrage-free pricing interval of [40]. Notice that the two intervals
will become indistinguishable as A tends to infinity. The more interesting ques-
tion is the behavior of the interval as A is decreased. Before we examine this issue

we consider some numerical examples.

Example 2. Consider the same simple market model of Example 1 in Section
2.2. We assume a contingent claim on the stock, of the European Call type
with a strike price equal to 9 is available. Therefore, we have the following
pay-off structure: Fy; = 11, F, = 6,F3; = 0, corresponding to nodes 1, 2 and
3, respectively. Computing the no-arbitrage bounds using linear programming,
one obtains the interval of prices [2.0;2.2] corresponding to the buyer and to the
writer’s problems respectively. For A = 8, the price interval for no A gain-loss
ratio opportunity is [2.09;2.14]. For A = 7, the interval becomes [2.10;2.13].
Finally, for A\ = 6, which is the smallest allowable value for A below which the
above derivations lose their validity, the interval shrinks to a single value of 2.125,
since both the buyer and the writer problems return the same optimal value.
Therefore, for two investors that are ready to accept an expected gain prospect
that is at least six times as large as an expected loss prospect, it is possible to
agree on a common price for the contingent claim in question. In this particular
example, the problem HD1 for A* = 6 which is the optimal value for A\, possesses
a single feasible point y = (2.66,0.33,0.33,2)”. Dividing the components by 2.66
which is the component gy, we obtain the unique equivalent martingale measure
(1/8,1/8,3/4)" (which is also A\-compatible) leading to the unique price of the

contingent claim.

Interestingly, the hedging policies of the buyer and the writer at level A\* =6
need not be identical. For the writer an optimal hedging policy is to short 6.75
units of riskless asset at t = 0 and buy 0.887 units of the stock. If node 1 were to
be reached, the hedging policy dictates to liquidate the position in both the bond
and the stock. In case of node 2, the position in the stock is zeroed out, and a

position of 0.562 units in the bond is taken. Finally at node 3, the position in
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the stock is zeroed out, but a short position of 0.094 units remains in the riskless
asset. For the buyer an optimal hedging policy is to buy 5.625 units of riskless
asset at ¢ = 0 and short 0.775 units of the stock. At time ¢ = 1 if node 1 were
to be reached, the hedging policy dictates to pass to a position of 1.125 units in
the bond, and to a zero position in the stock. In case of node 2, all positions
are zeroed out. At node 3, the position in the stock is zeroed out while a short

position of 0.187 units remains in the riskless asset.

Example 3. Let us now consider a two-period version of the previous example.
The market is again described through a trinomial structure. Let the asset price
be as in Example 1 and 2 for time ¢t = 1. At time ¢t = 2, from node 1 at which the
price is 20, the price can evolve to 22, 21 and 19 with equal probability, thereby
giving the asset price values at nodes 4, 5 and 6. From node 2 at which the price
takes value equal to 15, the price can go to 17 or 14 or 13 with equal probability,
resulting in the asset price values at nodes 7, 8 and 9. Finally, from node 3, we
have as children nodes the node 10, node 11 and node 12, with equally likely
asset price realizations equal to 9, 8 and 7, respectively. Therefore, the trinomial
tree contains 9 paths, each with a probability equal to 1/9. The riskless asset
is assumed to have value one throughout. It can be verified that this market is

arbitrage free.

Solving for the supremum of A values allowing a A gain-loss ratio opportunity,
we obtain 14.5.

Now, let us assume we have a European Call option F' on the stock with strike
price equal to 14, resulting in pay-off values Fy =8, F5 =7, Fy =5 and F; = 3
where the index corresponds to the node number in the tree (all other values F),
are equal to zero). The no-arbitrage bounds yield the interval [0.33,1.2] for this
contingent claim. The no-\ gain-loss ratio opportunity intervals go as follows:
for A\ = 17 one has [0.86;1.00], for A\ = 16, [0.9;0.99], for A = 15 [0.94;0.98].
For the limiting value of \* = 14.5 the bounds again collapse to a single price of
0.9718 attained at the same A-compatible martingale measure q4 = ¢5 = 0.028,
g6 = 0.085, g7 = 0.042, g3 = q9 = q19 = 0.028, ¢11 = 0.324 and g2 = 0.408.
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Node B S
0| —4.056 | 0.503
1 —14 1
2 7.13 —0.243
3| —4.563 | 0.57
8| 3.729
91| 3.972
10 | 0.57
12 | —0.57

Table 2.1: The writer’s optimal hedge policy for A = 14.5.

Node B S

0| —0.915 | —0.006
1| —80.465 | 3.972
2 14 —1
3| —15.324 | 1915
4| 14915
51 9.944
9 1

10 1.915

12 | —1.915

Table 2.2: The buyer’s optimal hedge policy for A = 14.5.

Two tables, Table 2.1 and Table 2.2, summarize the optimal hedge policies
of the writer and the buyer, respectively, when the single price is reached. We
only report the results for nodes where non-zero portfolio positions are held. The
symbols B and § stand for the riskless asset and the stock, respectively. Again,

the hedge policies are quite different, but result in an identical price.

Returning to the issue of the behavior of the price interval when A decreases,
consider solving the problem LamPL or its dual HD1 (or HD2) for computing
the smallest A which does not allow gain-loss ratio opportunities, i.e., A* which
is the supremum of values of A yielding a A\ gain-loss ratio opportunity. If one
solves the dual problem HD1 to obtain as optimal solutions V*,y*, and if this

solution is the unique feasible solution to the linear program HDI1, i.e., if the
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set of equations and inequalities defining the constraints of HD1 for the fixed
value of V* admit a unique solution vector y*, then this immediately implies that

the no-A gain-loss ratio opportunity pricing bounds at level A = V*, i.e., the

Zn>0 YnPnFn Zn>0 YnPnFn
Yo Yo

problems possess the common single feasible point y*. However, the following

bounds 5_10 minyey () and % maxXyey () coincide since both
example shows that the bounds do not have to coincide for the smallest A\ value

for which there are no A gain-loss ratio opportunities in the market.

Example 4. Let us assume that the market consists of a riskless asset with zero
growth rate, and two stocks. The stock price evolves according to a quadrinomial
tree with one period as follows. At time ¢ = 0, the stock price is 10 for both of
the stocks. Hence Zy = (1 10 10)7. At the time t = 1, the first stock’s price can
take the values 10, 10, 15, 5 and the second stock’s price can take values 14, 2,
9, 11 with probabilities 0.25, 0.2, 0.5 and 0.05, respectively. Therefore, at node 1
one has Z; = (1 10 14)T with p; = 0.25; at node 2 Z, = (1 10 2)* with py = 0.2;
at node 3 Z3 = (1 15 9)T with p3 = 0.5 and finally at node 4 Z, = (1 5 11)T
with py, = 0.05. The payoff structure of the contingent claim to be valued is
F, =10,F, =0,F3 =0, Fy = 0 We find that the minimum A value which does
not allow A gain-loss ratio opportunities in the market is 10. However, for A = 10,

the price interval of the option for no A gain-loss ratio opportunity is [2.5;5.26].

The above example shows that pricing interval does not necessarily reduce to
a single point for the smallest A. Then, we pose the question for a market in
which there is only one bond and one risky asset. Example 5 shows that there is

no unique price even under this simple setting.

Example 5. Let us assume that the market consists of a riskless asset with
zero growth rate, and a stock. There are 2 periods and the stock price evolves
irregularly for both periods. At the first period the tree branches into 2 nodes
and at the second period the tree branches into 3 nodes for both of the nodes at
t =1, i.e., node 1 branches into nodes 3, 4, 5 and node 2 branches into nodes 6,
7, 8 at period 2. At time ¢ = 0, the stock price is 8. Hence Z, = (1 8)7. At the

time ¢ = 1, the stock’s price can take the values 5, 10. Therefore, at node 1 one
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has Z; = (1 5)7 and at node 2 Z, = (1 10)T. At time ¢ = 2, the stock’s price
can take the values 2, 6, 10 with probabilities 0.2, 0.1 and 0.1, respectively, given
that its price was 5 at time ¢ = 1 and 13, 11, 8 with probabilities 0.05, 0.05 and
0.5, respectively, given that its price was 10 at time ¢t = 1. Therefore, at node 3
one has Z3 = (1 2)7 with p3 = 0.2; at node 4 Z, = (1 6)” with p, = 0.1; at node
5 Zs = (1 10)T with ps = 0.1; at node 6 Zs = (1 13)7 with ps = 0.05; at node 7
Z7 = (1 11)T with p; = 0.05; and at node 8 Zg = (1 8)T with pg = 0.5. The payoff
structure of the claim to be valued is F3 = 3, Fs = 3 and 0 elsewhere. We find
that the minimum A value which does not allow A gain-loss ratio opportunities
in the market is 5. However, for A = 5, the price interval of the option for no A

gain-loss ratio opportunity is [1.38; 1.56].

The natural question at this point is what happens if we work with a simpler
setting. The following theorem shows that the martingale measure is unique for
the smallest A when there is only a bond and a risky stock in the market with
just one period (no intermediary trading is allowed) under a minimal structural

assumption on the stochastic scenario tree.

Theorem 3. Assume that there is a bond and a risky stock in the market con-
sisting of one period such that for all n € Ny (the leaf nodes) Z} # Z}r(n) (or
ZY £ ZL). Then, at the smallest value X*, Y () is a singleton.

Proof. Let L = |N;| be the number of leaf nodes. Let us view the problem of
computing the smallest A such that Y'(\) has a solution, as a parametric feasibility
problem with parameter A. In other words, for fixed A > 1 we are interested to
determine whether the restriction A” onto the L-dimensional space composed of
yn for all n € N (i.e., RE) of the set A = {y,, : y0Zo = ZnEC(O) YnZy}, has non-
empty intersection with the L-dimensional box Hy = {yn : pn < Yn < A\pp, Vn €

N

Notice that A" defines an affine set in the L-dimensional space of “leaf vari-

ables”.

If the smallest value A* of ), such that A N H, is not empty, is equal to one,

the theorem clearly holds because the set of solutions is necessarily a singleton
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in this case. So, we assume \* > 1. Let us fix some \ > 1 such that A" N H, is

non-empty and is not a singleton. There are two cases to consider.

Case 1 There exist two “distinct”, meaning all components different, L-vectors,
y' and 9%, in A¥ N Hy. In this case, A can be reduced since A N H, is a

convex set and any convex combination of y' and y? is also in the set.

Case 2 There are no “distinct” L-vectors y! and y? say, in AYNH,. For this case,
we first observe that there must be i € A such that y! = y? Vy',y? € AXN
H,. Otherwise, we would be able to find a set of vectors {y*,y?,...,y* : fi €
Ny, yd =y, Va,b € {1,...,k}}. Then, we could take a convex combination
of these vectors in AL N Hy, which is a distinct vector with {y', %>, ..., y*}.
This contradicts with the assumption of case 2. Our second observation is
there must be i € N such that y; = p;, Vy € AN H,. Otherwise, we would
find a set of vectors {y',vy%,...,y* : i € N,9y¢ = pi,Va € {1,...,k}}
and we could get a convex combination of these vectors ¢ such that i €
N1,y, = pi. One can see that 3 : §; = 0,V € N is a feasible solution to the
equations defining the set A. Then, we could take a convex combination of
y" and ¢ which is distinct with ¢’ and which is in A N H,, contradicting
the assumption of case 2. After these two observations we need to analyze
the system of equations defining the set A. For a risky asset and a bond
there are just two equations. The first one is yy = ZnEC(O) Yn- The second
one is Y Zy = >..cc
> once) YnZy — Z5) = 0. Let a,, = (Z, — Z;);¥n € Ni. Note that our
structural assumption implies that o, # 0;Vn € N;. Let us say that i € NV}
is such that y; = p;, Vy € AX N Hy and y be any vector in A N Hy. First

) ynZL. A solution of these two equations satisfies

assume that o; > 0. Consider any j € M. If o; > 0 then y; = p;.
Otherwise, we could find € small enough such that when we decrease y; by
¢ and increase y; by aje/; resulting in another solution in A* N H, with
Yi # pi, which is a contradiction. Conversely, if a; < 0 then y; = Ap;.
Otherwise, we could find € small enough such that increasing y; by € and
increasing y; by —aje/a; we could get another solution in A* N H, with
y; 7 p; which is again a contradiction. A similar argument follows for the

case a; < 0. Therefore there can only be a unique solution for this case
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contradicting with the assumption A* N H) is not a singleton.
Therefore, Case 2 cannot occur, i.e., we are always in Case 1 i.e., A\ can be

reduced, if AL N H, is not a singleton.

