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ABSTRACT

CHARACTERISTIC LIE ALGEBRA AND
CLASSIFICATION OF SEMI-DISCRETE MODELS

Aslı Pekcan

Ph.D. in Mathematics

Supervisor: Prof. Dr. Metin Gürses

September, 2009

In this thesis, we studied a differential-difference equation of the following form

tx(n + 1, x) = f(t(n, x), t(n + 1, x), tx(n, x)), (1)

where the unknown t = t(n, x) is a function of two independent variables: discrete

n and continuous x. The equation (1) is called a Darboux integrable equation

if it admits nontrivial x- and n-integrals. A function F (x, t, t±1, t±2, ...) is called

an x-integral if DxF = 0, where Dx is the operator of total differentiation with

respect to x. A function I(x, t, tx, txx, ...) is called an n-integral if DI = I, where

D is the shift operator: Dh(n) = h(n + 1).

In this work, we introduced the notion of characteristic Lie algebra for semi-

discrete hyperbolic type equations. We used characteristic Lie algebra as a tool to

classify Darboux integrability chains and finally gave the complete list of Darboux

integrable equations in the case when the function f in the equation (1) is of the

special form f = tx(n, x) + d(t(n, x), t(n + 1, x)).

Keywords: Darboux integrability; Characteristic Lie Algebra; First Integrals.
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ÖZET

KARAKTERİSTİK LIE CEBİRİ VE YARI-AYRIK
MODELLERİN SINIFLANDIRILMASI

Aslı Pekcan

Matematik, Doktora

Tez Yöneticisi: Prof. Dr. Metin Gürses

Eylül, 2009

Bu tezde

tx(n + 1, x) = f(t(n, x), t(n + 1, x), tx(n, x)), (1)

halindeki diferansiyel-fark denklemi üzerinde çalıştık. Burada t = t(n, x) ayrık

n ve sürekli x bağımsız değişkenlerinin bir fonksiyonudur. Denklem (1), eğer

basit olmayan x- ve n-integrallerini kabul ediyorsa, Darboux integrallenebilir

denklem olarak adlandırılır. F (x, n, t, t±1, t±2, ...) fonksiyonu eğer DxF = 0

koşulunu sağlıyorsa denklem (1)’in x-integrali olarak isimlendirilir. Burada Dx,

x’e göre toplam türev operatörüdür. I(x, n, t, tx, txx, ...) fonksiyonu eg̃er DI = I

şartını sağlıyorsa denklem (1)’in n-integrali olarak adlandırılır. Burada D,

Dh(n) = h(n + 1) şeklindeki denklem (1)’in kaydırma operatörüdür.

Bu çalışmada, yarı-ayrık hiperbolik tipindeki denklemler için karakteristik Lie

cebir mefhumunu tanıttık. Karakteristik Lie cebirini Darboux integrallenebilir

zincir denklemlerini sınıflandırmak için kullandık ve son olarak, (1) denklemindeki

f fonksiyonunun, f = tx(n, x) + d(t(n, x), t(n + 1, x)) özel haline sahip olduğu

durumdaki Darboux integrallenebilir denklemlerin tam listesini verdik.

Anahtar sözcükler : Darboux integrallanebilirlig̃i; Karakteristik Lie Cebiri; Birinci

İntegraller.
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Chapter 1

Introduction

In the literature, there are various definitions for integrability. Different ap-

proaches and methods are applied for classifying different types of integrable

equations (see [1], [2]-[5], [6], [7], [8] and [9]).

Investigation of the class of hyperbolic type differential equations of the form

uxy = f(x, y, u, ux, uy) (1.1)

has also a very long history. There are various approaches to seek for particu-

lar and general solutions of these kind equations. In the literature we can find

several definitions of integrability of the equation (1.1). According to one given

by G. Darboux (see [10], [11]), equation (1.1) is called integrable if it reduces

to a pair of ordinary (generally nonlinear) differential equations or, more exactly

if there exist functions F (x, y, u, ux, uxx, ..., D
m
x u) and G(x, y, u, uy, uyy, ..., D

n
y u)

such that arbitrary solution of (1.1) satisfies DyF = 0 and DxG = 0, where Dx

and Dy are operators of differentiation with respect to x and y. Functions F

and G are called y- and x-integrals of the equation (1.1) respectively. The fa-

mous Liuoville equation uxy = eu provides an illustrative example of the Darboux

integrable hyperbolic type differential equation.

An effective criterion of Darboux integrability has been proposed by G. Dar-

boux himself. Equation (1.1) is integrable if and only if the Laplace sequence of

1



CHAPTER 1. INTRODUCTION 2

the linearized equation terminates at both ends. The definition of the Laplace

sequence and the proof of the criterion can be found in [12], [13]. A complete list

of the Darboux integrable equations of the form (1.1) is given in [14].

In the beginning of the 80’s, A. B. Shabat and R. I. Yamilov developed an

alternative method to the classification problem based on the notion of the char-

acteristic Lie algebra of hyperbolic type systems in [15],[16]. In these articles, an

algebraic criterion of Darboux integrability property has been formulated. An

important classification result was obtained in [15] for the exponential system

ui
xy = exp(ai1u

1 + ai2u
2 + ...ainu

n), i = 1, 2, ...n. (1.2)

It was proved that system (1.2) is Darboux integrable if and only if the matrix

A = (aij) is the Cartan matrix of a semi-simple Lie algebra. Properties of the

characteristic Lie algebras of the hyperbolic systems

ui
xy = ci

jku
juk, i, j, k = 1, 2, ...n (1.3)

have been studied in [17],[18]. The idea of adopting the characteristic Lie algebras

to the problem of classification of the hyperbolic type equations of the form

uxy = f(u, ux), which are integrated by means of the inverse scattering transforms

method is discussed by A. V. Zhiber and R. D. Murtazina in [19].

The method of characteristic Lie algebras studied in this thesis is closely

connected with the symmetry approach [6] which is proved to be very effective

tool to classify integrable nonlinear equations of evolutionary type [8], [7], [20],

[5] (see also the survey [9] and references therein). However this method meets

very serious difficulties when applied to hyperbolic type models. After the papers

[21] and [22] it became clear that this case needs alternative methods.

In 2005, I. Habibullin introduced the notion of characteristic Lie algebra for

fully discrete hyperbolic equations in [23]. In our later works with I. Habibullin

and Natalya Zheltukhina (see [24, 25, 26]), an algorithm of classification of in-

tegrable semi-discrete chains is studied based on the notion of characteristic Lie

algebras of the semi-discrete chains of the form

tx(n + 1, x) = f(t(n, x), t(n + 1, x), tx(n, x)). (1.4)
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Efficiency of the algorithm is approved by applying to a particular case of chain

(1.4):

tx(n + 1, x) = tx(n, x) + d(t(n, x), t(n + 1, x)). (1.5)

This thesis is completely based on four articles of us which are [24, 25, 26] and

[27] that is not published yet.

The thesis is organized as follows. In Chapter 2, we basically gave the no-

tion of characteristic Lie algebra. In Section 2.1, we introduced characteristic Lie

algebras for hyperbolic type differential equations having continuous variables.

Section 2.2 is devoted to explain characteristic Lie algebras for semi-discrete hy-

perbolic type equations having independent variables: one continuous x and one

discrete n. There is also a subsection here, which gives a special case: equation

with characteristic Lie algebras of the minimal possible dimensions.

Semi-discrete hyperbolic type equations are Darboux integrable if and only if

their characteristic Lie algebras in both direction n and x are of finite dimension

or equivalently, they have both nontrivial n- and x-integrals. Hence in Chapter 3,

we found the equations which are admitting nontrivial x-integrals. In Chapter 4,

we have analyzed these equations one by one and checked whether they also admit

nontrivial n-integrals or under what conditions they have nontrivial n-integrals.

Finally, we gave the complete list of Darboux integrable equations of the form

(1.5).



Chapter 2

Characteristic Lie Algebra

2.1 Characteristic Lie Algebras for Continuous

Case

Almost all the materials in this Chapter comes from [25].

The integrability of hyperbolic type differential equations having continuous vari-

ables of the form

uxy = f(x, y, u, ux, uy) (2.1)

has been discussed for so many years. According to G. Darboux’s integrability

definition, equation (2.1) is called integrable if it is reduced to a pair of ordinary

(generally nonlinear) differential equations, or more exactly, if its any solution

satisfies the equations of the form [10], (see also [11])

F (x, y, u, ux, uxx, ..., D
m
x u) = a(x), G(x, y, u, uy, uyy, ..., D

n
y u) = b(y), (2.2)

for appropriately chosen functions a(x) and b(y). Here Dx and Dy are operators

of differentiation with respect to x and y, ux = Dxu, uxx = D2
xu, uy = Dyu,

uyy = D2
yu and so on. Functions F and G are called y- and x-integrals of the

equation respectively. They are also called as ”first integral”s of the equation

(2.1).

4



CHAPTER 2. CHARACTERISTIC LIE ALGEBRA 5

Let us give a brief explanation of the notion of characteristic Lie algebra by using

y- and x-integrals. We begin with the basic property of the first integrals. Clearly,

each y-integral satisfies the condition

DyF (x, y, u, ux, uxx, ..., D
m
x u) = 0.

We take the derivative by applying the chain rule and we define a vector field X1

such that

X1F =
( ∂

∂y
+ uy

∂

∂u
+ f

∂

∂ux

+ Dx(f)
∂

∂uxx

+ ...
)
F = 0. (2.3)

Hence the vector field X1 solves the equation X1F = 0. Note that the function

F does not depend on uy. Hence F should satisfy one more equation X2F = 0,

where

X2 =
∂

∂uy

.

The commutator of these two operators will also annulate F . Moreover, for any

operator X from the Lie algebra generated by X1 and X2, we get XF = 0.

This Lie algebra is called characteristic Lie algebra of the equation (2.1) in the

direction of y. We can define characteristic Lie algebra in the x-direction in

a similar way. Now by virtue of the famous Jacobi theorem, equation (2.1) is

Darboux integrable if and only if both of its characteristic Lie algebras are of

finite dimension. Equivalently, equation (2.1) is Darboux integrable if it has

nontrivial x- and y-integrals. The best known examples of Darboux integrable

equations are the wave equation uxy = 0 with x-integral G = uy and y-integral

F = ux and the Liouville equation uxy = eu with x-integral G = uyy − u2
y

2
and

y-integral F = uxx − u2
x

2
. In [15] and [16], the characteristic Lie algebras for the

systems of nonlinear hyperbolic equations and their applications are studied.

In the following section, we will define characteristic Lie algebras for the semi-

discrete hyperbolic type equations.
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2.2 Characteristic Lie Algebras for Semi-Discrete

Case

Here we will study semi-discrete chains of the following form

tx(n + 1, x) = f(t(n, x), t(n + 1, x), tx(n, x)) (2.4)

from the Darboux integrability point of view. The unknown t = t(n, x) is a

function depending on two independent variables: one discrete n and one con-

tinuous x. Chain (2.4) can also be interpreted as an infinite system of ordi-

nary differential equations for the sequence of the variables {t(n)}∞n=−∞. Here

f = f(t(n, x), t(n + 1, x), tx(n, x)) is assumed to be locally analytic function of

three variables satisfying at least locally the condition

∂f

∂tx
6= 0. (2.5)

Subindex denotes a shift or a derivative, for instance, tk = t(n + k, x) and tx =
∂
∂x

t(n, x). Below we use D to denote the shift operator and Dx to denote the

x-derivative: Dh(n, x) = h(n + 1, x) and Dxh(n, x) = ∂
∂x

h(n, x). For the iterated

shifts we use the subindex Djh = hj. Set of all the variables {tk}∞k=−∞, {Dm
x t}∞m=1

constitutes the set of dynamical variables. Below we consider the dynamical

variables as independent ones.

