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ABSTRACT

ROTATING TWO LEG BOSE HUBBARD LADDER

Ahmet Keleş

M.S. in Physics

Supervisor: Assoc. Prof. Dr. M. Özgür Oktel

August, 2009

We analyze two leg Bose Hubbard model under uniform magnetic field within var-

ious methods. Before studying the model, we discuss the background on rotating

Bose Einstein condensates, Bose Hubbard model and superfluid Mott insulator

transition. We give a general overview of Density Matrix Renormalization Group

(DMRG) theory and show some of the applications. Introducing two leg system

Hamiltonian, we solve the single particle problem and find distinct structures

above and belove a critical magnetic field αc = 0.21π. Above this value of the

field, it is found that system has travelling wave solutions. To see the effects

of interactions, we use Gross Pitaevskii approximation. Spectrum of the system

below the critical field and the change of αc with the interaction strength are ob-

tained for small interactions, i.e Un/t < 1. To specify Mott insulator boundary,

variational mean field theory and strong coupling perturbation (SCP) theories

are used. The travelling wave solutions found in single particle spectrum above

αc is found to be persistent in mean field description. On the other hand, com-

paring with the strong coupling expansion results, it has been found that the

mean field theory gives poor results, because of the one dimensional structure

of the system. The change of the tip of the lobe where BKT transition takes

place is found as a function of magnetic field by SCP. Finally we use DMRG to

obtain the exact shape of the phase diagram. It is found that second order strong

coupling perturbation theory gives very good results. System is found to display

reenterant phase to Mott insulator. Looking at the infinite onsite interaction

limit via DMRG, the critical value of the magnetic field is found to be exactly

equal to the single particle solution. We have calculated the particle-hole gap for

various fillings and different magnetic fields and found Fractional Quantum Hall

like behaviors.

Keywords: Bose-Hubbard Model, Superfluid-Mott Insulator Transition, Renor-

malization, Strongly Correlated Systems.
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ÖZET

DÖNEN İKİLİ BOSE HUBBARD MERDİVENİ

Ahmet Keleş

Fizik, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. M. Özgür Oktel

Ağustos, 2009

Düzgün manyetik alan altındaki iki bacaklı Bose Hubbard modeli farklı

yöntemlerle analiz edildi. Bu model çalışılmadan önce, dönen Bose Einstein

yoğuşuklarının, Bose Hubbard modelinin ve süperakışkan Mott yalıtkanı geçişinin

arka planı tartışıldı. Yoğunluk Matrisi Renormalizasyon Grubu (YMRG) teorisi

genel olarak anlatıldı ve bazı uygulamaları gösterildi. İki bacaklı sistemin

Hamiltonyeni verildikten sonra, tek parçacık problemi çözüldü ve kritik bir

manyetik alanının αc = 0.21π altında ve üstünde birbirinden farklı yapılanmalar

bulundu. Kritik manyetik alanın bu değerinin üzerinde, hareketli dalga çözümleri

bulundu. Etkileşimlerin etkilerini görmek için, Gross Pitaevskii yaklaşımı kul-

lanıldı. Sistemin kritik manyetik alan altındaki spektrumu ve αc’nin etkileşim

kuvvetiyle değişimi zayıf etkileşimler için, Un/t < 1, bulundu. Mott yalıtkanı

sınırının belirlenmesi amacıyla ortalama alan ve güçlü bağlaşım perturbasyonu

(GBP) teorileri kullanıldı. Tek parçacık spektrumunda bulunan, kritik manyetik

alan üzerindeki hareketli dalga çözümlerinin ortalama alan teorisinde de kul-

lanılması gerektiği görüldü. Diğer yandan, güçlü bağlaşım teorisiyle karşılaştırma

sonuçunda, sistemin bir boyutlu yapısından da dolayı, ortalama alan teorisinin

kötü sonuç verdiği bulundu. BKT geçişinin olduğu, Mott yalıtkanı alanlarının

tam uç noktasının manyetik alan ile değişimi GBP ile bulundu. Son olarak,

YMRG kullanılarak faz diyagramının kesin şekli elde edildi. Bu sonuçlarla ikinci

dereceye kadar yapılan GBP sonuçlarının çok iyi olduğu görüldü. Sistemin Mott

yalıtkanı fazına geri-giriş gösterdiği görüldü. Sonsuz site-içi etkileşimine YMRG

ile bakılarak, manyetik alanın kritik değerinin tek parçacık çözümüne tam alarak

eşit olduğu görüldü. Parçacık-boşluk enerji aralığı değişik dolum oranlarınında

ve manyetik alanlarda hesaplandı ve Kesirli Kuantum Hall Etkisine benzeyen

davranışlar gözlemlendi.

Anahtar sözcükler : Bose-Hubbard Modeli, Süperakışkan-Mott Yalıtkanı Geçişi,

Renormalizasyon, Güçlü Bağlaşık Sistemler.
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Chapter 1

Introduction

Achievement of Bose Einstein condensation (BEC) has made a revolution in the

development of many body physics in both theoretical and experimental studies.

Being born at the intersection of disciples like Quantum Optics, Condensed Mat-

ter Physics and Atomic Physics, BEC has grown out to be a totally new branch

of physics. In this chapter, we are going to give a short introduction to the basic

concepts, generally discussing the theoretical foundation of the phenomena and

consider the effect of fast rotation.

1.1 BEC: General Overview

Wave function describing a collection of identical quantum particles is either

symmetric or anti-symmetric under the exchange of two particles. This exchange

symmetry comes from the indistinguishability of the particles and separates the

nature into two different class of statistics. Bosons are identified by the inte-

ger total spin and obey the Bose Einstein distribution, whereas fermions have

half integer spin and obey Fermi Dirac distribution. For fermions, there is an

exchange force coming from the antisymmetry of the wavefunction. It prevents

two particles from occupying the same energy level and called Pauli exclusion

principle. On the other hand, there is no such constraint for bosons so that

1



CHAPTER 1. INTRODUCTION 2

infinitely many particles can be placed in the same energy eigenstate. Though

fermions have interesting physics, we are mainly interested in bosons, particularly

the macroscopic occupation of a single eigenstate in this thesis.

For a collection of bosonic atoms, having energy eigenstates Ei, the occupation

number of each state is given by the Bose Einstein statistics

〈ni〉 =
1

eβ(Ei−µ) − 1
(1.1)

where β = 1/kT is the inverse temperature, k is Boltzmann constant and µ is

the chemical potential. In the limit of low temperature (T → 0 or β → ∞) the

exponential term diverges and the occupation number of each state goes to zero so

that one of the states must be filled separately. It is a standart textbook exercise

to make this argument more quantitative. Defining the external potential to

provide the exact energy spectrum and the dimensionality, a critical temperature

where particles settle down to the ground state can be found [1, 2]. Another

simple approach to see the peculiarity about absolute zero can be obtained by

comparing the kinetic energies of particles (p2/2m) with the thermal energy (kT )

via the help of De Broglie relation λ = h/p (h is Planck’s constant). One can

obtain a relation of the form λ ∝
√

h2/2mkT . Thus as the temperature of the

system goes to zero, particles will have a giant matter wave structure [3, 4].

BEC is defined as the macroscopic occupation of one of the single particle

energy levels. Let Ψs(x1, x2, . . . , xN ) be set of many-body wavefunctions of a

collection of N particles which is symmetric under the exchange of two particles,

with weights ws. Single particle reduced density matrix is defined as[5]

ρ1(x, y) = N
∑

s

ws

∫

dx2dx3 . . . dxNΨ∗
s(x, x2, . . . , xN)Ψs(y, x2, . . . , xN) (1.2)

where we have assumed one dimensional system for simplicity but this can be

extended to three dimension and time dependence can be considered. From

Eq.(1.2) it is seen that the density matrix ρ1(x, y) is Hermitian, thus it can be

put into a diagonal form,

ρ1(x, y) =
∑

i

niφ
∗
i (x)φi(y) (1.3)
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where φ is the complete set of orthogonal states. The coefficients in this expansion

can be found by exploiting the orthogonality 〈φn|φm〉 = δnm as

ni =

∫

φ∗(y)ρ1(x, y)φ(x)dxdy. (1.4)

Formal definition of BEC : If one of the eigenvalues n0 in Eq.(1.3) is order of

total number of particles so that, sum in Eq.(1.3) has to be done by separating

the dominant term[6]; like ρ1(x, y) = n0φ
∗
0(x)φ0(y) +

∑

i6=0 niφ
∗
i (x)φi(y), then the

system is said to be Bose condensed[5, 6, 7]. Accumulation of particles on one

of the single particle eigenstates enables a simple form for the many body wave

function. Condensate wave function can be written as

Φ(r) =
√
Nψ0(r) (1.5)

where it is normalized to the total number of particles. In this expression, ψ0(r)

is a complex valued function and called order parameter. One can safely write

this function of the form ψ0(r) = |ψ0(r)|eiθ, where θ is a function of r.

To extend the discussion further, it is necessary to introduce system Hamil-

tonian. Hamiltonian for a system of N particles interacting via the two body

interatomic potential V (r − r′) is given in second quantization

H =

∫

drΨ̂†(r)H0Ψ̂(r) +
1

2

∫

drdr′Ψ̂†(r)Ψ̂†(r′)V (r − r′)Ψ̂(r)Ψ̂(r′) (1.6)

where Ψ̂(r) and Ψ̂†(r) are bosonic field operators that create and annihilate a

particle at position r which satisfy the commutation [Ψ̂(r), Ψ̂†(r)] = δ(r− r′), all

other commutators being zero, and H0 is the noninteracting part of the Hamil-

tonian given by H0 = ~
2∇2/2m + Vext(r). The term Vext(r) in H0 is external

potential which is generally a harmonic oscillator potential. For a dilute gas

at low temperature the interaction comes from two body collisions and given

by[1, 5, 8]

V (r − r′) =
4π~

2a

m
δ(r − r′) (1.7)

where a is the s-wave scattering length.
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1.1.1 Gross Pitaevskii Equation

A first strike at Eq.(1.6) is the exploitation of the mean field approximation. This

is essentially nothing but the replacement of the field operator with a classical

field such as Eq.(1.5). To obtain the equation of motion, one uses Heisenberg

equation i~∂Ψ̂/∂t = [Ψ̂, Ĥ ] which gives

i~
∂Φ(r, t)

∂t
= −~

2∇2

2m
Φ(r, t) + Vext(r)Φ(r, t) +

4π~
2a

m
|Φ(r, t)|2Φ(r, t). (1.8)

This equation is called Gross-Pitaevskii equation. As long as the diluteness con-

dition na3 ≫ 1 (n is density of the condensate and a is s-wave scattering length)

is satisfied, this equation describes the condensate precisely in zero temperature

limit[1, 8]. Assuming a time dependence of the form Φ(r, t) = Φ(r)e−iµt/~ in the

wavefunction, time independent Gross-Pitaevskii equation can be obtained as
[

−~
2∇2

2m
+ Vext(r) + g|Φ(r)|2

]

Φ(r) = µΦ(r) (1.9)

where µ is the chemical potential and g = 4π~
2a/m. Eq.(1.9) is a nonlinear

Schrödinger equation and exact solution is not always possible. There are several

approaches for the approximate solution that will be mentioned briefly.

The first approach is variational, which is sometimes called ideal gas approx-

imation. Having a solution to the non-interacting part of the Hamiltonian, a

variational wavefunction can be defined that will minimize the energy. For an

example, if the external potential is a harmonic oscillator potential, than the

non-interacting part of the Hamiltonian will have a gaussian wave function in the

ground state. Thus, defining a parameter dependent gaussian function that is

properly normalized, one can obtain an upper limit for the energy. This method

is proved to be very accurate to describe both the ground state properties and

the collective excitations of Bose Einstein condensates.

Second approach is called Thomas-Fermi approximation. For sufficiently large

number of atoms, the kinetic energy is much less than the interaction and poten-

tial energies. Thus one can ignore the kinetic energy term and solve the remaining

algebraic equation for the chemical potential. Other quantities such as the total

energy and the radius of the condensate can be obtained with this method.
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Literature on Gross Pitaevskii equation is pretty diverse and we have not men-

tioned most of the important methods like numerical solutions or soliton solutions.

Gross Pitaevskii theory is one of the very strong approaches for the analytical

treatment of Bose Einstein condensates and a detailed analysis can be obtained

from the references[1, 8]. A higher order approximation to Gross Pitaevskii the-

ory is the so called Bogoliubov theory. Looking at small perturbations around

the equilibrium wave function, one can consider the following[9]

Ψ̂ = Φ + ueiwt + ve−iwt (1.10)

and the excitation spectrum at higher order can be obtained.

1.2 Superfluidity and Rotating Condensates

Superfluidity was discovered by Kamerlingh Onnes with the experiments on He at

low temperatures. Helium 4 is a superfluid that shows unusual properties below

a specific temperature called lambda point, it has zero viscosity that diminishes

the friction between the liquid and the container, zero entropy and infinite heat

conductivity. These properties cause the liquid to display extraordinary proper-

ties. For example, superfluid helium can pass through very thin capillaries that

it cannot pass above the lambda point. Another example is that the superfluid

He can flow up through a tube plunged into it, which is called fountain effect.

Among these surprises, the effect of rotation on superfluids is in particular in-

terest of this thesis. If the container is rotated up to some particular angular

velocity, superfluid does not rotate but stands still, whereas a classical fluid is

expected to rotate. An interesting observation is the following. Assume that the

container is rotated while the temperature is above the lambda point of Helium.

Since temperature is not low enough, the fluid is classical and will rotate with the

container. If the temperature is lowered below the transition temperature while

it is still in rotation, the fluid will go on rotation to conserve the angular mo-

mentum. However, if the container is stopped, the superfluid will keep rotating

without any change, indefinitely[7].

These unusual properties are later explained to be quantum mechanical by
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Landau with his theory of quasiparticle excitations in liquid Helium[10]. The

superfluidity of liquid helium comes from the partial Bose Einstein condensation

that has taken place below lambda point. Though fraction of condensation (about

%10) is pretty low, Bogoliubov approximation outlined in the previous section

successfully describes its behavior[11].

