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Hüseyin Gökhan Akçay
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ABSTRACT

HIERARCHICAL SEGMENTATION, OBJECT
DETECTION AND CLASSIFICATION IN REMOTELY

SENSED IMAGES

Hüseyin Gökhan Akçay

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Selim Aksoy

July, 2007

Automatic content extraction and classification of remotely sensed images have

become highly desired goals by the advances in satellite technology and computing

power. The usual choice for the level of processing image data has been pixel-

based analysis. However, spatial information is an important element to interpret

the land cover because pixels alone do not give much information about image

content.

Automatic segmentation of high-resolution remote sensing imagery is an im-

portant problem in remote sensing applications because the resulting segmenta-

tions can provide valuable spatial and structural information that are complemen-

tary to pixel-based spectral information in classification. In this thesis, we first

present a method that combines structural information extracted by morphologi-

cal processing with spectral information summarized using principal components

analysis to produce precise segmentations that are also robust to noise. First,

principal components are computed from hyper-spectral data to obtain represen-

tative bands. Then, candidate regions are extracted by applying connected com-

ponents analysis to the pixels selected according to their morphological profiles

computed using opening and closing by reconstruction with increasing structur-

ing element sizes. Next, these regions are represented using a tree, and the most

meaningful ones are selected by optimizing a measure that consists of two fac-

tors: spectral homogeneity, which is calculated in terms of variances of spectral

features, and neighborhood connectivity, which is calculated using sizes of con-

nected components. Experiments on three data sets show that the method is able

to detect structures in the image which are more precise and more meaningful

than the structures detected by another approach that does not make strong use

of neighborhood and spectral information.
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Then, we introduce an unsupervised method that combines both spectral

and structural information for automatic object detection. First, a segmenta-

tion hierarchy is constructed and candidate segments for object detection are

selected by the proposed segmentation method. Given the observation that differ-

ent structures appear more clearly in different principal components, we present

an algorithm that is based on probabilistic Latent Semantic Analysis (PLSA)

for grouping the candidate segments belonging to multiple segmentations and

multiple principal components. The segments are modeled using their spectral

content and the PLSA algorithm builds object models by learning the object-

conditional probability distributions. Labeling of a segment is done by comput-

ing the similarity of its spectral distribution to the distribution of object models

using Kullback-Leibler divergence. Experiments on three data sets show that our

method is able to automatically detect, group, and label segments belonging to

the same object classes.

Finally, we present an approach for classification of remotely sensed imagery

using spatial information extracted from multi-scale segmentations. Different

structuring element size ranges are used to obtain multiple representations of an

image at different scales to capture different details inherently found in different

structures. Then, pixels at each scale are grouped into contiguous regions using

the proposed segmentation method. The resulting regions are modeled using the

statistical summaries of their spectral properties. These models are used to clus-

ter the regions by the proposed grouping method, and the cluster memberships

assigned to each region at multiple scales are used to classify the corresponding

pixels into land cover/land use categories. Final classification is done using de-

cision tree classifiers. Experiments with three ground truth data sets show the

effectiveness of the proposed approach over traditional techniques that do not

make strong use of region-based spatial information.

Keywords: Remote sensing images, hierarchical segmentation, unsupervised ob-

ject detection, multi-scale classification, spatial information.



ÖZET

UYDU GÖRÜNTÜLERİNDE SIRADÜZENSEL
BÖLÜTLEME, NESNE SEZİMİ VE SINIFLANDIRMA

Hüseyin Gökhan Akçay

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Selim Aksoy

Temmuz, 2007

Yüksek çözünürlükteki uzaktan algılamalı uydu görüntülerinde bölütleme

kent uygulamalarında önemli bir problemdir çünkü elde edilen bölütlemelerle

sınıflandırma için piksel tabanlı spektral bilginin yanında uzamsal ve yapısal bil-

giler elde edilebilir. Bu tezde, biçimbilimsel işlemlerle çıkarılan yapısal bilgi ve

ana bileşenler analizi (ABA) ile özetlenen spektral bilgi kullanılarak gürültüden

etkilenmeyen bölütler elde eden bir yöntem sunduk. Yapılan deneyler yöntemin

görüntü üzerinde komşuluk bilgisini ve spektral bilgiyi beraber kullanmayan başka

bir yönteme göre daha düzgün ve anlamlı yapılar buldugunu göstermiştir.

Daha sonra, birden fazla ABA bandında ortaya çıkan sıradüzensel

bölütlemeler arasından anlamlı yapılara denk gelen bağlı bileşenleri otomatik

olarak seçmek için ise ögreticisiz bir yöntem sunulmuştur. Bu problem, verilen bir-

den çok nesne/yapı için farklı sıradüzensel bölütlemelerden gelen çok sayıda aday

bölgeden oluşan uzayda bir gruplama problemi olarak görülebilir. Bu amaçla,

gruplama problemini çözmek için olasılıksal Gizli Degişken Analizi (OGDA) kul-

lanmaktayız. Yapılan deneyler yöntemin aynı nesne sınıfına ait bölütleri otomatik

olarak belirleyebildiğini göstermektedir.

Son olarak, birden fazla seviyede bölütleme sonucunda elde edilen bölgeleri

kullanarak bir sınıflandırma yöntemi sunmaktayız. Farklı yapılardakı farklı

ayrıntıları yakalamak için farklı yapısal öğe boyut aralıkları kullanılarak bir

görüntünün birden fazla ölçekte temsil edilmesi amaçlanmaktadır. Her bir

ölçekte bölütleme yapılmakta ve ortaya çıkan her bir bölüt içerisindeki pik-

sellerin spektral özelliklerinin bir özeti ile temsil edilmektedir. Bu temsiller

kullanılarak bölütler önerilen gruplama yöntemi ile gruplanmakta ve bölütlerin

farklı ölçeklerdeki grup etiketleri piksellerin sınıflandırılmasında kullanılmaktadır.

Son sınıflandırma karar ağacı sınıflandırıcısı ile yapılmaktadır. Yapılan deneyler
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yöntemin uzamsal bilgiyi etkili bir şekilde kullanmayan klasik yönteme göre

üstünlüğünü göstermektedir.

Anahtar sözcükler : Uydu görüntüleri, sıradüzensel bölütleme, öğreticisiz nesne

sezimi, çok ölçekli sınıflandırma, uzamsal bilgi.
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Chapter 1

Introduction

1.1 Overview

Due to the constantly increasing public availability of high-resolution data sets,

remote sensing image analysis has been an important research area for the last

four decades. For example, nearly 3 terabytes of data are being sent to Earth by

NASA’s satellites every day [24]. There is also an extensive literature on classifi-

cation of remotely sensed imagery using parametric or nonparametric statistical

or structural techniques [47]. Advances in satellite technology and computing

power have enabled the study of multi-modal, multi-spectral, multi-resolution

and multi-temporal data sets for applications such as urban land use monitor-

ing and management, GIS and mapping, environmental change, site suitability,

agricultural and ecological studies.

The usual choice for the level of processing image data has been pixel-based

analysis in both academic and commercial remote sensing image analysis systems.

However, a recent study [74] that investigated classification accuracies reported

in the last 15 years showed that there has not been any significant improvement

in the performance of classification methodologies over this period. We believe

that the reason behind this problem is the fact that there is a large semantic gap

1
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between the low-level features used for classification and the high-level expecta-

tions and scenarios required by the users. This semantic gap makes a human

expert’s involvement and interpretation in the final analysis inevitable and this

makes processing of data in large remote sensing archives practically impossible.

The use of only pixel level features often does not meet the expectations as

the resolution increases. Even though high success rates have been published in

the literature using limited ground truth data, visual inspection of the results can

show that most of the urban structures still cannot be delineated as accurately

as expected. For example, if there is an area crowded by buildings in an image,

classifying most of the pixels in that area as building while missing most of the

roads and other small structures around them will still result in a high success

rate if limited amount of pixel level ground truth is used for evaluation. In Figure

1.1, an example classification map with a pixel level quadratic Gaussian classifier

is shown [3]. The classification accuracy is 93.9677% which is relatively high.

However, most of the tiles on the left are merged, the boundaries are not explicit,

and the thin asphalts and shadows between the tiles are also classified as tiles.

These erroneous areas are not reflected in the numerical accuracy since the ground

truth for testing such areas is not enough for a reliable evaluation. For example,

no testing data for these thin roads and shadows are available. So, classifying

these areas erroneously does not reduce the numerical classification accuracy. In

Figure 1.2, an example classification map obtained in a recent study is shown

[9]. The classification accuracy is 98.5% which is also relatively high. However,

the classification map includes many wrongly classified pixels for all classes such

as the roads and water on the upper part. The same reason also holds for this

disagreement between the quantitative accuracy and the qualitative result such

that testing data is insufficient for reliable evaluation.

The commonly used classifiers model image content using distributions of

pixels in spectral or other feature domains by assuming that similar land cover

structures will cluster together and behave similarly in these feature spaces. How-

ever, the assumptions for distribution models often do not hold for different kinds

of data. Even when nonlinear tools such as neural networks or multi-classifier sys-

tems are used, the use of only pixel-based data often fails the expectations.
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(a) False-color (b) Classification map

Figure 1.1: An example classification map with a pixel level quadratic Gaussian
classifier for the Centre data set whose false color image is shown on the left. The
corresponding ground truth maps for training and testing and class color codes
are listed in Figure 3.2. (Images taken from [3].)
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(a) False-color (b) Ground truth (c) Classification
map

Figure 1.2: An example classification map (shown in (c)) obtained by a recent
method [9] for the DC Mall data set whose false color image is shown in (a).
The corresponding ground truth map and class color codes are listed in (b). 40
samples per class were used for training and the remaining were used for testing.
(Images taken from [9].)