Let us give the definition of Darboux integrability for semi-discrete hyperbolic

type equations. Before that we should introduce the notions of the first integrals

i.e. x- and n-integrals for the semi-discrete chain (2.4). The x-integral is defined

similar to the continuous case. We call a function F = F (x, t, t±1, t±2, ...) de-

pending on a finite number of shifts x-integral of the chain (2.4), if DxF = 0. We

also define n-integral similarly. We call a function I = I(x, t, tx, txx, ...) n-integral

of the chain (2.4) if it is in the kernel of the difference operator: (D − 1)I = 0

i.e. n-integral should not change under the action of the shift operator DI = I,

(see also [28]). Each solution of the integrable chain (2.4) satisfies following two

equations:

I(x, n, t, tx, txx, ...) = p(x), F (x, n, t, t±1, t±2, ...) = q(n)
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with properly chosen functions p(x) and q(n).

Definition. Chain (2.4) is called integrable (Darboux integrable) if it admits a

nontrivial n-integral and a nontrivial x-integral.

Darboux integrability implies the so-called C-integrability(solvability via an ap-

propriate change of variables). All Darboux integrable chains of the form (2.4) are

reduced to the d’Alembert wave equation w1x−wx = 0 by a Cole-Hopf type differ-

ential substitution w = F+I. Indeed, (D−1)Dx(w) = (D−1)DxF+Dx(D−1)I =

0.

Now let us turn back to x-integral F = F (x, n, t, t±1, t±2, ...) to introduce charac-

teristic Lie algebra in the direction x. Since F satisfies DxF = 0, we can expand

this equation by using the chain rule, and we get K0F = 0, where

K0 =
∂

∂x
+ tx

∂

∂t
+ f

∂

∂t1
+ g

∂

∂t−1

+ f1
∂

∂t2
+ g−1

∂

∂t−2

+ . . . . (2.6)

Note that the function F does not depend on the variable tx. Hence F should

also satisfy XF = 0 where

X =
∂

∂tx
. (2.7)

Vector fields K0 and X as well as any vector field from the Lie algebra generated

by them annulate F . This algebra is called the characteristic Lie algebra Lx of

the chain (2.4) in the x-direction. The following result is essential, its proof can

be found in [15].

Theorem 2.1 Equation (2.4) admits a nontrivial x-integral if and only if its Lie

algebra Lx is of finite dimension.

Now we will examine the n-integral I = I(x, n, t, tx, txx, ...) to introduce charac-

teristic Lie algebra in the direction n. By the definition we know that DI = I.

We can write it in an enlarged form

I(x, n + 1, t1, f, fx, fxx, ...) = I(x, n, t, tx, txx, ...). (2.8)

Notice that equation (2.8) is a functional equation, the unknown is taken at two

different ”points”. This causes the main difficulty in studying discrete chains.
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Such problems occur when we try to apply the symmetry approach to discrete

equations (see [29], [30]). However the notion of the characteristic Lie algebra

provides an effective tool to investigate chains.

We introduce vector fields in the following way. We focus on the equation (2.8).

The left hand side of the equation contains the variable t1 while the right hand

side does not. Hence, the total derivative of the function DI with respect to

t1 should vanish. In other words, the n-integral is in the kernel of the operator

Y1 := D−1 ∂
∂t1

D. Similarly the function I is also in the kernel of the operator

Y2 := D−2 ∂
∂t1

D2. It is because the right hand side of the equation D2I = I

which immediately follows from (2.8) does not depend on t1, so the derivative

of the function D2I with respect to t1 vanishes. If we proceed this way, we can

easily prove that the operator Yj = D−j ∂
∂t1

Dj solves the equation YjI = 0 for any

natural j. It is clear that we have the relation Yj+1 = D−1YjD for any natural j.

So far we have shifted the argument n forward, but we can also shift it backward

and use the equation (2.8) written as D−1I = I. We rewrite the original equation

(2.4) in the form

t−1x = g(t, t−1, tx). (2.9)

We can do this because of the condition ∂f
∂tx

6= 0 assumed at the beginning of the

section. We again enlarge the equation D−1I = I and get

I(x, n− 1, t−1, g, gx, gxx, ...) = I(x, n, t, tx, txx, ...). (2.10)

We use the similar approach as before. The left hand side of the last equation

depends on t−1, but the right hand side does not. Therefore the total derivative

of D−1I with respect to t−1 is zero, i.e. the operator Y−1 := D ∂
∂t−1

D−1 solves

the equation Y−1I = 0. Moreover, the operators Y−j = Dj ∂
∂t−1

D−j also satisfy

similar conditions Y−jI = 0 for any natural number j.

If we summarize the reasonings above we can conclude that the n-integral I is

annulated by any operator from the Lie algebra L̃n generated by the operators

[23]

{..., Y−2, Y−1, Y−0, Y0, Y1, Y2, ...} (2.11)
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where Y0 = ∂
∂t1

and Y−0 = ∂
∂t−1

. It is clear that we have Y0I = 0 and Y−0I = 0

since the function I depends on neither t1 nor t−1.

The algebra L̃n consists of the operators from the sequence (2.11), all their pos-

sible commutators, and linear combinations with coefficients depending on n and

x. Obviously equation (2.4) admits a nontrivial n-integral only if the dimension

of the characteristic Lie algebra L̃n is finite. But it is not clear that the finiteness

of dimension L̃n is essential for existence of nontrivial n-integrals. Because of

this we introduce another Lie algebra called the characteristic Lie algebra of the

equation (2.4) in the direction n. First we define differential operators

Xj =
∂

∂t−j

for j = 1, 2, ... in addition to the operators Y1, Y2, ... .

The following theorem defines the characteristic Lie algebra in the direction n.

Theorem 2.2 Equation (2.4) admits a nontrivial n-integral if and only if the

following two conditions hold:

1) Linear envelope of the operators {Yj}∞1 is of finite dimension, denote this

dimension N ;

2) Lie algebra Ln generated by the operators Y1, Y2, ..., YN , X1, X2, ..., XN is of

finite dimension. We call Ln the characteristic Lie algebra of (2.4).

Remark 2.3 It is easy to prove that if dimension of {Yj}∞1 is N then the set

{Yj}N
1 constitute a basis in the linear envelope of {Yj}∞1 .

In the next two sections, we will analyze the characteristic Lie algebras Ln and

Lx by giving some properties of these algebras. In the Section 2.2.1, which is

devoted to characteristic Lie algebra Ln, we will give the proof of Theorem 2.2 in

detail.
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2.2.1 Characteristic Lie Algebra Ln

In this section we study some properties of the characteristic Lie algebra Ln

introduced in the Theorem 2.2. We will firstly begin with the proof of the Remark

2.3. It immediately follows from the following Lemma.

Lemma 2.4 If for some integer N the operator YN+1 is a linear combination of

the operators with less indices:

YN+1 = α1Y1 + α2Y2 + ... + αNYN (2.12)

then for any integer j > N , we have a similar expression

Yj = β1Y1 + β2Y2 + ... + βNYN . (2.13)

Proof. We apply the property Yk+1 = D−1YkD to the expression (2.12) and get

YN+2 = D−1(α1)Y2 + D−1(α2)Y3 + ... + D−1(αN)(α1Y1 + ... + αNYN). (2.14)

By using mathematical induction we can easily complete the proof of the Lemma.

¤

Lemma 2.5 The following commutativity relations take place:

[Y0, Y−0] = 0, [Y0, Y1] = 0, [Y−0, Y−1] = 0.

Proof. Recall that Y0 = ∂
∂t1

and Y−0 = ∂
∂t−1

. The first of the relations is obvious.

In order to prove the others we should find the coordinate representation of the

operators Y1 and Y−1 acting in the class of locally smooth functions of the variables

x, n, t, tx, txx, ... . By applying Y1 to a function H depending on these variables,

we get

Y1H = D−1 d

dt1
DH(t, tx, txx, ...)

= D−1 d

dt1
H(t1, f, fx, ...)

=
{ ∂

∂t
+ D−1

( ∂f

∂t1

) ∂

∂tx
+ D−1

(∂fx

∂t1

) ∂

∂txx

+ ...
}

H(t, tx, txx, ...),
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which yields

Y1 =
∂

∂t
+ D−1

( ∂f

∂t1

) ∂

∂tx
+ D−1

(∂fx

∂t1

) ∂

∂txx

+ D−1
(∂fxx

∂t1

) ∂

∂txxx

+ ... . (2.15)

Now note that all of the functions f , fx, fxx, ... depend on the variables

t1, t, tx, txx, ... and do not depend on t2 hence the coefficients of the vector field Y1

do not depend on t1. Therefore the operators Y1 and Y0 commute. In a similar

way we find the coordinate representation of Y−1 as

Y−1 =
∂

∂t
+ D

( ∂g

∂t−1

) ∂

∂tx
+ D

( ∂gx

∂t−1

) ∂

∂txx

+ D
(∂gxx

∂t−1

) ∂

∂txxx

+ ... , (2.16)

and clearly [Y−0, Y−1] = 0.¤

The following Lemma is very important since we will use it for several times while

studying the characteristic Lie algebra Ln.

Lemma 2.6 (1) Suppose that the vector field

Y = α(0)
∂

∂t
+ α(1)

∂

∂tx
+ α(2)

∂

∂txx

+ ...,

where αx(0) = 0, solves the equation [Dx, Y ] = 0, then Y = α(0) ∂
∂t

.

(2) Suppose that the vector field

Y = α(1)
∂

∂tx
+ α(2)

∂

∂txx

+ α(3)
∂

∂txxx

+ ...

solves the equation [Dx, Y ] = hY , where h is a function of variables t, tx, txx,

. . ., t±1, t±2, . . ., then Y = 0.

Proof. The proof of Lemma 2.6 can be easily derived from the following formula

[Dx, Y ] = −(α(0)ft + α(1)ftx)
∂

∂t1
+ (αx(0)− α(1))

∂

∂t

+ (αx(1)− α(2))
∂

∂tx
+ (αx(2)− α(3))

∂

∂txx

+ ... . (2.17)

Let us just give the proof of part (1). Since the condition [Dx, Y ] = 0 holds, the

terms before the partial differentials should be zero. In part (1), we have also

the condition αx(0) = 0. Hence from the terms before ∂
∂t

, we have α(1) = 0.
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Since α(1) = 0, the terms before ∂
∂t1

gives us α(0) = 0. We proceed in this way

and we get all α(i) = 0, i = 0, 1, 2, ... . Hence the vector field Y = 0 in part (1).