We can figure out the effect of rotation on Bose Einstein condensates by using

the condensate wave function. The order parameter defined in Eq.(1.5) is used

to find particle current density

J =
~

2mi
[ψ∗

0∇ψ0 − ψ0∇ψ∗
0] (1.11)

which can be found as J = ~n0∇θ/m where n0 = |ψ0|2 is the density. Using the

relation J = nv the superfluid velocity can be found as

vs =
~

m
∇θ. (1.12)

It follows from Eq.(1.12) that a superfluid defined by this order parameter is

irrotational ∇× vs = 0, because curl of a gradient is zero for any function. An

important consequence of this irrotationality follows from the surface integration

of curl of the velocity field, which is defined as the circulation. Circulation is

defined as: κ =
∫

S
∇×vs ·ndS, where n is the unit vector normal to the surface.

Using Stokes theorem it can be written as κ =
∮

C
dl ·vs =

∮

C
dl ·∇θ. Considering

the single-valuedness of the wave function, the following relation can be obtained;

κ =
2π~

m
l (1.13)

which is called quantization of the circulation and l is an integer. This identity is

the basis of irrotationality of the superfluid. It requires the quantized circulation

which gives rise to formation of quantized vorticity in rotating superfluids. For

the example of superfluid helium, the liquid does not respond to rotations upon

small angular momentum. Whenever the critical rotation frequency is reached,

a sudden vortex formation appears that carries a quantized angular momentum

and a quantized circulation as given above. As the rotation frequency increases,

the number of vortices increases. In the limit of fast rotations, these vortices form

a regular array called vortex lattice. The meaning of fast rotation will be precise
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in the next section. Vortex and vortex lattice formations are experimentally

achieved in both superfluid Helium and Bose Einstein condensates of alkali metal

gases.

The theory of vorticity in superfluids has remarkable similarities between the

vorticity in superconductors. The analogy of irrotationality in superconductivity

is the absence of a magnetic field inside a superconductor . It gives rise to the

so called Meissner Effect. The magnetic field inside a superconductor vanishes

but increasing the strength of the magnetic field, singularities start to form that

magnetic field can pass through. In the limit of strong magnetic field, these

singularities start to form a regular lattice which is called Abrikosov vortex lattice.

1.3 Landau Levels and Quantum Hall Regime

For a rotating condensate under the harmonic oscillator potential, the single

particle Hamiltonian H0, defined in Eq.(1.6) can be written as

H0 =
p2

2m
+

1

2
mw2r2 − ΩLz (1.14)

in the rotating frame of reference. For simplicity we assume a two dimensional

condensate, trapped in a two dimensional isotropic potential. This assumption

could be made much more subtle by considering a three dimensional condensate

strongly trapped along z direction, but we will not consider this here for simplicity.

The angular momentum operator is Lz = xpy − ypx, Ω is the frequency of the

rotation and x, px obey the commutation [x, px] = i~ (similar for y components).

The creation and annihilation operators are defined as

ax =
1√
2~

(mωx+ ipx)

ay =
1√
2~

(mωy + ipy) (1.15)



CHAPTER 1. INTRODUCTION 8

Table 1.1: Landau level index and corresponding angular momentum index for a
two dimensional rotating condensate with isotropic harmonic confinement along
the plane. The degeneracy increases as the energy eigenvalue is increased.

N M

0 0
1 1, -1
2 -2, 0, 2
3 -3, -1, 1, 3

which satisfy the commutations [ax, a
†
x] = 1 and [ay, a

†
y] = 1, all other commuta-

tors being zero. Thus, the Hamiltonian in Eq.(1.14) can be cast into the form,

H

~ω
= (a†xax + a†yay + 1) + i

Ω

ω
(a†xay − axa

†
x)

=
(

a†x a†y

)

(

1 iΩ/ω

−iΩ/ω 1

)(

ax

ay

)

+ 1. (1.16)

Diagonalization of 2×2 matrix in Eq.(1.16) is simple which gives the eigenvalues

λ1,2 = 1 ± Ω/ω. Thus the energy eigenvalues of the Hamiltonian can be written

as,

En,m = ~(ω + Ω)n+ ~(ω − Ω)m+ ~ω (1.17)

where n and m are integers for band indices. In this form it is easy to see that

the index n gives the main separation between the energy levels and it is called

Landau Level index. The case n = 0 is called the lowest Landau level (LLL).

It is interesting to consider the case Ω → ω which is called the rapid rotation

limit introduced in previous section. In this case dependence of the energy to

m vanishes and each Landau level becomes highly degenerate. In this limit, the

separation between the lowest Landau levels become exactly 2~ω.

It is often convenient to separate the energy coming from angular momentum

in Eq.(1.17). Energy can be written as En,m = ~ω + ~ω(n + m) − ~Ω(m − n)

and new indices N = n + m, M = m − n can be introduced. In this form,

E ∼ ~ωN − ~ΩM , where N in the index of the energy level and M is the

angular momentum number. Three different regions can be identified along with

this form of the eigenstates[9]: i- Weak Rotation(Ω ≈ 0): The energy levels
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depend only on the index N and each state shown in Table.1.1 is degenerate

within the allowed angular momentum quantum numbers. The degeneracy is

splitted for small values of angular frequency. ii- Moderate Rotation(Ω > 0): The

degeneracies of the weak rotation is now removed because of the Coriolis force

coming from the angular momentum. iii- Fast Rotation(Ω ≈ ω): A degeneracy

different from the weak rotation comes out and the separation of energy levels is

2~ω. The amount of angular momentum imposed on the condensate is very large

and the gas forms a uniform array of quantized vortices (vortex lattice) to carry

this angular momentum. This regime is sometimes called meanfield quantum

Hall regime.

To see the effect of Coriolis force, another approach[12, 13] is performed to the

Hamiltonian in Eq.(1.14). It can be shown that the following form is equivalent

to the Hamiltonian in Eq.(1.14)

H =
(p− A)2

2m
+

1

2
m(ω2 − Ω2)r2 (1.18)

where A is the vector potential A = mΩ × r. This form is identical to the

Hamiltonian of a charged particle in a magnetic field. This shows that the rotation

decreases the effect of the harmonic confinement. The strength of Coriolis force is

limitted by the oscillator frequency. In the limit Ω → ω, it cancels the harmonic

confinement and the condensate flies apart.

It is an experimental challenge to put the condensate in the meanfield quantum

Hall regime. In the current experiments, rotation frequency attained is 99%

of the oscillator frequency[14]. The difficulty of rapid rotation comes from the

upper limit set by the harmonic trap. There are, on the other hand, some works

that propose to add a quadric potential to the harmonic trap which has been

shown to indicate promising implications like a giant vortex formation or the

entrance to the quantum Hall regime[15]. Another direction for the exploration

of fast rotation limit is the use of optical lattices[16]. Considering a condensate

loaded on a rotating optical lattice, it is possible to reach extremely fast rotation

rates, which is experimentally achieved[17]. On the other hand, Description of

rotating condensates in optical lattice is a difficult theoretical problem which we

will mention extensively throughout the thesis.
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1.4 Outline of the Thesis

In this thesis, we aim to study the nature of a fast rotating Bose Einstein conden-

sate extensively. To provide fast rotation and get rid of the limit set by harmonic

confinemet, we will focus on the condensates in optical lattices, which is described

via the Bose Hubbard model. We will consider a toy model, two leg ladder, that

mimics the characteristic properties of rotating Hubbard model. Though the

model is in its simplest form, theoretical explanation of its physical properties

is a challenge. For this reason, we have employed a bunch of theoretical and

numerical methods for a reliable description.

The thesis is organized as follows: In Chapter 2 we will introduce the Bose

Hubbard model and its basic property; the superfluid Mott insulator transition.

We show its well established theoretical treatments within the mean field and the

perturbation approximations. In Chapter 3, we will make a review of the density

matrix renormalization group theory (DMRG) and show basic algorithms applied

to one dimensional spin systems. Application of DMRG to Bose Hubbard model

will be presented and the derivation of the superfluid Mott insulator transition

will be shown. Finally, in the last part, Chapter 4, we will use all of these methods

to analyze the rotating two leg Bose Hubbard ladder. It will be shown that system

bears evidence of strongly correlated states.



Chapter 2

Bose Hubbard Model

Bose Hubbard Hamiltonian is a model that describes strongly correlated systems

under periodic boundary conditions. This periodicity may come from the crystal

structure or the periodic optical confinement of atoms in Bose Einstein conden-

sates. It can be applied to a variety of bosonic or fermionic systems such as

electrons in the semiconductor crystal, liquid helium, Josephson junction arrays

and Bose Einstein condensates in optical lattices. Apart from the diversity of

applications, the model is valid under both weakly and strongly interacting re-

gions irrespective of the correlations included. Unfortunately an exact solution

to this model is only possible under special circumstances, particularly for low

dimensional systems like Bethe Ansatz solution. There are, however, very strong

theoretical and numerical approaches valid in a wide range of system parame-

ters. Some of them are the central point of this thesis and will be investigated

in detail. In this chapter, this model will be introduced in the context of Bose

Einstein condensates loaded onto optical lattices. Basic theoretical approaches

will be presented like a mean field approximations and a perturbative expansion.

An important property of the model, i.e superfluid to Mott insulator transition

will be investigated extensively within those approximations.

11
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2.1 Superfluid Mott Insulator Transition

Bose Hubbard model is analyzed by Fisher et al.[18] in a more general form and

interplay between the superfluid and Mott insulator phases is introduced for the

first time by using scaling theory to mainly study the criticality. Upon Jaksch et

al.’s work[19] which shows the possibility of realization of Bose Hubbard model

in Bose Einstein condensates on optical lattices, the model has taken a new di-

rection towards the study of degenerate quantum gases. In [20], phase diagram is

obtained within different meanfield approaches and failure of Bogoliubov approx-

imation is shown which indicates the importance of interactions and correlations

in optical lattices. The superfluid to Mott insulator transition is observed ex-

perimentally by Greiner et al.[21]. This work placed Bose Hubbard model in the

center of researches on the strongly correlated systems[22, 23].

Bose Hubbard Hamiltonian is written as

H = −
∑

〈i,j〉

tija
†
iaj +

U

2

∑

i

ni(ni − 1) − µ
∑

i

ni (2.1)

where tij is the hopping matrix element between the sites i and j, U is the onsite

interaction energy and µ is the chemical potential that controls the total number

of particles as a Lagrange multiplier. ai and a†i are the creation and annihilation

operators of site i and the number operator is ni = a†iai. Hopping is generally

assumed to be between the nearest neighboring sites, thus it is shown by 〈i, j〉
in the sum. This Hamiltonian can be easily generalized to describe next nearest

neighbor hopping, nearest neighbor interaction and disorder[18, 24].

For a fixed number of particles, two distinguished characters, which are com-

pletely different, can be identified in the above Hamiltonian. In the limit of

zero hopping matrix tij , called the atomic limit, the system is dominated by the

onsite interactions and total energy is minimized by uniform distribution of par-

ticles throughout the lattice. This provides a commensurate filling. Each site is

independent of the others and has its own wave function. The many body wave
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function of the system can be written as

|Ψ〉 =

L
∏

i

|n0〉i =

L
∏

i

(a†i)
n0

√
n0!

|vac〉 (2.2)

where |vac〉 stands for the vacuum state and L is the total number of lattice

sites. There are exactly n0 particles per site so that total number of particles is

N = Ln0. In the other limit, the onsite interactions are zero, the system has full

translational symmetry and all of the particles form of a coherent wave that hope

around the lattice. In this case any particle is said to be in the superposition of

all sites. The many body wave function becomes

|Ψ〉 = (|Ψsp〉)N =

(

1√
L

L
∑

i=1

a†i |vac〉
)N

(2.3)

where |Ψsp〉 is the single particle wave function. The first limit is called the Mott

insulator phase whereas the second one is the superfluid phase. For nonzero

values of the hopping and onsite interaction, there is an interplay between the

superfluid and Mott insulator states depending on the chemical potential µ.

Superfluid phase bears a coherence and has an order parameter related to

long range order. Particle number fluctuations are as large as the average site

occupation, that is 〈n2
0〉−〈n0〉2 ≈ n2

0. Particles are delocalized. As a consequence,

the average number of particles on a site may not be integer; the system has

incommensurate filling. There is no gap for particle hole excitations, E(N ±1) =

E(N) and the system is compressible (compressibility κ = ∂N/∂µ 6= 0 ). Mott

insulator phase is completely incoherent and each site is almost independent

of each other. Particle number fluctuations are zero, particles are localized to

the sites. The average number of particles per site is integer and system has

a commensurate filling. There exists a finite gap for particle hole excitations

making the system incompressible.

Onset of superfluidity is determined by the competition between the hopping

and the onsite interaction terms. In atomic (or strong coupling) limit, system is

Mott insulator if there is integer number of particles equal at all sites. As the

hopping strength is increased, localization of particles will be lost. Two different

types of phase transitions are expected to appear as the hopping is increased. For
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fixed number of particles transition will be driven by phase fluctuations. This

transition is called Berezinskii, Kosterlitz and Thouless (BKT) transition. A

different transition appears if the system is allowed to change total number of

particles by making particle or hole excitations. This transition is seen in grand

canonical ensemble and called generic phase transition. Thus a finite region is

expected to exist for the Mott insulator phase in µ/U − t/U plane bounded

by the generic phase transitions from above and below (because of particle hole

symmetry) which ends up with the BKT transition point. The finite Mott regions,

Mott lobes, are repeated for different values of average filling n0. In the following

we will give two different methods for the derivation of Mott lobes based on

meanfield approximations and perturbative expansions. For simplicity we will

assume a one dimensional system.

2.2 Mean Field Theory

Different sites in Hamiltonian in Eq.(2.1) are only connected through the hopping

term. Without hopping, each site is independent so that the solution of the total

Hamiltonian can be reduced to a simple form at a local site. In the meanfield

approximation, effect of hopping from neighboring sites is considered only as a

meanfield and equation is solved for a single site. This approximation decouples

the terms like a†iaj. We give a complex amplitude to the expectation values of

field operators ai so that 〈ai〉 = ψ and 〈a†i 〉 = ψ∗. Thus a†iaj can be written as

a†iaj = 〈a†i 〉aj + a†i 〈aj〉 − 〈ai〉〈a†i〉
= ψ∗aj + ψa†i − |ψ|2 (2.4)

where ψ is order the parameter for the system. Here, a numerical meanfield

approach[25] will be considered that decouples the Hamiltonian and solves it for

the complex amplitudes self consistently.

