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I certify that I have read this thesis and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of doctor of philosophy.

Prof. Raşit Turan
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Abstract

ON THE STRAIN IN SILICON NANOCRYSTALS

Dündar Yılmaz

PhD in Physics

Supervisor: Assoc. Prof. Ceyhun Bulutay

June 2009

In this Thesis we present our achievements towards an understanding of atomistic

strain mechanisms and interface chemistry in silicon nanocrystals. The structural

control of silicon nanocrystals embedded in amorphous oxide is currently an

important technological problem. First, our initial attempt is described to

simulate the structural behavior of silicon nanocrystals embedded in amorphous

oxide matrix based on simple valence force fields as described by Keating-

type potentials. Next, the interface chemistry of silicon nanocrystals (NCs)

embedded in amorphous oxide matrix is studied through molecular dynamics

simulations with the chemical environment being governed by the reactive force

field model. Our results indicate that the Si NC-oxide interface is more involved

than the previously proposed schemes which were based on solely simple bridge or

double bonds. We identify different types of three-coordinated oxygen complexes,

previously not noted. The abundance and the charge distribution of each oxygen

complex is determined as a function of the NC size as well as the transitions

among them.

Strain has a crucial effect on the optical and electronic properties of

nanostructures. We calculate the atomistic strain distribution in silicon NCs
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up to a diameter of 3.2 nm embedded in an amorphous silicon dioxide matrix. A

seemingly conflicting picture arises when the strain field is expressed in terms

of bond lengths versus volumetric strain. The strain profile in either case

shows uniform behavior in the core, however it becomes nonuniform within 2-

3 Å distance to the NC surface: tensile for bond lengths whereas compressive for

volumetric strain. We reconcile their coexistence by an atomistic strain analysis.

Vibrational density of states (VDOS) affects the optical properties of Si-NCs.

VDOS obtained by calculating velocity autocorrelation function (VACF) using

velocities of the atoms is extracted from the molecular dynamics simulations. The

information on bonding topology enables classification of atoms in the system

with respect to their neighbor atoms. With help of this information we separate

contributions of different type of atoms to the VDOS. Calculating VACF of

different type of atoms such as surface atoms and core atoms of nanocrystal,

to the system facilitates understanding of the effects of strain fields and interface

chemistry to the VDOS.

Keywords: silicon, nanocrystal, interface, strain, molecular dynamics,

monte carlo, simulation, vibrational spectra
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Özet

SİLİSYUM NANO ÖRGÜLERDE GERİLME HAKKINDA

Dündar Yılmaz

Fizik Doktora

Tez Yöneticisi: Doc. Dr. Ceyhun Bulutay

Haziran 2009

Bu Tez’de camsı silisyum dioksidin (a-SiO2) içine gömülü silisyum nano örgülerin

(Si-NÖ) atomik mekanizmalarının ve nano örgü (NÖ) oksit arayüzünün kimyasal

özelliklerinin anlaşılmasına yönelik çalışmalarımızı sunuyoruz. Silisyum nano

örgülerinin yapılarını belirleyebilmek çözülmeyi bekleyen önemli bir teknolojik

problemdir. Bu amaçla, başlangıç olarak silisyum nano örgülerin oksit içinde

tavlama sırasında oluşumunu modelledik. Ardından Si-NÖ/a-SiO2 arayüzünün

kimyasını anlamak için, benzetim sırasında kimyasal reaksiyonları da modelleye-

bilen bir potansiyel kullanarak moleküler dinamik (MD) benzetimleri yaptık.

Sonuçlarımız Si-NÖ/a-SiO2 arayüzünün sanıldığı gibi çift bağ ya da köprü bağ

yapan oksijenlerden oluşmadığını bunun yanında, NÖ yüzeyinde üç bağlı oksijen

komplekslerin varlığını da gösterdi.

Gerilme nano yapıların optik ve elektronik özellikleri üzerinde önemli bir

etkiye sahiptir. a-SiO2 içine gömülü Si-NÖ’lerdeki gerilme dağılımını atomistik

düzeyde hesapladık. Çapları 3.2 nm’yi bulan NÖ’lerde yaptığımız hesaplarda

şaşırtıcı sonuçlar elde ettik. NÖ çekirdeğinde düzenli bir sıkışmayı hem bağ

uzunluklarında hem de gerilme dağılımında gözlemlememize karşın, NÖ yüzeyinin

hemen altındaki Si-Si bağları oksit atomlarının etkisi ile uzarken aynı bölgenin
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sıkışma şeklinde deforme olduğunu gözlemledik. Başta çelişkili gibi görünen

bu iki sonuç, Si-NÖ’nün içine gömüldüğü a-SiO2’in NÖ’yü düzensiz deforme

ettiği gerçeği ile anlam kazanmaktadır. Bu düzensiz deformasyon sayesinde NÖ

yüzeyinin hemen altında Si-Si bağları uzarken aynı bölgedeki gerilme dağılımı

negatif karakterlidir.

Titreşimsel durum yoğunluğu (TDY) Si-NÖ’lerin optik özelliklerini etkiler.

Çalışmamızda TDY, hız korelasyon fonksiyonu (HKF) hesaplanması yoluyla elde

edildi. HKF ise MD benzetimi sonucunda elde edilen atomların hız bilgileri

kullanılarak hesaplandı. Bunun yanında MD benzetimi sonucu elde ettiğimiz

her atomun hangi atomlarla bağ yaptığı hakkındaki bilgi sistemdeki atomları

sınıflandırmamıza olanak verdi. Bu sınıflandırmayı kullanarak geliştirdiğimiz

’Renkli-HKF’ yöntemi ile sistemdeki farklı özelliklerdeki atomların TDY’na

katkılarını ayrı ayrı değerlendirdik. Bu sayede Si-NÖ çekirdeğindeki silisyum

atomları ile Si-NÖ yüzeyindeki silisyum atomlarının TDY’na yaptığı farklı

katkıları birbirinden ayırt edebildik. Böylelikle gerilmenin ve Si-NÖ/a-SiO2

arayüzü kimyasının TDY üzerindeki etkisini inceledik.

Anahtar sözcükler: silisyum, nano örgü, arayüz, gerilme, moleküler dinamik,

Monte Carlo, benzetşm, titreşimsel durum fonksiyonu
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Tahir Çağın for his guidance and inspirations.

I am grateful to the faculty members and the staff of the Physics Department

of Bilkent University for providing a productive scientific environment throughout

my studies.

I would like also to thank to my friends for their companion, support and

friendship.

I would like to express my deeply gratitudes to my father Enver Yılmaz and

my mother Fatma Yılmaz for providing me a home with full of love.

Finally I would like to thank to my soul mate Fatma İnce Yılmaz for her love,
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Chapter 1

Introduction

Silicon is the second most abundant element of the earth crust after oxygen.

Because of its chemical and physical properties whole semiconductor industry

is based on silicon. However, building optoelectronic devices is impossible with

bulk silicon due to its indirect band gap. Towards the end of the 20th century it

became clear that properties of silicon change in the nanoscale in a way that these

changes enable coupling visible light photons with electrons of silicon. Thus nano

sized silicon based systems promise to the semiconductor industry the chance of

low cost fabrication of interesting devices such as tunable lasers, light emitting

diodes, non-volatile memories.

The physics of nano systems keeps its mystery in many aspects. One of the

most crucial subjects to resolve is interaction of light with these systems. For the

case of germanium or silicon nanoclusters, increase of band gap with decrease in

radius of nanoclusters is related to the size effects by quantum confinement model.

Photoluminescence measurements of silicon nanocrystals (Si-NCs) embedded in

amorphous silicon dioxide (a-SiO2) showed that band gap is not increased as

much as the prediction of the quantum confinement model [1]. The interface

between Si-NC and a-SiO2 is thought to be responsible for this difference [1–3].

Especially double bonds [1] and bridge bonds [3] between oxygens of a-SiO2 were

blamed for the deviation from the quantum confinement model. However, there is

no concencus among scientist on the understanding of physics of electron photon
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CHAPTER 1. INTRODUCTION 3

interaction in Si-NC embedded in a-SiO2.

Another open issue is the strain. In continuum mechanics, the effect of strain

on vibrational modes of a rigid body is well understood. As an example, one can

tune the vibration frequency of a guitar string by changing its tension. Strain has

direct effects on energy gaps [4] and phonon spectra [5] of Si-NCs. Several effects

such as bond mismatch, thermal residual strain were proposed as possible sources

of strain fields in Si-NCs. However mechanisms of these effects of strain are not

fully explained. Thus strain state of Si-NCs embedded in a-SiO2 is also a subject

of debate. Strain is proposed as a tool to tune the optoelectronic properties of

nano systems [6]. Since direct measurement of strain has not been achieved yet,

an atomistic point of view to analyze strain fields in Si-NCs is needed to explain

these mechanisms.

Vibrational density of states (VDOS) determines optical properties of Si-

NCs. Understanding VDOS of Si-NCs is the first step in design of Si-NC based

optical devices. Two aforementioned effects, strain and interface chemistry, to

VDOS of Si-NCs can be directly explored using molecular dynamics simulation

(MD) technique. With a reactive potential, MD simulation provides not only

velocities of atoms, but also bonding information and positions of atoms.VDOS

can be obtained by calculating velocity autocorrelation function (VACF). The

information on bonding topology enables classification of atoms in the system

with respect to their neighboring atoms. This allows extracting contributions of

different type of atoms to the VDOS. Calculating VACF of different type of atoms

such as surface atoms and core atoms of nanocrystal, facilitates the understanding

of the effects of strain fields and interface chemistry to the VDOS. Thereby VACF

can be the last piece of the puzzle of interaction of light with Si-NCs.

This Thesis is devoted to understanding of the atomistic mechanical properties

and interface chemistry of Si-NCs embedded in a-SiO2 using computational tools.

The very first step that we present in Ch. 2, is to understand formation of Si-

NCs in the a-SiO2 during the annealing process. We use Monte Carlo simulation

technique with an oxygen diffusion scheme [7]. We show the need of a more

complex potential to represent the surface chemistry of Si-NCs. In Ch. 3 we
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present our main approach: We use a reactive force field with MD simulation

scheme to understand the surface chemistry of Si-NCs. We show reaction

pathways at the Si-NC/a-SiO2. We also observe stretching of the Si-Si bonds just

under the nanocrystal surface [8]. We reserve Ch. 4 for the presentation of our

next task in which we analyze strain state of Si-NCs. In Ch. 5 we present details

of the VACF calculation. Finally we demonstrate the technique called ”Painted

VACF” which we used to calculate contributions of different types of atoms to the

VDOS. Our most important findings and conclusions are summarized in Ch. 6.



They say love is just a proposition people

It’s strickly a game of give and take

Oh, I don’t claim to be no gambler people

Oh, I dont’ know much about the dice

B. B. King, ”Gambler’s Blues”,

Great Moments with B. B. King, MCA Records 1980.



Chapter 2

Formation of Nanocrystal Silicon

Embedded in Oxide

The contents of this chapter have partially appeared in:

Atomistic structure simulation of silicon nanocrystals driven with

suboxide penalty energies, D. E. Yılmaz, C. Bulutay and T. Çağın, Journal

of Nanoscience and Nanotechnology 8, 635 (2008).
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CHAPTER 2. FORMATION OF SI-NCS 7

2.1 Introduction

In this part of the Thesis we describe our multilevel algorithm to simulate the

formation of Si NC embedded in a-SiO2. Our approach starts with the generation

of a-SiO2 with excess silicon so as to incubate Si NC formation. This part is based

on the standard Wooten-Winer-Weaire (WWW) model [9]. Next, with a crucial

insight from Burlakov et al. [10], the evolution of the silicon-rich-oxide towards an

embedded NC is driven by the oxygen diffusion process, implemented in the form

of a Metropolis algorithm based on the suboxide energies determined from ab

initio computations [11]. This is followed by the shape constraints so as to attain

a spherical geometry. The details of the approach and the results are provided

in the following sections.