A consequence of the above reasoning is that if A cannot be reduced, i.e., A = \*,
then AL N Hy must be a singleton. O

Notice that the analysis of the writer’s and buyer’s hedging problems can also
be done using a simple utility function and the conjugate duality framework of
convex optimization [53]. The utility function corresponding to no-arbitrage is

given as

Uy (V) = v — L>o(v)

where I,>o is the indicator function of convex analysis which equals zero if
v > 0, and 400 otherwise. Our problems involving the gain-loss objective func-
tion (and/or constraint) could alternatively be modeled using the equally simple

piecewise-linear utility function

v ifv>0
u(v) =
M ifo<O.

Then, all our results could be obtained using the concave conjugate function u*
given by

u*(y) = inf(yv —u(v))
which is finite in our case (in fact, zero) provided that 1 < y < A, which are
exactly the constraints showing up in our dual problems where the argument of
the u* function is precisely v, /p,. However, the path taken in the present work

through linear programming duality is simpler and more accessible.

In closing this section we point out that Bernardo and Ledoit’s gain-loss ratio
results that were obtained in a single-period, non-linear optimization framework
are very similar to the approach described above. We showed that similar results
can be obtained in a multi-period (finite probability), linear optimization setting,

which is simpler yet much more intuitive.
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2.5 Proportional Transaction Costs

The problem of hedging and pricing contingent claims in the presence of trans-
action costs was investigated in e.g. [23, 30, 33]. In [23], it was assumed that
the cost of trading a stock (excluding the numéraire) is proportional to the price.
We assume that the proportional transaction costs for buying and selling a stock
are different, and there is no transaction cost for the numéraire. An investor who
buys one share of stock ;7 when the stock price (discounted with respect to the
numéraire) is ZJ pays Z7(1+n) whereas upon selling the investor gets Z7 (1 — (),
where 1 and ¢ are both in [0, 1). Let us now denote the components of Z,, corre-
sponding to the indices from 1 to J, as the vector Z,. Similarly, we refer to the
components of Z,, corresponding to the indices from 1 to .J, as the vector Z,, and
as 0, to the portfolio positions corresponding to all these stocks excluding the
numéraire, for node n of the scenario tree. Then, the arbitrage problem which

will be referred as TC1 becomes the following:

max Z Pnp - O
neNT
s.t. 00+ Zo- 00 +nZo - t§ +CZy -ty =0
O — 0%y + Zn - (On = Oniy) +0Z0 -t +CZ0 - t, =0, Vn e Nt > 1
Zn-0,>0,VneNg,
Oy = t5 —ty
On — Ory =t — 1, YV EN, T > 1

tht >0, VneN.

where ¢ and ¢, are vectors in #/ denoting number of shares bought and sold,

respectively at node n. The following theorem, which is equivalent to Theorem 4

of [40] states the conditions for no-arbitrage in a market with transaction costs.

Theorem 4. The discrete state stochastic vector process {Z;} is an arbitrage
free market price process if and only if there is at least one probability measure
Q equivalent to P, which, extended to intermediate nodes recursively as in (2.1),
makes the process {Z} fulfill the condition

(1-0Z <EPZpIM] < (1 +n)Z, Vt<T —1. (2.12)
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The proof is omitted. It is not hard to see that for n = { = 0 one recovers the

statement of Theorem 1.

The A gain-loss ratio opportunity seeking investor (at a fixed \) is interested

in solving the problem TC2:

max Y par — A Y pat,

neNt neNT
s.t. 00+ Zo - 0o +nZo - t§ +CZo -ty
O — Ony + Zn - (On = On(y) + 120 - 1 +CZ0 - 1,
Z, -0, — x;f +x,
0o
On = Or(n)
by tn

LL’+

n
n

xT

=0

=0,VneN,t>1
=0,VneNy

=15 -1,

=t —t ,VneN,t>1
>0, VneN
>0,VneNy

>0, Vn €Ny

The counterpart of Theorem 2 in this case becomes the following.

Theorem 5. The discrete state stochastic vector process {Zi} is a A gain-loss

ratio opportunity free market price process at level X if and only if there is at least

one probability measure @, \-compatible to P, which, extended to intermediate
nodes recursively as in (2.1), makes the process {Z;} fulfill condition (2.12).

Proof. We prove the necessity part first. Assume that the market is A gain-loss

ratio opportunity free .

We see that the fourth and the fifth constraints can be

used to get rid of variables # in the formulation of TC2. Since 6,, — éﬁ(n) =t —
t-,VneN,t>1and by =t —ty, it becomes 0, =t —t +t5 —t;, Vn € Nj.
Using the same reasoning we have 0,, = > meam)th —tn), ¥ n € N. Then TC2

becomes:
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max =\ T
> part =AY paa,

nENT TZENT
s.t.

meA(n)

00+ Zo - (t§ —tg) +nZo -t + (2 -ty
Op — 00y + Zn - (t — 1) + 020t + (20 - 1,
O+ Zn- > (th—t,)—xf +a,

=0
=0,VneN,t>1
:O,VTLENT

tr ot

n’»’n

>0,VneN
EO,VHGNT
EO,VTLENT.

S+

X

X

n

The dual of this problem is the following feasibility problem:

min 0
s.t. Up,
(1 4+ n)vp,Z, — Z Vi Zm
meD(n)NNr
(1 - C)UnZn - Z vam
meD(n)NNr
DPn < Up

Y Um, YR EN,0<t<T —1
meS(n)

>0,VneN
<0,VneN

< )\pn, Vn € NT.

38

If there is no A gain-loss ratio opportunity, the optimal value of TC2 is equal to

zero. Therefore, by linear programming duality, the dual problem is also solvable

(in fact, feasible since the dual is only a feasibility problem). Let us take any

feasible solution v, (n € N') of the dual problem. Since v, > p,, it follows that

v, is a strictly positive process such that the sum of v, over all states n € N,

in each time period ¢ sums to vg. Now, define the process ¢, = v, /vy, for each

n € N. Obviously, this defines a probability measure @) over the leaf (terminal)

nodes n € Np and it extends to intermediate nodes recursively as in (2.1) as

an implication of the first constraint in the dual problem. Furthermore, we can

rewrite the second and the third constraints of the dual problem with the newly
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defined weights ¢, as

(1 + n)ann - Z qum >0, Vne~N

meD(n) N

1=OmZn— > GmZn<0,YneN

meD(n)NNp
with ¢ = 1, and all ¢, > 0. Therefore, by constructing the probability measure
@) we have constructed an equivalent measure which makes the process {Z;}
fulfill condition (2.12). By definition of the measure g,, we have using the last

constraint of the dual problem
Prn < qnvg < App, Vn € N,

or equivalently,

Pn/dn < Vo < Apy/qn, Y0 € Ny,

which implies that g,,n € Np constitute a measure A\-compatible to P . This

concludes the necessity part.

Suppose ) is a probability measure A-compatible to P, which extends to
intermediate nodes recursively as in (2.1) and which makes the process {Z,;}
fulfill condition (2.12). Therefore, we have

meD(n)NNp

1=Q0Zn— > mZm<0,¥VneN

meD(n)NNT
with gy = 1, and all ¢, > 0, while the condition max,epr,. Pn/¢n < Amin,ens Pn/gn
holds. If the previous inequality holds as an equality, choose the right-hand
(or, the left-hand) of the inequality as a factor vy and set v, = ¢,vo for
all n € N. If the inequality is not tight, any value vy in the interval
[maX,enty Pr/dn, AMilpens,. Pn/qn] Will do. It is easily verified that such defined
Un, n € N satisfy the constraints of the dual problem. Since the dual problem is
feasible, the primal TC2 is bounded above (in fact, its optimal value is zero) and

no A gain-loss ratio opportunity exists in the system.
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For n = ¢ = 0 one recovers Theorem 2.

40

Now, the no-arbitrage price bounds of the previous section are computed by

solving

min 00 + Zo - 0y +nZo - t§ + (2 -ty
st 00— 0%+ Zn - (On — Onm)) + 020 - 1) + (20 - 1,

for the writer, and

max

s.t.

—QO—ZO'Q_O—UZO'ta_
0y — 02y + Zn

—CZO'ta
’ (én - 677r(n)) + 7720 : t:’; + CZO : t;
Ly - Oy
0o
Or — O
tht

n»’n

—B,F,, YneN,t>1
0, VneNr

=ty — 1
=tr—t . VneN,t>1
>0,VneWN,

=B, F,, VneN,t>1
>0, VnéeNp

=t —to

=t —t  VneN,t>1
>0,VneN,

for the buyer. These bounds are also obtained using the dual expressions:

T

[i min EQ[Z

Bo 4e@(n.0) -1 50 2€Q(n,0)

t=1

ﬁtFt] —- Inax EQZﬁtFt

where Q(7, ¢) is the (closure of) set of measures @ equivalent to P such that the

process {Z;} satisfies condition (2.12). The proofs are omitted for these results

since they are similar to the proof of our next result.

Now, let us consider the no A gain-loss ratio opportunity bounds obtained

from the perspective of the buyer and the writer by going through the usual
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problems in the hedging space:

Zp O —xf +2, =0, VneNr

> parf =AY pary >0

neNr neNr
Op = tg —to
O, — Oy = tF —t,, VneN,t>1
tht- >0, VneN
rF >0,VneNr
x, >0, VneNT,

for the writer, and

max —98—20670—7”]20153—C20t07
st O — 000+ Zn - (O — Onn) + 020 - 1) +CZ0 - 1, = BuFn, YnEN,E > 1
T O0p—af +2 =0 VneNp

anx:_Aanx;ZO

neNr neNT

Op =t —tg

On — Ory =t — 1, V€Nt > 1
tht >0, VneN

k>0, VneNr

x, >0,VneNr,
for the buyer. We see that the fourth and the fifth constraints can be used to get
rid of variables 6 in the formulation of the above problem. Since 6,, — Q_W(n) =t —
t-Vn€N,t>1andfy =td —t;, it becomes 0, =t —t, +ti —t;, Vn € N.
Using the same reasoning we have 6, = > omeam)tm —tm), ¥ n € N. Then we



CHAPTER 2. GAIN-LOSS PRICING OF ECC 42

obtain the following linear program:

min 05 + Zo - (tg —to) +nZo-tg +CZ0-tg
st 00— 0%+ 2 (b =)+ 020+ (21, = —BuFn, Ve Nt > 1
0° + Z, - Z (th —t )—xf +x, =0,VneNr

meA(n)
neNr neNr
tht, >0, VneN
ZL': > 0, Vne NT
$,; Z 0, Vne NT.
The dual problem of this program is
max ZvnﬁnFn
n>0
s.t. Vo = 1
Uy = Z U, VR EN,OL< LT -1
meC(n)
(1 +n)v,Z, — Z UmZm >0, VneN
meD(n)NNp
(1 - Qv Z, — Z VmZm <0, VneN
meD(n)NNr
Von < v, < VAp,, Vn € Ny,

V >0.

Denote the feasible set of the above dual problem by Q(\, 7, (), i.e., the set of

probability measures v,, and positive V' such that
(1-0Z <E'[Zr|N)) < (L4 n)Zy, VE<T -1
and Vp, < v, < VAp,, Vn € Nr.