Similarly, we can prove the second part of the Lemma. ¤

In the formula (2.15) we have already given the coordinate representation of the

operator Y1. We can check that the operator Y2 is a vector field of the form

Y2 = D−1(Y1(f))∂tx + D−1(Y1(fx))∂txx + D−1(Y1(fxx))∂txxx + ... . (2.18)

It immediately follows from the equation Y2 = D−1Y1D and the coordinate rep-

resentation of Y1. By induction we can prove similar formulas for arbitrary j:

Yj+1 = D−1(Yj(f))∂tx + D−1(Yj(fx))∂txx + D−1(Yj(fxx))∂txxx + ... . (2.19)

Lemma 2.7 For any n ≥ 0, we have

[Dx, Yn] = −
n∑

j=0

D−j(Yn−j(f))Yj . (2.20)

In particular,

[Dx, Y0] = −Y0(f)Y0 , [Dx, Y1] = −Y1(f)Y0 −D−1(Y0(f))Y1. (2.21)

Proof. We have,

[Dx, Y0]H(t, t1, tx, txx, ...) = DxHt1 − Y0DxH

= (Htt1tx + Ht1t1t1x + ...)− ∂

∂t1

(Httx + Ht1t1x + ...)

= −Ht1ft1 = −Y0(f)Y0H,

i.e. the first equation of (2.21) holds. By (2.15), (2.17) and [Dx, Y0] = −Y0(f)Y0,

we calculate [Dx, Y1] as

[Dx, Y1] = −Y1(f)
∂

∂t1
−D−1(Y0(f))

∂

∂t
+ D−1[Dx, Y0]f

∂

∂tx
+ D−1[Dx, Y0]fx

∂

∂txx

+ . . .

= −Y1(f)Y0 −D−1(Y0(f))
∂

∂t
−D−1(Y0(f)Y0(f))

∂

∂tx
−D−1(Y0(f)Y0(fx))

∂

∂txx

− . . .

= −Y1(f)Y0 −D−1(Y0(f))Y1.
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It is easy to see by mathematical induction that on the space of smooth functions

of t, t1, tx, txx, ... we have

[Dx, Yn] = −
n∑

j=0

D−j(Yn−j(f))Yj

for any integer n ≥ 0. Hence the Lemma is proved. ¤

Lemma 2.8 Lie algebra generated by the operators Y1, Y2, Y3, ... is commutative.

Proof. By Lemma 2.5, [Y1, Y0] = 0. As we said in the proof of this Lemma,

the reason for this equality is that the coefficients of the vector field Y1 do not

depend on the variable t1. They might depend only on t−1, t, tx, txx, txxx, . . . .

The coefficients of the vector field Y2 being of the form D−1(Y1(D
j
xf)) which is

seen in (2.18) also do not depend on the variable t1. They might depend only

on t−2, t−1, t, tx, txx, txxx, . . . . Therefore, we have [Y2, Y0] = 0. Continuing in

that way we see that for any n ≥ 1 the commutativity relation [Yn, Y0] = 0 holds.

Consider now the commutator [Yn, Yn+m], n ≥ 1, m ≥ 1. We have,

[Yn, Yn+m] = [D−nY0D
n, D−(n+m)Y0D

n+m]

= [D−nY0D
n, D−nD−mY0D

mDn]

= [D−nY0D
n, D−nYmDn]

= D−n[Y0, Ym]Dn = 0,

that finishes the proof of the Lemma. ¤

Lemma 2.9 If the operator Y2 = 0 then [X1, Y1] = 0.

Proof. By the coordinate representation of Y2 given in (2.18), Y2 = 0 implies

that Y1(f) = 0. Due to (2.15), Y1(f) = 0 means that ft +D−1(ft1)ftx = 0. Hence

D−1(ft1) does not depend on t−1 i.e. X1(D
−1(ft1)) = 0. By using Lemma 2.7

and the fact that [Dx, X1] = 0, we conclude that

[Dx, [X1, Y1]] = −[X1, D
−1(ft1)Y1] = −D−1(ft1)[X1, Y1],

which means [Dx, [X1, Y1]] = −D−1(ft1)[X1, Y1]. By Lemma 2.7, part (2), it

follows that [X1, Y1] = 0. ¤
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Lemma 2.10 The operator Y2 = 0 if and only if we have

ft + D−1(ft1)ftx = 0. (2.22)

Proof. Assume Y2 = 0. By (2.18), Y1(f) = 0. Due to (2.15), equality Y1(f) = 0

is indeed another way of writing the equation (2.22).

Conversely, assume (2.22) holds, i.e. Y1(f) = 0. It follows from (2.18) that

Y2(f) = 0. Due to Lemma 2.7, we have [Dx, Y2] = −D−2(Y0(f))Y2 that implies,

by Lemma 2.6, part (2), that Y2 = 0. ¤

Corollary 2.11 The dimension of the Lie algebra Ln associated with n-integral

is equal to 2 if and only if (2.22) holds, or the same Y2 = 0.

Proof. By Theorem 2.2, the dimension of Ln is 2 if and only if Y2 = λ1X1 +µ1Y1

and [X1, Y1] = λ2X1 + µ2Y1 for some λi, µi, i = 1, 2.

Assume the dimension of Ln is 2. Then Y2 = λ1X1 + µ1Y1. Since among X1, Y1,

Y2 differentiation by t−1 is used only in X1, differentiation by t is used only in Y1,

then λ1 = µ1 = 0. Therefore, Y2 = 0, or the same, by Lemma 2.10, (2.22) holds.

Conversely, assume (2.22) holds, that is Y2 = 0. By Lemma 2.9, [X1, Y1] =

0. Since Y2 and [X1, Y1] are trivial linear combinations of X1 and Y1 then the

dimension of Ln is 2. ¤

Now we can pass to the proof of Theorem 2.2.

Proof of Theorem 2.2. Suppose that there exists a nontrivial n-integral I =

I(t, tx, ..., t[N ]) for the equation (2.4), here t[j] = Dj
xt for any j ≥ 0. Then all the

vector fields from the Lie algebra M generated by {Yj, Xk} for j = 1, 2, ... and

k = 1, ..., N2, where N2 is arbitrary constant satisfying N2 ≥ N annulate I. We

will show that dimension of the Lie algebra M is finite. We consider first the

projection of the algebra M given by the operator PN :

PN

( −1∑
i=−N2

x(i)∂ti +
∞∑
i=0

x(i)∂t[i]

)
=

−1∑
i=−N2

x(i)∂ti +
N∑

i=0

x(i)∂t[i] . (2.23)
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Let Ln(N) be the projection of the algebra M . Then evidently, for any Z0 in

Ln(N) the equation Z0I = 0 is satisfied. Obviously, dim Ln(N) < ∞. Let the

set {Z01, Z02, ..., Z0N1} form a basis in Ln(N). Hence we can represent any Z0 in

Ln(N) as a linear combination

Z0 = α1Z01 + α2Z02 + ... + αN1Z0N1 . (2.24)

Suppose that the vector fields Z,Z1, ..., ZN1 in M are connected with the op-

erators Z0, Z01, ..., Z0N1 in Ln(N) by the formulas PN(Z) = Z0, PN(Z1) =

Z01, ..., PN(ZN1) = Z0N1 . We have to prove that Z can be presented as a lin-

ear combination

Z = α1Z1 + α2Z2 + ... + αN1ZN1 . (2.25)

In the proof, we will use the following Lemma.

Lemma 2.12 Let I1 = DxI and I is an n-integral. Then for each Z in M we

have ZI1 = 0.

Proof. We should show that I1 = DxI is also an n-integral for the algebra M .

Really

DI1 = DDxI = DxDI = DxI = I1.

Since I1 is also n-integral then for each Z in M we have ZI1 = 0. ¤

We apply the operator (Z − α1Z1 − α2Z2 − ... − αN1ZN1) to the function I1 =

I1(t, tx, txx, ..., t[N+1]),

(Z − α1Z1 − α2Z2 − ...− αN1ZN1)I1 = 0. (2.26)

We can write (2.26) as

(Z0 − α1Z01 − α2Z02 − ...− αN1Z0N1)I1 + (X(N + 1)− α1X1(N + 1)

− α2X2(N + 1)− ...− αN1XN1(N + 1))
∂

∂t[N+1]

I1 = 0,

(2.27)

where X(N +1), X1(N +1), ..., XN1(N +1) are the coefficients before ∂t[N+1]
of the

vector fields Z, Z1, Z2, ..., ZN1 . The first summand in (2.27) vanishes by (2.24).
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In the second one the factor ∂
∂t[N+1]

I1 = ∂
∂t[N ]

I is not zero. So we end up with the

equation

X(N + 1) = α1X1(N + 1) + α2X2(N + 1) + ... + αN1XN1(N + 1). (2.28)

Equation (2.28) shows that

PN+1(Z) = α1PN+1(Z1) + α2PN+1(Z2) + ... + αN1PN+1(ZN1). (2.29)

So by applying mathematical induction, we can prove the formula (2.25). Thus

the Lie algebra M is of finite dimension. Now we construct the characteristic

algebra Ln by using M . Since dim M < ∞, the linear envelope of the vec-

tor fields {Yj}∞1 is of finite dimension. We choose a basis in this linear space

consisting of Y1, Y2, ..., YS for S ≤ N ≤ N2. Then the algebra generated by

Y1, Y2, ..., YS, X1, X2, ..., XS is of finite dimension, because it is a subalgebra of

M . This algebra is just characteristic Lie algebra of the equation (2.4).

Suppose that conditions (1) and (2) of the Theorem 2.2 are satisfied. So there

exists a finite dimensional characteristic Lie algebra Ln for the equation (2.4).

We show that in this case equation (2.4) admits a nontrivial n-integral. Let

N1 is the dimension of Ln and N is the dimension of the linear envelope of

the vector fields {Yj}∞j=1. We take the projection Ln(N2) of the Lie algebra Ln

defined by the operator PN2 defined by the formula (2.23)with N2 instead of N .

Evidently, Ln(N2) consists of the finite sums Z0 =
−1∑

i=−N

x(i)∂ti +

N2∑
i=0

x(i)∂t[i] where

N = N1−N2. Let Z01, ..., Z0N1 form a basis in Ln(N2). Then we have N1 = N+N2

equations Z0jG = 0, j = 1, ..., N1, for a function G depending on N + N2 + 1 =

N1 +1 independent variables. Then due to the well-known Jacobi theorem, there

exists a function G = G(t−N , t−N+1, ..., t−1, t, tx, txx, ..., t[N2]), which satisfies the

equation ZG = 0 for any Z in Ln. But really it does not depend on t−N ,

..., t−1 because X1G = 0, X2G = 0, ...., XNG = 0. Thus the function G is

G = G(t, tx, txx, ..., t[N2]). Such a function is not unique but any other solution of

these equations, depending on the same set of the variables, can be represented

as h(G) for some function h.