Quantitative form of the superfluid-Mott insulator phase diagram of Bose
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Figure 2.1: The order parameter calculated from self consistent meanfield ap-
proximation as a function of chemical potential µ and hopping t is shown on the
left. The superfluid fraction as hopping in increased is shown on the right for two
different chemical potentials.

Hubbard model is obtained by Sheshadri et al. by use of this numerical mean-

field approximation. To show this method, we use one dimensional Bose Hub-

bard Hamiltonian. There are two nearest neighbors of each site under periodic

boundary conditions. Thus making the decoupling shown in Eq.(2.4) an effective

Hamiltonian valid for each site can be obtained as

Heff
i = −t

[

2ψai + 2ψa†i − 2|ψ|2
]

+
1

2
ni(ni − 1) − µni (2.5)

where ψ is a constant for order parameter. Note that, in general ψ may be

complex but we have taken it to be real for this specific case. The idea is the

following: For some fixed value of t and µ, we find a maximum occupation number

nmax for the Hamiltonian in Eq.(2.5) so that the ground state energy of the

effective Hamiltonian Heff
i is the same for its representations in the truncated

basises nmax and nmax+1. Upon finding the maximum dimension of the truncated

basis (nmax) we solve Eq.(2.5) to find its lowest eigenvalue and corresponding

eigenvector. Let this eigenvector be |G〉, which is the ground state of effective

Hamiltonian. We substitute the following for order parameter

ψ = 〈G|a†i |G〉 (2.6)
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and iterate this process until ψ converges. Repeating this route for each value

of t and µ, corresponding scalar values of order parameters are obtained. The

superfluid phase is identified with a nonzero order the parameter whereas order

parameter of Mott insulator is zero.

In Fig.2.1, we have shown the results of our calculations for this one dimen-

sional system. The order parameter is plotted with contours as a function of

hopping and chemical potential. One can see that, there is a finite region where

it is zero, shown by dark blue in the figure. This region is Mott insulator phase.

As the parameters are varied, ψ start to take nonzero values indicating the su-

perfluid Mott insulator transition. On the left panel of the same figure, we have

shown the superfluid fraction for two different values of the chemical potential

µ = 0.05, 1.05 as a function of the hopping strength. We see that for very small

hopping, there is no superfluid fraction in the system. Increasing the hopping un-

til a critical value, around 0.01 for µ = 1.05 and 0.02 for µ = 0.05, system owns

a small superfluid fraction. This transition is generic, i.e it is a density driven

phase transition. On the other hand, BKT transition appearing at the tip of the

first lobe is quantum phase driven transition and seen to be around tc = 0.09.

2.3 Strong Coupling Expansion

Freericks et al. [26] introduced a different method to obtain the phase diagram.

They considered particle and hole excitations as the energy levels of Bose Hubbard

model and perturbatively calculated the corrections to the energy levels. This

method is used to study pure[26] and disordered[27] systems and recently for

extended Bose Hubbard model[28]. In this section, we will show the details of

this strong coupling perturbation method for a one dimensional system.

Strong coupling expansion is a perturbative method that considers the hop-

ping term as a small perturbation[26]. Hamiltonian is written as H = H0 + V ,
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where

H0 =
1

2

∑

i

ni(ni − 1) − µ
∑

i

ni

V = −
∑

〈i,j〉

tija
†
iaj (2.7)

and U is taken to be one. Rayleigh-Schrödinger perturbation expression for the

energy up to second order can be written in its well known form,

Ek = E
(0)
k + E

(1)
k + E

(2)
k + . . .

= E
(0)
k + 〈Ψ(0)

k |V |Ψ(0)
k 〉 +

∑

i6=k

|〈Ψ(0)
k |V |Ψ(0)

i 〉|2
E0
k − E0

i

+ . . . (2.8)

where k is the state label that the correction will be done and |Ψ(0)
k 〉 is the wave

function of this state. In the case of degeneracy, matrix representation of the

perturbation in the degenerate subspace is calculated and |Ψk〉 is chosen as the

ground state of this matrix. Exclusion of the state k in the sum turns out to

be exclusion of all states in the degenerate set, i.e i 6= k, for all k ∈ D, D is

the degenerate set. In the following we will show the calculation of perturbation

series up to second order for one dimensional Hubbard model to demonstare the

method.

Mott insulator state is characterized by a finite nonzero gap as mentioned

earlier. Gap is defined as the energy difference between two states; one with n0

particles in each lattice site and the other with a defect (one extra particle or

hole in one of the lattice sites). Let energies be shown by Em, Ep and Eh for

n0 particles per site, one extra particle and one extra hole respectively. Thus

Ep − Eh and Em − Eh will be nonzero at Mott insulator state. The place where

these gaps vanish will give the boundary of the Mott insulator state. In zeroth

order, atomic limit, the particle and hole excitation gaps can be written as

E(0)
p −E(0)

m = E(n0 + 1) − E(n0) = n0 − µp

E(0)
m −E

(0)
h = E(n0) −E(n0 − 1) = (n0 − 1) − µh (2.9)

where E(n0) = n0(n0 − 1)/2 − µn0 is the single site energy. It can be seen

that, even in the atomic limit where hopping is not allowed, system can be in
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the superfluid phase for µ = n0 or µ = n0 − 1 (at zero temperature). In the

following the energies of Mott and defect (particle and hole) states are calculated

perturbatively for nonzero hopping.

Mott State

In Mott state, all of the particle are localized and there are exactly n0 perticles

at each site. To the zeroth order, ground state of the system can be written as

|Ψ(0)
M 〉 =

L
∏

k=1

(a†k)
n0

√
n0!

|vac〉 (2.10)

where L is the number of lattice sites. The first order correction can be calculated

from Eq.(2.8) as E
(0)
M = 〈Ψ(0)

M |V |Ψ(0)
M 〉 = 0, because 〈Ψ(0)

M |a†iaj |Ψ
(0)
M 〉 will be zero

for all i 6= j. The second order terms requires the calculation of matrix elements

〈Ψ(0)
M |V |Ψ(0)

k 〉, where |Ψ(0)
k 〉 is the set of all eigenvectors except the Mott state.

Explicit form of this term can be written as

〈Ψ(0)
M |V |Ψ(0)

k 〉 = −
∑

ij

tij〈Ψ(0)
M |a†iaj |Ψ

(0)
k 〉. (2.11)

The elements of the sum will be nonzero only for the eigenvectors of the form

|Ψ(0)
k 〉 =

a†iaj
√

n0(n0 + 1)
|Ψ(0)

M 〉

where it is written in normalized form and i 6= j since otherwise it would be the

Mott state wave function. Also, i and j have to be nearest neighbors. For a one

dimensional model there are N such states. Matrix element for a particular such

state is found from the above wave function as 〈Ψ(0)
M |V |Ψ(0)

k 〉 = −t
√

n0(n0 + 1).

Energy difference between this state and the Mott state can be calculated by

considering that there are one extra particle and one extra hole in this state.

Thus the energy difference can be found as E
(0)
k − E

(0)
M = −1. Using these

calculations, the second order correction is found from Eq.(2.8). The energy of

the Mott state up to second order is found as,

EM = E
(0)
M − 2Nt2n0(n0 + 1) +O(t3). (2.12)
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Defect States

Correction to the defect states will be calculated in a similar manner. However

there is an important difference from the Mott state calculations: ground state of

the defects are N-fold degenerate, where N is the number of lattice sites. Because

an extra particle or hole can be placed N different places on the lattice each

having the same energy. Thus, we will use degenerate perturbation theory for

the first order correction. General normalized eigenvectors in this degenerate set

can be written as

|Ψ(0)
P,i〉 =

a†i√
n0 + 1

|Ψ(0)
M 〉, |Ψ(0)

H,i〉 =
ai√
n0

|Ψ(0)
M 〉 (2.13)

where P and H stand for particle and hole respectively and i runs from 1 to N.

Let us first consider the correction to the particle state. Construction of the

matrix representation of the perturbation in this degenerate set will be done by

using Vi′i = 〈Ψ(0)
P,i′|V |Ψ(0)

P,i〉, which gives

Vi′i = −(n0 + 1)ti′i. (2.14)

Lowest eigenvalue of the hopping matrix can be calculated by Fourier trans-

forming the hopping term, which will give 2 in one dimension. Thus first order

correction to energy will be E
(1)
P = −2t(n0+1). Let the corresponding eigenvector

of this matrix V be shown by ~f . This will be used to find the correct form of the

ground state wave function as,

|Ψ̃(0)
P 〉 =

∑

i

fi
a†i√
n0 + 1

|Ψ(0)
M 〉. (2.15)

Using this wavefunction in Eq.(2.8) the second order correction is found and the

total energy up to second is

EP = E
(0)
M +n0 −µp−2t(n0 +1)−2Nt2n0(n0 +1)+ t2n0(5n0 +4)−4t2n0(n0 +1).

(2.16)

Making the similar calculations for extra hole state, energy up to second order

can be found as

EH = E
(0)
M +µh−(n0−1)−2tn0−2Nt2n0(n0+1)+t2(n0+1)(5n0+1)−4t2n0(n0+1).

(2.17)
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Figure 2.2: Phase diagram of one dimensional Bose Hubbard Model calculated
from strong coupling perturbation up to second order.

Boundaries of the Mott insulator region will be found by solving EP − EM = 0

for µp, and EM − EH = 0 for µh. µp and µh give upper and lower boundaries

respectively. They are found to be

µp = n0 − 2t(n0 + 1) + t2n2
0

µh = (n0 − 1) + 2n0t− t2(n0 + 1)2. (2.18)

In Fig.2.2, we plot the boundaries found in Eq.(2.18) for the first two lobes

n0 = 1 and n0 = 2. The critical point that the BKT transition takes place is seen

to be at tc = 0.2. Comparison with the mean field calculation gives inconsistent

results. However we have shown both methods to show the details of the methods.

The decoupling approximation employed in the meanfield theory fails especially

for low dimensional systems where correlations are more pronounced. On the

other hand, strong coupling expansion is very strong for one dimensional systems.

In the next chapter, we will show the exact shape of phase diagram by using

density matrix renormalization group theory. One can see the power of the strong

coupling expansion by looking at this section of thesis.
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2.4 Rotation in Bose Hubbard Model

Inclusion of a rotation to Bose Hubbard model is done by Pierls substitution,

which is based on the analogy between the rotation and the magnetic field pre-

sented in Chapter 1. For a two dimensional optical lattice rotating around an axis

perpendicular to the plane, Hamiltonian in Bose Hubbard model can be written

as

H = −t
∑

〈i,j〉

eiAija†iaj +
U

2

∑

i

ni(ni − 1) − µ
∑

i

ni (2.19)

where A is the vector potential that satisfies B = ∇×A. Single particle spectrum

of this model was first considered by Hofstadter[29], in the context of electrons in

magnetic field. The range of magnetic field he argued was so large that it did not

get much attention by that time. However, the effective magnetic field in rotating

Bose Hubbard model is quite successfull for creation of these strong fields.

The energy spectrum of Bose Hubbard model under magnetic field gives Hofs-

tadter butterfly, which is strongly related to the Landau levels[30]. Thus, rotating

optical lattices provides a possibility to realize the exotic quantum phases in the

the fast rotation limit[31]. There has been a bunch of proposals and treatments for

the realization and detection of these strongly correlated phases[32, 33, 34, 35, 36].

But these works are limited to exact diagonalization studies of a few number of

particles on a few lattice sites which are far from thermodynamic limit. However

they have promising results for the discovery of fractional quantum Hall states in

the optical lattice setups. Recently, a composite fermion theory adapted to rotat-

ing Hubbard model is used to show the overlap of groundstate wavefunction with

the Loughlin state[37]. Theoretical and numerical tools are quite limited for the

exploration of rotating Hubbard model. The strongest approaches are meanfield

theory and strong coupling expansion which are both applied to rotating model

in [38] and [39] to find the Mott phase boundary. Motivated by these works, we

will analyze a toy model, rotating two leg Hubbard ladder, within these methods

in the following chapters. Apart from all, we will use density matrix renormal-

ization group theory to study exact nature of this simple quasi-one dimensional

system.



Chapter 3

Density Matrix Renormalization

Group Theory

Study of strongly correlated systems is one of the most active research areas of

both theoretical and experimental condensed matter physics. Bose Einstein con-

densates, Fermi gases, spin chains, superconducting curprates, Josephson junc-

tion arrays, cold atoms in optical lattices and even the quantum entanglement

can be given as examples of strongly correlated systems. Models of these systems

like Bose Hubbard model, Heisenberg spin Hamiltonian or t-J model contain the

key properties that display rich physical phenomena such as Mott transition,

spin gap, superconductivity etc. Yet, the solutions of these systems are difficult.

Analytical treatments are quite inadequate for the observation of important tran-

sitions. For example, mean field theory does not include the effect of correlations

whereas the perturbative approaches have limited range of validity due to the

strength of correlations. This makes computer simulations indispensable tools

for the exploration of strongly correlated systems.

On the other hand, numerical solution of those systems is not an easy job,

either. Exponential growth of the total Hilbert space dimension with increasing

lattice size makes it impossible to treat systems properly even for the strongest

computers today. Consider, for example, spin-1/2 antiferromagnetic Heisenberg

22
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chain, in which each individual site has a two dimensional Hilbert space. Hilbert

space grows as 2N with the number of lattice sites N which makes it very difficult

to simulate above a dozen of lattice sites.

Density Matrix Renormalization Group Theory (DMRG), developed by S.R.

White[40, 41, 42] as an extension of Wilson’s numerical renormalization group

method[43], is one of the strongest numerical approaches for the study of strongly

correlated quantum lattice models in one dimension. It systematically reduces

the dimension of the total Hilbert space by use of density matrices. Since its

invention it has been applied to a variety of lattice systems[44]. It is regarded

as giving the numerically exact solution but its main drawback is the absence

of implementation to higher than one dimensional systems which is currently an

active research area[45].

3.1 Exact Diagonalization

To introduce the mechanism of DMRG, the exact diagonalization methods will

be mentioned briefly. In this method, one considers the full Hilbert space of the

system as the direct products of the Hilbert spaces of the constituent subsystems

and solves the resulting eigenvalue problem exactly. There is no approximation

involved, thus this method gives exact solution for all parameter values up to

machine precision.