2.2 Valence Force Field Model

Suppose that we have a system at its equilibrium. This means that net force

on all atoms should be zero. Near this equilibrium, we can model interactions

between atoms in the system as lossless springs attached between point masses.

In this so-called harmonic regime, we assume that total internal energy of the

system is elastic energy. Etot which is a function of the positions of all of the

atoms in the system:

Etot = Etot(0) +
∑

i

∂Etot

∂ui
ui +

1

2

∑

i,j

∂2Etot

∂ui∂uj
uiuj. (2.1)

All first derivatives of energy should vanish since they are evaluated at equilibrium

and second derivatives give spring constants that we model the interaction of

atoms in the system. In principle, to calculate all of these modes from the theory

of electronic structure gives the most accurate description of the system, which

is equivalent to the calculation of all the force constants. This needs a lot of

computation power even for a small system.

To work with larger systems, the number of independent parameters that

defines the system must be reduced for a reasonable computation time. A simple
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such model for the diamond or zinc-blende structures is to assume that there exist

only two-body (‘bond-stretching’) and three-body (‘bond-bending’) interactions

in the system. In this approximation we can rewrite the Eq. 2.1 as:

Eelastic =

Nbonded atoms
∑

i,j

1

2
C0(∂rij)

2 +

Nneighbor bonds
∑

i,j

1

2
C1(∂θij)

2 (2.2)

where ∂rij term represents the deviations of the bond lengths and ∂θij term

represents deviations of the angle between adjacent bonds from the tetrahedral

angle; first must be summed over all bonds and the latter must be summed over

all adjacent-bond angles. In a more general form:

Eelastic =

Nbonded atoms
∑

i,j

1

2
C0(rij −r0

ij)
2 +

Nneighbor bonds
∑

i,j

1

2
C1(cos(θij)−cos(θ0

ij))
2 (2.3)

where r0
ij and θ0

ij are equilibrium bond lengths and angles, respectively. This

model, first proposed by Keating [12] is usually called Keating Potential or The

Valence Force Field Model and requires much less computation power then ab

initio calculations. On the other hand this model is accurate only near the

equilibrium condition (i.e. elastic limit).

2.3 Generation of Amorphous Systems

2.3.1 Wooten-Winer-Weaire Method

The seminal work for the generation of amorphous systems was proposed by

Wooten, Winer and Weaire (WWW) [9]. They used Keating potential [12] to

describe the system where the total energy of system depends on the deviation of

bond length and angles between adjacent bonds from the ideal crystal case. We

store a list of bonded atoms during the simulations and ignore interactions of non

bonded atoms. In this method, we start with a diamond crystal. Then we apply

random bond switches as illustrated in Fig. 2.1 to erase crystal traces from the

system. This corresponds to heating the system to its melting temperature. Next

we relax the system using a Keating type potential with a slight modification
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B C

Da) b)

Figure 2.1: Illustration of bond switch used in WWW method. We brake bonds
between atoms (a) A and B and C and D and create bonds between atoms (b)
A and C and B and D

[13]. In fact we only update bond list with bond switches, since total energy

is calculated through this bond list, during relaxation atoms will have new

coordinates which lowers the total energy with respect to their bond topology. To

reach an amorphous state we cool down the system using a Metropolis algorithm

[14]. After each bond switch we relax the system and compare total energy of the

system with before bond switch. If the total energy of the system is lowered with

the bond switch we accept otherwise we reject it with a probability proportional

to temperature of the system:

P = min
(

1.0, e
Ei−Ef

kT

)

(2.4)

where k is the Boltzmann’s constant. We pick a random number r between 0

and 1, then if this number is less than P , then we accept this bond switch. If

this random number is greater than P we reject the bond switch and return

the system to previous state. To speed up the calculation we relax the system

locally after every bond switch. We continue these bond switches while slowly

decreasing the temperature. Total elastic energy of the system also decrease with

temperature. At low temperatures we automatically accept bond switches which

lower the total energy of the system and we mostly reject ones that increase the

total energy of the system. In fact this algorithm is nothing but the simulated

annealing in Monte Carlo (MC) scheme [15].

Another way to generate an amorphous system is to mimic annealing using

Molecular Dynamics (MD) simulation technique. In MD simulation, for every

time step positions and velocities of atoms at next time step are integrated using
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forces on atoms. These forces are calculated via first derivative of energy of the

system which is defined by a chosen potential. In our case we use a reactive

force field to define the energy of system [16]. To mimic annealing process we

first increase the temperature of the system above its melting temperatures and

slowly cool down the system. However MD technique has certain disadvantages.

Typical MD step time for a reliable simulation is on the order of femto seconds

(10−15s). To simulate even for 1 s of the system evolution we need to calculate

10+15 MD steps. This brings an unreasonable computational budget. On the

other hand MC method simulation goes on in probability domain rather than in

time domain. Creating a clever MC algorithm will end up very fast and accurate

results. Thus MC method is more efficient than MD method to simulate larger

systems with processes that takes long times. We briefly discuss MD simulation

technique in Ch. 3.

2.3.2 Modified Wooten-Winer-Weaire Method

Using WWW approach with a small modification one can generate a-SiOx or

a-GeOx structures with a desired stoichiometry. As the first step, to generate

amorphous silicon-rich-oxide we start with a 1000-atom diamond Si crystal. The

energetics of the system is described by Keating-type two-body and three-body

potentials with further addition of a repulsive potential between non-bonded

atoms to prevent their overlap. Using WWW random bond transpositions, we

generate a-Si system with 13◦ rms bond angle deviation of Si-Si-Si bonds and

0.3 Å rms bond length deviation of the Si-Si bonds. In the WWW method

after each bond transposition the system is relaxed using conjugate gradient

minimization scheme to decide whether to accept or reject the step based on a

Metropolis algorithm.

The usual Boltzmann’s factor derives the decision process. Since we start

with an ideal crystal structure we need to erase the traces of the initial topology.

This is achieved by randomizing the system by accepting all bond transpositions

(i.e. temperature of system being set to infinity) till system reaches 23◦ rms bond
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Figure 2.2: Radial distribution function of Si atoms. First peak resembles Si-Si
bond length. Second peak’s width indicates the rms bond angle deviation.

angle deviation for the Si-Si-Si bonds. After this point we set the temperature

of system to kT=0.40 eV and continue random bond transpositions. In this

way energy of system decreases and it cools down to an amorphous state with a

desired rms bond angle deviation.

Radial distribution function is the main diagnostic tool to compare simulation

results with experiment. In Fig. 2.2 we present graph of radial distribution

function versus distance from a chosen atom in a-Si. First peak resembles mean

bond length of Si-Si bonds while second peak’s width resembles bond angle

deviation of Si-Si-Si bond angle. After preparing the 1000-atom a-Si system

we generate amorphous silicon-rich-oxide (i.e. SiOx with x < 2 ) by randomly

inserting required amount of oxygen atoms between Si atoms. After the insertion

of oxygen atoms we expand the simulation box to acquire the correct density.

Next, we relax the system using the conjugate gradient method. With this

technique we end up with an amorphous silicon rich oxide with a desired Si

to O ratio. Since we are dealing with Si-NC embedded in an amorphous matrix

generating amorphous silicon dioxide is crucial to have a realistic medium.
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2.4 Formation of Silicon Nanocrystals

Silicon-rich-oxide can be fabricated by the ion implantation method [17]. After

implanting silicon atoms into a-SiO2, the system is baked at 700 K. At

these temperatures, oxygen atoms diffuse and excess silicon atoms form the

nanocrystals. The main driving factor for the oxygen diffusion is the energy

difference between a silicon atom bonded to four oxygens and a silicon atom

bonded to less than four oxygens. Based on ab initio calculations on small

Si clusters representing non stoichiometric systems, Hamann showed that the

energy of Si atoms varies with oxidation states [11]. This variation is referred

to as ‘suboxide penalty’. In such a system the suboxide penalty favors silicon

atoms bonding with either four oxygen atoms or four silicon atoms. These energy

differences force oxygen atoms to diffuse to fill up silicon atoms’ bonds. Based

on this fact Burlakov et al. modeled the phase separation of non stoichiometric

amorphous silica [10]. They mapped Metropolis Monte Carlo simulations to

simple rate equations thereby extracting the suboxides densities.

As the evolution of system is driven by the diffusion of oxygen atoms we

implement the following Monte Carlo step illustrated in Fig. 2.3. In this Monte

Carlo (MC), step first a silicon atom with oxidation state between 1 to 3 is

randomly chosen, then one of oxygen neighbors of this silicon atom is transferred

to the midpoint of Si-Si bond of this silicon. Difference of the initial and final

suboxide energies of system is used in the decision of the step. The temperature

parameter for this step is taken as kT=0.15 eV. Since oxygen diffusion is much

slower than the relaxation process we assume that system is fully relaxed during

this step. This assumption accelerates evolution of system. After 106 MC

diffusion steps which are carried out in less than two hours with a standard

computer, the excess silicon atoms start forming nanoclusters.

2.4.1 Shape of Nanocrystals

A silicon suboxide complex, denoted by Si(i) is defined as a silicon atom bonded

with i oxygens. Since Si(1) and Si(2) atoms lie at the surface of NC while Si(3)
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Figure 2.3: Illustration of the oxygen diffusion steps: Large spheres represent
silicon atoms, small spheres represents oxygen atoms. In (a) oxidation state of
atom A and atom B is 4 and 1, respectively. After the oxygen diffusion (b)
oxidation state of atom A is decreased to 3 while oxidation state of atom B is
increased to 2.

atoms lie mainly in the oxide region, densities of the suboxides determine the

shape of the NC. In other words, suboxide energies play the most important

role in the determination of the shape of the NC. In our simulation, the use of

suboxide energies calculated by ab initio methods [11] results in a toroid-like

shaped NCs (cf. Fig. 2.4). However TEM images show that Si NCs are sphere-

like [18]. This situation forced us to modify suboxide energies to end up with

sphere-like NC. To modify suboxide energies we use Burlakov’s rate equation

approach [10]. First, we calculate suboxide densities in the sphere-like NC by

preparing an “ideal” NC embedded in a-SiO2 by deleting oxygen atom in an a-

SiO2 system within a given radius [19]. Then using Burlakov’s rate equation we

fit suboxide energies to achieve suboxide densities calculated from the the “ideal”

NC. However modifying suboxide energies was not enough to force the system

to form sphere-like NC, instead we end up with cylinder-like NCs as shown in

Fig. 2.5.
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Figure 2.4: Snapshot of simulation, using suboxide energies from Ref. [11], after
steady-state is reached. Only oxygen atoms (dark colored) and zero-oxidation-
state silicon atoms (bright colored) are shown. Periodic boundary conditions are
imposed around the simulation box.

A quantitative assessment of NC shape can be achieved by diagonalizing the

shape tensor of the NC. The shape tensor of the NC is given by [20]:

Gij =
1

N

N
∑

n=1

(rin − Ri)(rjn − Rj) , (2.5)

where N is the number of NC atoms, Ri’s are the coordinates of the center-of-

mass of the NC and rin is the ith coordinate of n’th NC atom. The ratio of three

eigenvalues of shape tensor g1, g2 and g3 (in descending order) determine the

shape of the NC. Deviation from a perfect sphere (asphericity) is parametrized

as:

δ = 1 − 3
I2

I2
1

, (2.6)

by Gaspari and Rudnick [21]. In Eq. 2.6 I1 = g1+g2+g3 and I2 = g1g2+g2g3+g1g3

are the respective invariants of the shape tensor. For a perfect sphere eigenvalues

of the shape tensor are equal so that the asphericity parameter is equal to zero.
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Figure 2.5: Snapshot of simulation using modified suboxide energies after steady
state reached. Only oxygen atoms (dark colored) and zero-oxidation-state silicon
atoms (bright colored) are shown. Periodic boundary conditions are imposed
around the simulation box.

