
TIME/COST TRADE-OFFS IN MACHINE
SCHEDULING WITH CONTROLLABLE

PROCESSING TIMES

a dissertation submitted to

the department of industrial engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Sinan Gürel

January, 2008

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. M. Selim Aktürk (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Erdal Erel

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Meral Azizoğlu

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Alper Şen

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Hande Yaman

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii

ABSTRACT

TIME/COST TRADE-OFFS IN MACHINE
SCHEDULING WITH CONTROLLABLE PROCESSING

TIMES

Sinan Gürel

Ph.D. in Industrial Engineering

Supervisor: Prof. Dr. M. Selim Aktürk

January, 2008

Processing time controllability is a critical aspect in scheduling decisions since

most of the scheduling practice in industry allows controlling processing times.

A very well known example is the computer numerically controlled (CNC) ma-

chines in flexible manufacturing systems. Selected processing times for a given

set of jobs determine the manufacturing cost of the jobs and strongly affect their

scheduling performance. Hence, when making processing time and scheduling

decisions at the same time, one must consider both the manufacturing cost and

the scheduling performance objectives. In this thesis, we have studied such bi-

criteria scheduling problems in various scheduling environments including single,

parallel and non-identical parallel machine environments. We have included some

regular scheduling performance measures such as total weighted completion time

and makespan. We have considered the convex manufacturing cost function of

CNC turning operation. We have provided alternative methods to find efficient

solutions in each problem. We have particularly focused on the single objective

problems to get efficient solutions, called the ε-constraint approach. We have pro-

vided efficient formulations for the problems and shown useful properties which

led us to develop fast heuristics to generate set of efficient solutions.

In this thesis, taking another point of view, we have also studied a conic

quadratic reformulation of a machine-job assignment problem with controllable

processing times. We have considered a convex compression cost function for

each job and solved a profit maximization problem. The convexity of cost func-

tions is a major source of difficulty in finding optimal integer solutions in this

problem, but our strengthened conic reformulation has eliminated this difficulty.

Our reformulation approach is sufficiently general so that it can also be applied

to other mixed 0-1 optimization problems with separable convex cost functions.

iv

v

Our computational results demonstrate that the proposed conic reformulation is

very effective for solving the machine-job assignment problem with controllable

processing times to optimality.

Finally, in this thesis, we have considered rescheduling with controllable pro-

cessing times. In particular, we show that in contrast to fixed processing times,

if we have the flexibility to control the processing times of the jobs, we can gen-

erate alternative reactive schedules in response to a disruption such as machine

breakdown. We consider a non-identical parallel machining environment where

processing times of the jobs are compressible at a certain cost which is a convex

function of the compression on the processing time. When rescheduling, it is crit-

ical to catch up the initial schedule as soon as possible by reassigning the jobs to

the machines and changing their processing times. On the other hand, one must

keep the total cost of the jobs at minimum. We present alternative match-up

scheduling problems dealing with this trade-off. We use the strong conic refor-

mulation approach in solving these problems. We further provide fast heuristic

algorithms.

Keywords: Scheduling, Controllable processing times, Manufacturing cost, Bicri-

teria optimization, Convex cost functions, Second-order cone programming, conic

integer programming, Rescheduling, Match-up times.

ÖZET

KONTROL EDİLEBİLİR İŞLEM SÜRELERİYLE
MAKİNE ÇİZELGELEMEDE MALİYET/ZAMAN

İLİŞKİLERİ

Sinan Gürel

Endüstri Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. M. Selim Aktürk

Ocak, 2008

Kontrol edilebilir işlem süreleri çizelgeleme kararları verilirken dikkate alınması

gereken önemli bir özelliktir. Çünkü pek çok endüstri uygulaması, işlem

sürelerinin kontrol edilebilmesine olanak sağlamaktadır. Buna en iyi bilinen örnek

bilgisayar sayısal kontrollü (CNC) kesme makineleridir. Verilen bir iş kümesi için

seçilen işlem süreleri toplam üretim maliyetini belirlediği gibi çizelgeleme per-

formansını da önemli oranda etkiler. Bu yüzden işlem süreleri ve çizelgeleme

kararlarını birlikte verirken hem toplam üretim maliyeti hem de çizelgeleme per-

formans hedeflerini birlikte eniyilemek gerekir. Bu tezde, tek makine, paralel

makine gibi değişik çizelgeleme ortamlarında bu çift hedefli problemler üzerinde

çalıştık. Toplam iş bitim süresi ve maksimum iş bitim süresi gibi çizelgeleme

performans kriterlerini ele aldık. Çalışmada özellikle CNC torna işlemleri için

bilinen konveks maliyet fonksiyonunu kullandık. Ele aldığımız her problem için

etkin çözüm bulmaya yarayan hızlı metodlar önerdik. Çalışmamızda özellikle

tek hedefli problemler çözerek etkin çözüm bulmaya çalıştık. Bu yönteme lit-

eratürde ε-kısıt yaklaşımı denmektedir. Biz de bu çalışmada etkin problem

formülasyonları önerdik ve bu formülasyonlar üzerinde gösterdiğimiz özellikleri

kullanarak yaklaşık etkin çözümler üreten sezgisel metodlar geliştirdik.

Bu tezde, bir başka yaklaşımla, kontrol edilebilir işlem süreleriyle iş-makine

atama problemi için yeni bir konik karesel formülasyon önerdik. Bu kısımda her

iş için konveks bir sıkıştırma maliyeti fonksiyonu ele aldık ve kâr maksimizasyon

problemi çözdük. Problemin çözümünü zorlaştıran temel nedenlerden biri maliyet

fonksiyonunun konveks olmasıdır. Önerdiğimiz güçlendirilmiş formülasyonla bu

zorluğu ortadan kaldırdık. Yaklaşımımız, ayrık konveks maliyet fonksiyonları

içeren başka karışık 0-1 eniyileme problemlerinde de kullanılabilecek genel bir

yaklaşımdır. Deneysel hesaplamalarımız önerdiğimiz formülasyonun iş-makine

vi

vii

atama problemlerinin eniyi çözümünde çok etkili olduğunu gösterdi.

Son olarak bu tezde, kontrol edilebilir işlem süreleriyle yeniden çizelgeleme

üzerine çalıştık. Sabit işlem süreleriyle yeniden çizelgelemeden farklı olarak kon-

trol edilebilir işlem sürelerinin makine bozulması gibi aksaklıklar karşısında çok

farklı alternatif çözümler üretmemize olanak sağladığını gösterdik. Farklı paralel

makineler üzerinde konveks sıkıştırma maliyet fonksiyonu varlığında makinelerden

birinin bir süre çalışamaması durumunda yeniden çizelgeleme problemi üzerinde

çalıştık. Yeniden çizelgelemede amaç iş-makine atamalarını yeniden yaparak ve

işlem sürelerini değiştirerek eski çizelgeyi en kısa zamanda yakalamaktır. Öte yan-

dan toplam üretim maliyetini de enazlamak gerekir. Çelişen bu iki hedefi ele alan

alternatif yeniden çizelgeleme problemleri önerdik. Bu problemleri güçlendirilmiş

konik formülasyon yaklaşımını kullanarak çözdük. Ayrıca hızlı sezgisel tarama

algoritmaları önerdik.

Anahtar sözcükler : Çizelgeleme, Kontrol edilebilir işlem süreleri, Konveks üretim

maliyeti, İki hedefli eniyileme, İkinci derece konik programlama, Konik tamsayılı

programlama, Yeniden çizelgeleme.

Dedicated to

Yeşim and Barış...

viii

Acknowledgement

I would like to sincerely thank to my advisor Prof. M. Selim Aktürk for his

valuable and perpetual guidance and encouragement throughout this study. His

supervising with patience and interest made this thesis possible.

I am grateful to Assoc. Prof. Alper Atamtürk for kindly guiding me in prepa-

ration of this dissertation during my visit to University of California,Berkeley.

I gratefully acknowledge all the members of my committee who have given

their time to read this manuscript and offered valuable advice.

I am especially indebted to my wife Yeşim for her love, encouragement and

sacrifice which made this thesis possible. I can never thank her enough for taking

care of Barış by herself during my visit to Berkeley and during her stay in Bitlis

while completing her mandatory government service as a medical doctor.

I would like to thank to TÜBİTAK for providing the financial support for my

Ph.D. study and my visit to Berkeley.

ix

Contents

1 Introduction 1

2 Literature Review 7

2.1 Machining Parameters Selection 7

2.2 Scheduling with Controllable Processing Times: Time/Cost Trade-

off . 9

2.2.1 Single Machine Problems 11

2.2.2 Parallel Machine Scheduling Problems 14

2.3 Multi-objective Scheduling . 16

2.4 Conic Mixed Integer Programming 18

2.5 Rescheduling . 19

3 Single Machine Scheduling 24

3.1 Problem Definition . 26

3.2 Cost Index Based Approximation (CIBA) Method 35

3.3 Total Completion Time Problem 38

x

CONTENTS xi

3.4 Numerical Example . 43

3.5 Computational Results . 46

3.6 Conclusion . 53

4 Parallel Machine Scheduling 54

4.1 Problem Definition . 55

4.2 Optimality Properties . 58

4.3 A heuristic method to generate approximate efficient solutions . . 63

4.4 Numerical Example . 67

4.5 Computational Analysis . 71

4.6 Conclusions . 77

5 Machine Job Allocation 78

5.1 Problem Definition . 79

5.2 Single Machine Subproblem (Pm) 81

5.3 Cost Lower Bounds for a Partial Schedule 84

5.4 Initial Solution . 88

5.5 B&B Algorithm . 89

5.6 Beam Search Algorithm (BS) . 96

5.7 Improvement Search Heuristic (ISH) 98

5.8 Recovering Beam Search (RBS) 101

5.9 Computational Results . 102

CONTENTS xii

5.10 Conclusion . 110

6 Conic Quadratic Reformulation 112

6.1 Problem Definition . 113

6.2 Conic Reformulations . 115

6.2.1 Working with epi(f) . 116

6.2.2 Strengthening the continuous relaxation 118

6.2.3 Conic quadratic representation 121

6.3 Computational Analysis . 123

6.4 Conclusion . 130

7 Match up Scheduling 131

7.1 Rescheduling with Controllable Processing Times: A Numerical

Example . 133

7.2 Scheduling Environment and Problem Definitions 138

7.2.1 Minimize Sum of Match up Times 139

7.2.2 Minimize Maximum of Match up Times 141

7.2.3 Minimize Total Manufacturing Cost Subject to a Bound on

Sum of Match up Times 142

7.2.4 Minimize Total Manufacturing Cost Subject to a Bound on

Maximum Match up Time 143

7.3 Strong Conic Quadratic Formulations for Cost Minimization Prob-

lems . 144

CONTENTS xiii

7.4 Generating A Set of Approximately Efficient Solutions: Heuristic

Approach . 147

7.4.1 A Subproblem . 148

7.4.2 Job Pool . 149

7.4.3 1-move Improvement Search 151

7.4.4 2-swap Improvement Search 153

7.5 Computational Study . 154

7.6 Conclusions . 159

8 Conclusion 161

8.1 Concluding Remarks . 161

8.2 Future Research Directions . 163

A Single Machining Operation Problem (SMOP) 176

List of Figures

3.1 A typical manufacturing cost function for a turning operation. . . 27

3.2 An example set of efficient solutions 29

4.1 A set of efficient solutions for the numerical example 70

4.2 Behavior of R on different regions of the efficient frontier 75

5.1 B&B tree for the numerical example 94

6.1 Surfaces defined by inequalities (6.6) and (6.7). 118

6.2 Binary construction tree for Example 1. 123

7.1 Alternative Reactive Scheduling Approaches 136

7.2 Efficient Solution Set for Total Cost and Sum of Match-up Times

Objectives . 137

7.3 Efficient Solution Set for Total Cost and Minimum of Maximum

Match- up Time Objectives . 138

xiv

List of Tables

3.1 Specifications of the jobs in the numerical example 43

3.2 Schedules at Z1 and Z2 . 44

3.3 Results of the first 10 iterations by the CIBA method 45

3.4 Schedules generated by different methods when F2=7.592 46

3.5 Experimental design factors . 47

3.6 Technical coefficients of the cutting tools 48

3.7 Performance measures for the weighted case 49

3.8 Performance measures for the total completion time case 50

3.9 Comparison with the global optimal solutions 51

3.10 Comparison of the approximation algorithms for ∆ = 0.01 52

4.1 Schedules at Z1 and Z2 . 68

4.2 Results of the first 7 iterations of MPJ algorithm 69

4.3 Schedules generated by different methods at iteration 1 70

4.4 Experimental Design Factors . 72

xv

LIST OF TABLES xvi

4.5 Performance measures for different step size levels 73

4.6 Average performance measures for different N and M levels when

∆ = 0.01 . 74

4.7 Comparison with the global optimal solutions 76

4.8 Comparison of the approximation algorithms 76

5.1 Job data for numerical example 93

5.2 Trial Results for Job Ordering Rules for Step 2 of B&B. 105

5.3 Eliminated and Traversed Tree Sizes 105

5.4 CPU Requirements (in seconds) for different lower bounding methods106

5.5 Eliminated and Traversed Nodes at different K levels for N = 20

and M = 4 by LBLP . 107

5.6 Deviations from the optimum for IS, BS and RBS heuristics . . . 108

5.7 Deviations from the optimum for ISH algorithm 109

5.8 Average CPU time (sec.) requirements 109

5.9 Performances of Beam Search and Improvement Search Heuristics

at different K levels . 110

5.10 Performances of IS and ISH . 110

6.1 Computational results for the quadratic case: f(y) = ky2. 125

6.2 Alternative formulations for the cubic case: f(y) = ky3. 126

6.3 Computational results for the cubic case: f(y) = ky3. 127

6.4 Conic formulation size for the rational case: f(y) = kya/b. 128

LIST OF TABLES xvii

6.5 Computational results for the general case: f(y) = kya/b. 129

7.1 Sum of Match-up Times . 156

7.2 Maximum Match-up Time Results 157

7.3 Heuristic Algorithm Performance 159

Chapter 1

Introduction

Most of the studies in the machine scheduling literature assume fixed processing

times. However, there are many industry applications where we can control the

processing times. A well known example is the turning operation on CNC turning

machines. On a CNC turning machine, we can control the processing time of an

operation by setting the machining parameters such as the cutting speed and feed

rate. For a turning operation, decreasing the processing time by increasing the

cutting speed and/or feed rate results in more wear on the tool which implies

increased tooling cost for the job. As a result, decreasing the processing time

of a job usually requires incurring extra costs. In order to utilize the processing

time controllability on a machine, we need to make appropriate processing time

decisions which takes the manufacturing cost performance into account.

On the other hand, scheduling problems are extremely sensitive to the pro-

cessing time data, so we need appropriate processing time decisions to improve

the scheduling objectives. When considering a regular scheduling objective, one

usually sets the processing time of each job as small as possible and then solves

the scheduling problem. This approach only focuses on scheduling performance

and ignores the manufacturing cost performance as we have to use more resource

to achieve shorter processing times. Therefore, in order to make appropriate

processing time and scheduling decisions, we need to investigate the existing

1

CHAPTER 1. INTRODUCTION 2

time/cost trade-off between manufacturing cost objective and the scheduling ob-

jective under consideration.

The existing CNC machine technology allows us to change the processing

times very quickly by just changing few lines in the CNC programming code.

Hence, on those machines we can easily execute the scheduling and process plan-

ning decisions which balance the manufacturing cost and scheduling performance

as required by the decision maker.

In the scheduling literature, most of the studies have focused on problems

with a single objective. However, in the real world, we usually face a number of

objectives. Process planning or processing time decisions focus on minimizing the

manufacturing cost, whereas in the scheduling decisions the main aim is to opti-

mize a scheduling criterion. Usually these two decisions are made independently.

Since there is a significant interaction between the schedule performance and cost,

in this thesis, we propose models and algorithms that combine these decisions for

different scheduling environments and scheduling performance measures.

In this study, we basically focus on CNC turning machines, so we have a well

defined and realistic manufacturing cost function of processing time for each job.

This manufacturing cost function is nonlinear and convex. In our analysis, we

assume the case where the manufacturing cost function might be different for

each job due to different operational and surface quality requirements, and its

required cutting tool. However, all our results are applicable for the cases where

there exists sublots of jobs which are identical. Although we specifically consider

manufacturing cost function for the turning operation, our results apply to any

problem with nonlinear convex processing cost functions.

In Chapters 3, 4 and 5, we first focus on finding efficient solutions for the ob-

jectives of total manufacturing cost and various scheduling performance measures

in different machine environments. In order to find efficient solutions, one method

we use is the ε-approach, i.e. solving a single objective problem after sending other

objectives to the constraint set. We also propose heuristic algorithms which gen-

erate sets of approximate efficient solutions. We next study a strengthened conic

quadratic reformulation for a machine-job assignment problem with controllable

CHAPTER 1. INTRODUCTION 3

processing times in Chapter 6. Finally, we propose some rescheduling problems

under processing time controllability assumption in Chapter 7.

In Chapter 2, we give the literature review on related topics to this thesis.

We first review the related literature on process planning problems for turning

operation. We then give an extensive review on scheduling with controllable

processing times and refer to the multi-objective scheduling literature. We next

discuss the advances in second-order cone programming. Chapter 2 ends with a

review of rescheduling studies.

In Chapter 3, we consider the situation where both total weighted completion

time and cost performance are under consideration for a CNC turning machine. In

order to find a set of efficient solutions for this bicriteria problem, we first present

a mathematical model for the single objective problem which minimizes total

manufacturing cost subject to a given upper bound on total weighted completion

time objective. We derive optimality properties for the single objective problem.

Then, by utilizing these properties, we propose a new heuristic method to generate

a set of approximate efficient solutions. Our results show that by integrating the

machine scheduling and process planning decisions, we can generate a set of

alternative solutions for the decision maker so that significant time/cost gains

can be achieved.

In Chapter 4, we consider identical parallel CNC turning machines on which

we have two objectives to minimize: total completion time and total manufac-

turing cost. We deal with the problem of minimizing total manufacturing cost

subject to a given limit on total completion time. This problem is more difficult

than minimizing the sum of two objective functions which was usually done in

the literature. For this problem, we propose an effective formulation which can

be solved by commercial nonlinear programming solvers. Using this formulation,

we also give useful properties for the problem which allowed us to develop an

algorithm that can generate a large set of approximate efficient solutions in a

short computation time.

In the current literature on the loading and scheduling problems of flexible

manufacturing systems, the most popular performance measure is balancing the

CHAPTER 1. INTRODUCTION 4

workload (or minimizing the makespan). This is due to the fact that these sys-

tems require a very high investment cost so that the managers would like to fully

utilize their capacity. In Chapter 5, we consider both the makespan and total

manufacturing cost objectives at the same time for a flexible machining envi-

ronment of non-identical parallel machines. We solve the problem of minimizing

total manufacturing cost subject to a given bound on makespan. We give an

exact solution method for the problem and develop several heuristic methods.

Another approach we have taken in analyzing the machine scheduling prob-

lems with controllable processing times is developing conic quadratic (second

order conic) reformulations. In Chapter 6, we have focused on a machine-job

assignment problem with controllable processing times arising in flexible manu-

facturing systems. In such systems one employs a host of non-identical machines

each having different applicable machining power levels. Thus, each job has dif-

ferent cost and different processing time values on different machines.

Different than the analysis in Chapters 3- 5, in Chapter 6, we have considered

the case that cost of a job on a machine is determined by the amount of com-

pression on its processing time. We have studied the trade-off between increasing

yield and cost of machining, which can be modeled as a nonlinear mixed 0-1

profit maximization problem. We reformulate the problem using a polynomial

number of conic quadratic constraints. We construct strong conic reformulations

by studying the convex hull description of appropriate mixed integer sets defined

by nonlinear inequalities. Our results are applicable to many different problems

from different areas such as finance and manufacturing.

As a final step of this thesis, we have considered processing time controllabil-

ity in rescheduling problems. Controllable processing times is a critical factor to

be considered in making reactive decisions against unexpected disruptions to a

given schedule. Making processing time decisions simultaneously with scheduling

decisions, such as sequencing, allocation, etc., usually complicates the problems.

On the other hand, this enables generating alternative schedules with varying

manufacturing cost and scheduling performance, hence brings flexibility in mak-

ing reactive scheduling decisions. In this thesis, we next studied how rescheduling

CHAPTER 1. INTRODUCTION 5

and processing time decisions can be made at the same time to react against a

machine breakdown on a given schedule.

In Chapter 7, we propose alternative rescheduling approaches for a given

preschedule in non-identical parallel machine environment. We consider different

rescheduling objectives to minimize. The first one is the total manufacturing

cost for the jobs not yet started at the time of machine breakdown. The second

objective is the sum of match-up times on the machines. Match-up time on a

machine is the time point at which the new schedule catches up the presched-

ule. The third objective to minimize is the maximum match-up time for the new

schedule. Since the cost objective and the match-up time related objectives con-

flict, in order to find efficient solutions, we consider the problems of minimizing

total manufacturing cost subject to an upper bound on total match-up time and

an upper bound on maximum match-up time. We give formulations for each of

these problems. We show that cost minimization problems can be reformulated

by using conic quadratic inequalities as shown in Chapter 6. This reformulation is

important since it allows us to solve the practical size problems in very short CPU

times, which is quite critical in rescheduling. The second approach is devising a

heuristic algorithm which generates approximate efficient solutions for the cost

and match-up time objectives based on the slope information of cost functions.

As we deal with different forms of manufacturing cost function and different

scheduling decisions such as sequencing and allocation in different scheduling

environments, we give the related notation at the beginning of each chapter which

we believe will make this thesis more readable.

In Chapter 2, we give the related literature. In Chapter 3, we give the re-

sults for the total manufacturing cost and weighted completion time objectives in

single machine. In Chapter 4, we extend the discussion to the identical parallel

machine environment in which total completion time objective is under consider-

ation. In Chapter 5, we explore the manufacturing cost minimization problem on

non-identical parallel machine environment with a limit on makespan objective.

We give a strong conic-quadratic reformulation for the machine job assignment

problem in Chapter 6. In Chapter 7, we introduce rescheduling problems with

CHAPTER 1. INTRODUCTION 6

controllable processing times and give solution approaches. Finally, we give final

remarks and future research directions in Chapter 8.

Chapter 2

Literature Review

In this chapter, we will first give a literature review on process planning decisions

for the turning operation. Then, we will discuss on the scheduling literature with

controllable processing times and time/cost trade-off. We will then mention the

related work on multi-objective scheduling. We will next give a review of second

order cone programming and conic mixed integer programming literature. We

will end this chapter with rescheduling and match-up scheduling literature.

2.1 Machining Parameters Selection

Trade-off between the cutting parameters and the manufacturing cost or the

surface quality of a turning operation have been studied extensively in the litera-

ture. Machining parameters selection problem dealing with this trade-off is a well

known problem. On a CNC turning machine, increasing the cutting speed and/or

feed rate decreases the processing time of an operation whereas it increases the

tooling cost. The problem is to select the appropriate cutting speed and feed rate

parameters for a given turning operation. For the turning operation, selected ma-

chining parameters must satisfy the surface roughness requirement for the part

being machined and must take into account the maximum machine power that

the machine can apply. These two constraints were defined by Bhattacharya et al.

7

CHAPTER 2. LITERATURE REVIEW 8

[14]. The tool life equation, developed by Taylor [82], defines the relationship be-

tween cutting tool’s life and the machining parameters. It is used to determine

the tooling cost which occurs due to loss of tool life by a cutting operation. Also,

we can use the tool life equation to define the tool life constraint when formulat-

ing problems in which there is a restriction that an operation must be performed

within a predefined tool life.

In context of machining parameters selection problem, different objectives like

minimizing production cost, maximizing output production rate or maximizing

profit rate have been studied. Hitomi [46] discussed various mathematical mod-

els and solution methods for different objective functions of machine parameter

selection problem for turning operation. Aktürk and Gürel [3] included main-

tenance cost along with tooling and operating costs in the objective function

of machining parameters selection problem. Malakooti and Deviprasad [61] for-

mulated machine parameter selection problem as a multiple objective decision

making problem. Three conflicting objectives of minimizing total cost, minimiz-

ing production time and minimizing surface roughness were considered and a

heuristic approach was discussed. They also gave a list of seminal studies in the

machine parameter selection area.

Ermer and Kromordihardjo [30] suggested the combination of separable pro-

gramming and geometric programming for the conversion of the machine parame-

ter optimization model to a linear programming formulation. Gopalakrishnan and

Al-Khayyal [33] provided a geometric programming based method to minimize

machining and tooling costs. The method they provided was based on geometric

programming and used the complementary slackness conditions to solve the prob-

lem. Choi and Bricker [22] discussed the effectiveness of a geometric programming

model in machining optimization problems.

There are studies which combine machine level decisions such as tool loading

and maintenance planning with process planning decisions in flexible machining

environment. Lamond and Sodhi [57] considered the cutting speed selection and

tool loading decisions on a single cutting machine so as to minimize total process-

ing time. Sodhi et al. [81] considered determining the optimal processing speeds,

CHAPTER 2. LITERATURE REVIEW 9

tool loading and part allocations on several flexible machines with finite capac-

ity tool magazines where the objective is to minimize the makespan. Gürel and

Aktürk [40] studied making processing time and preventive maintenance planning

decisions simultaneously for a CNC turning machine.

Aktürk and Avcı [1] considered the tool life constraint in a geometric pro-

gramming model which is given in Appendix A. They proved that either the tool

life constraint or the surface roughness constraint must be tight at the optimal

solution. Kayan and Aktürk [54] later showed that only the surface roughness

constraint must be tight at the optimal solution. This result is very important

for our analysis in this thesis. The tightness condition for the surface roughness

constraint enables us to express the machining cost as a function of processing

time. Then, when we make a processing time decision for a scheduling prob-

lem, we can easily determine the corresponding cutting speed and feed rate and

corresponding machining (manufacturing) cost. We know that this cost function

is convex and this property will be very important in our analysis. Kayan and

Aktürk [54] also provided a mechanism to determine upper and lower bounds for

the processing time of a turning operation. When we consider manufacturing cost

and scheduling performance measure simultaneously, process planning decisions

and scheduling decisions affect each other. Combining the process planning and

various scheduling decisions for CNC turning machines is an important contri-

bution of this thesis. Next, we will give a literature review on scheduling with

controllable processing times.

2.2 Scheduling with Controllable Processing

Times: Time/Cost Trade-off

In this section, we will give a review of the literature on scheduling with control-

lable processing times and time/cost trade-off. A recently published extensive

survey on this topic is given by Shabtay and Steiner [79]. The initial work on

scheduling with controllable processing times dates back to 1980, however, most

of the studies in the literature were published in recent years. When discussing

CHAPTER 2. LITERATURE REVIEW 10

the studies in the literature it is useful to use a similar notation with the recent

surveys given by Hoogeven [48] and Shabtay and Steiner [79]. Solving a schedul-

ing problem with controllable processing times requires:

(i) specifying a feasible schedule σ for the jobs, and

(ii) specifying a processing time vector p.

We denote processing time of job j by pj and corresponding manufacturing cost by

fj(pj). Then, total manufacturing cost is F1(p) =
∑

j fj(pj) and the scheduling

performance measure is F2(σ). Then, the following scheduling problems arise:

P1: to minimize the total cost, that is F1(p) + F2(σ);

P2: to minimize F1(p) under the constraint F2(σ) ≤ F ;

P3: to minimize F2(σ) under the constraint F1(p) ≤ C;

P4: to identify the efficient frontier for (F1(p), F2(σ)).

In the following, we will review the results that have been obtained for the P1−
P4 versions of different bi-criteria scheduling problems. To state the processing

time controllability, we will be using the acronym “contr” in the second field

of α|β|γ notation used by Graham et al. [34]. The first field (α) describes the

machine environment, the second field (β) describes the processing characteristics

or constraints and the third field (γ) gives the objective to be minimized. We

will be using the acronym “lin” in the second field for the linear cost function

problems, and “conv” for the convex cost function problems.

Studies assuming controllable processing times mostly deal with two objectives

as given above. The first one is the cost of operating the jobs on the machines

which is considered as manufacturing cost, or compression cost, or processing

cost in different studies in the literature. The second objective is a scheduling

performance measure.

There are few survey papers which classify and review the studies in scheduling

with controllable processing times area. The recent one is by Shabtay and Steiner

[79]. Hoogeven [48] reviews multi-objective scheduling literature and gives a

short review on the studies with controllable processing times in multi-objective

CHAPTER 2. LITERATURE REVIEW 11

scheduling. Another survey on scheduling with controllable processing times is

by Nowicki and Zdrzalka [69] which reviews the results achieved till 1990. In this

section, we particularly give the results which are related to the various machining

environments and scheduling performance measures that we have considered in

this thesis.

2.2.1 Single Machine Problems

Firstly, we give the results for the 1|contr|Cmax,
∑

j fj(pj) problem. Van Wassen-

hove and Baker [87] show that P1 − P4 versions of the problem

1|contr|gmax,
∑

j fj(pj) are solvable in polynomial time under the assumption

that gj(t) = wjt for all j = 1, ..., n where gj is a function of completion time

of job j. When wj’s are equal for all j, this result implies that P1 − P4 ver-

sions of the problem 1|contr, lin|Cmax,
∑

j fj(pj) are solvable in polynomial time.

Hoogeveen and Woeginger [47] extend these results to the piecewise linear fj’s.

Chen et al. [20] consider the problem 1|contr, rj|Cmax,
∑

j fj(pj) where processing

times are discretely controllable and the jobs have release dates. They show that

P1 version of the problem is NP-hard for the discretely controllable case but it

is solvable in polynomial time for the continuously controllable case.

For the convex cost function case, solving P2 version of the problem

1|contr, conv|Cmax,
∑

j fj(pj) is equivalent to solving nonlinear resource alloca-

tion problem discussed by Bretthauer and Shetty [15]. They give the optimality

properties and a solution method for the problem. Kaspi and Shabtay [53] use a

convex nonlinear resource consumption function of processing time for each job.

They consider the problem 1|contr, conv, rj|Cmax,
∑

j fj(pj) subject to limited to-

tal resource consumption (P3). They also consider minimizing total resource con-

sumption subject to limited makespan (P2) when all release dates are the same.

Kayan and Aktürk [54] consider the problem of 1|contr, conv|Cmax,
∑

j fj(pj) on

a CNC turning machine and provide methods to solve P2 version of the problem.

The convex manufacturing cost function fj(pj) for the turning operation is known

from the process planning literature. In Chapter 5, we will discuss P2 version

of the problem 1|contr, conv, rj|Cmax,
∑

j fj(pj) in a single CNC turning machine

CHAPTER 2. LITERATURE REVIEW 12

in detail. Solution method for this problem will lead us in developing solution

methods for parallel machine problems.

The second problem to consider is the 1|contr, lin|
∑
Cj,
∑

j fj(p)j) where

Cj is the completion time of job j. Vickson [89] shows that P1 version of the

problem is solvable in polynomial time in his work which initiated the area of

scheduling with controllable processing times. He observed that compressing the

processing time of the job at position j by δ decreases the total completion time

by (n− j+ 1)× δ, where n is the number of jobs, and increases the cost by cj × δ
where cj is the slope of the linear compression cost function. This observation

yielded the conclusion that in an optimal solution a job is either fully compressed

or not compressed at all. This decision depends on the position of the job.

Then, for each job, we can determine the cost to occur at each position. This

allows to formulate the problem as an assignment problem which is easy to solve.

Chen et al. [20] show that the discrete controllable case for the same problem is

also solvable in polynomial time. Ng et al. [66] additionally consider batching

and controllable setup times for the same objective in P1 and P3 versions of

the problem. Ruiz Diaz and French [74] develop an enumerative algorithm for

the P4 version of the problem and noted that the efficient frontier in general

is not convex. In Chapter 3, we will give the results on P2 and P4 versions

of the problem 1|contr, conv|
∑
Cj,
∑

j fj(pj) on a single CNC turning machine.

Different than the studies above, we deal with nonlinear convex manufacturing

cost function which leads to a non-convex mixed integer nonlinear programming

formulation for the P2 version of the problem. We will give optimality properties

for the problem and a mathematical formulation whose nonlinear programming

relaxation gives an integer solution. We will also present an algorithm which

generates an approximate efficient solution set in a very short computation time.

Next problem to consider is 1|contr, lin|
∑
wjCj,

∑
j fj(pj) where wj is the

weight of job j. Vickson [88] studied P1 version of the problem. He proposed

several heuristics and a branch and bound algorithm to solve the problem. He

conjectured the NP-hardness of the problem. Wan et al. [91] and Hoogeveen

and Woeginger [47] showed that the problem is NP-hard in the ordinary sense.

CHAPTER 2. LITERATURE REVIEW 13

Janiak et al. [50] showed that the problem is a positive half-product minimiza-

tion problem and presented fully polynomial time approximation schemes for the

problem. Shabtay and Kaspi [78] considered a nonlinear relationship between

processing times and resource consumption. They considered P3 version of the

problem which is the problem of scheduling jobs on a single machine to minimize

total weighted flow time subject to limited resource. They presented optimality

properties for the problem and showed the cases solvable in polynomial time.

They also proposed a dynamic programming algorithm. In this thesis, we deal

with P2 version of the problem for which we will prove some optimality prop-

erties in Chapter 3. We will also give an efficient mathematical model for the

problem as in the 1|contr, conv|
∑
Cj,
∑

j fj(pj) case. We will give an algorithm

to generate an approximate efficient solution set.

There are results for other single machine scheduling problems in the litera-

ture regarding due date-related objectives. Vickson [89] considers P1 version of

the problem 1|contr, lin|Tmax where Tmax is the maximum tardiness. He gives a

polynomial time algorithm to solve the problem. If there is the restriction that

a job can either be fully compressed or not compressed at all then the problem

becomesNP-hard in the ordinary sense. Shabtay [76] gives polynomial time algo-

rithms for minimizing maximum lateness subject to limited single or two-resource

consumption constraint. He again considers nonlinear resource consumption func-

tion. Using the same resource consumption function, Yedidsion et al. [94] provide

a polynomial algorithm which constructs the trade-off curve between maximal

lateness and total resource consumption objectives. Chen et al. [20] show that

the discretely controllable case is NP-hard. They also show that the problem

1|contr, lin|
∑
wjUj +

∑
j fj(pj) with discretely controllable processing times is

NP-hard where Uj is 1 if job j is late and 0 otherwise. They further show that

for the common due date case, the problem 1|contr, lin|
∑
αEj+βTj,

∑
j fj(pj) is

solvable in polynomial time where Ej is the earliness of job j. Daniels and Sarin

[25] provide some theoretical properties that would aid developing the trade-off

curve (P4) between number of tardy jobs (1|contr|
∑
Uj) and the total amount

of allocated resource. Panwalkar and Rajagopalan [72] study P1 version of the

problem 1|contr|
∑
Ej + Tj,

∑
j fj(pj) where the processing times, the common

CHAPTER 2. LITERATURE REVIEW 14

due date and the job sequence are to be determined. They provide a polynomial

time algorithm for the problem. Janiak and Kovalyov [49] consider minimizing

weighted compression cost subject to deadlines given for the jobs. For the con-

tinuous resource case, they show that the problem is solvable in polynomial time

but for the discrete case they prove that it is NP-hard.

In Chapter 3 we present our results on the P2 versions of the problems

1|contr, conv|
∑
Cj,
∑

j fj(pj) and 1|contr, conv|
∑
wjCj,

∑
j fj(pj). We pro-

posed a heuristic algorithm which generates a set approximate efficient solutions

for these problems. To the best of our knowledge, convex cost function case is

not studied yet except the resource allocation studies of Kaspi and Shabtay [53],

Shabtay and Kaspi [78] and Shabtay [76]. They assumed a nonlinear convex re-

source consumption function rj = wjp
k
j where pj is the processing time of job j, rj

is the amount of resource allocated to job j, wj is a job specific constant and k is a

negative exponent which is same for all jobs. This resource consumption function

corresponds to a special case of our tooling cost term in the manufacturing cost

function such that all jobs require the same cutting tool type. However, usually

this is not the case in CNC machining, each job may require different cutting tool

type and each job could have a different nonlinear manufacturing cost function

due to different operational and surface quality requirements. Moreover, we have

a lower bound on the processing time of each job due to surface quality and CNC

machine power requirements. Therefore, their analysis do not apply directly to

the problems which we consider in this thesis. Next, we will give the results on

parallel machine problems.

2.2.2 Parallel Machine Scheduling Problems

In the literature, we see that most of the attention in parallel machine schedul-

ing problems with controllable processing times is given for the Cmax objective.

The earliest and the best known work is by Trick [84]. He considered the prob-

lem Rm|contr, lin|Cmax,
∑

j fj(pj) where Rm stands for non-identical parallel ma-

chines. For the P1 version of the problem he proposed an approximation algo-

rithm with 2.816 + ε worst case performance. For the same problem Shmoys and

CHAPTER 2. LITERATURE REVIEW 15

Tardos [80] proposed a 2-approximation algorithm. Trick [84] also considered

minimizing total compression cost subject to machine capacity constraints. He

assumed that each machine can have different capacities but it corresponds to P2

version in our problem classification. He showed the NP-hardness of the problem

and gave a mathematical formulation which corresponded to a network structure.

He observed some optimality properties and proposed a heuristic algorithm for

the problem. Differently, in Chapter 5, we consider a nonlinear convex manu-

facturing cost function for each job. Moreover, we propose a branch and bound

(B&B) algorithm for the problem. We then give a recovering beam search algo-

rithm which can be implemented for the instances where the B&B algorithm is

not computationally efficient. We also propose an improvement search algorithm

which can be used to improve any given feasible schedule for the problem. Our

results for the non-identical machine problem also apply for the identical machine

problems.

Jansen and Mastrolilli [51] give polynomial time approximation algorithms for

P1, P2 and P3 versions of the problem Pm|contr, lin|Cmax,
∑

j fj(pj) where Pm

stands for the identical parallel machines. They also provided exact algorithms

for the preemptive versions. Mastrolilli [62] considers P2 version of the problem

Pm|rj, contr|Cmax,
∑

j fj(pj). He shows that when the preemption allowed the

problem is solvable in polynomial time but it is NP-hard for the non-preemptive

case.

Daniels et al. [26] study the P3 version of the Cmax problem on parallel ma-

chines. There is limited resource to be allocated to the machines and the resource

allocated to a machine determines the processing times of the jobs on that ma-

chine. They consider static and dynamic resource allocation cases. They give

theoretical results, algorithms and complexity analysis for the problem. The only

paper that deals with P4 version of the problem Pm|contr, lin|Cmax,
∑

j fj(pj) is

by Nowicki and Zdrzalka [68] which gives a polynomial time algorithm to generate

the set of Pareto-optimal points when preemption is allowed.

Another problem considered in the literature is Rm|contr|
∑
Cj,
∑

j fj(pj).

The first study dealing with controllable processing times on parallel machines is

CHAPTER 2. LITERATURE REVIEW 16

by Alidaee and Ahmadian [6] who solved P1 version of the problem by extending

the approach given by Vickson [88]. They considered linear processing cost func-

tions and their approach was extended to nonlinear convex cost function case by

Cheng et al. [21]. Shabtay and Kaspi [77] considered minimizing the total com-

pletion time subject to a maximal resource constraint. In Chapter 4, we consider

the total completion time objective in identical parallel machines.

Chen [19] studied P1 version of the problems Pm|contr, lin|
∑
wjCj,

∑
j fj(pj)

and Pm|contr, lin|
∑
wjUj,

∑
j fj(pj). He showed the NP-hardness of both prob-

lems and proposed branch and bound algorithms for both discretely and con-

tinuously controllable cases. Zhang et al. [95] developed a 3/2-approximation

algorithm for the P1 version of the Rm|contr, lin|
∑
wjCj,

∑
j fj(pj) problem,

which they showed to be NP-hard. Alidaee and Ahmadian [6] showed that

P1 version of the problem is solvable in polynomial time for the problem

Rm|contr, lin, d = dj|
∑
Ej + Tj,

∑
j fj(pj) where d = dj implies all jobs have

same due date. In the next section, we give a short review on multi-objective

scheduling.

2.3 Multi-objective Scheduling

Quality of a schedule can be evaluated in different dimensions. A production

schedule which is good in terms of catching due dates and achieving customer

satisfaction may be causing high inventory levels in the system. In the schedul-

ing literature, since 1980’s single objective problems were considered. Hoogeven

[48] gave a review on multi-objective scheduling. Some of those studies consider

fixed processing times. Gupta and Ruiz-Torres [37] considered the objectives of

minimizing total flow time and minimizing total number of tardy jobs simulta-

neously and proposed heuristic algorithms to generate efficient solutions. Gupta

and Ho [36] provided solution methods for the problem of minimizing makespan

subject to minimum flow time for two parallel machines. Cao et al. [17] consid-

ered the machine selection and scheduling decisions together in order to minimize

the sum of machine cost and job tardiness. Alagöz and Azizoğlu [5] studied a

CHAPTER 2. LITERATURE REVIEW 17

problem with the objectives of minimizing total completion time and minimizing

number of disrupted jobs in a rescheduling environment. In this thesis, we study

bi-criteria scheduling problems in different machining environments with the first

objective being the total manufacturing cost, and the second objective being a

scheduling performance measure.