Consider a lattice system, that has local sites each having a finite Hilbert space

hi with the dimension di. One can write the full Hilbert space of a two site system,

for example, as H2 = h1⊗h2 where ⊗ is the direct product or Kronecker product

and the dimension of the total Hilbert space becomes d1d2 = d2. Similarly a

three site system can be written as H3 = h1 ⊗ h2 ⊗ h3 where the dimension of

total Hilbert space becomes d1d2d3 = d3. In general for an N site system, the full

Hilbert space can be written as

HN = h1 ⊗ h2 ⊗ · · · ⊗ hN (3.1)

with the dimension being d1d2 . . . dN = dN . It is seen that Hilbert space grows
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exponentially with increasing the number of sites. This is the reason why exact

diagonalization method is not applicable to all problems. It is difficult to fig-

ure out the properties of a system in the thermodynamic limit by use of exact

diagonalization.

For the reduction of the matrices to be diagonalized, the symmetries of the

system should be used. Conservation of the total angular momentum along z-

direction in antiferromagnetic Heisenberg model or the total number of particles

in Bose Hubbard model can be given as examples for the symmetries that can be

used. Consider one dimensional Heisenberg spin model. The Hamiltonian of this

model is

H = −J
∑

i

Si · Si+1. (3.2)

For a simple system of 6 sites, Hilbert space dimension is 26 = 64. On the other

hand we know that the ground state of the system will be in Sztotal = 0 state.

This reduces the dimension down to 20, which is much less than that of the total

space. Symmetries to be used change from system to system but exploitation of

them is crucial for all numerical methods. To do this, one needs to find a quantity

that commutes with the Hamiltonian so that the Hamiltonian can be written in

block diagonal form and matrices to be solved will be much smaller.

3.2 Density Matrix

Consider an arbitrary state ket |φ〉. We define an operator like P = |φ〉〈φ|, which

is a projection operator on to the defined vector. What is the matrix representa-

tion of this operator in a given basis? The matrix elements of the operator can

be written as Pij = 〈i|φ〉〈φ|j〉. Expanding the kets in a set of complete states

as |φ〉 =
∑

i′ ci′|i′〉, one can arrive at the following simple form; Pij = cic
∗
j . For

the case i = j the interpretation of this expression is straightforward: it is the

probability that the system can be in a specific state i. The case i 6= j , which

will be clear soon, seems to be undefined from a quantum mechanical point of

view. This can be made further complicated by slightly modifying the projection

operator P as; P = A|φ1〉〈φ1|+B|φ2〉〈φ2| where |φ1〉 and |φ2〉 are some arbitrary
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state vectors, which may or may not be orthogonal to each other. Action of

this operator is interpreted as the projection to two different states with some

weights A and B. Expanding the kets in a complete basis, |φ1〉 =
∑

i′ ci′|i′〉
and |φ2〉 =

∑

i′ di′ |i′〉 , one can find the matrix representation of this operator

as Pij = Acic
∗
j + Bdid

∗
j . It is important for the case i = j that other weighting

factors A and B are introduced in the formalism, apart from the usual quantum

mechanical probabilities |ci|2 and |di|2.

Density matrix is the most general description for a quantum mechanical

system[46]. Quantum mechanics is established on the solution of Schrödinger

equation which results with a set of complete eigenstates. Once this is done,

any state |Ψ〉, whether an eigenstate of the Hamiltonian or not, can be described

by those complete set of vectors. Whenever some physical quantity S is con-

cerned, expectation values can be found as 〈Ψ|S|Ψ〉. On the other hand, real

systems cannot be described by this formalism since they are completely random

ensembles[46]. A collection of silver atoms in an oven or a beam of unpolarized

light can be given as the examples of completely random ensembles or ”mixed

ensembles” in the language of density matrix. For the example of silver atoms,

%50 of the atoms are spin up and %50 of them is spin down. Once they pass

from a Stern-Gerlach apparatus, they split into two diverging beams which are

now ”pure ensembles”, in terms of the z-components of the spins alone.

In general, density operator can be defined as,

ρ =
∑

i

wi|φi〉〈φi| (3.3)

where wi’s are the percentages in the above example that are the statistical

probabilities in an ensemble. Density matrix is the matrix representation of this

operator in a basis, which can be obtained as above (in a more general way) by

using |φi〉 =
∑

k c
i
k|k〉, which gives

ρkk′ =
∑

i

wic
i
k(c

i
k′)

∗. (3.4)

Notice that both quantum mechanical and statistical probabilities are combined

in the formalism. This is the basic purpose of the density matrix. Note that
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Tr(ρ) = 1 and it can be shown that the expectation value of any operator A

can be obtained as 〈A〉 = Tr(ρA). By using maximization of Neumann entropy

defined as S = −Tr(ρ ln ρ), it can also be shown that the weighting factors wi

are e−βEi so that the form of the density matrix is ρ = e−βH/Z, where Z is the

partition function[2]. In the limit of low temperatures which means β → ∞, only

the ground state’s weight becomes unity and all others zero. This is essentially a

pure state as explained above. Thus at low temperature limit, density matrix is

defined to be

ρ = |Ψ0〉〈Ψ0| (3.5)

3.2.1 Reduced Density Matrix

Physical systems are in general composite systems. System and heat bath or

environment in statistical mechanics, two particles entangled in a Bell state can

be given as specific examples for our purpose. Quantum mechanics treats a part

of those composite systems independently and solves them as if the other part

does not exits. Or, the solution is done for the whole composite system so that

constituent parts lose their identity. Another very important concept related to

the density matrix is the concept of reduced density matrix [47], which remedies

this inconvenience. Consider a system composed of two parts as shown in Fig.3.1.

Let the state vectors be |i〉 and |j〉 of each part A and B, respectively. Then the

most general state of the total system can be written as

|Ψ〉 =
∑

ij

Ψij |i〉|j〉 (3.6)

where Ψij is the expansion coefficient. Assume we have an operator that acts

only one part of the system and does nothing to the other part. Then what is the

expectation value of this operator in state |Ψ〉? Let this operator be SA, where
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superscript A tells that it only acts on subsystem A. It can be evaluated as

〈Ψ|SA|Ψ〉 =
∑

ij

∑

i′j′

ΨijΨ
∗
i′j′〈j′|j〉〈i′|SA|i〉 (3.7)

=
∑

iji′

ΨijΨ
∗
i′j〈i′|SA|i〉

=
∑

ii′

SAii′

[

∑

j

ΨijΨ
∗
i′j

]

where the term in the parantesis is defined to be the reduced density matrix. It

can be shown that it is equal to ρ = TrB(|Ψ〉〈Ψ|), where TrB(. . . ) means that

the trace is taken over the states of the system B alone. Thus, the expectation

value of the operator is 〈SA〉 = Tr(ρASA). We can write the reduced density

matrices of the subsystems A and B as

ρAii′ = TrB(|Ψ〉〈Ψ|) =
∑

j

ΨijΨ
∗
i′j

ρBjj′ = TrA(|Ψ〉〈Ψ|) =
∑

i

ΨijΨ
∗
ij′. (3.8)

i=1,2,...,NA

A B

|i> |j>

Bj=1,2,...,N

Figure 3.1: Schematic representation of a system composed of two parts A and
B. |i〉 and |j〉 are the complete sets of states that span each subsystem.

3.2.2 Density Matrix Truncation

Assume that two systems A and B are in contact and correlated so that it is not

possible to write a separable solution for the energy eigenstates. Let there be NA
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states in the system A and NB states in B and let us label those states by |i〉 and

|j〉, respectively, as shown in Fig.3.1. Then, the most general state of the total

system A and B can be written in terms of complete set of states |i〉 and |j〉 as

|Ψ〉 =

NA
∑

i=1

NB
∑

j=1

Ψij|i〉|j〉. (3.9)

We want to take M most relevant states from the NA states in A so that NA −
M states will be swept out[44, 48]. We can write those M states of the form

|α〉 =
∑NA

i=1 uαi|i〉 where α = 1, ...,M and the expansion coefficients uαi are to be

determined later. We want to choose the most important states of the system A

where ‘important’ refers to the minimization of the norm, |||Ψ〉 − |Ψ̃〉|| for

˜|Ψ〉 =
M
∑

α=1

NB
∑

j=1

aαj |α〉|j〉. (3.10)

Assuming real coefficients in the expansions for simplicity, we have

|||Ψ〉 − |Ψ̃〉||2 = 1 − 2
∑

ijα

Ψijaαjuαi +
∑

αj

a2
αj . (3.11)

Taking the derivative of the above norm with respect to the coefficients aαj and

equating to zero, one finds that aαj =
∑

i Ψijuαi. Inserting this expression into

Eq.(3.11), one arrives at

|||Ψ〉 − |Ψ̃〉||2 = 1 −
∑

ijαi′

ΨijΨi′juαiuαi′ (3.12)

= 1 −
∑

ii′α

uαiρii′uαi′

= 1 −
∑

α

〈α|ρ|α〉

where ρ is the density matrix of the form ρii′ =
∑

j ΨijΨi′j . For Eq.(3.12) to be

minimum |α〉’s must be eigenvectors corresponding to the largest eigenvalues of

the density matrix ρ̂, by Rayleigh-Ritz principle[44].

Thus, we arrive at the following conclusion. Once we have a very large Hilbert

space, we can systematically reduce the dimension by looking at the density

matrix eigenvalues. In DMRG, system is enlarged to a higher dimension by

adding a site to it and then reduced back to the beginning with the density

matrix projections. This will be explained in detail in the next section.
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3.3 DMRG Algorithms

DMRG is a renormalization group method that uses density matrices for system-

atic reduction of extra degrees of freedom[40]. In the standart block renormal-

ization group, developed by Wilson[43], system size is doubled and states that

has the lowest energies are discarded at each iteration, beginning from a single

site. It is found that this method was unable to describe interacting systems

properly. For example, it had failed for the description of a single particle in

infinite well potential. White and Noach soon noticed that it was the boundary

conditions that has to be taken care of. They fixed the failures of the method

by defining different boundary conditions[49] which was soon generalized in the

density matrix renormalization group method.

A.

Left Block Right Block

B.

Enlarged Rigth BlockEnlarged Left Block

D.

New Left Block New Right Block

C.

Super Block

Figure 3.2: Infinite system algorithm.

We have mentioned how to enumerate the states of a system, according to their

significance, in the previous section. Thus we need to make such a construction

that, it must be composed of two parts, which might be called as system and

environment, respectively. In the language of DMRG this distinction is named

by system block and environment block. In literature, blocks are named by left
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block for the system and right block for the environment, because of the one

dimensional structure of the models. Determination of the system and environ-

ment blocks is different in two different DMRG algorithms; infinite system and

finite system algorithms. In the infinite system algorithm, system size is increased

until convergence is obtained whereas in the finite system algorithm system size

is fixed but the the convergence is obtained by so called sweeps which will be

discussed later. To obtain a high numerical accuracy, infinite system algorithm

is insufficient and one needs to perform the finite system algorithm[40, 41].

3.3.1 Infinite System Algorithm

In the infinite system algorithm, both left and right blocks are enlarged at each

step, beginning from a single site, until the convergence is obtained. This process

is illustrated in Fig.3.2. In the beginning, left and right blocks are represented by

M-by-M matrices. Let us show left and right blocks by BL(k,M) and BR(k,M),

respectively. In this notation k stands for the number of sites in the block and

M is the dimension of the block. Similarly we represent a single site with s(D),

where D is the dimension of the site. Initially, we have right and left blocks as

shown in Fig.3.2A. Now, we enlarge these blocks by adding sites as shown in

Fig.2B. We have the left enlarged block BL(k,M) ⊗ s(D) and the right enlarged

block s(D)⊗BR(k,M). The size of the matrices of the enlarged blocks increased

to MD×MD. At this step it is important to write the Hamiltonian and other rel-

evant operators in the basis of an operator that commutes with the Hamiltonian.

This provides a block diagonal form for the Hamiltonian. The next step is the for-

mation of superblock Hamiltonian [BL(k,M) ⊗ s(D)]⊗ [s(D) ⊗ BR(k,M)] which

is shown if Fig.3.2C. This Hamiltonian is represented by (M ×D)2-by-(M ×D)2

matrix which is the largest matrix size that will be used. Thus it is crucial

to employ symmetries in the formation of the superblock Hamiltonian. Then,

the superblock Hamiltonian is diagonalized to find the lowest energy eigenstate

with a sparse matrix diagonalization routine and the reduced density matrices

are formed from Eq.(3.8). After that eigenvalues and eigenvectors of the density
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matrix are found with a dense matrix diagonalization routine and then the eigen-

vectors corresponding to the lowest M eigenvalues are used for the formation of

the projection matrices OL and OR as;

OL = (~v1~v2 . . . ~vM)

OR = (~u1~u2 . . . ~uM) (3.13)

where vi’s and ui’s are the eigenvectors of the left and right block density matrices

corresponding to M largest eigenvalues. OL and OR areMD×M matrices. Using

these matices, enlarged left and right block can be reduced to the dimension at

the beginning by using;

BL(k + 1,M) → O†
L [BL(k,M) ⊗ s(D)]OL (3.14)

BR(k + 1,M) → O†
R [s(D) ⊗ BL(k,M)]OR.

This process is shown is Fig.3.2D. After this step, left and right blocks are up-

dated and will be used as new blocks for the next iteration. After one iteration,

the number of sites in a block is increased from k to k+1 which shows the linear

growth in DMRG unlike the exponential growth in Wilson’s standart renormaliza-

tion group theory. Infinite system algorithm can be summarized in the following

steps;

1. Having left and right blocks, form the left and right enlarged blocks. Note

that left and right blocks are single sites at the very beginning of the algo-

rithm.

2. Form the superblock Hamiltonian which is composed of right and left en-

larged blocks.

3. Find the ground state eigenvector of the superblock Hamiltonian using a

sparse matrix diagonalization routine. The corresponding eigenvalue found

here gives the total energy of the system.

4. Using Eq.(3.8), form the reduced density matrices of the left and right

halves of the system from the eigenvector found in the previous step.
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5. Find the eigenvalues and eigenvectors of the reduced density matrices with a

dense matrix diagonalization routine and form the truncation operators OL

and OR from the highest weighted M eigenvectors of the density matrices

as given in Eq.(3.13).

6. Using OL and OR, transform the left and right enlarged blocks and save the

transformed blocks as new left and right blocks.