The asphericity parameter for NC formed using ab initio suboxide energies

(Fig. 2.4) is 0.40 while for the NC formed using modified suboxide energies

(Fig. 2.5) it becomes 0.23. So these NCs deviate too much from perfect sphere.

Since surface to volume ratio is minimum for a sphere we also calculate the ratio

of number of surface atoms to number of NC atoms for these NC. This ratio was

also much larger than the ’ideal’ NC case.

From these observations we conclude that such an approach still undermines

the surface tension effects. On the other hand inclusion of asphericity parameter

and surface-to-volume ratio can lead to better results. In our simulation with

the modified suboxide energies, after the steady state is reached, we continue

with MC steps but this time we include asphericity parameter and the surface-

to-volume ratio to Metropolis decision. Inclusion of these parameters results in

the formation of NC with asphericity parameter less than 0.001 and also g1/g2

falls in the range 1.0-1.1 and g1/g3 falls in the range 1.1-1.3. This means that
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inclusion of asphericity parameter and the surface-to-volume ratio yields almost

spherical NC as illustrated in Fig. 2.4.1.

Figure 2.6: Snapshot of simulation using modified suboxide energies together with
shape constraints, after steady state is reached. Only oxygen atoms (dark colored)
and zero-oxidation-state silicon atoms (bright colored) are shown. Periodic
boundary conditions are imposed around the simulation box.

The radial distribution function also gives important knowledge about size

and shape of the NC. In Fig. 2.7 we present the radial distribution function of Si

atoms with zero-oxidation state. First peak in this graph resembles mean bond

length of Si-Si bonds in the NC region while width of second peak resembles

deviation of Si-Si-Si angles from diamond crystal state. Also radius and diameter

of the NC can be read from Fig. 2.7 since the probability of finding a pair with

distance equal to radius is maximum and the probability of finding a pair within

diameter distance is minimum in sphere-shaped NC. So from Fig. 2.7 we can

extract the radius of NC as: rNC = 11.3 Å.

The radial distribution function of Si atoms with zero-oxidation state to four-

oxidation state is presented in Fig. 2.8. From this graph, width of the interface

region between NC and oxide can be extracted. Since there is no pair with
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Figure 2.7: Radial distribution function of nanocrystal Si atoms. First peak
resembles Si-Si bond length in the nanocrystal.
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Figure 2.8: Radial distribution function of Si atoms with zero oxidation state to
four oxidation state. Minimum distance between a Si atom with zero oxidation
state and a Si atom with four oxidation state gives the width of interface region.
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distance less then 4.2 Å we conclude that width of the interface region is about

4.2 Å. Once the interface regions are also accounted our predictions for the

NC size as a function of oxygen molar fraction match reasonably well with the

experimental data [10].

2.5 The Lessons Learned

In this part of the Thesis we tried to understand NC formation in amorphous

silicon-rich-oxide using MC simulation technique with a Keating like potential

and suboxide energies. We showed that these are models are not capable of

defining system accurately especially the surface of the NC. This motivated us

to use Molecular Dynamics simulation technique with a more complex force field

to explore the dynamics of surface of silicon nanocrystals. In the next chapter

we briefly introduce two main tools; MD simulation technique and the reactive

force fields.



Did you see the lights

As they fell all around you

Did you hear the music

Serenade from the stars

Steve Miller Band, ”Serenade”,

Fly Like an Eagle, Capitol. 1976.



Chapter 3

Exploring Surface Chemistry of

Silicon Nanocrystals Embedded in

Amorphous silica matrix

The contents of this chapter have partially appeared in:

Pathways of bond topology transitions at the interface of silicon

nanocrystals and amorphous silica matrix, D. E. Yılmaz, C. Bulutay and

T. Çağın, Physical Review B. 77, 155306 (2008).

20



CHAPTER 3. EXPLORING SURFACE CHEMISTRY OF SI-NCS ... 21

3.1 Introduction

After a long arduous effort, photoluminescence from silicon has been achieved

from its nanocrystalline form [22]. A critical debate, however, continues over

the nature of the interface chemistry of silicon nanocrystals (Si-NCs) embedded

in amorphous silica which has direct implications on the optical activity of the

interface [1–3, 23, 24]. Wolkin et al. reported that the oxidation of porous silicon

quantum dots results in a red shift in the photoluminescence (PL) spectra which

indicates the importance of oxygen-related interface bond topology [1]. Along

this line, Puzder and co-workers compared PL calculations of nanoclusters with

different passivants and surface configurations and proposed the main reason for

the red shift to be double Si=O bonds [2]. Countering this, Luppi et al. reported

excitonic luminescence features caused by Si-O-Si bridge bonds at the surface

of silicon nanoclusters [3]. As a supporting evidence for the latter, Gatti et al.

recently demonstrated that Si-O-Si is the most stable isomer configuration [23].

To reconcile, Vasiliev et al. claimed that bridge bonds and double bonds have

similar effect on PL [24].

All of the work cited above represent density functional theory (DFT)-based

calculations with small Si clusters of less than 100 atoms surrounded by either

passivants like hydrogen [2, 3, 23] or oxygen [1, 2]. But actual samples are

profoundly different: the fabricated systems consist of Si-NC with a diameter

larger than 1 nm, embedded in amorphous silica (a-SiO2) matrix. We use MD

simulation technique with a reactive force field [16] to explore interface chemistry

of Si-NCs embedded in silica matrix. In this chapter of the Thesis we present

details and results of these simulations.

3.2 Simulation Environment

In Ch. 2 we described our first efforts to understand formation of silicon

nanocrystals (Si-NCs) in the silicon-rich-oxide. We used a Monte Carlo technique

to simulate system in probability domain. The idea is instead of calculating forces
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and velocities just to calculate the probability of the “MC-step” to occur and

decide it via picking a random number. With such a technique one is limited with

predefined “MC-steps”, but this limitation prevents us to focus on chemistry of

NC surface which determines the optical activity of the system [1]. In this section

we describe our simulation environment which enables us to understand dynamics

and chemistry of the system. We divided this section into three subsections: First

we briefly summarize basics of MD simulation technique. This part is based on

the book by Frenkel and Smit [14]. Then we present the reactive force field

approach [16] developed by Adri et al. which enables chemical reactions during

the simulation. Finally we describe the method called “Delaunay Triangulation”

that we use to define nanocrystal surfaces.

3.2.1 Basics of Molecular Dynamics Simulations

The word simulation means:

• The technique of imitating the behavior of some situation or

process (whether economic, military, mechanical, etc.) by means

of a suitably analogous situation or apparatus, especially for the

purpose of study or personnel training [25].

• The imitative representation of the functioning of one system or

process by means of the functioning of another [26].

and originates from the 17th century Latin word similis which means like or

similar. Imitating a system starts with writing the equations or constraints

that governs the system. In the case of MD simulations these are equations

of motion Fi = miai for every atom i in the system. The idea is if we imitate

interactions between atoms in a molecular system, we can determine the positions

and velocities of atoms in the next step. We use the word imitate because

interactions of atoms are too complex to formulate, instead we always model

these interactions as simpler equations to understand the dynamics of the system.

Suppose that, Ui(r) is the interaction energy of atom i in the system. The net
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force on this atom is:

Fi = −∇Ui. (3.1)

We can write the position of atom i at around time t using Taylor expansion [14]:

r(t + ∆t) = r +
∂r

∂t
∆t +

∂2r

∂t

∆t2

2
+

∂3r(t)

∂t3
∆t3

3!
+ ϑ(∆t4) (3.2)

or

r(t + ∆t) = r + v(t)∆t +
F∆t2

2m
+

∂3r(t)

∂t3
∆t3

3!
+ ϑ(∆t4) (3.3)

similarly we can write:

r(t− ∆t) = r − v(t)∆t +
F∆t2

2m
−

∂3r(t)

∂t3
∆t3

3!
+ ϑ(∆t4) (3.4)

adding these two equations:

r(t + ∆t) + r(t −∆t) = 2r(t) +
F∆t2

2m
+ ϑ(∆t4). (3.5)

The term ∆t corresponds to the MD step which represents the free flight between

two consecutive force updates. We can write the position of an atom at next MD

step t = t + ∆t by using position at present and previous time step by rewriting

Eq. 3.5:

r(t + ∆t) = 2r(t) − r(t −∆t) +
F∆t2

2m
+ ϑ(∆t4). (3.6)

This scheme to calculate positions at next MD step is called Verlet Algorithm

[14]. The error term ϑ(∆t4) in Eq. 3.6 depends on fourth power of MD time step.

Choosing a small ∆t will result in more accurate results and more calculations for

a simulation that spans a constant amount of time. Velocities of atoms are not

used to calculate positions in the Verlet Algorithm but one can compute velocities

using positions:

v(t) =
r(t + ∆t) − r(t −∆t)

2∆t
. (3.7)

In a typical MD simulation program, for a every time step forces on every atom is

calculated using a model which approximates interactions between atoms. Then

using these forces and positions of the atoms in the previous and present time step,

the positions of the atoms in the next time step is calculated. Then positions
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of atoms are updated. This loop is repeated for the desired amount. There

is a small error which is proportional to ∆t4 for Verlet Algorithm. This small

error makes impossible to predict an atom’s exact position after too many MD

steps. Nevertheless our aim is not to predict atoms positions. Instead we aim to

simulate ensemble averages of some quantities of the system such as temperature,

pressure, chemical potential etc. Positions of atoms in a simulation is bounded

with a region called simulation box. In some cases periodic boundary conditions

are applied to one or more dimensions of the simulation box. The number of

atoms N during the simulation could be chosen as a constant. In micro canonical

ensemble; number of atoms N , volume of the simulation box V , and total energy

of the system E (NVE simulation) are constants of the simulation. In canonical

ensemble; number of atoms N , volume of the simulation box V and temperature

of the system T (NVT simulations) are constants of the simulation. There are

also other ensembles such as NPT or µVT. Temperature is defined as the average

kinetic energy of the system, for a three dimensional system temperature is:

T =
1

3kB

m〈v2〉 (3.8)

There are various schemes to control temperature of the system constant which

are called thermostats. We use Nose-Hoover thermostat to carry out NVT

simulations [14]. There are also schemes to control total internal pressure of

the system constant which are called barostats [14] however these schemes are

not of interest for this Thesis.

3.2.2 Reactive Force Field: ReaxFF

In a MD simulation most of computational work is done during force calculation.

Total computational workload depends on the model that is used to define

interactions between atoms. In Ch. 2 we describe Valence Force Field Model

which is one of the simplest model to describe covalently bonded systems. The

need for a more complex model explained in last section of Ch. 2. For this purpose

we use a reactive force field (ReaxFF) developed by Adri v. Duin et al [16]. In
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ReaxFF, total energy of the system is divided into several partial energy terms:

Esystem = Ebond+Eover+Eunder+Elp+Eval+Epen+Etors+Econj+EvdWaals+ECoulomb.