CHAPTER 1. INTRODUCTION 5

We believe that spatial and structural information should also be used for

more intuitive and accurate classification. However, image segmentation is still

an unsolved problem. Even though several approaches such as region growing,

Markov random field models, and energy minimization have been shown to be

useful in small data sets with limited detail, no generally applicable segmentation

algorithm exists.

In this thesis, first, we describe a segmentation method for remote sensing

images that uses the neighborhood and spectral information as well as the mor-

phological information. First, principal components analysis (PCA) [23] is per-

formed to extract the top principal components that represent the 99% variance

of the whole data. Next, morphological opening/closing by reconstruction oper-

ations are performed on each PCA band separately using structuring elements in

increasing sizes. These operations produce a set of connected components form-

ing a hierarchy of regions for each PCA band. Then, the components at different

levels of the hierarchy are evaluated as candidates for meaningful structures using

a measure that consists of two factors: spectral homogeneity, which is calculated

in terms of variances of multi-spectral features, and neighborhood connectivity,

which is calculated using sizes of connected components. Finally, the components

that optimize this measure are selected as meaningful structures in the image.

Then, we propose an unsupervised method for automatic selection of con-

nected components corresponding to meaningful structures among a set of can-

didate regions from multiple PCA bands. Given multiple objects/structures of

interest, the problem is seen as a grouping problem. To solve the grouping prob-

lem, we use the probabilistic Latent Semantic Analysis (PLSA) [37] technique

which uses a graphical model for the joint probability of the regions and their

features in terms of the probability of observing a feature given an object and

the probability of an object given the region. The parameters of this graphical

model are learned using the Expectation-Maximization algorithm. Then, for a

particular region, the set of probabilities of objects/structures given this region

can be used to assign an object label to this region.

Finally, we present an approach for classification of remote sensing images
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using spatial information extracted from multi-scale segmentations. First, the

proposed segmentation algorithm is applied using multiple disjoint structuring

element size ranges corresponding to different scales. As the scale increases, the

structuring elements gets larger in order first to capture the details and then the

general image context. The resulting segments are modeled by their pixel prop-

erties, clustered by using the proposed object detection algorithm and classified

according to their cluster labels. Final classification is done using decision tree

classifiers.

1.2 Summary of Contributions

The goal of this thesis is to analyze remote sensing images and classify objects

into land cover/use classes (e.g., buildings, trees, roads, etc.). The classification

process is used as a crucial step to interpret the land in many different kinds of

applications.

Today’s trend in classification of remote sensing images is to do object-oriented

classification rather than classifying single pixels. This requires segmentation of

objects before assigning their class labels. Most of the previous segmentation

work in the remote sensing literature are based on merging neighboring pixels

according to user-defined thresholds on their spectral similarity. In this work,

the approach we follow is to incorporate structural and shape information in the

segmentation step. There are several approaches for extraction of these structures

from the image data. However, most of the previous approaches try to solve the

problem on specific images such as images of the same type of area and images

where these structures are isolated. Our goal is to develop a generic model that

can be applied to different types of images.

Seen from this aspect, [54] is related to our work in terms of using structural

information in segmentation. In that work, Pesaresi and Benediktsson used mor-

phological processing, which has recently become a popular approach for remote
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sensing image analysis, in order to obtain structural information. They success-

fully applied opening and closing operations with increasing structuring element

sizes to an image to generate morphological profiles for all pixels, and assigned

a segment label to each pixel using the structuring element size corresponding

to the largest derivative of these profiles. Even though morphological profiles

are sensitive to different pixel neighborhoods, the segmentation decision is per-

formed by evaluating pixels individually without considering the neighborhood

information, and the assumption that all pixels in a structure have only one signif-

icant derivative maximum occurring at the same structuring element size may not

always hold. However, different than that work, our method [2] uses morphologi-

cal, neighborhood and spectral information at the same time to segment images.

Morphological and neighborhood information are used to determine hierarchical

candidate regions for the final segmentation. Then, the meaningful regions in the

hierarchy are selected by testing the goodness of each candidate. In a previous

work [66], the selection was done in a segmentation hierarchy manually. In this

work, we do the selection process automatically by defining a measure for each

candidate region and selecting the regions optimizing the measure.

Our object detection method [1] automatically selects meaningful structures

among a set of candidate regions from multiple segmentations using probabilistic

Latent Semantic Analysis (PLSA). PLSA was originally developed for statistical

text analysis to discover topics in a collection of documents that are represented

using the frequencies of words from a vocabulary. In our case, the documents

correspond to image segments, the word frequencies correspond to histograms

of pixel-level features computed as region-level features, and the topics to be

discovered correspond to the set of objects/structures of interest in the image.

Note that the whole learning and grouping algorithm proceeds in an unsuper-

vised fashion. Russell et al. [58] used a different graphical model in a similar

setting where multiple segmentations of natural images were obtained using the

normalized cut algorithm by changing its parameters, and instances of regions

corresponding to objects such as cars, bicycles, faces, sky, etc. were successfully

grouped and retrieved from a large data set of images.

Finally, we describe a multi-scale region-based classification method [4] based
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on our segmentation and object detection algorithms. Instead of classifying sin-

gle pixels according to their spectral properties, we classify regions according to

the statistical summary of their pixel properties. We model image content by

obtaining segmentations in multiple scales. A recent similar approach [14] also

did multi-scale region based classification. They obtained multiple hierarchical

segmentations by applying region merging with different thresholds on spectral

similarities. However, region merging-based methods work randomly and thresh-

olding on spectral similarities does not effectively take into account the structural

and shape information. Our method overcomes these disadvantages by the multi-

scale nature of our segmentation algorithm. We obtain segmentations in multiple

scales by applying the segmentation algorithm with successive disjoint structuring

element size ranges.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, some of the pre-

vious work on remote sensing image classification is discussed. In Chapter 3,

data and features used are introduced. In Chapter 4, a segmentation method for

high-resolution remote sensing imagery is presented. For this purpose, a hierar-

chical segmentation tree is constructed by using both morphological and spectral

information. In Chapter 5, a statistical method for unsupervised detection of

objects in high-resolution remote sensing imagery is presented. The method uses

the proposed segmentation method to find coherent groups of segments corre-

sponding to objects from a set of hierarchical segmentations. In chapter 6, a

multi-scale region-based approach for supervised classification of remotely sensed

imagery is presented. The method constructs a scale-space by applying the pro-

posed segmentation method in different scales. Then, a new set of features is

formed by clustering the segments in multiple scales by the proposed object de-

tection method. In Chapter 7, experiments are discussed. Finally, in Chapter 8,

conclusions and future research directions are given.



Chapter 2

Literature Review

As the amount of data to use increases day-by-day, content extraction and clas-

sification of remotely sensed imagery have become important research prob-

lems. Previous approaches modeled image content using only pixel level features

whereas, today, techniques to incorporate spatial information into land cover/use

interpretation have gained importance. In this chapter, we discuss some of the

previous work on land cover/use classification. For better understandability, we

divide the discussion into two categories: Pixel level techniques and spatial tech-

niques using context.

2.1 Pixel Level Techniques

There is an extensive literature on pixel-level analysis of remotely sensed im-

agery [47]. In remote sensing images, a pixel may correspond to a large area

covering different types of objects such as buildings, roads, shadows, grass, and

trees [70]. For example, in a Landsat image, the characteristics of a 225 m2 area

are summarized in a pixel which may cause problems in pixel-level approaches.

Pixel level techniques performs classification using distribution of pixels in spec-

tral or other feature domains assuming that similar land structures will cluster

9
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together and behave similarly in terms of summarized pixel level features. How-

ever, the assumptions for distribution models often do not hold for high-resolution

data. In literature, traditional classifiers such as the maximum likelihood method

[28, 11], n-dimensional probability density methods [15], artificial neural networks

[29, 75, 13, 36, 7, 53, 61, 40, 38, 22], decision trees [31, 43], discriminant analysis

[26, 27], genetic algorithms [69, 8] have been applied by using pixel-level infor-

mation. However, these methods could not exceed a certain level in terms of

accuracy rates.

A remote sensing image may have many feature bands corresponding to dif-

ferent wavelengths. For example, a multi-spectral image may have 4 to 7 bands,

whereas a hyper-spectral image may have up to 240 bands [70]. The use of

hyper-spectral data in classification has been studied in several works [20, 57].

However, most of the hyper-spectral bands are generally correlated and not use-

ful for classification. Different methods, such as principal components analysis

[34, 39, 45, 56, 44, 9], discriminant analysis feature extraction (DAFE) [47], the

decision boundary feature extraction (DBFE) [47], feature selection [52, 68] and

spectral unmixing [19, 17, 18, 63, 57, 16, 72], have been applied to reduce the

dimensionality.

Even though pixel level techniques were popular when resolution was not

high enough for applying other techniques [70], pixels alone do not give much

information about image content as the resolution increases because they do not

take into account contextual information during the labeling process. In general,

the techniques that can be used for a better classification require the use of spatial

and neighborhood information.

2.2 Spatial Techniques Using Context

We believe that, in addition to pixel-based spectral data, structural and spatial

information should also be used to interpret land cover and land use. Tradition-

ally, this is done by the use of textural, morphological, and region level features.