By setting yo = 1/V and y,, = v,/V, and simplifying we obtain the following

equivalent program:
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max Linz0 YnFn B
Yo
s.t. Yp = Zym,VnGJ\/},OStST—l
meC(n)

(1 + ) ynZn — Z YmZm >0, ¥Vn €N
meD(n)NNT

(1= QynZn — Z YmZm <0,V €N
meD(n)NNr

Pn < Y < A, V0 € N,

Denote the feasible set of the previous problem 37()\,7],( ). Going through a
similar derivation for the buyer’s case (omitted for brevity) we have proved the

following result.

Proposition 4. The price interval of a contingent claim for no A gain-loss ratio

opportunity at level \ is

T T
1 1
—  min ]EQE G Fy|; —  max EQg G F;
Bo q.veQ(rn.) [t:1 F) Bo q.ved(rn.) [t:I ol

or, equivalently

1 . Zn>[) ynﬁnFn . 1 Zn>0 ynﬁnFn
[— min =“~———;— max —FF——
Bo yey(rn.0) Yo Bo yey(rm.0) Yo

].

Obviously, the no A gain-loss ratio opportunity bounds are tighter compared
to the no-arbitrage bounds. Notice that Q(),0,0) and Y(\,0,0) coincide with
Q(A) and Y (\), respectively.

Example 6. Considering the same problem as in example 2 with n = ( = 0.1, the
supremum of the values of A allowing a A gain-loss ratio opportunity opportunity
is computed to 3.715 (notice the drop from 6 in the case of no transaction costs).
The no-arbitrage interval for the contingent claim is found to be [1.2;3.08]. At

= 4, the no \ gain-loss ratio opportunity interval is [2.83;2.98]. At A = 3.715
which is the limiting value, the common bound is equal to 2.97. The unique

measure leading to this common price is given as ¢; = g2 = 0.175 and g3 = 0.65.
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2.6 Conclusion

In this chapter, we studied the problem of pricing and hedging contingent claims
in incomplete markets in a multi-period linear optimization (discrete-time, finite
probability space) framework. We developed an extension of the concept of no-
arbitrage pricing (A gain-loss ratio opportunity) based on expected positive and
negative final wealth positions, which allow to obtain arbitrage only in the limit
as a gain-loss preference parameter tends to infinity. We analyzed the resulting
optimization problems using linear programming duality. We showed that the
pricing bounds obtained from our analysis are tighter than the no-arbitrage pric-
ing bounds. This result, in line with the Bernardo and Ledoit [5] single period
results, was also obtained for a multi-period model in the computationally more
tractable linear programming environment. Our results indicated that for a lim-
iting value of risk aversion parameter that can be computed easily, a unique price
for a contingent claim in incomplete markets may be found (although this is not
guaranteed) while different hedging schemes exist for different sides of the same

trade. We also extended our results to markets with transaction costs.



Chapter 3

Pricing American Contingent
Claims by Stochastic Linear

Programming

Mathematical programming tools, especially stochastic programming (see [59] for
a recent survey) are becoming increasingly useful as an entry point for studying
the specialized methods of mathematical finance [25, 40, 48]. In this chapter, we
are interested in the pricing of American Contingent Claims (ACC) as well as their

special cases, in a multi-period, discrete time, discrete state space framework.

In the area of pricing contingent claims research concentrates mainly on defin-
ing and characterizing the range of contingent claim prices consistent with the
absence of arbitrage. This range is determined by the upper hedging and the lower
hedging prices, also known as the superreplication and subreplication bounds as
we discuss in Chapter 2. In the absence of arbitrage, the upper hedging price is
the value of the least costly self-financing portfolio strategy composed of market
instruments whose pay-off is at least as large as the contingent claim pay-off.
This price can also be interpreted from the perspective of a writer (seller) of the
contingent claim as the smallest initial wealth required to replicate the contin-

gent claim pay-off at expiration in a self-financed manner. Hence, we refer to the

45
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upper hedging price as the writer’s price as well. Similarly, the lower hedging
price is the value of the most precious self-financing portfolio strategy composed
of market instruments whose pay-off is dominated by the contingent claim pay-
off at expiration. The lower hedging price can also be interpreted as the largest
amount the contingent claim buyer can borrow (in the form of cash or by short-
selling stocks) to acquire the claim while paying off his/her debt in a self-financed
manner using the contingent claim pay-off at expiration [17]. Hence, we refer to
this price as the buyer’s price as well as the lower hedging price. For European
contingent claims, which can only be exercised at expiration, the upper and lower
hedging prices are usually expressed as supremum and infimum, respectively, of
the expectation of the discounted contingent claim pay-off (at expiration) over all
probability measures that make the underlying stock price a martingale. We di-
rect the reader to the book by Follmer and Schied [26] for an in-depth treatment

of pricing contingent claims in discrete time.

Similar expectation expressions were developed by Harrison and Kreps [28]
and Chalasani and Jha [17] for American contingent claims, which can be ex-
ercised at any time until expiration. However, the possibility of early exercise
complicates the expressions where one has to take supremums over all stopping
times which represent potential exercise strategies of the contingent claim buyer.
In particular, the upper hedging price is the supremum of the expectation of the
discounted contingent claim pay-off (at some time between now and expiration)
over all stopping times and all probability measures that make the underlying
stock-price process a martingale. While the upper hedging price can be cast as a
linear programming problem in discrete time [17, 48], the lower hedging price is
harder to compute. It is the supremum over all stopping times of the infimum of
the expected discounted contingent claim pay-off (at some time between now and
expiration) over all probability measures that make the underlying stock price
process a martingale. More precisely, the lower hedging price of an American

contingent claim is given by an expression of the form

max min E”[F,]
T7€T PeP

where 7 is the set of stopping times, P is the set of all martingale measures, and

F’; is the discounted contingent claim pay-off at time 7; see e.g., Theorem 12.4 of
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17].

Against this background, Pennanen and King [48] showed that the above

expression for the lower hedging price can also be cast as

min max EX[F}]
PeP €T

by interchanging the order of the max and min after observing that the outer
maximization over the set 7 of stopping times can be replaced by maximization
over a set of randomized stopping times, a central notion in [17] (see also the
definition of the sets E and E just before Theorem 7 in this chapter) and con-
vex duality theory. From an optimization point of view, Pennanen and King’s
characterization of the set of the lower hedging price for ACCs follows from a
representation of the buyer’s price as the optimal value of a linear programming
problem in the hedging space of the buyer, instead of posing the same hedging
problem over integer valued variables. This important observation opens the way
to harnessing the well-developed linear programming algorithms and software for
the calculation of the buyer’s price for ACCs. However, while their result is cor-
rect, their proof has a serious gap that we shall explain in section 3.2 through
a counterexample. In this chapter we present an alternative proof of this result.
After defining the buyer’s problem similarly to the one in [48] we formulate an in-
teger programming problem for the buyer’s price. Then, we prove that the bound
from the buyer’s perspective can be computed by solving a linear program. This
result gives a correct alternative proof of Theorem 3 of [48]. Independently, Flam
[25] proves a similar result for the contingent claim writer’s price using consider-
ations of total unimodularity. However, as discussed above the computation of
the lower and upper hedging prices leads to different problems where it appears
that the buyer’s problem is harder to analyze. In fact, Pennanen and King [48]
also give an analysis of the writer’s pricing problem. Hence, we concentrate on
the buyer’s problem in our work. Our proof uses direct construction of an in-
tegral optimal solution from a fractional solution. The result remains valid for
dividend paying stocks as well. The significance of the result stems from the fact
that there exist linear programming algorithms with a computational complexity
bounded above by a low order polynomial in the number of variables and con-

straints for computing a solution to e-accuracy; see Section 6 of [3]. In practice,
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one has access to numerous software packages capable of handling very large in-
stances of linear programs with dimensions reaching hundred thousand variables
and constraints. Based on our experiences with European index options [49],
multi-period hedging problems with approximately 70,000 variables and 22,000
equality, and 40,000 inequality constraints can be solved very quickly using the
GAMS/CPLEX solver [11, 19].

3.1 The Stochastic Scenario Tree and American

Contingent Claims

We will use all the concept and the notation which is described in Section 2.1.
At this point we need to define an ACC in our framework. Besides, additional
notation will be defined. An ACC F' is a financial instrument generating a real-
valued stochastic (cash-flow) process (F})i—o.. 1. At any stage t =0,...,T, the
holder of an ACC may decide to take F; in cash and terminate the process.
Using this definition, an American call option on a stock S with strike price K
corresponds to F' = S — K. American put is obtained by reversing the sign of
F. We can define a European call option with maturity 7" by setting F; = 0 for
t # T. Bermudan call options having exercise date set G C {1,...,T} can be

defined by setting F; =0 for t ¢ G.

The market consists of J + 1 tradable securities indexed by j = 0,1,...,J
with prices at node n given by the vector S, = (SY, S} ..., S7). We assume as
in [48] that the security indexed by 0 has strictly positive prices at each node of
the scenario tree. This asset might also be considered as the risk-free asset in the
classical valuation framework, in which case its price would be same at each node

belonging to the same time period.

The number of shares of security j held by the investor in state (node) n € N,

is denoted 7. Therefore, to each state n € N; is associated a vector 6, € R/*L.
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The value of the portfolio at state n is

In our finite probability space setting an American contingent claim F' gener-
ates payoff opportunities F,, (n > 0) to its holder depending on the states n of

the market.

We use Figure 3.1 to illustrate the stochastic scenario tree. In this example
there are only three periods. At the first period, which is denoted by ¢ = 0, stock
prices are known, so there is only one node at this period. The index of this node
is 0. This node branches to three nodes at the second period. The three possible
states for the second period are respresented by three nodes: the upper node is
indexed by 1, the middle node is indexed by 2 and the lower node is indexed by
3. Then, each node in the second period branches to three nodes at the third
period. Hence, there are nine nodes at the third period. These nodes are indexed
in the same fashion from 4 to 12. We assume that there are only two financial
instruments in the market: a stock and a bond. Bond price is assumed to be 1
for each node, which means that the risk free interest rate is zero. The number
inside each node represents the price of the stock at that node. The number next
to a node represents the payoff of some fictitious contingent claim at that node.
There is not a fixed delivery price for this contingent claim. Hence, its payoff
is greater at node 6 than its payoff at node 7 although the price of the stock is
greater at node 6. We will use this toy scenario tree and contingent claim as a

counterexample below after the proof of Theorem 6.

For further details on arbitrage-free pricing of European and American contin-

gent claims using stochastic linear programming we refer the reader to [25, 40, 48].
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Figure 3.1: The tree representing the counterexample to the proof in [48].

3.2 The Main Result

We will now give a new proof of Theorem 3 of [48]. An arbitrage seeking buyer’s

problem can be formulated as the following problem that we will refer as AP1.

max V
s.t. So -0y = Fpeg =V
Sp - (0n = Onn)) = Fren, VR eN, 1 <t <T
S0, >0, VneNp
Z em <1, Vnée Ny

e, € {0,1}, VneN.
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The definition of variables e,, is as follows:

{ 1, if the ACC is exercised at node n }
en =

0, 0.W.

The optimal value of V' is the largest amount that a potential buyer is willing to
disburse for acquiring a given American contingent claim F. The computation
of this quantity via the above integer programming problem is carried out by
construction of a least costly (adapted) portfolio process replicating the proceeds
from the contingent claim by self-financing transactions using the market-traded
securities in such as way to avoid any terminal losses. The integer variables and
related constraints represent the one-time exercise of the American contingent

claim; see [48] for further details.

A linear programming relaxation of AP1 is the following problem AP2:

max V
S.t. So -0y = Foeg —V
Sp - (0 — On(n)) = Fren, VR eN, 1<t <T
Sp+0,>0,VneNr
Y em <L VneNr

meA(n)
en >0, VnenN.

Theorem 6. There exists an optimal solution to AP2 with e, € {0,1}, Vn € N.

Proof. Assume that AP2 has an optimal solution V*, e* and 0* such that e} ¢
{0,1} for some n € N.