(3.9)

In Eq. 3.9, Ebond represents bonding energy, Eover and Eunder represent over

coordination and under coordination energies, Elp represents energy of lone

electron pairs. The terms EvdWaals and ECoulomb represent non bonded van der

Waals and Coulomb interactions. Unlike many other force fields, ReaxFF does

not use implicit bond list to calculate chemical bond energy of the system. Instead

bond order which determines the bond energy of the system calculated using

local geometry i.e. distance between atoms, of the system and updated during

the simulation [16]:

BO′

ij = BO
′σ
ij + BO

′π
ij + BO

′ππ
ij (3.10)

where BO
′σ
ij , BO

′π
ij and BO

′ππ
ij are represent uncorrected sigma, pi and double

pi bond orders between atom i and atom j. These uncorrected bond orders are

calculated using inter atomic distance rij between atom i and j:

BO′

ij = exp

[

pbo,1

(

rij

rσ
0

)pbo,2
]

+ exp

[

pbo,3

(

rij

rπ
0

)pbo,4
]

+ exp

[

pbo,5

(

rij

rππ
0

)pbo,6
]

(3.11)

After calculation of uncorrected bond orders for all atoms in the system, these

bond orders are corrected by considering under/over coordination of atoms. Bond

energy between atom i and atom j is calculated using bond orders:

Ebond = −Dσ
e BOσ

ij exp
[

pbe,1(1 − BOσ
ij)

pbe,2
]

(3.12)

Other terms in Eq. 3.9 that contribute to total energy of the system depend

on inter atomic distance. Additional non bonded interactions van der Waals

and Coulomb interactions are also included in this force field. Charges of atoms

are calculated in a classical way using electron equilibration method [27]. As a

matter of fact the reactive force field (ReaxFF) model developed by van Duin et

al. which improves Brenner’s reactive bond order model [28] to a level of accuracy

and validity allowing MD simulations of the full reaction pathways in bulk [16].
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The parameters for this force field were obtained from fitting to the results of

ab initio calculations on relevant species as well as periodic boundary condition

DFT-based calculations of various crystalline polymorphs of relevant materials.

The ReaxFF calculates bond orders which is the measure of bond strength from

local geometry. This allows realistic chemical environment such as over/under

coordination and bond breaking/formation for large-scale (about 5000 atoms)

MD simulations.

3.2.3 From Points to Surface

Experimental works indicate that oxygen bonds at the nanocrystal surface

determines optical activity [1, 3, 23, 24]. Suppose that we cut out a spherical

silicon nanocrystal with diameter 2.0 nm from bulk (Fig. 3.1-a). Such a

nanocrystal contains about 200 atoms. Although we cut a sphere from bulk

crystal if we look closely we see that the surface of nanocrystal is not a sphere.

In Fig. 3.1-b we also present the surface of this nanocrystal constructed with

Delaunay Triangulation for comparison. If we compare Fig. 3.1-a with Fig. 3.1-b

we observe that triangulated surface is a better definition for nanocrystal surface.

Defining nanocrystal surface enables us to understand how distance to the surface

effects bond lengths, strain, charges of atoms in the system. We also use same

technique during inserting the nanocrystal into oxide matrix. For two dimensions,

Delaunay Triangulation (DT) is creating triangles from a set of points such that

no points in the set is inside the circumcircle of any triangle [29].

In three dimensions triangulation becomes creating tetrahedra from a set of

points such that no points in the set is inside the circumsphere of any tetrahedron

[29]. In this part of the Thesis we used a two dimensional DT [30]. Since our

NCs are nearly spherical in shape, we triangulate projection points of surface Si

atoms onto the unit sphere. Hence, we apply Delaunay triangulation over the

two dimensional θ-φ plane. We can then create surfaces using this triangulation.

Later on we shall start to use GEOMPACK in our analysis software to calculate

DT in three dimensions [31].
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a) b)

Figure 3.1: a) Nanocrystal with radius 1.0 nm cutted from bulk and (b) with its
surface constructed by Delaunay Triangulation scheme.

3.2.4 The system

We use ReaxFF to represent the interactions in the model system. We start

with a large simulation cell (box length 43 Å) of silica glass formed through a

melting and quenching process used by Demiralp et al. [32, 33] to study silica

glasses earlier. Next, similar to Hadjisavvas et al. [19], we delete all atoms

within a predetermined radius to insert crystalline silicon to form NC. In this

way, we create NCs with radii ranging from 5.5 Å to 16.7 Å. For the largest

NC we insert 967 Si atoms into a spherical hole with radius 16.7 Å created in

amorphous matrix. Even for this case, the minimum distance between NC surface

to simulation box face is about 5 Å which can still accommodate the interface

layer. We also pay special attention in the removal of spherical region so that

the correct stoichiometry for the amorphous matrix is met. Thus, our amorphous

matrix has two O atoms for every Si atom with a density of 2.17 g/cm3 which is

the density of glass at room temperature and atmospheric pressure.

We set periodic boundary conditions in all directions and while keeping NC
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at 100 K, we employ simulated annealing process to SiO2 region to end up with

an amorphous matrix free of artificial strain around the NC. Then we set whole

systems’ temperature to room temperature (300 K) and continue performing MD

simulation for 75 ps to have thermal equilibrium between the two regions. We

set MD simulation time step to 0.25 fs for all simulations. For every 62.5 fs

time interval, we record the configurations to analyze the transitions taking place

between different bond topologies.

3.3 Results and Discussions

To facilitate our discussion regarding the surface-bonded oxygen complexes, we

distinguish among three different types of silicon atoms. We label those silicon

atoms with all silicon neighbors each with zero oxidation state as c, to denote

core silicon atom. Among the remaining (non-c) silicon atoms, those with at

least one bond to c are labeled as s, denoting as a surface silicon atom. For

further investigation of NC, we separate core Si atoms into two sub-categories as

inner-core and outer-core atoms:

Among core Si atoms which have at least one surface Si neighbor categorized

as outer-core Si atoms and rest of core Si atoms categorized as inner-core Si

atoms. Finally, any other silicon atom is labeled as m, denoting matrix silicon

atom. Hence, a complex consisting of an oxygen atom bonded with two surface

silicon atoms is labeled as ss. The other oxygen complexes are sm, ssm, sss,

mms as sketched in Fig. 3.2 where the last three correspond to three-coordinated

oxygen (3cO) atoms. We separate this section into two subsections: In the first

subsection we present effect of distance to the surface onto charge distribution,

bond length strain and bond orders. In second subsection we present our works

to reveal the chemistry of NC surface especially the role of 3cO’s.
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Figure 3.2: The transitions between different oxygen complexes bonded to the
interface. Dark green (dark gray) large spheres represent matrix silicon atoms,
and the light green (light gray) large spheres represents surface silicon atoms of
the NC, small red (dark gray) spheres represent oxygen atoms. The numbers
indicate the number of transitions recorded in the simulation in each direction
among the complexes for the NC of radius 13.4 Å.

3.3.1 Surface Effects on Silicon Nanocrystal

To analyze surface effects on Si-NC, we construct NC surface using Delaunay

triangulation scheme (Fig. 3.3 inset) [30]. This surface enables us to calculate

every atoms’ distance to NC surface. By this means we plot various data such

as charge, bond order etc. with respect to distance to the surface, to extract

information about surface chemistry of Si-NC embedded in amorphous matrix.

For different NC radii we observe similar trends in bond order distribution,
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0.3 Å

Figure 3.3: Radial distribution function of Si atoms in NC. Inset: First
peak resembles Si-Si bond length distribution centered around 2.34 Å with
0.3 Å FWHM value. Second peak’s width resembles bond angle deviation. Inset:
Representation of NC surface created with Delaunay Triangulation. Blue dots
represents surface silicon atoms.

average charges etc., therefore, we present only the figures of the system for a

typical NC of radius 13.4 Å. A useful data to elucidate the structure of these

systems is the radial distribution function (RDF). In Fig. 3.3 we present RDF

of NC atoms only, where the first broad peak centered around 2.34 Å with a

0.3 Å full width at half maximum value (FWHM), represents Si-Si bond length

distribution in NC (Fig. 3.3 inset). The maximum extent of the NC can also be

read from same plot at about 27 Å, where the RDF goes to zero. Observation

of a broad first peak at Fig. 3.3 demands further investigation of Si-Si RDF of

NC atoms. For this purpose, in Fig. 3.4 we present bond length probability
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distributions (akin to RDF) for three categories of Si atoms: inner core (with no

bonds to surface atoms), outer core (bonded to surface) and surface NC atoms.

We observe from Fig. 3.4 that Si-Si bond lengths in the inner core are centered

around the equilibrium value and have a narrow width due mainly to thermal

vibrations, whereas the bond length distributions of outer core and surface atoms

have increasing shift for the most probable bond length values and broader

widths. These shifts and particularly the increase in distribution widths cannot

Inner-core 

Outer-core

Surface

Figure 3.4: Bond distance probability distribution of Si atoms in NC. Solid line
represents inner core Si-Si bonds, dashed line outer core Si-Si bonds, and dotted
line represents the surface Si-Si bonds.

be attributed to thermal broadening. Taken together these two observations is a

clear indication of increasing strain as a function of distance from the center of

the NC. To further investigate this deviation of Si-Si bonds from crystalline Si,

in Fig. 3.5 we present bond length distribution with respect to distance to NC
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surface averaged over 2 ps of simulation time after the steady state is reached.

This figure illustrates the gradual development of radial strain from the center to

NC surface. These observations show clearly that oxidation at the surface of NC

Figure 3.5: Variation of Si-Si bond length averages (calculated over 1 A wide
bins) as a function of distance from the NC surface -which is defined by Delaunay
tessellation. The solid line is a fit to the data to guide the eye.

results in a tensile strain at Si-Si bonds which becomes significant only around

the interface, while keeping the inner core almost unstrained. This tensile strain

in the NC agrees with previous measurement of Hofmeister et al. [34].

Another consequence of this tensile strain is that the total bond orders of core-

NC atoms are somewhat smaller than those of oxide-Si’s as seen in Fig. 3.6. In the

same figure we also show the calculated net charges using electron equilibration

method [27]. Nearly zero net charges of the core-Si atoms reflects the covalent

type of bonding well within the NC. The bonding becomes increasingly ionic
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Surface
MatrixNC

Figure 3.6: Top: Silicon bond orders (triangles) and charges (circles) as a function
of distance from surface of NC; Middle: Oxygen bond orders and charges as a
function of distance from the surface of NC; Bottom: Total average charge as a
function of distance from the surface of NC. The averaging bin width is 1 Å.

away from the NC core as observed by the charges of Si atoms which reach the

value of 1.3e at the oxide region (Fig. 3.6). As a result, the positive charges of

surface-Si atoms form a shell at the surface of NC. This observation is similar

with those obtained with DFT calculations [35, 36]. On the other hand, negative

charges of oxygen atoms bonded to surface form another shell that enclose NC

and finally total average charges approach to zero within the oxide region.
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3.3.2 Surface Chemistry of Silicon Nanocrystals

In Fig. 3.6 we also observe that the magnitude of average charges of oxygen atoms

which are bonded to surface are greater than those in the matrix. But, the bond

orders are nearly the same. This is due to existence of 3cO atoms bonded to

surface. Note that the average bond order of oxygen atoms which are bonded to

surface is about two (cf., Fig. 3.6). Thus, those oxygen atoms form three partial

bonds, two strong and one weak bond. Finally, we would like to note that unlike

many others [1, 2, 24], we do not observe any double bonds.

The numbers attached to each arrow in Fig. 3.2 indicate the total number

of registered transitions during the simulation in that direction between the

complexes for a representative NC of radius 13.4 Å. Almost balanced rates in

opposite directions is an assurance of the attainment of the steady state in our

simulation. Note that we do not observe any direct transition other than the

paths indicated in Fig. 3.2. For instance, a direct transition of the complex ss

to sm does not take place, but it is possible through an intermediate transition

over the ssm which is a 3cO. We should also remark that the balanced transitions

continue to take place after the steady state is attained which indicates that the

interface bond topology is dynamic, i.e. not frozen.

The occurrence of 3cO has been noted by a number of groups. Pasquarello

showed that the bistable E ′

1 defect of α-quartz structure may lead to 3cO as a

metastable state as well as Si-Si dimer bond and calculated the energy of the

former to be higher than the latter. Pasquarello proposed that 3cO acts as an

intermediate metastable state during structural relaxations at the interface [37].