Note one more property of the algebra Ln. Let π be a map which assigns to each

Z in Ln its conjugation D−1ZD. Evidently, the map π acts from the algebra
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Ln into its central extension Ln ⊕ {XN+1}, because for the generators of Ln we

have D−1YjD = Yj+1 and D−1XjD = Xj+1. Evidently, [XN+1, Yj] = 0 and

[XN+1, Xj] = 0 for any integer j ≤ N . Moreover XN+1F = 0 for the function

G = G(t, tx, ..., t[N2]) mentioned above. This fact implies that ZG1 = 0 for

G1 = DG and for any vector field Z in Ln. Really, for any Z in Ln one has

a representation of the form D−1ZD = Z̃ + λXN+1 where Z̃ in Ln and λ is a

function. So

ZG1 = ZDG = D(D−1ZDG) = D(Z̃ + λXN+1)G = 0. (2.30)

Therefore G1 = h(G) or DG = h(G). In other words function G = G(n) satisfies

an ordinary difference equation of the first order. Its general solution can be

written as G = H(n, c) where H is a function of two variables and c is an arbitrary

constant. By solving the equation G = H(n, c) with respect to c one gets c =

F (G,n). The function F = F (G, n) found is just n-integral searched. Actually,

DF (G,n) = Dc = c = F (G,n). So DF = F . This completes the proof of the

Theorem 2.2. ¤

2.2.2 Characteristic Lie Algebra Lx

Here we study some properties of the characteristic Lie algebra Lx. Consider an

infinite sequence of the vector fields defined as follows,

K1 = [X,K0], K2 = [X,K1], . . . , Kn+1 = [X, Kn], n ≥ 1 , (2.31)

where K0 and X are defined by (2.6) and (2.7).

It is easy to see that

K1 =
∂

∂t
+ X(f)

∂

∂t1
+ X(g)

∂

∂t−1

+ X(f1)
∂

∂t2
+ X(g−1)

∂

∂t−2

+ . . . , (2.32)

Kn =
∞∑

j=1

{
Xn(fj−1)

∂

∂tj
+ Xn(g−j+1)

∂

∂t−j

}
, n ≥ 2, (2.33)

where f0 := f and g0 := g.
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Lemma 2.13 We have,

DXD−1 =
1

ftx

X, DK0D
−1 = K0 − txft + fft1

ftx

X, (2.34)

DK1D
−1 =

1

ftx

K1 − ft + ftxft1

f 2
tx

X, DK2D
−1 =

1

f 2
tx

K2 − ftxtx

f 3
tx

K1 +
ftxtxft

f 4
tx

X,

(2.35)

DK3D
−1 =

1

f 3
tx

K3−3
ftxtx

f 4
tx

K2 +

(
3
f 2

txtx

f 5
tx

− ftxtxtx

f 4
tx

)
K1− ft

ftx

(
3
f 2

txtx

f 5
tx

− ftxtxtx

f 4
tx

)
X.

(2.36)

Proof. In the proof of this Lemma we will use A and A∗ to denote the func-

tions A(x, t, tx, t1, t−1, t2, t−2, . . .) and D−1A = A(x, t−1, g, t, t−2, t1, t−3, . . .) re-

spectively.

Since

DXD−1A = DA∗
tx = D

{
gtx

∂A∗

∂g

}
= D(gtx)

∂A

∂tx
= D(gtx)XA

and D(gtx) =
1

ftx

then DXD−1A = 1
ftx

XA.

Since

DK0D
−1A = D

(
∂

∂x
+ tx

∂

∂t
+ f

∂

∂t1
+ g

∂

∂t−1

+ f1
∂

∂t2
+ g−1

∂

∂t−2

+ . . .

)
A∗

= D

(
∂A∗

∂x
+ txgt

∂A∗

∂g
+ tx

∂A∗

∂t
+ f

∂A∗

∂t1
+ g

∂A∗

∂t−1

+ ggt−1

∂A∗

∂g
+ . . .

)

=

(
∂A

∂x
+ tx

∂A

∂t
+ f

∂A

∂t1
+ f1

∂A

∂t2
+ . . .

)
+ (txD(gt−1) + fD(gt))

∂A

∂tx

and D(gt−1) = − ft

ftx
, D(gt) = − ft1

ftx
then DK0D

−1A = K0A− txft+fft1

ftx
XA.

Using formulas (2.34) for DXD−1, DK0D
−1 and the definition (2.31) of K1 we

have

DK1D
−1 = [DXD−1, DK0D

−1] =

[
1

ftx

X,K0 − txft + fft1

ftx

X

]

=
1

ftx

K1 −K0

(
1

ftx

)
X − 1

ftx

X

(
txft + fft1

ftx

)
X +

txft + fft1

ftx

(
−ftxtx

f 2
tx

)
X

=
1

ftx

K1 − ft + ftxft1

f 2
tx

X.
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Using formulas (2.34) and (2.35) for DXD−1, DK1D
−1 and the definition (2.31)

of K2 we have

DK2D
−1 = [DXD−1, DK1D

−1] =

[
1

ftx

X,
1

ftx

K1 − ft + ftxft1

f 2
tx

X

]

= −ftxtx

f 3
tx

K1 − 1

ftx

K1

(
1

ftx

)
X +

1

f 2
tx

K2 − 1

ftx

X

(
ft + ftxft1

f 2
tx

)
X

−ft + ftxft1

f 2
tx

ftxtx

f 2
tx

X

=
1

f 2
tx

K2 − ftxtx

f 3
tx

K1 +
ftxtxft

f 4
tx

X.

Using formulas (2.34) and (2.35) for DXD−1, DK2D
−1 and the definition (2.31)

of K3 we have

DK3D
−1 = [DXD−1, DK2D

−1] =
[ 1

ftx

X,
1

f 2
tx

K2 − ftxtx

f 3
tx

K1 +
ftxtxft

f 4
tx

X
]

=
1

f 3
tx

K3 − ftxtx

f 4
tx

K2 − 2ftxtx

f 4
tx

K2 − 1

ftx

X
(ftxtx

f 3
tx

)
K1 + X

{ 1

ftx

X
(ftxtxft

f 4
tx

)

− 1

f 2
tx

K2

( 1

ftx

)
+

ftxtx

f 3
tx

K1

( 1

ftx

)
− ftxtxft

f 4
tx

X
( 1

ftx

)}

=
1

f 3
tx

K3 − 3ftxtx

f 4
tx

K2 −
ftxtxtxftx − 3f 2

txtx

f 5
tx

K1 − ft

ftx

ftxtxtxftx − 3f 2
txtx

f 5
tx

X. ¤

Lemma 2.14 For any n ≥ 1 we have,

DKnD
−1 = a(n)

n Kn + a
(n)
n−1Kn−1 + a

(n)
n−2Kn−2 + . . . + a

(n)
1 K1 + b(n)X, (2.37)

where coefficients b(n) and a
(n)
k are functions that depend only on variables t, t1

and tx for all k, 1 ≤ k ≤ n. Moreover,

a(n)
n =

1

fn
tx

, n ≥ 1, a
(n)
n−1 = −n(n− 1)

2

ftxtx

fn+1
tx

, n ≥ 2,

b(n) = − ft

ftx

a
(n)
1 , n ≥ 2, (2.38)

a
(n)
n−2 =

(n− 2)(n2 − 1)n

4

f 2
txtx

2fn+2
tx

− (n− 2)(n− 1)n

3

ftxtxtx

2fn+1
tx

, n ≥ 3 . (2.39)

Proof. We use the mathematical induction to prove the Lemma. As Lemma

2.13 shows the base of mathematical induction holds.
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Assume the representation (2.37) for DKnD
−1 is true and all coefficients a

(n)
k are

functions of t, t1, tx only. Consider DKn+1D
−1. We have,

DKn+1D
−1 = [DXD−1, DKnD−1]

=

[
1

ftx

X, a(n)
n Kn + a

(n)
n−1Kn−1 + a

(n)
n−2Kn−2 + . . . + a

(n)
1 K1 + b(n)X

]

= a
(n+1)
n+1 Kn+1 + a(n+1)

n Kn + a
(n+1)
n−1 Kn−1 + . . . + a

(n+1)
1 K1 + b(n+1)X,

where

a
(n+1)
n+1 =

1

ftx

a(n)
n ,

a
(n+1)
n−k =

1

ftx

X(a
(n)
n−k) +

1

ftx

a
(n)
n−k−1, 0 ≤ k ≤ n− 2,

a
(n+1)
1 =

1

ftx

X(a
(n)
1 ).

It is easy to see then a
(n+1)
n−k , 0 ≤ k ≤ n− 2 are functions of t, t1, tx only.

Assuming formulas (2.38) and (2.39) for a
(n)
n , a

(n)
n−1 and a

(n)
n−2 are true, the following

equality

DKn+1D
−1 = a

(n+1)
n+1 Kn+1 + a(n+1)

n Kn + a
(n+1)
n−1 Kn−1 + . . . + a

(n+1)
1 K1 + b(n+1)X

=

[
1

ftx

X,
1

fn
tx

Kn + a
(n)
n−1Kn−1 + a

(n)
n−2Kn−2 + . . . + a

(n)
1 K1 + b(n)X

]

implies that

a
(n+1)
n+1 =

1

fn+1
tx

,

a(n+1)
n =

1

ftx

X

(
1

fn
tx

)
+

1

ftx

a
(n)
n−1

= −nftxtx

fn+2
tx

− n(n− 1)ftxtx

2fn+2
tx

= −n(n + 1)ftxtx

2fn+2
tx

,

a
(n+1)
n−1 =

1

ftx

X(a
(n)
n−1) +

1

ftx

a
(n)
n−2

=
(n− 1)n(n + 1)(n + 2)

4

f 2
txtx

2fn+3
tx

− (n− 1)n(n + 1)

3

ftxtxtx

2fn+2
tx

.
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Using the same notation for A and A∗ as in Lemma 2.13, we have (for n ≥ 2),

DY KnD
−1A = D

{
Xn(f)

∂

∂t1
+ Xn(g)

∂

∂t−1

+ Xn(f1)
∂

∂t2
+ . . .

}
A∗

= D

{
Xn(f)

∂A∗

∂t1
+ Xn(g)

∂A∗

∂t−1

+ Xn(g)gt−1

∂A∗

∂g
+ Xn(f1)

∂A∗

∂t2
+ . . .

}

= D(Xn(f))
∂A

∂t2
+ D(Xn(g))

∂A

∂t
+ D(Xn(g))D(gt−1)

∂A

∂tx
+ D(Xn(f1))

∂A

∂t3
+ . . .

= D(Xn(g))
∂A

∂t
− f

ftx

D(Xn(g))XA +
∞∑

k=1

(
α

(n)
k

∂

∂tk
+ β

(n)
k

∂

∂t−k

)
A

= (b(n)X + a
(n)
1 K1 + a

(n)
2 K2 + . . . + a(n)

n Kn)A.

Since among X, Ki, 1 ≤ i ≤ n differentiation by tx is used only in X, differentia-

tion by t is used only in K1 and then a
(n)
1 = D(Xn(g)) and b(n) = − ft

ftx
D(Xn(g)),

which yields that b(n) = − ft

ftx
a

(n)
1 . The fact that b(n) is a function of t, t1 and tx

follows from the similar result for a
(n)
1 . ¤

Lemma 2.15 Suppose that the vector field

K =
∞∑

j=1

{
α(k)

∂

∂tk
+ α(−k)

∂

∂t−k

}

solves the equation DKD−1 = hK, where h is a function of variables t, t±1, t±2,

. . ., tx, txx, . . ., then K = 0.