Case 1: We will first consider the case where e* has a value not equal to 0 or
1 for the root, which is the starting node of the tree (i.e. ef ¢ {0,1}). In order
to deal with this case, we will form the Lagrangian function for AP2. That is

L(‘/;eveax7yaz) - V_yO[SO'GO_FOeO+V]_ Z yn[Sn(en—Qﬁ(n)>_Fnen]
neN\{0}

+ 3 @S 0= >zl Y em—1l.

neNy neNy meA(n)
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After rearranging the above function we have

L(Vie,0,2,y,2) = (L=y)V+ Y (=4S Ont D Ou-[ > YnSm — yuS]
neNr neN\Nr meC(n)
neN meD(n)NNr neNT

Then the dual problem of AP2 can be formulated as

2

neNy
s.t. Yo =1
[T — Yu]Sn = 0, Vn € Ny
Z YmSm = YnSn, V1 € N\Nr
meC(n)
UnFo— Y <0, VneN
meD(n)NNr

Tn, 2 >0, V€ Np.

Since S,, # 0, second constraint implies that z,, = v,,, V n € Np. Thus the dual

problem can be rearranged as

min g Zn

neNt
S.t. Yo = 1
Z YmSm = YnSn, V1 € N\Nr
meC(n)
Y Fl, — Z 2 <0, VnenN
meD(n)NNT

Yns Zn > O, vneNT.

We have an optimal solution to AP2 with e ¢ {0,1}. Then complementary
slackness implies that the third constraint of the above program should be sat-
isfied as an equality for the corresponding optimal solution of the dual problem
(e, YoFo = D neny #m = 0). Since yo = 1, we have Fy = > - 2. Thus, the
optimal solution to the dual problem is found to be Fy. Then, by strong duality
we know that Fj is the optimal value of AP2. One can easily show that a feasible

solution to AP2 is ey = 1, V = Fj and all the other variables as zeros (each
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0, as a zero vector) with objective value Fy. This is an optimal solution with

e, €{0,1}, Vn € N, thus the proof for the first case is complete.

Case 2: Now assume that optimal solution e* is such that e = 0 and €} ¢
{0,1} for some n € N. Let I = {ile; ¢ {0,1},i € N}. Let G = {g|g €
I,A(g) NI ={g}}. Let w be the element with the smallest time index (that is
closest to the root) in G. Note that ¢ =0, ¥V n € A(w)\{w} in this case. Also,

let &£ denote the time index for node w.

Claim: One can always find an optimal solution to AP2 with e,, € {0,1} and
e; =0 for all i € A(w)\{w}.
To prove the claim we will consider the following two linear programs to which

we will refer as AR1 and AR2 respectively:

max e,
st. Su- (0 — 0;(1”)) = F,ey
Sn (0 — Orn)) = Fren, ¥V € D(w)\{w}
Sy 0, >0,VneNrNDw)
Z em <1, VneNrND(w)

meA(n)ND(w)
e, >0, VneDw),

) = Fyey
Sn (0 — Orn)) = Fren, V€ D(w)\{w}
>0, VneNrND(w)
Z em <1, VneNrND(w)

e, >0, VneDw).

Let us denote the optimal solution of ARI1 as Q_D(w), €pw) and to AR2 as
QND(w), €p(w)- If the optimal value of AR1 is 1, then we see that (H_D(w), Qj‘v\D(w)),
(Ep(w)> ej\f\p(w)) form another optimal solution of AP2 with e,, = 1. For this op-

timal solution we have e,, = 1 and ¢; =0, Vi € A(w)\{w} (we have also e¢; = 0,
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for all © € D(w)\{w} for this solution). Similarly, if the optimal value of AR2 is 0,
then (Op(uw), 03\ D)) (€D(w), €A\ p(uy) form another optimal solution of AP2 with
ew = 0. Then, for this optimal solution we have e; = 0, for all i € A(w). So, our
claim will be proved if we can show that AR2’s having an optimal value greater
than 0 implies that the optimal value of AR1 is 1. To show that we will consider
the dual problems of AR1 and AR2. The dual problems DAR1 and DAR2 of
AR1 and AR2, respectively, are

min Z Zn + ywa . 9;(1”)

neNrND(w)
s.t. Z YmSm = YnSn, V1 € D(w)\Nr
meC(n)
—YuFow + Z Zp 21
neNTND(w)
UnFu— Y zm <0,V neDw)\{w}
meD(n)NNr
Yny 2n > 0, Vn € NprND(w),
max — Z Zn — YuwSuw * Q;kr(w)
neNTND(w)
s.t. Z YmSm = YnSn, ¥V n € D(w)\Nr
meC(n)
—yuFy + Z Zp > —1
neNTND(w)
ynF, — Z Zm <0, VneDw)\{w}
meD(n)NNr

Yn, Zn 2 07 Vn GNTQD(U})

We will denote the optimal value of AR2 by «, which is equal to the optimal value
of DAR2. We know that a@ < 1. Assume that a > 0. Then by complementary
slackness we know that the second constraint of DAR2 must be satisfied as an
equality at the corresponding optimal solution, since e, # 0 at the optimal
solution of AR2. Then at the optimal solution of DAR2, we have

0> Z Zn + YuwSw - 9;(w) > —yuFuw + Z 2z, = —1. (3.1)

neNTND(w) neNTND(w)
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Moreover, we must have y,, > 0 for any feasible solution of DAR1 and DAR2.
This follows from the following fact. We have y, > 0, Vn € Ny N D(w). Then,
since S > 0 for all n, we have y,, > 0, Yn € Ny_; N D(w) by the first constraints
of DARI and DAR2. Similarly, we can show the same successively for (T —
2),(T'—3),...,k. So, we have y,, > 0. Then, using the second inequality of (3.1)

we have

Z Zn + YuwSw * Op ) 2= —Yu bl + Z Zn

neNTND(w) neNTND(w)

ywa : 97*7(11;) > _waw
Sw : (9:.(“]) Z _Fw

where the last step follows from y,, > 0. Then, for DAR1 at any feasible solution

we have

1< —yuFut Y. 2 <twSu-Oiy+ D,
neNTND(w) neNTND(w)

whence we see that the optimal solution of DAR1 cannot be less than 1. It is
easy to see by AR1 that optimal value of DAR1 cannot be greater than 1 either.
Hence, we conclude that the optimal value of DAR1 and therefore that of ARI,
is 1. This completes the proof of our claim.

Using the claim we see that there always exists an optimal solution to AP2 with
ey € {0,1} and e¢; = 0 for all i« € A(w). So, one can eliminate all the nodes
having time index k in I by applying the above procedure. Then, proceeding
successively with the nodes in (k + 1)*t, (k + 2)"...(T)" time indices one can
find an optimal solution for AP2 with e, € {0,1}, V n € N. We note that, at
each step the size of I might increase, but no nodes with a time index less than
or equal to that of the node eliminated at that particular step can show up in [/

at the next step. This completes the proof of the theorem. O

In their proof Pennanen and King [48] claim that for an optimal solution
of AP2 if the contingent claim is exercised partially at a node, then there is
another optimal solution in which the contingent claim is fully exercised at that
node. However, we have discovered counterexamples to this claim by computer

experimentation. For some special cases, one can show, contrary to this claim,
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that there is another optimal solution where the claim is not exercised at that
node, but no optimal solution exists in which the claim is fully exercised at that

node.

For a counterexample to the claim of [48] let us return to the example of
the fictitious contingent claim in Figure 3.1 at the end of Section 3.1. We wrote
a simple GAMS code to construct and solve the buyer’s problem (the linear
programming relaxation of it) using CPLEX Version 9.0.2 with the data given
in the example. The optimal value, i.e., the buyer’s price, of this problem is 2.
CPLEX 9.0.2 reports a fractional optimal solution of this problem where we have
e1 = 0.625. We show the non-zero variables of this solution in Table 3. Here, 0,,;
denotes the number of shares of security j (j = 0 for the bond and j = 1 for the
stock) held by the investor at node n. Besides, e, is the variable for the execution

time of the contingent claim.

’ Opt. Value 900 901 (910 911 (920 921 950 €1 €4 €5 (&rd €g

] 2 6 | -0.8|83.125 | -4375 | 9 -1 4 10625037 0375 | 1 |1

Table 3.1: The optimal values of variables in the counterexample (the remaining
variables have value zero).

If the proof in [48] were correct, according to their argument, we would have
another optimal solution to this problem with e; = 1. However when we add
the constraint e; = 1 and solve the same problem again, we see that the optimal
solution becomes 1.8. This is contradicting the argument in [48]. While this
example is based on a fictitious contingent claim, it illustrates the difficulty of
defining an optimal “rational” exercise policy. These difficulties are also discussed
in [17]. In this example, it appears that the buyer could exercise early at node 1,
and take away 9 units since there is a possibility of not getting anything should
the process end at node 6. However, such an early exercise is not optimal as
the example shows. Such examples (one can find others that are similar) remain

difficult to construct, but they clearly demonstrate the gap in the proof of [48].

Returning to the consequences of Theorem 6, this result shows that one can
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always find a feasible solution to AP1 that gives the optimal value of the relaxed
problem AP2. Then, since the optimal value of a problem cannot be better than
the optimal value of its relaxation we say that optimal value of AP1 can be found
by solving AP2.

One major implication of this result is the passage to a linear programming
problem from an NP-hard integer programming problem that is potentially very
difficult to solve in practice. Linear programming algorithms with a computa-
tional complexity bounded above by a low order polynomial in the number of
variables and constraints for computing a solution to e-accuracy are well known
and well studied; see Section 6 of [3]. For practical computation, the problem
AP2 has |[N|(J +2) + 1 variables and |[N|+ 2|N7| constraints in addition to [N
non-negativity constraints. In practice, the state-of-the-art linear programming
solvers can easily handle instances where the cardinality of A is 22,200 and the
cardinality of N7 is 20,000 [49].

A second implication is that one can use duality to get expressions for the
buyer’s price of the ACC in terms of martingale measures and stopping times as
pointed out in the introduction. These aforementioned two results are given in
[48]. Here we re-iterate the second major implication in detail, for the sake of
completeness. For simplicity, we assume w.l.o.g. that S =1,Vn=1,...,T. We
assume an interest-free environment. However, the more general case is easy to
implement using the discounted price process of [40]. We will need the buyer’s
price of a ECC in order to find that of an ACC. The buyer’s price of an ECC is
derived in [40]. We will briefly show the derivation here. Under the assumption
of an interest-free environment, the buyer’s problem for an ECC with payoffs F),
is

max V
s.t. So-b0p=Fy—V
Sp- (On —brxn)) = Fo, VREN,1<t<T
Sy -0, >0, VneNy.
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The dual problem of this program is

min Z YnFh

neN
s.t. Yo = 1
Z ymSm = ynSna Vne N\NT
meC(n)

yn > 0, Vn € Nr.

Then, the buyer’s price of an ECC can be expressed as
min » g, F), (3.2)

where Q denotes the closure of the set of all martingale measures equivalent to

P, i.e., the set

O={q| =1, ¢S, = Z GmSm, Yn € N\Nr; 0 < g, Yn € Nr}.
meC(n)
Define the sets

T
E = {e | eis (F),-adapted, Zet <1ande €{0,1} P-as.},

t=0

T
E = {e|eis (F)L-adapted, Z e; <1and e >0 P-as.}.
=0

One common way to describe exercise strategies of ACCs is by stopping times.
These are functions 7 : Q — {0,..., 7} U {400} such that {w € Q| 7(w) =
t} € Fi, foreach t =0,...,T. The relation e, = 1 < 7 =t defines a one-to-one
correspondence between stopping times and decision processes e € E. The set
of stopping times will be denoted by 7. The set E corresponds to the set of

randomized stopping times discussed extensively in [17].

Theorem 7. ([/8])If there is no arbitrage in the market price process, the buyer’s

price for American contingent claim F' can be expressed as

max min B9 [F,] = min max E/[F,]. (3.3)
T€T Qe QeQ T€T
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Proof. If we set e fixed in AP1 and maximize with respect to #, we have a Eu-
ropean contingent claim with payoffs Fie; for t = 0,1,...,7T. Then, by (3.2), for
the buyer’s price of this ECC, we have

T
min EC[Y  Fey.
il i

Then, maximizing with respect to e, for the buyer’s price of the ACC we have

T
nE?[Y  Fel.