Similarly Boero et al. observed 3cO atoms in their ab initio calculations [38] and

reported this feature as a metastable state.

In Table 3.1 we present the collected statistical data at the end of the

simulation of 75 ps. For all oxygen complexes, the number of bridges, average

charges of bridge oxygens, and the average bridge angles for s-O-s are tabulated.

We observe in Table 3.1 that the number of sss complexes is very small due

to narrow bond angle requirement of this configuration. For the remaining 3cO

complexes, ssm and mms, their percentages are seen to increase with curvature.



This can explain the fact that other studies [37, 38] which have identified the 3cO

complexes as metastable were based on the planar Si/SiO2 interfaces. So, this is

an indication of the importance of curvature in the stability of 3cO complexes.

Hence, as one would expect, there is a linear relation between the total number

of bridges with surface area as indicated in Fig. 3.7. This finding is supported by

Kroll et al. who reported 3 and 33 such bridges for Si-NC with radii 4.0 Å and

7.0 Å, respectively [35].
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Figure 3.7: (Color online) The number of bridges at the Si-NC surface vs radius
squared. The line is a linear fit to data.
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Table 3.1: Statistical results of atom charges and numbers, N , for all NC diameters, DNC considered. Abbreviations
for atom types are explained in Fig. 3.2. Charges are in the units of electronic charge and the angles θ, are in
degrees.
DNC Nc Ns NO ss sm ssm sss mms
(Å) Nss charge θss Nss charge Nssm charge θss Nsss charge Nmms charge
11.0 10 25 32 2 -0.88 169.7 24 -0.76 5 -0.74 97.0 0 — 1 -0.81
15.4 42 42 59 5 -0.77 136.1 51 -0.74 1 -0.73 82.7 0 — 2 -0.77
18.0 83 62 77 11 -0.82 120.5 56 -0.74 1 -0.83 141.2 0 — 9 -0.79
19.8 114 76 82 14 -0.82 139.3 49 -0.73 4 -0.81 123.1 1 -0.85 14 -0.79
26.8 353 143 170 20 -0.81 118.0 123 -0.74 11 -0.79 120.9 0 — 15 -0.76
30.8 558 203 243 35 -0.83 123.9 159 -0.74 10 -0.80 115.9 2 -0.80 34 -0.79
33.4 718 238 268 44 -0.83 123.0 179 -0.75 18 -0.80 125.7 4 -0.84 23 -0.78
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There is no pain, you are receding.

A distant ships smoke on the horizon.

You are only coming through in waves.

Your lips move but I cant hear what youre sayin.

Pink Floyd, ”Comfortably Numb”,

The Wall, EMI. 1979.



Chapter 4

Strain Analysis of Silicon

Nanocrystals

The contents of this chapter have partially appeared in:

Analysis of strain fields in silicon nanocrystals, D. E. Yılmaz, C. Bulutay

and T. Çağın, Applied Physics Letters 94, 191914 (2008).

38
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4.1 Introduction

The low dimensional forms of silicon embedded in silica have strong potential as

an optical material [39]. Such heterogeneous structures inherently introduce the

strain as a degree of freedom for optimizing their opto-electronic properties. It

was realized earlier that strain can be utilized to improve the carrier mobility

in bulk silicon based structures [6]. This trend has been rapidly transcribed

to lower dimensional structures, starting with two-dimensional silicon structures

[40]. Recently for silicon nanowires, there have been a number of attempts to

tailor their optical properties through manipulating strain [41, 42].

For improving the optical and electronic properties of nanocrystals (NCs),

the strain engineering has become an effective tool to be exploited [4, 43, 44].

A critical challenge in this regard is to analyze the strain state of the Si NCs

embedded in silica. There still remains much to be done in order to understand

strain in nanostructures at the atomistic level. Due to small density difference

between Si NC and the surrounding a-SiO2, a limited information can be gathered

about its structure using transmission electron microscopy (TEM) or even high

resolution TEM techniques [45]. Especially, molecular dynamics simulations with

realistic interaction potentials present an opportunity, by providing more detailed

critical information then the best imaging techniques currently available and

clarify the analysis of experimental results.

Along this direction, previously [8] we focused on Si-Si bond length

distribution and reported that Si-Si bond lengths are stretched upto 3% just below

the surface of Si NCs embedded in amorphous SiO2 which has also been very

recently confirmed [46]. We also presented these results in Ch. 3. These stretched

bonds forced us to work on strain analysis of silicon nanocrystals embedded in

amorphous silicon dioxide. In this part of the Thesis we describe continuum and

discrete strain formulation that we used to analyze strain fields and present our

results.
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4.2 Strain and Deformation

4.2.1 Continuum Strain Formulation

In continuum mechanics, relative positions of points in a body are changed when

the body is deformed or strained. The strain is defined through this deformation.

Continuum strain formulation that we present here is based on Ref. [47]. Before

presenting strain formulation in continuum mechanics in three dimensions, for

pedagogical purposes we first consider one dimensional deformation of a bar

shown in Fig. 4.1). Left end of the bar is fixed to the wall and a force F is

applied to the other end of the bar. The bar is deformed or strained as a result

of applied force. Lets consider two points A and B on the bar before deformation

occurs (Fig. 4.1-a). After deformation points Ai and Bi move to Af and Bf

respectively. Since point Ai closer to the fixed end, point Bi displaced more than

point Ai (Fig. 4.1-b). Distance between Ai and Bi before deformation was dx.

After deformation distance between Af and Bf is :

AfBf = dx +
du

dx
dx (4.1)

If we define normal strain as the unit change in length in the direction of applied

force is :

ǫx =
AiBi

AfBf

=
(du/dx)dx

dx
=

du

dx
(4.2)

We may extend this idea easily to derive strain formulation in three dimensions.

Consider two points A and B on a three dimensional body. Ai is at (x0, y0, z0)

and B is at (x, y, z). We assume that distance between A and B is infinitesimal.

After the deformation point A displaces to (x0 + u0
x, y

0 + u0
y, z

0 + u0
z) and point

Bi displaces to (x + ux, y + uy, z + uz). Displacement vector u of a point on a

body, is a function of position:

u = u(x, y, z) (4.3)

Since AiBi is infinitesimal we may expand u(x, y, z) around point Ai:

u = u(x0, y0, z0)+
∂ux

∂x
(x−x0)+

∂uy

∂x
(x−x0)+

∂uz

∂x
(x−x0)+

∂ux

∂y
(y−y0) · · · (4.4)
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Figure 4.1: Deformation of a bar in one dimension as a result of force F applied to
one end and the other end kept fixed. Figure adopted from Fig. 2.1 of Ref. [47].

We may write Eq.4.4 in a compact form using Einstein’s summation convention:

ui = u0
i +

∂ui

∂xj
dxj. (4.5)

In Eq. 4.5 ui is the ith component of displacement vector and second term stands

for a summation over index j. Second term of Eq. 4.5 nothing but gradient of a

vector which is a second-order tensor. Second term of Eq. 4.5 is called deformation

gradient and can be written as a sum of its symmetric and anti-symmetric parts.

ui = u0
i +

1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

dxj +
1

2

(

∂ui

∂xj
−

∂uj

∂xi

)

dxj (4.6)

The symmetric part of deformation gradient is strain tensor (ǫij)[47]:

ǫij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

.; (4.7)



CHAPTER 4. STRAIN ANALYSIS OF SILICON NANOCRYSTALS 42

And the anti-symmetric part of deformation gradient is rotation tensor (ωij) [47]:

ωij =
1

2

(

∂ui

∂xj

−
∂uj

∂xi

)

. (4.8)

Another measure of strain is called Lagrangian strain which is similar to derived

above:

E =
1

2
(DTD − I) (4.9)

where D is the deformation gradient tensor with components:

Dij =
∂ui

∂xj

, (4.10)

and I is identity matrix [48].

4.2.2 Discrete Strain Formulation

In the language of geometry, strain is defined through an affine transformation

that maps the undeformed state to deformed state, which is called deformation

gradient. Several methods to derive discrete form of deformation gradient from

atomic positions are reported [48–50]. In this subsection we will present discrete

strain formulation proposed by Gullett et al.[48] and we will mention another one

proposed by Pryor et al [49].

The absence of a continuous deformation field prevents usage of continuum

strain formalism to derive strain tensor from atomistic simulation data [48]. In

Fig. 4.2 we present an atomic system deformed by a deformation gradient G.

The position of ith atom moved from x0
i to xi. Local deformation gradient tensor

is characterized by changes in relative positions of atoms. The position of ith

atom’s neighbor jth atom moved from x0
j to xj. As a result of deformation,

distance between atom i and atom j is changed from x0
ij to xij. There exist a

unique linear affine transformation that connects, relative positions of atom i and

atom j before and after the deformation [48]:

xij = Gix0
ij. (4.11)
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Figure 4.2: Deformation of a discrete atomic system as a result of deformation
gradient G .

Transformation matrix Gi which maps x0
ij to xij is deformation gradient at atom i.

Writing Eq. 4.11 for other neighbors of ith atom, leads to a set of linear equations.

Usually for different neighbors of ith atom will result different transformation

matrices. We should find an optimal transformation matrix Ĝi, which maps all

of the neighbors of ith atom with a minimum error. The mapping error of the

transformation of ith atom’s neighbor jth atom is [48]:

φij = (xij − Ĝix0
ij)

T (xij − Ĝix0
ij) (4.12)

If we sum these errors for all neighbors of ith with a proper weights ωj for every

neighbor of ith atom, we will find total mapping error on this atom:

φi =
N

∑

j=1

(xij − Ĝix0
ij)

T (xij − Ĝix0
ij)ωj (4.13)

where N is the number of neighbors of ith atom and wj is the weighting factor.

The optimal transformation matrix Ĝi can be found by minimizing Eq. 4.13 with
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respect to Ĝi: [48]

∂φj

∂Ĝi
kl

=

N
∑

j=1

(−2xij,kx
0
ij,l + 2x0

ij,lĜ
i
klx

0
ij,k)ωn = 0 (4.14)

where xij,k is the kth component of vector xij. Solving Eq. 4.14 for components

of Ĝi will leads to:

Ĝi
kl

N
∑

j=1

x0
ij,lx

0
ij,kωj =

N
∑

j=1

xij,kx
0
ij,lωj . (4.15)

In matrix notation:

Ĝi

N
∑

j=1

x0
ijx

0
ij

T
ωj =

N
∑

j=1

xijx
0
ij

T
ωj, (4.16)

or

ĜiD = A. (4.17)

Here D and A are matrices :

D =
N

∑

j=1

x0
ijx

0
ij

T
ωj, (4.18)

and

A =
N

∑

j=1

xijx
0
ij

T
ωj . (4.19)

We can calculate matrices A and D from positions of atoms. To find the optimal

local deformation matrix Ĝi at ith atom, we can multiply Eq. 4.18 with inverse

of D from right [48]:

Ĝi = AD−1. (4.20)

Another method, similar to the aforementioned one, to derive local defor-

mation gradient is proposed by Pryor et al [49]. In this method, the atomistic

strain tensor is derived from local transformation matrix that transforms nearest

neighbors of a certain atom from its undeformed state to the deformed one.

Consider the tetrahedron formed by atom i with its four neighbors shown in

Fig. 4.3. Distance vector between two neighbors of atom i is changed from R0
mn

to Rmn as a result of local deformation tensor Gi.

Rmn = GiR0
mn. (4.21)
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Figure 4.3: Deformation of a tetrahedron as a result of deformation gradient G.