7. Using new left and right blocks, start from step 1 until the desired system

size is reached.

The most difficult and time consuming part of the algorithm is the diago-

nalization of the superblock Hamiltonian to find its ground state. Thus it very

important to make use of the symmetries of the system. For example total spin

along z direction in an antiferromagnetic Heisenberg spin model commutes with

the Hamiltonian so that Hamiltonian can be written in block diagonal form as we

mentioned before. Thus it is easier to find the ground state of this section in the

block diagonal form of the superblock. Similarly, commutation of total number

operator with total Hamiltonian in Bose Hubbard model can be exploited in the

diagonalization. For the diagonalization, one must use sparse matrix diagonal-

ization routines such as Lanczos or Jacobi algorithms[50].

3.3.2 Finite System Algorithm

Finite system algorithm is used to find the ground state properties of finite sys-

tems up to extreme accuracy. The procedure of the infinite system algorithm is

efficient for the search of properties in the thermodynamic limit. On the other

hand, one may be interested in some finite system where infinite system algorithm

gives relatively poor results. The difference between the two algorithms is in the

formation of environment and system blocks. In the finite system algorithm one

uses infinite system algorithm until the desired system length is obtained. This

part of the finite system algorithm is called warm up. In this process blocks are

saved as matrices in every iteration of warm up. If the length of the system is
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L, we than have information of BL
1 ,BL

2 ,. . . ,BL
L/2 and BR

1 ,BR
2 ,. . . ,BR

L/2 at the end

of warm up. After this point, the size of the superblock is kept fixed in further

iterations so that system block size is increased whereas environment block size

is decreased. For example, the next superblock diagonalization after warp up is

of the form BL
L/2 ⊗ s⊗ s⊗BR

L/2−2 , where s represents the operators of single sites

in between the blocks as before. The increase of the system size and the decrease

of the environment size is done until the system size reaches L − 3. That is,

superblocks in the successive steps are

BL
L/2 ⊗ s⊗ s⊗ BR

L/2−2

BL
L/2+1 ⊗ s⊗ s⊗BR

L/2−3

BL
L/2+2 ⊗ s⊗ s⊗BR

L/2−4

...

BL
L−3 ⊗ s⊗ s⊗BR

1 .

The system is swept to the right until the right block reduces to a single site. At

each step the information for the right block is read from the disk which was saved

in the warm up and new blocks for the left half are saved to the disk. For example,

BL/2+3 is obtained from the previous iteration by the truncation O†[BL
L/2+2 ⊗s]O

where O is the truncation operator obtained from the reduced density matrix of

the left block as given in Eq.(3.13). Note that this density matrix is obtained

from the diagonalization of the super block BL
L/2+2 ⊗ s⊗ s⊗BR

L/2−4. When right

block is a single site, the roles of left and right blocks are exchanged and same

procedure is applied until left block becomes a single site. And finally, the roles

of blocks are switched back again and left block is increased whereas right block

is reduced until the symmetric configuration BL
L/2−1 ⊗ s⊗ s⊗BR

L/2−1 is obtained.

This whole operation,

. going right until the right end

. turning back and going left until the left end

. turning back and going right until the symmetric configuration BL
L/2−1 ⊗

s⊗ s⊗BR
L/2−1
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is called a complete sweep. After each sweep, accuracy increases and generally

two or three sweeps are enough for the convergence.

3.4 Applications

3.4.1 Heisenberg Model

Heisenberg Spin model has been the first application of density matrix renormal-

ization group theory because of its well established literature[51]. White applied

DMRG to spin-1/2 and spin-1 model to illustrate the power of the method he

developed[40].

The Hamiltonian for a one dimensional spin chain with nearest neighbor in-

teractions is given by,

H = −J
∑

i

~Si · ~Si+1 = −J
∑

i

Sxi S
x
i+1 + Syi S

y
i+1 + Szi S

z
i+1 (3.15)

where i is the site index, J < 0 for the antiferromagnetic model and J > 0 for the

ferromagnetic model. The spin operators satisfy the usual commutation relations,

[Sx, Sy] = iSz

~ is taken to be unity and x,y and z can be permuted in cyclic order. Commutator

of the total Hamiltonian with Sz at a random site can be calculated as

[H,Szk ] =
∑

i

[Sxi S
x
i+1, S

z
k ] + [Syi S

y
i+1, S

z
k ] (3.16)

= −iSxk+1S
y
k − iSxk−1S

y
k + iSxkS

y
k+1 + iSxkS

y
k−1.

Summing this commutator over all k values gives zero which implies the conser-

vation of the total angular momentum along z direction. That is, for SzT =
∑

i S
z
i ,

[H,SzT ] = 0.

In a similar fashion, it can be shown that [H, ~S2] = 0. These are the symmetries of

the Hamiltonian which are extremely important in the implementation of DMRG.
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Note that the second symmetry is very difficult to use in DMRG[44] but we will

show the use of conservation of SzT in the following discussion.

Using the transformation S± = Sx ± iSy and taking J = −1 for simplicity,

the Hamiltonian is written as

H =
∑

i

1

2

(

S+
i S

−
i+1 + S−

i S
+
i+1

)

+ Szi S
z
i+1. (3.17)

3.4.1.1 Spin-1/2 System

For spin-1/2 system, the operators in above Hamiltonian are given by (for ~ = 1),

S+ =

(

0 1

0 0

)

S− =

(

0 0

1 0

)

Sz =
1

2

(

1 0

0 −1

)

.

Analytical solution of this system is available[52] as well as numerical solution via

the Quantum Monte Carlo methods which makes it a strong benchmark for the

implementation of any numerical method. In the following, we are going to show

the first iteration of the infinite system algorithm as in the reference [53] but we

will give results of each step as it appears on a computer (instead of analytical

results of Malvezzi) for a demonstration.

At the beginning left and right blocks are single sites. Thus we define the

Hamiltonian of the blocks as

HL = HR =

(

0 0

0 0

)

(3.18)

and other operators of the blocks are same as single site operators so that

S+
L = S+

R = S+ and SzL = SzR = Sz. One can obtain S− operator for a block

by taking the Hermitian conjugate of S−, thus it is unnecessary to save them

separately. Apart from the operators included in the interaction term, we need

to keep matrices that give the total angular momentum (along z direction) of the

blocks, separately. They are equal to Sz at the beginning so we save them as

STL = STR = Sz. We can now start to follow the DMRG algorithm:
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1. Obtaining the left and right enlarged blocks:

He
L = HL ⊗ I + S+

L ⊗ S− + S−
L ⊗ S+ + SzL ⊗ Sz

He
R = I ⊗HR + S+ ⊗ S−

R + S− ⊗ S+
R + Sz ⊗ SzL

Other operators of the enlarged blocks are constructed as (STL )e = STL⊗I+IL⊗Sz,
(S+

L )e = IL ⊗ S+ and (SzL)
e = IL ⊗ Sz where I stands for identity. Right block

operators can be constructed similarly. To show the results of these operations,

matrix representation of them are given as

He
L =

1

4













1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1













, (STL )e =













−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1













, (3.19)

(SzL)
e =

1

2













1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1













, (S+
L )e =













0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0













.

Similar operators can be written for the right block. Note that Hamiltonian com-

mutes with the total angular momentum matrix along the z direction which is

seen from the block diagonal structure of the Hamiltonian. Keeping the states in

accordance with the SzT provides this block structure in the further iterations as

well.

2. Construction of the superblock Hamiltonian:

Hsb = He
L ⊗ IeR + IeL ⊗He

R + (S+
L )e ⊗ (S−

R )e + (S−
L )e ⊗ (S+

R)e + (SzL)
e ⊗ (SzR)e

The dimension of the superblock is dim(Hsb) = dim(He
L)× dim(He

R) = 16 which

is the largest matrix throughout the iteration. Also, it is the matrix of which we

need to find the ground state eigenvalue and eigenvector. Thus, it is necessary to

employ symmetries here. It is known that ground state of Heisenberg spin system

without magnetic field is in total spin-z zero symmetry sector of the Hamiltonian.
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The dimension of this sector is 6, much less than the total dimension of the

superblock 16. The superblock is found as (see [53] for details),

Hsb =
1

4

























1 0 0 0 2 0

0 −3 2 2 0 2

0 2 −1 2 0 0

0 2 0 −1 2 0

2 0 2 2 −3 0

0 2 0 0 0 1

























. (3.20)

3. Finding the ground state of the superblock : The lowest eigenvalue of this

matrix, found by a sparse matrix diagonalization routine is E = −1.6160 and

corresponding eigenvector is

|Ψ〉 =

























0.1494

−0.5577

0.4082

0.4082

−0.5577

0.1494

























. (3.21)

The state found above is called target state. Additional target states can be

obtained here if necessary. For example exited states of the system here can be

found by construction superblock in other nonzero spin-z sections which will be

used later to show the energy gaps in the system.

4. Formation of the reduced density matrices: At this step the coefficients

Ψij in Eq.(3.9) can be written as NA ×NB matrix. Thus density matrices of the

left and right blocks can be written as ρL = ΨΨ† and ρR = (Ψ†Ψ)T , respectively.



CHAPTER 3. DENSITY MATRIX RENORMALIZATION GROUP 38

Using the state given above, left block density matrix becomes

ρL =













0.0223 0 0 0

0 0.4777 −0.4553 0

0 −0.4553 0.4777 0

0 0 0 0.0223













. (3.22)

5. Finding the eigenvalues and eigenvectors of the density matrix : They are
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Figure 3.3: Convergence of the energy to the exact value is shown in the left pane
and the decay of eigenvalues of the density matrix is in the right panel for M=24
states kept.

found to be 0.9330, 0.0223, 0.0223, 0.0223, respectively. The exponential decay

of the eigenvalues can be seen here. Lets say we want to reduce the dimesion of

the enlarged blocks to 2, then the transformation matrix is constructed from the

highest two eigenvectors of the density matrix as

OL =













0 0

−0.7071 −0.7071

0.7071 −0.7071

0 0













(3.23)

where columns are the eigenvectors of ρL.
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6. Reduction of the enlarged block size to the beginning :

HL = O†
LH

e
LOL =

(

0.2500 0

0 −0.7500

)

. (3.24)

Other operators for the new blocks can be obtained similarly. After this step a

new block composed of two sites is obtained and the procedure is repeated until

the convergence is reached. Note that energy per site is calculated as one half

of the difference in the eigenvalue of the superblock from one iteration to the

next. The crucial part here is the projection of the superblock Hamiltonian to

the desired total spin sector and formation of the density matrix from the ground

state wave function. The reader can find a clear explanation at the reference [53]

for both the construction of the superblock Hamiltonian and the use of its ground

state ket to form the density matrices.

In Fig.3.3 we show the convergence of the energy for M = 24 states kept. It

shows the strength of the method up to 10−4 precision for such a relatively small

number of states. It is also seen that eigenvalues of the density matrix decays

exponentially which is the reason of the good convergence. The degeneracies are

seen as horizontally aligned markers which must be considered carefully while

choosing the truncation parameter. For illustration purposes we have shown the
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Figure 3.4: Sparseness of the superblock and the left enlarged block respectively.

block diagonal structure of the two matrices at the final iteration; superblock and
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the left enlarged block. Superblock is the one corresponding to SzT = 0 symmetry

section and the off-block diagonal terms come from the interaction between the

left and right blocks. The block diagonal structure of the left enlarged block is

seen in the right panel; each block inside the matrix corresponds to a different

total spin.

3.4.1.2 Spin-1 System

Spin 1 system is modelled with the same Hamiltonian as in Eq.(3.17) where the

relevant operators have the following matrix representations

S+ =









0
√

2 0

0 0
√

2

0 0 0









S− =









0 0 0√
2 0 0

0
√

2 0









Sz =









1 0 0

0 0 0

0 0 −1









.

Haldane predicted that there must be a gap in the Heisenberg spin systems with

interger spin whereas no gap exists in the half interger systems[54]. There is

no analytical approach for the proof of this phenomenon and it was only shown

by other numerical methods such as quantum Monte Carlo method by the time

White developed the density matrix renormalization theory. He obtained the

energy gap for spin-1 system better than any other numerical method in his

work demonstrating the density matrix algorithm[40]. The algorithm for spin-1

system is a carbon copy of the procedure we demonstrated for spin-1/2 except

the definition of the local site operators. To check the reliability of our DMRG

code, we employed an exact diagonalization for some finite lattice, L = 8, and

calculated a few lowest lying states, as White did in his presentation of first

DMRG work[40]. Results of this comparison are given in Table 3.1. In Fig.3.5,

we have shown the convergence of the energy calculated from our code and the

eigenvalue spectrum of the density matrix. We have obtained ground state energy

per site as E/L = −1.40148 by taking M = 48 states and L = 100 sites in the

algorithm consistent with [42] up to 5 figures. Calculation of this energy took

about two minutes on a moderate PC. For comparison, we show the gap in spin-1

and spin-1/2 systems in Fig.3.5. Note that the gap is defined to be the energy

difference between the ground and first excited states for the spin-1/2 half system
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Figure 3.5: Energy per site as a function of system size is on the left for spin-1
system with open boundary conditions. On the right decay of density matrix
eigenvalues are shown

Table 3.1: Difference between energy calculated from exact diagonalization and
the energy of DMRG calculation for a finite size, L=8 site system.

M ST = 0 ST = 1 ST = 2

12 2.77 × 10−4 1.42 × 10−3 3.59 × 10−2

24 2.59 × 10−6 2.01 × 10−5 9.15 × 10−4

48 2.66 × 10−14 1.24 × 10−14 1.77 × 10−14

whereas it is the difference between SzT = 1 and SzT = 2 symmetry sectors which

correspond to the lowest two excited states for spin-1 system[51].

3.4.2 Bose-Hubbard Model

Bose Hubbard Hamiltonian is another model to which DMRG is applied. Al-

though the initial applications were done for the fermionic Hubbard model[55],
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Figure 3.6: Haldane gap for spin-1/2 system as a function of inverse system size
on the left and the one for spin-1 system as a function of inverse system size
squared on the right. Gap is defined as the difference between ground state and
the first excited state ∆1/2 = E1 − E0 for spin-1/2 and difference between first
and second excited states ∆1 = E2 − E1 for spin-1.

we are going to present the results for the bosonic case. Bose Hubbard Hamilto-

nian with nearest neighbor hopping, in one dimension is given by,

H = −J
∑

i

a†iai+1 + a†i+1ai +
U

2

∑

i

ni(ni − 1) − µ
∑

i

ni (3.25)

where ai and a†i are bosonic creation and annihilation operators defined on the

local sites which satisfy the commutation relation [ai, a
†
j ] = δij and ni = a†iai is the

number operator, J is the hopping strength, U is the onsite interaction strength

and µ is the chemical potential that controls the particle number fluctuation in

the grand canonical ensemble.