CHAPTER 2. LITERATURE REVIEW 11

In literature, textural features, such as grey-level co-occurrence matrix

(GLCM) [32, 64], normalized gray-level run lengths [73], or Markov random

fields (MRF) [21], have been widely used to model spatial information. Li and

Narayanan [48] used Gabor wavelet coefficients to characterize spatial informa-

tion. In a recent approach, Bhagavathy and Manjunath [12] used Gabor texture

filters with different scales and orientations, and performed Gaussian mixture-

based clustering of pixels as texture elements. In another study, Shackelford and

Davis [62] used texture measures extracted form normalized gray-level histogram,

contextual and spectral information for classification of urban areas. In [76], Yu

et al. extracted gradient based features for urban area detection. Unsalan and

Boyer [71] modeled image windows by using edge information for urbanization

detection. However, instead of modeling spatial context by pixel windows, an

image segmentation approach may further improve the classification results.

Morphological processing has recently become a popular approach for incor-

porating structural information into classification. For example, Benediktsson et

al. [10] applied morphological operators with different structuring element sizes

to obtain a multi-scale representation of structural information, and used neural

network classifiers to label pixels according to their morphological profiles. Each

pixel feature was obtained as the difference between the multi-scale morphological

profiles at successive scales.

Another method for incorporating spatial information into classification is

through the use of regions obtained by segmentation. This is also referred to as

object-oriented classification in the remote sensing literature. Image segmenta-

tion techniques [33] automatically group neighboring pixels into contiguous re-

gions whose pixels are similar in terms of a criteria. Although image segmentation

is heavily studied in computer vision and image processing fields, and despite the

early efforts [42] that use spatial information for classification of remotely sensed

imagery, segmentation algorithms have only recently started receiving emphasis

in remote sensing image analysis. Examples of image segmentation in the remote

sensing literature include region growing [25] and Markov random field models [60]

for segmentation of natural scenes, hierarchical segmentation for image mining
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[67], region growing for object level change detection [35], and boundary delin-

eation of agricultural fields [59]. However, better segmentation of regions will

definitely improve the object-oriented classification results. Most of the previous

classification work use segmentation as a preprocess for incorporating spatial in-

formation. But, in general, simple and unreliable segmentation algorithms are ap-

plied. In [46], Kusaka and Kawata used an edge-based segmentation technique to

find uniform regions, and classified these regions based on their spectral and spa-

tial features. Bruzzone and Carlin [14] performed classification using the spatial

context of each pixel according to a complete hierarchical multi-level representa-

tion of the scene. Their system was made up of a feature extraction module and

a classifier. They applied a region merging-based hierarchical segmentation to

the images to obtain segmentation results at different levels of resolution. Then,

each pixel was characterized by a feature vector that included both the pixel level

spectral information and the attributes of all the regions in which the pixel was

included in the hierarchical segmentation. In a similar approach [4], we obtained

a multi-resolution representation using wavelet decomposition [50, 49], segmented

images at each resolution using clustering and mathematical morphology-based

segmentation algorithms, and used region-based spectral, textural and shape fea-

tures for classification. In [41], Katartzis et al. also modeled spatial information

by segmenting images into regions and classifying these regions. Their system

was based on a Markovian model, defined on the hierarchy of a multiscale region

adjacency graph. In another study [65], Soh et al. presented a system for sea ice

image classification which also segments the images, generate descriptors for the

segments and then uses expert system rules to classify the images.



Chapter 3

Feature Extraction and Datasets

The algorithms presented in this thesis will be illustrated using three different

data sets:

1. DC Mall : HYDICE (Hyperspectral Digital Image Collection Experiment)

image with 1, 280× 307 pixels and 191 spectral bands corresponding to an

airborne data flightline over the Washington DC Mall area.

The DC Mall data set includes 7 land cover/use classes: roof, street, path,

grass, trees, water, and shadow. A thematic map with ground truth labels

for 8,079 pixels was supplied with the original data [47]. We used this

ground truth for testing and separately labeled 35,289 pixels for training.

Details are given in Figure 3.1.

2. Centre: DAIS (Digital Airborne Imaging Spectrometer) and ROSIS (Re-

flective Optics System Imaging Spectrometer) data with 1, 096× 715 pixels

and 102 spectral bands corresponding to the city center in Pavia, Italy.

The Centre data set includes 9 land cover/use classes: water, trees, mead-

ows, self-blocking bricks, bare soil, asphalt, bitumen, tiles, and shadow.

The thematic maps for ground truth contain 7,456 pixels for training and

148,152 pixels for testing. Details are given in Figure 3.2.

3. University : DAIS and ROSIS data with 610× 340 pixels and 103 spectral

13
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(a) DC Mall data (b) Training map (c) Test map

Figure 3.1: False color image of the DC Mall data set (generated using the
bands 63, 52 and 36) and the corresponding ground truth maps for training and
testing. The number of pixels for each class are shown in parenthesis in the
legend. (Images taken from [3].)
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(a) Centre data

(b) Training map

(c) Test map

Figure 3.2: False color image of the Centre data set (generated using the bands
68, 30 and 2) and the corresponding ground truth maps for training and testing.
The number of pixels for each class are shown in parenthesis in the legend. (A
missing vertical section in the middle was removed.) (Images taken from [3].)



CHAPTER 3. FEATURE EXTRACTION AND DATASETS 16

bands corresponding to a scene over the University of Pavia, Italy.

The University data set also includes 9 land cover/use classes: asphalt,

meadows, gravel, trees, (painted) metal sheets, bare soil, bitumen, self-

blocking bricks, and shadow. The thematic maps for ground truth contain

3,921 pixels for training and 42,776 pixels for testing. Details are given in

Figure 3.3.

In the rest of the chapter, pixel level characterization consists of spectral and

textural properties of pixels that are extracted as described below.

To simplify computations and to avoid the curse of dimensionality during the

analysis of hyper-spectral data, we apply Fisher’s linear discriminant analysis

(LDA) [23] that finds a projection to a new set of bases that best separate the

data in a least-squares sense. The resulting number of bands for each data set is

one less than the number of classes in the ground truth. We also apply principal

components analysis (PCA) [23] that finds a projection to a new set of bases

that best represent the data in a least-squares sense. Then, we keep the top

principal components representing the 99% variance of the whole data instead of

the large number of hyper-spectral bands. The resulting number of bands for DC

Mall, Centre and University data sets are 3, 3 and 4, respectively. In addition,

we extract Gabor texture features [51] by filtering the first principal component

image with Gabor kernels at different scales and orientations shown in Figure

3.4. We use kernels rotated by nπ/4, n = 0, . . . , 3, at 4 scales resulting in feature

vectors of length 16.

Finally, each feature component is normalized by linear scaling to unit variance

[5] as

x̃ =
x− µ

σ
(3.1)

where x is the original feature value, x̃ is the normalized value, µ is the sample

mean, and σ is the sample standard deviation of that feature, so that the features

with larger ranges do not bias the results. Examples for pixel level features are

shown in Figures 3.5-3.7.
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(a) University data

(b) Training map

(c) Test map

Figure 3.3: False color image of the University data set (generated using the
bands 68, 30 and 2) and the corresponding ground truth maps for training and
testing. The number of pixels for each class are shown in parenthesis in the
legend. (Images taken from [3].)
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Figure 3.4: Gabor texture filters at different scales (s = 1, . . . , 4) and orientations
(o ∈ {0◦, 45◦, 90◦, 135◦}). Each filter is approximated using 31×31 pixels. (Image
taken from [3].)
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Figure 3.5: Pixel feature examples for the DC Mall data set. From left to right:
the first LDA band, the first PCA band, Gabor features for 90 degree orientation
at the first scale, Gabor features for 0 degree orientation at the third scale, and
Gabor features for 45 degree orientation at the fourth scale. Histogram equal-
ization was applied to all images for better visualization. (Images taken from
[3].)
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Figure 3.6: Pixel feature examples for the Centre data set. From left to right,
first row: the first LDA band, the first PCA band, Gabor features for 135 degree
orientation at the first scale; second row: Gabor features for 45 degree orientation
at the third scale, Gabor features for 45 degree orientation at the fourth scale,
and Gabor features for 135 degree orientation at the fourth scale. Histogram
equalization was applied to all images for better visualization. (Images taken
from [3].)
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Figure 3.7: Pixel feature examples for the University data set. From left to right,
first row: the first LDA band, the first PCA band, Gabor features for 45 degree
orientation at the first scale; second row: Gabor features for 45 degree orientation
at the third scale, Gabor features for 135 degree orientation at the third scale,
and Gabor features for 135 degree orientation at the fourth scale. Histogram
equalization was applied to all images for better visualization. (Images taken
from [3].)



Chapter 4

Image Segmentation

In this work, our goal is to develop a segmentation algorithm for partitioning

images into spatially contiguous regions so that the structural information can

be modeled using the properties of these regions in classification. Many popular

image segmentation algorithms in the computer vision literature that are based

on clustering assume that images have a moderate number of objects with rel-

atively homogeneous features, and cannot be directly applied to high-resolution

remote sensing images that contain a large number of complex structures. Fur-

thermore, another popular approach of edge-based segmentation becomes hard for

such images because of the large amount of details. Moreover, watershed-based

techniques are also not very useful because they often produce oversegmented re-

sults mostly because of irrelevant local extrema in images. A common approach

is to apply smoothing filters to suppress these extrema but lots of details in high-

resolution images may be lost because spatial support of these details are usually

small. Therefore, most of the segmentation work in the remote sensing literature

are based on merging neighboring pixels according to user-defined thresholds on

their spectral similarity. As an alternative, proximity filtering and morphological

operations can also be used as post-processing techniques to pixel-based classifi-

cation results for segmenting regions [6].