Writing relation in Eq. 4.21 for R0
12, R0

23, R0
34 in a compact form [49]:









R12,x R23,x R34,x

R12,y R23,y R34,y

R12,z R23,z R34,x









=









Gi
xx Gi

yx Gi
zx

Gi
xy Gi

yy Gi
zy

Gi
xz Gi

yz Gi
zz









×









R0
12,x R0

23,x R0
34,x

R0
12,y R0

23,y R0
34,y

R0
12,z R0

23,z R0
34,x









(4.22)

Pryor et al. proposed a similar strain tensor:

ǫi = Gi − I, (4.23)

where I is the 3x3 identity tensor. We can derive the local strain tensor ǫi at

atom i by calculating the inverse of the matrix formed by distance vectors of

atom i before deformation:








ǫi
xx ǫi

yx ǫi
zx

ǫi
xy ǫi

yy ǫi
zy

ǫi
xz ǫi

yz ǫi
zz









=









R12,x R23,x R34,x

R12,y R23,y R34,y

R12,z R23,z R34,x









×









R0
12,x R0

23,x R0
34,x

R0
12,y R0

23,y R0
34,y

R0
12,z R0

23,z R0
34,x









−1

.

(4.24)

From results of the MD simulations, using positions of NC atoms, we first

extract each atom’s displacement vector from its undeformed site. To find

the undeformed state from atomic positions of deformed state, we consider a
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tetrahedron formed by an atom i and its four nearest neighbors. The idea is to

position an ideal tetrahedron formed in bulk case with a minimum error. We first

consider bonds between atom i and its neighbors. We choose among them with a

length closest to bulk value. We set this bond to ideal tetrahedron’s primary axis

shown in Fig. 4.2.2-a. Next we consider angles between these bonds and choose

another bond among these which makes angle with a value closest to bulk value.

We rotate ideal tetrahedron around its primary axis to match other axis to this

bond (Fig. 4.2.2-b). With these two steps we position an ideal tetrahedron to

deformed local geometry and calculate local strain tensor at atom i via distance

vectors between this ideal tetrahedron edges to positions of atom i’s neighbors.

Using these displacement vectors, we construct deformation matrix and derive

a) b)

Figure 4.4: Illustration of positioning an ideal tetrahedron to local geometry in
two steps.

the atomistic strain tensor from this local deformation tensor [49].

4.2.3 Hydrostatic and Volumetric Strain

Although strain is a second order tensor it is usually measured with its first

invariant, which is called the hydrostatic strain [47]:

ǫhs =
1

3
Tr(ǫ). (4.25)
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As an alternative measure to hydrostatic strain, we calculate volumetric strain

by considering volume change of a tetrahedron from its undeformed counterpart.

Consider the tetrahedron in Fig. 4.3. The edges of this tetrahedron are R0
1, R0

2,

R0
3 and R0

4. The volume of this tetrahedron is:

V 0 =
1

6
det
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. (4.26)

Where R12,y is the y component of R2 − R1. After deformation the volume of

deformed tetrahedron in Fig. 4.3 is:

V =
1

6
det

∣
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(4.27)

If we calculate the determinants of both sides of Eq. 4.22:

det
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(4.28)

We can rewrite Eq. 4.28 using determinant property:

detR = det(Gi) det(R0) (4.29)

If we use the strain tensor proposed by Pryor et al. and using Eq. 4.26 and

Eq. 4.27 we can further rewrite Eq. 4.29:

1

6
V = det(ǫi + I)

1

6
V 0, (4.30)

where V 0 and V are volume of tetrahedron before and after deformation

respectively. We can write determinant in Eq. 4.30 in terms of multiplication

of eigenvalues of:

det(ǫi + I) =
3

∏

j=1

(ǫj + 1), (4.31)
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where ǫj is jth eigenvalue of strain tensor. For small deformations we can

approximate eigenvalues of strain tensor with its average value:

ǫ1 = ǫ2 = ǫ3 =
1

3

3
∑

j

ǫj . (4.32)

Using the fact that sum of eigenvalues of a matrix is equal to its trace, we can

write Eq. 4.30 as:
V

V 0
= (ǫhs + 1)3. (4.33)

Finally we can calculate the local hydrostatic strain at an atom by considering

volume change of tetrahedron formed by its four neighbors:

ǫhs =

(

V

V 0

)1/3

− 1. (4.34)

We proved that for small deformations, hydrostatic strain can be directly

calculated from volumes of tetrahedra. In the next section we also showed that

for our system, volumetric strain is similar to the hydrostatic strain.

4.3 Results

We analyze the hydrostatic, volumetric and bond length strain distributions

in Si NCs, in particular demonstrate that both compressive volumetric and

hydrostatic strain and tensile bond length strain coexist within the same Si NC.

We accomplish this by performing trajectory analysis on model samples (with

ca. 5000 atoms) simulated via MD using a reliable and accurate as well as

reactive force field [16]. The simulation details are similar to those explained

in Ch. 3 and Ref. [8]. In this case we construct the Si NC in glass matrix

with a slightly different method. Instead of deleting all glass atoms within

a predetermined radius, we remove the glass atoms after rigorously defining

the surface of the nanocrystal through the Delaunay triangulation method [31].

Delaunay triangulation method is computational geometry tool that defines a

closed surface from a set of points in three dimensions. This method has usages
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Figure 4.5: Variation of, Si-Si bond lengths (squares), hydrostatic strain
(diamonds), and the volumetric strain (triangles) as a function of distance to
nanocrystal surface (see text). Dashed, dotted and solid lines are guides to the
eye for the respective data set. The data for 2.6 nm diameter NC is used. Inset:
Other NC diameters ranging from 2.2 nm to 3.2 nm are also shown.

in different areas but we are the first to use this tool to define a nanocrystal

surface. In this way, we have constructed NCs embedded in glass matrix with

diameters ranging from 2.2 nm to 3.2 nm without introducing built-in strain to

the system. In this diameter range we observe similar trends in strain, volumetric

strain, and bond length distribution etc., therefore, we present only the figures

of the system for a typical NC of radius 2.6 nm.

To verify our results we have calculated strain distribution in NC region for all

mentioned measures. We have plotted all three of them in Fig. 4.5. The results

of volumetric strain are very close to hydrostatic strain which is the trace of

strain tensor calculated with aforementioned technique [49]. In previous section

we already showed these two are similar in the limit of small deformations. In

these results, we observe a net compressive behavior of strain just under the

surface and a uniform tensile strain of about 1% at the core of NC. Si-Si bonds

are stretched by about 1% in the core region in agreement with the hydrostatic

and volumetric strains, however, just under the surface, Si-Si bonds are stretched
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Figure 4.6: Dependence of solid angle subtended by tetrahedron face to the
angle between tetrahedron face and nanocrystal surface. Illustration of solid angle
subtended by tetrahedron face (top left inset) and the angle between tetrahedron
face and NC surface (bottom right inset).

up to 3% where hydrostatic and volumetric strain results indicate compressive

strain state. The bond-stretch in Si-Si bonds due to oxidation has been shown

earlier by us using molecular dynamics simulations [8] which was also confirmed

by other approaches [46].

Occurrence of compressive volumetric strain and stretched bond lengths in

the same outer region may initially seem contradicting. However, stretching of

bonds does not imply that the system is under tensile hydrostatic strain as well.

Consider a tetrahedron formed by a Si atom and its four Si neighbors (A, B, C,

D) as shown in upper inset of Fig. 4.6. In the ideal case, the solid angle (Ω)

subtended by each triangular face of this tetrahedron should be equal to 180◦.

Under a uniform deformation, bond lengths will also be stretched, while the solid

angles remain unchanged. However, under a nonuniform deformation, the change

in three solid angles causes a decrease in the volume of the tetrahedron while

increasing or preserving the bond lengths. Hence, a combination of stretched

bond lengths with deformed solid angles may end up with an overall reduction
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of the volume of the tetrahedron. This explains the coexistence of compressive

volumetric strain and stretched bond lengths at the region just below the surface

of NCs.

To better visualize the nature of the deformation of the Si NCs, we consider the

orientational variation of the solid angles of the tetrahedral planes. As illustrated

in the lower inset of Fig. 4.6, the two important directions are the unit normal (n̂S)

of the tetrahedron face subtending the solid angle under consideration, and the

local outward surface normal (n̂NC) of the NC. It is clearly seen from Fig. 4.6 that

solid angles subtended by tetrahedra faces oriented outward to the NC surface are

increased up to 220◦, whereas those facing inward to the NC core are decreased

down to 160◦. This dependence is a clear evidence of how oxidation affects strain

distribution close to the interface.

To further quantify the atomistic strain in the highly critical region within

3 Å distance to the interface, we classify the average bond length and hydrostatic

strain behaviors into three categories. Fig. 4.7 displays the percentage as well as

the bonding details of each category. In top-left, we illustrate most common type

with a share of 53.0% which is responsible for the opposite behavior in Fig. 4.5

where average bond lengths of center Si atoms to its four nearest neighbors are

stretched but net atomistic strain at this atom is compressive. In this case solid

angles facing toward the oxide region is increased to 270◦ due to oxygen bonds of

Si neighbors. Although these oxygen bonds stretched Si-Si bonds to 2.41 Å, net

strain on center Si atom is -2.7%. In the top-right part of the Fig. 4.7 we illustrate

second most often case with a percentage of 42.0%, where average bond lengths

and atomistic strain show similar behavior; bond lengths are stretched and net

hydrostatic strain is tensile. In this case oxidation somewhat uniformly deforms

the bonds so that solid angles are still around 180◦ which is the value for the

unstrained case. Finally, as shown at bottom of Fig. 4.7, a very small percentage

of atoms (5.0%) in the region beneath the surface have shortened bond lengths

and compressive atomistic strain.
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Figure 4.7: Illustrations of oxidation effects on strain in three categories with
their percentage of occurrences: Si-Si bonds are stretched and system is under
compressive strain (upper left). Si-Si bonds are stretched and system is under
tensile strain (upper right). Si-Si bonds are shortened and the Si atom at the
center is under compressive strain (bottom). Large spheres (gold) and small
spheres (red) represents Si and O atoms, respectively.



You don’t wonder where we’re going

Or remember where we’ve been

We’ve got to keep this traffic

Flowing and accept a little spin

Cake, ”The Long Line of Cars”,

Comfort Eagle, Columbia Rec. 2001.

I see a red door and I want it painted black

No colors anymore I want them to turn black

Rolling Stones, ”Paint It Black”,

Aftermath, ABKCO Records. 1966.



Chapter 5

Vibrational Spectra of Embedded Si

Nanocrystals

5.1 Introduction

Velocity autocorrelation function (VACF) is one of the most used member of

the time dependent correlation functions family. Various dynamical properties

of a system can be calculated using VACF such as diffusion coefficient, thermal

conductivity etc. We used VACF to obtain vibrational density of states of the

system. In this part of the Thesis we present technical details of VACF by

considering silicon and silica as case studies.

5.2 Velocity Autocorrelation Function

Time dependent correlation functions are measures of correlations of various

quantities at different times. Suppose that we are carrying out Molecular

Dynamics (MD) simulations and we have N atoms in our system. At a finite

temperature every atom in the system has a kinetic energy and vibrating

around its equilibrium position with some frequency. Correlation of these atoms’

velocities at different times depends on their vibration frequencies. We record

velocities of atoms at desired time intervals and to extract these frequencies we

54
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first construct VACF at every time step:

c(t) =
1

N

N
∑

i=1

vi(t) · vi(t0). (5.1)

In 5.1 N is the number of atoms in the system. For next time step of simulation:

c(t + ∆t) =
1

N

N
∑

i=1

vi(t + ∆t) · vi(t0). (5.2)

Normalizing VACF by dividing it with its value at t0:

C(t) =
c(t)

c(t0)
(5.3)

gives us a time series resembling VACF starting with a value 1 at t = t0
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Figure 5.1: Construction of correlation function starting from a chosen time origin
t0.

converging to 0 with time (Fig. 5.1). In Fig. 5.2 we present VACF for bulk silicon

system with 216 atoms. Periodic boundary conditions applied for all directions.