One of the methods to solve bi-criteria problems in the literature is represent-

ing one of the objectives as a constraint and optimizing over the second objective.

By this way, we can search over the different values to generate a set of discrete

efficient points to approximate the efficient frontier. Therefore, in this thesis,

we consider the problem of minimizing total manufacturing cost objective for a

given upper limit on different scheduling objectives. This method known as the ε-

constraint approach as discussed in T’kindt and Billaut [83] has been used widely

in the literature, because it is easy to use in an interactive algorithm. Moreover,

the decision maker can interactively specify and modify the bounds and analyze

the influence of these modifications on the final solution.

In multi-objective optimization problems, approximation quality of the gen-

erated efficient set is important to the decision maker. In the literature, there

are different approximation quality evaluation metrics developed. These metrics

are useful for comparing different algorithms. Tuyttens et al. [86] consider the

classical linear assignment problem with two objectives for which they employ

a multi-objective simulated annealing method, and provide two metrics to com-

pare the results with an exact efficient set. Wu and Azarm [92] propose some

quality evaluation measures to compare efficient sets generated by different multi-

objective optimization methods. A review and discussion on existing metrics is

available in Zitzler et al. [98]. In Chapters 3, 4 and 5 we employ different metrics

to compare the approximation quality of our proposed methods against solutions

obtained by commercial solvers. In the next section, we discuss conic mixed

integer programming.

CHAPTER 2. LITERATURE REVIEW 18

2.4 Conic Mixed Integer Programming

A second-order cone Qm in m dimension is defined as:

Qm = {x = (x1, . . . , xm) ∈ Rm : ‖x1, x2, . . . , xm−1‖ ≤ xm}

where ‖.‖ refers to the standard Euclidean norm.

A second-order conic programming (SOCP) problem is an optimization prob-

lem which has a linear objective and a set of second order conic constraints as

can be written below:

min
x
{cTx : ‖Aix− bi‖ ≤ pTi x− qi, i = 1, . . . , k}

where Ai are matrices of the same row dimension as x, bi are vectors of the same

dimensions as the column dimensions of the matrices Ai, pi are vectors of the

same dimension as x and qi are reals. In conic mixed integer programming, a

subset of xi’s is assumed to be integer in the problem form given above.

As a part of the progress observed in conic optimization in last two decades, it

was shown that SOCP problems can be solved by using polynomial interior point

algorithms as given by Nesterov and Nemirovski [65]. It was also shown that

convex optimization problems with norms, fractional quadratic functions, hyper-

bolic functions can be formulated and solved as SOCP problems. Our analysis

in Chapter 6 is strongly motivated by the recent advances in conic programming,

in particular, second order conic (or conic quadratic) programming discussed by

Ben-Tal and Nemirovski [13] and Alizadeh and Goldfarb [7]. An extensive review

on SOCP was given by Alizadeh and Goldfarb [7]. Due to the advances in SOCP

theory and its potential use, stable SOCP solvers were provided by the commer-

cial optimization software vendors in their recent versions (e.g. ILOG, MOSEK,

XPRESS-MP). Availability of efficient SOCP algorithms implemented in branch-

and-bound solvers led us to explore the effectiveness of using conic quadratic

constraints to formulate the machine-job assignment problem with controllable

processing times as a conic mixed-integer program in Chapter 6.

Research on strengthening conic integer programming formulations is so far

fairly limited. Çezik and Iyengar [18] describe Chvátal-Gomory and disjunctive

CHAPTER 2. LITERATURE REVIEW 19

cuts for conic integer programs. Atamtürk and Narayanan [8] give nonlinear conic

mixed-integer rounding cuts for conic mixed-integer programming. Whereas these

earlier papers develop cuts for general conic mixed-integer programs, in Chapter 6

we exploit the structure of machine-job assignment problem with controllable

processing times in order to derive strong conic formulations.

Two recent papers study a similar structure and propose alternative solution

approaches to the one given in Chapter 6. Frangioni and Gentile [32] describe an

interesting cutting plane procedure based on linear outer approximations of the

perspective of convex functions and apply it to the unit commitment problem

with separable quadratic cost. Günlük et al. [35] give problem-specific linear

and nonlinear cuts for a quadratic cost facility location problem. Although in

Chapter 6 we apply conic strengthening to the machine-job assignment problem

with controllable processing times, our results are sufficiently general so that they

can also be applied to other mixed 0-1 optimization problems with separable

convex objective, including those studied in these two recent papers. In the next

section, we review the rescheduling literature.

2.5 Rescheduling

Rescheduling has received considerable attention in the scheduling literature.

Many different problems, methods and approaches have been presented on

rescheduling. Vieira et al. [90] give an extensive discussion on rescheduling the-

ory. Aytug et al. [9] discuss the types and effects of uncertainties that can be

faced in the execution of schedules. Both studies include a review of the reac-

tive/predictive approaches in the scheduling literature. Reactive and predictive

scheduling approaches have also been studied in the project scheduling literature.

Herroelen and Leus [44, 45] review approaches for robust project scheduling and

reactive project scheduling under uncertainty.

In the literature, different rescheduling environments were considered with fi-

nite or infinite set of jobs in different machine environments. Some studies assume

CHAPTER 2. LITERATURE REVIEW 20

that all information is given (deterministic) and some of them assume information

is uncertain (stochastic). Different approaches were considered to solve reschedul-

ing problems such as dynamic (on-line) scheduling with dispatching rules to apply

when jobs arrive or disrupting events occur. In dynamic approach, we make deci-

sions based on the current state of the manufacturing system. Another strategy is

predictive scheduling which aims to generate initial schedules in a way to reduce

the negative effects of possible disruptions. Repairing the schedule or generat-

ing a completely new schedule from scratch are other alternatives. Rescheduling

after each disruption or rescheduling periodically at a given frequency can be

the alternative policies for making the decision of when to reschedule. There are

different methods of rescheduling like right-shifting, partial rescheduling or com-

plete regeneration. Partial rescheduling avoids rescheduling all jobs from scratch

since changing the schedule of jobs frequently causes system nervousness.

Leon et al. [59] compare partial scheduling with complete rescheduling and

right-shifting methods. Nof and Grant [67] discuss the right-shift and complete

rescheduling methods. Kutanoğlu and Sabuncuoğlu [56] compare several dis-

patching rules of rescheduling in a flexible manufacturing environment. A re-

cent study by Hall and Potts [42] is about rescheduling due to arrival of new set

of jobs to a machine. They consider scheduling cost (lateness, total completion

time) and disruption cost (change in jobs’ positions, change in completion times)

simultaneously. Minimizing schedule cost subject to a limit on disruption and

minimizing schedule cost plus disruption cost models were considered. They give

algorithms and complexity analysis for different models. In Chapter 7, we con-

sider rescheduling in parallel machines after a breakdown occurs on one of the

machines.

In the rescheduling literature, to the best of our knowledge controllable pro-

cessing times have not been considered except two studies. The first one is by

Türkcan [85] in which reactive scheduling decisions on non-identical parallel CNC

machines were considered. They consider the sum of earliness and tardiness and

the manufacturing costs along with a stability measure defined as the absolute

difference between completion times of jobs in the new schedule and the initial

CHAPTER 2. LITERATURE REVIEW 21

schedule. They provide a heuristic approach to find the new schedule after a dis-

ruption such as machine breakdown or new job job arrival. In the second work,

Yang [93] considers the arrival of new jobs in a single machine rescheduling prob-

lem where the objective is to minimize the total cost after rescheduling. The ob-

jective includes schedule disruption cost which is a function of deviations on start

times of the jobs. Another cost term is the time compression cost which comes

from the compression on the processing times. The third term in the objective is

the cost of scheduling performance measures such as total completion time and

weighted tardiness. Proposed solution approach is a heuristic algorithm based on

very large scale neighborhood search. Processing time controllability allows alter-

native approaches in rescheduling after a disruption occurs, so in Chapter 7, we

deal with rescheduling with controllable processing times and present alternative

rescheduling problems and solution approaches.

In the literature, there are studies which propose methods to generate robust

schedules with respect to disruptions. A predictive approach proposed by Mehta

and Uzsoy [63] is including inserted idle times in a job shop schedule so as to

reduce the impact of disruptions. They first find a job sequence by using the

shifting bottleneck algorithm and then apply a heuristic approach to insert idle

times into the schedule. Similarly O’Donovan et al. [70] describe methods for

constructing robust schedules with respect to machine breakdown for a single

machine environment. The objective is to minimize the expected deviation in

completion times due to the breakdown. Their experiments show that inserted

idle time approach improve schedule robustness with little impact on other per-

formance measures. For the maximum tardiness problem, Jensen [52] proposed

minimizing maximum lateness instead, so that achieved schedule has improved

rescheduling performance due to the idle time left at the end of the schedule. In

a recent work, Leus and Herroelen [60] considered minimizing expected weighted

deviation between actual and planned job starting times in a single machine

scheduling problem with a common deadline for all jobs. They find the optimal

job sequence and the optimal length of idle time following each job in the sched-

ule. However, if we insert idle times in a schedule but no disruption occurs, then

the jobs will finish too early and machining capacity will not be fully-utilized.

CHAPTER 2. LITERATURE REVIEW 22

In case of scheduling with controllable processing times, if a disruption occurs

then we have the flexibility to repair the schedule by compressing the processing

times of remaining jobs. Inserting idle times implies additional compression on

the processing times of the jobs and hence requires higher manufacturing cost. In

Chapter 7 we propose rescheduling approaches which repair a parallel machine

schedule after a machine breakdown by assigning new processing times to the

jobs and making new machine-job assignment decisions.

Match-up scheduling is a rescheduling approach which aims to catch up the

preschedule within a certain time after disruption occurs. Match-up scheduling

examples in the literature are given by Bean et al. [12] and Aktürk and Görgülü

[2]. Those two studies propose heuristic approaches to find match-up times.

Match-up scheduling studies in the literature assume planned idle time periods in

preschedules so that the disruption can be absorbed. With controllable processing

times, even if the preschedule is a non-delay schedule, i.e. no idle time exists in

the schedule, we can still reschedule to match up with the preschedule. It may

be possible to match up soon after the disruption occurs by compressing the jobs

which immediately succeed the breakdown. However, catching up sooner implies

incurring more compression cost. Therefore, when we consider the match-up

time and the cost objectives at the same time, it is critical to make appropriate

rescheduling and processing time decisions. In Chapter 7, we present match-up

scheduling problems with controllable processing times which demonstrate the

trade off between match-up time and manufacturing cost objectives. We give

exact and efficient solution approaches for the considered problems.

Azizoğlu and Alagöz [10] study a rescheduling problem on parallel machines

where an unavailability period occurs on one of the machines. They consider the

total flow time objective and a stability measure of number of jobs reassigned to

another machine than its original machine in the preschedule. They show that

efficient solution set for the considered objectives can be generated in polyno-

mial time. Curry and Peters [24] consider a dynamic scheduling environment

on parallel machines where the arrival of new jobs to the system is handled.

They observed that by considering a machine reassignment cost in the scheduling

CHAPTER 2. LITERATURE REVIEW 23

problem in addition to the scheduling performance measure of stepwise increas-

ing tardiness cost, solutions with few reassignments could be achieved without

a statistically significant change in tardiness cost. Lee et al. [58] studied a two-

machine scheduling environment where they penalized machine-job reassignments

made after a disruption as transportation cost in their model. They considered

transportation cost with different scheduling performance measures and changes

in completion times of jobs. Number of reassignments is an important stability

measure, which we have not considered in our study, but in Chapter 7 our models

and heuristic algorithm can be easily extended to include a limit on number of

reassigned jobs. In the next chapter, we discuss the total manufacturing cost and

total weighted completion time objectives in a single machine environment.

Chapter 3

Time/Cost Trade-offs in Single

Machine Scheduling

In this chapter, we study the trade-off between the total manufacturing cost and

the total weighted completion time objectives in single machine environment.

The aim is to find efficient solutions for these two objectives. We use the ε-

approach and formulate a single objective problem to find efficient solutions.

We solve the problem of minimizing total manufacturing cost subject to a given

bound on total weighted completion time. In Section 3.1, we give the problem

definition and propose a mathematical model to find an efficient solution for a

given total weighted completion time level. We give optimality properties for the

model. Based on these properties, we develop an approximate efficient solution

set generating method which is presented in Section 3.2. Then, in Section 3.3, we

discuss an alternative model for the total completion time problem. In Section 3.4,

we give a numerical example. Next, in Section 3.5 we provide the computational

results on the performance of proposed methods. Finally, we conclude the chapter

in Section 3.6.

The notation used throughout the chapter is as follows:

24

CHAPTER 3. SINGLE MACHINE SCHEDULING 25

Decision variables:

pi: processing time of job i.

Xij: binary variable to state if job i precedes job j in the sequence.

vi : cutting speed for operation i (fpm).

fi : feed rate for operation i (ipr).

Ui : usage rate of the required cutting tool to process operation i.

Parameters:

pli: processing time lower bound for job i.

pui : processing time level that gives minimum manufacturing cost

for job i.

wi: weight of job i.

fi(pi): manufacturing cost function of processing time for job i.

α, β, γ : speed, feed, depth of cut exponents for the required cutting

tool of job i.

CTL
i : Taylor’s tool life constant for the required cutting

tool of job i.

Co : operating cost of the CNC turning machine ($/min).

Cs, g, h, l : specific coefficients of the surface roughness constraint of job i.

Cm, b, c, e : specific coefficients of the machine power constraint.

Cti : cost of cutting tool required to process job i ($/tool).

Di : diameter of the generated surface for job i (in).

di : depth of cut for job i (in).

H : maximum available machine power (hp).

Li : length of the generated surface for job i (in).

Si : maximum allowable surface roughness for job i (µin).

CHAPTER 3. SINGLE MACHINE SCHEDULING 26

3.1 Problem Definition

We have N jobs to be processed, and each job corresponds to a metal cutting

operation that will be performed by a given cutting tool on a single CNC turn-

ing machine. Each job differs in terms of its manufacturing properties such as

diameter, length, depth of cut and maximum allowable surface roughness and its

cutting tool, and a positive weight which shows its importance relative to the

other jobs. The CNC turning machine can process one job at a time. We also

assume that setup time and the tool change times are negligible. We have two

objectives, minimizing the total manufacturing cost of jobs and minimizing their

total weighted completion time. Therefore, we have to determine a job sequence

and the corresponding processing times simultaneously. In order to solve this

bicriteria problem, we have to consider process planning and scheduling prob-

lems simultaneously. One way to integrate these two decision making problems is

through the proper selection of job processing times. Assuming a single pass op-

eration, the processing time of job i on a CNC turning machine can be calculated

as follows:

pi =
πDiLi
12vifi

On the other hand, the tool usage rate of a job, Ui, is simply the ratio of its

processing time to the tool life. If we use extended Taylor’s tool life equation, Ti,

to describe the tool life then

Ui =
pi
Ti

=
(πDiLi)/(12vifi)

CTL
i /(vαi f

β
i d

γ)

The most commonly used objective function for the manufacturing cost of job

i is the sum of the operating and tooling costs. Operating cost of job i is the cost

of running the machine for pi. We assume that Co is constant and independent of

selected machining parameters. Tooling cost for job i is the cost of its tool usage

Ui. The optimum machining parameters of the cutting speed (vi) and the feed

rate (fi) for each job can be found by solving machining conditions optimization

problem subject to the tool life, surface roughness and machine power constraints

as discussed in Appendix A. Appendix A gives the geometric programming model

for the problem and the optimality properties (Theorems A.1, A.2) which were

CHAPTER 3. SINGLE MACHINE SCHEDULING 27

shown by Aktürk and Avcı [1] and Kayan and Aktürk [54], respectively. Using

Theorem A.2, the manufacturing cost of job i can be expressed as a function of

pi as follows:

fi(pi) = Copi+CtiUi = Copi+Cti
dγi
CTL
i

(
πDiLi

12

)(αh−βgh−g)(Csdli
Si

)(α−β
h−g)

p
((1−α)h−(1−β)g

h−g)
i

Furthermore, Kayan and Aktürk [54] showed that the nonlinear manufactur-

ing constraints that limit the allowable ranges of the processing times can be

replaced by a linear bound of pli ≤ pi ≤ pui for each job i when there is a regular

scheduling performance measure, such as makespan or total completion time. For

the determination of pli and pui values, we refer to Kayan and Aktürk [54]. A typ-

ical manufacturing cost function behavior for a job is given in Figure 3.1. Since

jobs have different manufacturing properties, they will have different nonlinear

convex manufacturing cost functions and different bounds on their processing

times.

pl pu

co

st

processing time

Figure 3.1: A typical manufacturing cost function for a turning operation.

The mathematical model for the problem is as below:

min F1 :
N∑
i=1

fi(pi) =
N∑
i=1

(Copi+CtiUi)

min F2 :
N∑
j=1

N∑
i 6=j

wjpiXij +
N∑
j=1

wjpj

CHAPTER 3. SINGLE MACHINE SCHEDULING 28

s.t. Xij +Xji = 1 i = 1, . . . , N, j = i+ 1, . . . , N (3.1)

Xij +Xjk +Xki ≥ 1 i, j, k = 1, . . . , N, i 6= j 6= k (3.2)

pli ≤ pi ≤ pui i = 1, . . . , N (3.3)

Xij ∈ {0, 1} i, j = 1, . . . , N i 6= j (3.4)

In the mixed integer nonlinear programming (MINLP) model above, the first

objective function (F1) is the total manufacturing cost. The second objective

function (F2) is the total weighted completion time. Constraint set (3.1) is the

precedence constraints to ensure that two jobs cannot precede each other at the

same time. Constraint set (3.2) satisfies the triangular inequality among the jobs

such that if job j precedes job i and job k precedes job j then job k precedes

job i. We have constraint set (3.3) that sets the upper and lower bounds on the

processing time of each job.

For the weighted completion time problem, the minimum value is attained

when we set the processing times to their lower bounds, pli. On the other hand,

the manufacturing cost decreases when we increase the processing times, and the

minimum manufacturing cost is attained at pui for each job i. That means if

we increase the processing time of a job, the manufacturing cost decreases but

completion time of the job itself and all the following jobs increase. Therefore,

we cannot minimize both objectives F1 and F2 at the same time, and hence the

overall problem is to generate an efficient solution set for the decision maker. A

solution x (F1(x), F2(x)) is said to be efficient with respect to the given bicriteria

if there does not exist another solution y (F1(y), F2(y)) such that F1(y) ≤ F1(x)

and F2(y) ≤ F2(x) with at least one holding as a strict inequality. The following

lemma states that there are infinitely many efficient solutions for the problem.

Lemma 3.1. The efficient solution set for the problem includes infinitely many

points.

Proof. This is due to the fact that the processing times of jobs are continuous and

can take any value satisfying pli ≤ pi ≤ pui . If we slightly decrease the processing

time of any job i that will increase the total manufacturing cost (as shown in

CHAPTER 3. SINGLE MACHINE SCHEDULING 29

Figure 3.1), but at the same time it will decrease the total weighted completion

time. Hence, there are infinitely many possible F2 (or F1) levels for the problem

and we can find infinitely many efficient solutions. Furthermore, efficient frontier

can be represented as a continuous function on a (F1, F2) plot.

In Figure 3.2, an example for a set of efficient solutions is given. Solution Z1 is

the ideal solution for F2 where F2(Z1) = K l where the superscript l implies that

K l is achieved by setting pi = pli for each job i and applying the weighted shortest

processing time first (WSPT) rule by Smith [1956]. According to the WSPT rule

the jobs are ordered in the decreasing order of wi/pi to minimize total weighted

completion time. At Z1, total manufacturing cost is F1(Z1) =
∑N

i=1 fi(p
l
i). On the

other hand, solution Z2 is the ideal solution for F1 where F1(Z2) =
∑N

i=1 fi(p
u
i)

and it is achieved by setting pi = pui for each job i and jobs are ordered by the

WSPT rule. At Z2, total weighted completion time is F2(Z2) = Ku, where the

superscript u implies that the solution is achieved where all jobs are machined at

processing time upper bounds.

Z

Z 2

1

u

K
l

K
TWCT (F)

cost (F)

2

1

Figure 3.2: An example set of efficient solutions

In order to find a set of efficient solutions other than Z1 and Z2, we can

consider F2 as a constraint as in the formulation below and solve the resulting

CHAPTER 3. SINGLE MACHINE SCHEDULING 30

Single Criterion Problem (SCP) for different values of K.

min F1 :
N∑
i=1

fi(pi)

s.t.
N∑
j=1

N∑
i=1

wjpiXij +
N∑
j=1

wjpj ≤ K (3.5)

and (3.1), (3.2), (3.3), (3.4)

Constraint (3.5) guarantees that the total weighted completion time (F2) of

the schedule is less than or equal to a predefined value K. We can solve this

model by the MINLP solvers like GAMS/BARON [16]. To generate an efficient

solution set of n points between Z1 and Z2 we can employ the following algorithm

denoted as the SCP-based method.

The SCP-based method finds a set of efficient points by solving the SCP model

iteratively, so we investigated the SCP model and found some useful properties

for the problem.

Lemma 3.2. When K ≤ Ku, constraint (3.5) on F2 must be tight at the optimal

solution. This implies that the optimal schedule must satisfy the WSPT rule.

Proof. When K > Ku, total manufacturing cost can be minimized by setting

all jobs to their minimum cost processing times (pu) and ordering them by the

WSPT rule. In this case, constraint (3.5) can be loose at optimality. When

K ≤ Ku, if constraint (3.5) is loose, then by increasing the processing time of

a job, we can decrease the total manufacturing cost of the schedule. Therefore,

a solution cannot be optimal if constraint (3.5) is loose. As a consequence of

this result we can also state that the WSPT rule must be satisfied by an optimal

schedule. Otherwise, we can reorder the jobs and find a better solution which

violates the optimality.

We proved that an optimal solution for the SCP must satisfy constraint (3.5)

as an equality and it must also satisfy the WSPT rule. The next property for the

problem is about the non-cycling constraint set (3.2).

CHAPTER 3. SINGLE MACHINE SCHEDULING 31

Lemma 3.3. The non-cycling constraints, constraint set (3.2), are redundant for

the SCP.

Proof. Consider the SCP model without constraint set (3.2). We can easily see

that Lemma 3.2 still holds for the new problem, otherwise we can improve the

solution by resequencing the jobs and increasing the processing times. Lemma 3.2

states that the optimal solution must satisfy the WSPT rule which implies that

the optimal solution cannot have cycles and always satisfies constraint set (3.2).

By using this result we can eliminate constraint set (3.2) when solving the SCP

model in SCP-based method. Since constraint set (3.2) is defined for each job

triple, removing it reduces most of the constraints in the model so that MINLP

solvers can solve the problem more efficiently. From this point on, SCP will denote

the single criterion problem without constraint set (3.2). We next consider the

relaxation of the problem where the integrality assumption of Xij’s is relaxed.

Relaxation results a nonlinear programming (NLP) model for which we can state

the following two properties.

Lemma 3.4. For the relaxed SCP, in a local optimal solution, if wi/pi > wj/pj

for any job pair (i, j), then job i must precede job j, i.e. the solution must have

Xij = 1. This implies that a local optimal solution to the relaxed SCP must have

binary Xij’s except the cases including jobs with equal wi/pi ratios.

Proof. Suppose that there is a local optimal solution S which has non-integer Xij

values. We will show that by modifying S in a way to achieve an integer solution,

we can improve F2.

Consider a job pair (i, j) in S for which wi/pi > wj/pj holds. Suppose that the

precedence variables for the job pair (i, j) are as follows: Xij = λ, Xji = 1 − λ,

where 0 ≤ λ < 1. Then,
∑
wkCk for S is as below:

F2(S) = Φ + wi × pj × (1− λ) + wj × pi × λ, where Φ is a constant value.

CHAPTER 3. SINGLE MACHINE SCHEDULING 32

If we form a new solution S ′ from S by setting Xij = 1 and Xji = 0, we get:

F2(S ′) = Φ + wj × pi.

Obviously, F2(S ′) < F2(S) and S ′ is a feasible solution to the SCP. This

proves that a solution S with non-integer Xij variables cannot be a local optimal

solution.

Considering Lemma 3.2 and the arguments above together, we conclude that

in a local optimal solution to the relaxed problem all Xij variables are binary.

However, to be rigorous, we must also point out that in case wi/pi = wj/pj

for some job pair (i, j), we may have alternative optimal solutions where Xij

and Xji are non-integer. This is because when wi/pi = wj/pj, Xij = λ and

Xji = 1− λ, whatever value λ takes such that 0 ≤ λ ≤ 1,
∑
wiCi calculated by

the mathematical model remains the same. In practice, it is highly unlikely to

face this situation since in our case pi’s are controllable variables that take real

values.

Lemma 3.4 is an extremely important result to reduce the computational

burden since we do not need MINLP solvers to solve the SCP. The problem can

be solved by an NLP solver. However, NLP solvers can only guarantee to achieve

local optimal solutions. From nonlinear programming theory we know that if

the objective function of a problem is convex and the feasible region for the

problem is a convex set, then a local optimum is a global optimum. Therefore,

we investigated if the feasible region for the relaxed SCP is a convex set or not

to see if NLP solvers could give us the global optimum.

Lemma 3.5. The feasible region for the relaxed SCP is not a convex set, i.e.

NLP solvers cannot guarantee global optimality for the problem.

Proof. Consider two jobs i1 and i2 such that i1 immediately precedes i2, Xi1i2 = 1,

in a solution called A1. Let’s suppose that pi1 = s1 and pi2 = s2 with weights w1

and w2, respectively. We also have w1

s1
> w2

s2
. F2(A1) = Q+w2s1+w1s1+w2s2 = K,

where Q is a constant. Next, consider another solution A2 which is identical to A1

CHAPTER 3. SINGLE MACHINE SCHEDULING 33

except that i1 and i2 were pairwise interchanged and processing times were set to

q1 and q2, respectively, and w2

q2
> w1

q1
holds. F2(A2) = Q+w1q2 +w1q1 +w2q2 = K.

Now consider a convex combination of A1 and A2 as the solution A =

λA1 + (1 − λ)A2. At A, Xi1i2 = λ, Xi2i1 = 1 − λ, pi1 = λs1 + (1 − λ)q1 and

pi2 = λs2 + (1− λ)q2. Then,

F2(A) = Q+ w1Xi2i1pi2 + w2Xi1i2pi1 + w1pi1 + w2pi2

= Q+ (w1(1− λ) + w2)(λs2 + (1− λ)q2)

+(w2λ+ w1)(λs1 + (1− λ)q1)

= Q+ λ(s1(w1 + λw2) + s2(w2 + (1− λ)w1))

+(1− λ)(q1(w1 + λw2) + q2(w2 + (1− λ)w1)

= Q+ λ(s1w1 + s2w2 + λs1w2 + (1− λ)s2w1)

+(1− λ)(q1w1 + q2w2 + λq1w2 + (1− λ)q2w1)

> Q+ λ(K −Q) + (1− λ)(K −Q)

> K

since s2w1 > s1w2 and q1w2 > q2w1. This shows that the feasible region for the

relaxed SCP is not a convex set.

Lemma 3.5 implies the potential existence of multiple local optimal solutions

for the relaxed SCP. Although it does not prove NP-hardness of the SCP, we

know that in general, computing a global minimum in a non-convex NLP is an

NP-hard problem due to Murty and Kabadi [64].

Lemma 3.5 is a direct consequence of the nonlinear terms piXij in constraint

(3.5), so that the MINLP solvers may terminate with an integer local optimal

solution. In order to find the global optimum for the SCP model, we propose the

following linearized single criterion problem (LSCP) model below. In this model,

we replace the constraint (3.5) with a set of linear constraints (3.6)-(3.10) and the

term piXij is replaced with the variable Yij, where M is a large positive number.

CHAPTER 3. SINGLE MACHINE SCHEDULING 34

min F1 :
N∑
i=1

fi(pi)

s.t.
N∑
j=1

N∑
i=1

wjYij +
N∑
j=1

wjpj ≤ K (3.6)

Yij ≥ pi + (Xij − 1)M i, j = 1, . . . , N, i 6= j (3.7)

Yij ≤ pi + (1−Xij)M i, j = 1, . . . , N, i 6= j (3.8)

Yij ≤MXij i, j = 1, . . . , N, i 6= j (3.9)

Yij ≥ 0 i, j = 1, . . . , N, i 6= j (3.10)

and (3.1), (3.3), (3.4)

In this model, constraint (3.6) is the constraint on F2. Constraint sets (3.7)-

(3.10) assure that if Xij = 0 then Yij = 0 and if Xij = 1 then Yij = pi, so that

Yij = piXij always holds. Unfortunately, the computational performance of this

linearization is very poor because Lemma 3.4 no longer holds so we cannot relax

the integrality constraint of Xij. Therefore, we have to use computationally less

efficient GAMS/BARON solver instead of GAMS/MINOS.

In this section, we defined the problem and proposed the SCP-based method

that can utilize commercial NLP solvers to solve the SCP and generate an ap-

proximation for the efficient frontier for the problem. We also gave the LSCP

model which can be solved to global optimum by the MINLP solvers. However,

since the MINLP and NLP solvers are not yet widely used and they are not as

much computationally efficient as LP solvers, we also aimed to develop an effec-

tive approximation method to find a set of efficient points. In the next section,

we define a heuristic method to approximate the efficient frontier for the problem.

CHAPTER 3. SINGLE MACHINE SCHEDULING 35

3.2 Cost Index Based Approximation (CIBA)

Method

In Section 3.1, we showed some optimality properties and simplifying character-

istics for the SCP. In this section, we further present another very important

optimality property in Lemma 3.6. This property will be helpful to design a

heuristic method. This property basically tells us that if a solution is locally

optimal then we cannot improve the total manufacturing cost by only changing

the processing times of the jobs. It can also be explained as follows: for a given

job sequence there is a unique optimal processing time vector p that minimizes

the total manufacturing cost for a given total weighted completion time level K.

This property is as follows:

Lemma 3.6. For any job pair i, j, a local optimal solution must satisfy the fol-

lowing conditions:

i. If pi > pli and pj > plj then ∂fi(pi)
∂pi

1
Wi

=
∂fj(pj)

∂pj

1
Wj

,

where Wi = wi +
∑N

k=1 Xikwk (i.e. the sum of the weights of job i and jobs that

job i precedes)

ii. If pi = pli and pj > plj then ∂fi(pi)
∂pi

1
Wi
≥ ∂fj(pj)

∂pj

1
Wj

.

Proof. Suppose that ∂fi(pi)
∂pi

1
Wi

<
∂fj(pj)

∂pj

1
Wj

for some i,j. Then,

lim∆p→0

(
fi(pi+∆p)−fi(pi)

Wi∆p
−

fj(pj)−fj(pj−
Wi
Wj

∆p)

Wj
Wi
Wj

∆p

)
< 0,

lim∆p→0

(
fi(pi+∆p)−fi(pi)+fj(pj)−fj(pj−

Wi
Wj

∆p)

∆p

)
< 0.

Then, ∃ ∆p > 0 s.t. fi(pi + ∆p) − fi(pi) + fj(pj) − fj(pj − Wi

Wj
∆p) < 0, which

means the current solution can be improved without violating the total weighted

completion time constraint. This proves that if there exists a job pair that does

not satisfy the given conditions, then the solution is not locally optimal.

The heuristic approach (CIBA) starts with the solution Z1 (Figure 3.2)

and generates new approximate efficient points by using the information in

CHAPTER 3. SINGLE MACHINE SCHEDULING 36

Lemma 3.6. After taking the solution Z1, by slightly increasing the processing

times of the jobs one at a time at each iteration, we decrease F1 while increasing

F2. The critical issue is which job to choose to perturb at each iteration so that

the achieved decrease in F1 over the increase in F2 is at the maximum (i.e. the

’biggest bang for the buck’). To make the most appropriate choice, we propose a

new cost index ri for each job i, such that

ri =
∂fi(pi)

∂pi

1

Wi

.

It is the estimated manufacturing cost change per unit total weighted completion

time loss to be achieved by increasing the processing time of job i. Note that

this index definition comes from Lemma 3.6. Next, we choose the job with the

minimum ri value. It is important to note that fi(pi) is decreasing and ri < 0

when pli ≤ pi < pui for all i. Then, the processing time of the selected job is

increased by a predefined ∆ amount. This may result in a schedule that violates

Lemma 3.2. Then, we check if the WSPT rule is violated or not and if so we

reorder the jobs according to the WSPT rule. After reordering, F new
2 and F new

1

are calculated. For the updated and re-sequenced jobs, their ri’s are updated.

This job selection and update process is applied until F new
2 reaches to Ku. Each

schedule achieved at the end of an iteration is kept as an approximate efficient

solution. By keeping ∆ as small as possible we can achieve solutions which are

more close to the optimality property defined by the Lemma 3.6. Having discussed

the basic approach, the proposed cost index based approximation (CIBA) method

is given below:

Step 1. Find the non-dominated solutions Z1 and Z2.

Step 2. Start with the solution Z1, set F new
1 = F1(Z1) and F new

2 = F2(Z1).

While F new
2 < Ku do the following:

Step 2.1. Select the job m with the minimum rm. If there are more than one

such jobs, select the last one in the sequence.

Step 2.2. Set pm = pm + ∆.

Step 2.3. If the WSPT rule is violated, re-sequence the jobs by the WSPT rule.

Step 2.4. Update ri indices for job m and for all other jobs whose position in

sequence is changed in Step 2.3.

Step 2.5. Update F new
1 = F new

1 − [fm(pm)− fm(pm + ∆)] and recalculate F new
2 .

CHAPTER 3. SINGLE MACHINE SCHEDULING 37

Step 2.6. If F new
2 < Ku, report the current schedule with F new

1 and F new
2 as an

approximate efficient solution.

In each iteration of the CIBA method, we want to improve total manufacturing

cost by slightly losing from the total weighted completion time. Since we want

to minimize both criteria at the same time, we always prefer to update the job

with the maximum manufacturing cost gain per unit increase in the total weighted

completion time (Step 2.1). This is due to Lemma 3.6 which states the optimality

conditions on pi’s. At the end of each iteration, the schedule achieved is reported

as an approximate efficient solution. An important property that holds for the

solution set generated by the CIBA is the following:

Lemma 3.7. Each iteration of the CIBA method, generates a new approximate

efficient solution.

Proof. As discussed earlier, we have a nonlinear convex manufacturing cost func-

tion and the processing times can take any real value between pli ≤ pi ≤ pui .

At each iteration of the CIBA method, the processing time of a selected job is

increased by a ∆ amount, that means the total manufacturing cost is strictly

decreasing in each iteration as shown in Figure 3.1. Moreover, the total comple-

tion time strictly increases even if the job sequence changes. Therefore, in each

iteration we generate a new approximate efficient solution that cannot dominate

previously generated solutions.

The solution quality of the CIBA method depends on the selected ∆ value.

Since we are making decisions based on ∂fi(pi)
∂pi

’s, if we choose a small ∆ value, we

get a better approximation to an efficient solution. Furthermore, a smaller ∆ leads

to more solution points to be generated which implies a better approximation of

the efficient frontier.

CHAPTER 3. SINGLE MACHINE SCHEDULING 38

3.3 Total Completion Time Problem

All the models, properties and algorithms that we have given above also apply

for the total completion time problem, which is a special case where the weights

of jobs are equal. Instead, we present a new model for the total completion time

problem. In this section, we proved that this new model holds the same properties

as the previous one. Moreover, we performed a set of trial runs and showed that

the new model is computationally more efficient in terms of the CPU times in

solving the total completion time problem. In this model, we introduce a new

binary decision variable Xij to control if job i is assigned to position j in the

sequence. The new formulation for the SCP is as below:

min F1 :
N∑
i=1

fi(pi)

s.t.
N∑
i=1

N∑
j=1

(N − j + 1)Xijpi ≤ K (3.11)

N∑
j=1

Xij = 1 i = 1, . . . , N (3.12)

(3.13)

N∑
i=1

Xij = 1 j = 1, . . . , N (3.14)

(3.15)

pli ≤ pi ≤ pui i = 1, . . . , N (3.16)

Xij ∈ {0, 1} i, j = 1, . . . , N (3.17)

In the model above, the objective function corresponds to the total manu-

facturing cost. Constraint (3.11) gives the total completion time. Constraints

(3.12) and (3.14) are the assignment constraints which guarantee that each job

is assigned to a position in the schedule and each position has a job assigned.

Constraints (3.16) and (3.17) are same as in the previous model.

CHAPTER 3. SINGLE MACHINE SCHEDULING 39

We could have used a similar model with the assignment variables Xij to solve

the weighted total completion time problem. In that case, we will not be able

to use the property stated in Lemma 3.4, and hence the relaxed SCP model

cannot be solved by the NLP solvers. It turns out that the way we model the

problem affects the solver to be used and the computational requirements. We

now check the characteristics of this new formulation as we did for the previous

model before.

Lemma 3.8. When K ≤ Ku, the total completion time constraint (3.11) must be

tight at the optimal solution. This implies that the optimal schedule must satisfy

the shortest processing time first (SPT) rule.

The proof for Lemma 3.8 is similar to the proof of Lemma 3.2, so we skip

it due to the space limitations. We next consider the NLP relaxation of the new

SCP formulation and look for the optimality conditions for the relaxed problem.

Lemma 3.9. For the relaxed SCP, in a local optimal solution, if pi1 < pi2 for

any job pair (i1, i2), then job i1 must be assigned to an earlier position than i2.

This implies that a local optimal solution to the relaxed SCP must have binary

Xij’s except the cases that include jobs with equal processing times.

Proof. Suppose that we have a solution S for the relaxed problem where we

consider two jobs i1 and i2 with processing times pi1 < pi2 . Further consider two

positions j1 and j2 in the schedule such that j1 < j2. Suppose that assignment

variables in S are as follows:

Xi1j1 = ρ1 and Xi2j1 = ρ2,

Xi1j2 = ξ1 and Xi2j2 = ξ2, where ρ1, ρ2, ξ1 and ξ2 are positive.

Since we relaxed the integrality constraint, a solution to the relaxed problem may

contain non-binary Xij values. This means, the same job could be allocated to

multiple positions in the schedule, which is infeasible for our original problem.

CHAPTER 3. SINGLE MACHINE SCHEDULING 40

Total completion time value calculated for S is as below:

F2(S) =
N∑
i=1

N∑
j=1

(N − j + 1)Xijpi

= Φ + (N − j1 + 1)[ρ1pi1 + ρ2pi2] + (N − j2 + 1)[ξ1pi1 + ξ2pi2]

= Φ + [(N − j1 + 1)ρ1 + (N − j2 + 1)ξ1]pi1 +

[(N − j1 + 1)ρ2 + (N − j2 + 1)ξ2]pi2

where Φ is a constant value. Suppose that without changing the processing

times, we change the assignment variables to get a new solution S ′. Setting

δ = min(ξ1, ρ2), new values for the assignment variables are as follows:

Xi1j1 = ρ1 + δ, Xi2j1 = ρ2 − δ,

Xi1j2 = ξ1 − δ and Xi2j2 = ξ2 + δ.

By this arrangement we reallocate these two jobs to positions j1 and j2 such

that we increase job i1’s ratio in the preceding position j1 without disturbing the

assignment constraints.

Total completion time of the solution after this arrangement is:

F2(S ′) = Φ + [(N − j1 + 1)(ρ1 + δ) + (N − j2 + 1)(ξ1 − δ)]pi1

+ [(N − j1 + 1)(ρ2 − δ) + (N − j2 + 1)(ξ2 + δ)]pi2

Then, F2(S ′)− F2(S) = δ(j2 − j1)(pi1 − pi2) < 0, because j2 > j1 and pi1 < pi2 .

This proves that there is always an integer optimal solution for the relaxed

problem.

According to Lemma 3.9, a local optimal solution must have integer Xij’s.

Although for the case where pi1 = pi2 , we could have alternative non-integer local

optimal solutions. As in the previous formulation for the weighted case we do

not need a MINLP solver to solve the relaxed problem, and an NLP solver would

be sufficient.

Lemma 3.10. The feasible region for the relaxed SCP is not a convex set.

CHAPTER 3. SINGLE MACHINE SCHEDULING 41

Proof. Consider two jobs i1 and i2 in a schedule called A1. They are assigned

at positions k and k + 1, respectively. Their processing times are pi1 = s1 and

pi2 = s2 where s1 < s2.