In a related work, Pesaresi and Benediktsson [54] performed segmentation us-

ing morphological characteristic of pixels in the image. In their approach, opening

22
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and closing operations with increasing structuring element (SE) sizes were suc-

cessively applied to an image to generate morphological profiles for all pixels,

and the segment label of each pixel was assigned as the SE size corresponding to

the largest derivative of these profiles. A problem with that approach is that it

assumes all the pixels in a particular structure have only one significant deriva-

tive maximum occurring at the same SE size. However, our experiments have

shown that many pixels in most structures often have more than one significant

derivative maximum. Furthermore, even though morphological profiles are sensi-

tive to different pixel neighborhoods, the segmentation decision is performed by

evaluating pixels individually without considering the neighborhood information.

In this chapter, we present a method that uses the neighborhood and spectral

information as well as the morphological information. We first apply principal

components analysis to hyper-spectral data to obtain representative bands. Then,

we extract candidate regions on each principal component by applying opening

and closing by reconstruction operations. For each principal component, we rep-

resent the extracted regions by a hierarchical tree, and select the most meaningful

regions in that tree by optimizing a measure that consists of two factors: spectral

homogeneity, which is calculated in terms of variances of multi-spectral features,

and neighborhood connectivity, which is calculated using sizes of connected com-

ponents.

4.1 Morphological Profiles

Morphological opening and closing operations are used to model structural char-

acteristics of pixel neighborhoods. These operations are known to isolate struc-

tures that are brighter and darker than their surroundings, respectively. Contrary

to opening (respectively, closing), opening by reconstruction (respectively, clos-

ing by reconstruction) preserves the shape of the structures that are not removed

by erosion (respectively, dilation). In other words, image structures that the

SE cannot be contained are removed while others remain (see Figure 4.1 for an

illustration).
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(a) Gray-scale image (b) SE

(c) 3-d representation of (a) (d) After opening by recon-
struction

(e) After closing by recon-
struction

Figure 4.1: Opening and closing by reconstruction example. (d) and (e), respec-
tively, show 3-d representations of the results of opening and closing by recon-
struction applied on (a) with a disk SE of size 5. In (d) and (e), respectively,
brighter and darker image structures that the SE cannot be contained are removed
by flattening the pixels on the structure into same level.
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(a) Gray-scale image (b) SE (c) Opening profile (d) Derivative of
opening profile

Figure 4.2: The morphological opening profile and the derivative of the morpho-
logical opening profile example. The original image in (a) is applied opening by
reconstruction with increasing SE sizes (disk SEs of sizes 3, 5 and 7 are used
as shown in (b)) to obtain the opening profile in (c). The difference between
consecutive steps of the opening profile is stored as the derivative of the opening
profile as shown in (d).

These operations are applied using increasing SE sizes to generate multi-scale

characteristics called morphological profiles For completeness, we review the con-

cepts of the morphological profile and the derivative of the morphological profile

as defined by Pesaresi and Benediktsson [54] below (see Figure 4.2 for an illus-

tration).

Let γλ be the morphological opening by reconstruction operator using SE with

size λ (in our case λ represents the radius of a disk shaped SE) and Πγ(x) denote

the opening profile at pixel x of image I. Πγ(x) is defined as the vector

Πγ(x) = {Πγλ
: Πγλ

= γλ(x),∀λ ∈ [0, . . . ,m]}. (4.1)

Also, let ϕλ be the morphological closing by reconstruction operator using SE

with size λ and Πϕ(x) denote the closing profile at pixel x of image I. Similarly,

Πϕ(x) is defined as the vector

Πϕ(x) = {Πϕλ
: Πϕλ

= ϕλ(x),∀λ ∈ [0, . . . ,m]}. (4.2)
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The definition of opening and closing by reconstruction operations imply that

Πγ0(x) = Πϕ0(x) = I(x). The derivative of the morphological profile (DMP) is

defined as a vector where the measure of the slope of the opening-closing profile is

stored for every step of an increasing SE series [54]. The derivative of the opening

profile ∆γ(x) is defined as the vector

∆γ(x) = {∆γλ
: ∆γλ

= |Πγλ
− Πγλ−1

|,∀λ ∈ [1, . . . ,m]}. (4.3)

Similarly, the derivative of the closing profile ∆ϕ(x) is defined as the vector

∆ϕ(x) = {∆ϕλ
: ∆ϕλ

= |Πϕλ
− Πϕλ−1

|,∀λ ∈ [1, . . . ,m]}. (4.4)

Then, the DMP ∆(x) can be written as the vector

∆(x) =

{
∆c+λ : ∆γλ

,∀λ ∈ [1, . . . ,m]

∆c−λ+1 : ∆ϕλ
,∀λ ∈ [1, . . . ,m]

}
(4.5)

for an arbitrary integer c with m equal to the total number of iterations [54].

In their segmentation scheme, Pesaresi and Benediktsson [54] define an image

segment as a set of connected pixels showing the greatest value of the DMP for the

same SE size. That is, the segment label of each pixel is assigned according to the

SE size corresponding to the largest derivative of its profiles. Their scheme works

well in images where the structures in the image are mostly flat so that all pixels in

a structure have only one derivative maximum. A drawback of this scheme is that

neighborhood information is not used while assigning segment labels to pixels.

This results in lots of small noisy segments in images with non-flat structures

where the scale with the largest value of the DMP may not correspond to the

true structure (see Figure 4.3 for an illustration). In our approach, we do not

consider pixels alone while assigning segment labels. Instead, we also take into

account the behavior of the neighbors of the pixels.

4.2 Hierarchical Region Extraction

In our segmentation approach, our aim is to determine the regions by applying

opening and closing by reconstruction operations. We assume that pixels with a
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(a) DMP of the pixel marked in (b)

(b) Sample pixel marked on
the image

(c) Region for SE size 2 (d) Region for SE size 3

Figure 4.3: The greatest value in the DMP of the pixel marked with a blue +
in (b) is obtained for SE size 2 (derivative of the opening profile of the 3rd PCA
band is shown in (a)). (c) shows the region that we would obtain if we label the
pixels with the SE size corresponding to the greatest DMP. The region in (d)
that occurs with SE size 3 is more preferable as a complete structure but it does
not correspond to the scale of the greatest DMP for all pixels inside the region.
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positive DMP value at a particular SE size face a change with respect to their

neighborhoods at that scale. The main idea is that a neighboring group of pix-

els that have a similar change for a particular SE size is a candidate region for

the final segmentation. These groups can be found by applying connected com-

ponents analysis to the DMP at each scale (see Figure 4.4 for an illustration).

Then, we use the spectral angle mapper (SAM) as a rough measure to check

the spectral homogeneity within each group. SAM between two vectors si and

sj is calculated as: SAM(si, sj) = cos−1(
si·sj

‖si‖‖sj‖). Using SAM, spectral similar-

ity of pixel vectors {p}K
i in the region Rk relative to the vector sj is computed

as: S(Rk, sj) = (1/K)
∑K

i=1 SAM(sj, pi) where K is the number of pixels in the

region Rk. Then, Plaza and Tilton [55] define a measure of homogeneity in the re-

gion Rk as: S(Rk, ck) where ck = (1/K)
∑K

i=1 pi is the centroid of Rk. S indicates

how similar are spectral information of the pixels in a region. The less the S,

the more the region is homogeneous. The connected components whose average

DMP values are greater than 0.2 and average SAM values are less than 0.095 are

considered in the rest of the analysis. These thresholds are chosen empirically.

Considering the fact that different structures have different sizes, we apply

opening and closing by reconstruction using SEs in increasing sizes from 1 to

m. However, a connected component appearing for a small SE size may be

appearing because heterogeneity and geometrical complexity of the scenes as well

as other external effects such as shadows produce texture effects in images and

result in structures that can be one to two pixels wide [54]. In this case, there is

most probably a larger connected component appearing at the scale of a larger

SE and to which the pixels of those noise components belong. On the other

hand, a connected component that corresponds to a true structure in the final

segmentation may also appear as part of another component at larger SE sizes.

The reason is that a meaningful connected component may start merging with

its surroundings and other connected components after the SE size in which it

appears is reached. Figure 4.5 illustrates these cases.

For each opening and closing profile, through increasing SE sizes from 1 to m,

each morphological operation reveals connected components that are contained

within each other in a hierarchical manner where a pixel may be assigned to
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(a) Opening DMP (b) DMP > 0

Figure 4.4: In (b), the pixels whose DMP (DMP of the 2nd PCA band is shown
in (a)) are greater than 0 are shown. Each connected component at each scale is
a candidate region for the final segmentation.
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(a) False color image (b) A small connected component that is
part of (c)

(c) The preferred connected component (d) A large connected component where
(c) started merging with others

Figure 4.5: Example connected components for a building structure. These com-
ponents appear for SE sizes 3, 5 and 6, respectively, in the derivative of the
opening profile of the 2nd PCA band.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.6: Example connected components appearing for SE sizes from 2 to 10
in the derivative of the opening profile of the 3rd PCA band. These regions are
contained within each other in a hierarchical manner. Note that the components
do not change in some of the scales.

more than one connected component appearing at different SE sizes (see Figure

4.6). We treat each component as a candidate meaningful region. Using these

candidate regions, a tree is constructed where each connected component is a

node and there is an edge between two nodes corresponding to two consecutive

scales (SE sizes differ by 1) if one node is contained within the other. Leaf nodes

represent the components that appear for SE size 1. Root nodes represent the

components that exist for SE size m. Since we use a finite number of SE sizes,

there may be more than one root node. In this case, there will be more than

one tree and the algorithms described in the next section are run on each tree

separately.