Proof. The proof of Lemma 2.15 can be derived from the following formula

DKD−1 = − ft

ftx

D(α(−1))X + D(α(−1))
∂

∂t
+ D(α(−2))

∂

∂t−1

+
∞∑

j=2

{
D(α(j − 1))

∂

∂tj
+ D(α(−j − 1))

∂

∂t−j

}
. (2.40)

If the function h = 0 then the vector field K = 0 automatically. Assume that

h 6= 0. Since there is no differentiation with respect to t in K, the coefficient

before ∂
∂t

in the formula (2.40) should be zero which gives α(−1) = 0. This yields

that the coefficient before ∂
∂t−1

in K is zero. Hence the coefficient before ∂
∂t−1

in

(2.40) which is D(α(−2)) = 0 i.e. α(−2) = 0. Proceeding in this way, we get all
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α(i) = 0 for any integer i 6= 0. Thus the vector field K = 0. ¤

Consider the linear space L∗ generated by X and Kn, n ≥ 0. It is a subset in

the finite dimensional Lie algebra Lx. Therefore, there exists a natural number

N such that

KN+1 = µX + λ0K0 + λ1K1 + . . . + λNKN , (2.41)

and X, Kn, 0 ≤ n ≤ N are linearly independent. The coefficients µ, λi,

0 ≤ i ≤ N , are functions depending on a finite number of the dynamical vari-

ables. Since among X, K0, ..., KN+1 we have differentiation with respect to tx

only in X, differentiation with respect to x only in K0, we get µ = λ0 = 0. In this

case, we have differentiation with respect to t only in K1, hence λ1 = 0. Since

µ = λ0 = λ1 = 0, then the equality (2.41) should be studied only if N ≥ 2, or

the same, if the dimension of Lx is 4 or more. Case, when the dimension of Lx is

equal to 3 must be considered separately.

Assume N ≥ 2. Then

DKN+1D
−1 = D(λ2)DK2D

−1 + D(λ3)DK3D
−1 + . . . + D(λN−1)DKN−1D

−1

+ D(λN)DKND−1.

Rewriting DKiD
−1 in the last equation for each i, 2 ≤ i ≤ N + 1, using formulas

(2.37), and KN+1 as a linear combination (2.41) allows us to compare coefficients

before Ki, 2 ≤ i ≤ N and obtain the following system of equations.

a
(N+1)
N+1 λN + a

(N+1)
N = D(λN)a

(N)
N

a
(N+1)
N+1 λN−1 + a

(N+1)
N−1 = D(λN−1)a

(N−1)
N−1 + D(λN)a

(N)
N−1

. . .

a
(N+1)
N+1 λi + a

(N+1)
i = D(λi)a

(i)
i + D(λi+1)a

(i+1)
i + . . . + D(λN)a

(N)
i ,

(2.42)

for 2 ≤ i ≤ N . Since the coefficients λi, 2 ≤ i ≤ N , depend on a finite number of

arguments, it is clear that all of them are functions of only variables t and tx.

Lemma 2.16 K2 = 0 if and only if ftxtx = 0.
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Proof. Assume K2 = 0. By representation (2.33) we have X2(f) = 0, that is

ftxtx = 0.

Conversely, assume that ftxtx = 0. By (2.35) we have DK2D
−1 = 1

f2
tx

K2 that

implies, by Lemma 2.15, that K2 = 0. ¤

Now introduce

Z2 = [K0, K1]. (2.43)

Lemma 2.17 We have,

DZ2D
−1 =

1

ftx

Z2 − txft + fft1

f 2
tx

K2 + CK1 − ft

ftx

CX, (2.44)

where C = − txftxt

f2
tx

− fftxt1

f2
tx

+ ft

f2
tx

+
ft1

ftx
+ txftftxtx

f3
tx

+
fft1ftxtx

f3
tx

.

Proof. Using the formulas (2.34) and (2.35) for DK0D
−1, DK1D

−1 and the

definition (2.43) of Z2 we have,

DZ2D
−1 = [DK0D

−1, DK1D
−1] = [K0 − AX,

1

ftx

K1 −BX]

= K0

(
1

ftx

)
K1 +

1

ftx

Z2 −K0(B)X + BK1 − AX

(
1

ftx

)
K1

−A
1

ftx

K2 + AX(B)X −BX(A)X

=
1

ftx

Z2 − A
1

ftx

K2 +

(
K0

(
1

ftx

)
+ B − AX

(
1

ftx

))
K1

+(AX(B)−BX(A)−K0(B))X,

where

A =
txft + fft1

ftx

, B =
ft + ftxft1

f 2
tx

.

The coefficient before K1 is

K0

(
1

ftx

)
+ B − AX

(
1

ftx

)
= −tx

ftxt

f 2
tx

− f
ftxt1

f 2
tx

+
ft + ftxft1

f 2
tx

+
ftxtx

f 2
tx

txft + fft1

ftx

:= C.

Note that the coefficient before X is − ft

ftx
times the coefficient before K1. To

prove it we note that Z2 = (a1
∂

∂t1
+ a−1

∂
∂t−1

) + (a2
∂

∂t2
+ a−2

∂
∂t−2

) + . . . for some
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functions ai, i = ±1,±2, . . ., and then compare coefficients before XH and K1H

in DZ2D
−1H in the same way as we did for DKnD−1H in Lemma 2.14. ¤

Lemma 2.18 The dimension of the Lie algebra Lx generated by X and K0 is

equal to 3 if and only if

ftxtx = 0 (2.45)

and

−txftxt

f 2
tx

− fftxt1

f 2
tx

+
ft

f 2
tx

+
ft1

ftx

= 0 . (2.46)

Proof. Assume the dimension of the Lie algebra Lx generated by X and K0 is

equal to 3. It means that the algebra consists of X, K0 and K1 only, and

K2 = λ1X + λ2K0 + λ3K1,

Z2 = µ1X + µ2K0 + µ3K1

for some functions λi and µi. Since among X, K0, K1, K2 and Z2 we have

differentiation by tx only in X, differentiation by x only in K0, then λ1 = λ2 =

µ1 = µ2 = 0. Therefore, K2 = λ3K1 and Z2 = µ3K1. Also, among K1, K2 and

Z2 we have differentiation by t only in K1 then λ3 = µ3 = 0. We have proved

that if the dimension of the Lie algebra Lx is 3 then K2 = 0 and Z2 = 0. By

Lemma 2.16, condition (2.45) is satisfied. It follows from (2.44) that

0 = DZ2D
−1 =

1

ftx

Z2 − txft + fft1

f 2
tx

K2 + CK1 − ft

ftx

CX = CK1 − ft

ftx

CX.

Since X and K1 are linearly independent then equality CK1− ft

ftx
CX = 0 implies

C = 0. Equality (2.46) follows from (2.45) and C = 0.

Conversely, assume that properties (2.45) and (2.46) are satisfied. To prove that

the dimension of the Lie algebra Lx is equal to 3 it is enough to show that

K2 = 0 and Z2 = 0. It follows from (2.45) and Lemma 2.16 that K2 = 0. From

the formula (2.44) for DZ2D
−1, property (2.46) and since K2 = 0 we have that

DZ2D
−1 = 1

ftx
Z2, which implies, by Lemma 2.15, that Z2 = 0. ¤
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2.2.3 Special Case: Equations with Characteristic Lie Al-

gebras of the Minimal Possible Dimensions.

Corollary 2.19 If Lie algebras for n− and x− integrals have dimensions 2 and

3 respectively, then equation t1x = f(t, t1, tx) can be reduced to t1x = tx + t1 − t.

Proof. By Lemma 2.18 and Corollary 2.11, the dimensions of the characteristic

Lie algebras Ln and Lx are 2 and 3 correspondingly means equations (2.22),

(2.45), and (2.46) are satisfied. It follows from property (2.45) that f(t, t1, tx) =

A(t, t1)tx +B(t, t1) for some functions A(t, t1) and B(t, t1). By (2.22), Attx +Bt +

{D−1(At1tx + Bt1)}A = 0, that is

D−1(At1tx + Bt1) = −At

A
tx − Bt

A
. (2.47)

Note that t1x = Atx + B implies tx = D−1(A)t−1x + D−1(B) and, therefore,

t−1x = 1
D−1(A)

tx − D−1(B)
D−1(A)

. We continue with (2.47) and obtain the following

equality

D−1

(
At1

A

)
tx −D−1

(
At1B

A

)
+ D−1(Bt1) = −At

A
tx − Bt

A

which gives to two equations

D−1

(
At1

A

)
= −At

A
, D−1

(
Bt1 −

At1B

A

)
= −Bt

A
. (2.48)

By the first equation of (2.48), we see that At

A
is a function that depends only on

variable t, even though functions A and At depend on variables t and t1. Let us

denote a(t) := At

A
. Then

At1

A
= −a(t1). The last two equations imply that A =

T1(t1)e
ã(t) = T2(t)e

−ã(t1) for some functions T1(t1) and T2(t) and ã(t) =
∫ t

0
a(τ)dτ .

We notice that T1(t1)e
ã(t1) = T2(t)e

−ã(t) then we conclude that A1(t1)e
ã(t1) is a

constant. We denote γ := A1(t1)e
ã(t1) and have A1(t) := e−ã(t) we have

A(t, t1) = γ
A1(t1)

A1(t)
and therefore f(t, t1, tx) = γ

A1(t1)

A1(t)
tx + B. (2.49)

The second equation of (2.48) implies that

Bt

A
= −µ(t) and Bt1 −

At1B

A
= µ(t1), (2.50)
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for some function µ(t). By using (2.49), the second equation in (2.50) can be

rewritten as Bt1 − A′1(t1)B

A1(t1)
= µ(t1), or the same

{
B(t,t1)
A1(t1)

}
t1

= µ(t1)
A1(t1)

. It means that

B(t, t1) = A1(t1)B1(t1) + A1(t1)B2(t), (2.51)

for some functions B1(t1) and B2(t). We substitute B(t, t1) from (2.51), A(t, t1)

from (2.49) into the second equation of (2.50) and make all cancellations we have,

A1(t1)B
′
1(t1) = µ(t1), or the same, A1(t)B

′
1(t) = µ(t) . (2.52)

By substituting A(t, t1) from (2.49) and B(t, t1) from (2.51) into the first equation

of (2.50) we have,

B′
2(t)A1(t) = −γµ(t) . (2.53)

We combine together (2.52) and (2.53), and we obtain that B′
2(t)A1(t) =

−γA1(t)B
′
1(t), or the same, B′

2(t) = −γB′
1(t), or (B2(t) + γB1(t))

′ = 0, which

implies that B2(t) = −γB1(t) + η for some constant η. Hence,

f(t, t1, tx) = γ
A1(t1)

A1(t)
tx + A1(t1)B1(t1)− γA1(t1)B1(t) + ηA1(t1) . (2.54)

Note that up to now we have only used properties (2.45) and (2.22). By

using (2.46) and (2.22) we have 0 = γA1(t1)
A1(t)

{−B′
1(t)A1(t) + A1(t1)B

′
1(t1)} i.e.

−B′
1(t)A1(t) + A1(t1)B

′
1(t1) = 0. This implies that B′

1(t)A1(t) = c, where c is

some constant. We substitute A1(t) = c
B′1(t)

into (2.54) and get

f(t, t1, tx) = γ
B′

1(t)

B′
1(t1)

tx + c
B1(t1)

B′
1(t1)

− γc
B1(t)

B′(t1)
+ η

c

B′
1(t1)

. (2.55)

Now use substitution s = B1(t), and equation (2.55) is reduced to s1x = γsx+cs1−
cγs+ηc. We introduce x̃ = cx to rewrite the last equation as s1x̃ = γsx̃+s1−γs+η.

If γ = 1 substitution s = τ − nη reduces the equation to τ1x̃ = τx̃ + τ1 − τ . If

γ 6= 1, substitution s = γnτ + η γn−1
1−γ

reduces the equation to τ1x̃ = τx̃ + τ1 − τ .