The correspondence between stopping times and the process e € F implies that
the buyer’ s price for the ACC can be expressed as the left hand side of equation
(3.3) since maximization over 7 is equivalent to maximization over E after making
the appropriate change in the objective function. By Theorem 6, instead of last

expression we can use
T

max min E9 [Z Fiey]. (3.4)
ecE QeQ —0
Since E and Q are bounded convex sets, by Corollary 37.6.1 of [53] we can change
the order of max and min without changing the value. Then, for each fixed Q € O,
the objective in (3.4) is linear in e. So the maximum over E is attained at an
extreme point of E. We know that the extreme points of E are the elements of

the set £. Thus, we reach the expression on the right hand side in (3.3). O

We can extend our result for stocks that pay dividends or interest. We assume
that there is no dividend associated with SY. We have the following corollary

(proven here for the first time, to the best of the authors’ knowledge).

Corollary 2. If each security j = 1,...,J pays dividend payments D? in node
n, under the assumption of no arbitrage in the market price process, the buyer’s
price Fy for an American contingent claim F can be expressed as
F, = max min E¥[F,] = min maxE?[F}]
€T Qe Qe €T
where

O ={q|q="1gSe= > Gu(Sn+ D), ¥n € N\N7; 0 < gy, Yn € Ny}.
)

meC(n
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Proof. If dividends are paid, self-financing constraints of AP1 becomes
Sn' (Qn_eﬂ(n))_Dngﬂ(n) :Fnena vneMul StST

The rest of the argument, including the proof of Theorem 6 follows as it is in the

case of stocks without dividends. O

3.3 Conclusion

In this chapter, we presented an alternative proof of an interesting and important
result announced by Pennanen and King [48] on the computation of the buyer’s
price of an American contingent claim by linear programming instead of 0-1
integer programming. We included a numerical example that helps illustrate
some important arguments related to our proof. We also showed that the result
is unaffected by dividend payments. While European contingent claim prices were
known to be computable using linear programming, the result opens the way to
computing the prices of American contingent claims also by linear programming,

which allows the numerical solution of very large multi-period hedging problems.



Chapter 4

Integer Programming Models for
Pricing American Contingent

Claims under Transaction Costs

The purpose of this chapter is to examine, using integer programming, the prob-
lem of computing a fair price (in the sense of not allowing arbitrage) for the holder
(buyer) of an American contingent claim in a discrete-time finite state incomplete
market model where the stock trades incur transaction costs proportional to the
magnitude of the trade. Since American contingent claims allow the holder to
exercise the claim at any point during its lifetime as opposed to their European
counterparts which can only be exercised at maturity, the computation of a fair
price also involves the choice of an optimal exercise strategy, which opens the
way to modeling with binary variables. King [40] showed the connections be-
tween linear programming and modern techniques of contingent claim pricing in
mathematical finance in the context of European claims. The main contribution
of this chapter is to further the bond between finite dimensional optimization and
mathematical finance by adding two integer programming models to the list of
finite-dimensional optimization approaches useful for pricing contingent claims in

financial markets.
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It is well-known that a fair price for the buyer (lower hedging price) of a
European contingent claim in frictionless markets can be found by computing the
minimum value of the expectation of the discounted option pay-off at maturity
with respect to probability measures that make the underlying stock price process
a martingale. The fair price to the seller (upper hedging price) is then found by
calculating the maximum value of the above expectation over the same set of
measures. When the market is complete, i.e., when the martingale measure is
unique, the buyer and seller prices coincide. This phenomenon also occurs when
the pay-off from the contingent claim at maturity can be perfectly replicated by
the existing instruments in the market. These results are the main building blocks
of mathematical finance and go back to Harrison and Kreps [28], and Harrison
and Pliska [29]. In continuous trading models, the replication argument is at
the heart of the celebrated Black-Scholes formula; see Black and Scholes [7] and
Merton [45].

Similar expectation representations for American claims have been given also
for the first time in Harrison and Kreps [28]. These expressions involve the max-
imization over a set of stopping times of the minimum of discounted expected
pay-off at the point of stopping over all martingale measures for the buyer of the
American claim, and the maximization over a set of stopping times of the maxi-
mum of discounted expected pay-off at the point of stopping over all martingale
measures for the seller of the American claim. No arbitrage pricing of American
claims was first studied by Bensoussan [4] and Karatzas [37] for complete markets
in continuous time. A good reference for continuous time pricing of American
contingent claims is Detemple [22]; see also the survey by Myeni [46]. The book
by Follmer and Schied [26] contains a thorough discussion of pricing and hedging
American claims in discrete time but infinite state space setting. A derivation of

these formulae in a discrete-time, finite state probability context can be found in
Chalasani and Jha [17] and King [40].

In the presence of transaction costs proportional to the magnitude of the
stock trades it is usually the case that perfect replication is impossible, and

therefore the markets become incomplete. Furthermore, it was shown by Soner
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et al. [60] and Levental and Skorohod [43] that for a European call option writ-
ten on a stock in continuously trading markets the seller’s price is equal to the
initial stock price, and the hedging strategy is a simple buy-and-hold strategy.
However, in discrete-time trading under proportional transaction costs hedging
strategies that are non-trivial can be found. The papers by Jouini and Kallal
[33], Cvitanic and Karatzas [20], El Karoui and Quenez [24] concentrate on the
computation of the no-arbitrage prices in continuous time for European claims
under transaction costs, while Koehl, Pham and Touzi [41], Jaschke [32] and Ortu
[47] obtain similar results in discrete time, and Edirisinghe et al. [23] give a dy-
namic programming algorithm for European option pricing under different forms
of trading frictions. Karatzas and Kou [38] study no-arbitrage pricing and hedg-
ing of ACCs in continuous time under portfolio constraints, and Buckdahn and
Hu [12] consider jump diffusions for the stock price process in a similar context.
Davis and Zariphopoulou [21] study utility maximization for pricing American
claims. Bouchard and Temam (8] extend and generalize the discrete-time results
of Chalasani and Jha for the upper hedging price to general discrete time markets
in an infinite state space setting. In a separate line of work, Tokarz and Zastaw-
niak [62] develop efficient dynamic programming algorithms for pricing American
options in discrete time under small transaction costs, and Roux and Zastawniak
[58] extend previous work by removing the restriction on transactions costs. It
is important to note that Roux and Zastawniak [58] allow a revision of portfo-
lio positions before new prices are revealed. This feature of their formulation
enables them to work with path independent portfolio and exercise strategies.
However, as illustrated and discussed in [23], path independent strategies can be
sub-optimal hedging strategies in the presence of transaction costs. Our models
in this chapter allow a revision of the portfolio (and exercise) only after new prices

are revealed, and are based on path dependent strategies.

In Chalasani and Jha [17], Bouchard and Temam [8] and Pennanen and King
[48], the seller price (the upper hedging price) is thoroughly studied. In this chap-
ter, we focus on the lower hedging problem and give a new (to the best of our
knowledge) integer programming formulation for computing the lower hedging

price, departing from a max-min expression of Chalasani and Jha for the lower
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hedging price. Then we exhibit a numerical example showing that a linear re-
laxation might lead to a non-zero duality gap. This result implies that it might
be optimal for the holder of several identical ACCs to exercise them partially
at different time points. We also prove that for frictionless markets, the linear
programming relaxation is exact. Hence, there is no incentive for the holder of
ACCs not facing transaction costs to exercise them partially. We also give an
alternative, aggregated, formulation which relaxes an assumption of Chalasani
and Jha, and has properties similar to those of the former while it has a reduced
number of variables. The two formulations are, in general not equivalent unless
the market is frictionless. All formulations and results of this chapter are easily

extended to allow dividend paying stocks.

4.1 Preliminaries

Throughout this chapter, we refer to the optimal value of an optimization problem
P as opt(P). All the notation and properties of the stochastic tree described in

section 2.1 will be used in this chapter. Additional notation is defined below.

We denote the set of all nodes except the root by N, and the set of all
nodes except the root node and the leaf nodes by A/. In this chapter the set
A(n) denotes the collection of ascendant nodes or the unique path leading to
node n (excluding itself) from node 0. In section 2.1 node n was included in
A(n). We also use the notation ¢(n) to denote the time period that the node
n belongs to, D(n) for all descendants of node n (including node n itself), and

D(n,t) := D(n) NN; to mean the period ¢ descendants of node n for t > t(n).

The market consists of a riskless asset (cash account) and a risky security with
prices at node n given by the scalar S,,. We assume the cash account appreciates
in value by a factor R > 1 in each period. Transaction costs are modeled as
follows: at node n, selling one share of stock the investor gets S, (1 — p), and has
to disburse S,(1 + A) upon acquisition of one share of stock. Our choice of two

instruments is by no means a limitation of our models, and all the development in
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this chapter can be re-iterated for a financial market with several risky securities

and a claim with pay-off contingent on the values of several securities.

All the information given for an ACC in section 3.1 and for stopping times in

section 3.2 is also valid in this chapter. We also need the following definition:

Definition 5. For any probability measure P and exercise strateqy (stopping time)

T, we say that P is a (\, u, 7)-approximate martingale measure, if P-almost surely,
Sl —p) <EF[SHN] < Sf(1+ NVt <7 (4.1)

where S} denotes the discounted stock price S;R™". We use P(\, u, ) to denote

the set of all (X, u, T)-approzimate martingale measures.

The buyer’s objective is to compute the largest amount it can borrow against
the ownership of the claim while picking a suitable exercise time for the claim
and covering this debt by self-financing portfolio transactions in the financial
market (here represented by cash and the risky asset) using the proceeds from
the claim at the chosen date of exercise. In other words, the buyer’s strategy is to
find the maximum amount, z* say, he/she can borrow (by short selling stock) to
acquire the claim and with the remaining cash to initiate a self-financing, adapted
portfolio trading strategy and a stopping time (exercise strategy) 7 such that at
time 7 the value of the portfolio and the pay-off from the claim are sufficient
to close all short positions to avoid any losses. The buyer has to enforce this
strategy over all paths. It is clear (see also Theorem 8.2 [17]) that if the buyer
can acquire the claim for a price inferior to x*, then this constitutes an arbitrage
opportunity for the buyer as follows. The buyer still borrows z*, acquires the
claim for a price p < x*, ending up with the difference x* — p at time 0, follows
the optimal self-financing portfolio strategy and the exercise strategy to repay
the debt in all states of the world. Since the details are worked out in [17], we

direct the reader to section 8 of that reference.

Since for a fixed exercise strategy, the valuation of the claim can be expressed
as an expectation using convex duality theory, the following max-min expression

for the lower hedging price Aoy, (A, i1, F') of an ACC F was given in Theorem 12.2
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of Chalasani and Jha [17]:

Riow\, 1, F) = in EF[F* 4.2
tow(As 4, F) max _min [F7] (4.2)

where F; denotes the discounted ACC pay-off F;R~*. This price is finite if and
only if the market is arbitrage free in the sense of Chalasani and Jha (see definition
on p. 53 of [17] and Theorem 13.1), which we assume to be the case in sections
4.2, 4.3, and 4.4.

In closing this section, we note three assumptions present in [17]: (a) debt
must be repaid in cash, (b) no transaction cost is incurred when a portfolio is
liquidated to settle a debt, and (c¢) no new portfolio positions are taken at period
T'. While not stated explicitly in [17] it is clearly the case that Chalasani and Jha
are interested in path dependent portfolio and exercise strategies which we also
adopt. The numerical example at the opening of section 4.2 below illustrates the

importance of this point.