Figure 4.7 shows an example tree where the nodes are labeled as i j with

i denoting the node’s level and j denotes the number of the node from left to

right in level i. For example, node 3 3 has two children nodes 2 4 and 2 5, and

its parent is node 4 1. The reason of node 2 3 having only one child may be

that either no new connected component appears in level 2 or node 2 3 is formed

by merging of node 1 4 with its surrounding pixels that are not included in any

connected component in level 1. The same reasons also hold for node 3 2. Figure

4.8 shows a part of an example tree constructed by candidate meaningful regions
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level 2

level 1

level 3

level 4

(9)

(2)

(2)
1_21_1

(5)
1_3

(4)
1_6
(3)

1_7
(4)

2_1
(5)

2_3 2_4
(2) (8)

2_5
(6)

3_1 3_2
(3)

3_3
(4)

4_1

(1)
2_2

(5)
1_81_5

(3)(1)
1_4

Figure 4.7: An example tree. Node i j is a connected component that exists for
SE size i. j denotes the sequence number of the node from left to right in level i.

appearing in five levels.

4.3 Region Selection

After forming a tree for each opening and closing profile, our aim is to search for

the most meaningful connected components among those appearing at different

SE sizes in the segmentation hierarchy. With a similar motivation in [66], Tilton

analyzed hierarchical image segmentations and selected the meaningful regions

manually. Then, Plaza and Tilton [55] investigated how different spectral, spatial

and joint spectral/spatial features of regions change from one level to another in

a segmentation hierarchy with the goal of automating the selection process in the

future. In this thesis, each node in the tree is treated as a candidate region in

the final segmentation, and selection is done automatically as described below.

Ideally, we expect a meaningful region to be as homogeneous as possible.

However, in the extreme case, a single pixel is the most homogeneous. Hence, we

also want a region to be as large as possible. In general, a region stays almost the

same (both in homogeneity and size) for some number of SEs, and then faces a
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Figure 4.8: An example tree where each candidate region is a node.

large change at a particular scale either because it merges with its surroundings

to make a new structure or because it is completely lost. Consequently, the size

we are interested in corresponds to the scale right before this change. In other

words, if the nodes on a path in the tree stay homogeneous until some node n,

and then the homogeneity is lost in the next level, we say that n corresponds to

a meaningful region in the hierarchy.

With this motivation, to check the meaningfulness of a node, we define a

measure consisting of two factors: spectral homogeneity, which is calculated in

terms of variances of spectral features, and neighborhood connectivity, which is

calculated using sizes of connected components. Then, starting from the leaf

nodes (level 1) up to the root node (level m), we compute this measure at each

node and select a node as a meaningful region if it is the most homogeneous and

large enough node on its path in the hierarchy (a path corresponds to the set of

nodes from a leaf to the root).

In order to calculate the homogeneity factor in a node, we use the fact that

pixels in a correct structure should have not only similar morphological profiles,
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but also similar spectral features. Thus, we calculate the homogeneity of a node

as the standard deviation of the spectral information of the pixels in the corre-

sponding region where the spectral information of a pixel consists of the PCA

components representing the 99% variance of the whole data. However, while

examining a node from the leaf up to the root in terms of homogeneity, we do not

use the standard deviation of the node directly. Instead, we consider the differ-

ence of the standard deviation of that node and its parent. What we expect is a

sudden increase in the standard deviation. When the standard deviation does not

change much, it usually means that small sets of pixels are added to the region

or some noise pixels are cleaned. When there is a large change, it means that the

structure merged with a larger structure or it merged with other irrelevant pixels

disturbing the homogeneity in the node. Hence, the difference of the standard

deviation in the node’s parent and the standard deviation in the node should be

maximized while selecting the most meaningful nodes.

To be able to calculate a single value for the difference of the standard de-

viations, we must find a single value for the standard deviation of the PCA

components of the pixels in a node and its parent. Let the number of PCA com-

ponents be d. We find a single standard deviation value for the d-dimensional

PCA components X of the pixels in node n by projecting X into a 1-dimensional

representation where we find the standard deviation [30]. X is projected onto

the vector connecting the average of the PCA components of n and the average

of the PCA components of the parent of n. This is the vector where it is believed

to be important for separating the data. Let c1 be the average of the PCA com-

ponents of n, c2 be the average of the PCA components of the parent of n, and

v = c1 − c2 be the d-dimensional vector connecting c1 and c2. The projection

xi′ ∈ X′ of PCA components xi ∈ X of each pixel i is done by: xi′ = <xi,v>
||v||2 .

X′ is a 1-dimensional representation of X projected onto v. After projecting the

PCA components of a node and its parent into a 1-dimensional representation,

the standard deviation of the projected data for each node is found.

However, using only the homogeneity factor will favor small structures be-

cause in the extreme case a single pixel is the most homogeneous. To overcome

this problem, the number of pixels in the region corresponding to the node is
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introduced as another factor to create a trade-off. As a result, the goodness

measure M for a node n is defined as

M(n) = D(n, parent(n))× C(n) (4.6)

where the first term is the standard deviation difference between the node’s parent

and itself, and the second term is the number of pixels in the node. The node

that is relatively homogeneous and large enough will maximize this measure and

will be selected as a meaningful region.

Given the value of the goodness measure for each node, we find the most

meaningful regions as follows. Suppose T = (N, E) is the tree with N as the set

of nodes and E as the set of edges. The leaf nodes are in level 1 and the root node

is at level m. Let P denote the set of all paths from the leaves to the root, and

M(n) denote the measure at node n. descendant(n) denotes descendant nodes

of node n. We select N∗ ⊆ N as the final segmentation such that

1. ∀a ∈ N∗,∀b ∈ descendant(a),

M(a) ≥ M(b),

2. ∀a ∈ N \N∗,

∃b ∈ descendant(a) : M(a) < M(b).

3. ∀a, b ∈ N∗,

∀p ∈ P : a ∈ p → b /∈ p,

∀p ∈ P : b ∈ p → a /∈ p,

4. ∀p ∈ P,

∃a ∈ p : a ∈ N∗,

The first condition requires that any node in N∗ must have a measure greater

than all of its descendants. The second condition requires that no node in N \N∗

has a measure greater than all of its descendants. The third condition requires

that any two nodes in N∗ cannot be on the same path (i.e., the corresponding

regions cannot overlap). The fourth condition requires that every path must

include a node that is in N∗.
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We use a two-pass algorithm for selecting the most meaningful nodes (N∗)

in the tree. The bottom-up (first) pass aims to find the nodes whose measure

is greater than all of its descendants (condition 1). The algorithm first marks

all nodes in level 1. Then, starting from level 2 up to the root level, it checks

whether each node in each level has a measure greater than or equal to those of

all of its children. The greatest measure, seen so far in each path, is propagated

to upper levels so that it is enough to check only the children, rather than all

descendants, in order to find whether a node’s measure is greater than or equal

to all of its descendants’.

After the bottom-up pass marks all such nodes, the top-down (second) pass

seeks to select the nodes satisfying, as well, the remaining conditions (2, 3, 4).

It starts by marking all nodes as selected in the root level if they are marked

by the bottom-up pass. Then, in each level until the leaf level, the algorithm

checks for each node whether it is marked in the bottom-up pass while none of its

ancestors is marked. If this condition is satisfied, it marks the node as selected.

Finally, the algorithm selects the nodes that are marked as selected in each level

as meaningful regions.

Below, we give the algorithm for selecting the most meaningful nodes in the

hierarchical tree. In the algorithm, children(n) denotes children nodes of node

n.

Algorithm 1 Region Selection

Run Bottom-Up algorithm
Run Top-Down algorithm
for each level l = 1 to m do

for each node n in level l do
select n as a meaningful region if it is marked as selected

end for
end for

In order to illustrate an example run of these algorithms, a measure is given,

in parenthesis, in each node i j in the example tree of Figure 4.7. After we run

the Bottom-Up algorithm, each node 1 j(1 ≤ j ≤ 8) is marked in the beginning

of the algorithm. Then, as we move upwards nodes 2 1, 2 2, 2 3, 2 5 in level 2,



CHAPTER 4. IMAGE SEGMENTATION 37

Algorithm 2 Bottom-Up algorithm

Mark all nodes in level 1
for each level l = 2 to m do

for each node n in level l do
if M(n) ≥ max{M(a)|a ∈ children(n)} then

mark n
else

M(n) = max{M(a)|a ∈ children(n)}
leave n unmarked

end if
end for

end for

Algorithm 3 Top-Down algorithm

Mark all nodes in level m as selected if they’re already marked in Bottom-Up
for each level l = m− 1 to 1 do

for each node n in level l do
if parent(n) is marked as selected or parent-selected then

mark n as parent-selected
else

if parent(n) is not marked in Top-Down and n is not marked in Bottom-
Up then

leave n unmarked
else

mark n as selected
end if

end if
end for

end for
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 4.9: An example run of Bottom-Up algorithm on the tree in Figure 4.7.
Beginning from the leaves until the root, the nodes whose measure are greater
than all of its descendants (satisfying condition 1) are colored with blue in each
step.

nodes 3 1 and 3 2 are marked in level 3 since each of them is greater than or equal

to all of its descendants. Then, we run the Top-Down algorithm and mark nodes

3 1, 3 2, 2 5 and 1 5, satisfying the four conditions defined above, as selected.