F2(A1) = Q+ (N − k + 1)s1 + (N − k)s2 = K, where Q is a constant.

Consider another schedule A2 which is identical to A1 except that job i1 is at

position k + 1 and i2 is at position k with processing times pi1 = q1 and pi2 = q2

where q2 < q1. F2(A2) = Q+ (N − k + 1)q2 + (N − k)q1 = K.

Next, define a point A which is a convex combination of A1 and A2 as follows:

A = λA1 + (1 − λ)A2 where 0 < λ < 1. At point A, pi1 = λs1 + (1 − λ)q1 and

pi2 = λs2 + (1 − λ)q2. Also, Xi1k = λ, Xi1(k+1) = (1 − λ), Xi2k = (1 − λ) and

Xi2(k+1) = λ.

F2(A) = Q+ [(N − k + 1)λ+ (N − k)(1− λ)]pi1

+ [(N − k + 1)(1− λ) + (N − k)λ]pi2

= Q+ λ2[(N − k + 1)s1 + (N − k)s2]

+ (1− λ)2[(N − k + 1)q2 + (N − k)q1]

+ λ(1− λ)[(N − k + 1)q1 + (N − k)q2]

+ λ(1− λ)[(N − k + 1)s2 + (N − k)s1]

> K

since s1 < s2 and q2 < q1.

This example shows that the feasible region for the problem is not convex and

this implies that a local optimum found by an NLP solver may not be the global

optimum. The complexity discussion for the weighted case in Section 3.1 holds

for this case, too.

The SCP model for the total completion time case also includes nonlinear

terms in constraint (3.11). We can linearize constraint (3.11) in the model by

replacing the nonlinear term piXij in constraint (3.11) with a variable Yij and

CHAPTER 3. SINGLE MACHINE SCHEDULING 42

adding constraints (3.7)-(3.10) to the model as we did in Section 3.1. By this way

we can achieve the LSCP model for the total completion time case and solve it

to global optimum by using the MINLP solver GAMS/BARON.

Next, we give another property analogous to Lemma 3.6.

Lemma 3.11. For any job pair i, j a local optimal solution must satisfy the

following conditions:

i. If pi > pli and pj > plj then ∂fi(pi)
∂pi

1
ni

=
∂fj(pj)

∂pj

1
nj

, where ni =
∑N

j=1Xij(N−j+1).

ii. If pi = pli and pj > plj then ∂fi(pi)
∂pi

1
ni
≥ ∂fj(pj)

∂pj

1
nj

.

Proof. Suppose that in a solution ∂fi(pi)
∂pi

1
ni
<

∂fj(pj)

∂pj

1
nj

for jobs i,j. Then;

lim∆p→0

(
fi(pi+∆p)−fi(pi)

ni∆p
−

fj(pj)−fj(pj−
ni
nj

∆p)

nj
ni
nj

∆p

)
< 0,

lim∆p→0

(
fi(pi+∆p)−fi(pi)+fj(pj)−fj(pj−

ni
nj

∆p)

ni∆p

)
< 0.

Then, ∃ ∆p > 0 s.t. fi(pi + ∆p) − fi(pi) + fj(pj) − fj(pj − ni
nj

∆p) < 0, which

means the current solution can be improved by increasing pi by ∆ and decreasing

pj by ni
nj

∆. This proves that if a solution does not satisfy the conditions above,

then it is not locally optimal.

As we have shown that similar properties as the weighted case apply to the

alternative formulation for the total completion time case we can employ similar

approaches to find an approximation for the efficient frontier. We can generate

approximate efficient solution set by solving the new model in the SCP-based

method as described in Section 3.1. We can also employ our CIBA method by

just modifying the cost index ri as ri = ∂fi(pi)
∂pi

1
ni

where ni is the number of jobs

that job i precedes including itself. In the next section, we discuss the properties

and the solution methods achieved so far on an example problem.

CHAPTER 3. SINGLE MACHINE SCHEDULING 43

3.4 Numerical Example

In this section, we give a numerical example for the total weighted completion

time problem and apply the SCP-based method and the CIBA method to generate

an approximate efficient frontier. In this problem we have 5 jobs and the design

attributes (Di, Li, di and Si) of each job along with the required cutting tool type

are given in Table 3.1. We consider a machine with Co = 0.25 and H = 5. We

first calculated the pli and pui values and formed the manufacturing cost function

(fi(pi)) for each job as follows:

f1(p1) = 0.25p1 + 0.26p−1.32
1 where 0.29 ≤ p1 ≤ 1.15

f2(p2) = 0.25p2 + 0.21p−1.43
2 where 0.44 ≤ p2 ≤ 1.09

f3(p3) = 0.25p3 + 0.02p−1.71
3 where 0.29 ≤ p3 ≤ 0.52

f4(p4) = 0.25p4 + 0.18p−1.32
4 where 0.20 ≤ p4 ≤ 0.97

f5(p5) = 0.25p5 + 0.02p−1.71
5 where 0.25 ≤ p5 ≤ 0.47

Job Di Li di Si Tool wi

1 1.9 4.6 0.211 222 5 1.2

2 2.0 4.9 0.151 173 1 1.3

3 1.6 4.3 0.204 269 9 1.1

4 1.9 4.6 0.138 176 5 1.9

5 1.6 4.2 0.170 250 9 1.0

Table 3.1: Specifications of the jobs in the numerical example

To find the solution Z1 and the corresponding schedule, we first set all jobs’

processing times to their lower bounds and apply the WSPT rule as shown in

Table 3.2. Total manufacturing cost, F1, for this initial schedule is 4.27 and the

corresponding optimal total weighted completion time, F2, is 4.752. The initial

schedule gives us the ideal total weighted completion time and the nadir man-

ufacturing cost. We also have the schedule (Z2) corresponding to the minimum

CHAPTER 3. SINGLE MACHINE SCHEDULING 44

manufacturing cost in Table 3.2. For the minimum cost settings, F1 = 1.77 and

F2 = 14.288. This schedule gives us the ideal manufacturing cost and the nadir

total weighted completion time.

Z1 Z2

Position Job p w/p ri fi(pi) Job p w/p ri fi(pi)

1 4 0.20 9.50 -1.49 1.56 5 0.47 2.13 0.0 0.19

2 1 0.29 4.14 -1.26 1.40 3 0.52 2.12 0.0 0.19

3 5 0.25 4.00 -0.36 0.28 4 0.97 1.96 0.0 0.43

4 3 0.29 3.79 -0.30 0.24 2 1.09 1.19 0.0 0.46

5 2 0.44 2.95 -1.51 0.79 1 1.15 1.04 0.0 0.50

Table 3.2: Schedules at Z1 and Z2

In this example, we set the step size ∆ = 0.1. In Table 3.3, we present

the perturbed job (j), and after each perturbation the new pj, wj/pj, sequence

and ri’s along with the F1 and F2 values for the first 10 iterations of the CIBA

method. As stated in the proposed CIBA method, we start with the solution

Z1, and perturb the job with the minimum ri in each iteration, such as job 2 at

the first iteration. At each iteration we re-sequence the jobs if the WSPT rule

is violated. As an example, after we perturb job 1 in iteration 3, we re-sequence

the jobs to satisfy the WSPT rule. The algorithm progresses in this way by

perturbing one job at a time until we reach to solution Z2. As can be seen in

Table 3.3, at each iteration we improve the total manufacturing cost (F1) while

losing from the total weighted completion time (F2) (i.e. generate a new efficient

solution) as discussed in Lemma 3.7.

Using the CIBA method, we generated 27 approximate efficient solutions for

the example problem. As discussed before, we could also use a commercial NLP

solver to find the minimum manufacturing cost for a given total weighted com-

pletion time level. In this study, we model the problem in GAMS and use the

MINOS solver as the SCP-based method. In Table 3.4, there are two schedules

generated for the total weighted completion time of 7.592. The first schedule is

CHAPTER 3. SINGLE MACHINE SCHEDULING 45

Perturbed ri

Iter. Job (j) pj wj/pj Sequence 1 2 3 4 5 F2 F1

0 4 1 5 3 2 -1.26 -1.51 -0.30 -1.49 -0.36 4.752 4.27

1 2 0.54 2.407 4 1 5 3 2 -1.26 -0.84 -0.30 -1.49 -0.36 4.882 4.12

2 4 0.30 6.333 4 1 5 3 2 -1.26 -0.84 -0.30 -0.56 -0.36 5.532 3.52

3 1 0.39 3.077 4 5 3 1 2 -1.12 -0.84 -0.20 -0.56 -0.26 5.821 3.12

4 1 0.49 2.449 4 5 3 1 2 -1.62 -0.84 -0.20 -0.56 -0.26 6.071 2.91

5 2 0.64 2.031 4 5 3 1 2 -0.62 -0.49 -0.20 -0.56 -0.26 6.201 2.83

6 1 0.59 2.034 4 5 3 1 2 -0.37 -0.49 -0.20 -0.56 -0.26 6.451 2.71

7 4 0.40 4.750 4 5 3 1 2 -0.37 -0.49 -0.20 -0.27 -0.26 7.101 2.45

8 2 0.74 1.757 4 5 3 1 2 -0.37 -0.28 -0.20 -0.27 -0.26 7.231 2.40

9 1 0.69 1.739 4 5 3 2 1 -0.47 -0.15 -0.20 -0.27 -0.26 7.472 2.33

10 1 0.79 1.519 4 5 3 2 1 -0.28 -0.15 -0.20 -0.27 -0.26 7.592 2.28

Table 3.3: Results of the first 10 iterations by the CIBA method

found by the CIBA method at iteration 10 given in Table 3.3. We also solved

the same problem by MINOS. It can be seen from Table 3.4 that two schedules

are different in terms of job sequences and job processing times. When we con-

sider the schedule found by the SCP-based method using MINOS, we see that it

satisfies Lemma 3.2, which states that total weighted completion time must be

tight at optimality and it also satisfies the WSPT rule. The MINOS solution has

integer Xij’s, so that it gives a feasible schedule (Lemma 3.4). For this particu-

lar solution, the CIBA method gives a slightly better solution (F1 = 2.28) than

the GAMS/MINOS solver (F1 = 2.30), which is an example for the case that a

solution found by MINOS may not be a global optimal (Lemma 3.5). Finally,

when we check the ri values of the MINOS solution, we see that they satisfy

Lemma 3.6 which states that a local optimal solution cannot be improved by just

changing the processing times of jobs. In order to find the global optimum of

F1 for a given F2 = 7.592, we solve the LSCP model by GAMS/BARON, which

gives F1 = 2.265 with the job sequence of 4-5-3-2-1 (the same sequence with the

CIBA), and the processing times (0.413, 0.277, 0.290, 0.647, 0.820), respectively.

CHAPTER 3. SINGLE MACHINE SCHEDULING 46

schedule by CIBA method schedule by SCP-based method

Position job(i) pi wi/pi ri fi(pi) job(i) pi wi/pi ri fi(pi)

1 4 0.40 4.75 -0.27 0.703 4 0.414 4.589 -0.245 0.68

2 5 0.25 4.00 -0.26 0.277 5 0.256 3.906 -0.245 0.27

3 3 0.29 3.79 -0.20 0.239 3 0.290 3.793 -0.202 0.24

4 2 0.74 1.76 -0.15 0.508 1 0.672 1.786 -0.245 0.50

5 1 0.79 1.52 -0.28 0.552 2 0.769 1.691 -0.245 0.61

Table 3.4: Schedules generated by different methods when F2=7.592

3.5 Computational Results

In this chapter, we considered two bicriteria production optimization problems.

The first problem deals with minimizing the total manufacturing cost and total

weighted completion time objectives. The second one deals with minimizing the

total manufacturing cost and total completion time objectives. For each problem,

we provided two different efficient frontier approximation algorithms: namely the

SCP-based method and the CIBA method. The SCP-based method is modeled

in GAMS 2.5 using solver MINOS 5.51. GAMS is a well known commercial

mathematical modeling tool with many different solvers attached to it ([16]).

MINOS is the oldest NLP solver available with GAMS and is still the NLP solver

that is used the most frequently. MINOS has been developed at the Systems

Optimization Laboratory at Stanford University and it is still being improved.

The CIBA method is coded in C and compiled with Gnu C compiler. All codes

were run on a computer with 1294 MB memory and Pentium III 1133 MHz. CPU.

In this section, we discuss the results of the computational study.

There are three experimental factors that can affect the efficiency of the pro-

posed methods as listed in Table 3.5. The number of jobs (N) is an important

factor that affects the solution quality and computational requirements. The

machine type is considered since different machines have different cutting power

levels and different operating costs. Machines with higher maximum cutting

CHAPTER 3. SINGLE MACHINE SCHEDULING 47

power, H, are more expensive to buy so operating cost of them, Co, is higher.

Co and H affect the pl and pu levels as well as the shape of the manufacturing

cost function. Ct, the tooling cost level, also affects the pu and the shape of the

manufacturing cost function. We also consider 10 different cutting tool types

with the specific coefficients given in Table 3.6. Each job can be manufactured

by one of these cutting tools. For each experimental setting (3 ∗ 3 ∗ 2), we took

five replications resulting in 90 different problem settings. Furthermore, we gen-

erated jobs’ technical specifications as follows: Di are selected from U[1,4], Li

from U[4,6], di from U[0.05,0.3], Si from U[150,250], where U[a,b] is a uniform

distribution in the interval [a,b]. For the weighted case we generated a weight for

each job from U[1,10]. Finally, we used two different levels of step size ∆, such

as 0.01 and 0.03.

Factor Definition Level 1 Level 2 Level 3

N Number of jobs 50 100 150

m/c Machine type Co = 1, H = 5 Co = 2, H = 10 Co = 4, H = 20

Ct Tooling cost level U[6,10] U[15,19]

Table 3.5: Experimental design factors

We first present the results for the total weighted completion time problem.

The number of approximate efficient points generated by the CIBA method de-

pends on the experimental factors, job specifications and ∆. We cannot determine

the number of points to be generated by the CIBA method in advance. Therefore,

to compare these two approaches we first run the CIBA method and generate a

set of approximate efficient points. Then, we choose a subset of this solution set

and run the SCP-based model for this subset. As discussed earlier, we gener-

ate points with total weighted completion time values in [K l, Ku]. Out of these

points, we chose 50 points other than Z1 and Z2 such that each successive point

pair has equal (or almost equal) separation. This is because we want to test the

algorithms at different total weighted completion time levels along the efficient

frontier.

CHAPTER 3. SINGLE MACHINE SCHEDULING 48

Tool α β γ K b c e Cm g h l Cs

1 4.0 1.40 1.16 40960000 0.91 0.78 0.75 2.394 -1.52 1.004 0.25 204620000

2 4.3 1.60 1.20 37015056 0.96 0.70 0.71 1.637 -1.60 1.005 0.30 259500000

3 3.7 1.30 1.10 13767340 0.90 0.75 0.72 2.315 -1.45 1.015 0.25 202010000

4 3.7 1.28 1.05 11001020 0.80 0.75 0.70 2.415 -1.63 1.052 0.30 205740000

5 4.1 1.26 1.05 48724925 0.80 0.77 0.69 2.545 -1.69 1.005 0.40 204500000

6 4.1 1.30 1.10 57225273 0.87 0.77 0.69 2.213 -1.55 1.005 0.25 202220000

7 3.7 1.30 1.05 13767340 0.83 0.75 0.73 2.321 -1.63 1.015 0.30 203500000

8 3.8 1.20 1.05 23451637 0.88 0.83 0.72 2.321 -1.55 1.016 0.18 213570000

9 4.2 1.65 1.20 56158018 0.90 0.78 0.65 1.706 -1.54 1.104 0.32 211825000

10 3.8 1.20 1.05 23451637 0.81 0.75 0.72 2.298 -1.55 1.016 0.18 203500000

Table 3.6: Technical coefficients of the cutting tools

We measured the relative difference between the F1 values for a given F2 value,

R = (F1(CIBA) − F1(SCP))/F1(SCP). Another critical issue to consider is the

computational requirements of both methods. In Table 3.7, we summarize the

R level and the required CPU’s. The given CPU’s in this table are measured

for the entire solution sets. The data shows that the relative difference between

two methods on the average is very small in favor of the CIBA. We can say

that on the average the CIBA performs slightly better than the commercial NLP

solver MINOS in terms of the solution quality. The maximum R values show

that there are cases where the SCP-based method performs better. Moreover, we

conclude that the CIBA method can find significantly higher number of efficient

points than the SCP-based method in a much shorter computational time. For

∆ = 0.01, the SCP-based method used 352.91 CPU seconds on the average to

solve for 50 solution points, but the CIBA method just spent 29.56 CPU seconds

on the average to generate 354,597 points. In an 8% of MINOS’ CPU requirement,

the CIBA method can generate 7000 times more alternatives. It is important to

note that we originally had a mixed-integer nonlinear programming (MINLP)

formulation. Due to Lemmas 3.3 and 3.9, we were able to solve these problems

by using the MINOS solver. Still, the CPU needed to solve the SCP-model is quite

high. As expected, when we increase the step size, ∆, we loose from the solution

CHAPTER 3. SINGLE MACHINE SCHEDULING 49

quality at each point but gain from the CPU time. Moreover, for a higher ∆

value, the size of the approximate efficient solution set decreases. When we check

the results for different levels of N , we observe that increase in the number of

jobs increases the SCP-based method’s CPU much more than the CIBA method,

but the relative difference between two methods, R, slightly improves in favor of

the CIBA method.

∆ Measure Min Max Mean Std. Dev.

R -0.003970 0.001559 -0.000108 0.000665

0.01 SCP-based CPU 16.86 961.59 352.91 356.88

CIBA CPU 0.78 125.59 29.56 35.17

CIBA set size 32,084 1,066,094 354,597 296,026

R -0.000936 0.000216 -0.000041 0.000177

0.03 SCP-based CPU 17.30 955.57 354.19 355.70

CIBA CPU 0.26 41.24 9.76 11.56

CIBA set size 10,693 355,344 118,188 98,674

Table 3.7: Performance measures for the weighted case

Next, we discuss the computational results for the total completion time case.

In Table 3.8, we present the results for the total completion time case for different

∆ values. We see that the overall performance of CIBA is very close to the SCP-

based method but the SCP-based method performs slightly better than the CIBA

in terms of solution quality. The minimum R values indicate that there are cases

where the CIBA performs better. Results show that both methods require less

computation time for the unweighted case compared to the weighted case as

expected. Moreover, the CIBA method generated less number of efficient points

for the unweighted case. This is because when the weights of completion times

are selected from the interval [1,10] we achieve a larger [K l, Ku] interval so that

the CIBA can generate more points for the weighted case if the same ∆ value is

used as in the total completion time case.

Another important question is the absolute performance of the SCP-based

CHAPTER 3. SINGLE MACHINE SCHEDULING 50

∆ Measure Min Max Mean Std. Dev.

R -0.000076 0.001232 0.000313 0.000309

0.01 SCP-based CPU 12.70 509.43 201.60 194.72

CIBA CPU 0.01 0.14 0.06 0.03

CIBA set size 1324 9731 4471.7 2286.3

R -0.019599 0.010221 0.002610 0.003642

0.03 SCP-based CPU 11.42 522.29 202.65 195.51

CIBA CPU 0.01 0.05 0.021 0.01

CIBA set size 444 3,247 1,494.6 763.2

Table 3.8: Performance measures for the total completion time case

method from the global minimum due to Lemmas 3.5 and 3.10. We could solve

the LSCP model only for 5 and 8 jobs within reasonable CPU times by using the

GAMS/BARON solver version 7.2.3. BARON (Branch And Reduce Optimization

Navigator) is a well known MINLP solver and it is hooked up to GAMS modeling

system. BARON combines constraint propagation, interval analysis, and duality

for efficient range reduction with rigorous relaxations constructed by enlarging

the feasible region and/or underestimating the objective function. We applied the

same experimental settings as above. We took five replications for each setting.

For each replication, we applied the SCP-based approach for 5 efficient points

generated by the CIBA method. Then, we solved a total of 300 MINLP problems

by BARON and MINOS. Table 3.9 shows the relative difference values for the

SCP-based methods using MINOS versus BARON and the CIBA versus the SCP-

based method using BARON. Results show that both MINOS and CIBA find

solutions very close to global optimal. There are some cases where MINOS finds

the global optimal. The computational requirements of MINOS and CIBA are

negligible for the considered number of jobs levels. We observe that when we

increase the number of jobs from 5 to 8, the CPU time required by BARON

increases by 300 times.

CHAPTER 3. SINGLE MACHINE SCHEDULING 51

N Measure Min Max Mean Std. Dev.

R(CIBA-BARON) 0.000014 0.005895 0.001007 0.001433

5 R(MINOS-BARON) 0.0 0.006673 0.001258 0.002132

BARON CPU 5.51 13.32 10.07 1.79

R(CIBA-BARON) 0.000010 0.004125 0.000105 0.000109

8 R(MINOS-BARON) 0.0 0.004552 0.000092 0.001348

BARON CPU 993.90 4627.83 3010.53 943.08

Table 3.9: Comparison with the global optimal solutions

Up to this point we have compared the pointwise quality of individual solu-

tions generated by different methods. However, since this is a multi-objective

optimization problem, we also check the approximation quality of solution sets

generated by the CIBA and SCP-based methods. In the literature, there are

different metrics used to compare the approximation quality of solution sets gen-

erated by different methods. In this chapter, we will use three of them. The

first one is the area method proposed by Zitzler and Thiele [97], which measures

the size of the objective value space covered by a solution set. The second met-

ric is the coverage difference of two sets, CD(A,B), by Zitzler [96], such that

CD(A,B) = Area(A ∪ B) − Area(B). This measure shows the contribution of

solution set A to the area covered by solution set B. These two metrics use the

ideal and nadir values of the objective functions in order to normalize the objec-

tive values of solutions and calculate the corresponding areas. In our problem,

ideal and nadir values are achieved at solutions Z1 and Z2. The last metric we

use is the probability, P (A,B), that an algorithm, A, gives a better solution than

another algorithm, B. This metric is proposed by Hansen and Jaszkiewicz [43].

It is calculated as

CHAPTER 3. SINGLE MACHINE SCHEDULING 52

P (A,B) =
∫
u∈[0,1]

C(A(u), B(u)) du, where

C(A(u), B(u)) =


1 f(A(u)) < f(B(u))

1/2 f(A(u)) = f(B(u))

0 f(A(u)) > f(B(u))

and f(A(u)) = minx∈A{max(uF ′1(x), (1 − u)F ′2(x))} where F ′1(x) = F1(x)−F1(Z2)
F1(Z1)−F1(Z2)

which is a normalization of F1. Here u is the weight of the normalized objective

function F1 for the decision maker. The method basically tries a number of u

values between 0 and 1 and estimates the decision maker’s probability to choose

a solution generated by method A. The results in Table 3.10 show that on the

average area covered by the CIBA algorithm is larger than the area covered by

the SCP-based method. Although there is a small difference, paired t-test results

show that CIBA is significantly better than SCP-based method in terms of the

area measure. When we check the coverage difference results, we see that the

contribution of CIBA to the area covered by the SCP-based method is much

more than the opposite measure. Finally, we check the probability measure,

which shows that for the 99.5% of the cases on the average, the decision maker

would prefer to implement a solution achieved by the CIBA method.

Metric Mean Min Max

Area(CIBA) 0.843 0.816 0.867

Area(SCP) 0.833 0.805 0.856

CD(CIBA,SCP) 0.011 0.010 0.012

CD(SCP,CIBA) 0.000002 0.0 0.000029

P(CIBA,SCP) 0.995 0.975 1.000

Table 3.10: Comparison of the approximation algorithms for ∆ = 0.01

Computational results show that the CIBA method has almost same pointwise

cost quality with the SCP-based approach despite the much less computational

time requirement. More than that, the CIBA method can generate significantly

CHAPTER 3. SINGLE MACHINE SCHEDULING 53

higher number of efficient solutions than the SCP-based methods in a short com-

putation time. As a result, the approximation quality measures that we calculated

for both methods show that CIBA achieves significantly better approximations

of the efficient frontiers than the SCP-based method.

3.6 Conclusion

In this chapter, we considered the bicriteria problem with the objectives of mini-

mizing the manufacturing cost and the total weighted completion time on a single

CNC turning machine. We used ε-approach method and proposed a very effective

single criterion model to find efficient solutions. The problem is to minimize to-

tal manufacturing cost for a given set of jobs for different levels of total weighted

completion time. This model can be solved to integer local optimality by just

using a commercial NLP solver. Additionally, we have derived important opti-

mality properties for the model which led us to design a very quick and effective

algorithm which generates an approximate efficient solution set.

Although we have focused on CNC turning machines for practical purposes,

our results are valid for any nonlinear convex processing cost function. Further-

more, all the properties and methods that we derive below apply to the linear

cost function case as well. This chapter has been published as a paper (Gürel

and Aktürk [41]). In the next chapter, we will extend the discussion to parallel

machine environment.

Chapter 4

Time/Cost Trade-offs in Parallel

Machine Scheduling

In this chapter, we consider a time/cost trade-off problem in identical parallel

machines environment. The term “identical” implies that the technical specifi-

cations of the machines are the same so that a job has the same manufacturing

cost function on different machines. We have two objectives to minimize: total

manufacturing cost and total completion time. As we have discussed in Chap-

ter 3, we cannot minimize both objectives at the same time. Therefore, as we

have done in Chapter 3 our focus will be on finding efficient solutions for this

bicriteria problem. Our results in this chapter, will be analogous to the results

we have achieved in Chapter 3.

In Section 4.1, we give the problem definition and by using the ε-approach, we

propose a mathematical formulation for the problem of minimizing total manufac-

turing cost subject to a given bound on the total completion time. In Section 4.2,

we prove some useful properties for the problem. In Section 4.3, we propose an

algorithm which generates approximate efficient solutions for the problem. In

Section 4.4, we discuss our findings on a numerical example, and report the

computational results in Section 4.5. Finally, we give concluding remarks in Sec-

tion 4.6.

54

CHAPTER 4. PARALLEL MACHINE SCHEDULING 55

4.1 Problem Definition

The notation used throughout this chapter is as follows:

pi: processing time of job i.

pli: processing time lower bound for job i.

fi(pi): manufacturing cost function of processing time for job i.

pui : processing time level that gives the minimum manufacturing cost

(fi(pi)) for job i.

Co : unit operating cost for CNC turning machines ($/min).

Ti, ei : tooling cost multiplier and exponent for job i.

We have N jobs to be machined on M identical parallel CNC turning ma-

chines. Each job corresponds to a different turning operation to be performed

on one of the machines so that each job has different cutting properties such as

diameter, length, allowable surface roughness and cutting tool. Therefore, each

job has a different fi(pi), and different pli and pui . Since the machines are iden-

tical, fi(pi), p
l
i and pui for job i are same for all machines. Each CNC machine

can perform one job at a time. The problem is to find the best schedule and

processing times for each job in order to minimize total manufacturing cost and

total completion time.

As given in Chapter 3, manufacturing cost function of job i as a function of

pi can be expressed as below:

fi(pi) = Copi + Tip
ei
i

As discussed in Chapter 3, pli is the lower bound for pi and pui is the processing

time level that minimizes the manufacturing cost for job i. Similar to the previous

chapter, since Ti > 0 and ei < 0 always hold, fi(pi) is a nonlinear convex function.

If we consider the minimization of total completion time as a single objec-

tive on identical parallel machines with fixed processing times we can solve the

problem by using the following properties.

Property 4.1. The shortest processing time first (SPT) rule is optimal.

CHAPTER 4. PARALLEL MACHINE SCHEDULING 56

The SPT rule as given in Pinedo [73] is to schedule the smallest job on machine

1 at time zero, schedule the second smallest job on machine 2, and so on; the

(M + 1)th smallest job follows the smallest job on machine 1, (M + 2)th smallest

job follows the second smallest job on machine 2, and so on. The second property

is due to Conway et al. [23] as below.

Property 4.2. One can interchange jobs in equivalent positions in sequence on

different machines without having any effect on the total completion time.

Two positions on different machines are equivalent if the number of jobs suc-

ceeding these positions on the same machines are equal. Property 4.2 implies the

existence of many alternative optimal schedules for the problem.

Using Property 4.1 and 4.2, we can determine how many jobs will be sched-

uled on each machine in the optimal solution. Then, we can find number of

positions on each machine and determine which positions on different machines

will be equivalent so that we can form sets of equivalent positions. Using this

observation for the total completion time problem with fixed processing times,

we can formulate our bicriteria problem with controllable processing times as an

assignment problem of jobs to sets of equivalent positions.

In an optimal solution for the total completion time problem with fixed

processing times, l machines will have
(
bN
M
c+ 1

)
jobs where l ≡ (N mod

M) with minimal l ≥ 0. The rest of the machines will have bN
M
c jobs. We

define S(j) as the number of positions in set j. We define N(j) as the number

of jobs succeeding each job in set j on the same machine plus the job itself. We

assume that position 1 is the first position on machine 1, position 2 is the first

on machine 2 and M is the first on machine M , position M + 1 is the second

position on machine 1, M + 2 is the second on machine 2 and so on. If l > 0 then

there will be
(
bN
M
c+ 1

)
sets and set 1 will include position 1 to position l so that

S(1) = l and N(1) =
⌈
N
M

⌉
. Set 2 will include position (l+ 1) to position (l+M)

so that S(2) = M and N(2) =
⌈
N
M

⌉
− 1 and, so on. If l = 0, then each machine

will have equal number of jobs and there will be N
M

sets. Each set j will include

M positions from position ((j − 1)M + 1) to jM . Then, we can determine N(j)

CHAPTER 4. PARALLEL MACHINE SCHEDULING 57

for each set j as follows:

N(j) =

⌈
N

M

⌉
− j + 1

Then, a mathematical formulation for the bicriteria problem with controllable

processing times is as below, where Xij is the binary variable which controls if

job i is placed in one of the positions in set j.

min F1 :
N∑
i=1

fi(pi) =
N∑
i=1

Copi + Tip
ei
i

min F2 :
N∑
i=1

∑
j

N(j)Xijpi

s.t.
∑
j

Xij = 1 i = 1, . . . , N (4.1)

N∑
i=1

Xij = S(j) ∀j (4.2)

pli ≤ pi ≤ pui i = 1, . . . , N (4.3)

Xij ∈ {0, 1} i = 1, . . . , N, ∀j (4.4)

In the mixed integer nonlinear programming (MINLP) model above, the first

objective function F1 is the total manufacturing cost. F1 equals the sum of N

nonlinear convex manufacturing cost functions, so it is a convex function. The

second objective function F2 is the total completion time. Total completion time

is a nonlinear function since it is a sum of nonlinear terms. Constraint set (4.1)

forces each job to be assigned to a position set. Constraint set (4.2) fixes the

number of jobs to be assigned to each position set. In each set there are certain

number of positions and the number of jobs assigned to a set must be equal to the

number of positions in the set. Constraint set (4.3) sets the processing time lower

and upper bounds for each job. In the next section, we define a single objective

problem and give optimality properties on it.

CHAPTER 4. PARALLEL MACHINE SCHEDULING 58

4.2 Optimality Properties

As discussed earlier, we cannot minimize both objectives at the same time. There-

fore, we need to find efficient solutions for the problem. A solution Z to a bi-

criteria problem is efficient if there exists no other solution which is better than

Z in one of the criteria and not worse in the other. Since we have the SPT rule

as an optimal strategy for the total completion time problem, we can determine

the efficient solution Z1 with the minimum total completion time K l and the

maximum manufacturing cost by setting pi = pli for all i and by applying the

SPT rule. Similarly, we can find another efficient solution Z2 with the minimum

manufacturing cost by setting pi = pui for all i and by applying the SPT rule.

We denote the total completion time at Z2 as Ku. Two solutions, Z1 and Z2,

are the points that we can find by just using the SPT rule on processing time

lower and upper bounds, respectively. However, a decision maker may find the

manufacturing cost for Z1 too high to pay or may find the total completion time

for Z2 too high. In order to find the efficient solutions other than Z1 and Z2, we

can consider F1 as a single objective to minimize subject to an F2 constraint and

formulate a single objective problem which we call SOP as below.

minF1 :
N∑
i=1

fi(pi)

(SOP) s.t.
N∑
i=1

∑
j

N(j)Xijpi ≤ K (4.5)

and (4.1), (4.2),(4.3), (4.4)

Constraint (4.5) guarantees that total completion time (F2) of the schedule is

less than or equal to a predefined value K. An alternative way of modeling the

SOP is formulating it as an assignment problem of jobs to individual positions

as commonly done in the literature. Such a formulation would not be using the

result in Property 4.2. It would require more variables and constraints in the

model. We can solve the SOP model by using MINLP solvers. Then, we can

generate a set of n efficient solutions between Z1 and Z2 by using the following

CHAPTER 4. PARALLEL MACHINE SCHEDULING 59

algorithm denoted as the solver based approach (SBA).

SBA algorithm

Step 1. Find solutions Z1 and Z2, and calculate Ku and K l by using the SPT

rule for pu and pl values, respectively.

Step 2. Set ∆ = (Ku −K l)/(n+ 1).

Step 3. For k = 1 to n, solve the SOP for K = K l + k∆.

We found the following useful properties for the SOP formulation above.

These properties improved the SBA method and provided a clearer interpretation

of the problem.

Lemma 4.1. When K ≤ Ku, constraint (4.5) on F2 must be tight at the optimal

solution.

Proof. When K > Ku, total manufacturing cost can be minimized by setting

pi = pui for all i and constraint (4.5) can be satisfied by applying the SPT rule.

In such a case, constraint (4.5) is loose. When K ≤ Ku, if constraint (4.5) is

loose, then, it is sure that we have at least one job i such that pi < pui and by

increasing pi we can decrease fi so that we could improve F1. Therefore, when

K ≤ Ku, a solution cannot be optimal if constraint (4.5) is loose.

In our single objective problem, we model the total completion time as a

resource constraint to be used to minimize total manufacturing cost. Therefore,

Lemma 4.1 states that when this resource is scarce (K ≤ Ku), we must fully

utilize it. Lemma 4.1 also implies that an optimal solution for the SOP must

have the minimum total completion time for the optimal processing times. This

implies an optimal solution must satisfy the rules in Property 4.1 and 4.2. To

further explore the problem we next consider the relaxed SOP where Xij’s are

allowed to take any values in the interval [0,1]. The next property is an extension

of Lemma 4.1 for locally optimal solutions to the relaxed SOP.

Corollary 4.1. For the relaxed SOP, when K ≤ Ku constraint (4.5) on F2 must

be tight at locally optimal solutions.

CHAPTER 4. PARALLEL MACHINE SCHEDULING 60

Next property is an important one which states that any local optimal solution

to the relaxed problem has binary Xij’s. Non-integer local optimal solutions

may exist only if there are multiple jobs having identical processing times in

the solution. However, such non-integer solutions are alternative solutions for

existing integer local optimal solutions.

Lemma 4.2. When K ≤ Ku, in a local optimal solution for the relaxed SOP, a

job cannot be assigned to multiple position sets, i.e. a local optimal solution must

have integer Xij’s.

Proof. Consider two jobs i1 and i2 placed to positions in different sets j1 and j2,

respectively. Suppose that pi1 < pi2 and N(j1) > N(j2). Consider a local optimal

solution Z for the relaxed problem. The assignment variables for jobs i1 and i2

and positions j1 and j2 in Z are as follows:

Xi1j1 = ρ1 and Xi2j1 = ρ2,

Xi1j2 = ξ1 and Xi2j2 = ξ2, where ρ1, ρ2, ξ1 and ξ2 are positive.

Total completion time calculated for Z is as below:

F2(Z) =
N∑
i=1

∑
j

N(j)Xijpi

= Φ +N(j1)[ρ1pi1 + ρ2pi2] +N(j2)[ξ1pi1 + ξ2pi2]

= Φ + [N(j1)ρ1 +N(j2)ξ1]pi1 + [N(j1)ρ2 +N(j2)ξ2]pi2

where Φ is a constant value. Suppose that without changing the processing

times, we change the assignment variables to get a new solution Z ′. Setting

δ = min(ξ1, ρ2), new values for the assignment variables are as follows:

Xi1j1 = ρ1 + δ, Xi2j1 = ρ2 − δ,

Xi1j2 = ξ1 − δ and Xi2j2 = ξ2 + δ.

By this arrangement, we reallocate these two jobs to position sets j1 and j2 such

that we increase job i1’s ratio in the preceding position set j1 without disturbing

the assignment constraints.

CHAPTER 4. PARALLEL MACHINE SCHEDULING 61

Total completion time of the solution after this arrangement is:

F2(Z ′) = Φ + [N(j1)(ρ1 + δ) +N(j2)(ξ1 − δ)]pi1

+ [N(j1)(ρ2 − δ) +N(j2)(ξ2 + δ)]pi2

Then, F2(Z ′) − F2(Z) = δ(N(j1) − N(j2))(pi1 − pi2) < 0, since N(j1) > N(j2)

and pi1 < pi2 . Then, since K ≤ Ku we can improve total manufacturing cost by

increasing processing times. This proves that there exists an improving feasible

direction for solution Z so that Z cannot be a local optimal solution. When we

generalize this result for all jobs and position sets, we conclude that a solution

with non-integer Xij’s cannot be a local optimal solution for the problem. How-

ever, for the cases of pi1 = pi2 we may have alternative non-integer local optimal

solutions.

This result is an extremely important one since it shows that although our

problem is a MINLP problem, we can employ nonlinear programming (NLP)

solvers to solve its relaxed form and achieve integer solutions. This is critical

since NLP solvers are computationally more efficient than MINLP solvers. If

the objective function is convex, in general, NLP solvers can only guarantee to

find local optimal solutions. However, if the feasible region for the problem is

a convex set, a local optimal solution is globally optimal. We next check if the

feasible region for the problem is a convex set to see whether NLP solvers can

guarantee to find the global optimum for the problem.

Lemma 4.3. The feasible region for the relaxed SOP is not a convex set.

Proof. Consider two jobs i1 and i2 in a schedule called A1. They are assigned

at positions in sets k and k + 1, respectively. Suppose that N(k) = r + 1 and

N(k + 1) = r and the processing times are pi1 = s1 and pi2 = s2 where s1 < s2.

Further, suppose that F2(A1) = Q+ (r + 1)s1 + rs2 = K where Q is a constant.

Consider another schedule A2 which is identical to A1 except that job i1 is

assigned to the position set k + 1 and i2 is assigned to the position set k with

CHAPTER 4. PARALLEL MACHINE SCHEDULING 62

processing times pi1 = q1 and pi2 = q2 where q2 < q1. Suppose that F2(A2) =

Q+ (r + 1)q2 + rq1 = K.

Next, define a point A which is a convex combination of A1 and A2 as follows:

A = λA1 + (1 − λ)A2 where 0 < λ < 1. At point A, pi1 = λs1 + (1 − λ)q1 and

pi2 = λs2 + (1 − λ)q2. Also, Xi1k = λ, Xi1(k+1) = (1 − λ), Xi2k = (1 − λ) and

Xi2(k+1) = λ.

F2(A) = Q+ [(r + 1)λ+ r(1− λ)]pi1 + [(r + 1)(1− λ) + rλ]pi2

= Q+ λ2[(r + 1)s1 + rs2] + (1− λ)2[(r + 1)q2 + rq1]

+ λ(1− λ)[(r + 1)q1 + rq2] + λ(1− λ)[(r + 1)s2 + rs1]

> K

since s1 < s2 and q2 < q1. This shows that feasible region for the relaxed problem

is not a convex set.

This lemma indicates that NLP solvers may not be able to find global opti-

mum, so they only guarantee to achieve local optimal solutions. Although the

complexity of the problem is open, this lemma supports the difficulty of the

problem again due to Murty and Kabadi [64].

We showed that NLP solvers guarantee to find integer local optimal solutions

for the SOP. A way of solving this problem to global optimum is to solve for

processing times for all possible job-position allocations which is computationally

inefficient except for small instances. In order to find the global optimal solution

for the single objective problem by using MINLP solvers, we next present a lin-

earized single objective problem LSOP model below. In this model, constraint

(4.5) is replaced with the constraint set 4.6- 4.10 in which the term Xijpi is re-

placed with the variable Yij. The parameter B in the model below denotes a large

positive number.

min F1 :
N∑
i=1

fi(pi)

CHAPTER 4. PARALLEL MACHINE SCHEDULING 63

(LSOP) s.t.
N∑
i=1

∑
j

N(j)Yij ≤ K (4.6)

Yij ≥ pi + (Xij − 1)B i = 1, . . . , N, ∀j (4.7)

Yij ≤ pi + (1−Xij)B i = 1, . . . , N, ∀j (4.8)

Yij ≤ BXij i = 1, . . . , N, ∀j (4.9)

Yij ≥ 0 i = 1, . . . , N, ∀j (4.10)

and (4.1), (4.2), (4.3), (4.4)

By replacing the terms Xijpi with the variable Yij in constraint (4.5) we obtain

constraint 4.6 in the above model. To assure the equivalence of the term Xijpi

and the variable Yij we add the constraint sets 4.7- 4.10 so that if Xij = 0 then

Yij = 0 and if Xij = 1 then Yij = pi. However, Lemma 4.2 is no longer valid

for this linearized model since the linearization is only possible for binary Xij’s,

so we cannot use NLP solvers to solve the LSOP, instead we can use a MINLP

solver to find the global optimal solution.