This model has been studied by density matrix renormalization extensively

and various properties has been explored. Mott-Superfluid-Bose glass phase dia-

gram of this model is obtained with and without additional nearest neighbor hop-

ping term by using both infinite and finite system algorithms[56, 57]. The model

with and without disorder has been explored by a different group via DMRG[58]

and phase diagrams are obtained for both extended Bose hubbard model[59] and

under harmonic confinement[60]. In the following, we give summary and details,
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when necessary, of some of these results and try to mention the basic methods

and approaches.

3.4.2.1 Ground State

Action of creation, annihilation and number operators on a state ket |n〉 can be

written as

a|n〉 =
√
n|n− 1〉, (3.26)

a†|n〉 =
√
n+ 1|n + 1〉,

n|n〉 = n|n〉.

Thus, one can write the infinite dimensional matrix representations of these op-

erators. In DMRG implementation, however, it is required to cut these infinite

dimensional operators at some point, say nmax, to use them in the algorithm. For

nmax = 4, they take the form

a =



















0 1 0 0 0

0 0
√

2 0 0

0 0 0
√

3 0

0 0 0 0 2

0 0 0 0 0



















, n =



















0 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4



















. (3.27)

Having these finite matrices, its a straightforward application to implement usual

DMRG algorithm. To use the conservation of total number of particles, its pos-

sible to drop the term with chemical potential and work in canonical ensemble.

Hamiltonian for a single site will be hsite = n(n− I)/2 where I is identity matrix

and U is taken to be unity. Thus, it will be similar to the scheme presented be-

fore, except single site Hamiltonians are no longer zero. We follow the standart

recipe: enlargement of the blocks beginning from a single site, construction of the

superblock and finding the ground state to form the density matrices and finally

making truncations when necessary.

For the use of symmetries, it can be shown that [H,N ] = 0 where N is the



CHAPTER 3. DENSITY MATRIX RENORMALIZATION GROUP 44

total number operator given as

N =
∑

i

ni (3.28)

Thus its the number operator that will be the basis for the construction of blocks

and enlarged blocks. To find the ground state of a system with known length, it

is necessary to set total number of particles. For example, to find ground state in

a Mott region, where there is one particle per site, we need to make projections

in the formation of superblock accordingly. For example, in the first iteration

projection will be made onto N = 4 sector where the superblock is composed of

4 sites . In the next iteration, where superblock this time has six sites, projection

will be made onto N = 6 sector, and so on. Energies of the defect states can be

found similarly. For instance, to find energy with one hole (particle), superblocks

will be projected onto L − 1 (L + 1) particles sector, where L is the number of

sites in the superblock. It is important to note that, accuracy of the results might

be poor for large differences between the length of the system (total number of

sites) and total number of particles. For the solution of one particle-hole defect

states, infinite system algorithm gives pretty good results, however it is necessary

to use the finite system algorithm for many particle-hole states.

In Fig.3.7, we have shown output of our DMRG code. Ground state energies

per particle have been plotted against the system size for Mott State, when

there is one particle per site, together with the additional one hole and one

particle states. The figure is plotted for two different values of the hopping

strength. For the small values of hopping strength, system is expected to be in

Mott insulator state that has a finite gap with particle hole excitations. As the

hopping strength increased, system undergoes a phase transition to the superfluid

phase characterized by gapless particle hole excitation. This transition is seen in

Fig.3.7 so that, the finite gap appearing for small J (left panel), disappears for a

large J (right panel).
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Figure 3.7: Ground state energies versus inverse system size of Bose Hubbard
model for Mott state and particle-hole defect states for two different values of
hopping parameter,J = 0.001 (on left) and J = 1 (on right). Red straight lines
are linear fits to DMRG points.

3.4.2.2 Superfluid-Mott Insulator Transition

The precision of the calculated energies with DMRG strongly depends on the

decay of density matrix eigenvalues. Carefull attention must be paid on the

determination of truncation parameter so that weighted majority of eigenvalues

of density matrix must be in the range of states that are kept at each iteration. For

the Bose Hubbard model treated here, correlations in the Mott insulator region

are small and the particles are well localized in sites if hopping strength is weak.

As the strength of hopping is increased, particles will loose their localization and

start to hop around. In this regime, the correlations are no more weak and the

number of states that are effective in the system increases. This can be seen

in Fig.3.8, where eigenvalue spectrum of the density matrix is shown for two

different hopping strengths. Thus the accuracy of the results decreases with the

same number of states kept while the hopping strength increases. One needs to

increase the number of states to obtain the same accuracy. In our calculations,

we calculated the error, ǫM = 1 −∑M
α=1 λα, to be order of 10−5 for J = 1 and

10−10 for J = 0.001 with M = 30 states kept.
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Figure 3.8: Eigenvalue spectrum of the density matrices in Bose Hubbar model
DMRG for two different values of hopping strength.

Superfluid to Mott insulator transition is characterized by the existence of a

finite gap in the Mott region. The gap for a finite system of length L is defined

as,

GL = EL(N + 1) + EL(N − 1) − 2EL(N) (3.29)

where N = L for ρ = 1 corresponding to one particle per site. In the thermo-

dynamic limit, this gap is expected to be nonzero for a Mott insulator and zero

for a superfluid. On the other hand, it is not possible to work on infinite systems

that will mimic out the properties in the thermodynamic limit, by using density

matrix renormalization group theory. One way to tackle this problem is looking

at the values of LGL instead of GL[58, 61]. Since gap is approaching zero while

system size goes to infinity, their product LGL is expected to go to a constant in

thermodynamic limit. Thus if we plot LGL versus J , the hopping strength, for

different system sizes, curves of different sized systems are expected to coalesce

at the point where phase transition occurs. This is shown in Fig.3.9 where curves

overlap above a critical value Jc. From the figure, we can say that the tip is at

about 0.28, which is very close to calculated Jc with other approaches[56, 57].

The transition found above is Kosterlitz-Thouless type which comes from

the quantum phase fluctuations in the system while the particle density is kept
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Figure 3.9: Gap multiplied by size vs hopping strength for different system sizes
with M = 30 states kept. Coalescence of curves for different lengths shows the
transition to superfluid. Transition is Kosterlitz-Thouless type.

constant. It is possible to obtain phase boundaries of Mott insulator region

coming from the density or number fluctuations in the system[56, 57]. Location

of this generic transition can be found by looking at the necessary energies to add

or subtract a particle from the system in Mott insulator, i.e

µpc = Ep −Em (3.30)

µhc = −Eh + Em

where µ is the chemical potential and Ep, Eh are the energies with one additional

particle, hole respectively and Em is the Mott insulator ground state energy. By

calculating these three energies the full phase boundary of the Mott Insulator

region can be obtained which is shown in Fig.10. It can be seen from the figure

that the tip of the insulator region do not close as J is increased, because the

transition is different at this point. They are expected to overlap in the thermo-

dynamic limit. This can be seen by running the same code for a larger system

size so that, the lines above and below will be closer to each other for larger L.

Combining the previous method shown in Fig.3.9, we can say that boundary at
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Figure 3.10: Phase diagram of one dimensional Bose hubbard model with onsite
interaction. M = 30 states are kept in the dmrg iteration for a system of size
L = 50. The BKT phase transition is not seen because of the method used which
is mentioned in the text.

this point is expected to be Jc = 0.28.

3.5 Conclusion

In this chapter, we summarize the steps of density matrix renormalization group

theory from the beginning. Very basic points of DMRG and details that were

difficult for us to understand are explained as we worked through the implemen-

tation of the algorithm. It is hoped that either the explanations given in the text

or the references given there will be helpful for a beginner. We tried to include all

the references that are used so that the reader can see them whenever necessary.

The basic theory of the DMRG, built on the density matrix formalism, is

presented and all steps required to write a program are given. To show the

mechanism and also the strength of the method, two different applications are

given; Heisenberg spin model and Bose Hubbard model. We skipped two very
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important parts: the observable expectations and the boundary conditions. The

method we have given is the so called open boundary consitions. Other boundary

conditions like periodic, soft or twisted is not mentioned. Reader might need to

see refences to work on these and a lot more topics that we did not mention here.

The most important problem of DMRG is that it can only be used for one

dimensional systems. If someone is working in one dimension or quasi-one dimen-

sion, DMRG is the most reliable method that can be used. It does not require

any information about the previous renormalization theories which makes it quite

accessible.



Chapter 4

Two Leg Bose Hubbard Model

In this chapter, two leg Bose Hubbard ladder under a uniform magnetic field is

studied. The model is introduced within the formalism of Bose Hubbard Hamil-

tonian and system parameters are defined below. Then different analytical and

numerical approaches are performed to study the model. In Section 4.1 nonin-

teracting particles on two legged ladder are studied and single particle spectrum

of the model is obtained. A critical magnetic field is found such that system

displays different properties above and below this critical value of the field. In

Section 4.2, interacting many particles on the two leg ladder are analyzed by use

of Gross Pitevskii approximation. An order parameter is defined and the result-

ing equation of motion is solved analytically to obtain the dispersion relation of

interacting many particles. In Section 4.3 superfluid to Mott insulator transition

is studied and Mott insulator phase boundary is obtained by using a variational

meanfield theory. In Section 4.4, the same phase diagram is obtained by strong

coupling perturbation and the results of the two different methods are compared.

In the last part, Section 4.5 and 4.6 exact behavior of the system is studied using

density matrix renormalization group (DMRG) theory .

50
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System Hamiltonian is given by

H = − t
∑

i

e−iαa†iai+1 + eiαb†ibi+1 + a†ibi +H.C. (4.1)

+
U

2

∑

i

nai (n
a
i − 1) + nbi(n

b
i − 1) − µ

∑

i

nai + nbi

where ai (a
†
i ) are bosonic annihilation (creation) operators for upper leg, bi (b

†
i ) are

bosonic annihilation (creation) operators for lower leg, nai = a†iai and nbi = b†ibi are

number operators, t is the hopping strength, U is the onsite interaction strength

and µ is the chemical potential. We are assuming a homogeneous system that

has up-down symmetry for zero magnetic field, so t, U and µ are taken identical

for each leg. The phase difference α gained by the hopping from position ri to rj

is calculated from

α =

∫ rj

ri

dr ·A(r) (4.2)

where and A is the vector potential satisfying ∇×A = B and B is the magnetic

field perpendicular to two leg plane. We use Landau gauge A = −Byx̂ which

satisfies B = Bẑ. Note that this gauge does not brake the translational invariance

along x-direction. Thus the exponent in Eq.(4.1) is calculated from Eq.(4.2) as

α = πφ/φ0 where φ is the flux passing through each plaquette and φ0 = hc/e is

the flux quantum. For a two dimensional system, φ/φ0 is taken to be a rational

number p/q and the system is assumed to be q site periodic along y-direction

which partially fixes the symmetry broken by the gauge. Our system does not

require such a constraint so that α/π can be any real number between zero and

one.

4.1 Single Particle Spectrum

We first study the solution for non-interacting particles, U = 0, to obtain the

single particle spectrum. Single particle solution of the two dimensional Bose

Hubbard model under magnetic field ends up with a difference equation, called

Harper’s equation, that gives a fractal energy spectrum known as Hofstadter

butterfly. In the two leg ladder system, solution is much easier because of the
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simpler symmetry of the system. Using the translational invariance along x-

direction, Fourier components of the field operators are written as,

aj =
1√
L

∑

k

ake
ikja, bj =

1√
L

∑

k

bke
ikja (4.3)

where L is the length of the system and Fourier components satisfy the commu-

tation [ak, a
†
k′] = δkk′ and [bk, b

†
k′] = δkk′, all other commutators being zero. Using

these transformations in Eq.(4.1), the Hamiltonian is written in momentum space

as,

Hsp = −t
∑

k

Aka
†
kak +Bkb

†
kbk + a†kbk + b†kak (4.4)

where Ak = 2 cos (ka− πφ/φ0) and Bk = 2 cos (ka + πφ/φ0). One can define the

following Bogoliubov transformation for the diagonalization of the Hamiltonian

αk = cos θkak + sin θkbk, βk = − sin θkak + cos θkbk. (4.5)

It can be shown that this transformation is canonical and diagonalizes the Hamil-

tonian for θ = 1
2
arctan ( 2

Ak−Bk
). Thus the energy eigenvalues of this Hamiltonian

will have the form

ǫ1,2 = −Ak +Bk

2
∓ 1

2

√

(Ak − Bk)2 + 4. (4.6)

In Fig.4.1, the dispersion relation in the first Brillouin zone is shown, for zero and

non-zero magnetic fields. It is seen that, as the strength of the field increases,

the energy band minimum in the dispersion shifts from k = 0 to two nonzero

k values which are degenerate and symmetric around the origin. Thus upon

increasing the magnetic field above a critical value, the system no longer bears

stationary solutions, but has travelling waves to the left or right. The critical value

of this magnetic field is found from the dispersion relation Eq.(4.6) by equating

the second derivative to zero with respect to k around k = 0. The critical value

of the field is αcr = cos−1[−
√

17/4 + 1/4] which is numerically equal to 0.2148 or

0.7852 (0.7852 comes from the mirror symmetry of the energy spectrum around

α = 0.5). Above 0.2148 and and below 0.7852, k = 0 state changes from being

the energy minimum to a local energy maximum.

Another observation from the Fig.4.1 is that, for zero magnetic field, there

is no gap between the valence and the conduction band. On the other hand,
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Figure 4.1: Single particle band diagram two leg ladder under magnetic field.
Left pane is plotted for α = 0 whereas right pane is for α = 0.4. The band gap
between the conduction and the valance bands is zero for the left which is nonzero
for the right.

for α = 0.4 there is a finite band gap between these two energy bands. Thus,

introducing a magnetic field of a certain strength eventually gives rise to the

appearance of a gap in the spectrum. In Fig.4.2, we have plotted minima and

maxima of valence and conduction bands as a function of the magnetic field.