Figures 4.9 and 4.10 show the marked nodes in each step of the Bottom-Up and

the Top-Down algorithms. In the Bottom-Up algorithm, the marked nodes are

colored with blue and in the Top-Down algorithm, the marked nodes are colored

with green.

After selecting the most meaningful connected components in each opening

and closing tree separately, the next step is to merge the resulting connected

components. The problem occurs when two connected components, where one

is selected from the opening tree and the other is selected from the closing tree,

intersect. In this case, the intersecting pixels are assigned to the connected com-

ponent whose goodness measure is greater.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 4.10: An example run of Top-Down algorithm on the tree in Figure 4.9(d).
Beginning from the root until the leaves, the nodes marked in Bottom-Up algo-
rithm which satisfy, as well, the remaining conditions (2, 3, 4) are marked with
green in each step. When the algorithm ends, the green nodes are selected as the
most meaningful nodes in the tree.



Chapter 5

Object Detection

In Chapter 4, we described a method that used the neighborhood and spectral

information as well as the morphological information for segmentation. After

principal components analysis (PCA), morphological profiles were generated for

each PCA band separately. These operations produced a set of connected compo-

nents forming a hierarchy of segments for each PCA band. Then, a measure that

combined spectral homogeneity and neighborhood connectivity was designed to

select meaningful segments at different levels of the hierarchy.

The experiments in Section 7.1 show that the combined measure is able to

detect structures in the image that are more precise and more meaningful than

the structures detected by the approach in [54]. An important observation is that

different structures appear more clearly in different principal components. For

example, buildings can be detected accurately in one component but roads, trees,

fields and paths can be detected accurately in other components (see Figures 5.1

and 5.2 for examples). Information from multiple PCA components must be

combined for better overall detection.

In this chapter, we present an unsupervised algorithm for automatic selection

of segments from multiple segmentations and PCA bands. The input to the algo-

rithm is a set of hierarchical segmentations corresponding to different PCA bands.

The goal is to find coherent groups of segments that correspond to meaningful

40



CHAPTER 5. OBJECT DETECTION 41

Figure 5.1: Example segmentation results (overlaid as white on false color and
zoomed) for the DC Mall data set. The left, middle and right images show the
extracted segments in the first, second and third PCA bands, respectively.

Figure 5.2: Example segmentation results (overlaid as white on false color and
zoomed) for the Centre data set. The left, middle and right images show the
extracted segments in the first, second and third PCA bands, respectively.
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structures. The assumption here is that, for a particular structure (e.g., building),

the “good” segments (i.e., the ones containing a building) will all have similar

features whereas the “bad” segments (i.e., the ones containing multiple objects

or corresponding to overlapping partial object boundaries) will be described by

a random mixture of features. Therefore, given multiple objects/structures of

interest, this selection process can also be seen as a grouping problem within the

space of a large number of candidate segments obtained from multiple segmen-

tations. We use the probabilistic Latent Semantic Analysis (PLSA) algorithm

[37] to solve the problem. The resulting groups correspond to different types of

objects in the image.

5.1 Modeling Segments

The grouping algorithm consists of three steps: extracting segment features,

grouping segments, detecting objects. In the first step, each segment is modeled

using the statistical summary of its pixel content. First, all pixels in the image

are clustered by applying the k-means algorithm [23] in the spectral (PCA, LDA)

and textural (Gabor) feature domains. This corresponds to quantization of the

feature values. Then, a histogram is constructed for each segment to approxi-

mate the distribution of these quantized values belonging to the pixels in that

segment. This histogram is used to represent the segment in the rest of the algo-

rithm. (Note that any discrete model of the segment’s content can also be used

by the grouping algorithm in the next section.)

5.2 Grouping Segments

In this work, we use the probabilistic Latent Semantic Analysis (PLSA) algo-

rithm [37] to solve the grouping problem. PLSA was originally developed for

statistical text analysis to discover topics in a collection of documents that are

represented using the frequencies of words from a vocabulary. In our case, the
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(a) Segment (b) K-
means
quantiza-
tion

(c) Histogram

Figure 5.3: A segment modeling example. First, all pixels in the image are
clustered by the k-means algorithm. The resulting pixel labels of the segment in
(a) is shown in (b). Then, a histogram (shown in (c)) is constructed to represent
the segment.

documents correspond to image segments, the word frequencies correspond to

histograms of pixel-level features, and the topics to be discovered correspond to

the set of objects/structures of interest in the image. Russell et al. [58] used

a different graphical model in a similar setting where multiple segmentations of

natural images were obtained using the normalized cut algorithm by changing

its parameters, and instances of segments corresponding to objects such as cars,

bicycles, faces, sky, etc., were successfully grouped and retrieved from a large

data set of images.

The PLSA technique uses a graphical model for the joint probability of the

segments and their features in terms of the probability of observing a feature

given an object and the probability of an object given the segment. Suppose

there are N segments (documents) having content coming from a distribution

(vocabulary) with M pixel feature values (words). The collection of segments

is summarized in an N -by-M co-occurrence table n where n(di, wj) stores the

number of occurrences of feature value wj in segment di. In addition, there

is a latent object type (topic) variable zk associated with each observation, an

observation being the occurrence of a feature in a particular segment.
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(a) (b)

Figure 5.4: PLSA graphical model. In (a), nodes inside a rectangular box are
replicated the number of times in the top left corner. Filled nodes are observed
random variables whereas unfilled are unobserved. In PLSA, the object spe-
cific spectral probability, P (wj|zk), and the segment specific object probability,
P (zk|di), are used to compute the segment specific spectral probability, P (wj|di),
as shown in (b). (Images taken from [58].)

Let P (wj|zk) denote the object-conditional probability of feature wj occur-

ring in object zk, and P (zk|di) denote the probability of object zk observed in

segment di. PLSA uses the graphical model shown in Figure 5.4(a) for the joint

probability P (wj, di, zk) and the generative model P (di, wj) = P (di)P (wj|di) for

feature content of segments can be computed using the conditional probability

(see Figure 5.4(b) for illustration)

P (wj|di) =
K∑

k=1

P (wj|zk)P (zk|di). (5.1)

Then, the object specific feature distribution P (wj|zk) and the segment specific

feature distribution P (wj|di) can be used to determine similarities between object

types and segments (explained in the next section).

In PLSA, the goal is to identify the probabilities P (wj|zk) and P (zk|di). These

probabilities are learned using the Expectation-Maximization (EM) algorithm

[37]. In the E-step, the posterior probability of the latent variables are computed

based on the current estimates of the parameters as

P (zk|di, wj) =
P (wj|zk)P (zk|di)∑K
l=1 P (wj|zl)P (zl|di)

. (5.2)

In the M-step, the parameters are updated to maximize the expected complete
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data log-likelihood as

P (wj|zk) =

∑N
i=1 n(di, wj)P (zk|di, wj)∑M

m=1

∑N
i=1 n(di, wm)P (zk|di, wm)

, (5.3)

P (zk|di) =

∑M
j=1 n(di, wj)P (zk|di, wj)

n(di)
. (5.4)

The E-step and the M-step are iterated until the difference between consecutive

expected complete data log-likelihoods is less than a threshold or the number of

iterations exceeds a threshold.

5.3 Detecting Objects

After learning the parameters of the model, we want to find good segments be-

longing to each object type. This is done by comparing the feature distribu-

tion within each segment, p(w|d), and the feature distribution for a given object

type, p(w|z). The similarity between two distributions can be measured using

the Kullback-Leibler (KL) divergence D(p(w|d)‖p(w|z)). Then, for each object

type, the segments in an image can be sorted according to their KL divergence

scores, and the most representative segments for that object type can be selected.

However, if there are two segments within an object type extracted from differ-

ent principal components and at least one of them overlaps with the other by a

predetermined percent of its whole area, the less representative (the one with a

larger KL divergence score) structure is removed from the topic to avoid showing

multiple segments of the same object.



Chapter 6

Region-based Classification

In this chapter, we present an approach for classification of remotely sensed im-

agery using spatial information extracted from multi-scale segmentations. We

model spatial information by segmenting images into spatially contiguous seg-

ments and classifying these segments according to the statistical summary of

their pixel properties. First, the original image is segmented using clustering-

based and mathematical morphology-based algorithms. The parameters of these

methods are adjusted so that oversegmented regions are also produced to cap-

ture the details of small structures. Then, we perform segmentation on each PCA

band using the the algorithm in Chapter 4 with disjoint SE size ranges to model

image content in different levels. These levels are used to capture different details

inherently found in different structures.

Resulting segments are modeled using the statistical summaries of their spec-

tral properties. Then, these attributes are used as features to cluster the seg-

ments. Finally, the cluster memberships assigned to each segment in multiple

levels of the scale hierarchy are used to classify the corresponding pixels into land

cover/land use categories defined by the user. Final classification is done using

decision tree classifiers.

46
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6.1 Multi-scale Segmentation

First, the k-means algorithm [23] is used to cluster the spectral data represented

by PCA and LDA, and Gabor texture features. After this unsupervised clustering

step, each pixel is assigned the label of the cluster that it belongs in the pixel-

level feature space. Since the k-means algorithm uses only pixel-level information

and ignores spatial correlations, the resulting segmentation may contain isolated

pixels with labels different from those of their neighbors. We use an iterative split-

and-merge algorithm [6] to convert this intermediate step to contiguous segments.

This procedure corresponds to a spatial smoothing of the clustering results.

The parameters for the algorithms were empirically chosen to produce overseg-

mented segments to capture the details of small structures.