4.2 The Formulation

Before we go into the derivation of a new mixed-integer programming formulation
for computing the lower hedging price, we shall consider a small numerical exam-
ple. Consider a two period example in Figure 4.1 where we assume for simplicity
that the cash account does not generate any interest. The numbers inside the
circles are the node numbers. The numbers next to nodes in the tree are the
stock prices. The stock price is initially 10 at ¢ = 0. It either goes up to 15 or
down 7 at ¢ = 1 with some probabilities. If it is equal to 15 at t = 1, then either
it goes up to 18 or down to 14 at ¢t = 2. If it is equal to 7 at ¢ = 1, then either
it goes up to 13 or down to 4 at ¢ = 2. This gives a non-recombinant stochastic
tree with node 0 as the root, node 1 (up to 15) and node 2 (down to 7) at t = 1.
At t = 2, from node 1, the tree evolves to either node 3 (up to 18 from 15) or to
node 4 (down to 14 from 15); from node 2 it evolves to either node 5 (up to 13
from 7) or to node 6 (down to 4 from 7). We assume A = p = 0.01. We want

to calculate the lower hedging price of an American call option with strike price
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Figure 4.1: A numerical example for P'(0.01,0.01).

equal to 10 (an at-the-money American call).

Using expression (4.2) and evaluating different possibilities, one can find that
the optimal value accurate to six digits is 2.435125 and attained using the fol-
lowing optimal exercise strategy: exercise if the stock price evolves to node 1 at
t = 1, exercise at t = 2 if the stock price evolves to node 5. Notice that the
optimal strategy is a path dependent exercise strategy. In fact, the two path
independent exercise strategies that are of interest in this example, e.g., exercise
only at t = 1 or only at time ¢ = 2 are both sub-optimal with objective function
values 1.812500 and 2.415296, respectively. This example is contradicting with
a well known result in the literature which shows its never optimal to exercise
an American option in the absence of dividend payments. However, the example

shows that, in the existence of transaction costs this result remains no more valid.
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Now, we are ready to derive a formulation for the lower hedging price. First
let us deal with the inner minimization for a fixed exercise strategy that is treated
as a constant. We use binary variables e, to denote exercise decisions, i.e., the
ACC is exercised at node n if e, = 1, and is not exercised at node n if e, = 0.
Since the ACC can only be exercised once over each path (scenario) in the tree,

one has to enforce the restriction:

> em<1,VYneN. (4.3)
meA(n)U{n}
The above is in one-to-one correspondence with the stopping time definitions in

section 3.2. We use E to denote the set of all binary valued e,, n € N satisfying
(4.3).

Now, for a given set of fixed values e for e,, n € N respecting the above
restriction (4.3), since the optimal exercise strategy is a not necessarily a path
independent strategy, we must allow for the possibility that all time periods
1,...,T are eligible to be picked as the stopping time 7 over a given path as long
as there is at most one exercise period over all paths. Therefore, we express the
inner minimization problem in (4.2) taking into account all exercise possibilities

as:
min E ane, E + e Fo

qn,neN
neN\{0}

subject to the restrictions

GSi(1—p) < Z GnSh, < @uSE(L+ M)Vn € NVt <t/ and t' € [1,...,T],

meD(n,t')
= Y quVneEN,VtE,....T—1],
meC(n)
g =1,
qn 2 O, Vn € NT.
Let Q(\, ) denote the set of probability measures Q = {g, }nen satisfying the

above constraints. Hence, we can rewrite expression (4.2) as:
max min Z qnenF, + eoFpy (4.4)

eeE Qeo(\pu) N0}
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Now, attaching Lagrange multipliers by to the last constraint, b, to each of the
second set of constraints for n € A"\ {0}, and (non-negative) d*. and u!, to each

of the first set of constraints, we obtain the Lagrange function

Lgn,bp,ul,db) = Z qnenF +eg oy +
neN\{0}
T
I daSi(l—pw) = > qnSl+
t'=1 t<t’ neNy meD(n,t')

SN ull Y amSh — @S+ N +

t'=1 t<t’ neN; meD(n,t’)

Z bn(Gn — Z @m) + bo( Z qm —

neN\{0} meC(n) meC(0)

and are ready to compute the dual problem through

/ /
max min L(qn, bn, ul,, db).
bn un dn qn

After rearranging and minimizing the Lagrange function separately over each

gn > 0 for all n € N we obtain the Lagrange dual problem

T
max —bg+ Z (dbSo(1 — 1) — uhSo(1+ X)) + ef Fy

t=1

st by < Rbagy + e Fn+ Y Sa(ull™ — di)+
meA(n)
T
> Sal(L = p)dl, — (1+XM)ul),Vn € N,
t=t(n)+1
0 < Rbriny +€Fu+ Y Su(up, —dr), Vn €Ny
meA(n)

with the non-negativity constraints on all the variables u! , d" , for all n € N and
allte0,1,...,T].

The above problem combined with the outer maximization over e € E yields
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the problem PY(\, 1)

T
max  —by + » (dhSo(1 — ) — ufSo(1+ A)) + eoFo

t=1
st by < Rbagy +enFu+ Y Sa(ul —di)+
meA(n)
T
> Su((1 = pydl, — (1+N)ul), Vn € N,
t=t(n)+1
0 < Rbony +€aFrt+ Y Salup, —dh), V€ Ny
meA(n)
1> Z em V1 € Np
me A(n)u{n}

en € {0,1}, VneN

and the non-negativity constraints on all the variables u?, d!,, for all n € N and
allte0,1,....7].

Hence, we have proved the following.

Theorem 8. Ny, (A, 1, F) = opt(P(\, 1)).

This problem has a very clear hedging interpretation. We view the non-
negative variable u! as a long position in the risky asset acquired at node n for
liquidation at time period ¢. Similarly we let non-negative variable d' denote a
short position in the risky asset open at node n to be closed at time period t. We
view b, as the cash position at node n. The first set of constraints express the
following balance requirement for each “interior” (non-leaf nodes also excluding
the root node) node: cash available from the parent node (magnified by the inter-
est) plus pay-off from the option in case of exercise and proceeds from short sales
after accounting for transaction costs, and proceeds from liquidation of earlier
long positions (without incurring transaction costs) should be sufficiently large
to balance new long positions destined for liquidation in future time points (with
transaction costs) and closing of short positions earlier established at no transac-
tion cost. A similar interpretation holds for the leaf nodes where no transaction

costs are involved, since no new positions are acquired. These hedging constraints
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are in one-to-one correspondence with the hedging strategy of the buyer as an-
nounced on p. 52-53 of [17]: the buyer starts out by borrowing a certain amount
at time 0 to acquire the ACC, and chooses a path dependent exercise strategy
from which he/she obtains a certain pay-off with which to close his/her initial
debt.

Now, let us return to the numerical example introduced at the beginning
of this section. When we solve the problem as a mixed-integer programming
problem we obtain the following hedging strategy: short sell 0.502917 shares of
stock at time ¢ = 0 to be closed (without transaction costs) at time ¢ = 1, with
the proceeds of this short sale (0.502917 x 9.9) acquire the American call for
2.435125, and keep the remaining 2.54375 in the cash account. If the stock price
moves up at time ¢ = 1, exercise the option to collect 5, and using the cash
position coming from node 0, close the short position. If the stock moves down,
do not exercise, close the short position from node 0, and acquire a new short
position in the stock of the order of 1/3 shares to be closed at time ¢ = 2. This
leaves 1% in cash. If the stock moves up to 14, exercise the option, and with the
total cash close the short position in the stock. If the stock price moves down to

4, just close the short position using the available cash.

Suppose that the stock makes dividend payments D,, at node n. Then model
PY(\, ) is modified as follows:

T
max  —bo + » (dhSo(1 — ) — ufSo(1+ A)) + eoFo
t=1

st. by < Rbrgn) +enkiy + Z (S, + Dn)(ut(n) _ dt(n))+

, meA(n) " "
> Su((1 = pydl, — (1+N)ul,), Vn € N,
t=t(n)+1
0 < Rbegy + enFo+ Y (Su+ Do)(ul, —dl), Vn €Ny
meA(n)
1> Z em V1 € Np
meA(n)U{n}

en € {0,1},VneN

and the non-negativity constraints on all the variables ul,, df,, for all n € N and
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all t € [0,1,...,T]. Now, for a given set of fixed values for e,, n € N the inner

minimization problem in (4.2) becomes:

qﬂ%\/ Z gnenk, + ey
neN\{0}

subject to the restrictions

WS (L= 1) < > (S + D) < quSi(1+ MVn € N, VE <,

meD(n,t’)

and t' € [1,...,T],

=Y qu¥neN, Ve, .. T—1]

meC(n)
qo = 17
gn > 0,Vn € Nr.

Let Qp(A, ) denote the set of probability measures Q satisfying the above con-
straints. Hence, in the presence of dividend payments we can modify the ex-
pression (4.2) for the lower hedging price, now referred to as hl (A, u, F). Let

low

Pp (A, p, 7) denote the set of all measures such that P-almost surely we have
Sr(1—p) <EF[SF + DN < SF(1+ NVt < 7. (4.5)
Hence, we state the following theorem without proof.

Theorem 9.

d
hlow

(A, p, F) = max  min Z qnenE) + e Fp
e QeCp () oy

—max min EF[F].
7€T PePp(A,u,7)

In the next section we investigate a relaxation of P'(\, i) in connection with

randomized stopping times.
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4.3 Randomized Stopping Times and Relax-

ation

Chalasani and Jha [17] (section 9) and Pennanen and King [48] obtained pricing
expressions for the seller of an ACC in terms of randomized stopping times. A
randomized stopping time [2, 17] is a non-negative adapted process (in our case,

node function) Z with the property that on every path w one has

> Z(w) =1

That is, the sum of random variables Zy, Z1, ..., Z7 is equal to 1 on every path.
When a randomized stopping time Z is used to describe an exercise strategy, we
can think of the value Z,, at node n as the probability of exercise at node n given

that node n has been reached.

Stopping times are degenerate randomized stopping times. A stopping time
7 corresponds to the randomized stopping time Z7 whose values are restricted to
lie in the set {0, 1} and defined as follows for any w € Q, and ¢t € {0,1,...,T}:

Z7(w) = { 1 ifr(w) =t,

0 otherwise.

The ordinary (or pure) stopping times are extreme points of the convex set of
randomized stopping times, or the set Z of randomized stopping times is the

convex hull of the set 7 stopping times.

In our setting the set E of randomized stopping times corresponds to the set
of e, such that e, € [0,1] for all n € N satisfying the inequalities (4.3). The
practical meaning of passing from stopping times to randomized stopping times
as allowable exercise strategies is the possibility of different exercise times for a
portfolio of identical ACCs. For a single ACC, a randomized stopping time based
exercise strategy can be interpreted as the probabilities of exercise at nodes n

with a fractional e,, value.

Chalasani and Jha also proposed in Remark 12.3 of [17] a formula for the lower

hedging price using randomized stopping times. The use of randomized stopping



CHAPTER 4. PRICING ACC UNDER TRANSACTION COSTS 74

times in the hedging policy as advocated by Chalasani and Jha [17] implies the
following linear programming relaxation P%(\, 1) of PY(\, p):

T
max —bg + Z(dBSg(l — ) —upSo(1 4+ N)) + eoFy
t=1

s.t. by < Rbﬂ(n) + e,y + Z Sn(u;(zn) - dir(zn))‘i'

. meA(n)
> Sal(L— p)dl, — (14+M)ul),Vn € N,
t=t(n)+1
0 < Rbyny +eaFr+ Y Salup, —dh), V€ Ny
meA(n)
1> Z em V1 € Np
meA(n)U{n}

e, € 0,1, VneN

and the non-negativity constraints on all the variables u?, d%, for all n € N and
allt € [0,1,...,T]. In other words, the relaxation P?(\, 1) leads to a new price
) (N s F) := opt(P?(\, 1)). Chalasani and Jha in Remark 12.3 of [17] hinted
that a relaxation of hy,, (A, 1, F') based on randomized stopping times yields the
same value as Ry, (A, 1, F'). They did not give an explicit formulation nor a proof
of this statement. However, in our relaxation using randomized stopping times,
one cannot in general expect to find an integer optimal hedge policy by solving
(A, i, F). To see

this it suffices to go back to the small example of section 4.2. When we solve this

the relaxed problem, i.e., hipy (A, , F') can be smaller than hj
example as a linear program, we obtain an optimal value equal to 2.450000, which
is higher than the value we obtained earlier. This higher value is obtained by the
following fractional exercise policy: 2/3 exercise at node 1, and 1/3 exercise at

node 3 or node 4, and full exercise at node 5 as before.