This plot can be regarded as ‘Hofstadter butterfly’ of the two legged quasi-one

dimensional system. From Fig.4.2 it is seen that the one and the largest gap

area of the spectrum is squeezed between α = 1/3 and α = 2/3 among the full

spectrum that is symmetric around α = 0.5.

4.2 Gross-Pitaevskii Approximation

For small values of the onsite interaction strength, the system is essentially in

the superfluid state, mostly governed by the hopping term in the Hamiltonian.

This enables us to define an order parameter which is the expectation value of

the field operator. Thus, assuming that the condensate is slowly varying over the
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Figure 4.2: Band minimums (dashed blue for the conduction band and solid green
for the valance band) and band maximums (solid blue for the conduction band
and dashed green for the valance band) as a function of magneticfield. Analog
of Hofstadter butterfly for two leg ladder. A finite gap between conduction and
valance band appears at α = 1/3

system, one can make the substitution

ai → 〈ai〉 = ψi (4.7)

bi → 〈bi〉 = φi

where Hermitian conjugates of the field operators directly follow from this as a†i =

ψ∗
i and b†i = φ∗

i . ψi’s and φi’s are classical macroscopic quantities which are to

be chosen carefully. Condensation does not necessarily occur at k = 0 stationary

state, following the discussion in the previous section. Thus both amplitude

and the phase of these classical fields is time and position dependent[62]. As a

result, behavior of the condensate order parameter is different below and above

the critical magnetic field which requires one to define different order parameters

for each region.

Making the substitution in Eq.(4.8) with the Hamiltonian in Eq.(4.1), the
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following energy functional is obtained (take t = 1 for simplicity);

E[{ψi}, {φi}] = −
∑

j

e−iαψ∗
jψj+1 + eiαφ∗

jφj+1 + ψ∗
jφj + c.c. (4.8)

+
U

2

∑

j

ψ∗
jψj(ψ

∗
jψj − 1) + φ∗

jφj(φ
∗
jφj − 1) − µ

(

|ψi|2 + |φi|2
)

.

Variations of the energy functional around the wavefunctions gives the dynamics

of the system, i.e. i~∂ψi

∂t
= δE

δψi
∗ and i~∂φi

∂t
= δE

δφ∗i
. These expressions give two

coupled equations,

i~
∂ψj
∂t

= −
[

e−iαψj+1 + φj + eiαψj−1

]

+ U |ψj |2ψj −
(

U

2
+ µ

)

ψj (4.9)

i~
∂φj
∂t

= −
[

eiαφj+1 + ψj + e−iαφj−1

]

+ U |φj |2φj −
(

U

2
+ µ

)

φj

which are nonlinear difference equations. These equations are nonlinear

Schödinger equations coupled to each other in discrete form, that is why we call

this section Gross-Pitaevskii approximation. Zeroth order terms ψj = φj =
√
n

will give the chemical potential as µ = −(2 cosα + 1) + 0.5U(2n− 1) which sat-

isfies the previously obtained dispersion relation in Eq.(4.6) for U = 0. For a

higher order approximation, small oscillations around this equilibrium value are

considered,

ψj =
√
n + Aei(k.rj−wt) +B∗e−i(k.rj−wt) (4.10)

φj =
√
n + Cei(k.rj−wt) +D∗e−i(k.rj−wt)

where A, B, C, D are small complex parameters and rj is a vector from the origin

to a lattice point and k being the reciprocal lattice vector. Inserting these wave-

functions into Eq.(4.10) and equating the exponents, the following determinant

is obtained for the existence of a nontrivial solution of the coefficients;

∣
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Figure 4.3: Band diagrams for two leg ladder with onsite interactions calculated
from the Gross Pitaevskii approximation. Solid lines are for U = 0 and dotted
lines are for U = 0.5. Left panel is for zero magnetic field and the right panel is
for α = 0.2

where K = 2cos(ka− α) − 2cos(α) − Un− 1 and L = 2cos(ka+ α) − 2cos(α) −
Un − 1. Equating the determinant to zero, dispersion relation is obtained from

the solution of this matrix which is plotted in Fig.4.3.

In Fig.4.3, solid lines are for U = 0 and dotted lines are for U = 0.5. Non

interacting case is in agreement with the band diagram in Fig.4.1 apart from

an additive constant. The effect of interactions is to shift the band upward

for nonzero k whereas the band minimum persists on k = 0. Around k = 0,

interaction sharpens the band and provides a cusp like shape. On the other

hand, increase of the magnetic field, on the right panel, causes a smoother band

so that the linearity of the dispersion is lost. The expansion of the wave function

in Eq.(4.10) fails above the critical magnetic field, giving imaginary frequencies

which implies an unstable solution. We use this property to see the change of

the critical field with the interaction strength. In Fig.4.4, the change of the

critical magnetic field with the strength of the interaction is shown. It can be

seen that, U − αc relation is almost linear for small interaction strengths but it

saturates for strong interactions. Note that results of the strong onsite interaction

are not reliable because; firstly, the Gross Pitaevskii approximation is no more

valid in this region, secondly, attained magnetic field requires a wave function

different from the one in Eq.(4.10). Thus, we conclude that the critical magnetic



CHAPTER 4. TWO LEG BOSE HUBBARD MODEL 57

0 0.3 0.6 1
0.2

0.29

0.23

0.26

U

α c

 

 

0 25 50
0.3

0.4

0.5

 

 

Figure 4.4: Change of critical magnetic field with the increase of interaction
strength for low values of U , that is Un/t < 1. Plot is scaled with t = 1 and
n = 1. In the limit U → 0, αc goes to the previously obtained value from the
single particle solutions. Inset shows the behavior for large values of U , which is
not reliable because of strong interactions.

field increases linearly for weak interactions, that is for U < t/n. Increase of

interactions promotes solutions that are uniform through the lattice. That means,

to minimize the interaction energy, it is better to distribute particles uniformly

on the lattice. This makes wave functions proportional to
√
n more stable which

means that the onsite interaction increases the critical magnetic field strength.

4.3 Variational Mean Field Approach

In this section, we determine the Mott insulator phase boundary for different

values of the parameters t, µ and α. It is convenient to scale the Hamiltonian

in Eq.(4.1) with U = 1. In the perfect Mott insulator phase, each site has

a localized wavefunction and system is decoupled so that there are precisely n0

particles per site and the corresponding wavefunction is shown by |n0〉i in the Fock

basis. Allowing small variations around this equilibrium, the local wave functions

take the form ∆i|n0 − 1〉i + |n0〉i + ∆′
i|n0 + 1〉i where ∆i and ∆′

i are variational

parameters to be determined. In general for a two dimensional Bose Hubbard
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model, these parameters are assumed to be real since complex parameters are

expected to increase the energy[38] but for the two leg Bose Hubbard ladder, real

∆ assumption is found to give unbounded Mott insulator phase region. Thus,

the wave function is generalized to include complex values and the following

Gutzwiller ansatz is defined for local wave functions,

|G〉ka = ∆k
ae
iθk |n0 − 1〉ka + |n0〉ka + (∆k

a)
′eiθk |n0 + 1〉ka (4.11)

|G〉kb = ∆k
be
iθk |n0 − 1〉kb + |n0〉kb + (∆k

b )
′eiθk |n0 + 1〉kb

where subscripts a and b stand for upper and lower legs respectively, superscripts

are site indices and θk is the additional variational parameter to be determined.

Having these local kets, the wave function for a rung becomes |Gr〉k = |G〉ka|G〉kb
and the total wavefunction of the system can be written as |Ψ〉 =

∏N
k |G〉ka|G〉kb .

This form of the wave function decouples the Hamiltonian in Eq.(4.1) and the

total energy of the system can be written as E = Nε, where ε is the variational

energy per a rung given by,

ε =
〈Gr|H|Gr〉
〈Gr|Gr〉

. (4.12)

Keeping terms up to second order in ∆, the following expression is obtained for

the energy per a rung

ε = − 2t cos (α + θ)
[

∆2
an0 + (∆′

a)
2(n0 + 1) + 2

√

n0(n0 + 1)∆a∆
′
a

]

(4.13)

− 2t cos (α− θ)
[

∆2
bn0 + (∆′

b)
2(n0 + 1) + 2

√

n0(n0 + 1)∆b∆
′
b

]

− 2t
[

∆a∆bn0 + ∆′
a∆

′
b(n0 + 1) +

√

n0(n0 + 1)(∆a∆
′
b + ∆′

a∆b)
]

+
[

(1 − n0)(∆
2
a + ∆2

b) + n0(n0 − 1) + n0((∆
′
a)

2 + (∆′
b)

2)
]

+ µ
[

(∆2
a − (∆′

a)
2) + (∆2

b − (∆′
b)

2) − 2n0

]

where the site indices are not written for compactness. This energy is minimized

with respect to five variational parameters; four of them coming from ∆’s and

one from the phase θ. The first minimization is done on ∆’s. For the energy

in Eq.(4.14) to be a minimum, the Jacobian matrix should be positive definite (

all of the eigenvalues are positive). At the point where the determinant of the

Jacobian matrix is zero, the energy in Eq.(4.14) is no more a minimum of energy

which means that the system is not Mott insulator anymore. Jacobian matrix is
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calculated as,

J = −2t

(

n0F
√

n0(n0 + 1)F
√

n0(n0 + 1)F (n0 + 1)F

)

(4.14)

+2

(

(1 − n+ µ)I 0

0 (n− µ)I

)

where I is 2 × 2 identity matrix and F has the same structure with the single

particle Hamiltonian in Eq.(4.4), which is

F =

(

2 cos (α + θ) 1

1 2 cos (α− θ)

)

. (4.15)

Positive definiteness of a matrix requires all eigenvalues to be positive. Thus the

minimum eigenvalue of the Jacobian matrix in Eq.(4.15) is found and equated to

zero to find the phase boundary of Mott insulator region. To find the eigenval-

ues, we use the following[38]; let λF and ~u be eigenvalues and eigenvectors of F

respectively, then one can apply an ansatz of the form

~v =

(

a~u

b~u

)

and solve the eigenvalue equation J~v = λ~v. The eigenvalues of Jacobian matrix

are found as

λ1,2 = 1 − tλF(2n0 + 1) (4.16)

±
√

(1 − tλF(2n0 + 1))2 + 4tλF(µ+ 1) − 4(n0 − µ)(1 − n0 + µ).

Setting the smaller eigenvalue to zero and solving the corresponding equation for

t, the following relation is found for the boundary of Mott phase,

tc =
(n0 − µ)(1 − n0 + µ)

(µ+ 1)λF

. (4.17)

Note that the eigenvalues λF in Eq.(4.17) are the same with energies in Eq.(4.6).

To plot the Mott phase boundary, we minimize the lowest eigenvalue with respect

to θ for each value of the magnetic field α.

In Fig.4.5, the result of the minimization is shown, which specifies a certain

region for Mott insulator phase. The complex variable θ plugged in the ansatz
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Figure 4.5: Mott phase boundary is shown on the left as a function of magnetic
field strength and the chemical potential. Unlike two dimensional case, boundary
is perfectly smooth. On the right, result of the minimization of the energy with
respect to phase parameter θ in Eq.(4.12) is shown. It is seen that above the
critical magnetic field, the minimum energy ansatz bears complex amplitudes as
in the case of single particle solution.

Eq.(4.12) follows the similar structure with that of the single particle solution;

above the critical magnetic field it takes nonzero values as shown on the right

panel of Fig.4.5. Our results are exact within mean field theory. On the other

hand, the meanfield theory applied to our system is not expected to give good re-

sults. This approach essentially decouples the hopping term in Eq.(4.1) and gives

it a mean field behavior. This decoupling is bad for low dimensions, especially for

one dimensional systems since correlations are more dominant in 1D relative to

two and three dimensions. Thus, this calculation is not expected to give accurate

results. The determination of the tip of the Mott lobe where BKT(Berezinskii,

Kosterlitz, Thouless) transition takes place and the calculation of the shape of

the Mott insulating region around this point is not reliable. On the other hand,

a rough sketch of the topology of the Mott insulator region is obtained within

this method. Additionally, for small values of the hopping strength, where the

correlations are diminished, the results are expected to be reliable.
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Figure 4.6: Labelling of sites in two leg ladder for the calculation of strong cou-
pling expansion

4.4 Strong Coupling Expansion

In the strong coupling perturbative expansion, the hopping term is taken to be

weak and considered as a perturbation. The Mott insulator state is character-

ized by a finite gap for particle-hole excitations whereas this gap vanishes for the

superfluid phase[18]. Thus if the energies of a system with n0 particles per site

(called Mott state) and a system with one additional defect (particle or hole) are

calculated, the difference between these two energies vanishes at the boundary of

Mott insulator phase. Then the solution of the equation, the difference of the two

energies be zero, with respect to chemical potential µ will give phase boundary

at the particle sector which is shown by µp. In a similar manner, phase bound-

ary of the hole sector, µh, can be obtained from the equation where the energy

difference of the Mott phase from one additional hole state becomes zero. In

the strong coupling expansion, energies of each of these three states (Mott state,

additional particle state and additional hole state) are calculated perturbatively.

This method has been used for systems with different dimensions[26, 27] and for

a two dimensional system under magnetic field[39].

To perform strong coupling expansion, it is convenient to write the Hamilto-

nian Eq.(4.1), in the following form,

H = −
∑

ij

Tija
†
iaj +

1

2

∑

i

ni(ni − 1) − µ
∑

i

ni (4.18)

where U is taken to be 1 and Tij is the hopping matrix, which is
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. (4.19)

A and B are 2 × 2 matrices of the form

A =

(

0 1

1 0

)

B =

(

e−iα 0

0 eiα

)

(4.20)

and α is the same parameter as before. It can be seen that, with the appropriate

labeling of sites as in Fig.4.6, this Hamiltonian is identical to the Hamiltonian in

Eq.(4.1) where the upper leg was distinguised from the lower one. This form of

Hamiltonian makes it easier to do perturbative calculations by considering the

hopping Tij as a general matrix which is real and symmetric.