In this section, we introduced the SOP model and proposed the SBA method

to generate a set of efficient solutions. We showed that NLP solvers can also be

employed in SBA method to obtain approximate efficient solutions. We also gave

the LSOP model which can be solved to global optimum by the MINLP solvers.

In the next section, we propose a heuristic method which generates approximate

efficient solutions for the bicriteria problem. Proposed method achieves almost

equal solution quality compared to commercial NLP and MINLP solvers although

it spends much less computation time.

4.3 A heuristic method to generate approxi-

mate efficient solutions

In this section, we first state a very important optimality property for the single

objective problem. Different than the properties in Section 4.2, this optimality

CHAPTER 4. PARALLEL MACHINE SCHEDULING 64

property states a relationship that must hold between positions and processing

times of the jobs in a local optimal solution. Based on this property we propose

a heuristic algorithm which generates a set of approximate efficient solutions. A

solution may be viewed as approximately efficient if it is efficient with respect

to a large set of known solutions for a given problem. Since we are using a

heuristic approach to find the minimum manufacturing cost value, F1, for a given

total completion time value, we denote these solutions as approximate efficient

solutions. That means these solutions do not dominate each other but there can

be another solution generated by an exact algorithm that could dominate any

one of them.

Lemma 4.4. Let i1, i2 be a pair of jobs in a local optimum and nik =∑
j XikjN(j), k ∈ {1, 2}. Then the optimal processing times pi1 , pi2 must sat-

isfy the following conditions:

i. If pi1 > pli1 and pi2 > pli2 then

1

ni1

∂fi1(pi1)

∂pi1
=

1

ni2

∂fi2(pi2)

∂pi2

ii. If pi1 = pli1 and pi2 > pli2 then

1

ni1

∂fi1(pi1)

∂pi1
≥ 1

ni2

∂fi2(pi2)

∂pi2

Proof. Suppose that in a solution 1
ni1

∂fi1 (pi1)

∂pi1
< 1

ni2

∂fi2 (pi2)

∂pi2
for jobs i1 and i2. Then,

lim
∆p→0

(
fi1(pi1 + ∆p)− fi1(pi1)

ni1∆p
−

fi2(pi2)− fi2(pi2 −
ni1
ni2

∆p)

ni2
ni1
ni2

∆p

)
< 0

lim
∆p→0

(
fi1(pi1 + ∆p)− fi1(pi1)− fi2(pi2) + fi2(pi2 −

ni1
ni2

∆p)

ni1∆p

)
< 0

Then, ∃ ∆p > 0 s.t. fi1(pi1 + ∆p) + fi2(pi2 −
ni1
ni2

∆p) − fi1(pi1) − fi2(pi2) < 0,

which means the current solution can be improved by increasing pi1 by ∆p and

decreasing pi2 by
ni1
ni2

∆p. This proves that a local optimal solution must satisfy

the conditions above.

CHAPTER 4. PARALLEL MACHINE SCHEDULING 65

This lemma states that there is a unique solution for the processing times of

jobs which is optimal for a given job-position set allocation. When a job-position

set allocation is given, we can find the processing times of the jobs by employing

a search algorithm and using Lemma 4.4. Lemma 4.4 also implies that we cannot

move from a local optimal solution to another one without changing the job-

position set allocation since there is a unique local optimal solution for a certain

job-position set allocation. It implies that we can find the global optimal solution

for the problem by trying all possible job-position set allocations and solve each

case for optimal processing times.

Using the information in Lemma 4.4 we propose an approximation algorithm,

which we call as the most profitable job first (MPJ) algorithm, to find a set of

approximate efficient solutions other than Z1 and Z2. MPJ algorithm starts with

the efficient solution Z1 which has the minimum total completion time but the

maximum manufacturing cost. To generate a new approximate efficient solution,

we want to select a job and increase its processing time. This will decrease the

total manufacturing cost but increase the total completion time. Selecting the job

to be perturbed is a very critical decision, and hence we propose a new measure

ti as given below:

ti =
∂fi(pi)/∂pi

N(j)

We can interpret ti as the estimated cost change per estimated unit total com-

pletion time change when processing time of job i is increased by one unit. This

makes sense since we want to find efficient solutions by achieving maximum cost

decrease per unit total completion time increase. As we know from Lemma 4.4,

in an optimal solution ti values must be equal for the jobs whose processing times

are higher than their lower bounds. By selecting the job with the minimum ti

value, we want to satisfy or at least be very close to satisfying Lemma 4.4 at each

step. In each iteration of MPJ, we increase the processing time of a selected job

by a predefined value ∆ so that we can improve total manufacturing cost while

giving up from the total completion time. After increasing the processing time

of the selected job, we check whether the SPT rule, specified in Property 4.1, is

satisfied for the new schedule or not. If not, the SPT rule is applied. At the end

of each iteration, we achieve a new solution with a better manufacturing cost but

CHAPTER 4. PARALLEL MACHINE SCHEDULING 66

a higher total completion time than the previous solution. The proposed MPJ

algorithm generates a set of approximate efficient solutions as outlined below:

MPJ algorithm

Step 1. Find the efficient solutions Z1 and Z2.

Step 2. Start with the solution Z1, set F new
1 = F1(Z1) and F new

2 = F2(Z1).

While F new
2 < Ku do the following:

Step 2.1. Select job i with the minimum ti. If there are more than one such

jobs, select the one with the longest processing time.

Step 2.2. Set pi = pi + ∆.

Step 2.3. If the SPT rule is violated then re-sequence the jobs by the SPT rule.

Step 2.4. Update ti indices for the perturbed job and for all other jobs whose

position in sequence is changed in Step 2.3.

Step 2.5. Update F new
1 = F new

1 − [fi(pi)− fi(pi + ∆)] and recalculate F new
2 .

Step 2.6. If F new
2 < Ku, report the current schedule with F new

1 and F new
2 as a

new approximate efficient solution.

The MPJ algorithm first finds two efficient solutions Z1 and Z2 in Step 1,

then generates a new approximate efficient solution in between these two points

in each iteration as shown below.

Lemma 4.5. In each iteration of the MPJ algorithm, we generate a new approx-

imate efficient solution.

Proof. At each iteration of the MPJ algorithm, processing time of a selected job

is increased by ∆ amount. Since the total completion time is a regular scheduling

measure, total completion time of new schedule is strictly higher than the pre-

vious one. Similarly, this increase will strictly decrease the total manufacturing

cost. This means new solution cannot dominate previously generated solutions.

Therefore, no two solutions generated by the MPJ algorithm can dominate each

other.

The MPJ algorithm generates a set of approximate efficient solutions which

cannot dominate each other as shown above. We then utilize the set of these

CHAPTER 4. PARALLEL MACHINE SCHEDULING 67

discrete points to approximate the efficient frontier. In the MPJ algorithm, ∆ is

a very critical parameter which affects the quality of the solutions achieved. By

using a smaller ∆ value, the MPJ algorithm can generate more solutions each of

which is more close to satisfy the conditions given in Lemma 4.4. In the next

section, we will discuss the given properties and the algorithms on a numerical

example.

4.4 Numerical Example

In this section, we give a 5 jobs-2 machines problem as an example to illustrate the

properties and algorithms that we have discussed above. As we have discussed

before, due to different job and tool properties each job has different pli and

pui levels. In this numerical example we use the following manufacturing cost

functions and processing time bounds.

f1(p1) = 0.25p1 + 3.30p−1.29
1 where 1.65 ≤ p1 ≤ 3.45

f2(p2) = 0.25p2 + 0.02p−1.71
2 where 0.20 ≤ p2 ≤ 0.48

f3(p3) = 0.25p3 + 0.20p−1.22
3 where 0.42 ≤ p3 ≤ 0.99

f4(p4) = 0.25p4 + 0.03p−1.22
4 where 0.18 ≤ p4 ≤ 0.43

f5(p5) = 0.25p5 + 0.20p−1.40
5 where 0.36 ≤ p5 ≤ 1.05

Since we have 5 jobs and 2 machines, we have 3 sets of equivalent positions.

The first position is for the shortest job which will be succeeded by two positions

on the same machine. The second and third positions are equivalent positions so

they form a position set. Each one is succeeded by a single position. The fourth

and fifth positions form the last set of equivalent positions and each one is the

last position on its machine. We can assume that positions 1, 3 and 5 are on

machine 1 and positions 2 and 4 are on machine 2.

We can find the solutions Z1 and Z2 given in Table 4.1 as discussed in Sec-

tion 4.1. At Z1, total completion time is 3.73 (ideal total completion time) and

total manufacturing cost is 4.40. At Z2, total completion time is 8.79 and total

CHAPTER 4. PARALLEL MACHINE SCHEDULING 68

manufacturing cost is 2.81 (ideal cost). Z1 and Z2 have different job-position allo-

cations. In Table 4.1, we also give the ti values for each job. At Z1,
∂f5(pl5)

∂p5
= −3.0

and it is succeeded by a single job, then t5 = −3.0
2

= −1.5. Since
∂fi(p

u
i)

∂pi
= 0 for

all i at Z2, we see that ti = 0 for all i.

Z1 Z2

Position Job i pi fi(pi) ti Job i pi fi(pi) ti

1 4 0.18 0.29 -0.56 4 0.43 0.19 0.0

2 2 0.20 0.34 -1.22 2 0.48 0.19 0.0

3 5 0.36 0.93 -1.50 3 0.99 0.45 0.0

4 3 0.42 0.68 -1.42 5 1.05 0.45 0.0

5 1 1.65 2.14 -1.10 1 3.45 1.53 0.0

F1(Z1) = 4.40 F1(Z2) = 2.81

Table 4.1: Schedules at Z1 and Z2

In Table 4.2, we give the first 7 iterations of the MPJ algorithm for the example

problem. In the first iteration we consider the efficient solution Z1. At Z1 in

Table 4.2, t5 is minimum so we select job 5 to perturb (Step 2.1). We increase

p5 by ∆ = 0.1 from 0.36 to 0.46 (Step 2.2). Since the SPT order is violated we

resequence the jobs and this results pairwise interchanging jobs 3 and 5 (Step

2.3). We update the ti’s for jobs 3 and 5 (Step 2.4). For the new sequence,

t5 = −1.56. Next, we report the achieved solution at the end of iteration 1 as

given in Table 4.2 (Step 2.5). Still t5 is the minimum, we increase p5 again in

iteration 2 and achieve a new schedule. The algorithm continues until it meets

the total completion time level of Ku.

We use the estimated cost change and total completion time data to make

decisions, so using smaller ∆ would always give a better approximation. If we

use a smaller ∆ in our example, the sequence change that occurred in iteration 1

might occur in the next iteration or a different job may be selected in iteration

2 which may imply achieving different schedules. ∆ also affects the number of

iterations such that smaller ∆ implies more iterations which means generating

CHAPTER 4. PARALLEL MACHINE SCHEDULING 69

Iter. Job i pi Sequence t1 t2 t3 t4 t5 F2 F1

0 4 2 5 3 1 -1.1 -1.22 -1.42 -0.47 -1.50 3.73 4.40

1 5 0.46 4 2 3 5 1 -1.1 -1.22 -0.71 -0.47 -1.56 3.89 4.18

2 5 0.56 4 2 3 5 1 -1.1 -1.22 -0.71 -0.47 -0.88 3.99 4.07

3 2 0.30 4 2 3 5 1 -1.1 -0.32 -0.71 -0.47 -0.88 4.19 3.93

4 1 1.75 4 2 3 5 1 -0.93 -0.32 -0.71 -0.47 -0.88 4.29 3.83

5 1 1.85 4 2 3 5 1 -0.79 -0.32 -0.71 -0.47 -0.88 4.39 3.75

6 5 0.66 4 2 3 5 1 -0.79 -0.32 -0.71 -0.47 -0.51 4.49 3.68

7 1 1.95 4 2 3 5 1 -0.67 -0.32 -0.71 -0.47 -0.51 4.59 3.61

Table 4.2: Results of the first 7 iterations of MPJ algorithm

more solutions.

To compare the solution that MPJ achieved at the end of iteration 1, we solved

the single objective problem by the NLP solver GAMS/MINOS for K = 3.89.

The result achieved by MINOS and the result achieved by MPJ are given in

detail in Table 4.3. Total manufacturing cost achieved by MINOS is 4.20. From

Table 4.2, we know that MPJ achieved the total manufacturing cost of 4.18. This

is a case where MPJ performed better than MINOS. The reason for this situation

can be seen in Table 4.3. Two solutions are different in terms of job sequence

and processing times. This means MINOS stuck to a local optimal solution, but

MPJ achieved a better solution at a different job sequence. If the sequences were

the same, MINOS would achieve a better solution since it can change all jobs’

processing times while MPJ changes the processing time of a single job at a time.

Furthermore, we solved the LSOP model for the example for K = 3.89 by using

the MINLP solver GAMS/BARON and achieved the global optimum which is

the same as the solution achieved by MPJ. We solved LSOP model for all the F2

levels of solutions achieved by MPJ. In Figure 4.1, we present the set of efficient

solutions (including Z1 and Z2) found by the MPJ and corresponding efficient

(global optimal) solutions achieved by GAMS/BARON for the example problem.

For this small example, F1 levels of solutions achieved by MPJ are very close to

CHAPTER 4. PARALLEL MACHINE SCHEDULING 70

global optimum and there are many cases in which they are equal.

schedule by MPJ schedule by MINOS

Position job i pi ti fi(pi) Pos. Set job i pi ti fi(pi)

1 4 0.18 -0.47 0.29 1 4 0.18 -0.47 0.29

2 2 0.20 -1.22 0.36 2 2 0.21 -1.10 0.34

3 3 0.42 -0.71 0.68 2 5 0.41 -1.10 0.8

4 5 0.46 -1.56 0.71 3 3 0.46 -1.10 0.63

5 1 1.65 -1.10 2.14 3 1 1.65 -1.10 2.14

Table 4.3: Schedules generated by different methods at iteration 1

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

F
1

MPJ
BARONZ

1

Z
2

F
2

Figure 4.1: A set of efficient solutions for the numerical example

In Table 4.3, we see that solution by MINOS satisfies Lemma 4.1 and gives

an integer local optimal solution to the NLP model as stated in Lemma 4.2. This

example further shows that it is possible to achieve better solutions than MINOS

since MINOS cannot guarantee global optimality due to Lemma 4.3 which states

CHAPTER 4. PARALLEL MACHINE SCHEDULING 71

the non-convex nature of the problem. When we check the MINOS solution in

Table 4.3, we see that ti values are equal for all jobs that have pi > pli, except t1

for which p1 = pl1. This is an example that illustrates the optimality conditions

stated in Lemma 4.4.

4.5 Computational Analysis

In this chapter, we presented an efficient formulation for the single objective

problem of minimizing total manufacturing cost subject to a total completion

time constraint. We proposed two approximation algorithms SBA and MPJ to

generate a set of approximate efficient solutions. We coded the SBA algorithm in

GAMS 2.5 and implemented it by using the solver MINOS 5.51. We coded the

MPJ algorithm in C language and compiled with Gnu C compiler version 3.2.

All codes were run on the operating system Mandrake 10.0 with Linux 2.6.3 on

a computer with 1294 MB memory and Pentium III 1133 MHz. CPU. In this

section, we discuss the results of the computational study.

We considered 4 experimental factors which are given in Table 4.4. The first

two factors, number of jobs and number of machines, define the problem size.

The third factor is the machine type. We consider three types of machines with

different H and Co levels. The last experimental factor is the tooling cost level

Ct, which affects the multiplier Ti in the tooling cost term of the manufacturing

cost function. We generated Ct for each tool type as given in Table 4.4 where

U [a, b] is a uniform distribution in interval [a,b]. For each experimental setting,

we solved for 5 replications resulting in 240 randomly generated problems. For

each replication we generated cutting specifications (diameter, length, depth of

cut and required surface roughness) of jobs randomly. For each job we randomly

used one of the tool types out of ten types of cutting tools with different technical

coefficients given in 3.6. Furthermore, to test the effect of ∆ on the results we

tried two levels of ∆, namely 0.01 and 0.03.

CHAPTER 4. PARALLEL MACHINE SCHEDULING 72

Factors

Level N M Machine Type Tool Cost (Ct)

1 50 3 Co = 1, H = 5 U[6,10]

2 100 6 Co = 2, H = 10 U[15,19]

3 150 Co = 4, H = 20

4 200

Table 4.4: Experimental Design Factors

For each replication we first apply the MPJ method to the problem and gen-

erate a set of efficient solutions. Out of this set, we select 50 solutions, other

than Z1 and Z2. To be able to compare solution quality of MPJ and SBA, we ap-

plied the SBA method for the F2 levels of the selected solutions. In order to test

the algorithms on different regions of the efficient frontier, we selected those 50

points such that each successive point pair has equal or almost equal separation.

We considered the performance measure R =
FMPJ

1 −FSBA1

FSBA1
which is the relative

difference between F1 level achieved by the MPJ algorithm and F1 level achieved

by the SBA method for the same K value.

In Table 4.5, we give the results for R, CPU time required by SBA to solve 50

instances and CPU time required by MPJ to generate a set of efficient solutions

for both levels of ∆. We also include the size of the solution set generated by

MPJ. We would like to emphasize the mean R level, which is less than 0.0003 and

indicates that MPJ achieves almost equal cost performance as MINOS. Even for

∆ = 0.03, the mean R is around 0.3%. The minimum R is negative for ∆ = 0.01

which shows that MPJ can achieve better results than MINOS due to Lemma 4.3.

The maximum level and standard deviation show that R values do not deviate

much from the mean, and even the worst R is 0.1%. The next important criterion

to compare two approaches is the computational requirements. Despite employing

MINOS for just 50 points out of thousands generated by MPJ, in Table 4.5, we

see that CPU time requirement of MINOS is incomparably high with respect

to MPJ. On the average MPJ produces 5559 solutions, so MPJ can generate

CHAPTER 4. PARALLEL MACHINE SCHEDULING 73

many alternative solutions in a very short computation time. When we increase

∆, we see that R is increased but CPU time required by MPJ is decreased as

expected. However, even for ∆ = 0.01, the required CPU time is 0.37 seconds on

the average, so we can decrease ∆ even further and it would still not require much

CPU time and would give a better approximation in terms of solution quality and

number of alternative solutions.

∆ Measure Mean Min Max Std. Dev.

R 0.000282 -0.002119 0.001213 0.000318

0.01 MINOS CPU sec. 78.92 1.96 323.35 91.37

MPJ CPU sec. 0.08 0.01 0.20 0.05

MPJ set size 5559.16 1323 12459 3012.14

R 0.002764 0.000178 0.010918 0.002654

0.03 MINOS CPU sec. 79.45 2.26 327.91 92.13

MPJ CPU sec. 0.03 0.00 0.08 0.02

MPJ set size 1857.03 443 4159 1005.58

Table 4.5: Performance measures for different step size levels

Table 4.6 gives R and CPU time measures for different levels of number of

jobs and number of machines. As N increases, we do not observe a significant

decrease or increase on R. The CPU time required by MINOS is strongly affected

by N , which increases rapidly from 4.89 to 206.53 (almost 40 times), when N is

increased from 50 to 200. On the other hand, the CPU seconds required by

MPJ increased slightly from 0.03 to 0.14. This shows that as N increases, CPU

time increase rate for MINOS is higher than CPU time increase rate for MPJ.

Although we tried 200 jobs at most, we can solve larger instances by using MPJ

within acceptable CPU time levels. When we check the change on R with respect

to M , we see that it increases for 50 jobs case and decreases for the others. Also,

the CPU time required by MPJ is not affected by the level of M . However, CPU

time required by MINOS is significantly affected by M . As M is increased for

a given N , CPU time required by MINOS is reduced. This is because as we

increase the number of machines, the number of equivalent position sets decrease

CHAPTER 4. PARALLEL MACHINE SCHEDULING 74

N M R MINOS CPU MPJ CPU

3 0.000216 6.16 0.03

50 6 0.000308 3.62 0.03

Total 0.000262 4.89 0.03

3 0.000298 34.44 0.06

100 6 0.000285 16.76 0.05

Total 0.000291 25.60 0.05

3 0.000294 108.88 0.09

150 6 0.000266 48.47 0.09

Total 0.000280 78.67 0.09

3 0.000298 292.62 0.14

200 6 0.000291 120.43 0.14

Total 0.000294 206.53 0.14

Table 4.6: Average performance measures for different N and M levels when
∆ = 0.01

and this makes the problem easier for MINOS since it copes with less alternatives

of job-position set allocations.

Another observation we obtain from the computational results is related to

the relative performance of MPJ on different parts of the efficient frontier. In

our experiments, we evaluated the R values for 50 efficient solutions except Z1

and Z2 for each replication. Let us denote the first found efficient solutions

right after Z1 as Group 1, and so on, then, we have 50 solution groups for each

replication. When we compare the average R value for each group, we observe

that the average R is decreasing as we go from the first group to the last group as

shown in Figure 4.2. For example, R is higher for the total completion time levels

closer to Z1. As we get closer to Z2, R gets smaller and smaller. This relationship

is also shown to be statistically significant by the ANOVA results. We think that

this is related to the behavior of the manufacturing cost functions. As we get

closer to Z2, we work on flatter parts of the cost functions where the decision

CHAPTER 4. PARALLEL MACHINE SCHEDULING 75

making based on slope information as in the MPJ algorithm is more reliable.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10
−3

Mean R

S
ol

ut
io

n

Figure 4.2: Behavior of R on different regions of the efficient frontier

We next analyzed the absolute performance of MPJ and SBA against the

global optimal solutions achieved by the MINLP solver BARON 7.2.3 by solving

the LSOP models given in Section 4.2. Due to CPU time requirement we could

only solve 7 jobs and 10 jobs cases for 3 machines for the same experimental

settings. For each replication, we selected 5 efficient points out of the set gener-

ated by the MPJ algorithm and solved the LSOP and the relaxed SOP models

by the solvers BARON and MINOS, respectively. By this way, we tested these

three approaches on 300 points. Table 4.7 shows the relative difference values for

the MPJ method versus SBA using BARON, and SBA using MINOS versus SBA

using BARON. Results show that both MPJ and MINOS find solutions very close

to global optimum. There are cases where MINOS achieves the global optimal

solution. We also see from Table 4.7 that when we increase the number of jobs

from 7 to 10, the CPU time required by BARON increases by a factor of 140.

Next, we compare the multi-objective performance measure P (A,B) which

CHAPTER 4. PARALLEL MACHINE SCHEDULING 76

N Measure Min Max Mean Std. Dev.

R(MPJ-BARON) 0.000007 0.009724 0.001373 0.002429

7 R(MINOS-BARON) 0.0 0.004609 0.000610 0.001310

BARON CPU sec. 11.86 29.24 19.48 4.40

R(MPJ-BARON) 0.000025 0.004111 0.000693 0.000853

10 R(MINOS-BARON) 0.0 0.009073 0.001682 0.002630

BARON CPU sec. 875.87 2377.93 1412.34 404.34

Table 4.7: Comparison with the global optimal solutions

gives the probability that an algorithm A, gives a better solution than some other

algorithm B as discussed in Chapter 3. Table 4.8 includes P (MPJ,MINOS)

results for different values of ∆. When ∆ = 0.01 we see that probability of

decision maker to prefer a solution generated by MPJ is 98% on the average. This

is due to the fact that the MPJ method generates significantly higher number of

efficient solutions than the GAMS/MINOS solver. When ∆ is increased this

falls to 82% since pointwise solution quality and number of generated points

decreases. The results show that MPJ is a powerful method from the multi-

objective optimization point of view.

P (MPJ,MINOS)

∆ Mean Min Max

0.01 0.975 0.870 0.999

0.03 0.816 0.430 0.970

Table 4.8: Comparison of the approximation algorithms

In this section, we gave the computational results of proposed approaches

and discussed the results from several points of view. We saw that by using the

optimality properties for the problem we could develop an algorithm which can

compete with a commercial software in terms of solution quality but gives better

results in terms of computational requirements. This highlights the importance

CHAPTER 4. PARALLEL MACHINE SCHEDULING 77

of extracting and using the problem specific information when dealing with a

problem.

4.6 Conclusions

We first considered the single objective problem of minimizing total manufactur-

ing cost subject to a total completion time constraint. For this MINLP problem,

we provided an efficient formulation whose relaxed form can be solved to integer

by NLP solvers. We showed that NLP solvers can just guarantee to find local

optimal solutions for the problem. We also proved optimality conditions that

must hold between processing times of jobs at optimality. By the help of these

properties, we developed a heuristic algorithm which generates a set of approxi-

mate efficient solutions for the problem. Computational results proved that the

heuristic algorithm performs as good as well known commercial GAMS/MINOS

NLP solver with significantly less computational effort. The discussion we have

presented in this chapter was published as Gürel and Aktürk [38]. So far, we

have given our results on total completion time objective in single and parallel

machines, and total weighted completion time objective in single machine. In the

next chapter, we will consider total manufacturing cost and makespan objectives

in non-identical parallel machine environment.

Chapter 5

Minimizing Total Manufacturing

Cost and Makespan in

Non-identical Parallel Machine

Scheduling

In this chapter, we consider non-identical parallel CNC turning machines envi-

ronment. We try to handle a situation where we need to make two decisions at

the same time, which are scheduling jobs on the given machines and making ap-

propriate processing time decisions, so as to minimize total manufacturing cost.

In practice, when the workload on a machine is high, the time related perfor-

mance measure (makespan) becomes more important and we need to consider

manufacturing cost and makespan objectives at the same time. In this study,

we study finding the optimum processing times (equivalently, machining parame-

ters) that will minimize the total manufacturing cost (F̄) subject to a makespan

Cmax constraint. We provide optimality properties that will be used in an exact

solution method. We also propose a recovering beam search method, and develop

an improvement search algorithm for the problem.

78

CHAPTER 5. MACHINE JOB ALLOCATION 79

In Section 5.1, we give the problem definition. In Section 5.2, we define

the single machine subproblem and give a solution method for the problem. In

Section 5.3, we prove cost lower bounds for the partial schedules which we will

employ in our exact and beam search algorithms. In Section 5.4 we provide a

heuristic method which constructs a starting solution for the B&B algorithm.

We give the B&B algorithm in Section 5.5. Then, in Section 5.6, we discuss the

beam search algorithm for the problem. We proposed an improvement search

heuristic in Section 5.7. In Section 5.8, we provide a recovering procedure that

improves the beam search algorithm. We computationally test all these methods

in Section 5.9 and finally give concluding remarks in Section 5.10.

5.1 Problem Definition

The notation used throughout the chapter is as follows:

Parameters:

J : set of jobs to be processed.

fjm(pjm): manufacturing cost function for job j on machine m.

pljm: processing time lower bound for job j on machine m.

pujm: processing time level at which fjm(pjm) takes its minimum value.

Cm : operating cost for CNC turning machine m ($/min).

Hm : maximum applicable power by CNC turning machine m (hp).

Tj, ej : tooling cost multiplier and exponent for job j.

Decision variables:

pjm: processing time of job j on machine m.

Xjm : decision variable, that controls if job j is assigned to machine m.

In set J , we have N jobs to be processed. Each job corresponds to a metal

cutting (turning) operation that will be performed by a given cutting tool on one

of the M CNC turning machines. Each job is different in terms of its length and

diameter, depth of cut, maximum allowable surface roughness, and its cutting tool

type. Also, each machine is different in terms of its maximum applicable cutting

power Hm, and its unit operating cost, Cm($/min.). Each job must be performed

CHAPTER 5. MACHINE JOB ALLOCATION 80

on a single machine without preemption and each machine can perform one job

at a time. We also assume that setup and tool change times are negligible.

In this chapter, we will be using the previously defined convex manufacturing

cost function below:

fjm(pjm) = Cmpjm + Tjp
ej
jm

which is minimized at a processing time level pujm. Since each job has different

manufacturing properties and each machine has a different unit operating cost

Cm, manufacturing cost function fjm is different for each job on each machine.

Furthermore, there exists a processing time lower bound pljm which is determined

by the manufacturing properties of job j and the maximum applicable cutting

power of machine m, therefore pljm is also different for each job on each machine.

The problem is to schedule N jobs on M machines and find the optimum

processing time of each job so as to minimize total manufacturing cost (F̄) under

the constraint that the makespan (Cmax) of the schedule being upper bounded

by a known value of K. The technique used is the ε-constraint approach and is

written in the γ field of the α|β|γ scheduling notation as ε(F̄ /Cmax). Therefore,

our bicriteria problem is presented as Rm|contr|ε(F̄ /Cmax) and can be formulated

as follows:

min F̄ :
N∑
j=1

M∑
m=1

Xjmfjm(pjm)

s.t.
N∑
j=1

Xjmpjm ≤ K m = 1, . . . ,M (5.1)

M∑
m=1

Xjm = 1 j = 1, . . . , N (5.2)

pljm ≤ pjm ≤ pujm j = 1, . . . , N, m = 1, . . . ,M (5.3)

Xjm ∈ {0, 1} j = 1, . . . , N, m = 1, . . . ,M (5.4)

In the mixed integer nonlinear programming (MINLP) model above, the ob-

jective function is the total manufacturing cost of the jobs, (F̄). Constraint set

CHAPTER 5. MACHINE JOB ALLOCATION 81

(5.1) guarantees that the makespan for each machine is less than or equal to K

so that the Cmax ≤ K for the schedule. Constraint set (5.2) forces each job to

be assigned to a machine. Constraint set (5.3) applies the processing time lower

and upper bounds for each job. The objective function is non-convex due to

existing (Xjmfjm(pjm)) terms. Moreover, due to the bilinear terms (Xjmpjm) in

the constraint set (5.1), the feasible space of the problem is also non-convex, so

it is a non-convex MINLP model. The well known Outer Approximation and

Generalized Benders Decomposition algorithms for MINLP problems are only

valid under the convex objective function and convex feasible space assumptions

(Floudas [31]). The non-convexities constitute the major difficulty in finding the

global optimal solutions in MINLP problems and non-convex MINLP problems

receive increasing attention in nonlinear optimization theory (Kesavan et al. [55]).

In this chapter, by exploiting the structure of our non-convex MINLP problem, we

give an exact algorithm and propose efficient heuristic algorithms for the problem.

The formulation above shows that we have to make two types of decisions to

solve the problem, the first one is machine/job allocation decisions and the second

one is processing time decisions. For a given machine/job allocation, we can find

the optimal processing times by solving the single machine manufacturing cost

minimization problem subject to the makespan constraint for each machine. This

is a subproblem of our original problem and we denote it as Pm where m stands

for machine m. In the next section we give a solution method for Pm.

5.2 Single Machine Subproblem (Pm)

In Pm, we find the optimal processing times for the set of jobs assigned to ma-

chine m so that total manufacturing cost is minimized and the makespan for the

machine does not exceed K. The problem of finding the optimal processing times

on a single machine under a makespan constraint has been studied in the liter-

ature. The problem for the case of linear decreasing cost functions is shown to

be polynomially solvable by Van Wassenhove and Baker [87]. This result was ex-

tended to the case of piecewise linear cost functions by Hoogeveen and Woeginger

CHAPTER 5. MACHINE JOB ALLOCATION 82

[47]. Here, we solve the problem for nonlinear convex cost functions. Bretthauer

and Shetty [15] provided optimality properties for the nonlinear resource alloca-

tion problem which also applies to our problem. Assuming that Jm is the set of

jobs assigned to machine m, the single machine problem for machine m can be

formulated as follows:

min
∑
j∈Jm

fjm(pjm)

(Pm) s.t.
∑
j∈Jm

pjm ≤ K (5.5)

pljm ≤ pjm ≤ pujm ∀j ∈ Jm (5.6)

In Lemma 5.1, we give an optimality property for Pm. This property is very

important since it states the relationship between processing times of the jobs

assigned on the same machine in an optimal solution.

Lemma 5.1. (Optimality Property for Pm) In an optimal solution to the

single machine problem Pm, let p∗ be the optimal processing times vector, and

J1
m = {j : p∗jm > pljm} and J2

m = {j : p∗jm = pljm} where Jm = J1
m ∪ J2

m. Then the

following conditions holds:

i. (∂fjm/∂pjm)(p∗jm) = λ for j ∈ J1
m.

ii. (∂fjm/∂pjm)(p∗jm) ≥ λ for j ∈ J2
m.

Proof. Since makespan is a regular scheduling measure, increasing the processing

time of a job will not improve the makespan. Consequently, any processing

time value greater than pujm will lead to an inferior solution because both the

manufacturing cost and makespan of the schedule will get worse. Therefore, we

can replace pljm ≤ pjm ≤ pujm in constraint set (5.6) with pjm ≥ pljm. Next, we

assume that there exists at least one job j on machine m such that pjm > pljm,

then the optimal processing times vector p∗ is a regular point. Such a point

must satisfy the Karush-Kuhn-Tucker (KKT) conditions. Then the Lagrangian

CHAPTER 5. MACHINE JOB ALLOCATION 83

function for a processing time vector p is as follows:

L(p, λ, µ) =
∑
j∈Jm

fjm(pjm)− λ

(
K −

∑
j∈Jm

pjm

)
+
∑
j∈Jm

µj(p
l
jm − pjm)

At the optimal solution p∗, ∇p(Lp, λ, µ) = 0 must be satisfied, then for each

j ∈ Jm, the following equation must hold:

(∂fjm/∂pjm)(p∗jm)− λ− µj = 0

where λ ≤ 0 and µj ≥ 0 for each j ∈ Jm. If j ∈ J1
m, then µj = 0, so

(∂fjm/∂pjm)(p∗jm) = λ which proves part (i) of the lemma. If j ∈ J2
m, then

(∂fjm/∂pjm)(p∗jm) = λ + µj. Since µj ≥ 0, (∂fjm/∂pjm)(p∗jm) ≥ λ holds, which

proves part (ii) of the lemma. The only case that J1
m = ∅ holds for an opti-

mal solution is the case in which K =
∑

j∈Jm p
l
jm. Then, the optimal solution

is p∗jm = pljm ∀j ∈ Jm which falls into the case described in part (ii) of the

lemma.

At the optimal solution, the value of λ in Lemma 5.1 gives us the change rate of

the optimal manufacturing cost if K is increased. Property in Lemma 5.1 implies

that at optimality, we cannot improve the manufacturing cost by changing the

processing times of the jobs. We know that λ ≤ 0 always holds since fjm(pjm) is

non-increasing in the interval [pljm, p
u
jm] for all j and m. An immediate extension

of this property for Pm to non-identical parallel machines case is as follows:

Corollary 5.1. For the Rm|contr|ε(F̄ /Cmax) problem, an optimal solution must

satisfy the property in Lemma 5.1 for each machine, individually.

For the non-identical parallel machines problem, property in Lemma 5.1 must

hold for each machine m individually so we need to solve the subproblem Pm

for each machine. The optimality property in Lemma 5.1 allows us to solve the

problem Pm. However, since each job may use a different tool type we may

have different ej’s for each job. Then, it is not possible to derive a closed form

expression to determine the optimal processing time p∗jm. Therefore, in order to

CHAPTER 5. MACHINE JOB ALLOCATION 84

solve the problem we need to employ a line search algorithm, which will search

over the Lagrangian dual variable of the makespan constraint, λ. According to

Lemma 5.1, for each value of λ we can determine a corresponding processing time

for each job and a corresponding makespan level. Then, given a makespan level

K, we can search over possible values of λ to achieve the makespan level K and

corresponding optimal processing times.

Pm algorithm:

Step 1. Set the upper bound for λ, λu = 0.

Step 2. Set the lower bound for λ, λl = minj{(∂fjm/∂pjm)(pljm)}.

Step 3. Calculate corresponding makespan levels Ku =
∑

j∈Jm p
u
jm and K l =∑

j∈Jm p
l
jm.

Step 4. If K l > K, then the problem is infeasible.

Else if Ku ≤ K, then p∗jm = pujm for all j ∈ Jm.

Else, apply the bisection method (Bazaraa et al. [11]) over all possible values

of λ in [λl, λu] in order to find a solution which has a makespan level within

ε-neighborhood of K.

Pm algorithm is pseudo-polynomial since it applies the bisection method. We

will use Pm algorithm in the B&B algorithm, beam search, and improvement

search heuristics. In the next section, we will prove useful properties on cost

lower bounds for partial schedules. Optimality property in Lemma 5.1 will also

be useful for proving these properties.

5.3 Cost Lower Bounds for a Partial Schedule

In a partial schedule, denoted as Sp, a subset of jobs (Jp) is assigned to machines,

but the remaining jobs are not yet assigned. For Sp, we denote the set of jobs

assigned to machine m as Jpm and assume that optimal pjm decisions were made

CHAPTER 5. MACHINE JOB ALLOCATION 85

by solving the Pm for the currently scheduled jobs on machine m. Considering an

arbitrary Sp, we will prove lower bounds for the manufacturing costs of complete

schedules achievable by adding the unscheduled jobs to Sp. We assume that when

we add an unscheduled job to Sp, processing times of previously scheduled jobs

may change, but the machine/job assignments in Sp stay the same. Since the

processing time decisions for the jobs in Jp were made previously by solving the

subproblem Pm for each machine m, we have at hand the optimal dual price λm for

each machine m. When we add an unscheduled job j to a machine m of the partial

schedule Sp, it is sure that the new schedule will have a higher manufacturing

cost. Assume that adding an unscheduled job j to machine m does not violate

the makespan constraint (5.1), i.e.,
∑

i∈Jpm p
l
im+pljm ≤ K. Then, we give a lower

bound for the cost increase that will occur by adding a single job j to a machine

m of Sp in Lemma 2.

Lemma 5.2. (Cost Lower Bound for adding job j to machine m (lbjm))

A lower bound, lbjm, on the cost change that occurs by adding job j to machine

m can be found as follows:

lbjm = fjm(pubjm)− λm · pubjm

where pubjm = max(pljm, (∂fjm/∂pjm)−1(λm)).

Proof. Suppose that we first set the processing time of job j to pubjm =

max(pljm, (∂fjm/∂pjm)−1(λm)) and then add the job to machine m. pubjm is the

processing time that satisfies the optimality property (Lemma 5.1) for machine

m. It is obvious that optimal processing time p∗jm, to be achieved after solving

Pm, cannot be higher than pubjm, therefore we will definitely incur an additional

cost of at least fjm(pubjm). The new schedule on machine m may be infeasible since

the makespan of the jobs on machine m,
∑

i∈Jpm pim + pubjm, may exceed K. In

such a case, the jobs on machine m must be compressed to make the schedule

feasible. We will estimate the cost of compressing the jobs on machine m to K.

The marginal cost of decreasing the makespan of the schedule is −λm and we

need to compress the jobs by pubjm. Then, the second term is −λm · pubjm which is

CHAPTER 5. MACHINE JOB ALLOCATION 86

a lower bound on the compression cost to be incurred. Then, the additional cost

of the new schedule achieved will be at least lbjm.

Lemma 5.2 gives us a lower bound for the cost of adding an unscheduled

job to a specified machine. We want to determine a cost change lower bound

for adding all unscheduled jobs to Sp. By using the lbjm values for j ∈ J \ Jp,
we can formulate an integer program (IP) that gives us a lower bound on the

manufacturing cost increase due to adding all unscheduled jobs in J \Jp to Sp. A

lower bound for the cost increase to be caused by adding all unscheduled jobs, or

equivalently forming a complete schedule, can be found by solving the following

integer program:

min
∑

j∈J\Jp

M∑
m=1

Xjmlbjm

(IP) s.t.
∑

j∈J\Jp
Xjmp

l
jm ≤ K −

∑
j∈Jpm

pljm m = 1, . . . ,M (5.7)

m=M∑
m=1

Xjm = 1 j ∈ J \ Jp (5.8)

Xjm ∈ {0, 1} j ∈ J \ Jp and m = 1, . . . ,M (5.9)

In the IP model above, the objective function is the sum of the cost change

lower bounds (lbjm) for the possible assignments of unscheduled jobs to the ma-

chines. Constraint set (5.7) is the makespan constraint that guarantees that sum

of the processing time lower bounds of jobs assigned to a machine does not exceed

K. Constraint set (5.8) assigns each unscheduled job to a machine. Finally, there

exists binary constraints (5.9) for the decision variable Xjm. In the following

lemma, we prove that the IP model gives a lower bound for Sp.