After an oversegmentation is obtained, in order to model the multi-scale con-

text of each pixel, we apply the algorithm in Chapter 4 on each PCA band with

different disjoint SE size range sets instead of applying the algorithm with a fixed

SE size range. Then, the initial oversegmentation and each segmentation ob-

tained within each range correspond to different scales on each PCA band. The

reason for using different SE size ranges is that different ranges capture different

details inherently found in different structures. As the SE size gets coarser, larger

structures that provide the general image context can be represented without be-

ing convoluted with the details (see Figure 6.2 for an illustration). For example,

a part of a building can be identified in the first scale, the whole building can be

identified in the second scale, a neighboring group of buildings can be identified in

the third scale and then up to the largest scale, the context can be modeled with

spatially increasing structures (see Figure 6.1 for an illustration). If the number

of scales is increased large enough, at the largest scale the image can be identified

as two objects: Land and water. It is therefore natural to analyze first the image

content with coarse structures and then gradually analyze small structures [50].

This process is also similar to the strategy used by the human vision system [49].
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(a) A
building
part

(b) A single
building

(c) A building
neighborhood

(d) A large land area

Figure 6.1: An example hierarchical framework for analyzing the image. A part
of a building segment is recognized by considering its context at different scales.

6.2 Classifying Segments

Image classification is usually done by using pixel features as input to classifiers

such as minimum distance, maximum likelihood, neural networks or decision

trees. However, large within-class variations and small between-class variations

of these features at the pixel level and the lack of spatial information limit the

accuracy of these classifiers.

In this work, we perform classification using segment level information. First,

the segments at all ranges on each PCA band and in the initial oversegmentation

are clustered using the algorithm in Chapter 5. The grouping process assigns

a cluster label to each segment. These segment level labels can be converted

to pixel level features by collecting the labels of the segments at multiple scales

corresponding to each pixel. Note that a pixel may not be included in any segment

in a scale because the DMP of that pixel does not change within the SE size range

of that scale. In this case, the segment label of the pixel is assigned the label of
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(a) Oversegmenta-
tion (First scale)

(b) Second scale (c) Third scale

(d) Fourth scale (e) Fifth scale (f) Sixth scale

Figure 6.2: Multi-scale segmentation example (The first PCA band). We
use six successive scales as the multi-scale representation for all data
sets. The SE size ranges corresponding to different scales were chosen as:
[3, 8], [9, 13], [14, 23], [24, 43], [44, 73]. Segment boundaries are marked as white.
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the segment in which the pixel is included at the previous scale of the same PCA

band. Then, each pixel is assigned a new feature vector of length c× a + 1 where

c is the number of PCA bands, and a is the number of scales per PCA band. We

add one for the segment label in the initial oversegmentation.

In the next chapter, we evaluate the performance of the new features for classi-

fying pixels into land cover/land use categories defined by the user. Classification

is done using a binary decision tree classifier with the gini impurity criterion [23],

and its performance is compared to that of a traditional maximum likelihood

classifier with the multivariate Gaussian with full covariance matrix assumption

for each class.



Chapter 7

Experiments and Results

We applied the proposed segmentation, object detection and classification algo-

rithms to DC Mall, Centre and University data sets.

7.1 Evaluation of Segmentation

First, the tree structure was constructed for each PCA band separately and the

regions were selected from each tree individually. Figures 7.1- 7.2 show example

segmentation results for DC Mall, Centre and University data sets, respectively.

Structuring element sizes from 3 to 15 were used for both opening and closing

profiles for both data sets. We present the zoomed versions of the results for

several example areas to better illustrate the details for high-resolution imagery

and for clarity of the presentation on thesis. The results obtained by the algorithm

in [54] are also given for the same areas.

The results show that our segmentation algorithm usually finds structures as

a whole but the method of [54] often oversegments them and produces small re-

gions. These small regions occur because the segment label assignment is done

for each pixel individually by only considering the greatest value in its DMP.

Thus, noisy pixels that are different from their neighborhoods may produce small
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regions because they may have large values occurring at scales corresponding to

small SE sizes. However, our algorithm considers both the morphological char-

acteristics encoded in the DMP and the spectral information measured in terms

of the standard deviation within contiguous groups of pixels. It also considers

the consistency of these values within neighboring pixels forming large connected

components. As a result, the combined measure that uses both spectral and

neighborhood information is both robust to noise and consistent within detailed

structures in high-resolution images. In all of the examples, our algorithm is able

to extract many meaningful regions as whole segments.

Another important observation is that different structures are extracted more

clearly in different principal components. For example, the structures in Figures

7.1(a)-7.1(b) are found in the second PCA band of the DC Mall data set like many

other buildings. The structures in both Figures 7.2(a), 7.2(c) and 7.2(d) are found

in the third PCA band of the Centre data set but the structures in Figure 7.2(b)

are found in the first PCA band. The structures in Figure 7.3(a) are found in

the first PCA band of the University data set but the structures in Figure 7.3(b)

are found in the third PCA band. The reason that a particular structure being

extracted better in a particular PCA band is that the pixels belonging to that

structure are found lighter or darker than their surroundings on that PCA band.

This motivates the next step on merging the results from individual PCA bands

as a final segmentation for an image. As a final note, we also observed that the

texture effects produced by vegetation in some of the PCA bands result in small

regions in those areas. We will investigate additional multi-spectral features (e.g.,

NDVI) to improve the segmentation for such regions.

7.2 Evaluation of Object Detection

The first step was hierarchical segment extraction. Disk structuring elements with

radii from 3 to 15 were used for both opening and closing profiles for all data sets.

The tree structure described in Section 4.2 was constructed for each PCA band

separately, and the segments were selected from each tree independently. For the
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(a) (b)

(c) (d)

Figure 7.1: Example segmentation results for the DC Mall data set. The left
image shows the false color representation, the middle one shows the result of the
algorithm in [54], and the right one shows the result of the proposed approach.
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(a)

(b)

(c)

(d)

Figure 7.2: Example segmentation results for the Centre data set. The left
image shows the false color representation, the middle one shows the result of the
algorithm in [54], and the right one shows the result of the proposed approach.



CHAPTER 7. EXPERIMENTS AND RESULTS 55

(a)

(b)

Figure 7.3: Example segmentation results for the University data set. The left
image shows the false color representation, the middle one shows the result of the
algorithm in [54], and the right one shows the result of the proposed approach.
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DC Mall data set, 818, 843 and 796 segments were found in the first, second, and

third principal components, respectively. For the Centre data set, 1782, 1805 and

1510 segments were found in the first, second, and third principal components,

respectively. For the University data set, 568, 563, 558 and 378 segments were

found in the first, second, third, and fourth principal components, respectively

The next step was to find coherent groups of segments that corresponded to

different objects. First, all pixels in the image were clustered using their their

PCA values corresponding to the 99% variance, LDA and Gabor bands. The k-

means algorithm was used with k empirically selected as 25 for clustering. Then,

for each segment, a histogram with 25 bins was constructed by counting the

number of pixels belonging to each spectral cluster within that segment. Next,

the PLSA algorithm was used to learn the spectral data distributions for the

segments and the object types. The number (K) of latent object type variables

(zk) was set to 50 in the experiments. The parameters of the distribution models

were learned using the EM algorithm.

In the final step, the KL divergence score between each segment and each

object type was computed, and the segments were grouped as belonging to the

object type where the KL score was the smallest. Segments within each group

were further sorted according to these scores, and the most representative seg-

ments for each object type were selected. Since the segments were extracted from

different PCA bands, some of the segments could overlap. When the overlap be-

tween two segments belonging to the same group was more than 30% of the area

of one of the segments, the one with a larger KL divergence score was removed.

Figures 7.4-7.6 show example results for DC Mall, Centre, and University data

sets, respectively. The sub-figures b, c, and d of 7.4-7.5 present the segments be-

longing to the groups that mostly contain buildings, roads, and vegetation respec-

tively. Examination of individual groups showed that segments corresponding to

objects (i.e., “good” segments) were mostly placed into coherent groups. For ex-

ample, man-made structures such as buildings placed in the same group also had

very similar spectral characteristics (e.g., roofs with similar colors) and buildings

in different groups had different spectral attributes. Similarly, most of the streets



CHAPTER 7. EXPERIMENTS AND RESULTS 57

Table 7.1: Precision values on three object types from the DC Mall data set.
Building Road Vegetation
70.4787 41.0359 73.0469

and paths (roads) were grouped correctly. However, there were also some mi-

nor confusion caused by shadows and small errors in the initial segmentations.

We believe that including new features, in addition to the spectral bands, in

the clustering of pixels for modeling the segments will eliminate most of these

problems.

Retrieval performance is also evaluated quantitatively on the DC Mall data

set where each region is labeled with its object type. Table 7.1 shows the preci-

sion values for each object type. Average precision is 61.5205%. The proposed

method performs better for buildings and vegetation than roads. This is because

some segments corresponding to roads are occluded with parts of buildings and

vegetation.

Overall, the results show that the proposed algorithm is able to merge the

segmentation results from multiple PCA bands by grouping the segments and

performing object detection by selecting the most representative segments cor-

responding to object classes in an unsupervised mode. Future work will include

designing automatic methods for selecting the number of object types (topics) in

the PLSA algorithm. We will also create object level ground truth for quantita-

tive performance evaluation of Centre and University data sets.