We have performed strong coupling perturbation up to second order in our

calculations. The energies of Mott state EM , additional particle state EP and

additional hole state EH are found to be (up to second order)

EM = E0
M − 3Nt2n0(n0 + 1) (4.21)

EP = E0
P − (n0 + 1)λT − 3Nt2n0(n0 + 1) − n0(n0 + 1)λ2

T +
3

2
n0(5n0 + 4)t2

EH = E0
H − n0λT − 3Nt2n0(n0 + 1) − n0(n0 + 1)λ2

T +
3

2
(n0 + 1)(5n0 + 1)t2

where λT is the lowest eigenvalue of the hopping matrix T and N is the number

of lattice sites which is always even in the two leg ladder. Zeroth order energies

are E0
M = N(n0(n0−1)/2−µn0), E

0
P = E0

M +n0−µ and E0
H = E0

M−(n0−1)+µ.

A warning comes from first order corrections to EP and EH . Ground states of

these two systems (one additional hole-particle) are N-fold degenerate. In the first

order, these degeneracies do not split if the magnetic field is above the critical

field αc, which is expected because single particle solution give two degenerate

energies above αc as shown in Fig.4.6. On the other hand, matrix elements of

the perturbation, the hopping term, among those two degenerate kets do not
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Figure 4.7: Phase diagram of two leg ladder, shown on the left, from strong
coupling perturbation theory for magnetic fields α = 0, α = 0.2 and α = 0.4
compared with the results of meanfield calculation (dotted thin lines). Above
α = 0.43 lines of µP and µH does not cross and higher oder perturbation is
required. On the left the tip of the Mott region is shown as a function of field.
Thin line after α = 0.43 is spline interpolant.

have any off-diagonal elements. This enables us to apply standart second order

perturbation safely as if the degeneracy is splitted in the first order[46]. Solving

the equations EP − EM = 0 and EM − EH = 0 for the chemical potentials µ

separately, the phase boundary of the particle and hole sector are obtained as,

µP = n0 − (n0 + 1)λT − n0(n0 + 1)λ2
T +

3

2
n0(5n0 + 4)t2 (4.22)

µH = (n0 − 1) + n0λT + n0(n0 + 1)λ2
T − 3

2
(n0 + 1)(5n0 + 1)t2.

Dependence of this form to the magnetic field comes indirectly from the eigenvalue

λT. To get a direct dependence on the field, higher order terms are required. An

interesting observation is that our results are similar to the results of Ref.[39] up

to second order if the number of nearest neighbors is taken 3, i.e z = 3. However

this is not guaranteed for higher order expansions since the flux attained should

be considered by additional particles and holes (see [26, 39] for details). The

eigenvalue spectrum of the T matrix is already shown in Fig.4.2. Dependence of

the minimum eigenvalue to the magnetic field is the dotted blue line in that figure.

It is seen that the spectrum has no cusp unlike the results in two dimension[39].
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Results of strong coupling expansion in 1D are shown to be in very good

agreement with the numerically exact solutions[56, 57]. Thus, though we make

perturbation up to only second order, they are expected to be reliable for our

quasi-one dimensional system. In Fig.4.7 we have shown the results of our cal-

culation. It can be seen that, increase of the magnetic field, increases the Mott

insulating region. After some value of the magnetic field, reenterent behavior

to the Mott phase appears, as it is seen for α = 0.4 on the left panel. After

about the point α = 0.43 curves of particle and hole sector intersects at such a

large value of magnetic field that the second order perturbation fails to obtain

it and the two curves in Eq.(4.22) do not cross each other. However, apart from

the cusplike dip that BKT transition takes place, the results are expected to

be trustable. We have shown the change of critical hopping strength that BKT

transition occurs as a function of magnetic field on the right panel. Above the

point where two curves do not cross any more, a spline interpolation is done in

that figure. In Fig.4.7, we have also shown the related sector from the results

of meanfield calculation with dotted thin line. It is seen that mean field results

can hardly describe the system properly. Besides, mean field theory is already

expected to be poor for one dimensional systems as we have pointed out. A final

remark is that, for strong magnetic field αc > 0.4 the phase diagram takes the

shape of the one dimensional case found in [56]. The reenterent phase behavior

found in one dimensional system appears with the increase of magnetic field for

two leg ladder. This reenterent behavior was not previously seen in the results of

strong coupling perturbation neither in one two and three dimensions nor in two

dimensional lattice under magnetic field ( in [26, 27, 39] perturbation was carried

out up to third order). Existence of this reentrant phase is reliable since our

system is essentially one dimensional where strong coupling approach performs

its best.

4.5 DMRG Calculations

Density Matrix Renormalization Group (DMRG) theory has proven to provide

numerically exact solutions of one dimensional lattice systems[40, 41]. DMRG
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Figure 4.8: Phase diagram of two leg Bose Hubbard ladder for α = 0 on the
left and α = 0.45 on the right. For comparison strong coupling results are also
shown.

has been applied to one dimensional Bose Hubbard model as we have shown in

Chapter 3. As a result, exact shape of phase diagram is obtained with/without

nearest neighbor interaction[56, 57], existence of BKT transition is shown[58, 60]

and correct phase diagram of disordered model is obtained[63]. This method is the

most reliable approach for a one dimensional system regardless of the interaction

strength for any correlated states. In this section, we will use DMRG to study

the two leg Bose Hubbard ladder under magnetic field.

The details of the method was explained in Chapter 3. The basic idea can

be summarized as follows. Starting from a size that can be diagonalized ex-

actly, enlarge the system and sweep out the least relevant states by using the

reduced density matrices until the desired system size is reached. Then employ

the sweeping procedure which increases the accuracy up to machine precision.

Recently, DMRG has been applied to two leg Bose Hubbard ladder but with dif-

ferent concerns[61]. We will use the similar method with [61], namely rung by

rung enlargement. Different from this reference, we use the recently developed

single site enlargement method[64].

Calculation of the Mott phase boundary via DMRG is similar to strong cou-

pling perturbation method. One needs energies of Mott phase together with the



CHAPTER 4. TWO LEG BOSE HUBBARD MODEL 66

additional particle and hole states to find the Mott insulator boundary. Thus,

the energies of particle and hole states are calculated as additional target states

in DMRG implementation[56]. Generally some limiting cases that are exactly

solvable are used to check the DMRG code. On the other hand, we have already

obtained the strong coupling expansion results for the system. There must be an

agreement between the two methods, especially for small hopping strength since

we make perturbation only up to second order. In Fig.4.8, one can see the good

agreement between the strong coupling result and DMRG. For larger values of

hopping, the strong coupling expansion fails to capture the exact behavior. An-

other point is the existence of reentrant phase even for zero magnetic field, which

is not seen by strong coupling. On the left panel we show the similar phase for

α = 0.45. Note that the strong coupling calculations give relatively poor results

above t ≈ 0.2 so that necessity of higher order terms becomes apparent. One

thing to be noted is that the tip of the Mott insulator region requires a special

treatment with DMRG. The two branches coming from particle and hole sector

intersect in the thermodynamic limit. However, DMRG takes finite systems far

from thermodynamic limit. There are several approaches (like consideration of

correlation length and extrapolation to Luttinger liquid correlation function in

[56] ) to remedy this situation which we don’t use because the tip of the lobe is

not our main concern (see Chapter 3).

4.6 Evidence of Strongly Correlated Phases

Up to now, we have performed various analytical calculations that can only work

around the Mott insulator phase. Theoretical approaches are quite limited for

the Bose Hubbard model under magnetic field, particularly for strong fields. This

is due to technical difficulties that stem from the strong correlations and high

number of degeneracies. Both strong coupling and mean field approaches work

on the region where those correlations are weak. On the other hand, the wealth

of the system lies underneath these ignored identities. Thus, the characterization

of the two dimensional Bose Hubbard model under strong magnetic field is very

important which is a popular research area. There has been several proposals
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that try the connect these strongly correlated states either with the formation of

vortex lattice or with the incompressible quantum liquids found in quantum Hall

effect. Difficulty of the solution of the theoretical model makes it a hard task

to show the exact nature of the system. What can be done at best is an exact

diagonalization study of a small sized system with a few number of particles. But

these solutions are far from the thermodynamic limit and it has been found that

for strong magnetic fields the system does not resemble to be in some known

incompressible liquid phase[32, 37].

Strong coupling as well as mean field theory can predict quantum states near

Mott insulator phase as we have shown. They are valid when the total number

of particles is equal to the total number of lattice sites. On the other edge,

Gross Pitaevskii approximation assumes a uniform gas spread over the lattice to

reveal the dynamics of the system. Compared to these theoretical approaches,

DMRG gives a very wide range of applicability regardless of the particle number,

strength of the field and the interaction. One can calculate the ground state of the

system with any finite lattice size and any number of particles for all values of the

magnetic field and the interaction strength (as long as the eigenvalue spectrum

of the density matrix decays exponentially). The main drawback of DMRG is

that it can only be applied to one dimensional systems. The algorithm is difficult

to implement even for a few legged one dimensional systems. Another point is

the fact that DMRG works for finite sized systems which may be particularly

important for the properties in the thermodynamic limit. In this section we will

use DMRG to study the two leg Bose Hubbard model under magnetic field out

of the Mott insulator region.

We make DMRG calculations for hard core bosons in infinite U limit. Pro-

viding an easier implementation of the algorithm which also works fast, this limit

is particularly important for experimental realizations. Because the gaps are ex-

pected to be more prominent with strong interactions. With this approximation

each site is allowed to be empty or have only one boson so that maximum occu-

pation number nmax = 1 and the term with the onsite interaction in the Hamil-

tonian is removed. In this approximation, Bose Hubbard model is expected to be

mapped to spin-XXZ model, where ground state is at half filling[51]. We found
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Figure 4.9: Gap between ground state and two excited states for different mag-
netic field. The gap between first excited state E1 − E0 is shown by green ’+’,
whereas the one for E2 − E0 is shown by blue ’◦’. Thin lines are spline interpo-
lation to data points. It is seen that around αc = 0.21 spectrum has a jump to a
completely different behavior.

that our system has a ground state at half filling not only for α = 0 but also

for nonzero α. In two distinct limits; all sites are empty and all sites are filled,

ground state energy is zero and minimum of the energy is always at half filling

which is in the middle of these two limits.

We obtain energies for different values of magnetic field, on the half filling par-

ticle sector of the superblock Hamiltonian. The energy gap between the ground

state and first two excited states is obtained and shown in Fig.4.9. From the fig-

ure, it can be seen that spectrum of the three lowest lying states changes abruptly

to a different pattern at αc = 0.21. This plot is symmetric around α = 0.5 so we

only show one half. The critical value found here is perfectly consistent with the

one found in single particle solution, which were equal to 0.2148 or 0.7852. Note

that spectrum is not smooth at α = 0.5 but has a cusp.

To get the energies at various fillings, we use the route proposed by Ramanan
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Figure 4.10: Energy gap defined in Eq.4.23 as a function of particle density for
α = 1/3 in the first figure, 2/5 in the second and 1/2 in the third respectively.
For each value of α, a different peak is seen in the energy gap where the peaks are
symmetric around 0.5. Apart from the dominant peaks at 1/5, 1/6 for α = 1/3,
1/5, 4/5 for α = 2/5 and 1/4, 3/4 α = 1/2 and the persistent peak at 1/2, there
seem to be fluctuating non zero gap value for other fillings.
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Table 4.1: Value of the filling factor defined in Eq.4.24 for different magnetic
fields shown in Fig.4.10

α n1 ν1 n2 ν2 n3 ν3

1/3 1/6 1/2 5/6 3/2 5/6 5/2
2/5 1/5 1/2 4/5 5/4 4/5 2
1/2 1/4 1/2 3/4 1 3/4 3/2

et al.[60] for a system of length L = 60 that has 2 × L = 120 sites. Beginning

from L = 4 and total number of particles N = 4 (since we know minimum energy

is at half filling for infinite U), we increase both the lattice length and the number

of particles up to where the total number of particles is, lets say, N = 10. After

that, the lattice length is increased while total number of particles held fixed at

10. Whenever lattice length reaches the desired length, L = 60, finite system

sweeps are used to get better energy. Next the system size is held fixed while

particle number is increased, by doing 5 sweeps for each particle number. Total

number of particles is increased up to N = 110. At the end, energies of systems

from N = 10 to N = 110 particles placed on 2 × L = 120 sites are obtained.

Ramanan et al. obtained the plateaus in the chemical potential versus density

plots and corresponding compressibilities by using this method. After that, the

gap formula defined by Cooper et al.[65] is used which has the form

∆ = N

[

E(N + 1)

N + 1
+
E(N − 1)

N − 1
− 2

E(N)

N

]

(4.23)

which minimizes the finite size effects. This gap is shown for various values of

magnetic field in Fig.4.10. It is seen that the gap oscillates between zero and

nonzero values for low densities and becomes negative towards interger filling.

Apart from that, there are three dominant peaks one is always at 1/2 and the

other two change with different α. Magnitude of these changing peaks are also

seen to be getting smaller and smaller as the field approaches 1/2. It is interesting

to compare these peaks by defining the filling factor[66],

ν =
n

f
(4.24)

where n is particle density and f is vortex density defined as the phase attained

around a unit cell divided by 2π. In our model, it can be shown that 2πf = 2α so
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that f = α/π. In Table 4.1, we have shown the values of filling factor by looking

at the peaks in Fig.4.10. One can see that various fillings are obtained as 1/2, 1,

5/4, 3/2, 5/2.

4.7 Conclusion

We have studied on the two leg Bose Hubbard ladder exposed to a strong magnetic

field within various theoretical approaches and implemented DMRG to study

the exact behavior of the system. It is found that system has two different

behaviors above and below the critical magnetic field. The shape of the Mott

insulator region is obtained within three different methods; variational meanfield

theory, strong coupling perturbation and DMRG. It is found that the shape

of the lobe is very consistent within DMRG and strong coupling whereas the

results of the meanfield theory is relatively poor. This was already expected

because mean field theory ignores the strong correlations that are particularly

important for low dimensional systems. Apart from the determination of the Mott

lobes, the system is found to display novel physical properties from the results of

single particle spectrum and Gross Pitaevskii approximation. We believe that this

toy model serves as an important tool for understanding the general properties

of the rotating optical lattices and the theoretical methods that are used most

frequently. In the last part of the chapter, we have worked on the characterization

of strongly correlated phases in the hard core limit. The system is found to display

incompressible liquid phases at various fillings depending on the field strength

where these states are completely different from the incompressible Mott insulator

state. Our work on the system for soft bosons (that is, different from the infinite

U limit) is in progress. This system is believed to be very rich for the exploration

of exotic quantum phases.
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