Lemma 5.3. (LBIP) For a partial schedule Sp, an optimal solution of the IP

gives a lower bound for the cost increase in order to form a complete schedule.

Proof. As discussed in Lemma 5.2, lbjm gives a cost increase lower bound of

adding job j to machine m of Sp. The IP model looks for a feasible ma-

chine/unscheduled job assignment that gives the minimum sum of lbjm’s, given

CHAPTER 5. MACHINE JOB ALLOCATION 87

that each unscheduled job is assigned to a machine and makespan constraint is

satisfied for each machine. A complete schedule achievable from Sp will obviously

have one of the feasible machine/job assignments of the IP model. Then, form-

ing any complete schedule will bring more cost than the optimal value of the IP

model.

We denote the lower bound found by solving the IP model as LBIP . If an IP

for Sp turns out to be infeasible, this means no complete schedule can be achieved

from Sp. Next property gives the computational complexity of the IP problem.

Lemma 5.4. (NP-hardness) Solving the IP model is NP-hard.

Proof. As our IP model is looking for an optimal machine/job assignment subject

to makespan constraints, it is a Generalized Assignment Problem (GAP) model.

Then, finding a cost increase lower bound by solving IP is NP-hard.

Since we will need to find a cost increase lower bound for each partial schedule

(node) in our B&B algorithm, solving an NP-hard problem for each node, of

course, may not be efficient in terms of computation time. Therefore, we propose

two other practical methods. The first one is to solve the LP relaxation of the IP

model. The following lemma is obvious:

Lemma 5.5. (LBLP) An optimal solution of the LP relaxation of IP gives a cost

increase lower bound for Sp.

A lower bound (LBLP) to be found by the LP relaxation is obviously smaller

than LBIP . However, it requires much less computation time which is critical for

our B&B algorithm. Another approach to find a lower bound for Sp would be

relaxing the makespan constraint (5.7) of IP. In such a case we still get a lower

bound for the cost increase, which is denoted as LBR, and given below:

Lemma 5.6. (LBR) A lower bound for the cost increase required to form a

complete schedule from Sp is given by: LBR =
∑

j∈J\Jp minm lbjm, where lbjm is

CHAPTER 5. MACHINE JOB ALLOCATION 88

the cost increase lower bound of adding job j to machine m of Sp as defined in

Lemma 5.2.

Proof. The lower bound on the additional cost to be incurred by adding a job j

to Sp (without knowing the machine to which it will be assigned) can be found by

minm lbjm. When we have multiple unscheduled jobs, we can find an overall lower

bound by summing the corresponding lower bounds for all unscheduled jobs.

The lower bound LBR assumes that each job can be assigned to the machine

that gives the best cost change lower bound for it regardless of the makespan.

Obviously, such a machine/job assignment may be infeasible due to constraint set

(5.7), but computing LBR is much more simpler than LBIP or LBLP . Between

three given lower bounding methods, it is easy to see the relationship given below:

Lemma 5.7. LBR ≤ LBLP ≤ LBIP .

Computational requirements will also have the same relationship. In order to

achieve a better lower bound we need to solve a harder problem. In this section,

we proposed three methods to find a cost increase lower bound for an arbitrary

partial schedule Sp. In the next section, we describe a construction heuristic to

find an initial solution for the B&B algorithm.

5.4 Initial Solution

In order to find an initial solution for the problem, we propose a heuristic algo-

rithm denoted as IS. This initial solution will serve as an upper bounding solution

for our B&B algorithm. The IS algorithm starts with a list of jobs where jobs

were ordered in ascending order of their minimum cost (minm fjm(pujm)). Then,

starting with the first job in the list and all machines being empty at the begin-

ning, in each iteration, the algorithm adds a new job to the schedule. For each

job, the algorithm first selects a suitable machine which gives the minimum cost

CHAPTER 5. MACHINE JOB ALLOCATION 89

increase lower bound as discussed in Lemma 5.2, and then adds the job to that

machine by solving the subproblem Pm for the machine.

IS algorithm

Step 1. List the jobs in ascending order of their minmfjm(pujm).

Step 2. Starting from the first job in the list, for each job do Steps 3 to 5.

Step 3. Calculate lbjm for each machine m, and choose the best machine: m′ =

arg minm lbjm.

Step 4. Check the feasibility of assigning job j to machine m′. If it is not feasible,

choose the next best machine and update m′. Repeat this until finding a

suitable machine or finding out that no machine is feasible. If no feasible

machine exists, then stop.

Step 5. Assign job j to machine m′ and determine the optimal processing times

by solving the single machine subproblem Pm for machine m′.

IS algorithm schedules the minimum cost job first, so it is a greedy approach

in a sense. At each iteration, a new job is scheduled on the machine which gives

the minimum cost increase lower bound given in Lemma 5.2. IS algorithm either

ends with a feasible schedule for the problem or fails to find a feasible schedule

and stops. The algorithm performs at most N×M iterations. In the next section,

we will give the B&B algorithm.

5.5 B&B Algorithm

In this section, we first explain the B&B search tree. Then, we discuss the node

elimination rules. We next give a step-by-step description of the algorithm.

Search Tree

At the root node of the search tree at level 0, all jobs are unscheduled. Each

node in the search tree corresponds to an assignment where the jobs in a subset

CHAPTER 5. MACHINE JOB ALLOCATION 90

of J are assigned to the machines. At each level of the search tree, the B&B

algorithm assigns an unscheduled job. Then, a node at level k corresponds to a

partial schedule with k jobs being assigned to the machines and similarly a node

at level N corresponds to a complete schedule where all jobs in J are scheduled.

The algorithm uses a job list (j1, . . . , jN) to assign job jk in the kth level of the

tree. The root node has M child nodes: one distinct node for scheduling job j1

to each machine m for m = 1, . . . ,M . Then, each node at level 1 corresponds to

an assignment where job j1 is assigned on a different machine. Similarly, a node

at level k corresponds to a partial schedule with jobs (j1, . . . , jk) assigned on the

machines. Each node at level k < N has at most M child nodes so that there is

one child node for the assignment of job jk+1 to machine m, for m = 1, . . . ,M .

For each node, we find the optimal cost and the optimal processing time deci-

sions for each machine by solving the subproblem Pm for the given machine/job

assignments of the partial schedule. This will allow us to use the lower bounding

methods discussed in Lemmas 2-6 so that we will be able to reduce the tree size

by fathoming some parts of the tree. Obviously, by traversing the search tree

defined above, we can find an optimal solution for the problem.

Node Elimination

Having a search tree that enumerates all possible solutions for the problem and

finds an optimal schedule, the question is how to reduce the size of the search

tree by discarding nodes. There are two ways of eliminating nodes from our B&B

tree. One is by feasibility and the other is by optimality. As discussed above, we

generate a child node from a parent node by adding a new job j to a machine

m of the partial schedule represented by the parent node. When opening a child

node, we first check if it is feasible to add job j to machine m. If the child node is

not feasible (
∑

i∈Jm p
l
im + pljm > K), we eliminate the child node, so that ignore

all subtree growing from that child node.

If a child node turns out to be feasible, then we solve the single machine sub-

problem Pm for machine m and make optimal processing time decisions for the

partial schedule so that Lemma 5.1 is satisfied for the jobs on machine m. After

checking the feasibility of the node and solving the subproblem for machine m,

CHAPTER 5. MACHINE JOB ALLOCATION 91

the next step is to find a lower bound for the new partial schedule. In Section 5.3,

we derived three different ways of calculating manufacturing cost increase lower

bounds for achieving complete schedules from a given partial schedule. We can

employ one of those methods (LBIP , LBLP , LBR) to find a cost increase lower

bound. The cost increase lower bound of the node plus the cost of the partial

schedule of the node itself gives us a lower bound for a complete schedule achiev-

able from the node. If the lower bound of a node is higher than or equal to the

cost upper bound, then the node is eliminated due to optimality.

Another alternative for eliminating nodes by feasibility is detecting the infea-

sibility of a partial schedule when finding its lower bound by using LBIP or LBLP .

When solving the IP model (or its LP relaxation) for finding LBIP (LBLP), the

solver may find out that the model is infeasible. This shows that no feasible

complete schedule can be achieved from the considered partial schedule. Then,

we eliminate the node by feasibility. Having described the search tree and the

ways of eliminating nodes from the tree we give a stepwise presentation of our

B&B algorithm below:

B&B Algorithm

Step 1. Find an initial upper bounding solution by using the IS algorithm. Set

upper bounding cost UBc to the cost of the solution found by IS. If IS

cannot find a feasible solution, set UBc =∞.

Step 2. Form a list of jobs (j1, . . . , jN) in descending order of (maxm p
l
jm).

Step 3. Start with the root node as the parent node, set the level of the parent

node levelp to 0.

Step 4. For i = 1, . . . ,m, do the following:

Step 4.1. Generate child node i of the parent node by adding job jlevelp+1 to

machine i.

Step 4.2. Check the feasibility of child node i. If child node i is not feasible,

eliminate it.

CHAPTER 5. MACHINE JOB ALLOCATION 92

Step 4.3. Else, solve the subproblem Pm for machine i and calculate cost (F p)

of the partial schedule.

Step 4.4. If child node i is a complete schedule, i.e. levelp + 1 = N , then, if

F p < UBc, set UBc = F p. Else, apply Steps 4.5 and 4.6.

Step 4.5. Find the cost increase lower bound LBp. If it turns out that no

complete feasible schedule can be achieved from child node i, then eliminate

it. Else, calculate lower bound for child node i by LBC = F p + LBp.

Step 4.6. If LBc ≥ UBc eliminate child node i.

Step 5. Find the next parent node and update levelp and go to Step 4. If no

parent node is available, then stop.

In the B&B algorithm, Step 1 finds an initial schedule to be an upper bounding

solution by using the IS algorithm. In Step 2, jobs are ordered to form a list which

determines which job to be scheduled at what level of the B&B search tree. Step

3 sets the root node as the first parent node to be considered in the following

steps. Step 4 and its sub-steps branches on the parent node and generates its

child nodes. At each child node, job jlevelp+1 is added to a different machine of the

partial schedule represented by the parent node. Step 4.2 checks the feasibility

of adding job jlevelp+1 to machine i and if not feasible eliminates the node. If

it turns out to be feasible, in Step 4.3, single machine subproblem Pm is solved

for machine i. If child node i represents a complete schedule and if F p < UBc,

then the schedule on child node i is the best solution found so far and the UBc

value is updated. If child node i represents a partial schedule, a lower bound is

calculated for the partial schedule in Step 4.5. At this step, we may conclude that

no feasible complete solution can be achieved from this partial schedule, then we

eliminate this node. In Step 4.6, if the lower bound found in step 4.5 is greater

than UBc, then we eliminate child node i. In Step 5, we either find a new parent

node or stop.

In the B&B algorithm, we implemented a modified depth-first strategy. When

we branch on a parent node, we generate all its child nodes and out of these child

nodes we select the one with the minimum lower bound as the new parent node

CHAPTER 5. MACHINE JOB ALLOCATION 93

Machine 1 Machine 2 Cost Coef.

Job plj1 fj1(plj1) puj1 fj1(puj1) plj2 fj2(plj2) puj2 fj2(puj2) Tj ej

0 0.66 4.21 1.53 2.70 0.31 10.24 1.14 4.00 2.05 -1.32

1 1.15 1.95 1.21 1.94 0.48 4.29 0.93 2.99 1.00 -1.64

2 0.20 0.63 0.31 0.56 0.08 1.47 0.22 0.82 0.06 -1.22

3 0.22 0.98 0.43 0.77 0.09 2.44 0.31 1.12 0.12 -1.22

Table 5.1: Job data for numerical example

and branch on this node next. If the complete subtree growing from the selected

parent node is traversed, we branch on the next best child node of its parent node.

This is a depth-first strategy supported with a greedy node selection approach.

Numerical Example

Next, we illustrate the B&B algorithm on a numerical example. We consider a 4

jobs 2 machines example. Machine 1 has a unit operating cost C1 = 1$/min. and

maximum applicable cutting power H1 = 5hp. and machine 2 has C2 = 2$/min.

and H2 = 10hp. The upper limit K on the makespan objective is 1.3. Each of four

jobs has different length, diameter, depth of cut and surface roughness require-

ment and each requires a different cutting tool type. The resulting processing

time bounds and tooling cost coefficients are given in Table 5.1.

The B&B algorithm first (Step 1) finds an initial upper bounding solution by

applying the IS algorithm. IS algorithm orders the jobs by their minimum costs

(Step 1) so the job order is 2, 3, 1, 0. Both machines are empty at this stage,

so lb21 = 0.56 and lb22 = 0.82 (Step 2), then job 2 is scheduled on machine 1

and p21 = pu21 = 0.31 (Step 5). Next job to schedule is job 3. Since, lb31 = 0.77

and lb32 = 1.12, job 3 is scheduled on machine 1 and p31 = 0.43. Makespan on

machine 1 is 0.77 and cost of the partial schedule is 1.33. Next job to consider

is job 1, lb11 = 1.94 and lb12 = 2.99, but since p11 = 1.15, it is not feasible to

schedule job 1 on machine 1 but it can be scheduled on machine 2 (Step 3). Since

pu12 = 0.93 < 1.3, p12 = 0.93 and the makespan on machine 2 is 0.93 and cost is

CHAPTER 5. MACHINE JOB ALLOCATION 94

LB = 5.97

Cost = 0
1

3

4 5

6 7

8 9

5.97
1.94

2

inf.
1

1

0
7.28
5.94

0 inf.
1
0, 3

1, 2

1, 3

0, 3

1, 0

0, 3, 2
1

inf. 8.15
0, 3, 2
1 7.91

1
7.02

10 11

1312

16 17 14 15

0
1 5.73

7.38
0,1

9.52

0, 3
1

7.68 0
1, 3

7.56

7.74
0, 2
1, 3 1, 3, 2

00, 3
1, 2 7.68

jobs on m/c 1

jobs on m/c 2

2.99

8.19

6.87 6.88

7.65

7.67
7.11

Figure 5.1: B&B tree for the numerical example

2.99. Finally, job 0 is to be scheduled. lb01 = 2.70 and lb02 = 4.00, so machine

1 is better and it is also feasible to schedule job 0 to machine 1. Solving the

single machine subproblem Pm for machine 1, we get p21 = 0.20, p31 = 0.232

and p01 = 0.868 with corresponding manufacturing costs 0.63, 0.95 and 3.34,

respectively. For the optimal solution of Pm, λ = −2.75. The solution achieved

by IS has a total cost of 7.91 which is the initial upper bound UBc to be used in

B&B.

In Step 2 of B&B algorithm, we order the jobs in descending order of pljm’s,

so the job order is 1, 0, 3, 2. We form the root node with no jobs scheduled on it.

Its cost is 0 and lower bound is LBR = 5.97. We give the search tree traversed for

this numerical example in Figure 5.1. Node 1 (root node) being the parent node,

we first generate the child node 2. At node 2, we assign job 1 (the first job in

the list) to machine 1 (Step 4.1). This is a feasible assignment (Step 4.2) and the

processing time of job 1 is 1.21 (Step 4.3) and its cost is 1.94. The lower bound for

node 1 is 5.97 (Step 4.5). Similarly, we form node 3 by assigning job 1 to machine

2. Cost of node 3 is 2.99 and lower bound is 7.02. Therefore, next parent node

to be branched is node 2. From node 2, we form node 4 which corresponds to

an infeasible schedule since jobs 1 and 0 cannot be assigned on machine 1 due

to makespan constraint (pl11 + pl01 = 1.81 > 1.3). Then, we eliminate the subtree

that would grow from node 4. We form node 5 by scheduling job 0 to machine 2.

Node 5 is the next parent node and we first form nodes 6 from this node. Node

CHAPTER 5. MACHINE JOB ALLOCATION 95

6 turns out to be infeasible.

We next form node 7 from node 5. We can illustrate the lower bound calcu-

lation on node 7. Cost of node 7 is 7.11, and λ1 = 0 and λ2 = −0.56. Then,

(∂f21/∂p21)−1(λ1) = 0.31, so pub21 = 0.31. lb21 = f21(0.31) = 0.56. Similarly,

(∂f22/∂p22)−1(λ2) = 0.20 and pub22 = 0.20. Therefore, lb22 = f22(0.20) + 0.56 ×
0.20 = 0.94. Then, LBR = min{0.56, 0.94} = 0.56 and cost lower bound for

node 7 is its cost plus LBR, which is 7.11 + 0.56 = 7.67. If we used the lower

bound LBIP , we would get a higher lower bound since LBIP takes the makespan

constraint into account. Then, LBIP = 7.11+0.94 = 8.05 in which case we would

eliminate the subtree of node 7 due to lower bound (8.05 > 7.91) and we would

not need to open the nodes 8 and 9. Similarly, if we used LBLP , lower bound for

node 7 would be 7.11 + 0.76 = 7.87.

Next parent node to be branched on is node 7 and we achieve an infeasible

child node (node 8) and a complete schedule child node (node 9). Cost of node 9

is 8.15, since 8.15 > 7.91, we do not update UBc (Step 4.4). Since, we processed

the entire subtree grown from node 2, next parent node is node 3. One of the

child nodes of node 3 is node 11. Node 11 has a lower bound of 9.52 which is

higher than UBc = 7.91, so we eliminate the subtree of node 11 due to optimality.

Node 10 is the next parent node and we generate the subtree of node 10. Order

of generation is same as the label order (12, 13,...,17). We achieve the optimal

solution at node 14. In the optimal solution, jobs 0 and 2 are scheduled on

machine 1 and jobs 1 and 3 on machine 2. Optimal processing times are as

follows: p01 = 1.09, p21 = 0.21, p12 = 0.93 and p32 = 0.31. Makespan on machine

1 and 2 are 1.3 and 1.24 with manufacturing costs of 3.53 and 4.11, respectively.

The B&B algorithm defined above either ends up with an optimal solution or

concludes that the problem is infeasible. The performance of this B&B algorithm

is bounded by the computational requirements. In the next section we propose a

beam search algorithm for the instances where applying B&B is inefficient.

CHAPTER 5. MACHINE JOB ALLOCATION 96

5.6 Beam Search Algorithm (BS)

Up to now we have described an exact algorithm (B&B) for the problem. We have

also proposed lower bounding methods to reduce the tree size for this algorithm.

However, the problem is an NP-hard problem and the size of the search tree

for the B&B algorithm increases exponentially as N and M increase. For higher

levels of N , M and K, we propose a beam search algorithm to find near optimal

solutions. A well known beam search application on a scheduling problem is

Ow and Morton [71]. They applied beam search on single machine early/tardy

problem.

Beam search is a fast B&B method which keeps best b (beam width) nodes

at a level of search tree and eliminates the rest. Therefore, its running time is

polynomial in the problem size. In our BS algorithm, we will consider the same

search tree structure as our B&B algorithm. Therefore, each node at a higher

level than N will correspond to a partial schedule and at each level a new job from

a list of jobs will be scheduled. As in B&B method, our beam search generates

M nodes out of the root node at level 0. At level 1, beam search keeps the “most

promising ” b nodes and eliminates the others. Then, using the selected b nodes

it generates child nodes at level 2 and again keeps b of them and eliminates the

others. This is done until complete schedules are achieved at the leaves of the

tree. The most critical aspect of a beam search algorithm is how it finds the most

promising nodes. One approach is evaluating each node by a simple heuristic

which finds an estimate of the total cost of the best solution available starting

with the partial solution represented by that node. Hence, in our BS algorithm,

in order to evaluate a node, we will use the lower bound LBLP . At each level, b

nodes with smallest LBLP will be kept and the others will be eliminated. Each

lower bounding method we defined in Section 5.3 can be used as an evaluation

method which estimates the cost of complete schedule for a given partial schedule.

A stepwise description of the beam search algorithm for the problem is below:

BS Algorithm

Step 1. Form a list of jobs (j1, . . . , jN) in descending order of (maxm p
l
jm).

CHAPTER 5. MACHINE JOB ALLOCATION 97

Step 2. Start with the root node as the parent node. set the level of the parent

node levelp to 0.

Step 3. For each selected parent node and for i = 1, . . . ,m, do Step 3.1 to 3.4:

Step 3.1. Generate child node i of the parent node by adding job jlevelp+1 to

machine i.

Step 3.2. Check the feasibility of child node i. If child node i is not feasible,

eliminate it.

Step 3.3. Else, solve the subproblem Pm for machine i and calculate cost of the

partial schedule F p.

Step 3.4. If levelp < (N − 1), then find the cost change lower bound LBp. If

it turns out that no complete feasible schedule can be achieved from child

node i, then eliminate it. Else, calculate the lower bound for node i by

LBC = F p + LBp.

Step 4. If all child nodes are eliminated due to feasibility, then no feasible solu-

tion could be found, stop.

Step 5. If levelp < (N − 1), then select best b child nodes with smallest LBC

values, set levelp = levelp + 1 and go to Step 2.

Step 6. If levelp = (N − 1), then select the best child node with minimum cost

and stop.

If the problem is feasible, the BS algorithm either cannot find a feasible solu-

tion (Step 4) or finds an approximate optimal solution (Step 6). If the problem

is infeasible, the BS algorithm cannot find a feasible solution (Step 4). Using

our search tree structure that we proposed in Section 5.5 and our lower bounding

methods as an evaluation function, the BS algorithm is a fast alternative for the

cases that the B&B algorithm fails to undertake. The time complexity of the BS

algorithm is O(mnb). In the next section, we will propose improvement search

steps for the problem which can be applied to any given schedule.

CHAPTER 5. MACHINE JOB ALLOCATION 98

5.7 Improvement Search Heuristic (ISH)

We have given an exact algorithm (B&B) for the problem and then proposed a

beam search method that runs in polynomial time. In this section, we extend our

discussion to an improvement search algorithm. We will define an improvement

search heuristic which starts with an initial schedule and improves the solution

at each iteration to achieve a local optimal solution.

Our improvement search heuristic starts with an initial schedule which satisfies

the optimality condition in Corollary 5.1 so that we assume the single machine

subproblem is solved for each machine. We represent such a solution as a partition

of the jobs to the machines. We define two moves to describe the neighborhood

of a solution. The first one is 1-move, which is to move a job j from its current

machinem1 to another machinem2. The other one is 2-swap, which is to exchange

job j1 on machine m1 with another job j2 on machine m2. Given a solution, we

proved cost change lower bound properties for the two moves we defined above.

Lemma 5.8 gives the cost change lower bound for a 1-move:

Lemma 5.8. (Lower Bound for a 1-move) Given a schedule which satisfies

the condition in Corollary 5.1, assume that job j has a processing time pjm1 on

machine m1 and machines m1 and m2 have the dual price values λm1 and λm2,

respectively. Then, a lower bound for the cost change that will result by moving

job j from machine m1 to m2 is as below:

LB(j : (m1 → m2)) = λm1pjm1 − fjm1(pjm1) + fjm2(p
ub
jm2

)− λm2p
ub
jm2

where pubjm2
= max((∂fjm2/∂pjm2)

−1(λm2), p
l
jm2

).

Proof. Suppose that we first remove job j from machine m1, the cost change

lower bound for this action is the first two terms of the lower bound expression

above. The first term is the lower bound for cost change to occur by expanding

the processing times of the remaining jobs on machine m1 and the second one is

the cost of job j on machine m1. Suppose that we next add job j to machine

CHAPTER 5. MACHINE JOB ALLOCATION 99

m2. The cost change lower bound for adding job j to m2 can be calculated as

discussed in Lemma 5.2. The cost change lower bound for this action is third and

fourth terms of the lower bound expression.

Lemma 5.8 can help us to decide to make a 1-move or not. Since LB(∆1−move)

is a lower bound, if it is a positive value for a particular 1-move, then it is sure

that the move will make the cost objective worse, so we ignore the move since it

is non-improving. Else, if it is negative, then it promises a reduction in cost but

since it is a lower bound it does not guarantee a reduction. Hence, we need to

try the move on the schedule and see if it improves. Next, we analyzed the cost

change lower bound for 2-swap moves. Lemma 5.9 gives a lower bound for the

resulting cost change for this move.

Lemma 5.9. (Lower Bound for a 2-swap) Given a schedule which satisfies

the condition in Corollary 5.1, assume that jobs j1 and j2 have processing times

pj1m1 and pj2m2 and scheduled on machines m1 and m2, respectively. Machines

m1 and m2 have the dual prices λm1 and λm2, respectively. Then, a lower bound

for the cost change that will result by moving job j1 from machine m1 to m2 and

job j2 in opposite way is as below:

LB(j1 ↔ j2) = λm1(pj1m1 − pubj2m1
)− fj1m1(pj1m1) + fj2m1(p

ub
j2m1

)

+λm2(pj2m2 − pubj1m2
)− fj2m2(pj2m2) + fj1m2(p

ub
j1m2

)

where pubj1m2
= max((∂fj1m2/∂pj1m2)

−1(λm2), p
l
j1m2

)

and pubj2m1
= max((∂fj2m1/∂pj2m1)

−1(λm1), p
l
j2m1

).

Proof. The proof can be easily done by using Lemma 5.8.

If the cost change lower bound for a move is nonnegative, then it is sure that

the move cannot improve the cost. If it is negative, we call the move as a ”promis-

ing” move. A promising move may improve the cost, but since we just have a

CHAPTER 5. MACHINE JOB ALLOCATION 100

negative lower bound for the cost change, the real cost change after implement-

ing the move may still be positive. Using this fact the proposed algorithm could

only evaluate the promising moves which will make it computationally more ef-

ficient than a local search algorithm that tries all possible moves. Moreover, the

lower bounds presented in Lemmas 5.8 and 5.9 will guide any search algorithm

to try the most promising move first, like a steepest descent algorithm in some

sense. Given an initial schedule, by calculating the cost change lower bounds

for all possible 1-moves and 2-swaps, we can either conclude that the schedule is

locally optimal, which is the case when all lower bounds are nonnegative, or we

can try the moves which promise possible improvements since they have nega-

tive cost change lower bounds. By using these observations, we will propose an

improvement search heuristic for the problem.

The improvement search heuristic starts with an initial schedule. First, the

heuristic uses promising 1-moves to improve the initial schedule. To do this, it

generates all possible 1-moves for this schedule and calculates the cost change

lower bound for each possible 1-move. The heuristic applies the most promising

move first and solves the single machine subproblems for the affected machines. If

an improvement is achieved, new moves are generated for the new schedule. If no

improvement is achieved by this move, the heuristic tries the next most promising

move, until an improvement is achieved or no promising move is left. When no

improvement is possible for the current schedule by using 1-moves, the heuristic

considers 2-swap moves. It tries to improve the solution by 2-swap moves in the

same way as we did by 1-moves and stops when no improvement is possible.

Improvement Search Heuristic (ISH):

Step 1. Take an initial schedule (S) and its cost is F (S).

Step 2. Generate all 1-moves for S and calculate LB(j : (m1 → m2)) for each

1-move.

Step 3. If no promising moves exist, go to Step 5. Else, find the most promising

move.

CHAPTER 5. MACHINE JOB ALLOCATION 101

Step 4. Apply the selected move on S and solve the Pm subproblem for the

affected machines. The new solution is F (S ′).

Step 4.1. If the solution is improved, replace S with S ′ and go to Step 2.

Step 4.2. Else, find the next most promising move and go to Step 4. If no

promising move is found go to Step 5.

Step 5. Generate all 2-swap moves for S and calculate LB(j1 ↔ j2) for each

2-swap move.

Step 6. If no promising moves exist, terminate. Else, find the most promising

move and go to Step 7.

Step 7. Apply the selected move on S and solve the Pm subproblem for the

affected machines. The new solution is F (S ′).

Step 7.1. If the solution is improved replace S with S ′ and go to Step 5.

Step 7.2. Else, find the next most promising move and go to Step 7. If no

promising 2-swap move is found, terminate.

By using 2-swap moves defined for ISH, in the next section we will extend the

BS algorithm to a recovering beam search algorithm.

5.8 Recovering Beam Search (RBS)

Recovering beam search is first proposed by Della Croce et al. [29]. Recover-

ing beam search algorithm combines beam search with local search techniques

to improve the performance of classic beam search. The approach is to apply

local search techniques to the partial solutions selected by the beam at each level

in order to achieve better partial solutions. This local search step is called the

recovering step. The idea is to prevent the elimination of good nodes (nodes that

could lead to optimal or near optimal solutions) due to errors in the node eval-

uation step of beam search algorithms. A recovering beam search algorithm for

CHAPTER 5. MACHINE JOB ALLOCATION 102

the single machine total completion time problem with release dates is provided

by Della Croce and T’kindt [28].

In Step 3 in BS algorithm, we generate child nodes for a given level of the

search tree. Assuming that K child nodes generated at level l, our recovering

step is as follows:

Recovering Procedure:

Step 1. Sort the child nodes in non-decreasing order of their LBC . Let nk be

the k-th best node.

Step 2. Define the set of selected nodes, empty set S = {}.

Step 3. Set k = 1. While (|S| < b) and (k < K) do

Step 3.1. Generate new partial schedules (nodes) by swapping last added job

jl+1 with each job added to a different machine.

Step 3.2. If a node (n∗k) with smaller LBC is found, and if n∗k /∈ S then S =

S ∪ {n∗k}. Else S = S ∪ {nk}.

We put this recovering procedure into Step 5 of BS algorithm as below:

Step 5. If levelp < (N − 1), then apply Recovering Procedure to select b nodes,

set levelp = levelp + 1 and go to Step 2.

The time complexity of the RBS algorithm is O(mn2b). In the next section,

we give the results of our computational study.

5.9 Computational Results

In this chapter, we first developed an exact algorithm (B&B) for the problem

with three different lower bounding methods. We next proposed a beam search

CHAPTER 5. MACHINE JOB ALLOCATION 103

(BS) algorithm along with an improvement search heuristic (ISH). We further

extended BS to a recovering beam search (RBS) algorithm. We coded these

algorithms in C language and compiled with Gnu C compiler version 2.95.3. All

codes were run on the operating system Solaris 2.7 on a workstation Sun HPC

4500 with 12×400 MHz UltraSPARC CPU and 3GB memory. The B&B, BS and

RBS algorithms used the CPLEX 9.1 commercial solver to compute the lower

bounds LBLP and LBIP . All reported computational times are in seconds.

We considered two experimental factors: number of jobs (N= 10, 15, 20)

and number of machines (M= 2, 3, 4). For each experimental setting we took 5

replications. For each replication we generated cutting specifications (diameter,

length, depth of cut and required surface roughness) of jobs randomly. For each

job we randomly used one of the tool types out of ten types of cutting tools with

different technical coefficients given in Chapter 3. We randomly generated the

cost of each tool Ct from the uniform distribution U[5,10]. Ct determines the cost

coefficient Tj with other job and tool specific parameters as discussed in Chap-

ter 3. We used four types of machines with the following Cm, Hm couples: (0.3,

5), (0.5, 10), (0.7, 15) and (0.9, 20). The CNC machines with higher horsepower,

Hm, capabilities can attain higher cutting speeds and feed rates (i.e. lower pro-

cessing times), but their initial investment cost (and their operating cost) would

be higher as well. This way we can evaluate the impact of different CNC ma-

chine technologies on the scheduling decisions. In our computational runs, when

M = 2, we used first two machines described above and when M = 3, we used

first three machines.

Another very important factor for the problem is the limit (K) on makespan

objective of the schedule. How to select a K value for a given problem setting

is a critical decision since selecting a very small K value may cause all instances

of a replication to be infeasible. In order to see the effect of K, we solved each

replication of the problem for 5 different levels of K. To find proper K values,

we first solved the makespan minimization problem for each replication for fixed

processing times case where pjm = pljm for each j and m. This is a makespan min-

imization problem on unrelated machines and known to be NP-hard, so we used

a polynomial-time algorithm by Davis and Jaffe [27], which was shown to have a

CHAPTER 5. MACHINE JOB ALLOCATION 104

worst case bound of (1+
√

2)
√
M . This algorithm provides us a feasible makespan

level K which we denote as KDJ . We calculated five different K levels by using

the formula K = k × KDJ where k = 0.6, 0.8, 1, 1.2, 1.4. In the computational

study, we first solved randomly generated problems by using three different B&B

algorithms. Each B&B algorithm uses a different lower bounding method that

we proposed in Section 5.3. The B&B algorithm either finds out that a problem

is infeasible or gives us an optimal solution. For the cases that B&B found an

optimal solution we solved the problem by the BS and RBS algorithms which use

LBLP as a partial schedule evaluation tool. We next tested ISH algorithm using

3 different starting solutions provided by BS, RBS and IS algorithms.

A critical step in our B&B algorithm is deciding the job order (Step 2), i.e.

determining which job to be added to a partial schedule next at a given level of

the search tree. We ordered the jobs in a descending order of maxm p
l
jm. This

is intuitive because as we schedule the jobs with higher processing time lower

bound at earlier stages of the B&B tree, we catch infeasible schedules earlier and

this reduces the number of nodes to be opened and decreases the computation

time. In computational study, we considered two other rules to order jobs in Step

2 of B&B and took trial runs to compare different methods. One method is to

order the jobs in ascending order of minm fjm(pujm) as in the IS algorithm, which

allows us to schedule lower cost jobs earlier in the B&B tree. We also considered

maxm fjm(pujm), which allows us to schedule highest minimum cost jobs earlier.

We took trial runs for N = 10 and M = 2 and 3. We give the average results for

CPU, number of opened nodes, number of eliminated nodes due to feasibility and

number of eliminated nodes by lower bound (optimality) in Table 5.2. The results

show that our selection of maxm p
l
jm order performs better than the other ordering

rules both for the CPU requirement and for the node elimination capability due

to feasibility and optimality.

We next discuss the performance of the B&B algorithm with different lower

bounding methods. We consider the cases where a feasible solution is available for

the problem. We give the size of the eliminated B&B tree and traversed nodes for

different lower bounding methods in Table 5.3. For a given (N , M) instance, the

maximal number of nodes to be traversed in worst case in our B&B tree can be

CHAPTER 5. MACHINE JOB ALLOCATION 105

Job order CPU Opened Nodes Eliminated due to Feasibility Eliminated by Lower Bound
maxm p

l
jm 0.20 1426 29199 10923

minm fjm(pujm) 1.85 16056 21941 3550
maxm fjm(pujm) 1.45 12171 25333 4043

Table 5.2: Trial Results for Job Ordering Rules for Step 2 of B&B.

calculated by (1−MN+1)/(1−M). For M = 4 and N = 20, total number of nodes

to be traversed may reach 1,466,015,503,701. Similarly, when we decide to fathom

a node at level L, we save from opening (1−MN−L+1)/(1−M)− 1 nodes which

is the number of nodes that would grow from the fathomed node at the worst

case. We measured the number of eliminated nodes due to bounds and feasibility

in terms of their percentages to the maximal total number of nodes. The results

in Table 5.3 show that our lower bounds can reduce the tree size by 29% on the

average. There are instances where this reduction reaches to 87%. The feasibility

effect reduced the tree size by 66% on the average. The last column of the table for

traversed tree size shows that we could solve the problems by just opening 4.6%

of the nodes on the average. There are cases solved by just traversing a negligible

size of B&B tree. We have shown in Section 5.3 in Lemma 5.7 that for a given

partial schedule (node) the following relationship holds: LBIP ≥ LBLP ≥ LBR.

We also observe this relationship between the sizes of the eliminated B&B trees

by different lower bounding methods in Table 5.3.

Eliminated by Lower Bound Eliminated due to Feasibility Traversed

LB type Mean Min Max Mean Min Max Mean Min Max

LBR 26% 0 % 86.4% 68.4% 0.4% 100% 5.6% 0% 43%

LBLP 28.8% 0% 87.2% 66.5% 0.4% 100% 4.7% 0% 38.4%

LBIP 29.1% 0% 87.2% 66.3% 0.4% 100% 4.6% 0% 38.2%

Table 5.3: Eliminated and Traversed Tree Sizes

In Table 5.4, we present the CPU requirements of different lower bounding

methods in B&B algorithm for different experimental settings. This table shows

that increasing N or M strongly affects the running time of the B&B algorithm

CHAPTER 5. MACHINE JOB ALLOCATION 106

as expected. For the considered N and M levels, LBR has the minimum average

running time. The second best alternative is the LBLP in terms of the CPU time.

An important observation on Table 5.4 is that as N and M increase the CPU

time required by LBR approaches to the CPU time required by LBLP , so we may

expect to see that LBLP will have shorter CPU times for larger problem sizes.

If we check the CPU time ratio LBR/LBIP , we observe that as N is increased,

performance of the LBR gets closer to the performance of LBIP , but as M is

increased, we observe the opposite. This is due to the fact that computing LBIP

is itself an NP-hard problem and requires much more time when M is increased.

Another observation on Table 5.4 is that for each lower bounding method we see

big gaps between minimum and maximum CPU times. This is because we solve

each problem for different K levels as discussed below.

M = 2 M = 3 M = 4

N LB type Mean Min Max Mean Min Max Mean Min Max

LBR 0.08 0.02 0.16 0.26 0.01 0.59 1.18 0.08 2.30

10 LBLP 0.26 0.10 0.46 1.11 0.05 2.33 5.03 0.44 10.51

LBIP 0.32 0.14 0.52 1.42 0.05 2.89 6.11 0.25 10.6

LBR 2.06 0.20 5.81 21.3 0.26 80.6 241 0.99 1002

15 LBLP 4.88 0.69 12.7 65.4 1.21 268 662 3.67 3422

LBIP 5.99 1.74 13.5 90.7 0.28 314 927 2.90 4196

LBR 56.2 3.84 186 2443 33.2 7380 69950 236 177030

20 LBLP 112 7.93 382 4853 114 18266 101293 618 362148

LBIP 129 22.2 386 7550 25.9 24468 169676 319 584398

Table 5.4: CPU Requirements (in seconds) for different lower bounding methods

Table 5.5 gives the average size of the eliminated and traversed nodes and

required CPU time for N = 20 and M = 4 for different K levels, such that

K = k ×KDJ where k = 0.6, 0.8, 1, 1.2, 1.4. For example, k = 0.6 corresponds to

the case where K level is 1 and so on. We observe that as K is increased, the size

of the traversed tree increases since fewer number of nodes are eliminated due

CHAPTER 5. MACHINE JOB ALLOCATION 107

to the feasibility. Hence, the CPU time required to solve the problem increases,

too. We see that the CPU time requirement when K level is 5 is twenty times

higher than the CPU time requirement when K level is 3. This shows that CPU

requirement of the B&B algorithm is strongly affected by K. Therefore, we can

say that the B&B algorithm is more efficient for smaller K’s in terms of running

time.

K level El. by LB El. by Feas. Traversed CPU

3 1.4% 98.6% 0.0% 10402

4 7.5% 92.5% 0.004% 93921

5 18.7% 81.2% 0.014% 199556

Table 5.5: Eliminated and Traversed Nodes at different K levels for N = 20 and
M = 4 by LBLP

In Table 5.6, we give the solution quality results for IS, BS and RBS algo-

rithms. We use a beam width b = 3 for BS and RBS. We define the relative

solution quality of an algorithm A, RA, as the ratio of the difference between

cost achieved by A and the optimal cost achieved by B&B over the optimal cost

expressed in %. It is the percentage deviation from the optimum. The aver-

age performance of IS algorithm varies between 7.2% and 22.9%. BS algorithm

achieves an average performance between 1.8% and 7.9%. RBS algorithm per-

forms best and gives an average performance between 0.1% and 1.4%. There are

cases where BS and RBS achieves the optimum. The worst performance for RBS

is 9.6% whereas it is 26.5% for BS. We observe that including a recovering step

in BS algorithm significantly improved the solution quality. When we check the

CPU time performance for each heuristic, we see that both three methods are

very efficient. We give CPU time requirements for BS and RBS algorithms in

Table 5.8. Even the worst case average performance is 0.71 CPU seconds. We

also observe that IS has negligible CPU time requirement.

In Table 5.7, we give the solution quality results for ISH algorithm for three

different starting solutions provided by IS, BS and RBS. We represent the devia-

tion of ISH from the optimum as RA+ISH where A stands for the algorithm output

CHAPTER 5. MACHINE JOB ALLOCATION 108

RIS(%) RBS(%) RRBS(%)

N M Mean Min Max Mean Min Max Mean Min Max

2 11 0.6 43.1 1.8 0 11.5 0.1 0 0.7

10 3 22.6 2.8 45.7 4.8 0 24.6 0.6 0 3.9

4 22.9 6.1 40.6 2.1 0.1 11.9 1.4 0 9.6

2 7.4 0.4 24.5 3.7 0 21.5 0.4 0 2.6

15 3 18.4 8.7 27.8 5.4 0.1 16.9 0.5 0 2.6

4 15.4 10.0 22.3 5.0 0.4 23.5 0.8 0.1 3

2 7.2 0.1 21.5 5.0 0 19.9 0.4 0 1.6

20 3 14.3 4.6 28.7 7.9 0.5 26.5 0.9 0 4.3

4 17.2 8.5 28.9 5.3 0.6 17.4 1.1 0 5.6

Table 5.6: Deviations from the optimum for IS, BS and RBS heuristics

of which is used as starting solution by ISH algorithm. In comparison with the

starting solutions, we observe that ISH achieves significant improvement. ISH

achieves its maximum improvement when it started with the solution given by IS

algorithm, which performs worse in comparison with BS and RBS. Even for RBS,

which gives best results, ISH achieves 48.5% average improvement from RRBS to

RRBS+ISH .