On the other hand, in all computational experience, the linear programming
relaxation is either exact, or leads to very small duality gaps that are easily closed
by off-the-shelf state-of-the-art solvers.

It is clear from the example above that it may be beneficial to the holder of a
portfolio of identical ACCs to exercise portions of the portfolio at different time

points.
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4.4 The Frictionless Case

We know from Chapter 3 that when A = pu = 0 (the frictionless case), the linear
programming relaxation model AP2 of AP1 yields the same optimal value as

AP1. We prove a similar result under this setting here.

Theorem 10. The optimal value of P%(0,0) is equal to the optimal value of
PY(0,0). Furthermore, there exists an optimal solution to P%*(0,0) with e, €
{0,1}, Vn e N.

Proof. We prove directly the second statement which implies the first one. As-
sume that P%(0,0) has an optimal solution with the component e* of the form
ex ¢ {0,1} for some n € N.

Case 1: We will first consider the case where e* has a value not equal to 0 or
1 for the root node of the tree (i.e. ef ¢ {0,1}). In order to deal with this case,

we will form the dual problem of P?(0,0) which can be formulated as

neNy
s.t. Z Ym = 1/R
meC(0)
Z Ym = Yn/R, Yn € N\ NrU{0}
meC(n)
Z YmSm = YnSn, Y1 € N\ N
meC(n)
UnFo— Y <0, VneN
meD(n)NN

Yny Zn 207 vneNT-

We have an optimal solution to P%(0,0) with e ¢ {0,1}. Then complementary
slackness implies that the fourth constraint of the above program corresponding
to the root node should be satisfied as an equality for the corresponding optimal
solution of the dual problem (i.e., yoFo — >, cnr 2m = 0). Since yo = 1, we have
Fo=23 e Ny #m- Thus, the optimal solution to the dual problem is found to be
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Fy. Then, by strong duality we know that Fy is the optimal value of P%(0,0).
One can easily show that a feasible solution to P?(0,0) is ¢g = 1, and all the
other variables as zeros with objective value Fj. This is an optimal solution with

e, €{0,1}, Vn € N, thus the proof for the first case is complete.

Case 2: Now assume that optimal solution e* is such that ef = 0 and e, ¢
{0,1} for some n € N. Let I = {ile; ¢ {0,1},i € N}. Let G = {g|g €
I,A(g) NI ={g}}. Let w be the element with the smallest time index (that is
closest to the root) in G. Note that e =0, V n € A(w) in this case. Also, let k

denote the time index for node w.

Claim: One can always find an optimal solution to P?(0,0) with e, € {0,1}
and e; = 0 for all i € A(w).
To prove the claim we will consider the following two linear programs to which
we will refer as AR! and AR? respectively, where we define A% = Ny N D(w),
and the symbols with * refer to variables that are treated as constants (within

the confines of the proof) :
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max e,

subject to

T
b <RD (e Furt S Sa(ull—d00) 4378, (d!, — ut),
meA(w) t=t(w)+1

T
b <Rb ‘I‘enF +ZS n)* dt n)* + ZS t(n dfr(zn)) +an(dt _
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meA(w) meA(n)\A(w)
Vn € D(w) \ {w}
0< Rbagy + enFr+ > Sulul—di)+ Y Su(ul,—dh), Vne Ny
meA(w) meA(n)\A(w)
1> Z em V¥V eNP
meA(n)U{n}

e, >0, Vn e Dw),

min e,

subject to

b SRb () +ewFurty Sl +ZS

meA(w) t=t(w)+1

by SRbainy+ enFo +>_Sa(uld™ = di") + > 8, (ull® — di) +> S, (dl, — u

meA(w) meA(n)\A(w) t=t(n)+1

0 < Rbeny +eaFr+ > Sululy —dir)+ Y Saluh —dh), Vne Ny
meA(w) meA(n)\A(w)
1> Z em Ve Ny
meA(n)U{n}

e, >0, VneDw).
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For convenience we collect the values of b,, u! and d!, in a vector §. Let us
denote the optimal solution of AR! as 07) (w), €D(w) and the optimal solution of AR?
as Qp(w), ép(w)- If the optimal value of AR is 1, then we see that (Hp(w), ON\D(M)),
(€n(w), EAr\p(w)) form another optimal solution of P%*(0,0) with e,, = 1. For this
optimal solution we have e,, = 1 and ¢; = 0, Vi € A(w) (we have also e¢; = 0, for
all i € D(w)\{w} for this solution). Similarly, if the optimal value of AR? is 0,
then (ép(w),ﬁj\/\p(w)), (éD(w)s EArp(wy) form another optimal solution of P?(0,0)
with e,, = 0. Then, for this optimal solution we have e; = 0, for all i € A(w).
So, our claim will be proved if we can show that AR*’s having an optimal value
greater than 0 implies that the optimal value of AR! is 1. To show that we will
consider the dual problems of AR! and AR?. The dual problems DAR! and
DAR? of AR' and AR?, respectively, are

DYzt | BBy +Sw Y Z — dt)

neNy meA(w) t=t(w)
s.t. R( Z Ym) = Yn, V1 € D(w) \ N
meC(n)
Z YmSm = YnSn, V1 € D(w) \ N
meC(n
—Yuwl'w + Z zp > 1
neNp
UnFu— Y zm <0,VneDw)\ {w}
meD(n)NNr

2, >0, VneNF,
Yn >0, Vn € Dw),
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max Z Zn — Yuw | ROy + Sw Z Z —d)

neNy meA(w) t=t(w)
5.t R(Y . Ym) = Yo V1 € D(w) \ N
meC(n)
Z YmSm = YnSn, Y1 € D(w) \ Ny
mec(n)
—YwFw + Z Zp > —1
neNy
UnFn— Y zm <0, VneDw)\ {w}
meD(n)NNr

2, >0, Vne NP,
Yn >0, VneDw).

We will denote the optimal value of AR? by «, which is equal to the optimal
value of DAR?. We know that o < 1. Assume that o > 0. Then by complemen-
tary slackness we know that the third constraint of DAR? must be satisfied as
an equality at the corresponding optimal solution, since e,, # 0 at the optimal
solution of AR%. Then at the optimal solution of DAR?, we have

0> ZN: Zn + Yu( RV () + Suwbr) = —Yulw + XN: Zn = —1, (4.6)
neNy neNy

where we denote by 07, the term >°_ ., Zt s(w) (U, — dyy). Then, using the
second inequality of (4.6) we have
STz YRy + Subiy) > —vuFu+ Y 2
neN neNy
(Rb* + Sy - w(w)) > —Yuwlw
ROy + Sw - Onuwy 2 —Fo

where the last step follows from v,, > 0. Then, for DAR! at any feasible solution

we have

1< —yuFu+ D 20 < Yo B + Suli) + > 2
neN neNP
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whence we see that the optimal solution of DAR! cannot be less than 1. It is
easy to see by AR! that optimal value of DAR! cannot be greater than 1 either.
Hence, we conclude that the optimal value of DAR' and therefore that of AR!,
is 1. This completes the proof of our claim.

Using the claim we see that there always exists an optimal solution to P?(0,0)
with e, € {0,1} and e; = 0 for all 7 € A(w). So, one can eliminate all the nodes
having time index k£ in I by applying the above procedure. Then, proceeding
successively with the nodes in (k + 1)*, (k + 2)"...(T)" time indices one can
find an optimal solution for P%(0,0) with e, € {0,1}, V n € N. We note that at
each step the cardinality of I might increase, but no nodes with a time index less
than or equal to that of the node eliminated at that particular step can appear

again in I at the next step. This completes the proof of the theorem. O

The above theorem implies the formula

_ i EQ[F
hiow (0,0, F) max min | E [F7Z]. (4.7)

Following the same proof technique as in Theorem 4 of [48] we can also interchange
the max and the min in the above expression, and replace randomized stopping
times with ordinary stopping times as a result of the theorem above. Notice that
Q(0,0) coincides with the set of measures M that make the stock price process
a martingale [17, 40, 48], i.e., the set of {g¢,}, for all n € N such that

@Sy =Y Sham¥n €N, Vte0,... . T—1],

meC(n)

=Y quVneEN,VtE,.. .. T—1],
meC(n)

q0:17

gn > 0,Vn € Nr.
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Hence, in an arbitrage free market we re-obtain the well-known expressions
hiow (0,0, F) = in E9[F}
oul0:0.F) = 925 oo 1

= max min E¢[F}]
ZeZ QeM

= max min E¢[F?]
T€T QeM

= min max E¢[F’]
QeM 1eT

= min max EQ[F}].
QeM zeZ

We note that the proof of the previous theorem also gives a procedure for con-
structing an integer optimal hedge policy by solving a series of smaller linear
programs. Finally, the theorem remains valid in the presence of dividend pay-

ments as can be routinely verified.

4.5 Another Formulation

In an unpublished manuscript [48], Pennanen and King proposed another, more
compact (with a reduced number of continuous variables), mixed-integer pro-
gramming formulation for computing the buyer’s price to an American claim in a
frictionless market. This is the formulation that we have used in Chapter 3. In the
present section we extend their formulation to include proportional transaction

costs.

The Pennanen and King formulation uses “position” variables 6,, for the stock
as opposed to the “flow” variables u!, d of P3(\, u). Translating this formulation

to our setting we pose the hedging problem of the buyer of ACC as the following
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problem P3(\, 1)

max  —fy — Sty — Sogo(bo, A, 1) + Foeo
st.  Fuen = By — RBzm) + S, (6, — Qn(n))—l-
Sy n(On — Oniny, A1), ¥n € N
Bn 4+ Spb,, ¥V n € Np
Z em, V1 € Ny

meA(n)U{n}
en € {0,1}, Vn e N,

(AVARVAN

where #,, represents the portfolio position in the stock at node n, (3, represents

the cash position at node n, ¢, is the transaction cost function:

AL ifz >0

—pux  otherwise

qbn(x, )‘aﬂ) = {

and the first set of constraints represent the balance of monetary flow at each
node of the tree except the root node, i.e., the self-financing portfolio transac-
tions. The second set of constraints expresses the requirement to finish off with
non-zero positions at all leaf nodes. The formulation is consistent with the arbi-
trage definitions of [48] after the necessary adjustments for transaction costs are
made. The buyer price is finite in an arbitrage free market; [48]. Note that this
formulation allows to take positions in the final period, and penalizes all changes

of portfolio unlike in assumptions (b) and (c) of P'(\, u).

While the above problem involves a nonlinearity, it can be transformed into
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an equivalent linear integer programming model as in [23]:

max  — 0By — Sobo — So(AGG + 1l ) + Foeq

s.t. F.e, =03, — Rﬁﬂ(n) + Sn(ﬁn — Qﬂ.(n))—i—
Su(AGT + ¢, )V n e N
o =Gy —Co

0 — Oy = CF — ¢, VneN, te{l,...,T}
0<B,+8,0,,VneNp
Z em, Vn € Np

meA(n)U{n}
T (>0, VneN
e, € {0,1}, VneN.

IV IA

The optimal value is the largest amount that a potential buyer can borrow for
acquiring a given American contingent claim F'. The buyer’s strategy is to con-
struct a least costly (adapted) portfolio process under transaction costs to cover
his/her debt replicating the proceeds from the contingent claim by self-financing
transactions using the market-traded securities in such a way to avoid any termi-
nal losses. The integer variables and related constraints represent the one-time
exercise of the American contingent claim as in previous sections. Pennanen and
King [48] elaborate on the formulation without transaction costs, and establish
that any price lower than the optimal value of P3(0,0) leads to an arbitrage.
Dividend payments can be accommodated by subtracting the term 0, (,)D,, from

the right hand side of the first set of constraints.