This finishes the proof of the Corollary. ¤



Chapter 3

Equations Admitting Nontrivial

x-integral

Almost all the materials in this Chapter comes from [26].

From now on we will study on a particular case of chain (2.4):

t1x = f(t, t1, tx) = tx + d(t, t1). (3.1)

The main result of this section, which is given by Theorem 3.1 below, is the

complete list of chains (3.1) admitting nontrivial x-integrals.

Theorem 3.1 Chain (3.1) admits a nontrivial x-integral if and only if d(t, t1) is

one of the kind:

(1) d(t, t1) = A(t− t1),

(2) d(t, t1) = c1(t− t1)t + c2(t− t1)
2 + c3(t− t1),

(3) d(t, t1) = A(t− t1)e
αt,

(4) d(t, t1) = c4(e
αt1 − eαt) + c5(e

−αt1 − e−αt),

27
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where A = A(t − t1) is a function of τ = t − t1 and c1, c2, c3, c4, c5 are some

constants with c1 6= 0, c4 6= 0, c5 6= 0, and α is a nonzero constant. Moreover,

x-integrals in each of the cases are

i) F = x +
∫ τ du

A(u)
, if A(u) 6= 0,

F = t1 − t, if A(u) = 0,

ii) F = 1
(−c2−c1)

ln |(−c2 − c1)
τ1
τ2

+ c2|+ 1
c2

ln |c2
τ1
τ
− c2 − c1| for c2(c2 +c1) 6= 0,

F = ln τ1 − ln τ2 + τ1
τ

for c2 = 0,

F = τ1
τ2
− ln τ + ln τ1 for c2 = −c1,

iii) F =
∫ τ e−αudu

A(u)
− ∫ τ1 du

A(u)
,

iv) F = (eαt−eαt2 )(eαt1−eαt3 )
(eαt−eαt3 )(eαt1−eαt2 )

.

3.1 The first integrability condition

In this section we use properly chosen sequence of multiple commutators to make

a very rough classification about the function d(t, t1). Now let us see the process.

We define a class F of locally analytic functions each of which depends only on a

finite number of dynamical variables. In particular we assume that the function

f(t, t1, tx) ∈ F. We will consider vector fields given as infinite formal series of the

form

Y =
∞∑

k=−∞
yk

∂

∂tk
(3.2)

with coefficients yk ∈ F. We introduce notions of linearly dependent and inde-

pendent sets of the vector fields (3.2). We denote through PN the projection

operator acting according to the rule

PN(Y ) =
N∑

k=−N

yk
∂

∂tk
. (3.3)

First we consider finite vector fields as

Z =
N∑

k=−N

zk
∂

∂tk
. (3.4)
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We say that a set of finite vector fields Z1, Z2, ..., Zm is linearly dependent in

some open region U, if there is a set of functions µ1, µ2, ..., µm defined on U such

that the function |µ1|2 + |µ2|2 + ... + |µm|2 does not vanish identically and the

condition

µ1Z1 + µ2Z2 + ... + µmZm = 0 (3.5)

holds for each point of region U.

We call a set of the vector fields Y1, Y2, ..., Ym of the form (3.2) linearly depen-

dent in the region U if for each natural N the following set of finite vector fields

PN(Y1), PN(Y2), ..., PN(Ym) is linearly dependent in this region. Otherwise we

call the set Y1, Y2, ..., Ym linearly independent in U.

The following proposition is very useful, its proof is almost evident.

Proposition 3.2 If a vector field Y is expressed as a linear combination

Y = µ1Y1 + µ2Y2 + ... + µmYm, (3.6)

where the set of vector fields Y1, Y2, ..., Ym is linearly independent in U and the

coefficients of all the vector fields Y , Y1, Y2, ..,. Ym belonging to F are defined in

U then the coefficients µ1, µ2, ..., µm are in F.

Below we focus on the class of chains of the form (3.1). For this special case the

characteristic Lie algebra Lx splits down into a direct sum of two subalgebras.

Indeed, since f = tx + d and g = tx − d−1 we get fk = tx + d +
∑k

j=1 dj and

g−k = tx −
∑k+1

j=1 d−k, for k ≥ 1, where d = d(t, t1) and dj = d(tj, tj+1). Due to

this observation the vector field K0 can be rewritten as K0 = txX̃ + Y , with

X̃ =
∂

∂t
+

∂

∂t1
+

∂

∂t−1

+
∂

∂t2
+

∂

∂t−2

+ . . . , (3.7)

and

Y =
∂

∂x
+ d

∂

∂t1
− d−1

∂

∂t−1

+ (d + d1)
∂

∂t2
− (d−1 + d−2)

∂

∂t−2

+ . . . .
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Due to the relations [X, X̃] = 0 and [X, Y ] = 0 we have X̃ = [X,K0] ∈ Lx, hence

Y ∈ Lx. Therefore Lx = {X}⊕
Lx1, where Lx1 is the Lie algebra generated by

the operators X̃ and Y .

Lemma 3.3 If equation (3.1) admits a nontrivial x-integral then it admits a

nontrivial x-integral F such that
∂F

∂x
= 0.

Proof. Assume that a nontrivial x-integral of (3.1) exists. Then the Lie algebra

Lx1 is of finite dimension. We can choose a basis of Lx1 in the form

T1 =
∂

∂x
+

∞∑

k=−∞
a1,k

∂

∂tk
,

Tj =
∞∑

k=−∞
aj,k

∂

∂tk
, 2 ≤ j ≤ N.

Hence, there exists an x-integral F depending on the variables x, t, t1, . . ., tN−1

satisfying the system of equations

∂F

∂x
+

N−1∑

k=0

a1,k
∂F

∂tk
= 0 ,

N−1∑

k=0

aj,k
∂F

∂tk
= 0 , 2 ≤ j ≤ N.

Due to the famous Jacobi Theorem [16] there is a change of variables θj =

θj(t, t1, . . . , tN−1) that reduces the system to the form

∂F

∂x
+

N−1∑

k=0

ã1,k
∂F

∂θk

= 0 ,

∂F

∂θk

= 0 , 2 ≤ j ≤ N − 2,

which is equivalent to
∂F

∂x
+ ã1,N−1

∂F

∂θN−1

= 0

for F = F (x, θN−1).

Hence there are two possibilities:
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1) ã1,N−1 = 0,

2) ã1,N−1 6= 0.

In case 1), we automatically have
∂F

∂x
= 0. In case 2), we have F = x +

B(θN−1) = x + B(t, t1, . . . , tN−1) for some function B. Evidently, F1 = DF =

x + B(t1, t2, . . . , tN) is also an x-integral, and F1 − F is a nontrivial x-integral,

which is not depending on the variable x. Hence ∂F1−F
∂x

= 0. This finishes the

proof of the Lemma. ¤

Note that below we look for x-integrals F depending on dynamical variables t,

t±1, t±2, . . . only (not depending on x). In other words, we study Lie algebra

generated by vector fields X̃ and Ỹ , where

Ỹ = d
∂

∂t1
− d−1

∂

∂t−1

+ (d + d1)
∂

∂t2
− (d−1 + d−2)

∂

∂t−2

+ . . . . (3.8)

We can prove that the linear operator Z → DZD−1 defines an automorphism

of the characteristic Lie algebra Lx. This automorphism is important for all of

our further considerations. Further we refer to it as the shift automorphism. For

instance, we have

DX̃D−1 = X̃, DỸ D−1 = −dX̃ + Ỹ . (3.9)

The proof of these statements are simple. Denote H and H∗ as the functions

H(..., t−1, t, t1, ...) and D−1H = H(..., t−2, t−1, t, ...) correspondingly. We have

DX̃D−1H = DX̃H∗

= D(H∗
t + H∗

t1
+ H∗

t−1
+ ...)

=
( ∂

∂t
+

∂

∂t1
+

∂

∂t2
+ ...

)
H

= X̃H,
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and similarly

DỸ D−1H = DỸ H∗

= D(dH∗
t1
− d−1H

∗
t−1

+ H∗
t + (d + d1)H

∗
t2

+ ...)

= d1Ht2 − dHt + (d1 + d2)Ht3 − (d + d−1)Ht−1 + ...

+(dHt1 − dHt1 + dHt2 − dHt2 + ...)

=
{(

d
∂

∂t1
− d−1

∂

∂t−1

+ (d + d1)
∂

∂t2
+ ...

)
− d

( ∂

∂t
+

∂

∂t1
+

∂

∂t−1

+ ...
)}

H

= −dX̃ + Ỹ .

Lemma 3.4 Suppose that a vector field of the form Z =
∑

a(j) ∂
∂tj

with the co-

efficients a(j) = a(j, t, t±1, t±2, ...) depending on a finite number of the dynamical

variables solves an equation of the form DZD−1 = λZ. If for some j = j0 we

have a(j0) ≡ 0 then Z = 0.

Proof. We apply the shift automorphism to the vector field Z and we get

DZD−1 =
∑

D(a(j)) ∂
∂tj+1

. Now, we compare the coefficients of ∂
∂tj

in the equa-

tion
∑

D(a(j)) ∂
∂tj+1

= λ
∑

a(j) ∂
∂tj

. If λ = 0, the vector field Z = 0 automatically.

Assume that λ 6= 0. Then we have D(α(j)) = λα(j + 1) for any j. Clearly, if for

some j = j0 we have α(j0) = 0, then all α(j) = 0 for any j. Hence Z = 0. ¤

We construct an infinite sequence of multiple commutators of the vector fields X̃

and Ỹ

Ỹ1 = [X̃, Ỹ ], Ỹk = [X̃, Ỹk−1] for k ≥ 2 . (3.10)

Lemma 3.5 We have,

DỸkD
−1 = −X̃k(d)X̃ + Ỹk, k ≥ 1. (3.11)

Proof. We prove the statement by induction on k. The statement is true for

k = 1. Indeed, by (3.9) and (3.10), we have

DỸ1D
−1 = D[X̃, Ỹ ]D−1 = [DX̃D−1, DỸ D−1] = [X̃,−dX̃ + Ỹ ] = −X̃(d)X̃ + Ỹ1.
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Assume the equation (3.11) holds for k = n− 1. We have

DỸnD
−1 = [DX̃D−1, DỸn−1D

−1] = [X̃,−X̃n−1(d)X̃ + Ỹn−1] = −X̃n(d)X̃ + Ỹn ,

that finishes the proof of the Lemma. ¤

Since vector fields X, X̃ and Ỹ are linearly independent, then the dimension of

Lie algebra Lx is at least 3. By (3.11), if Ỹ1 = 0, we have X̃(d) = 0 i.e. dt+dt1 = 0

that implies d = A(t − t1), where A(τ) is an arbitrary differentiable function of

one variable τ = t− t1.

Assume equation (3.1) admits a nontrivial x-integral and Ỹ1 6= 0. Consider the

sequence of the vector fields {Ỹ1, Ỹ2, Ỹ3, . . .}. Since Lx is of finite dimension, then

there exists a natural number N such that

ỸN+1 = γ1Ỹ1 + γ2Ỹ2 + . . . + γN ỸN , N ≥ 1, (3.12)

and Ỹ1, Ỹ2, . . ., ỸN are linearly independent. Therefore, if we apply shift auto-

morphism to both sides of (3.12) we get

DỸN+1D
−1 = D(γ1)DỸ1D

−1 + D(γ2)DỸ2D
−1 + . . . + D(γN)DỸND−1, N ≥ 1 .