We next analyzed the performances of BS and ISH algorithms for different

K levels as reported in Table 5.9. A very important observation is that solution

quality of BS and ISH improve as K is increased. Hence, for the problem in-

stances where our B&B algorithm is not computationally efficient, our BS and

ISH algorithms can achieve solutions more closer to the optimum. This is due to

the shape of the manufacturing cost function. When K is increased, we deal with

higher processing time values where the manufacturing cost functions are flatter.

Finally, we tested IS, RBS and ISH algorithms for 50-100 jobs and 2,3,4 ma-

chines. We cannot solve these instances to optimum due to CPU time require-

ments. We compared the results achieved by RBS algorithm with the results of

CHAPTER 5. MACHINE JOB ALLOCATION 109

RIS+ISH(%) RBS+ISH(%) RRBS+ISH(%)

N M Mean Min Max Mean Min Max Mean Min Max

2 0.5 0 3.9 1.1 0 11.5 0.06 0 0.7

10 3 2.4 0 6.5 4.3 0 23.1 0.5 0 3.8

4 1.9 0 7.1 1.7 0 11.9 0.1 0 9.3

2 0.3 0 4.5 1.8 0 12.4 0.1 0 2.6

15 3 1.0 0 3.1 3.2 0 11.8 0.4 0 2.6

4 1.5 0 3.2 4.4 0 23.2 0.5 0 2.8

2 0.4 0 3.4 2.5 0 19.9 0.1 0 0.4

20 3 1.5 0 4.6 4.9 0.2 20.9 0.7 0 4.3

4 1.6 0 3.2 4.4 0.4 16.5 0.9 0 5.4

Table 5.7: Deviations from the optimum for ISH algorithm

N M CPUBS CPURBS CPUBS+ISH CPURBS+ISH CPUIS+ISH

2 0.04 0.08 0.0 0.0 0.01

10 3 0.06 0.12 0.01 0.0 0.00

4 0.08 0.15 0.01 0.01 0.01

2 0.07 0.20 0.01 0.02 0.03

15 3 0.12 0.29 0.02 0.01 0.02

4 0.16 0.35 0.02 0.01 0.03

2 0.12 0.41 0.05 0.06 0.05

20 3 0.19 0.58 0.08 0.03 0.05

4 0.28 0.71 0.06 0.04 0.05

Table 5.8: Average CPU time (sec.) requirements

IS algorithm. IRBS is the percentage deviation of RBS from the solution achieved

by IS. We observe that RBS together with ISH can achieve solutions 10% bet-

ter on the average from IS. For large instances, our heuristics find a solution in

reasonable CPU times.

CHAPTER 5. MACHINE JOB ALLOCATION 110

RBS RISH

K level Mean Min Max Std. Dev. Mean Min Max Std. Dev.

2 9% 0% 21.5% 0.07 5.6% 0% 19.9% 0.06

3 6.2% 0% 26.5% 0.07 4.4% 0% 23.2% 0.06

4 3% 0% 18.2% 0.05 2.3% 0% 18.2% 0.04

5 2.1% 0% 12.4% 0.03 1.2% 0% 8.7% 0.02

Table 5.9: Performances of Beam Search and Improvement Search Heuristics at
different K levels

IRBS(%) IRBS+ISH(%) CPURBS CPURBS+ISH

N M Mean Min Max Mean Min Max Mean Min Max Mean Min Max

2 4.6 0.1 14.9 5 0.2 15.1 4.16 3.40 4.56 2.63 0.01 10.56

50 3 11.5 5.3 25.7 11.7 5.4 26.4 5.73 5.45 6.21 1.13 0.12 4.34

4 9.0 7.0 11.7 9.4 7.4 12.2 7.39 6.84 8.48 2.65 1.19 4.13

2 4.2 -0.1 13.5 4.6 0.2 13.6 27.79 23.25 29.80 50.85 0.13 194.21

100 3 9.8 4.7 16.1 10.1 4.9 17.0 42.30 39.60 44.91 22.49 1.10 64.95

4 9.6 6.5 17.3 10.0 6.6 18.3 56.69 52.22 62.76 27.92 13.67 57.12

Table 5.10: Performances of IS and ISH

5.10 Conclusion

In this chapter, we considered the problem of minimizing total manufacturing

cost in non-identical parallel CNC machine environment with an upper bound on

the makespan of the schedule. We provided an exact algorithm (B&B) for the

problem along with three alternative lower bounding methods. To the best of

our knowledge, our algorithm is the first exact algorithm for this problem. We

further proposed a recovering beam search algorithm which employs our lower

bounding methods as an evaluation function for partial schedules. Finally, we

gave an improvement search algorithm for the problem. For this algorithm, we

showed two properties which provide improving search moves for a given schedule.

CHAPTER 5. MACHINE JOB ALLOCATION 111

Our computational results show that the proposed exact algorithm can solve the

problems by just traversing the 5% of the maximal possible B&B tree size and

the proposed lower bounding methods can eliminate up to 80% of the search tree.

For the cases where B&B is not computationally efficient, our beam search and

improvement search algorithms achieved solutions within 1% of the optimum on

the average in a very short computation time. The results of this chapter recently

appeared as an article (Gürel and Aktürk [39]).

In the next chapter, we will focus on finding strengthened conic quadratic

formulations for the machine-job assignment problem with controllable processing

times. Differently, we will be considering machine capacity as constraint on each

machine and we will be formulating manufacturing cost of a job in terms of the

amount of compression on its processing time.

Chapter 6

A Strong Conic Quadratic

Reformulation for Machine-Job

Assignment Problems

In this chapter, we will take a different approach and study the polyhedral struc-

ture of a machine-job assignment problem with controllable processing times in

order to achieve a stronger formulation for the problem. We will use the conic

quadratic (second order cone) inequalities in reformulating the problem.

The machine-job assignment problem considered here is to maximize the profit

for a given set of jobs on a set of machines with capacity constraints. We deal with

a non-identical parallel machine environment where the decision to be made is the

assignment of jobs to the machines and the compression levels on the processing

times of the jobs. In this part, we assume that regular profit values for each job

on each machine is given. Each job has a regular processing time level which

can be compressed by incurring compression cost determined by a convex cost

function. Modeling the cost change of a job as a function of compression on its

processing time is a widely used approach in the scheduling with controllable

processing times literature. Since the machines are non-identical, compression

112

CHAPTER 6. CONIC QUADRATIC REFORMULATION 113

cost functions are different for each job on different machines. If compression of

processing times is not allowed, the machine-job assignment problem reduces to

the classical generalized assignment problem, which is known to be NP-hard.

The nonlinearity of the compression cost makes this assignment problem par-

ticularly difficult to solve in practice. Even for the quadratic case, commercially

available software packages that employ fast quadratic programming (QP) algo-

rithms within a branch-and-bound framework are far from solving large instances

of the problem. Our approach is analogous to the polyhedral approach for lin-

ear integer programming with the goal of strengthening bounds from continuous

relaxations of the problem.

This chapter is organized as follows. In Section 6.1 we give the definition

of the machine-job assignment problem with controllable processing times and a

nonlinear mixed 0-1 programming formulation for it. In Section 6.2 we describe

conic reformulation of the problem so as to strengthen the bounds from the

continuous relaxations. In Section 6.3 we present a computational analysis of

the introduced formulations. Finally, we conclude with Section 6.4.

6.1 Problem Definition

Given n jobs and m non-identical parallel machines with finite capacity, the

machine-job assignment problem is to choose a subset of the jobs and assign

them to the machines so that the total profit from the assignment is maximized.

Letting ci denote the available machining time for machine i = 1, . . . ,m, and

pij and hij, the regular processing time and profit corresponding to job j if it is

assigned to machine i, the problem can be modeled as a linear 0-1 program. This

problem is also referred to as the generalized assignment problem (Savelsbergh

[75]).

In a flexible manufacturing system, where jobs are processed on computer

numerically controlled (CNC) machines, processing times can be reduced by ap-

propriately setting the machining parameters such as cutting speed and feed rate.

CHAPTER 6. CONIC QUADRATIC REFORMULATION 114

However, compressing processing time naturally leads to reduced tool life, and,

consequently, increased machining cost. We model the change in the machining

cost due to processing time compression y ≥ 0 as

f(y) = kya/b,

where a and b are integers satisfying a ≥ b > 0 and k > 0, so that f is an

increasing and convex function of the compression. The function f reflects the

relationship between compression and cost in that as one decreases the process-

ing time of a job, it becomes more expensive to compress it further. Technical

specifications of a job such as its length, diameter, required surface quality, as

well as machine and tool type determine the cost coefficients k, a, and b. Defining

a binary assignment variable

xij =


1, if job j is assigned to machine i,

0, otherwise,

and compression variable yij for each machine-job pair, the machine-job assign-

ment problem with controllable times can be formulated as the following nonlinear

mixed 0-1 program:

max
m∑
i=1

n∑
j=1

(hijxij−fij(yij))

s.t.
n∑
j=1

(pijxij − yij) ≤ ci, i = 1, . . . ,m, (6.1)

(MJ0) yij ≤ xijuij, i = 1, . . . ,m, j = 1, . . . , n, (6.2)
m∑
i=1

xij ≤ 1, j = 1, . . . , n, (6.3)

xij ∈ {0, 1}, yij ∈ R+, i = 1, . . . ,m, j = 1, . . . , n. (6.4)

Constraint (6.1) ensures that the jobs assigned to machine i take no more than

the machine capacity ci. Constraint (6.2) ensures that compression is allowed on

the processing time of job j on machine i only if job j is assigned to machine i

and that compression is no more than a specified maximum uij < pij. Finally,

constraint (6.3) guarantees that each job is assigned to at most one machine.

CHAPTER 6. CONIC QUADRATIC REFORMULATION 115

MJ0 is NP-hard as it reduces to the generalized assignment problem when

all uij are zero. The nonlinearity introduced with the option of compression of

processing times makes the problem much harder to solve, in practice, compared

to the generalized assignment problem. Note that MJ0 is a maximization problem

with a concave objective and the feasible set of its continuous relaxation

P =
{

(x, y) ∈ R2mn
+ : (6.1), (6.2), (6.3)

}
is a polyhedron. Unlike for the case of generalized assignment problem, optimal

solutions to its continuous relaxation are found typically in the interior of this

polyhedron with almost all xij being fractional. Consequently, branch-and-bound

algorithms based on such relaxations require an excessive branching to find feasi-

ble integer solutions. Even when f is quadratic, i.e., a/b = 2, it is a challenge to

solve practical-size instances of MJ0 with quadratic MIP solvers of commercial

software packages. We will elaborate on the computational difficulty of solving

MJ0 in Section 6.3.

Rather than developing a special purpose algorithm for MJ0, our goal is to

reformulate the problem so that its continuous relaxation is stronger and the

formulation may be solved by readily available solvers of optimization software

packages. In particular, we describe a conic quadratic relaxation whose optimal

solutions avoid all non-extreme points of P . Our results on conic strengthening

are general enough for them to be applicable to other mixed 0-1 minimization

problems with convex separable objective with rational exponents.

6.2 Conic Reformulations

In this section we describe strong conic reformulations of MJ0. We first point out

the source of difficulty in MJ0 due to the nonlinearity of the objective. Then we

describe a strengthening and show how to express it using a polynomial number

of conic quadratic constraints.

CHAPTER 6. CONIC QUADRATIC REFORMULATION 116

6.2.1 Working with epi(f)

For strengthening the formulation it is convenient to work with the epigraph of f .

So, by introducing auxiliary variables tij ∈ R+ we bring the nonlinear objective

into the constraints and linearize the objective of the formulation as

max
m∑
i=1

n∑
j=1

(hijxij − kijtij)

(MJ1) s.t. y
aij/bij
ij ≤ tij, i = 1, . . . ,m, j = 1, . . . , n, (6.5)

(6.1), (6.2),(6.3), (6.4).

MJ1 is not necessarily easier to solve than MJ0. On the contrary, solvers

can usually deal with nonlinearity in the objective easier than nonlinearity in the

constraints. MJ1 is an intermediate formulation that will enable us to derive

a strong conic formulation. Note that because MJ1 has a linear objective, its

continuous relaxation has optimal solutions that are extreme points of its feasible

region.

For our purpose it is sufficient to concentrate on the mixed 0-1 set

C =
{
x ∈ {0, 1}, y, t ∈ R+ : ya/b ≤ t, y ≤ ux

}
.

Observe that constraints of C are of the form (6.1), (6.4), and (6.5). The results

in this chapter are applicable to any optimization problem that contains C as a

substructure. It is useful to consider the continuous relaxation of C

CR =
{
x, y, t ∈ R+ : ya/b ≤ t, y ≤ ux, x ≤ 1

}
to understand the source of difficulty with nonlinearity of the objective. The

proposition below shows that CR has infinitely many extreme points with frac-

tional x.

Proposition 6.1. For a > b, each point on the curve defined as

L =
{
x, y, t ∈ R : 0 < x < 1, y = ux, ya/b = t

}
is an extreme point of CR.

CHAPTER 6. CONIC QUADRATIC REFORMULATION 117

Proof. We will prove the claim by showing that each point on L is the unique

face of CR defined by some supporting hyperplane. To see this, consider the

optimization problem with a parametric linear objective

max λy − x− t

s.t. ya/b − t ≤ 0, (α)

y − ux ≤ 0, (β)

x ≤ 1, (γ)

−x ≤ 0. (δ)

From complementary slackness conditions we have γ = δ = 0 for 0 < x < 1.

Then writing the KKT dual feasibility conditions

λ = α
a

b
y
a−b
b + β, (y)

−1 = −uβ, (x)

−1 = −α, (t)

we find that the remaining dual variables are α = 1 and β = 1/u. Therefore,

complementary slackness conditions imply that y = ux, ya/b = t for any KKT

point with 0 < x < 1. Also, since there is a unique solution to

λ− 1

u
=
a

b
y
a−b
b

between 0 ≤ y ≤ u for 1/u ≤ λ ≤ a
b
u
a−b
b , each point on L is a unique KKT point,

hence optimal solution to the problem for such λ.

The set of points L is illustrated with the dashed curve in Figure 6.1 (a).

Our next goal is to reformulate C so that L is eliminated from its continuous

relaxation.

CHAPTER 6. CONIC QUADRATIC REFORMULATION 118

6.2.2 Strengthening the continuous relaxation

First, observe that for C, as y, t ≥ 0 and b > 0, inequality ya/b ≤ t is equivalent

to

ya ≤ tb. (6.6)

We propose to strengthen (6.6) as

ya ≤ tbxa−b. (6.7)

Because a ≥ b, for 0 ≤ x ≤ 1 inequality (6.7) implies (6.6). It is also clear that

(6.7) is valid for C as for x ∈ {0, 1} it reduces to (6.6). Thus, we may replace

(6.6) with (6.7).

Consider, then, the strengthened continuous relaxation of C:

CS =
{
x, y, t ∈ R+ : ya ≤ tbxa−b, y ≤ ux, x ≤ 1

}
.

Although (6.7) is highly nonlinear, CS is a convex set. Indeed, as we show in the

next proposition, it is the smallest convex relaxation of C.

Figure 6.1: Surfaces defined by inequalities (6.6) and (6.7).

Proposition 6.2. The convex hull of C, conv(C), equals CS.

CHAPTER 6. CONIC QUADRATIC REFORMULATION 119

Proof. Consider the disjunction C0 ∪ C1, where C0 := {(x, y, t) ∈ C : x = 0}

and C1 := {(x, y, t) ∈ C : x = 1}; thus, C = C0 ∪ C1. We will first show that

conv(C) ⊆ CS. Consider an arbitrary point p0 = (0, 0, t0) ∈ C0 and an arbitrary

point p1 = (1, y1, t1) ∈ C1. Let p be a convex combination of p0 and p1; that is,

p = (x, y, t) = (1− λ)(0, 0, t0) + λ(1, y1, t1) = (λ, λy1, (1− λ)t0 + λt1)

for some 0 ≤ λ ≤ 1. Clearly, p ∈ R3
+, y = λy1 ≤ ux = uλ, and x = λ ≤ 1. To see

that (6.7) holds for p, observe that

(λy1)a = (λbya1)(λa−b) = [(1− λ)0 + λy
a/b
1]bλa−b ≤ [(1− λ)t0 + λt1]bλa−b,

where the last inequality holds from 0 ≤ t0 and y
a/b
1 ≤ t1. Thus, conv(C) ⊆ CS.

For CS ⊆ conv(C), consider an arbitrary point p = (x, y, t) ∈ CS. If x = 0

or x = 1, then p ∈ C ⊆ conv(C) trivially. On the other hand, if 0 < x < 1,

then p is a convex combination of (0, 0, 0) ∈ C0 and (1, y/λ, t/λ) with λ = x. To

see that the latter point is in C1, observe that y/λ ≤ u and (y/λ)a ≤ (t/λ)b, or

equivalently, ya ≤ tbλa−b as p ∈ CS.

Inequality (6.7) is illustrated in Figure 6.1 (b). This figure shows that (6.7)

defines the curved boundary of conv(C) and that any point (x, y, t) on it with

0 ≤ x ≤ 1 is a convex combination of C0 and C1.

The proof of Proposition 6.2 should convince the reader that inequality (6.7)

indeed defines the epigraph of the perspective of f . Recently, Frangioni and

Gentile [32] proposed an interesting cut generation method based on perspective

functions. Their approach is to generate supporting hyperplanes of the perspec-

tive of a convex function as cuts to improve relaxations with convex objective

on a polyhedral set. Although this is a more general approach as it applies to

any separable convex function, as also stated by Frangioni and Gentile in their

computational study, there are practical difficulties with approximating the per-

spective with a large number of linear inequalities and solving a relaxed problem

as this leads to finding infeasible integer solutions that need to be avoided.

CHAPTER 6. CONIC QUADRATIC REFORMULATION 120

Here we use the nonlinear constraint (6.7) explicitly by reformulating it via

conic quadratic constraints as discussed in Section 6.2.3. Before doing so, we

address the important question: what happens when constraint (6.7) is used in

conjunction with other constraints of the problem at hand? Specifically, consider

the reformulation

max
m∑
i=1

n∑
j=1

(hijxij − kijtij)

(MJ2) s.t. y
aij
ij ≤ t

bij
ij x

aij−bij
ij , i = 1, . . . ,m, j = 1, . . . , n, (6.8)

(6.1), (6.2), (6.3),(6.4).

It follows from the next proposition that any extreme point of the continuous

relaxation of MJ2 projects to an extreme point of the continuous relaxation of

MJ0. Thus, because MJ2 has a linear objective, by solving its relaxation, one

avoids all non-extreme points of the continuous relaxation of MJ0. Therefore,

a major source of difficulty due to the nonlinearity of the objective of MJ0 is

eliminated.

Proposition 6.3. Let P ⊆ R2n be a closed, convex set. For i = 1, . . . , n, let

Ci =
{
x, y, t ∈ R+ : yai ≤ tbixai−bi , y ≤ uix, x ≤ 1

}
and

Q =
{

(x, y, t) ∈ R3n
+ : (x, y) ∈ P, (xi, yi, ti) ∈ Ci, i = 1, . . . , n

}
.

If (x, y, t) is an extreme point of Q, then (x, y) is an extreme point of P .

Proof. Note that for any extreme point (x, y, t) of Q, ti equals the smallest value

defined by (xi, yi), i.e.,

ti = τ(xi, yi) :=


xi(yi/xi)

ai/bi , if job xi > 0,

0, if xi = 0,

CHAPTER 6. CONIC QUADRATIC REFORMULATION 121

for all i. For contradiction, suppose (x, y) = λ(x′, y′) + (1 − λ)(x′′, y′′) for some

(x′, y′), (x′′, y′′) in P and 0 < λ < 1. Now consider the two points (x′, y′, t′) and

(x′′, y′′, t′′) in Q with componentwise smallest t′, t′′. Then, for each i

λt′i + (1− λ)t′′i = λτ(x′i, y
′
i) + (1− λ)τ(x′′i , y

′′)

= τ(λ(x′i, y
′
i)) + τ((1− λ)(x′′i , y

′′)) ≤ τ(xi, yi) = ti,

where the second inequality follows from positive homogeneity and the inequality

follows from superadditivity of a convex function g : Rn
+ → R with g(0) = 0. On

the other hand, from convexity of τ , we have

λτ(x′i, y
′
i) + (1− λ)τ(x′′i , y

′′
i) ≥ τ(xi, yi)

as well, implying λt′i + (1−λ)t′′i = ti. Contradiction with the choice of (x, y, t) as

an extreme point of Q.

6.2.3 Conic quadratic representation

In this section we will give an efficient representation of the set CS using a poly-

nomial number of conic quadratic constraints. It is known that an inequality of

the form

r2l ≤ s1s2 · · · s2l , (6.9)

for r, s1, . . . , s2l ≥ 0 can be expressed equivalently using O(2l) variables and O(2l)

hyperbolic inequalities of the form

u2 ≤ v1v2, u, v1, v2 ≥ 0 (6.10)

[13]. Furthermore, each constraint (6.10) can be written as a conic quadratic

(second-order cone) constraint

‖(2u, v1 − v2)‖ ≤ v1 + v2. (6.11)

CHAPTER 6. CONIC QUADRATIC REFORMULATION 122

Proposition 6.4. Inequalities

ya ≤ tbxa−b, x, y, t ≥ 0

can be expressed equivalently using O(log2 a) variables and O(log2 a) conic

quadratic constraints of the form (6.11).

Proof. Let l = dlog2(a)e and, using y ≥ 0, rewrite constraint (6.7) as

y2l ≤ tbxa−by2l−a. (6.12)

Now it is clear that (6.12) is a special case of (6.9) with s1 = · · · = sb = t, sb+1 =

· · · = sa = x, sa+1 = · · · = s2l = y. Following the construction in Alizadeh

and Goldfarb [7], inequalities (6.10) can be built using a binary tree with leaf

nodes for 1, t, t2, t4, . . . , t2
blog2(b)c

, x, x2, x4, . . . , x2blog2(a−b)c
, and y, y2, y4, . . . , y2l−1

.

Each non-leaf node of the binary tree represents a new hyperbolic inequality

(6.10) and variable introduced. Because the binary tree has at most two times

the number of its leaves, the number of inequalities and variables in the conic

quadratic representation is at most O(log2 a).

Below we illustrate how to represent inequalities (6.7) with conic quadratic

constraints with an example.

Example 1. Suppose the convex function is given as f(y) = y7/5. We write the

corresponding inequalities

y7 ≤ t5x2, y, t, x ≥ 0

first as

y8 ≤ t5x2y, y, t, x ≥ 0.

Then using the binary representation of the exponents of t5, x2, and y on the

right hand side to form the leaves of the construction tree shown in Figure 6.2,

we express the inequalities equivalently with the following hyperbolic constraints:

v2
1 ≤ yt, y, t ≥ 0,

CHAPTER 6. CONIC QUADRATIC REFORMULATION 123

v2
2 ≤ xv1, x, v1 ≥ 0,

y2 ≤ tv2, t, v2 ≥ 0.

Note that only those powers of 2 needed to express an integer exponent are used

as the leaves of the binary tree. The hyperbolic constraints are then written in

conic quadratic form as

‖(2v1, y − t)‖ ≤ y + t,

‖(2v2, x− v1)‖ ≤ x+ v1,

‖(2y, t− v2)‖ ≤ t+ v2.

t2

v

v

2

1

4t2t xy

y

Figure 6.2: Binary construction tree for Example 1.

Observe that conic reformulations based on (6.6) can be obtained by simply

fixing x = 1 in this derivation. We refer to the conic reformulation of MJ1

based on the weak constraint (6.6) as CMJ1 and to the conic reformulation MJ2

based on the strengthened constraint (6.7) as CMJ2. In the next section, we will

compare these alternative conic reformulations computationally.

6.3 Computational Analysis

In order to test the computational effectiveness of our approach we have per-

formed experiments with different formulations of the problem using three dif-

ferent objective functions. The first two are the quadratic and cubic cases, i.e.,

f(y) = ky2 and f(y) = ky3. The third one is f(y) = kya/b, where the rational

exponent a/b is generated from Uniform [1.0,3.0] with a single decimal digit. All

CHAPTER 6. CONIC QUADRATIC REFORMULATION 124

experiments are performed using ILOG CPLEX Version 10.1 on a 3 GHz Linux

workstation with 512 MB memory with a 1000 CPU seconds time limit.

We performed experiments on data sets with varying number of jobs (n =

50, 100, 150, 200), machines (m = 1, 2, 3), and capacity factors (κ = 0.1, 0.2). For

each experimental configuration of n,m, κ, we generated five instances with hij

from Uniform[2.0,6.0], kij from Uniform [1.0,3.0], pij from Uniform[1.0,3.0], and

uij from pij× Uniform [0.2,0.8]. The capacity factor κ is used to set the machining

time capacities ci as

ci = κ×
∑m

i=1

∑n
j=1 pij

m
·

We compare three formulations for the quadratic case f(y) = ky2. The first

formulation is MJ0, which is a mixed 0-1 program with quadratic objective, solved

by CPLEX MIQP solver. The second one is CMJ1, which is a quadratically

constrained quadratic MIP (which is equal to MJ1 in the quadratic case) with

constraints

y2 ≤ t

for each machine-job pair. Finally, the third one is CMJ2, the conic reformulation

based on the strengthened inequality (6.7)

y2 ≤ tx,

which is already hyperbolic for the quadratic case.

We summarize the results of this experiment in Table 6.1. For each formula-

tion we report the averages for the CPU seconds required to solve the continuous

relaxation at the root node (rcpu), the integrality gap at the root node as per-

centage (rgap), the number of branch-and-bound nodes explored (nodes), and

the total cpu seconds (cpu). We also report the number of instances out of five

that could be solved to optimality within the time limit (opt) and if there are

instances that could not be solved, we report the average gap between the best

known lower bound and upper bound at termination (egap).

Whereas most of the instances could not be solved to optimality with either

MJ0 or CMJ1 within the time limit, they were all solved within only a few

CHAPTER 6. CONIC QUADRATIC REFORMULATION 125

MJ0 MJ1/CMJ1 CMJ2

κ n m rcpu rgap egap opt nodes cpu rcpu rgap egap opt nodes cpu rcpu rgap nodes cpu

1 0.00 8.62 - 5 272 0.1 0.01 8.62 - 5 6,942 84.8 0.01 0.08 4 0.1

50 2 0.00 7.31 - 5 4,887 1.4 0.03 7.31 2.15 2 27,394 837.2 0.02 0.12 16 0.6

3 0.00 7.17 - 5 88,180 43.3 0.05 7.17 3.9 0 20,787 1045.4 0.04 0.07 14 0.9

1 0.00 6.66 - 5 4,047 0.9 0.02 6.66 1.95 2 27,334 752.8 0.02 0.04 6 0.3

100 2 0.01 7.07 0.32 3 1,423,838 666.1 0.06 7.07 5.41 0 15,069 1034.9 0.07 0.02 8 0.8

3 0.01 6.49 2.17 0 1,241,615 1019.9 0.12 6.49 5.49 0 8,608 1094.7 0.12 0.02 16 2.6
0.1 1 0.00 6.79 0.01 5 178,033 57.5 0.04 6.79 4.22 0 22,310 1041.04 0.04 0.02 9 0.6

150 2 0.00 6.47 2.2 0 1,364,224 1008.58 0.13 6.47 5.59 0 8,336 1081.4 0.12 0.02 15 2.3

3 0.02 3.88 3.71 0 820,907 1018.8 0.24 3.88 5.83 0 4,794 1096.4 0.18 0.01 7 2.4

1 0.01 6.65 0.27 3 1,541,513 657.6 0.07 6.65 5.2 0 13,830 1053.0 0.07 0.00 2 0.4

200 2 0.02 6.61 3.57 0 994,446 1006.5 0.18 6.61 6.02 0 5,634 1083.0 0.17 0.00 6 1.7

3 0.02 6.49 4.56 0 622,768 1017.7 0.32 6.49 6.16 0 3,462 1101.6 0.28 0.00 6 2.9

1 0.00 5.54 - 5 901 0.1 0.01 5.54 0.16 4 31,915 400.0 0.01 0.02 6 0.1

50 2 0.00 4.36 - 5 11,697 3.4 0.03 4.36 1.74 0 34,718 1024.5 0.02 0.05 20 0.7

3 0.00 2.20 - 5 28,574 16.3 0.05 2.20 0.7 0 19,632 1062.5 0.04 0.06 19 1.1

1 0.00 4.62 - 5 57,813 13.3 0.02 4.62 2.89 0 36,666 1036.8 0.02 0.00 5 0.2

100 2 0.01 4.14 0.81 1 1,890,229 986.7 0.07 4.14 3.18 0 13,506 1066.8 0.08 0.01 5 0.6

3 0.01 1.95 0.59 0 1,122,271 1018.2 0.11 1.95 1.48 0 8,238 1095.4 0.11 0.01 8 1.2
0.2 1 0.00 4.58 0.30 3 1,908,417 595.9 0.05 4.58 3.71 0 18,983 1037.4 0.05 0.00 3 0.3

150 2 0.01 3.97 1.92 0 1,298,011 1021.6 0.11 3.97 3.53 0 9,024 1101.7 0.11 0.00 5 1.0

3 0.02 1.99 1.19 0 842,076 1015.7 0.18 1.99 1.76 0 5,151 1078.2 0.16 0.01 7 1.8

1 0.00 4.60 1.23 0 2,716,401 1011.4 0.05 4.60 3.98 0 15,183 1067.8 0.06 0.00 5 0.6

200 2 0.01 3.90 2.47 0 970,277 1020.1 0.16 3.90 3.65 0 5,911 1097.0 0.17 0.00 6 1.6

3 0.02 1.92 1.37 0 584,661 1004.7 0.3 1.92 1.79 0 3,274 1090.1 0.26 0.00 8 3.1

Optimal 45.8% 10.8% 100%

Table 6.1: Computational results for the quadratic case: f(y) = ky2.

seconds using the strong conic formulation CMJ2. As expected the integrality

gap is the same for MJ0 and CMJ1 and it takes longer time to solve CMJ1

than MJ0. Because the continuous relaxation of MJ0 is a QP, it is solved much

faster than the quadratically constrained QP relaxation of CMJ1. Thus, a conic

reformulation is not helpful when its relaxation has the same bound as for the

QP. On the other hand, with conic formulation CMJ2, the integrality gap at the

root node is reduced to almost zero, which in turn leads to a very small number of

branch-and-bound nodes. Even though continuous conic relaxation takes longer

CHAPTER 6. CONIC QUADRATIC REFORMULATION 126

CMJ1 CMJ2′ CMJ2

Hyperbolic

inequalities

y2 ≤ v1

v2
1 ≤ ty

y2 ≤ v1v2

v2
1 ≤ ty

v2
2 ≤ x

y2 ≤ v1x

v2
1 ≤ ty

Table 6.2: Alternative formulations for the cubic case: f(y) = ky3.

to solve than QP, it certainly pays off when solving the integer problem due to

the bound strengthening.

We furthermore observe that the tighter the machine capacity, the higher is

the integrality gap at the root node for all problems sizes. Whereas only the

smaller instances can be solved with MJ0, conic reformulation CMJ2 scales well

and is suitable for all instances.

The next experiment is on the cubic case f(y) = ky3. Inequalities (6.6) and

(6.7), used in CMJ1 and CMJ2 for this case, are

y3 ≤ t

and

y3 ≤ tx2.

In addition, in order to see whether only a partial strengthening would be effec-

tive, we also compared CMJ1 and CMJ2 with a conic formulation with a simpler

inequality

y3 ≤ tx.

We refer to this partially strengthened formulation as CMJ2′. In Table 6.2 we

present the corresponding hyperbolic constraints for the three formulations.

We summarize the results with these formulations in Table 6.3. The first

observation is that the integrality gap is larger for the cubic case than for the

quadratic case. Out of 120 instances only 5 could be solved to optimality with

formulation CMJ1. Even though the partially strengthened formulation CMJ2′

CHAPTER 6. CONIC QUADRATIC REFORMULATION 127

resulted some improvement with smaller integrality gap, most of the instances

still could not be solved with it. On the other hand, all of the instances were

solved within a few seconds with the strong formulation CMJ2.

CMJ1 CMJ2′ CMJ2

κ n m rcpu rgap egap opt nodes cpu rcpu rgap egap opt nodes cpu rcpu rgap nodes cpu

1 0.04 12.79 1.20 3 11,070 496.6 0.04 4.83 0.01 5 2,210 89.2 0.02 0.06 5 0.2

50 2 0.09 10.55 5.58 0 9,085 1066.2 0.09 4.02 1.11 2 7,445 732.8 0.05 0.16 29 1.8

3 0.15 10.76 7.62 0 5,991 1077.1 0.13 4.03 2.15 0 7,252 1082.6 0.07 0.18 68 6.4

1 0.08 9.91 5.41 0 9,546 1069.7 0.08 3.76 1.19 2 8,616 830.8 0.04 0.07 13 0.9

100 2 0.21 10.29 8.62 0 4,065 1079.9 0.18 3.89 3.00 0 4,984 1089.7 0.11 0.03 13 2.2

3 0.34 9.44 8.46 0 2,554 1085.9 0.32 3.45 2.85 0 3,177 1093.6 0.16 0.04 37 8.7
0.1 1 0.14 10.05 7.60 0 5,996 1078.1 0.13 3.85 2.39 0 7,021 1083.0 0.06 0.02 7 0.9

150 2 0.33 9.42 8.65 0 2,509 1085.4 0.31 3.52 3.06 0 3,102 1094.2 0.17 0.02 25 6.0

3 0.54 9.32 8.90 0 1,591 1084.5 0.52 3.35 3.03 0 1,996 1094.9 0.27 0.01 13 5.5

1 0.14 9.83 8.25 0 5,056 1069.4 0.15 3.87 3.03 0 6,155 1071.1 0.08 0.00 5 0.8

200 2 0.46 9.58 9.04 0 1,794 1085.6 0.41 3.63 3.38 0 2,249 1095.9 0.25 0.01 12 4.3

3 0.77 9.35 9.06 0 1,112 1082.6 0.73 3.36 3.19 0 1,429 1093.2 0.40 0.01 10 6.4

1 0.03 8.43 2.68 2 17,654 808.0 0.03 2.89 0.12 4 7,833 305.1 0.01 0.04 8 0.3

50 2 0.08 6.62 4.03 0 10,142 1068.3 0.08 2.14 0.52 1 10,104 965.2 0.05 0.06 22 1.4

3 0.13 2.66 1.53 0 6,077 1077.2 0.15 0.95 0.08 4 4,058 623.8 0.07 0.04 22 2.3

1 0.07 6.95 5.19 0 10,226 1072.8 0.08 2.34 1.37 0 11,341 1071.6 0.04 0.01 7 0.6

100 2 0.17 6.41 5.46 0 4,623 1094.1 0.18 2.06 1.55 0 5,039 1097.9 0.11 0.01 14 2.2

3 0.31 2.40 2.07 0 2,623 1094.7 0.32 0.79 0.55 0 3,032 1102.1 0.16 0.02 19 4.6
0.2 1 0.11 6.93 5.93 0 6,702 1087.5 0.12 2.29 1.80 0 7,401 1086.6 0.07 0.00 3 0.5

150 2 0.23 6.08 5.57 0 3,467 1084.3 0.24 1.95 1.69 0 3,686 1086.1 0.15 0.00 8 1.9

3 0.46 2.43 2.25 0 1,649 1086.2 0.57 0.81 0.69 0 1,944 1094.0 0.26 0.01 14 5.3

1 0.16 6.90 6.24 0 4,785 1090.5 0.17 2.30 1.96 0 5,409 1088.9 0.11 0.00 4 0.9

200 2 0.39 5.97 5.69 0 2,092 1096.5 0.44 1.90 1.77 0 2,287 1098.7 0.24 0.00 7 3.1

3 0.68 2.36 2.28 0 1,152 1089.8 0.76 0.79 0.73 0 1,398 1095.6 0.40 0.01 14 7.9

Optimal 4.2% 15.0% 100%

Table 6.3: Computational results for the cubic case: f(y) = ky3.

The final experiment is with the rational exponent case f(y) = kya/b. As in the

previous experiment, we compared three formulations. Formulations CMJ1 and

CHAPTER 6. CONIC QUADRATIC REFORMULATION 128

CMJ2 are based on constraints (6.6) and (6.7), whereas the partially strengthened

formulation CMJ2′ is based on inequality

ya ≤ tbx(a−b−1),

which is only a slight weakening of (6.7). Recall that a/b is generated from

Uniform [1.0,3.0] with a single decimal digit; thus, 10 ≤ b ≤ a ≤ 30. As the

number of additional variables and constraints in the conic reformulations are

O(log2 a), the size of the formulations for the rational exponent case is larger

than for the quadratic and cubic cases. In Table 6.4 we report average size of the

conic formulations for instances with 200 jobs.

CMJ1 CMJ2′ CMJ2

n m vars cons quad cons vars cons quad cons vars cons quad cons

1 2623.2 1930.6 882.6 3096.2 2327.8 958.4 3248.8 2556.2 882.6

200 2 5276.2 3671.8 1787.6 6233.8 4484.6 1932.4 6563.8 4959.4 1787.6

3 7868.2 5383.4 2655.6 9245.8 6555.8 2860.8 9767.8 7283.0 2655.6

Table 6.4: Conic formulation size for the rational case: f(y) = kya/b.

We report the summary results for the rational exponent case in Table 6.5.

As expected from the size of the formulations, the conic quadratic relaxations for

the rational case took longer to solve compared to the quadratic and cubic cases.

Yet they were all solved within a couple of seconds. The performance of the three

formulations is consistent with the cubic case. Whereas most problems could not

be solved with the weak conic formulation CMJ1, all of them were solved fairly

quickly (within 2 minutes) using the strong conic formulation CMJ2. The com-

parison between CMJ2 and CMJ2′ clearly shows that it is crucial to formulate

the problems with the strongest possible constraints. Even a small weakening of

the constraint renders most of the instances unsolvable. This is a rather interest-

ing observation because typically the integrality gap of the partially strengthened

formulation is quite small (almost always within one percent). The difficulty of

solving nonlinear MIPs even with very small integrality gaps highlights the im-

portance of carefully constructed formulations, perhaps, even more so than for

CHAPTER 6. CONIC QUADRATIC REFORMULATION 129

linear MIPs.