The two formulations P'(\, 1) and P3(\, 1) are neither identical nor equiv-
alent. To see this, it suffices to observe that model P3(\, ) does not respect
assumptions (b) and (c) of model P'(\, x), namely that no transaction cost is
involved in liquidating a position to settle a debt and no positions are taken
at the leaf nodes. With model P3(\, i), all changes in the stock positions are
penalized through transaction costs. Solving the same valuation example as in
section 4.2 using P3(\, 1) we obtain a buyer’s price of 2.416151 which is smaller
than the price 2.435125 we obtained using P'(\, ). Since P?(\, i) removes as-
sumption (b) it leads to bigger losses in transaction fees, and renders the same

American call option less valuable. Note that P3(\, i) in its linearized form, has
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t=0 t=1 t=2 t=3

Figure 4.2: A numerical example for P3(0.01,0.01).

four variables per node, as opposed to P1(\, ) where each node n contributes
1+ 2(T — t(n)) continuous variables to the total. However, model P3(\, i) has
an additional set of [Nr| 4 |N| constraints.

It is a legitimate question to ask whether the linear programming relaxation
PY(\, p) of P3(\, u) is exact in the sense of resulting in the same price as P3(\, p).
The answer is negative. The numerical example for the financial market with zero
interest rate and stock prices evolving as in Figure 4.2 (the numbers on top of
the nodes are the stock prices and the numbers inside the nodes are the node
numbers) for an American call option with strike equal to 10 gives a buyer’s price
of 2.118810 while the LP relaxation gives a fractional optimal solution with value
2.142805.
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Another question of interest is the nature of the relationship between P3(0,0)

and P1(0,0). These models are in fact equivalent, although not identical.

Theorem 11. opt(P(0,0)) = opt(P?(0,0)) = opt(P3(0,0)) = opt(P*(0,0)).

Proof. From Theorem 6, we know that opt(P3(0,0)) = opt(P*(0,0)). We also
know from Theorem 10 of this chapter that opt(P(0,0)) = opt(P%(0,0)). How-
ever, after some evident simplifications the linear programming dual of P4(0,0)

is the problem

neNt
s.t. Z Ym = 1/R
meC(0)

RO ym) = tn, VR €N\ NpU{0}
meC(n)
Z YmSm = YnSn, Y € N\ N

meC(n)

Y Fl, — Z 2 <0, VnenN
meD(n)NNT
Yns2n > 0, V' € N,
which is exactly the dual of P?(0,0). O

In closing the section, we note that the observation opt(P3(0,0)) =
opt(P*(0,0)) was first proposed in [48] and proved in Chapter 3. It was also
communicated to us [63] that the algorithms of Roux and Zastawniak [58] yield
essentially a similar conclusion for the frictionless case, namely that the friction-
less case is computationally “easier” although this is not stated explicitly in their
paper. The reader is reminded, however, that they are using path independent

strategies.
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4.6 Conclusion

In this chapter, departing from a formula in [17] for the lower hedging price of an
ACC, we developed an integer programming formulation for computing the price
in question as well as an optimal hedge policy for the buyer of the ACC in finite
state discrete time markets with transaction costs. The formulation has a linear
relaxation which fails to be exact, but which is, at least in our experiments, very
close to the integer optimal value. The linear relaxation turns out to be exact
in the absence of transaction costs. We also proposed another formulation which
relaxes an assumption of [17]. The second formulation has similar properties. A
common feature that emerges from these formulations is that in the presence of
proportional transaction costs, the holder of a portfolio of identical ACCs might
have an incentive to exercise partially his/her claims at different time points

whereas this incentive disappears in frictionless markets.



Chapter 5

Conclusion

In this chapter we firstly summarize our findings in our thesis. Then we show
counterexamples for some extension of our work. Finally, we point possible further

research directions.

5.1 Concluding Remarks

In this thesis we studied the problem of pricing European and American type
contingent claims in a multi-period discrete-time, finite probability space frame-

work.

In the second chapter, we studied the problem of pricing European contingent
claims under no A\ gain-loss ratio opportunity condition. This condition is more
restricted than the classical no-arbitrage condition in the sense that it eliminates
a greater set of portfolio strategies from the market. We analyzed the resulting
optimization problems using linear programming duality and obtained results
based on martingales. We showed that the pricing bounds obtained from our
analysis are tighter than the no-arbitrage pricing bounds. This result, in line
with the Bernardo and Ledoit [5] single period results, was also obtained for a

multi-period model in the computationally more tractable linear programming

87
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environment. We derived a program in order to obtain the lowest level of the risk
aversion parameter for which the option pricing problems would yield a legitimate
pricing interval. Besides, we showed that for a limiting value of risk aversion
parameter that can be computed easily, a unique price for a contingent claim
in incomplete markets may be found although this is not guaranteed. We also

extended our results to markets with transaction costs.

In the third chapter we presented an alternative proof of an interesting and
important result announced by Pennanen and King [48] on the computation of the
buyer’s price of an American contingent claim by linear programming instead of
0-1 integer programming. We included a numerical example that helps illustrate
some important arguments related to our proof. We obtained the martingale
result for the buyer’s price of the American option. We also showed that the

result is unaffected by dividend payments.

In the fourth chapter, departing from a formula in [17] for the lower hedging
price of an ACC, we developed an integer programming formulation for computing
the price in question as well as an optimal hedge policy for the buyer of the ACC
in finite state discrete time markets with transaction costs. The formulation has a
linear relaxation which fails to be exact, but which is, at least in our experiments,
very close to the integer optimal value. The linear relaxation turns out to be exact
in the absence of transaction costs. We also proposed another formulation which
relaxes an assumption of [17]. The second formulation has similar properties. A
common feature that emerges from these formulations is that in the presence of
proportional transaction costs, the holder of a portfolio of identical ACCs might
have an incentive to exercise partially his/her claims at different time points

whereas this incentive disappears in frictionless markets.

5.2 Counterexamples

In this section, we will exhibit some counterexamples for some future research

directions which are based on our findings in the previous chapters of this thesis.
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5.2.1 Expected Gain-Loss Pricing and Hedging of Amer-

ican Contingent Claims

One of the most straightforward research directions to go under the light of our
findings in this thesis is combining Chapter 2 and Chapter 3 in order to have
an improved result for the problem of pricing ACCs in incomplete markets. In
Chapter 2 we consider the problem of pricing an ECC under the no A gain-loss
ratio opportunity condition. In Chapter 3 we deal with the problem of finding
the lower bound of the pricing interval of an ACC in an arbitrage-free market.
As we claim in Chapter 2, the A\ gain-loss ratio opportunity condition is more
restrictive than the arbitrage condition, hence using it as a basis for the pricing
problem of an ECC, one can obtain a tighter pricing interval for the claim that

is to be priced. Actually this is also true for the ACC pricing problem.

The mixed-integer programming formulation that should be used in order to
find the buyer’s price of an ACC under no A gain-loss ratio opportunity condition

is as follows:

max V
s.t. So -0 = Foeg —V
Sp - (On — Ox(n)) = Fren, VReEN, 1<t <T
Sp b, —xr+z, =0, VneNyp,

anxZ—)\anm;zO

neNT neNy
Z em <1, Vn GNT
meA(n)
zt x>0, Vn e Ny,

n’»n

e, € {0,1}, VnenN.

Note that we use the notation of Chapter 3 in this formulation. The main
question to investigate here is (as it was for the problem in Chapter 3) whether
the problem obtained by relaxing the variables e, n € N. of this mixed-integer
program is equivalent (i.e. both problems have the same optimal value) to itself or

not. Because, if the relaxation problem, which is a linear programming problem,
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is equivalent to the original problem, we can obtain similar results to those we
have obtained in Chapter 3 for this new setting. However our studies resulted with
a counterexample to this idea which shows that the original and the relaxation
problems are not equivalent. Let us consider the example in Figure 5.1. In this
example there is only one bond and the underlying asset in addition to the ACC
to be priced. The price of the bond is equal to 1 at each node. The numbers
inside each node in the tree represents the price of the stock at that node. For
the non-terminal nodes, the numbers above each node represents the payoff of the
ACC (if exercised) at that node. For the terminal nodes, the first number next
to the node represents the payoff of the ACC and the second number represents
the probability associated with that node.

12; 1/18

10; 1/36

0; 1/18

8;1/18

5; 1/36

4;1/9

0;1/2

3.21875

2;1/12

5;1/12

Figure 5.1: A counterexample for the problem of pricing ACCs under no A gain-
loss ratio opportunity condition

If we solve the above optimization model by using the parameter values in
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Figure 5.1 and using A\ = 17 we obtain an optimal result of 5.176. Besides,
if we solve the linear relaxation of the above optimization problem using the
same parameters, we obtain an optimal solution of 5.179. This proves that two
optimization problems are not equivalent. Hence, we cannot progress in the
manner of Chapter 3 under this setting. However, we discuss a different approach

for this case in the next section as a possible future research direction.

5.2.2 Pricing of ACCs with Multiple Exercise Rights

In this thesis we consider the problem of pricing American and European type
contingent claims. However there are many types of contingent claims which are
traded in the market. Some of these contingent claims give multiple exercise op-
portunities to the holder of the claim. Swing options, which are mostly used in
energy markets are an example of such type of contingent claims. As an introduc-
tory step to the pricing problem of these contingent claims we have considered the
problem of pricing an ACC with multiple exercise rights under no-arbitrage con-
dition. If the holder of the contingent claim has k (note that k¥ < T+ 1 where T
denotes the last period) number of exercise rights until the maturity of an ACC,
the buyer’s pricing problem becomes the following mixed-integer programming

problem:

s.t. So 0y = Fpeg =V
S+ (On — Or(n)) = Fren, VReN, 1<t <T
Sy -0,>0, VneNy
> em <k VneNy

e, € {0,1}, Vn e N.

We use the notation of Chapter 3 in this formulation. We consider the linear

relaxation of this problem which is obtained by just removing the last constraint
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and adding 0 < e, < 1;V n € N instead of that. We have expected that these
two problems would be equivalent. If this was the case we could use our results
as a basis for our future studies in swing options. However, the counterexample
represented by Figure 5.2 shows that two problems do not necessarily have the
same optimal value. In this example there is only one bond and the underlying
asset in addition to the ACC to be priced. There are 2 exercise rights for the
owner of this ACC. The price of the bond is equal to 1 at each node. The numbers
inside each node in the tree represents the price of the stock at that node. The
numbers next to the nodes represent the payoff of the ACC (if exercised) at that

node.

t=0 =1 =2

Figure 5.2: A counterexample for the problem of pricing ACCs with multiple

exercise rights

The optimal value of the original mixed-integer programming problem is 4.636

and of the linear relaxation problem is 4.882 with the parameter values shown in
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Figure 5.2. This proves that the two optimization problems are not equivalent.
Therefore, we need to develop the problem in a different direction as it is discussed

in the next section.

5.3 Future Research Directions

There are still many aspects to be examined regarding the pricing and hedging
problems for ACCs. Under the light of the counterexamples of the previous
section we can say that tackling with the difficulties of integer programming seems
inevitable for the progress of the research in the area. As a future research, we
can examine the problems of pricing ACCs under no \ gain-loss ratio opportunity
condition and pricing ACCs with multiple exercise rights in detail, in order to
obtain efficient cuts and solution algorithms for the mixed-integer programming
problems. Determining the complexity of the problems is another issue that we

can examine.

There is another type of contingent claim introduced by Kifer [39] which is
called a game (Israeli) option. This contingent claim resembles an ACC. The
holder of the claim has the right to exercise and get the payoff of the claim
whenever he wants until the maturity of the claim. But for the game options, the
writer has the right to terminate the contract at any time until maturity of the
claim, whence he pays the payoff of the claim in addition to a penalty cost. They
are called game options because the conditions of the contract looks like a game
between the buyer and the seller. Kifer [39] examines the problem in both discrete
and continuous time settings under no-arbitrage condition however they use one
stock and one bond in their model. We can examine the problem in our stochastic
scenario tree setting in order to determine the pricing interval for the claim. The
first step would be constructing the mixed-integer programming model. Then,
we would again work on the relaxations in order to prove that solving a linear
programming problem is sufficient to determine the pricing interval. Failure of
this step would lead us to the search for efficient cuts and solution algorithms for

the problem.
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