As time goes on, relation of velocities decreases and VACF converges to zero.

We can continue to calculate VACF as much as we can do, but we are always

limited with computational power and storage resources so we stop simulation

after having enough number of data from the simulation. If the system is in

thermal equilibrium then VACF is independent of starting time (t0), so we start

constructing VACF after waiting the system to reach its thermal equilibrium.

Since VACF is independent from time origin (t0) we may construct different

VACF’s by choosing different time origins (Fig. 5.3). Instead of constructing

a single, long time series of VACF, we construct multiple VACFs by selecting
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Figure 5.2: Velocity autocorrelation function for bulk silicon system consisting
216 atoms.
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Figure 5.3: Construction of correlation function starting from different time
origins.

different time origins and we add these VACFs (ci(t)) to have an average VACF:

Cav(t) =
1

Nv

Nv
∑

j=1

cj(t). (5.4)

In Eq. 5.4, Nv is the number of VACFs constructed by choosing Nv different

time origins. Suppose that we run a MD simulation and we record velocities of

atoms for N consequent time steps. Lets say that at t = ts system has reached

its thermal equilibrium. If we construct VACFs by choosing equally spaced time

origins, say ∆tv, and starting from t = ts we have n = N − ts −Nv∆tv time steps

for every VACF. Larger time series for VACF gives better resolution in vibrational

frequencies but calculating multiple VACFs will give accurate results free from
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statistical errors. Since we have a definite number of time series recorded during

simulations, increasing number of time steps for every VACF will decrease the

number of VACFs vice versa. Now the question arises: How can we determine

the number of time steps for every VACF? If we consider Fig. 5.2 we observe that

VACF will converge to zero after 0.6 ps. Constructing VACF that spans much

more time than 0.6 ps would be unnecessary for this case. Another criterion to

determine the number of time steps between two VACFs is average period of the

oscillations of the system. If time step between two VACFs is shorter than this

period this means that we are sampling same oscillations more than once and

this would be an unnecessary computation.

t
s

Δt
v

Δt
v

N - t
s

Figure 5.4: Number of time steps for every VACF.

Although we can calculate various thermodynamical properties of system

we are interested in vibrational frequencies of atoms around their equilibrium

positions. All of atoms in the system contribute to VACF with their vibrational

frequencies so VACF is just like a sum of signals with various frequencies. To

extract how many atoms are vibrating at each frequency or in other words density

of vibrational states, we calculate the Fourier transform of VACF. In the next

section of this chapter we focus on details of Fourier transform of discretely

sampled data.
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5.3 Fourier Transform of Discretely Sampled

Data

Any function whether it is periodic or not can be written in terms of linear

combination of sines or cosines:

g(t) =
∞

∑

i=1

hi cos(2πfit). (5.5)

If we write in integral form of Eq 5.5:

g(t) =

∫

∞

−∞

h(f) cos(2πft)df. (5.6)

We may also write in complex form of Eq 5.6:

g(t) =

∫

∞

−∞

h(f)e−i2πftdf. (5.7)

Eq 5.7 states that a function g(t) in time domain can be represented by sum

(integral) of other functions h(f)’s in frequency domain. This means that the

operation in Eq 5.7 transforms h(f) to g(t) from frequency domain to time

domain. This operation called inverse Fourier transform and similarly the

operation which transforms g(t) in time domain to h(f) in frequency domain

called Fourier Transform [15]:

h(f) =

∫

∞

−∞

g(t)ei2πftdt. (5.8)

Like our situation, usually the function g(t) is recorded (sampled) at N equally

spaced time intervals:

gn = g(n∆t) n = 0, 1, 2, 3...N (5.9)

Sampling rate which is the amount of data recorded per second defines the Nyquist

Frequency, half of the sampling rate:

fc =
1

2∆t
. (5.10)
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The importance of Nyquist Frequency revealed by sampling theorem which states

that: Fourier Transform of a continuous function g(t) sampled with equally spaced

time intervals (∆t) is bandwidth limited to frequencies smaller than fc [15]. Since

we have discrete values of function g(n∆t) in time domain, to transform g(t)

into frequency domain h(f), we need to approximate the integral in Eq 5.8 by a

discrete sum [15]:

h(fk) =
1

2π

∫

∞

−∞

g(t)ei2πfktdt =
1

2π

N−1
∑

n=0

gne
2πfktn∆t = ∆t

N−1
∑

n=0

gne
2πnk/N (5.11)

where fk = n
N

fc. If we write :

h(f) = hk
∆t

2π
. (5.12)

This procedure transforms N complex numbers gn’s into hk’s and is called

Discrete Fourier Transform [15]:

hk =

N−1
∑

n=0

gne
2πkn/N . (5.13)

5.4 Vibrational Density of States of Crystalline

Silicon

With this insight we transform VACF from time domain to frequency domain.

Hence we have density of each frequency in the vibrational spectrum which

is called Vibrational Density of States (VDOS). Before calculating VDOS of

bulk silicon, examining the available phonon dispersion curves may give valuable

information. In Fig. 5.5 we present phonon dispersion curves calculated with a

technique similar to ours [51]. If we look at Fig. 5.5 we should expect a sharp

peak at ≈ 15.3 THz, (≈ 510 cm−1) which is transverse optical (TO) vibrational

mode of silicon. In literature TO peak of silicon is reported around 520 cm−1

(15.6 THz) [52]. Inverse centimeters (cm−1) is the more common unit in this field

and 1 THz is equal to 33.35 cm−1. We will use inverse centimeters in this Thesis

as the main unit to describe frequency. TO peak of Si at ≈ 520 cm−1 is Si-Si
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bond stretching mode which is the most dense mode in the spectra. Behavior of

this mode under strain or at different temperatures are our main interests. We

Figure 5.5: Phonon spectra of bulk silicon at different temperatures, solid lines:
T=100 K, dashed lines: T=1500 K (Ref [51])

.

run a MD simulation of bulk silicon consisting of 64 atoms (2x2x2 unit cells).

Temperature was set to 200 K and our MD time step was 0.25 fs. We record

velocities of atoms for every 50 MD steps. This results in a 12.5 fs time interval

∆t. We wait for 50000 MD steps for the system to reach its thermal equilibrium.

Then we calculate average VACF over 5000 VACFs by choosing multiple time

origins (∆tv). We calculate VDOS by taking Fourier transform of average VACF.

Nyquist frequency of our FT is equal to 1340 cm−1, (40 THz), so our transform

is bandwidth limited to 1340 cm−1. Since we are interested in frequencies less

than 600 cm−1 our sampling rate is good enough for our purposes. In Fig. 5.6 we

present the graph of this calculation. To further stress the importance of choosing
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Figure 5.6: VDOS of silicon. Extracted from Fourier transform of VACF averaged
from 5000 VACFs constructed by choosing 5000 equally separated time origins.
The system consists of 64 atom system at 200 K

.

multiple time origins during the construction of VACF, we also present graph of

VDOS of silicon extracted from Fourier transform of VACF constructed from a

single time origin instead of 5000 time origins (Fig. 5.7). If we compare dashed

line and solid line in Fig. 5.7 we see that averaging from more VACFs results in

a smoother curve in VDOS.

We observe TO peak of silicon in Fig. 5.6 at about 525 cm−1 which is

close to result of Ref. [52]. This peak is a result of Si-Si vibrations. To find

out how strain affects VDOS of silicon we apply hydrostatic compressive and

tensile strain by rescaling the simulation box uniformly. We apply 2 % and 4 %

tensile (compressive) strain by uniformly expanding (compressing) the system.

In Fig. 5.8 we observe that under compressive strain TO peak of silicon shifts

to higher wave numbers (up to 531 cm−1 under 4 % compressive strain) and

similarly under tensile strain same peak shifts to lower wave numbers (up to 515

cm−1 under 4 % tensile strain). It is easy to understand why TO peaks behave in
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Figure 5.7: VDOS of silicon. Extracted from Fourier transform of VACF averaged
from 5000 VACFs constructed by choosing 5000 equally separated time origins
(solid line). Extracted from Fourier transform of VACF constructed by choosing
single time origin (dashed line). Choosing multi time origins smoothen the data
and yields better result. The system consists of 64 atoms at 800 K.

this way under strain if we consider a classical Lennard-Jones potential which is a

rough estimate of interaction between two bonded atomsx‘. In Fig. 5.9 we observe

that when two atoms become closer than their equilibrium, potential curve gets

steeper, this corresponds the compressive strain. Steeper potential means larger

force, hence larger force constant so frequency of Si-Si bond stretching mode

should increase if we apply compressive strain. On the other hand, when two

atoms get apart from each other, potential curve becomes softer hence lower

force constant, so the frequency of Si-Si bond stretching mode should decrease if

we apply tensile strain. On the contrary, TA peak (162 cm−1) behaves opposite

to TO peaks. Under compressive strain TA peak shifts to lower frequencies (up

to 136 cm−1 under 4 % compressive strain). For the case of tensile strain TA peak

shifts to higher frequencies (up to 185 cm−1 under 4 % tensile strain) (Fig. 5.10).

Increasing temperature has a similar effect like applying tensile strain; when we
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Figure 5.8: Effect of strain to VDOS. Extracted from Fourier Transform of VACF
of 64 atom system with hydrostatic strains, at 200 K
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Figure 5.9: Classical Lennard-Jones potential.
.

increase temperature from 100 K to 1500 K TO peak shifted to lower frequencies

from 507 cm−1 to 492 cm−1. In Fig. 5.11 we present VDOS of crystalline silicon
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at various temperatures ranging from 100 K to 1500 K. Increasing temperature

also broadens the TO peak. Full width at half maximum (FWHM) of TO peaks

increases from 87 cm−1 to 87 cm−1 when we increase the temperature to 1500 K.

In Fig. 5.12 we present the temperature dependence of position and FWHM of

TO peak of crystalline silicon.
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Figure 5.10: Shifts of TO and TA peaks with strain
.

5.5 Vibrational Density of States of Amorphous

SiO2

The system that we are dealing with is composed of nanocrystalline silicon

embedded in amorphous SiO2 (silica, a-SiO2). To understand the VDOS of

this system we should also understand the VDOS of silica. There are several

methods to generate an amorphous system. One of the most used method is

to mimic simulated annealing process with MD simulation. Starting with a

crystalline form of SiO2, increasing the temperature of the system gradually to

melting temperature of the system, then cooling the system slowly will yield a
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Figure 5.11: Vibrational density of states of crystalline silicon at various
temperatures
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Figure 5.12: Effect of temperature to position of the TO peak of crystalline silicon
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fine amorphous system. We generate amorphous SiO2 starting from different

crystalline phases of crystalline SiO2 such as, α-quartz, β-cristobalite, low-

cristobalite. We set the density of the system as 2.2 gr/cm3 by scaling the lattice

constants. Our systems consist of about 192 atoms, and simulation box size

is about 14.3 Å. In Fig. 5.13 we present the energy of the system during the

annealing process. Although different phases start from different energy levels

they all end up at the same energy level.
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Figure 5.13: Generating amorphous silicon dioxide using MD simulation with
simulated annealing

.

After generating amorphous silica using simulated annealing method, we run

constant temperature MD simulation to construct VACF of the system. We

calculate the Fourier transform of VACF to have VDOS of the system. To

compare our results we also present neutron scattering experiment results of

Carpenter and Price [53] in Fig. 5.14. There is a fair agreement in trends between
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our results and experiment. However our technique underestimates phonon

frequencies especially those at higher wave numbers. This underestimation

originates from the parametrization of the force field. Since we are interested in

relative shifts of those peaks, this underestimation does not effect our predictions.
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Figure 5.14: Comparison of VDOS of silica systems calculated using ReaxFF
(solid line) with neutron scattering experiment results of Ref. [53] (filled circles).