CMJ1 CMJ2′ CMJ2

κ n m rcpu rgap egap opt nodes cpu rcpu rgap egap opt nodes cpu rcpu rgap nodes cpu

1 0.08 5.02 0.00 5 597 61.6 0.08 1.08 0.00 5 60 6.2 0.05 0.11 8 0.7

50 2 0.15 3.61 0.66 3 3,006 607.6 0.17 1.02 0.01 5 201 42.5 0.12 0.02 11 2.1

3 0.27 4.09 2.12 0 3,084 1102.4 0.33 0.68 0.01 5 673 248.8 0.19 0.12 45 12.9

1 0.17 3.63 0.67 3 3,599 762.3 0.18 0.90 0.01 5 217 48.9 0.12 0.03 9 1.8

100 2 0.36 3.14 2.25 0 2,284 1097.0 0.42 0.72 0.08 4 1,480 782.4 0.32 0.03 14 6.1

3 0.65 3.49 2.97 0 1,380 1094.8 0.71 0.80 0.48 0 1,275 1092.9 0.49 0.02 14 10.1
0.1 1 0.26 3.86 2.19 0 3,207 1106.3 0.30 0.53 0.01 5 931 345.8 0.22 0.02 8 2.9

150 2 0.55 3.57 3.11 0 1,405 1102.0 0.70 0.76 0.50 0 1,286 1100.8 0.46 0.01 42 85.4

3 0.85 3.37 3.11 0 961 1092.6 0.93 0.72 0.55 0 900 1101.6 0.64 0.01 11 11.9

1 0.35 3.17 2.36 0 2,408 1090.7 0.41 0.75 0.21 2 1,864 926.5 0.28 0.01 7 3.4

200 2 0.76 3.35 3.02 0 1,205 1081.9 0.77 0.60 0.44 0 1,114 1081.6 0.59 0.01 12 10.7

3 1.53 3.23 3.07 0 647 1102.0 1.57 0.69 0.60 0 605 1101.1 1.16 0.00 9 15.3

1 0.05 3.23 0.01 5 2,850 240.2 0.07 0.63 0.01 5 141 12.4 0.05 0.03 6 0.5

50 2 0.15 2.09 0.55 3 4,809 951.9 0.17 0.50 0.01 5 310 68.7 0.13 0.04 9 1.7

3 0.27 1.16 0.31 2 2,737 876.6 0.29 0.21 0.01 5 152 51.3 0.20 0.03 18 4.4

1 0.14 2.54 1.42 0 5,732 1095.5 0.16 0.62 0.01 5 618 128.5 0.13 0.01 6 1.4

100 2 0.32 2.17 1.63 0 2,658 1093.9 0.36 0.47 0.17 1 2,092 948.8 0.26 0.01 22 7.8

3 0.54 1.02 0.78 0 1,530 1112.4 0.62 0.21 0.06 3 880 674.3 0.44 0.01 9 5.9
0.2 1 0.23 2.55 1.86 0 3,474 1110.9 0.28 0.40 0.03 4 1,553 527.7 0.24 0.00 4 1.8

150 2 0.57 2.14 1.89 0 1,626 1110.6 0.61 0.39 0.21 0 1,428 1108.2 0.48 0.01 7 5.0

3 0.97 1.05 0.94 0 950 1111.4 1.03 0.17 0.09 0 892 1116.2 0.69 0.00 6 7.2

1 0.34 2.45 2.08 0 2,633 1113.2 0.41 0.55 0.24 0 2,312 1109.6 0.32 0.00 4 2.7

200 2 0.77 2.08 1.93 0 1,134 1111.3 0.92 0.35 0.28 0 1,023 1108.8 0.70 0.00 5 6.0

3 1.32 0.95 0.89 0 680 1108.4 1.49 0.19 0.16 0 657 1104.9 0.98 0.00 7 11.3

Optimal 17.5% 49.2% 100%

Table 6.5: Computational results for the general case: f(y) = kya/b.

CHAPTER 6. CONIC QUADRATIC REFORMULATION 130

6.4 Conclusion

In this study we have given a strengthened conic quadratic reformulation for the

machine-job assignment problem with controllable processing times. We have

written a technical report [4] on the findings of this chapter. The conic strength-

ening is sufficiently general to be applicable to other mixed 0-1 programs with

separable convex objective or constraints with rational exponents and variable up-

per bounds. Our computations demonstrate the viability of using conic quadratic

constraints that exploit the problem structure as a means for strengthening non-

linear mixed 0-1 programs just like the strong polyhedral cuts based on problem

structure for linear MIPs. Availability of efficient and stable SOCP solvers will

likely stimulate further research on the development of conic quadratic cuts. In

the next chapter, we will consider controllable processing times in rescheduling

context, where we will employ the strengthened formulation presented in this

chapter. Our focus will be on the trade-off between total manufacturing cost and

match up times after a disruption occurs to a given schedule.

Chapter 7

Match up Scheduling with

Manufacturing Cost

Considerations

Given a breakdown on a schedule being executed, match up scheduling aims to

find a new schedule which matches up with the preschedule at some point in

the future, called the match up time. At match up time the new schedule is

in the same state as the preschedule. Catching up the preschedule as soon as

possible is critical because there are usually other production planning decisions

like material flow, tooling and purchasing at different levels of decision making

hierarchy which are dependent on the results of the initial schedule. Hence, the

objective is to create a new schedule which is as consistent as possible with the

preschedule.

In this chapter, we consider a given schedule being executed on non-identical

parallel machine environment. We assume that this initial schedule is achieved

by solving a cost minimization problem subject to capacity constraints on the

machines. We will consider the case in which one of the machines will be down

for a certain time due to an unexpected machine breakdown. The problem is

131

CHAPTER 7. MATCH UP SCHEDULING 132

to reschedule the remaining jobs, such that the new schedule will catch up the

preschedule as soon as possible considering its manufacturing cost implications.

Hence, we consider alternative match up time related objectives. Catching up

the previous schedule earlier implies incurring more compression cost, so we will

also consider the total manufacturing cost as another objective. We have dealt

with the trade-off between cost and scheduling performance measures in previous

chapters. In this chapter we deal with the trade-off between manufacturing cost

and match up time performance.

A predictive approach in coping with disruptions is to leave idle time periods

in schedules so that any unexpected event, such as breakdown or new job arrival,

can be handled without much disruption. However, when the processing times

are controllable, inserting idle times into the schedules requires selecting smaller

processing times which causes higher manufacturing cost for the schedule. If no

disruption occurs, the machines will be under-utilized.

The notation used throughout the chapter is below:

Parameters:

puij: Processing time upper bound that gives minimum cost for job j

on machine i.

cij: Cost of job j on machine i.

uij: Maximum possible compression for job j on machine i.

fij(yij): Compression cost function for job j on machine i.

Di: Available machining capacity on machine i.

S: Preschedule on which a breakdown occurs.

ySij: Compression on the processing time of job j on machine i in S.

J : Set of jobs not yet started processing at the time of disruption.

Ji: Subset of J scheduled on machine i in S.

Jmi : Subset of Ji that can form match-up point on machine i.

sj: Start time of job j in S.

Pj: Set of jobs including job j and its predecessors which can form

match up point on the same machine in S.

Ei: End time of the last job on machine i in S.

CHAPTER 7. MATCH UP SCHEDULING 133

Decision Variables:

xij: 1, if job j is assigned on machine i. 0, otherwise.

zj: 1, if start time of job j in S is selected as match up time

0, otherwise.

yij: Compression on the processing time of job j on machine i.

In Section 7.1, we present different rescheduling approaches on a numerical ex-

ample. In Section 7.2, we give the description of the rescheduling environment and

formulations for the considered rescheduling problems. In Section 7.3, we discuss

alternative formulations for the problems by using conic quadratic inequalities.

In Section 7.4, we propose a heuristic algorithm to generate approximate efficient

solutions for the problems. We give the results of our computational study in

Section 7.5 and finalize with concluding remarks in Section 7.6.

7.1 Rescheduling with Controllable Processing

Times: A Numerical Example

In order to clarify the distinctions between match-up rescheduling with fixed

and controllable times, we demonstrate alternative rescheduling approaches on a

numerical example in Figure 7.1. This is a parallel machine rescheduling example

arising due to a breakdown on one of the machines. In this study, the problem is

to reschedule a set of jobs on non-identical machines where each job has different

cost and processing time data on different machines. However, in the numerical

example, for the simplicity we assume that the jobs are of the same type and

the machines are identical. Hence, we assume puij = 2.0 and uij = 1 for all

i, j. The processing time of the jobs can be compressed by incurring additional

manufacturing cost determined by the compression cost function which is fij =

5y2
ij for all i, j. The example starts with a preschedule with the minimum total

compression cost. There are 15 jobs scheduled on three parallel CNC machines.

When there is a machine breakdown on one of the machines, we illustrate how

alternative rescheduling approaches can be used to remedy this unavailability

CHAPTER 7. MATCH UP SCHEDULING 134

period using a different Gantt Chart representation for each one of them.

Gantt Chart 1 in Figure 7.1 belongs to the preschedule. In order to obtain

this preschedule we first solve a machine-job assignment problem with cost mini-

mization objective. Thus, we find the optimum machine-job assignments (5 jobs

on each machine) and compression levels (0.2) on the processing times subject to

given capacities on the machines. Selected machine-job allocation and processing

times utilize the available machining time capacity, which is taken as (9.0) for

this numerical example.

Gantt Chart 2 shows the breakdown on machine 1. In practice, we do not

know when a machine breakdown occurs, but we can determine when it ends

right after its occurrence. Therefore, we assume that the breakdown time is

not known a priori, but immediately after the event occurs the down duration

can be determined. In this numerical example, a breakdown occurs during the

operation of job 2. At this point, the jobs 1,6 and 11 have been completed, and

some are in process on other machines. These jobs, which are highlighted on

the chart, will not be considered in rescheduling decisions since they are already

completed. Gantt Chart 2 also gives the resulting schedule achieved by right-

shifting the jobs not yet finished at time of breakdown on machine 1. The right-

shift approach assumes fixed processing times and it is the simplest rescheduling

strategy. However, the resulting schedule violates the capacity constraint by the

duration of down time, which is 5.40. The total manufacturing cost of the jobs

considered in rescheduling stays the same (2.40) as their cost in the preschedule

since the processing times did not change. Since there is no inserted idle time

in the preschedule, we will not be able to find a feasible solution by looking

for an alternative machine-job allocation with fixed processing times. The only

way to find a feasible schedule without violating the capacity constraints for this

particular example is to consider the controllable processing times and machine

reallocation decisions simultaneously.

Gantt Charts 3 to 6 in Figure 7.1 next show alternative rescheduling ap-

proaches with controllable processing times. The first approach finds a schedule

with minimum sum of match-up times on the machines. In other words, the

CHAPTER 7. MATCH UP SCHEDULING 135

objective is to minimize the length of the rescheduled portion of the preschedule.

Minimum sum of match-up times for the schedule shown in Gantt Chart 3 is

16.20. This schedule is achieved by moving job 2 to machine 2 and re-planning

the processing times of only six jobs represented by the dotted boxes. This is a

minimum cost schedule for the sum of match-up time level of 16.20. As a result,

the match-up times on machine 1, machine 2 and machine 3 are the end time of

job 5, the starting time of job 9, and the starting time of job 4 in the preschedule,

respectively. As it can be observed, the schedule on each machine is exactly the

same as the preschedule beyond the match-up points. In contrast to the fixed

processing time approach given in the previous charts, this approach neither vio-

lates the capacity constraint nor leaves unnecessary idle time. This schedule fully

utilizes the available capacity on the machines and it has a manufacturing cost

of 20.40.

Gantt Chart 4 in Figure 7.1 presents the schedule achieved by minimization

the manufacturing cost for a given upper bound on the sum of match-up times.

Sum of match-up times for the schedule is 19.80 and the total cost is 17.70.

Hence, compared to the schedule in chart 3, by giving up from the sum of match-

up times performance, which implies distributing the compression on more jobs,

we improve the cost criterion. We re-assigned jobs 2 and 3 to different machines

compared to the preschedule in this case. Gantt Chart 5 gives the schedule

which minimizes the maximum of match-up times on the machines. Minimum

of maximum match-up times is 5.40 for the given example. Minimizing the total

cost subject to a maximum match-up time level of 7.20, we find the schedule

shown in Gantt Chart 6 in Figure 7.1.

Alternative rescheduling approaches applied in this example show that using

processing time controllability has definite advantages. The first one is that we

can catch up the preschedule soon after the breakdown occurs and satisfy the

due dates and production plans in the system. Processing time and machine-job

assignment changes affect only a small part of the preschedule which helps to de-

crease the stress in the system. Under the fixed processing times assumption, it

may not be possible to catch up the preschedule as shown in the numerical exam-

ple. Secondly, we have the flexibility to generate different alternative schedules

CHAPTER 7. MATCH UP SCHEDULING 136

Figure 7.1: Alternative Reactive Scheduling Approaches

CHAPTER 7. MATCH UP SCHEDULING 137

Figure 7.2: Efficient Solution Set for Total Cost and Sum of Match-up Times
Objectives

with varying total cost and match-up time objectives. We can provide a set of

alternative schedules to the decision maker. Thirdly, process time controllability

provides a more robust system. With fixed processing times, a breakdown may

lead to a rescheduling problem which is infeasible even for a preschedule with idle

times.

For the considered numerical example, we present a set of efficient solutions

illustrating the trade-off between the sum of match-up times and total cost objec-

tives in Figure 7.2. Each solution on the chart is labeled by its sum of match-up

times value and total cost value, respectively. The first solution corresponds to

the schedule in Chart 3 with the minimum sum of match-up times but a high

total cost. The third solution corresponds to the schedule in Chart 4. Similarly,

we present a set of efficient solutions for the minimum of maximum match-up

times and the manufacturing cost objectives. The first two solutions correspond

to the schedules given in Charts 5 and 6, respectively. The third efficient solution

shown in the figure has the minimum manufacturing cost for the problem. In

the next section, we will describe the scheduling environment in detail and give

problem definitions for different rescheduling objectives.

CHAPTER 7. MATCH UP SCHEDULING 138

Figure 7.3: Efficient Solution Set for Total Cost and Minimum of Maximum
Match- up Time Objectives

7.2 Scheduling Environment and Problem Def-

initions

We consider n jobs to be processed in non-identical parallel CNC machine en-

vironment. The term “non-identical” means that each job may have different

processing time, upper bound on compression and manufacturing cost values and

different compression cost function on different machines. There are m machines,

each of which has a certain available capacity. There is a given preschedule S
being executed in this environment. As we have mentioned in Section 7.1, S
could be formed by solving the machine-job assignment problem to minimize

total manufacturing cost objective.

We assume that during the execution of S, there occurs a breakdown on one

of the machines. This means the machine will be down for a certain time to be

maintained or repaired. Given such a disruption, S is no longer executable. We

assume that if the machine fails in the middle of processing a job then this job has

to be reprocessed in its entirety, called the preempt-repeat case in the literature.

CHAPTER 7. MATCH UP SCHEDULING 139

The interrupted job and all the other jobs which are not yet started processing

on their machines have to be rescheduled. Rescheduling involves making new

machine-job assignment and processing time compression decisions. These deci-

sions can be made in order to catch up the preschedule at some point on each

machine. Since we assume a non-preemptive machining environment, we select

match-up times out of the start times previously determined in S. The sched-

ule, namely the sequence of the jobs and their start-end times, that follows a

match-up time on a machine has to be the same as the preschedule.

The match-up time idea is used successfully to solve the rescheduling prob-

lems in the literature, but the critical issue is how to determine the match-up time

on each machine. We could either minimize the sum of match-up times on each

machine or minimize the maximum one regardless of their cost implications as

will be discussed in Sections 3.1 and 3.2. Another alternative could be to provide

alternative match-up schedules with varying time/cost trade-offs to the decision

maker as will be discussed in Sections 3.3 and 3.4. In the previous numerical

example summarized in Figure 1, by allowing machine reallocation and control-

lable processing times we could absorb the machine breakdown duration as soon

as possible as in Gantt Charts 3 and 5 with two different match-up strategies

albeit at a high manufacturing cost. With the maximum match-up time strategy,

we expect to distribute the required compression amount more evenly among the

selected jobs. This will eventually provide a better solution in terms of the man-

ufacturing cost, but a higher number of jobs will be affected which decreases the

stability of the system. We also suggest alternative nondominated solutions for

this bi-criteria problem as given in Gantt Charts 4 and 6 for each strategy respec-

tively. In the following sections, we formulate alternative match-up scheduling

strategies to deal with the stated time/cost trade-off.

7.2.1 Minimize Sum of Match up Times

We first consider the problem of minimizing sum of match up times. This problem

arises when the length of the rescheduled part of schedule S is critical and has to

be minimized. We can formulate this problem as follows:

CHAPTER 7. MATCH UP SCHEDULING 140

min :
∑
i

∑
j∈Jmi

sjzj +
∑
i

Ei(1−
∑
j∈Jmi

zj)

(SM) s.t.
∑
j∈J

(puijxij − yij) ≤ Di i = 1, . . . ,m (7.1)

yij ≤ xijuij i = 1, . . . ,m and j ∈ J (7.2)
m∑
i=1

xij = 1 ∀j ∈ J (7.3)∑
j∈Jmi

zj ≤ 1 i = 1, . . . ,m (7.4)

∑
j2∈Pj1

zj2 ≤ xij1 i = 1, . . . ,m and ∀j1 ∈ Jmi (7.5)

(uij1 − ySij1)
∑
j2∈Pj1

zj2 ≤ uij1 − yij1 i = 1, . . . ,m and ∀j1 ∈ Jmi (7.6)

ySij1

∑
j2∈Pj1

zj2 ≤ yij1 i = 1, . . . ,m and ∀j1 ∈ Jmi (7.7)

xij ∈ {0, 1}, yij ∈ R+ i = 1, . . . ,m, and j ∈ J (7.8)

zj ∈ {0, 1} j ∈ ∪iJmi (7.9)

The objective to minimize is the sum of match-up times. Possible match-up

times are the start times of jobs which can still be started at the same time

and on the same machine as in S. For instance, in the numerical example, in

Figure 7.1, job 3 cannot form a match-up time since its machine is not available

at that time, while job 10 can. End of horizon or ending time of the last job

on a machine can also be the match-up time. Constraint set (7.1) guarantees

that the new schedule does not exceed the available capacity on each machine.

Constraint set (7.2) is the variable upper bounding constraints on the amount

of compression, guaranteeing that processing time of a job on a machine can be

compressed only if the job is assigned on that machine and also the compression

cannot be greater than the upper bound uij. Constraint set (7.3) assigns each job

to a machine. Start time of at most one of the jobs can be selected as a match-up

point on each machine which is forced by constraint set (7.4). Constraint set (7.5)

guarantees that the jobs following a selected match-up time on a machine has to

CHAPTER 7. MATCH UP SCHEDULING 141

stay on the same machine in the new schedule. Constraints (7.6) and (7.7) fix

the compression on a job which follows a match-up point at its compression in S.

In Figure 7.1, for the considered example, solution to the above problem is

given in Gantt Chart 3. Selected match-up points on the machines are the end

time of job 5 on machine 1 and the start times of jobs 9 and 12 on machines 2

and 3, respectively, sum of which gives the minimum sum of match-up times. As

can be seen from the example, the new schedule following the match-up points is

exactly the same as the preschedule. The length of the rescheduled part is at its

minimum. Another critical performance criterion is the maximum of match-up

times which is considered in the next section.

7.2.2 Minimize Maximum of Match up Times

It may also be critical for the decision maker to catch the preschedule on all

machines as soon as possible. Then, his objective will be to minimize the latest

match-up time on the machines. We can formulate this problem as follows:

min : W

(MM) s.t.
∑
j∈Jmi

sjzj + Ei(1−
∑
j∈Jmi

zj)≤ W i = 1, . . . ,m (7.10)

and (7.1)− (7.9).

Constraints (7.10) bound the match-up time on each machine from above by

the variable W , which is minimized. The other constraints are the same as the

sum of match-up times problem. Solving the rescheduling problem for either of

the two match-up time related objectives that we have discussed so far results ex-

tremely compressed processing times and costly machine-job assignments. Hence,

the manufacturing cost for the resulting schedule could be too high. In the fol-

lowing sections we will consider the objective of total manufacturing cost, while

bounding the match-up time criterion of the schedule.

CHAPTER 7. MATCH UP SCHEDULING 142

7.2.3 Minimize Total Manufacturing Cost Subject to a

Bound on Sum of Match up Times

Compressing the processing time of a job requires using additional resource for

the job. In a flexible manufacturing system, reducing the processing time of an

operation on a CNC machine by increasing the cutting speed and feed rate natu-

rally leads to reduced tool life, and, consequently, increased machining cost. We

can model the change in the machining cost due to processing time compression

y ≥ 0 as

f(y) = kya/b,

where a and b are integers satisfying a ≥ b > 0 and k > 0, so that f is an

increasing and convex function of the compression. The function f reflects the

relationship between compression and cost in that as one decreases the processing

time of a job, it becomes more expensive to compress it further. Technical speci-

fications of a job such as its length, diameter, required surface quality, as well as

machine and tool type determine the cost coefficients k, a, and b as discussed in

Kayan and Aktürk [54].

Minimizing the manufacturing cost necessitates making appropriate machine-

job assignment and compression decisions. In match-up rescheduling, manufac-

turing cost due to process time compression and match-up time objectives are

in conflict. Increasing the match-up time on a machine allows to distribute the

required compression on more jobs which improves the cost performance. It may

also permit a machine-job assignment with a lower cost. Having two conflicting

objectives, one way to find efficient solutions is to minimize one of the objectives

subject to the constraint that the solution value of the second objective cannot

be worse than the given upper bound, and solve the overall problem as a single

objective problem. This method known as the ε-constraint approach, as discussed

in T’kindt and Billaut [83], has been widely used in the literature, because the

decision maker can interactively specify and modify the bounds and analyze the

influence of these modifications on the final solution. Below, we formulate the

problem of minimizing the manufacturing cost subject to an upper bound T on

CHAPTER 7. MATCH UP SCHEDULING 143

the sum of match-up times in the new schedule.

min :
∑
i

∑
j∈J

(cijxij + fij(yij))

(CSM) s.t.
∑
i

∑
j∈Jmi

sjzj +
∑
i

Ei(1−
∑
j∈Jmi

zj)≤ T (7.11)

and (7.1)− (7.9).

The objective function above is the sum of fixed costs and compression

costs. The formulation above includes convex functions in the objective. Con-

straint (7.11) sets the upper bound on the sum of match-up times for the schedule

and, thus, limits the size of the rescheduled portion of the preschedule.

7.2.4 Minimize Total Manufacturing Cost Subject to a

Bound on Maximum Match up Time

Given an upper bound T on the maximum match-up time, one can set the match-

up time on machine i to be Ti = maxj∈Ji{sj : sj ≤ T}. This is due to the

fact that increasing the match-up time on a machine does not increase the total

manufacturing cost of a schedule as discussed above. Defining the set of jobs that

precede selected match-up times on their machines as JT , we can formulate the

problem of minimizing manufacturing cost subject to a given maximum match-up

time as:

min :
∑
i

∑
j∈JT

(cijxij + fij(yij))

(CMM) s.t.
∑
j∈JT

(puijxij − yij) ≤ Ti i = 1, . . . ,m (7.12)

yij ≤ xijuij i = 1, . . . ,m and j ∈ JT (7.13)
m∑
i=1

xij = 1 j ∈ JT (7.14)

xij ∈ {0, 1}, yij ∈ R+ i = 1, . . . ,m and j ∈ JT (7.15)

CHAPTER 7. MATCH UP SCHEDULING 144

In this section, we have described the rescheduling environment and provided

four different rescheduling problems to solve. In the computational analysis sec-

tion, we will demonstrate that minimizing sum of match-up times and minimizing

maximum match up time problems can be solved easily by commercial mixed-

integer programming (MIP) solvers. However, it is usually difficult to solve cost

minimization problems since they have convex cost terms in their objective func-

tions. In the next section, we will discuss how the cost minimization problems

can be reformulated in a stronger way by using conic quadratic inequalities.

7.3 Strong Conic Quadratic Formulations for

Cost Minimization Problems

When solving the continuous relaxation of CSM and CMM formulations, convex

cost terms in the objectives cause highly fractional optimal solutions which lie

in the interior of their convex relaxation. Hence, branch-and-bound algorithms

based on such relaxation usually require excessive branching to find integer feasi-

ble solutions. However, in reactive rescheduling, solution times for the problems

is quite critical. Recent work by Aktürk et al. [4] on problems with separa-

ble convex objective and variable upper bounding constraints shows that conic

quadratic inequalities can be employed for strengthening the formulations of such

problems. Their approach is based on second-order cone programming (SOCP),

which is also called conic quadratic programming. Alizadeh and Goldfarb [7] give

an extensive review on the theory of SOCP and report the recent advances in this

area. Existence of efficient SOCP algorithms implemented in branch-and-bound

solvers allows us to reformulate CSM and CMM models as proposed by Aktürk

et al. [4] and solve them efficiently. In this section, we discuss the implementation

of this approach in the rescheduling problems with cost minimization objectives.

The first step of the reformulation is to put CSM into conic optimization

problem form with linear objective and conic constraints. Thus, we first replace

each convex cost function fij(yij) in the objective with an auxiliary variable tij

CHAPTER 7. MATCH UP SCHEDULING 145

and move fij(yij)’s into the constraint set as below:

min
∑
i

∑
j∈J

(cijxij + kijtij)

(CSM1) s.t. y
(aij/bij)
ij ≤ tij, i = 1, . . . ,m, j ∈ J (7.16)

and (7.1)− (7.9) and (7.11).

As cij, tij ≥ 0 and bij > 0 for all i, j, inequality (7.16) is equivalent to

y
aij
ij ≤ t

bij
ij . (7.17)

which can be strengthened as

y
aij
ij ≤ t

bij
ij x

aij−bij
ij . (7.18)

Because aij ≥ bij, for 0 ≤ xij ≤ 1, inequality (7.18) implies (7.17). Thus, we can

substitute the inequalities with the stronger ones and obtain:

min
∑
i

∑
j∈J

(cijxij + kijtij)

(CSM2) s.t. y
aij
ij ≤ t

bij
ij x

aij−bij
ij , i = 1, . . . ,m, j ∈ J (7.19)

and (7.1)− (7.9) and (7.11).

Aktürk et al. [4] have proven that any extreme point of the continuous re-

laxation of CSM2 projects to an extreme point of the continuous relaxation of

CSM. Since, CSM2 has a linear objective, by solving its continuous relaxation,

one avoids all non-extreme points of the continuous relaxation of CSM. Thus, the

source of difficulty due to convexity of the objective of CSM is eliminated.

Inequalities (7.17) and (7.18) can be represented by using conic quadratic

constraints. This can be shown first by using the fact that an inequality of the

form

r2l ≤ s1s2 · · · s2l , (7.20)

for r, s1, . . . , s2l ≥ 0 can be expressed equivalently using O(2l) variables and O(2l)

hyperbolic inequalities of the form

u2 ≤ v1v2, u, v1, v2 ≥ 0 (7.21)

CHAPTER 7. MATCH UP SCHEDULING 146

[13] and then using the fact that each constraint (7.21) can be written as a

second-order conic constraint

‖(2u, v1 − v2)‖ ≤ v1 + v2. (7.22)

Aktürk et al. [4] have shown that inequalities (7.17) and (7.18) can be repre-

sented equivalently by using O(log2 aij) variables and O(log2 aij) conic quadratic

constraints of the form (7.22). An example for the conic quadratic representation

of a given inequality (7.18) is shown below.

Example 2. Consider the convex function f(y) = y5/4. We first write inequality

(7.18) as

y5 ≤ t4x, y, t, x ≥ 0

then put it in the form of (7.20) as

y8 ≤ t4xy3, y, t, x ≥ 0.

which we can express equivalently by using the following hyperbolic constraints:

v2
1 ≤ xy, x, y ≥ 0,

v2
2 ≤ yv1, y, v1 ≥ 0,

y2 ≤ tv2, t, v2 ≥ 0.

The hyperbolic constraints are then written in conic quadratic form as

‖(2v1, y − x)‖ ≤ y + x,

‖(2v2, y − v1)‖ ≤ y + v1,

‖(2y, t− v2)‖ ≤ t+ v2.

We have discussed the strengthening and reformulation on CSM model. CMM

can also be reformulated in the same way. Using strengthened conic quadratic

formulations allows one to solve CSM and CMM very quickly as discussed in

Section 7.5. In the next section, we describe a heuristic approach to generate

approximately efficient solutions for the cost and the match-up objectives.

CHAPTER 7. MATCH UP SCHEDULING 147

7.4 Generating A Set of Approximately Effi-

cient Solutions: Heuristic Approach

In the rescheduling literature, a common approach to solve scheduling problems

is by heuristics which can find a solution quickly. In the previous section, we have

discussed a way of getting strong formulations for the considered cost minimiza-

tion problems, CSM and CMM. In this section, we propose a heuristic search

algorithm which generates a set of approximately efficient solutions that can be

presented to the decision maker quickly. We consider two bi-criteria rescheduling

problems. In the first problem, the conflicting objectives are the manufacturing

cost and the sum of match-up times. In the second one, the conflicting objectives

are total manufacturing cost and maximum match-up time.

We first give a step by step definition of the proposed heuristic search algo-

rithm below. The algorithm generates approximately efficient solutions for the

bi-criteria match-up scheduling problems under consideration.

Heuristic Search Algorithm

Step 1. Given a preschedule S and a disruption on one of the machines.

Step 2. Solve SM to find initial schedule S, hence job pool P , and match up

times Ti.

Step 3. Repeat Steps 3.1-3.4 until no possible update = TRUE.

Step 3.1. Apply 1-move Algorithm.

Step 3.2. Apply 2-swap Algorithm.

Step 3.3. Report solution achieved.

Step 3.4. Apply Update Job Pool.

Heuristic Search Algorithm starts with an initial schedule S and a given dis-

ruption. We first solve the problem of minimizing sum of match-up times (or

minimizing maximum of match-up times). The solution for this problem gives

the initial match-up times and a job pool, i.e. the set of incomplete jobs that

precede the match-up times. With the given match-up times, the algorithm ap-

plies the 1-move and 2-swap improvement algorithms on the current job pool

CHAPTER 7. MATCH UP SCHEDULING 148

and records the solution. The next step is to expand the job pool by adding

an appropriate job to the pool and the improvement algorithms are applied on

the new job pool. Algorithm terminates when the job pool cannot be expanded,

i.e. no jobs exist to be added to the pool. Heuristic Search Algorithm generates

a set of solutions where each solution is an approximately efficient solution. In

the following, we will describe a subproblem which motivates the improvement

search steps of the algorithm and then we will describe the steps of Heuristic

Search Algorithm in detail.

7.4.1 A Subproblem

We first define a subproblem that is solved at each iteration of Heuristic Search

Algorithm. The solution to the subproblem is used by the 1-move and 2-swap

improvements and for augmenting the job pool. The subproblem for machine i

is described as the following: Given a match-up time Ti and a set of jobs Jc to

be scheduled before Ti on machine i, find optimal compression levels for the jobs

so that the total compression cost is minimized. The problem is formulated as

min
∑
j∈Jc

fij(yij)

(COMPi) s.t.
∑
j∈Jc

(puij − yij) ≤ Ti (7.23)

0 ≤ yij ≤ uij, j ∈ Jc. (7.24)

COMPi is a nonlinear continuous resource allocation problem. Optimality

properties and a solution method for the problem were given by Bretthauer and

Shetty [15]. We can write the Karush-Kuhn-Tucker conditions for COMPi as

below:

∂fij
∂yij
− λ− νj + ηj = 0, j ∈ Jc (7.25)

λ

(∑
j∈Jc

(puij − yij)− Ti

)
= 0 (7.26)

νjyij = 0, j ∈ Jc (7.27)

CHAPTER 7. MATCH UP SCHEDULING 149

ηj(yij − uij) = 0, j ∈ Jc (7.28)

νj ≥ 0, ηj ≥ 0, j ∈ Jc (7.29)

λ ≥ 0 (7.30)

and inequalities (7.23)–(7.24). These conditions imply the following lemma which

will be very useful in designing improvement steps and augmenting the job pool

in our heuristic.

Lemma 7.1. Let y∗i and (λ∗, η∗, ν∗) be an optimal pair of solutions to COMPi.

For each job j, we have the following:

(∂fij/∂yij)(y
∗
ij)



≥ λ∗, if y∗ij = 0;

= λ∗, if 0 < y∗ij < uij;

≤ λ∗, if y∗ij = uij.

Because (∂fij/∂yij)(0) = 0, the first part holds only if λ∗ = 0, in which case

the other parts imply that y∗ij = 0 for j. Thus Lemma 7.1 states that whenever

λ∗ > 0, the partial derivative of the cost function for each job must be equal

unless its compression is at its upper bound uij. Here, λ∗ is the rate of change

of the optimal cost as Ti changes. But also from the lemma, the rate of change

of the optimal cost for each job with 0 < y∗ij < uij is also equal to λ∗. This

interpretation will be used in designing search steps in the following sections.

7.4.2 Job Pool

In the heuristic algorithm, at each iteration we work on a job pool which is

the set of jobs to be rescheduled at that iteration. A job pool includes the

interrupted job on the breakdown machine plus the set of jobs which are not

started processing yet at the time of breakdown and precede the given match-up

times in preschedule S. For the bi-criteria problem with cost and sum of match-

up times objectives, the initial job pool is determined by the match-up points

CHAPTER 7. MATCH UP SCHEDULING 150

found by solving the SM problem in Section 7.2.1. Solving SM gives us the

minimum attainable sum of match-up times. As shown in Gantt Charts 3 and

5 in Figure 7.1, minimizing sum of match-up times or maximum of match-up

times requires extensively compressing a small set of jobs. The solution with

minimum sum of match-up times has the highest manufacturing cost. Thus, the

first approximately efficient solution we generate has the minimum possible sum

of match-up times but its manufacturing cost is the worst of all efficient solutions.

For the problem with the objectives of minimizing total cost and maximum

match up time we get the initial job pool by solving the MM problem and setting

match up time on each machine to be the highest match-up time less than the

maximum match-up time found by solving MM.

We augment the job pool at each iteration by adding a new job to the pool.

The question is which job to add to the current job pool. Considering the jobs

which are immediate successors of match-up points, there are at most m candi-

dates. Adding a new job to the job pool increases the sum of match up times, but

it may give us a schedule with a lower manufacturing cost after reallocating the

jobs and solving the subproblems on each machine. We use the following rule to

select the machine for increasing its match-up time. For each machine i, we have

λ∗i , the rate of change of the optimal cost by the change of match-up time, for the

jobs scheduled before match-up point. Suppose that the job that immediately

succeeds match-up point on machine i is j and that the compression on job j is

y∗ij, then we select the machine with the smallest

∆i :=
kij ŷ

aij/bij
ij − kijy∗ijaij/bij − λ∗i (ŷij − y∗ij)

puij − y∗ij
,

where ŷij = min((∂fij/∂yij)
−1(λ∗i), uij). ∆i is an estimate for the ratio of the

cost change to the match-up time change that will be obtained by moving the

match-up point to the start time of the next job. Since we are interested in the

efficient frontier of manufacturing cost and sum of match-up time objectives, we

select the machine that gives the maximum cost improvement estimate per unit

match-up time change as outlined below:

Update Job Pool

CHAPTER 7. MATCH UP SCHEDULING 151

Step 1. Given match up times Ti for each machine.

Step 2. If Ti = Ei for all i then return FALSE. Step 3.Else do Steps 3.1 to 3.4.

Step 3.1. Calculate ∆i for the machines with Ti 6= Ei.

Step 3.2. Select i∗ with minimum ∆i.

Step 3.3. Ti∗ = sj where sj is the start time of next job on i∗.

Step 4. Return TRUE.

For the maximum match-up time criterion, the match-up time increasing rule

we use is to select the candidate job which has the smallest completion time. We

have discussed the compression subproblem, formation of initial job pool and job

pool augmentation rules used in our heuristic. We next describe the improvement

search methods.

7.4.3 1-move Improvement Search

1-move method assumes that we have a schedule at hand with given match-up

times and that the compression subproblem COMPi is solved for each machine.

1-move method looks for cost improving move of a job in the job pool from

its current machine to another machine. A 1-move results compression cost

improvement in its original machine since the compression for the remaining jobs

can be decreased due to the additional capacity that becomes available when

the job leaves. On the other hand, it increases the compression cost on the new

machine as the jobs on this machine need to be compressed further to make up

space for the new job to get a feasible schedule. Below we give a lower bound on

the cost change for a given 1-move.

Lemma 7.2. (Lower Bound for a 1-move) For a given schedule let λi1 and λi2

be optimal dual prices for COMPi1 and COMPi2, respectively, and yi1j be the

compression of job j on machine i1. Then, a lower bound for the cost change that

will result by moving job j from machine i1 to i2 is as stated below:

LB(j : (i1 → i2)) = −λi1(pi1j−yi1j)−ci1j−fi1j(yi1j)+ci2j+fi2j(ŷi2j)+λi2(pi2j−ŷi2j),

where ŷi2j = min((∂fi2j/∂yi2j)
−1(λi2), ui2j).

CHAPTER 7. MATCH UP SCHEDULING 152

Proof. The first three terms in LB(j : (i1 → i2)) give a lower bound on the cost

reduction by removing job j from machine i1; whereas the last three terms give

a lower bound on the cost increase by inserting job j into machine i2.

LB(j : (i1 → i2)) gives us a lower bound on the change of manufacturing cost

change for moving job j from i1 to i2. So if the lower bound is positive, then

the corresponding 1-move does not improve the cost of the schedule. On the

other hand, if it is negative, then it may be possible to improve the cost of the

schedule by reallocating this job to machine i2. Hence, we employ a procedure

to implement one moves on a given schedule as given below:

1-move Search Algorithm

Step 1. A given schedule S and a job pool P , initialize improved← TRUE.

Step 2. While improved do the following Steps 2.1 to 2.7.

Step 2.1. Generate all feasible 1-moves for each j in P in S.

Step 2.2. Calculate LB for all moves.

Step 2.3. If LB ≥ 0 for all feasible moves then stop. Else, go to Step 6.

Step 2.4. Make a list of moves with LB < 0 in ascending order of LB’s.

Step 2.5. Initialize found improving move ← FALSE and end of list ←
FALSE.

Step 2.6. While found improving move = FALSE and

end of list = FALSE, do Steps 2.6.1 to 2.6.4.

Step 2.6.1. Do the next move in the list.

Step 2.6.2. If it is the last move in the list then end of list← TRUE.

Step 2.6.3. Solve COMPi for the affected machines.

Step 2.6.4 New schedule is S ′.

If COST (S ′) < COST (S) then

S ← S ′,

found improving move← TRUE, improved← TRUE.

Step 2.7. If found improving move = FALSE then improved← FALSE.

1-move Search Algorithm starts with an initial schedule and applies promis-

ing 1-moves iteratively to obtain schedules with improved total manufacturing

cost. The algorithm terminates when no improvement is possible for the current

CHAPTER 7. MATCH UP SCHEDULING 153

schedule. In the next section we give a larger neighborhood search by a 2-swap

move.

7.4.4 2-swap Improvement Search

2-swap move is the exchange of two jobs, j1 and j2, between two machines i1 and

i2, i.e. moving job j1 from machine i1 to i2, and job j2 in the opposite direction.

We can consider a 2-swap move as a combination of two 1-move’s and calculate

a cost change lower bound for a given 2-move as below:

Lemma 7.3. (Lower Bound for a 2-swap) For a given schedule let λi1 and λi2 be

optimal dual prices for COMPi1 and COMPi2, respectively, and yi1j1 and yi2j2 be

the compression of the jobs j1 and j2 on machine i1 and i2, respectively. Then, a

lower bound for the cost change that will result by swapping jobs j1 and j2 between

machines i1 and i2 is calculated as below:

LB(j1 ↔ j2) = λi1(pi1j1−yi1j1−pi1j2 +ŷi1j2)−ci1j1−fi1j1(yi1j1)+ci1j2 +fi1j2(ŷi1j2)

+λi2(pi2j2−yi2j2−pi2j1 +ŷi2j1)−ci2j2−fi2j2(yi2j2)+ci2j1 +fi2j1(ŷi2j1),

where ŷi2j1 = min((
∂fi2j1
∂pi2j1

)−1(λi2), ui2j1) and ŷi1j2 = min((
∂fi1j2
∂yi1j2

)−1(λi1), ui1j2).

Proof. Similar to the proof of Lemma 7.2.

As in the 1-move case, if the lower bound for a given 2-swap is positive, then

the 2-swap does not reduce the cost of the current schedule. However, a 2-swap

with a negative lower bound has the potential for improvement. So starting from

the most promising 2-swap, we try possible two swaps for a given schedule and

improve it iteratively. Hence, the algorithm for 2-swap improvement search is

same as 1-move Search Algorithm except that 2-swaps are considered instead of

1-moves.

In this section we have described a heuristic algorithm which generates a set

of approximately efficient solutions for each bi-criteria problem considered. Each

CHAPTER 7. MATCH UP SCHEDULING 154

iteration of the algorithm gives a new solution with increased match-up times,

and for each new solution the manufacturing cost is either decreased or stays the

same. At the end, Heuristic Search Algorithm produces a set of solutions which

approximate the efficient frontier of match-up time versus manufacturing cost

trade-off. In the next section, we will describe our computational results on this

heuristic method and the exact solution approaches.

7.5 Computational Study

In the computational study, we tested the performance of alternative conic

quadratic formulations introduced in Sections 7.2 and 6.2.3 for generating exact

efficient solutions and of the heuristic algorithm described in Section 7.4 for gen-

erating approximate efficient solutions. We compared the computation time and

solution quality of these alternative approaches on a set of randomly generated

test problems. The test problems have varying number of jobs (n = 50, 100),

machines (m = 2, 3), capacity factor (κ = 0.25, 0.30), and length of disrup-

tion (ld = 2.0, 5.0). The fixed cost (cij) for each job-machine pair is gener-

ated from Uniform[2.0,6.0]. The coefficients of the compression cost function

(fij(yij) = kijy
aij/bij
ij) kij are generated from Uniform[1.0,3.0] and aij/bij from Uni-

form [1.1,3.1]. Processing time puij is generated from Uniform [1.0,3.0], whereas

the compression bound uij from puij× Uniform [0.5, 0.9]. We set the machining

capacity of each machine equal to

Di = κ×
∑m

i=1

∑n
j=1 p

u
ij

m
·

In order to construct preschedules we first solved the machine-job assignment

problem that minimizes total manufacturing cost subject to given capacity for

each machine. We sequenced the allocated jobs on each machine by using the

shortest processing time (SPT) first rule, which gives the minimum total comple-

tion time for a given set of jobs on a machine.