7.3 Evaluation of Classification

We evaluate the proposed feature extraction and classification algorithms both

quantitatively and qualitatively. First, the original image is segmented using

clustering-based and mathematical morphology-based algorithms as described in

Section 6.1 to produce oversegmented segments. The value of k for clustering was

set to 20. The minimum area threshold for merging was set to 10 pixels. The
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(a) False color (b) Buildings (c) Roads (d) Vegetation

Figure 7.4: Examples of object detection for the DC Mall data set.
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(a) False color (b) Buildings

(c) Roads (d) Vegetation

Figure 7.5: Examples of object detection for the Centre data set.
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(a) False color (b) Buildings

(c) Roads (d) Vegetation

Figure 7.6: Examples of object detection for the University data set.
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neighborhood size for growing was fixed as 3 × 3. Then, we perform segmenta-

tion on each PCA band using the algorithm in Chapter 4 with disjoint SE size

ranges to model image content in different levels. We use five successive scales as

the multi-scale representation for all data sets. The SE size ranges correspond-

ing to different scales were chosen as: [3, 8], [9, 13], [14, 23], [24, 43], [44, 73]. For

each range, respectively, the connected components whose number of pixels are

greater than 25, 50, 100, 100 and 100 are considered in the segmentation process.

Resulting segments are modeled using the statistical summaries of their spectral

properties represented by PCA, LDA and Gabor bands. Then, these attributes

are used as features to cluster the segments using the algorithm in Chapter 5

where the EM algorithm was used with k empirically selected as 25 for clustering

for quantization. The number (K) of latent object type variables (zk) was set to

20 in the experiments. Finally, the cluster memberships assigned to each segment

in multiple levels of the scale hierarchy are used to classify the corresponding pix-

els into land cover/land use categories defined by the user. In particular, for the

DC Mall, Centre data sets, the length of a pixel’s feature vector is 16 and for the

University data set the length is 21. Final classification is done using decision

tree classifiers. The training and test ground truth data are shown in Figures

3.1-3.3.

Confusion matrices for the cases where region-based features were used with

the decision tree classifier are shown in Tables 7.2-7.4. The classification perfor-

mances of both classifiers (region level, quadratic Gaussian) are summarized in

Table 7.5. For qualitative comparison, the classification maps for both classifiers

for all data sets were computed as shown in Figures 7.7-7.9.

The results show that the proposed approach performed better than the tra-

ditional maximum likelihood classifier with Gaussian density assumption for all

data sets. Using texture features in addition to the spectral ones improved the

performance of both approaches. In addition, using multi-scale spatial informa-

tion with region features improved the results for the proposed approach further

but the maximum likelihood classifier could not avoid producing groups of mis-

classified pixels due to the lack of spatial information. The most significant

improvement was obtained applying region level classification for the University
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Table 7.2: Confusion matrix when region features were used with the decision
tree classifier for the DC Mall data set (testing subset). Classes were listed in
Fig. 3.1.

Assigned
Total % Agree

roof street path grass trees water shadow

True

roof 3824 0 0 2 8 0 0 3834 99.7392
street 0 414 0 0 0 0 2 416 99.5192
path 0 0 175 0 0 0 0 175 100.0000
grass 1 0 0 1927 0 0 0 1928 99.9481
trees 0 0 0 0 405 0 0 405 100.0000
water 1 0 0 0 0 1223 0 1224 99.9183

shadow 1 2 0 0 0 0 94 97 96.9072
Total 3815 428 180 1928 405 1224 99 8079 99.7896

Table 7.3: Confusion matrix when region features were used with the decision tree
classifier for the Centre data set (testing subset). Classes were listed in Fig. 3.2.

Assigned
Total % Agree

water trees meadows bricks bare soil asphalt bitumen tiles shadow

True

water 65971 0 0 0 0 0 0 0 168 65971 100.0000
trees 0 6142 1127 113 63 55 45 18 35 7598 80.8371

meadows 0 155 2842 0 49 3 0 41 0 3090 91.9741
bricks 0 1 76 2551 39 5 0 0 13 2685 95.0093

bare soil 1 4 56 944 5318 5 73 42 41 6584 80.7716
asphalt 0 84 77 23 32 8828 13 81 110 9248 95.4585
bitumen 0 0 52 14 279 296 6297 336 13 7287 86.4142

tiles 0 690 56 14 20 35 11 40590 1410 42826 94.7789
shadow 100 18 79 5 0 170 28 50 2413 2863 84.2822

Total 65842 6352 4288 2634 6364 10009 7023 42380 3260 148152 95.1401

Table 7.4: Confusion matrix when region features were used with the decision
tree classifier for the University data set (testing subset). Classes were listed in
Fig. 3.3.

Assigned
Total % Agree

asphalt meadows gravel trees m. sheets bare soil bitumen bricks shadow

True

asphalt 6078 144 68 22 118 0 0 198 3 6631 91.6604
meadows 444 15579 0 2014 0 90 302 98 122 18649 83.5380

gravel 8 0 835 0 2 0 0 1254 0 2099 39.7808
trees 6 69 1 2956 3 3 19 3 4 3064 96.4752

m. sheets 0 1 2 0 1342 0 0 0 0 1345 99.7770
bare soil 0 577 0 0 102 4151 78 0 121 5029 82.5413
bitumen 0 38 0 0 0 4 1285 0 3 1330 96.6165
bricks 71 8 353 3 0 1 0 3246 0 3682 88.1586
shadow 88 0 6 0 1 0 0 23 829 947 87.5396

Total 5102 18299 2237 4227 1350 4110 1521 4706 1224 42776 84.8630
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Table 7.5: Summary of classification accuracies using the region level classifier
and the quadratic Gaussian classifier.

DC Mall Centre University
Region level 99.7896 95.1401 84.8630
Quadratic Gaussian 99.3811 93.9677 81.2792

(a) Region level (b) Quadratic Gaus-
sian

Figure 7.7: Final classification maps with the region level classifier and the
quadratic Gaussian classifier for the DC Mall data set. Class color codes were
listed in Figure 3.1. ((b) taken from [3].)



CHAPTER 7. EXPERIMENTS AND RESULTS 64

(a) Region level (b) Quadratic Gaussian

Figure 7.8: Final classification maps with the region level classifier and the
quadratic Gaussian classifier for the Centre data set. Class color codes were
listed in Figure 3.2. ((b) taken from [3].)

(a) Region level (b) Quadratic Gaussian

Figure 7.9: Final classification maps with the region level classifier and the
quadratic Gaussian classifier for the University data set. Class color codes were
listed in Figure 3.3. ((b) taken from [3].)
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data set. The performances of the pixel level classifier for DC Mall and Centre

data sets were already quite high. In all cases, region level classification performed

better than the traditional pixel level classifier.

An important observation is that even though high classification accuracies

are seen in the numerical results, the classification maps of especially the pixel

level classifier include wrongly classified pixels for all images due to the lack of

spatial information [3]. The reason is that those wrongly classified pixels are not

included in test ground truth maps. Some examples are the upper part of the DC

Mall data, tiles on the left of the Centre data and many areas in the University

data. For a more reliable evaluation of the methods, the ground truths must

include many more pixels.



Chapter 8

Conclusions and Future Work

In this thesis, we firstly described a method for segmentation of urban structures

in high-resolution images. The first step was to extract structural information

using morphological opening and closing by reconstruction operators. Principal

components analysis bands were used to summarize hyper-spectral data and the

morphological operators were applied to each band separately. Then, candidate

segments were extracted by applying connected components analysis to the pixels

selected according to their morphological profiles obtained using increasing struc-

turing element sizes. Next, these segments were represented using a tree, and the

most meaningful ones were selected by optimizing a measure that consisted of

two factors: spectral homogeneity, which was calculated in terms of variances

of spectral features, and neighborhood connectivity, which was calculated using

sizes of connected components. We evaluated the proposed approach on three

data sets. The experiments showed that our method that considers morphologi-

cal characteristics, spectral information, and their consistency within neighboring

pixels is able to detect structures in the image which are more precise and more

meaningful than the structures detected by another approach that does not make

strong use of neighborhood and spectral information.

Then, we described an unsupervised method for automatic selection of seg-

ments corresponding to meaningful structures among a set of candidate segments

from multiple hierarchical segmentations. Segmentation was done by combining

66
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structural information extracted by morphological processing with spectral infor-

mation summarized using principal components analysis. Segments that maxi-

mized a measure consisting of spectral homogeneity and neighborhood connec-

tivity were selected as candidate structures for object detection. The segments

coming from multiple PCA bands were grouped using the probabilistic Latent

Semantic Analysis algorithm where the resulting groups of coherent segments

corresponded to different object types. We evaluated the proposed approach on

three data sets. The experiments showed that our method is able to automatically

detect and group structures belonging to the same object classes.

Finally, we presented an approach for classification of remotely sensed imagery

using multi-scale and spatial techniques. We model image content at different

scales by applying the proposed segmentation algorithm with disjoint SE size

ranges to obtain contiguous segments at each scale. The resulting segments were

modeled using the statistical summaries of their pixel-level content. Then, these

models were used to cluster the regions by the proposed clustering algorithm,

and the cluster labels assigned to each segment in multiple scales were used to

classify the corresponding pixels with a decision tree classifier. We investigated

the performance of multi-scale analysis and region features in classification. Ex-

periments with two data sets showed the effectiveness of the proposed approach

over the traditional maximum likelihood classifier because of the use of spatial

information extracted from multi-scale segmentations.

Even though the results look satisfactory both numerically and visually, better

evaluation of the classification technique is needed. This motivates an important

future work on gathering ground truth data with large coverage. We will also

prepare ground truth data for quantitative evaluation of segmentation and object

detection techniques.
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