Due to Lemma 3.5 and the equation (3.12), the last equation can be rewritten as

−X̃N+1(d)X̃ + γ1Ỹ1 + γ2Ỹ2 + . . . + γN ỸN =

= D(γ1)(−X̃(d)X̃ + Ỹ1)+D(γ2)(−X̃2(d)X̃ + Ỹ2)+ . . .+D(γN)(−X̃N(d)X̃ + ỸN) .

We compare the coefficients before linearly independent vector fields X̃, Ỹ1, Ỹ2,

. . . , ỸN , and we obtain the following system of equations

X̃N+1(d) = D(γ1)X̃(d) + D(γ2)X̃
2(d) + . . . + D(γN)X̃N(d) ,

γ1 = D(γ1), γ2 = D(γ2), . . . , γN = D(γN) .

Since the coefficients of the vector fields Ỹj depend only on the variables

t, t±1, t±2, ... the factors γj might depend only on these variables by Proposition

3.2. Hence the system of equations implies that all coefficients γk, 1 ≤ k ≤ N ,

are constants, and d = d(t, t1) is a function that satisfies the following differential

equation

X̃N+1(d) = γ1X̃(d) + γ2X̃
2(d) + . . . + γNX̃N(d) , (3.13)
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where X̃(d) = dt + dt1 . We use the substitution s = t and τ = t− t1, so equation

(3.13) can be rewritten as

∂N+1d

∂sN+1
= γ1

∂d

∂s
+ γ2

∂2d

∂s2
+ . . . + γN

∂Nd

∂sN
, (3.14)

which implies

d(t, t1) =
∑

k

(
mk−1∑
j=0

λk,j(t− t1)t
j

)
eαkt , (3.15)

for some functions λk,j(t− t1), where αk are roots of multiplicity mk for charac-

teristic equation of (3.14).

Let α0 = 0, α1, . . ., αi be the distinct roots of the characteristic equation (3.13).

Equation (3.13) can be rewritten as

Λ(X̃)d := X̃m0(X̃ − α1)
m1(X̃ − α2)

m2 . . . (X̃ − αi)
mid = 0 , (3.16)

and m0 + m1 + . . . + mi = N + 1, m0 ≥ 1.

Initiated by the formula (3.8), we define a map h → Yh, which assigns to any

function h = h(t, t±1, t±2, ...) a vector field

Yh = h
∂

∂t1
− h−1

∂

∂t−1

+ (h + h1)
∂

∂t2
− (h−1 + h−2)

∂

∂t−2

+ ... .

For any polynomial with constant coefficients P (λ) = c0 + c1λ + ... + cmλm we

have a formula

P (adX̃)Ỹ = YP (X̃)h, where adXY = [X, Y ], (3.17)

which defines an isomorphism between the linear space V of all solutions of equa-

tion (3.14) and the linear space Ṽ = span{Ỹ , Ỹ1, ..., ỸN} of the corresponding

vector fields.

Represent the function (3.15) as a sum d(t, t1) = P (t, t1) + Q(t, t1) of the

polynomial part P (t, t1) =
∑m0−1

j=0 λ0,j(t − t1)t
j and the ”exponential” part

Q(t, t1) =
∑s

k=1

(∑mk−1
j=0 λk,j(t− t1)t

j
)

eαkt. The following Lemma proves that

the function d(t, t1) is either in the form P (t, t1) or Q(t, t1).
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Lemma 3.6 Assume equation (3.1) admits a nontrivial x-integral. Then one of

the functions P (t, t1) and Q(t, t1) vanishes.

Proof. Assume in contrary that neither of the functions vanish. Firstly, we prove

that in this case algebra Lx contains vector fields T0 = YA(τ)eαkt and T1 = YB(τ)

for some functions A(τ) and B(τ), τ = t − t1. Let us take T0 := Λ0(adX̃)Ỹ =

YΛ0(X̃)d ∈ Lx, where

Λ0(λ) =
Λ(λ)

λ− αk

= λm0(λ− α1)
m1 ...(λ− αk)

mk−1(λ− αi)
mi .

Clearly, the function Ã(t, t1) = Λ0(X̃)d solves the equation (X̃ − αk)Ã(t, t1) =

Λ(X̃)d = 0 hence Ã(t, t1) = A(τ)eαkt. Now take T1 := Λ′0(adX̃)Ỹ = YΛ′0(X̃)d ∈ Lx,

where

Λ′0(λ) =
Λ(λ)

λ
= λm0−1(λ− α1)

m1 ...(λ− αi)
mi .

Evidently, the function B̃(t, t1) = Λ′0(X̃)d = 0 solves the equation X̃B̃(t, t1) =

Λ(X̃)d = 0, which implies B̃(t, t1) = B(τ). Note that due to our assumption the

functions A(τ) and B(τ) cannot vanish identically.

Consider an infinite sequence of the vector fields defined as follows

T2 = [T0, T1], T3 = [T0, T2], . . . , Tn = [T0, Tn−1], n ≥ 2,

where T0 and T1 are written explicitly as

T0 = A(τ)eαkt ∂

∂t1
− A(τ−1)e

αkt−1
∂

∂t−1

+ {A(τ)eαkt + A(τ1)e
αkt1} ∂

∂t2
+ ... ,

T1 = B(τ)
∂

∂t1
−B(τ−1)

∂

∂t−1

+ {B(τ) + B(τ1)} ∂

∂t2
+ ... .

We can show that

[X̃, T0] = αkT0, [X̃, T1] = 0, [X̃, Tn] = αk(n− 1)Tn, n ≥ 2,

and

DT0D
−1 = −AeαktX̃ + T0, DT1D

−1 = −BX̃ + T1,

DTnD
−1 = Tn − (n− 1)(n− 2)

2
αkAeαktTn−1 + bnX̃ +

n−2∑

k=0

a
(n)
k Tk, n ≥ 2.
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For the reader’s convenience let us prove the statements. First two equalities

from the first group are clear indeed. The third one can be proved by induction.

Base of induction holds. Assume that it is satisfied for any n ≥ 2 and prove it

for n + 1. We have

[X̃, Tn+1] = [X̃, [T0, Tn]]

= −[T0, [Tn, X̃]]− [Tn, [X̃, T0]]

= [T0, αk(n− 1)Tn]− [Tn, αkT0]

= αknTn+1.

Now we prove the second group of the equations. Use the same notation for H

and H∗ as before. We have

DT0D
−1H = DT0H

∗

= D{A(τ)eαktH∗
t1
− A(τ−1)e

αkt−1H∗
t−1

+ ...}
= A(τ1)e

αkt1Ht2 − A(τ)eαktHt + ...

+(A(τ)eαktHt1 − A(τ)eαktHt1 + A(τ)eαktHt2 − A(τ)eαktHt2 + ...)

= −A(τ)eαkt
( ∂

∂t
+

∂

∂t1
+

∂

∂t2
+ ...

)
+ T0

= −A(τ)eαktX̃ + T0.

In a similar way, we can prove that DT1D
−1 = −BX̃ + T1. By mathematical

induction it is also easy to prove the last equality of second group.

Since algebra Lx is of finite dimension then there exists number N such that

TN+1 = λX̃ + µ0T0 + µ1T1 + . . . + µNTN , (3.18)

and vector fields X̃, T0, T1, . . ., TN are linearly independent. We apply shift

automorphism to both sides of (3.18) and we have

DTN+1D
−1 = D(λ)X̃ + D(µ0){−AeαktX̃ + T0}+ . . .

+D(µN)
{

TN − (N − 1)(N − 2)

2
αkAeαktTN−1 + . . .

}
.

We compare the coefficients before TN in the last equation we get

µN − N(N − 1)

2
αkA(τ)eαkt = D(µN). (3.19)
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It follows that µN is a function of variable t only. Also, we apply adX̃ to both

sides of the equation (3.18), we get

NαkTN+1 = [X̃, TN+1] = X̃(λ)X̃+(X̃(µ0)+µ0αk)T0+. . .+(X̃(µN)+µN(N−1)αk)TN .

Again, by comparing coefficients before TN , we have

NαkµN = X̃(µN) + (N − 1)αkµN , i.e., X̃(µN) = αkµN .

Therefore, µN = A1e
αkt, where A1 is some nonzero constant, and thus from

(3.19) we get A(τ)eαkt = A2e
αkt − A2e

αkt1 . Here A2 is some constant. We have,

T0 = A2e
αktX̃ − A2S0, where

S0 =
∞∑

j=−∞
eαktj

∂

∂tj
= ... + eαkt−1

∂

∂t−1

+ eαkt ∂

∂t
+ eαkt1

∂

∂t1
+ ... .

It is clear that we have

[X̃, S0] = αkS0, DS0D
−1 = S0. (3.20)

Consider a new sequence of vector fields

P1 = S0, P2 = [T1, S0], P3 = [T1, P2], Pn = [T1, Pn−1], n ≥ 3 .

By induction we can prove the following equalities.

[X̃, Pn] = αkPn, DPnD−1 = Pn−αk(n−1)BPn−1+bnX̃+anS0+
n−2∑
j=2

a
(n)
j Pj, n ≥ 2 .

Since algebra Lx is of finite dimension, then there exists number M such that

PM+1 = λ∗X̃ + µ∗2P2 + . . . + µ∗MPM , (3.21)

and X̃, P2, . . ., PM are linearly independent. We apply shift automorphism to

both sides of (3.21) and we have

DPM+1D
−1 = D(λ∗)X̃+D(µ∗2){P2+. . .}+. . .+D(µ∗M){PM−αk(M−1)BPM−1+. . .}.

We compare the coefficients before PM in the last equation and get

µ∗M −MαkB(τ) = D(µ∗M), (3.22)
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which implies that µ∗M is a function of variable t only. Also, we apply adX̃ to

both sides of (3.21) and get

αkPM+1 = [X̃, PM+1] = X̃(λ∗)X̃ +(X̃(µ∗2)+αkµ
∗
2)P2 + . . .+(X̃(µ∗M)+αkµ

∗
M)PM .

Again, we compare the coefficients before PM and have

αkµ
∗
M(t) = X̃(µ∗M(t)) + αkµ

∗
M(t),

which yields that µ∗M is a constant. It follows then from (3.22) that the function

B(τ) = 0. This contradiction shows that our assumption that both functions are

not identically zero was wrong. This finishes the proof of the Lemma. ¤

3.2 Multiple zero root

In this section we assume that equation (3.1) admits a nontrivial x-integral and

that α0 = 0 is a root of the characteristic polynomial Λ(λ). Then, due to Lemma

3.6, zero is the only root and therefore Λ(λ) = λm+1. From the formula (3.15)

with multiplicity m0 = m + 1, we have

d(t, t1) = a(τ)tm + b(τ)tm−1 + . . . , m = m0 − 1 ≥ 0.

If m = 0, then we get a very simple equation t1x = tx + A(t− t1), which is easily

solved in quadratures. So we concentrate on the case m ≥ 1. For this case the

characteristic Lie algebra Lx contains a vector field T = Yκ̃ with

κ̃ = a(τ)t +
1

m
b(τ).