Having formed a preschedule, we generated a breakdown on the schedule

by randomly selecting a machine and a job on the selected machine so that the

CHAPTER 7. MATCH UP SCHEDULING 155

breakdown occurs during the execution of the selected job and lasts for a duration

generated from Uniform [ld − 1.0, ld + 1.0]. Rescheduling problem includes the

interrupted job on the breakdown machine and all jobs planned to be started

processing at the time of breakdown or later in the preschedule.

For each problem instance, we first ran Heuristic Search Algorithm which

generates a set of approximately efficient solutions. In order to test the solution

quality of the points generated by Heuristic Search Algorithm against efficient

solutions to be generated by CSM and CMM problems, we first selected three

solutions out of the solution set generated by the algorithm. T̄min and T̄max

being the minimum and maximum values of sum of match-up times objective,

for k = 1, 2, 3, the kth solution selected is the one with the closest sum of match-

up times value T̄k to T̄min + k × T̄max−T̄min
4

. Then, for each k we solved CSM

problem by setting T̄ = T̄k and measured the relative gap between the cost of the

heuristic solution and the cost of the exact efficient solution. We solved CSM by

using the conic quadratic formulations, CSM1 and CSM2, given in Section 6.2.3.

We followed the same approach for the maximum match-up time problem and

solved formulations CMM1 and CMM2. All experiments were performed using

ILOG CPLEX Version 10.1 on a 3 GHz Linux workstation with 512 MB memory

with a 1000 CPU seconds time limit.

In the experimental runs, solving the machine-job allocation problem to form

the preschedule took 16.14 CPU seconds on the average. After generating the

disruptions, the average number of jobs to be rescheduled was 40.7 for the 50-job

problems and 84.9 for the 100-job problems. Solving the SM model required 0.39

CPU seconds on the average, which was 0.16 for the MM model. Thus, we can

solve the sum of match-up times or maximum match-up time problems in very

short CPU times.

In Table 7.1 we give the computational results for the conic quadratic rep-

resentations of CSM1 and CSM2 . We report the number of problems (out of

15) solved to optimality within the time limit (opt). We also report the average

relative gap between the best known upper bound and the lower bound at time

of termination (egap), the average number of branch-and-bound nodes explored

CHAPTER 7. MATCH UP SCHEDULING 156

Table 7.1: Sum of Match-up Times

CSM1 CSM2
ld κ n m opt egap (%) node cpu opt egap (%) node cpu

2 9 0.4 2177.9 613.5 15 0 35.7 9.8
50 3 11 0.09 1095.9 527.5 15 0 188.7 71.1

0.25 2 0 2.29 1498.3 1087 15 0.01 106 55
100 3 0 0.52 742.3 1100 14 0.01 311.3 340.2

2.0 2 12 0.2 1464.3 484.2 15 0.01 41.3 12.6
50 3 12 0.17 625.3 343.6 13 0.07 280.9 176.1

0.30 2 0 0.94 1340.8 1071.2 15 0.01 82.5 58.1
100 3 5 0.08 540 856.3 13 0.01 463.4 502.9

2 6 1.02 3054.5 761.3 15 0 54.2 13.9
50 3 6 0.35 1552.1 784.5 14 0.03 306.9 161.8

0.25 2 0 2.68 1250.4 1073.2 15 0.01 120.1 80
100 3 1 0.7 789.4 1049.3 11 0.05 624.4 567.6

5.0 2 9 0.39 2381.2 664 15 0 35.9 9.6
50 3 6 0.33 1197.4 729.8 14 0.01 496.1 213.7

0.30 2 0 1.57 1374.1 1080.7 14 0.02 213.8 157.1
100 3 1 0.22 621.5 1015.7 8 0.05 710.2 792.7

Average 4.9 0.75 1356.6 827.6 13.8 0.02 254.5 201.4

(node) and the average CPU time in seconds to solve the problems (cpu). Com-

paring the number of problems solved to optimality, we see that CSM1 could not

solve most of the problems. However, CSM2 was able to solve all problems within

given time limit in most of the cases. Whereas only 32% of all the problems could

be solved to optimality with CSM1, 92% of the problems were solved to optimal-

ity with CSM2. The average optimality gap for CSM2 is quite low compared to

CSM1. In worst case it is 0.07% for CSM2, while it is up to 2.68% for CSM1.

CSM2 explored significantly fewer number of nodes to solve the problems com-

pared to CSM1. Hence, formulation CSM2 is much more effective in solving the

problems than CSM1.

Table 7.2 summarizes the results for the cost minimization problem subject

to a given maximum match-up time bound. We solved conic quadratic represen-

tations of CMM1 and CMM2. The results show that CMM2 could solve all the

CHAPTER 7. MATCH UP SCHEDULING 157

Table 7.2: Maximum Match-up Time Results

CMM1 CMM2
ld κ n m opt egap(%) node cpu opt egap(%) node cpu

2 13 0.11 1734.5 309.6 15 0 2.9 1.3
50 3 15 0.01 204.1 65.7 15 0 14.6 4.1

0.25 2 5 1.38 1820.1 795.8 15 0 0 0.6
100 3 8 0.18 712.9 625.6 15 0 6.9 6.4

2.0 2 15 0.01 954.7 179.2 15 0 2.6 1
50 3 15 0.01 40.7 15.9 15 0 15.9 4.5

0.30 2 6 0.53 1879.1 707.9 15 0 2.4 2.1
100 3 15 0.01 63.6 64.5 15 0 14 10.6

2 12 0.33 2287.8 423.9 15 0 1.1 0.7
50 3 15 0.01 735.3 218.7 15 0 10.2 3.5

0.25 2 2 1.74 2690.7 1046.8 15 0 2.2 2
100 3 6 0.32 1036.6 782.9 15 0.01 11.7 7.9

5.0 2 13 0.08 1835.9 320.4 15 0 2.8 1
50 3 15 0.01 146.2 52 15 0 25.1 7.7

0.30 2 5 0.73 2000.5 817.2 15 0 0.9 1.3
100 3 15 0.01 157 152.7 15 0.01 17.6 14.2

Average 10.9 0.34 1143.7 411.2 15 0.001 8.2 4.3

problems to optimality within short CPU times by exploring a small number of

branch-and-bound nodes. On the other hand, CMM1 could solve only 72% of the

problems to optimality within the time limit of 1000 CPU seconds. The average

CPU time spent to solve CMM1 is quite high compared to CMM2. The results

show that CMM2 is a powerful tool to solve this match-up scheduling problem.

We can even use the CMM2 to generate all the solutions in the efficient frontier.

Our computational results indicate that advances in conic mixed-integer program-

ming provide us strong formulations which can solve rescheduling problems with

controllable processing times within reasonable CPU times.

In Table 7.3 we present the computational results for the heuristic algorithm,

which generates approximate efficient solutions with varying cost and match-up

time. In this table we report the average number of solutions generated by the

algorithm (# sol), and the average CPU time in seconds (cpu). Since we solved

CHAPTER 7. MATCH UP SCHEDULING 158

the CSM (CMM) problems for the sum of match-up times (maximum of match-

up times) of the selected solutions generated by the heuristic, we can compare

the manufacturing cost of the selected heuristic solutions with the corresponding

optimal cost achieved by solving CSM (CMM). The relative gap is measured by

100× (zH − zCSM)/zCSM , where zH and zCSM are the cost value of the heuristic

solution and the optimal cost achieved by solving CSM, respectively. In the table,

we report the mean, minimum and maximum of the relative gap (gap).

The results show that Heuristic Search Algorithm runs within few seconds

and generates a large number of alternative solutions with varying time/cost

trade-off to the decision maker. Such a solution set can be used to visualize an

approximate efficient frontier. When we check the solution quality for cost versus

sum of match-up times problem, we see that the average gap between the heuristic

solution and the exact solution is less than 1% in most of the cases and is 1.58%

at most. The worst gap performance is 6.23%, but in most of the cases it is close

to 0.0%, implying an almost equivalent solution quality with exact approaches.

For the maximum match-up time problem, the average gap for the heuristic is

0.73%. While the minimum gap can be as low as 0.0%, and we see the worst gap

is 24.04%. For the cases where the decision maker may want to see the behavior

of the efficient frontier quickly, the heuristic algorithm may be very valuable.

Finally, we have checked the effect of solving the sum of match-up time prob-

lem on the maximum match-up time objective and vice versa. If we solve the

sum of match-up time problem, and check the maximum match-up time of the

achieved schedules, we see that the resulting maximum match-up times deviate

by 14.7% from optimum. Similarly, if we solve the maximum match-up time

problem and check the sum of match-up times, we see a deviation of 25.5% from

the optimum. We have also compared the manufacturing cost of the initial sched-

ules achieved by the heuristic algorithm. The cost of the schedule achieved by

solving maximum match-up time is 0.4% higher on the average than the sched-

ule achieved by solving sum of match-up times objectives. However, in terms of

manufacturing cost we do not see a statistically significant relationship between

two approaches.

CHAPTER 7. MATCH UP SCHEDULING 159

Table 7.3: Heuristic Algorithm Performance

Sum of Match-up Times Maximum Match-up Time
sol cpu gap (%) # sol cpu gap(%)

ld κ n m mean mean mean min max mean mean mean min max
2 19.8 1.26 0.04 0.00 0.21 27.6 2.05 0.28 0.00 1.06

50 3 13.8 0.37 1.21 0.00 6.23 31.8 1.38 0.35 0.00 1.43
0.25 2 70.2 8.58 0.21 0.00 0.66 67.6 12.03 0.17 0.08 0.24

100 3 49 3.77 0.09 0.00 0.18 78.8 12.51 0.11 0.00 0.37
2.0 2 18.6 0.64 0.39 0.00 1.92 31.4 2.30 0.21 0.00 0.62

50 3 14.4 1.15 0.82 0.00 3.04 34.4 4.63 0.73 0.10 2.08
0.30 2 50.4 3.77 0.09 0.00 0.55 72.6 10.22 1.17 0.00 15.75

100 3 27.6 1.35 0.03 0.00 0.09 80.6 27.16 0.08 0.00 0.23
2 19.4 1.94 0.14 0.00 0.48 20.6 2.00 0.48 0.00 1.60

50 3 21.2 1.16 0.49 0.00 1.41 25.0 1.72 1.94 0.00 18.00
0.25 2 53.6 11.74 0.30 0.00 0.93 57.0 9.97 0.41 0.16 0.86

100 3 57 10.33 0.26 0.00 0.92 70.2 15.60 0.38 0.07 1.04
5.0 2 66.2 2.10 0.21 0.00 0.61 24.6 2.28 1.89 0.00 17.94

50 3 19.4 1.23 1.58 0.17 4.11 31.2 2.44 0.36 0.00 1.25
0.30 2 69.4 12.89 0.17 0.01 0.50 64.8 9.05 0.46 0.25 0.73

100 3 48 6.26 0.97 0.00 2.68 74.0 24.80 2.64 0.09 24.04
Average 38.6 4.28 0.44 0.01 1.53 49.5 8.76 0.73 0.05 5.45

In this section, we have showed that we can efficiently solve match-up

rescheduling problems with controllable processing times exactly by using re-

cently developed reformulation techniques and commercial solvers. We have also

observed that our heuristic is able to generate a very good approximation of the

efficient frontier of match-up time and manufacturing cost quickly. In the next

section, we conclude the chapter with some final remarks.

7.6 Conclusions

The results in this chapter clearly indicate that controllable processing times

introduce an important flexibility to deal with machine breakdowns. As a result

of this solution flexibility, we can either generate schedules which can catch up the

CHAPTER 7. MATCH UP SCHEDULING 160

preschedule very quickly after the disruption albeit at a high manufacturing cost,

or we can distribute the effects of disruption to the entire schedule by creating

alternative time/cost trade-offs to the decision maker. We have introduced new

match-up time related objectives, sum of match-up times and maximum match-

up time, each which has its own advantages. It may be critical for the scheduler to

balance the match-up time and manufacturing cost objectives, hence we provide

effective exact mathematical programming formulations and heuristic algorithms

to provide alternative solutions. Processing time controllability and convex cost

functions complicate the scheduling problems significantly. Here, we have also

seen that reformulation approach given in Chapter 6 can play an important role

in mitigating this difficulty. In the next chapter, we will review the results of this

thesis and give concluding remarks. We will also give possible future research

directions.

Chapter 8

Conclusion

In this chapter, we first summarize the work we did in each chapter of this thesis.

Then, we state the further possible research directions.

8.1 Concluding Remarks

In this thesis, we have studied a group of scheduling problems which involve

making simultaneous processing time and scheduling decisions. As the selected

processing time determines the manufacturing cost of a job, total manufacturing

cost was a common objective for the problems we have considered in this thesis.

We devoted Chapters 3, 4 and 5 to explore the trade-off between total manu-

facturing cost objective and various scheduling performance measures in different

machine environments.

In Chapter 3, we considered total completion time and total weighted comple-

tion time objectives in single machine environment. In Chapter 4, we considered

total completion time objective on identical parallel machines. We considered

ε-approach for finding efficient solutions for those problems and hence solved P1

variant of the problem where we minimize total manufacturing cost subject to a

given bound on the scheduling performance criterion. For those three problems in

161

CHAPTER 8. CONCLUSION 162

Chapters 3 and 4, we proposed efficient formulations such that the continuous re-

laxation of which can be solved to integer local optimal solutions. Each problem

had a nonlinear objective and a non-convex continuous relaxation which com-

plicate solving the problems by continuous relaxation based branch-and-bound

algorithms. For each of those problems, we have derived optimality properties

which state the relationship between processing times of the jobs at optimality.

Those properties led us to design heuristic algorithms which generate approxi-

mate efficient solutions for the problems. We have tested the algorithms against

best known NLP solver MINOS, which showed that the solution quality of the

algorithm is almost equivalent to the solution quality of MINOS. On the other

hand, the heuristic algorithms were able to generate very large sets of alternative

approximate efficient solutions in very short CPU times compared to MINOS,

which is very important for bi-criteria decision making problems.

The next scheduling objective considered in Chapter 5 was the makespan

in non-identical parallel machine environment. We considered minimizing total

manufacturing cost subject to a given bound on the makespan of the schedule.

Using the optimality property for single machine case, we derived lower bounding

approaches which we employed in a branch-and-bound algorithm and heuristic

search algorithms. For the cases where the exact approach is not efficient, we

have proposed recovering beam search and improvement search heuristics for the

problem. The results show that the search algorithms can achieve a solution

within 1% of the optimum in very short CPU times.

Chapters 3- 5 were focusing on finding efficient solutions for the total manufac-

turing cost objective and various well known scheduling performance measures.

For each performance measure, we have provided alternative methods to find

efficient solutions. Next, in Chapter 6 we took a different point of view and

considered a machine-job assignment problem under capacity constraints on the

machines. This time, cost of a job was given by a convex function of the amount

of compression on its processing time. Modeling the cost as a function of com-

pression is frequently used in the literature. We studied the problem structure of

the problem and proposed a strengthened conic quadratic formulation in Chap-

ter 6. Proposed formulation has greatly reduced the root node gap, required CPU

CHAPTER 8. CONCLUSION 163

time and required number of nodes opened to solve the problem. Furthermore,

our approach was applicable to many problems having separable convex objective

functions and variable upper bounding constraints from different areas.

Finally, in Chapter 7, we have considered controllable processing times in

rescheduling problems arising in non-identical parallel machine environment. We

showed that controllable processing times brings new solution alternatives to

rescheduling problems due to the flexibility of making new processing time de-

cisions after a disruption occurs. We also showed that some objectives such as

total match-up time, maximum match up time and total manufacturing cost can

be considered in this environment. Another approach is considering the trade-off

between cost and match-up time related objectives. We employed conic quadratic

formulations to solve cost minimization problems and proposed a heuristic search

algorithm for the problems.

8.2 Future Research Directions

In this thesis, we have studied time/cost trade-off problems dealing with differ-

ent scheduling performance measures in different machine environments. What

distinguishes our work from the current literature is the nonlinear convex manu-

facturing cost function of processing time that we have considered. We observe

that current studies mostly assume linear cost functions or more simpler non-

linear relationship between processing times and cost. As we have seen in this

study, nonlinearity of the cost functions causes difficulty in finding exact optimal

solutions to the problems even for the simplest scheduling performance measures

such as total completion time and makespan. We can consider other scheduling

performance measures such as the due date related measures with the total man-

ufacturing cost objective. Furthermore, we can work on more complex machine

environment settings to explore time/cost trade-off problems.

We can extend the work in this thesis to consider different scheduling environ-

ments and different objectives as discussed above. On the other hand, we can also

CHAPTER 8. CONCLUSION 164

apply the methodology used here to analyze different problems. In this thesis,

we have focused on finding efficient solutions for a set of problems by considering

the ε-approach. Indeed, multi-objective optimization literature provides different

point of views to analyze bi-criteria problems. We may consider characterizing

supported solutions, finding where non-supported solutions lie and describing the

behavior of the efficient frontier for the bi-criteria scheduling problems.

In this thesis, we have also shown that the advances in the field of nonlinear

optimization namely the conic quadratic programming can be used to get efficient

mathematical formulations for the scheduling problems with controllable process-

ing times. In addition to the possible extensions in terms of selected performance

measures and in terms of deeper multi-objective analysis, we can look for alter-

native, possibly stronger formulations of different time/cost trade-off problems.

Conic mixed integer programming is a new research area in the field of mixed-

integer optimization. In context of a scheduling problem, we have shown that

conic programming allows us stronger formulations for the problems with convex

separable cost terms in the objective and variable upper bounding constraints in

the constraint set. A direct extension of our work is exploring possible stronger

formulations for the non-separable convex objectives with variable upper bound-

ing constraints. One potential application area of our reformulation approach is

the inventory/location problems with inventory holding costs.

In this thesis, we have also shown that controllable processing times can be

considered in rescheduling problems to generate alternative reactive schedules

against disruptions. In rescheduling we consider stability measures such as match-

up time, number of reassigned jobs, etc. besides the scheduling performance

measures. To the best of our knowledge, there is no published work done in

rescheduling with controllable processing times. We considered working with

total manufacturing cost, makespan and match-up time related measures in this

thesis. Different stability measures such as completion time difference between

preschedule and reactive schedule and number of re-planned jobs (new processing

times assigned and/or reassigned to a different machine) can be considered in a

new research problem.

CHAPTER 8. CONCLUSION 165

One possible extension to our rescheduling work is including reassigning costs

in the cost objective for the jobs reassigned to different machines than their

machine in the preschedule. This cost may be occurred due the necessity of

transporting a job from its original machine to another machine.

A direct extension of our rescheduling work in this thesis is considering alter-

native sequencing rules when forming the preschedule for the given problem in

Chapter 7. We used the SPT rule to sequence the jobs on each machine in the

current work. However, we think that more robust ordering rules can be designed

which take into account the flexibility of the jobs which can be defined in terms

of amount of possible compression and its cost, and so on. We can also consider

the mean time to fail and mean time to repair data to find sequencing approaches

for the machines.

In airline scheduling, it is likely to see a similar trade-off between match-up

time and flight costs in case of disruptions to flight schedules. So, potentially,

taking a similar approach to the one used in this thesis, airline rescheduling

problems can be another topic of further research.

Bibliography

[1] M.S. Aktürk and S. Avcı. Tool allocation and machining conditions opti-

mization for CNC machines. European Journal of Operational Research, 94:

335–348, 1996.

[2] M.S. Aktürk and E. Görgülü. Match-up scheduling under a machine break-

down. European Journal of Operational Research, 112:81–97, 1999.

[3] M.S. Aktürk and S. Gürel. Machining conditions based preventive mainte-

nance. International Journal of Production Research, 45:1725–1743, 2007.

[4] M.S. Aktürk, A. Atamtürk, and S. Gürel. A strong conic quadratic re-

formulation for machine-job assignment with controllable processing times.

Research Report BCOL 07.01, University of California-Berkeley, April 2007.

[5] O. Alagöz and M. Azizoğlu. Rescheduling of identical parallel machines under

machine eligibility constraint. European Journal of Operational Research,

149:523–532, 2003.

[6] B. Alidaee and A. Ahmadian. Two parallel machine sequencing problems

involving controllable job processing times. European Journal of Operational

Research, 70:335–341, 1993.

[7] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical

Programming, 95:3–51, 2003.

[8] A. Atamtürk and V. Narayanan. Conic mixed-integer rounding cuts. Re-

search Report BCOL 06.03, University of California-Berkeley, December

2006. Shorter version forthcoming in the Proceedings of IPCO 2007.

166

BIBLIOGRAPHY 167

[9] H. Aytug, M.A. Lawley, K. McKay, S. Mohan, and R. Uzsoy. Executing

production schedules in the face of uncertainties: A review and some future

directions. European Journal of Operational Research, 161:86–110, 2005.

[10] M. Azizoğlu and O. Alagöz. Parallel-machine rescheduling with machine

disruptions. IIE Transactions, 37:1113–1118, 2005.

[11] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming: The-

ory and Algorithms. Wiley, New York, 1993.

[12] J.C. Bean, J.R. Birge, J. Mittenthal, and C.E. Noon. Match-up scheduling

with multiple resources, release dates and disruptions. Operations Research,

39(3):470–483, 1991.

[13] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization:

Analysis, Algorithms, and Engineering Applications. SIAM, 2001.

[14] A. Bhattacharya, R. Faria-Gonzalez, and I. Ham. Regression analysis for

predicting surface finish and its application in the determination of optimum

machining conditions. Journal of Engineering Industry, 92:711–714, 1970.

[15] K.M. Bretthauer and B. Shetty. The nonlinear resource allocation problem.

Operations Research, 43(4):670–683, July-August 1995.

[16] A. Broke, D. Kendrick, A. Meeraus, and R. Raman. GAMS: A User’s Guide.

GAMS Development Corporation, 2004.

[17] D. Cao, M. Chen, and G. Wan. Parallel machine selection and job scheduling

to minimize machine cost and job tardiness. Computers and Operations

Research, 32:1995–2012, 2005.

[18] M.T. Çezik and G. Iyengar. Cuts for mixed 0-1 conic programming. Math-

ematical Programming, 104:179–202, 2005.

[19] Z.L. Chen. Simultaneous job scheduling and resource allocation on parallel

machines. Annals of Operations Research, 129:135–153, 2004.

[20] Z.L. Chen, Q. Lu, and G. Tang. Single machine scheduling with discretely

controllable processing times. Operations Research Letters, 21:69–76, 1997.

BIBLIOGRAPHY 168

[21] T.C.E. Cheng, Z.L. Chen, and C.-L. Lee. Parallel-machine scheduling with

controllable processing times. IIE Transactions, 28:177–180, 1996.

[22] J.C. Choi and D.L. Bricker. Effectiveness of a geometric programming al-

gorithm for optimization of machining economics models. Computers and

Operations Research, 23:957–961, 1996.

[23] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of Scheduling.

Addison-Wesley, Massachusetts, 1967.

[24] J. Curry and B. Peters. Rescheduling parallel machines with stepwise in-

creasing tardiness and machine assignment stability objectives. International

Journal of Production Research, 43(15):3231–3246, 2005.

[25] R.L. Daniels and R.K. Sarin. Single machine scheduling with controllable

processing times and number of jobs tardy. Operations Research, 37(6):981–

984, November-December 1989.

[26] R.L. Daniels, B.J. Hoopes, and J.B. Mazzola. Scheduling parallel manufac-

turing cells with resource flexibility. Management Science, 42(9):1260–1276,

September 1996.

[27] E. Davis and J.M. Jaffe. Algorithms for scheduling tasks on unrelated proces-

sors. Journal of the Association for Computing Machinery, 28(4):721–736,

1981.

[28] F. Della Croce and V. T’kindt. A recovering beam search algorithm for the

one-machine dynamic total completion time scheduling problem. Journal of

the Operational Research Society, 53:1275–1280, 2002.

[29] F. Della Croce, M. Ghirardi, and R. Tadei. Recovering beam search: En-

hancing the beam search approach for combinatorial optimization problems.

Journal of Heuristics, 10:89–104, 2004.

[30] D.S. Ermer and S. Kromordihardjo. Optimization of multi-pass turning with

constraints. ASME, Journal of Engineering for Industry, 103:462–468, 1981.

[31] C.A. Floudas. Nonlinear and Mixed-Integer Optimization. Oxford University

Press, New York, 1995.

BIBLIOGRAPHY 169

[32] A. Frangioni and F. Gentile. Perspective cuts for a class of convex 0-1 mixed

integer programs. Mathematical Programming, 106:225–236, 2006.

[33] B. Gopalakrishnan and F. Al-Khayyal. Machine parameter selection for

turning with constraints:an analytical approach based on geometric program-

ming. International Journal of Production Research, 29(9):1897–1908, 1991.

[34] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Opti-

mization and approximation in deterministic machine scheduling: A survey.

Annals of Discrete Mathematics, 5:287–326, 1979.

[35] O. Günlük, J. Lee, and R. Weismantel. MINLP strengthening for separable

convex quadratic transportation-cost UFL. IBM Research Report RC24213,

IBM, TJ Watson Research Center, Yorktown, NY, 2007.

[36] J.N.D. Gupta and J.C. Ho. Minimizing makespan subject to minimum flow

time on two identical parallel machines. Computers and Operations Research,

28:705–717, 2001.

[37] J.N.D. Gupta and A.J. Ruiz-Torres. Generating efficient schedules for iden-

tical parallel machines involving flow-time and tardy jobs. European Journal

of Operational Research, 167:679–695, 2005.

[38] S. Gürel and M.S. Aktürk. Scheduling parallel CNC machines with time/cost

trade-off considerations. Computers and Operations Research, 34:2774–2789,

2007.

[39] S. Gürel and M.S. Aktürk. Optimal allocation and processing time decisions

on non-identical parallel CNC machines: ε-constraint approach. European

Journal of Operational Research, 183:591–607, 2007.

[40] S. Gürel and M.S. Aktürk. Scheduling preventive maintenance on a sin-

gle CNC machine. International Journal of Production Research, 2007, to

appear.

[41] S. Gürel and M.S. Aktürk. Considering manufacturing cost and scheduling

performance on a CNC turning machine. European Journal of Operational

Research, 177:325–343, 2007.

BIBLIOGRAPHY 170

[42] N.G. Hall and C.N. Potts. Rescheduling for new orders. Operations Research,

52(3):440–453, May-June 2004.

[43] M.P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations

to the non-dominated set. IMM technical report, Technical University of

Denmark, 1998.

[44] W. Herroelen and R. Leus. Robust and reactive project scheduling: a re-

view and classification of procedures. International Journal of Production

Research, 42(8):1599–1620, 2004.

[45] W. Herroelen and R. Leus. Project scheduling under uncertainty: Survey

and research potentials. European Journal of Operational Research, 165:

289–306, 2005.

[46] K. Hitomi. Manufacturing systems engineering: A unified approach to man-

ufacturing technology and production management. Taylor and Francis, Lon-

don, 1979.

[47] H. Hoogeveen and G.J. Woeginger. Some comments on sequencing with

controllable processing times. Computing, 68:181–192, 2002.

[48] H. Hoogeven. Multicriteria scheduling. European Journal of Operational

Research, 167:592–623, 2005.

[49] A. Janiak and M.Y. Kovalyov. Single machine scheduling subject to deadlines

and resource dependent processing times. European Journal of Operational

Research, 94:284–291, 1996.

[50] A. Janiak, M.Y. Kovalyov, W. Kubiak, and F. Werner. Positive half-products

and scheduling with controllable processing times. European Journal of Op-

erational Research, 165:416–422, 2005.

[51] K. Jansen and M. Mastrolilli. Approximation schemes for parallel machine

scheduling problems with controllable processing times. Computers and Op-

erations Research, 31:1565–1581, 2004.

BIBLIOGRAPHY 171

[52] M.T. Jensen. Improving robustness and flexibility of tardiness and total

flow-time job shops using robustness measures. Applied Soft Computing, 1:

35–52, 2001.

[53] M. Kaspi and D. Shabtay. Convex resource allocation for minimizing the

makespan in a single machine with job release dates. Computers and Oper-

ations Research, 31:1481–1489, 2004.

[54] R.K. Kayan and M.S. Aktürk. A new bounding mechanism for the CNC

machine scheduling problems with controllable processing times. European

Journal of Operational Research, 167:624–643, 2005.

[55] P. Kesavan, R.J. Allgor, E.P. Gatzke, and P.I. Barton. Outer approxima-

tion algorithms for separable non-convex mixed-integer nonlinear programs.

Mathematical Programming, 100(3):517–535, 2004.

[56] E. Kutanoğlu and İ. Sabuncuoğlu. Routing-based reactive scheduling poli-

cies for machine failures in job shops. International Journal of Production

Research, 39:3141–3158, 2001.

[57] B.F. Lamond and M.S. Sodhi. Using tool life models to minimize processing

time on a flexible machine. IIE Transactions, 29:611–621, 1997.

[58] C.Y. Lee, J.Y-T. Leung, and Y Gang. Two machine scheduling under dis-

ruptions with transportation considerations. Journal of Scheduling, 9:35–48,

2006.

[59] V.J. Leon, S.D. Wu, and R.H. Storer. Robustness measures and robust

scheduling for job shops. IIE Transactions, 26(5):32–43, 1994.

[60] R. Leus and W. Herroelen. Scheduling for stability in single-machine pro-

duction systems. Journal of Scheduling, 2008, to appear.

[61] B. Malakooti and J. Deviprasad. An interactive multiple criteria approach

for parameter selection in metal cutting. Operations Research, 37(5):805–

818, September-October 1989.

[62] M. Mastrolilli. Notes on max flow time minimization with controllable pro-

cessing times. Computing, 71:375–386, 2003.

BIBLIOGRAPHY 172

[63] S.V. Mehta and R.M. Uzsoy. Predictable scheduling of a job shop subject to

breakdowns. IEEE Trans. Robot. Autom., 14:365–378, 1998.

[64] K.G. Murty and S.N. Kabadi. Some NP-complete problems in quadratic and

nonlinear programming. Mathematical Programming, 39:117–129, 1987.

[65] Y. Nesterov and A. Nemirovski. Interior-point polynomial algorithms for

convex programming. SIAM, Philadelphia, 1993.

[66] C.T.D. Ng, T.C.E. Cheng, and M.Y. Kovalyov. Batch scheduling with con-

trollable setup and processing times to minimize total completion time. Jour-

nal of the Operational Research Society, 54:499–506, 2003.

[67] S.Y. Nof and F.H. Grant. Adaptive/predictive scheduling: review and a

general framework. Production Planning and Control, 2(4):298–312, 1991.

[68] E. Nowicki and S. Zdrzalka. A bicriterion approach to preemptive scheduling

of parallel machines with controllable job processing times. Discrete Applied

Mathematics, 63:237–256, 1995.

[69] E. Nowicki and S. Zdrzalka. A survey of results for sequencing problems

with controllable processing times. Discrete Applied Mathematics, 26:271–

287, 1990.

[70] R. O’Donovan, R.M. Uzsoy, and K.N. McKay. Predictable scheduling of a

single machine with breakdowns and sensitive jobs. International Journal of

Production Research, 37(18):4217–4233, 1999.

[71] P.S. Ow and T.E. Morton. Filtered beam search in scheduling. International

Journal of Production Research, 26(1):35–62, 1988.

[72] S.S. Panwalkar and R. Rajagopalan. Single machine sequencing with con-

trollable processing times. European Journal of Operational Research, 59:

298–302, 1992.

[73] M. Pinedo. Scheduling: theory, algorithms and systems. Prentice Hall, New

Jersey, second edition, 2002.

BIBLIOGRAPHY 173

[74] F.M. Ruiz Diaz and S. French. A note on SPT scheduling of a single machine

with controllable processing times. Technical Report Note 154, Department

of Decision Theory, University of Manchaster, 1984.

[75] M. Savelsbergh. A branch-and-price algorithm for the generalized assignment

problem. Operations Research, 45:831–841, 1997.

[76] D. Shabtay. Single and two-resource allocation algorithms for minimizing the

maximal lateness in a single machine. Computers and Operations Research,

31:1303–1315, 2004.

[77] D. Shabtay and M. Kaspi. Parallel machine scheduling with a convex resource

consumption function. European Journal of Operational Research, 173(1):

92–107, 2006.

[78] D. Shabtay and M. Kaspi. Minimizing the total weighted flow time in a

single machine with controllable processing times. Computers and Operations

Research, 31:2279–2289, 2004.

[79] D. Shabtay and G. Steiner. A survey of scheduling with controllable pro-

cessing times. Discrete Applied Mathematics, 155(13):1643–1666, 2007.

[80] D. Shmoys and E. Tardos. An approximation algorithm for the generalized

assignment problem. Mathematical Programming, 62:461–474, 1993.

[81] M.S. Sodhi, B.F. Lamond, A. Gautier, and M. Noël. Heuristics for determin-

ing economic processing rates in a flexible manufacturing system. European

Journal of Operational Research, 129:105–115, 2001.

[82] F.W. Taylor. On the art of cutting metals. Transaction ASME, 1906.

[83] V. T’kindt and J.-C. Billaut. Multicriteria Scheduling: Theory, Models and

Algorithms. Springer, Berlin, second edition, 2006.

[84] M.A. Trick. Scheduling multiple variable-speed machines. Operations Re-

search, 42(2):234–248, March-April 1994.

BIBLIOGRAPHY 174

[85] A. Türkcan. Essays on scheduling with controllable processing times in flex-

ible manufacturing systems. PhD dissertation, Bilkent University, Depart-

ment of Industrial Engineering, April 2003.

[86] D. Tuyttens, J. Teghem, P.H. Fortemps, and K. Van Nieuwenhuyze. Perfor-

mance of the MOSA method for the bicriteria assignment problem. Journal

of Heuristics, 6:295–310, 2000.

[87] L.N. Van Wassenhove and K.R. Baker. A bicriterion approach to time/cost

tradeoffs in sequencing. European Journal of Operational Research, 11:48–54,

1982.

[88] R.G. Vickson. Choosing the job sequence and processing times to minimize

total processing plus flow cost on a single machine. Operations Research, 28:

1155–1167, 1980.

[89] R.G. Vickson. Two single-machine sequencing problems involving control-

lable job processing times. AIIE Transactions, 12:258–262, 1980.

[90] G.E. Vieira, J.W. Herrmann, and E. Lin. Rescheduling manufacturing sys-

tems: A framework of strategies, policies and methods. Journal of Schedul-

ing, 6:39–62, 2003.

[91] G. Wan, B.P.C. Yen, and C.L. Li. Single machine scheduling to minimize

total compression plus weighted flow cost is NP-hard. Information Processing

Letters, 79:273–280, 2001.

[92] J. Wu and S. Azarm. Metrics for quality assessment of a multi-objective

design optimization solution set. Journal of Mechanical Design, 123(1):18–

25, 2001.

[93] B. Yang. Single machine rescheduling with new jobs arrivals and processing

time compression. International Journal of Advanced Manufacturing Tech-

nology, 34(3-4):378–384, 2007.

[94] L. Yedidsion, D. Shabtay, and M. Kaspi. A bicriteria approach to minimize

maximal lateness and resource consumption for scheduling a single machine.

Journal of Scheduling, 10:341–352, 2007.

BIBLIOGRAPHY 175

[95] F. Zhang, G. Tang, and Z.L. Chen. A 3/2-approximation algorithm for

parallel machine scheduling with controllable processing times. Operations

Research Letters, 29:41–47, 2001.

[96] E. Zitzler. Evolutionary algorithms for multi-objective optimization: Methods

and applications. Shaker Verlag, Aachen, Germany, 1999. Ph.D. dissertation.

[97] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary

algorithms-a comparative case study. In A.E. Eiben, Th. Bck, M. Schoe-

nauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature

(PPSN V), number 1498 in Lecture Notes in Computer Science, pages 292–

301, Berlin, Germany, 1998. Springer.

[98] E. Zitzler, L. Thiele, M. Laumans, C. Fonseca, and V.G. Fonseca. Per-

formance assessment of multi-objective optimizers: an analysis and review.

IEEE Transactions on Evolutionary Computation, 7(2):117–132, 2003.

Appendix A

Single Machining Operation

Problem (SMOP)

SMOP is the manufacturing cost minimization problem for the turning operation.

Decision variables for the problem are the cutting speed (vi) and the feed rate

(fi). The job to be machined has certain specifications like job diameter, length,

depth of cut and maximum allowable surface roughness and a selected cutting

tool. A cutting tool has certain technical coefficients.

There are three constraints in the problem. The first one is the tool life

constraint which comes from the limitation that each job can use at most one

tool. The second constraint is the machine power constraint that comes from the

maximum applicable cutting power by the machine. The last one, the surface

roughness constraint, satisfies the surface quality requirement for the operation.

The geometric programming model for the problem to minimize manufacturing

cost (i.e. the sum of the operating and the tooling costs) for job i is as follows:

min Cost = Co · pi + Ct · Ui
= C1v

−1
i f−1

i + C2v
(α−1)
i f

(β−1)
i

s.t. C
′

tv
α−1
i fβ−1

i ≤ 1 (Tool life constraint)

176

APPENDIX A. SINGLE MACHINING OPERATION PROBLEM (SMOP)177

C
′

mv
b
if

c
i ≤ 1 (Machine power constraint)

C
′

sv
g
i f

h
i ≤ 1 (Surface roughness constraint)

vi, fi > 0

where C1 = πDiLiCo
12

, C2 =
πDiLid

γ
i Cti

12CTLi
, C ′t =

πDiLid
γ
i

12CTLi
, C ′m =

Cmdei
H

and C ′s =
Csdli
Si

.

Theorem A.1. (Aktürk and Avcı [1]) At least one of the surface roughness and

machine power constraints is binding at optimality for SMOP.

Theorem A.2. (Kayan and Aktürk [54]) The surface roughness constraint must

be tight at the optimal solution.

VITA

Sinan Gürel was born on January 16, 1977 in Kütahya, Turkey. He attended

Ankara Fen Lisesi in 1992. He graduated from Bilkent University Industrial En-

gineering Department with degree of honor in 1999. He worked as a Maintenance

Management System Specialist in implementation projects of MAXIMO, a world-

wide used maintenance management system software, for two years. In 2001, he

attended Industrial Engineering Department of Bilkent University as a Research

Assistant. Since then, he has been working with Prof. M. Selim Aktürk on his

graduate study. He got his M.S. degree in 2003. He had been on the grant

2211 awarded by TÜBİTAK during most of his Ph.D. study. While he was on

another TÜBİTAK grant (2214) in Fall 2006, he visited the IEOR Department

of University of California, Berkeley, where he worked with Assoc. Prof. Alper

Atamtürk.

178

	Introduction
	Literature Review
	Machining Parameters Selection
	Scheduling with Controllable Processing Times: Time/Cost Trade-off
	Single Machine Problems
	Parallel Machine Scheduling Problems

	Multi-objective Scheduling
	Conic Mixed Integer Programming
	Rescheduling

	Single Machine Scheduling
	Problem Definition
	Cost Index Based Approximation (CIBA) Method
	Total Completion Time Problem
	Numerical Example
	Computational Results
	Conclusion

	Parallel Machine Scheduling
	Problem Definition
	Optimality Properties
	A heuristic method to generate approximate efficient solutions
	Numerical Example
	Computational Analysis
	Conclusions

	Machine Job Allocation
	Problem Definition
	Single Machine Subproblem (Pm)
	Cost Lower Bounds for a Partial Schedule
	Initial Solution
	B&B Algorithm
	Beam Search Algorithm (BS)
	Improvement Search Heuristic (ISH)
	Recovering Beam Search (RBS)
	Computational Results
	Conclusion

	Conic Quadratic Reformulation
	Problem Definition
	Conic Reformulations
	Working with epi(f)
	Strengthening the continuous relaxation
	Conic quadratic representation

	Computational Analysis
	Conclusion

	Match up Scheduling
	Rescheduling with Controllable Processing Times: A Numerical Example
	Scheduling Environment and Problem Definitions
	Minimize Sum of Match up Times
	Minimize Maximum of Match up Times
	Minimize Total Manufacturing Cost Subject to a Bound on Sum of Match up Times
	Minimize Total Manufacturing Cost Subject to a Bound on Maximum Match up Time

	Strong Conic Quadratic Formulations for Cost Minimization Problems
	Generating A Set of Approximately Efficient Solutions: Heuristic Approach
	A Subproblem
	Job Pool
	1-move Improvement Search
	2-swap Improvement Search

	Computational Study
	Conclusions

	Conclusion
	Concluding Remarks
	Future Research Directions

	Single Machining Operation Problem (SMOP)