.

When we consider Fig. 5.14 we observe two huge, wide peaks at 113 cm−1 and

234 cm−1. These are acoustic vibrations of silica. We have two peaks at around

1164 cm−1 and 1330 cm−1. These are asymmetric stretching vibrations of Si-O-

Si atoms. There are two TO and two LO modes within 1000 cm−1-1250 cm−1

mixed together. The symmetric stretching of Si-O-Si atoms results in a bare peak

around 650 cm−1.

Unlike crystalline systems, amorphous structures have no long range order

but rather a short range one. In the case of silica, local bonding topology (bond

lengths, bond angles etc.) is similar to alpha quartz phase of SiO2 (α-SiO2).

Likewise, amorphous structure of silicon also has only the short range order, i.e.,

silicon atoms form tetrahedra as in the crystalline phase. Vibrational spectra
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Figure 5.15: Comparison of VDOS of amorphous silicon and crystalline silicon.
.

more or less depends on short range order of a system. We compare the VDOS

of amorphous silicon with that of crystalline silicon in Fig. 5.15. We observe in

this figure that TO peak of crystalline silicon coincides with the same peak of

amorphous silicon which is a direct consequence of the short range order similarity

of both structures. It can be observed that the crystalline spectrum has sharp

peaks due to the constraints of the crystalline symmetry. In general terms, this

figure is a clear demonstration for the broadening of the crystalline spectra as a

result of amorphization.

5.6 Painted VACF

5.6.1 Introduction

The eye is one of the magnificent parts of the human body: Photoreceptors in

the retina transforms light to electrical signals and send these to brain. Cone

type photoreceptors see the colors and high sensitive rod type photoreceptors see
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details of the object. The brain processes these signals not only to see the objects

but also to perceive them. Colors of objects affect our perception. In Ch. 5 we

presented the calculation of VDOS of a system using MD simulation technique.

As case studies we discussed VDOS of silicon related systems, crystalline and

amorphous silicon and amorphous silicon dioxide . Those simple systems’ atoms

are colorless; i.e. they all share the same conditions. On the other hand, Si-

NC embedded in amorphous oxide system which we target to understand has

several colors needed to be seen. In this chapter we introduce our technique

called “Painted VACF” which enables us to perceive this system better.

5.6.2 Painting Atoms

If we had used the conventional VACF scheme to obtain VDOS of Si-NC

embedded in a-SiO2 system, we would end up with Fig. 5.16. VDOS in Fig. 5.16

contains contributions of all atoms of the system. Highly populated acoustic

modes mask the contributions of NC atoms at lower wave numbers. We can

only identify Si-Si stretching mode at around 515 cm−1 from contributions of NC

atoms. If we consider our analysis of strain fields in Si-NCs that we present in

Ch. 4, all of the NC atoms are not at the same strain state. Contributions of

NC atoms with different strain state cannot be addressed with the conventional

VACF scheme.

As a remedy, we “paint” the atoms in the system with respect to their

neighboring atoms. We introduce six color codes as follows:

1. Core NC atoms: A silicon atom with all silicon neighbors.

2. Surface NC atoms: A silicon atom with at least one Core-NC atom

neighbor and at least one oxygen neighbor.

3. Si-NC bonded Si atoms: A silicon atom from oxide matrix which is

bonded to Si-NC.

4. Oxide Si: A silicon atom from oxide matrix which is not bonded to Si-NC.
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Figure 5.16: VDOS of Si-NC embedded in a-SiO2 obtained by constructed VACF
of all of atoms. The only peaks which contain valuable information are the Si-Si
stretching mode at around 515 cm−1 and asymmetric stretching mode of Si-O-Si
bonds at around 1300 cm−1.

5. Si-NC bonded O atoms: An oxygen atom bonded to Si-NC.

6. Oxide Oxygen: Oxygen which is not bonded to Si-NC.

We record bonding information together with the velocities of atoms during

the simulation. We use multi time origin to calculate time average of VACF.

Details of VACF construction were described in Ch. 5. Since we use a reactive

force field, bond topology of the system evolves during the simulation. Thus

updating colors of atoms at every MD step results a change in number of atoms

painted with a particular color. This makes VDOS calculation with diffusive

modes populated at zero frequency. To prevent this unphysical outcome we paint

atom at every time origin only and calculate every VACF by considering colors

of atoms at the time origin of that VACF.
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5.7 Vibrational Spectra of Embedded Si

Nanocrystals

In Ch. 3 we described the procedure of inserting NC into oxide matrix. We use a

simulation box of size 3.6 nm. We insert a NC with a diameter of 2.6 nm into this

glass system. Before recording velocities we increase the temperature to 600 K

and decrease back to room temperature in 30,000 MD steps. After waiting 20,000

steps for the system to reach its thermal equilibrium, we start recording velocities

of atoms and bonding topology of the system for every 25 MD step. We continue

performing MD simulation for 200,000 MD steps. We set the simulation time

step to 0.25 fs. The Nyquist frequency of the constructed VACF is 2668 cm−1.
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Figure 5.17: VDOS of silicon atoms at the core of NC. TO peak due to Si-Si
bond stretching mode can be identified at 515 cm−1.

In Fig. 5.17 we present VDOS of silicon atoms at the core of the NC. The

crystalline order is preserved at the core of NC. Thus all the major peaks of

vibrational spectra of c-Si are observed in the VDOS of core-NC atoms. The

position of TO peak due to Si-Si bond stretching vibrations appear at 515 cm−1.
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We compare VDOS of core-NC atoms with the VDOS of silicon atoms at the

surface atoms in Fig. 5.18. An interesting observation is that the TO peak of

surface silicon atoms shift to 494 cm−1. This shift to lower wave numbers with

respect to TO peak of core-NC atoms corresponds to stretching of Si-Si bonds

of surface-NC atoms due to oxidation. As a matter of fact, in Ch. 4 we showed

that oxide matrix that surrounds NC stretches Si-Si bonds just under the NC.

Broader peaks of surface Si atoms show the reduction of crystalline order at the

surface of NC due to nonuniform deformation [54].
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Figure 5.18: VDOS of silicon atoms at the surface of NC (solid line). TO peak
due to Si-Si bond stretching mode identified at 494 cm−1. VDOS of core-NC
atoms also presented for comparison (dashed line).

Another interesting feature of VDOS of surface Si atoms arises when we

compare it with VDOS of silicon atoms in the oxide. O-Si-O system has three

vibrational modes. One of them is the symmetric mode at around 800 cm−1 and

other two are asymmetric vibrational modes at around 1250 cm−1. In Fig. 5.19 we

observe that symmetric O-Si-O mode of surface Si atoms shifts to higher wave

numbers by about 50 cm−1 with respect to same peak of silicon atoms in the

oxide. This shift to higher wave numbers resembles stronger Si-O bonds at the
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Figure 5.19: VDOS of silicon atoms at the surface of NC (solid line). The
symmetric mode of O-Si-O vibrations of surface Si atoms shifts to higher wave
numbers with respect to same mode of Si atoms at the oxide. VDOS of oxide Si
atoms also presented for comparison (dashed line).

surface of NC with respect to those at the oxide.

5.8 Conclusion

Introducing a novel technique as we called “Painted VACF” enables us to extract

valuable information from the vibrational spectra of the system. First of all

we observe that core of NC preserves it crystalline order. On the other hand

oxidation causes deformation at the surface of the NC. The VDOS of these atoms

reveals the degradation in the crystalline order. The TO peak due to Si-Si bond

stretching of surface Si atoms shifts to lower wave numbers. This is a result of

Si-Si bond length stretching. We also observe that oxygen atoms bonded to NC

surface make stronger Si-O bond than in the oxide part. These findings help

us to understand relations between strain state of Si-NCs with its vibrational

spectra. This provides a big advantage as the vibrational spectra of these systems
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can be only measured indirectly. Comparing positions of these peaks results of

understanding of strain state of Si-NCs.



I’m just so relieved that it’s over.

We were hanging out going nowhere,

Digging how the guitar goes,

In a song that no one knows.

James Blunt , ”So long Jimmy”,

Back to Bedlam, Atlantic Records/ATG, 2005.



Chapter 6

Conclusion

As the first contribution of our work atomistic simulation of NC formation

in amorphous silicon-rich-oxide is accelerated through oxygen diffusion process

governed by suboxide penalty energies in a Monte Carlo scheme. We observed

that the available ab initio suboxide energies are not satisfactory for this purpose

whereas one can extract them from “ideal” embedded NC suboxide densities.

Even though this modification improves the sphericity of the NCs substantially, it

still requires further shape constraints such as the minimization of the surface-to-

volume ratio. The crystalline order, interface thickness and the strain distribution

of the NC can be quantitatively analyzed with this tool. The main drawback

of the algorithm is the necessity for the shape constraints which breach the

predictive power of the method. The use of a multiscale approach by replacing

the shape constraints with a physical law is required.

The realistic chemical environment provided by reactive force field model

enables us to understand the bond topology of Si-NC/a-SiO2 interface and its

internal dynamics. Particularly, it reveals that there are different types of oxygen

complexes at the Si-NC surface some of which contain three-coordinated oxygen

complexes (3cO) whereas there are no double bonds. The curvature has a positive

effect on the occurrence of 3cO. The relative abundance of different complexes

and their charge and geometrical characteristics are extracted. The inner core is

observed to be almost unstrained while the outer core and the interface region

76
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of the NC are under increasing strain up to about a few per cents. In general,

our work clearly shows that the Si NC-oxide interface is more complicated than

the previously proposed schemes [1, 3] which were based on solely simple bridge

and double bonds. The provided information in Ch. 3 paves the way to construct

realistic Monte Carlo moves for the simulation of large-scale silicon nanostructures

embedded in oxide matrix. The results of bond length stretching of Si-Si bonds

just under the NC surface invokes a deeper understanding of strain distribution

in Si-NC.

The amorphous silica matrix applies a non-uniform strain to the Si-NC. This

non uniform strain field becomes uniform in the core of the NC. The core region

of the NC is observed to be under a uniform 1 % tensile strain, where both bond

length and volumetric strain measures are in agreement. However, towards the

NC interface, while the Si-Si bonds become more stretched, the hydrostatic and

volumetric strain changes in the compressive direction. In the interpretation of

the indirect strain measurements such as from spectroscopy, this dual character

needs to be taken into consideration. We explain these two behaviors using the

solid angle deformation of the tetrahedral-bonded Si atoms, and demonstrate that

it is ultimately caused by the oxygen atoms at the interface. An equally important

finding is that the overall strain profile within the Si NCs is quite nonuniform.

As very recently emphasized, within the context of centrosymmetric materials,

like silicon, such strain gradients locally break the inversion symmetry and may

lead to profound physical consequences [55].

We introduced VACF technique as a computational tool to explore vibrational

spectra of atomic systems. We studied silicon and silica as case studies. We

also presented the relation between strain and vibrational spectra. Finally

we introduced a novel technique called “Painted-VACF” which enables us to

calculate contributions of different type of atoms to VDOS of the system. Using

this tool we show the effect of surface bonds and strain fields to VDOS of system.

This work provides a link between mechanical and chemical properties of Si-NC

and its vibrational spectra.

The next challenge will be to construct a theory which relates strain state of
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Si-NCs to its optical properties. Using charge distribution, one can calculate the

Raman spectra of Si-NCs by constructing dipole correlation function. Another

possible extension of this work is to study much larger NCs and obtain the size

scaling trends as well as the onset of faceting from a truly microscopic model.

On the technical side, the parameter development for a reactive force field still

remains to be an art; further progress is required to make it more robust and

versatile.
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