Indeed,

T =
1

m!
adm−1

X̃
Ỹ = Yκ̃ = κ̃

∂

∂t1
− κ̃−1

∂

∂t−1

+ (κ̃ + κ̃1)
∂

∂t2
+ ... ∈ Lx . (3.23)

Consider a sequence of multiple commutators defined as follows

T0 = X̃, T1 = [T, T0] = Y−a(τ), Tk+1 = [T, Tk], k ≥ 0, Tk,0 = [T0, Tk].

Note that T1,0 = 0. We will see below that the linear space spanned by this

sequence is not invariant under the action of the shift automorphism Z → DZD−1
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introduced above. We extend the sequence to provide the invariance property.

We define Tα with the multi-index α. For any sequence α = k, 0, i1, i2, . . . , in−1, in,

where k is any natural number, ij ∈ {0; 1}, denote

Tα =





[
T0, Tk,0,i1,...,in−1

]
, if in = 0;

[
T, Tk,0,i1,...,in−1

]
, if in = 1;

m(α) =





k, if α = k;

k, if α = k, 0;

k + i1 + . . . + in, if α = k, 0, i1, . . . , in;

l(α) = k + n + 1−m(α).

The multi-index α is characterized by two quantities m(α) and l(α) which allow

to order partially the sequence {Tα}.

Lemma 3.7 We have,

DT0D
−1 = T0, DTD−1 = T − κ̃T0, DT1D

−1 = T1 + aT0.

The first equality has been proved in Section 3.1. The others are also straight-

forward.

We can prove by induction on k that

DTkD
−1 = Tk + aTk−1 − κ̃

∑

m(β)=k−1

Tβ +
∑

m(β)≤k−2

η(k, β)Tβ . (3.24)

In general, for any α,

DTαD−1 = Tα +
∑

m(β)≤m(α)−1

η(α, β)Tβ . (3.25)

We can choose a system P of linearly independent vector fields in the following

way.

1) T and T0 are linearly independent. We take them into P .

2) We check whether T , T0 and T1 are linearly independent or not. If they are

dependent then P = {T, T0} and T1 = µT + λT0 for some functions µ and λ.
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3) If T , T0, T1 are linearly independent then we check whether T , T0, T1, T2 are

linearly independent or not. If they are dependent, then P = {T, T0, T1}.
4) If T , T0, T1, T2 are linearly independent, we add vector fields Tβ, m(β) = 2,

β ∈ I2, (actually, by definition I2 is the collection of such β) in such a way that

J2 := {T, T0, T1, T2,∪β∈I2Tβ} is a system of linearly independent vector fields and

for any Tγ with m(γ) ≤ 2 we have Tγ =
∑

Tβ∈J2

µ(γ, β)Tβ.

5) We check whether T3 ∪ J2 is a linearly independent system. If it is not, then

P consists of all elements from J2, and T3 =
∑

Tβ∈J2

µ(γ, β)Tβ. If it is, then to the

system T3 ∪ J2 we add vector fields Tβ, m(β) = 3, β ∈ I3, in such a way that

J3 := {T3, J2,∪β∈I3Tβ} is a system of linearly independent vector fields and for

any Tγ with m(γ) ≤ 3 we have Tγ =
∑

Tβ∈J3

µ(γ, β)Tβ.

We continue the construction of the system P . Since Lx is of finite dimension,

then there exists such a natural number N that

(i) Tk ∈ P , k ≤ N ;

(ii) m(β) ≤ N for any Tβ ∈ P ;

(iii) for any Tγ with m(γ) ≤ N we have Tγ =
∑

Tβ∈P,m(β)≤m(γ)

µ(γ, β)Tβ and also

TN+1 = µ(N + 1, N)TN +
∑

Tβ∈P,m(β)≤N

µ(N + 1, β)Tβ.

It follows that

(iv) for any vector field Tα with m(α) = N , that does not belong to P , the

coefficient µ(α, N) before TN in the expansion

Tα = µ(α, N)TN +
∑
Tβ∈P

µ(α, β)Tβ (3.26)

is constant. Indeed, by (3.25),

DTαD−1 = Tα+
∑

m(β)≤N−1

η(α, β)Tβ = µ(α, N)TN+
∑
Tβ∈P

µ(α, β)Tβ+
∑

m(β)≤N−1

η(α, β)Tβ .

From (3.26) we have also

DTαD−1 = D(µ(α,N))DTND−1 +
∑
Tβ∈P

D(µ(α, β))DTβD−1

= D(µ(α,N)){TN + . . .}+
∑
Tβ∈P

D(µ(α, β)){Tβ + . . .} .
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We compare the coefficients before TN in these two expressions for DTαD−1, we

have

µ(α, N) = D(µ(α, N)),

which implies that µ(α, N) is a constant.

Lemma 3.8 We have, a(τ) = c0τ + c1, where c0 and c1 are some constants.

Proof. Since

TN+1 = µ(N + 1, N)TN +
∑
Tβ∈P

µ(N + 1, β)Tβ ,

then

DTN+1D
−1 = D(µ(N + 1, N)){TN + . . .}+

∑
Tβ∈P

D(µ(N + 1, β)){Tβ + . . .}.

From (3.25), we also have

DTN+1D
−1 = TN+1 + aTN − κ̃

∑

m(β)=N

Tβ +
∑

m(β)≤N−1

η(N + 1, β)Tβ .

We compare the coefficients before TN in the last two expressions. For N ≥ 0

the equation is

µ(N + 1, N) + a− κ̃
∑

Tβ∈P,m(β)=N

µ(β,N) = D(µ(N + 1, N)) . (3.27)

Denote by c = − ∑
Tβ∈P,m(β)=N

µ(β,N) and by µN = µ(N + 1, N). By property

(iv), c is a constant. It follows from (3.27) that µN is a function of variables t

and n only. Hence,

a(τ) + c

(
a(τ)t +

1

m
b(τ)

)
= µN(t1, n + 1)− µN(t, n).

We differentiate both sides of the equation with respect to t and then t1, we have

−a′′(τ)− c

(
a′′(τ)t + a′(τ) +

1

m
b′′(τ)

)
= 0,
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which implies that a′′(τ) = 0, or the same, a(τ) = c0τ + c1 for some constants c0

and c1. ¤

We rewrite the vector fields T1 and T in new variables as

T1 =
∞∑

j=−∞
a(τj)

∂

∂τj

=
∞∑

j=−∞
(c0τj + c1)

∂

∂τj

, (3.28)

T = −
∞∑

j=−∞
{a(τj)tj +

1

m
b(τj)} ∂

∂τj

= −
∞∑

j=−∞
{a(τj)(t + ρj) +

1

m
b(τj)} ∂

∂τj

= −tT1 −
∞∑

j=−∞
{a(τj)ρj +

1

m
b(τj)} ∂

∂τj

,

(3.29)

where

ρj =





−τ − τ1 − . . .− τj−1, if j ≥ 1;

0, if j = 0;

τ−1 + τ−2 + . . . + τj, if j ≤ −1 .

The following two Lemmas will be very useful for us.

Lemma 3.9 If the Lie algebra generated by the vector fields S0 =
∞∑

j=−∞
∂

∂wj
and

P =
∞∑

j=−∞
c(wj)

∂
∂wj

is of finite dimension then c(w) is one of the forms

(1) c(w) = c2 + c3e
λw + c4e

−λw, λ 6= 0;

(2) c(w) = c2 + c3w + c4w
2, where c2, c3, c4 are some constants.

Proof. Introduce vector fields

S1 = [S0, P ], S2 = [S0, S1], ..., Sn = [S0, Sn−1], n ≥ 3.

Clearly, we have

Sn =
∞∑

j=−∞
c(n)(wj)

∂

∂wj

, n ≥ 1. (3.30)
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Since all vector fields Sn are elements of Lx, and Lx is of finite dimension, then

there exists a natural number N such that

SN+1 = µNSN + µN−1SN−1 + ... + µ1S1 + µ0P + µS0, (3.31)

and S0, P, S1, ..., SN are linearly independent. (Note that we may assume S0 and

P are linearly independent). We have

DS0D
−1 = S0, DPD−1 = PandDSnD

−1 = Sn

for any n ≥ 1. Then it follows from (3.31) that

SN+1 = D(µN)SN + D(µN−1)SN−1 + ... + D(µ1)S1 + D(µ0)P + D(µ)S0.

But we know the expression for SN+1 by (3.31). So the above equation gives that

µ, µ0, µ1, ..., µN are all constants.

We compare the coefficients before ∂
∂w

in (3.31) we get, with the help of (3.30),

the following equality

c(N+1)(w) = µNc(N)(w) + ... + µ1c
′(w) + µ0c(w) + µ.

Thus, c(w) is a solution of the nonhomogeneous linear differential equation with

constant coefficient whose characteristic polynomial is

Λ(λ) = λN+1 − µNλN − ...− µ1λ− µ0.

Denote by β1, β2, ..., βt characteristic roots and by m1,m2, ...,mt their multiplici-

ties. There are four possibilities:

(i) There exists a nonzero characteristic root, say β1, and its multiplicity m1 ≥
2,

(ii) There exists zero characteristic root, say β1, and m1 ≥ 3, µ = 0 or m1 ≥ 2,

µ 6= 0,

(iii) There are two distinct characteristic roots, say β1 and β2 with β1 6= 0,

β2 = 0,
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(iv) There are two nonzero distinct characteristic roots, say β1 and β2.

Now we will analyze these cases.

In case (i), consider

Λ1(λ) =
Λ(λ)

λ− β1

and Λ
(2)
1 (λ) =

Λ(λ)

(λ− β1)2
.

Then Λ1(S0)c(w) = α1e
β1w + α2 and Λ

(2)
1 (S0)c(w) = (α3w + α4)e

β1w + α5, where

αj, 1 ≤ j ≤ 5, are some constants with α1 6= 0, α3 6= 0. We have,

Λ1(adS0)P =
∞∑

j=−∞
(α1e

β1wj + α2)
∂

∂wj

= α1

( ∞∑
j=−∞

eβ1wj
∂

∂wj

)
+ α2S0 = α1P1 + α2S0,

Λ
(2)
1 (adS0)P =

∞∑
j=−∞

((α3wj + α4)e
β1wj + α5)

∂

∂wj

= α3

( ∞∑
j=−∞

wje
β1wj

∂

∂wj

)

+α4P1 + α5S0

= α3P2 + α4P1 + α5S0

are in Lx and therefore vector fields P1 =
∑∞

j=−∞ eβ1wj ∂
∂wj

and P2 =∑∞
j=−∞ wje

β1wj ∂
∂wj

belong to Lx. Since P1 and P2 generate an infinite dimen-

sional Lie algebra Lx then case (i) fails to be true.

In case (ii), consider

Λ
(3)
1 (λ) =

Λ(λ)

λ3
and Λ

(2)
1 (λ) =

Λ(λ)

λ2
, if µ = 0,

or

Λ
(3)
1 (λ) =

Λ(λ)

λ2
and Λ

(2)
1 (λ) =

Λ(λ)

λ
, if µ 6= 0.

We have

Λ
(3)
1 (S0)c(w) = α1w

3 +α2w
2 +α3w +α4 and Λ

(2)
1 (S0)c(w) = α5w

2 +α6w +α7,

where αj, 1 ≤ j ≤ 7, are some constants with α1 6= 0, α5 6= 0. Direct calculations

show that vector fields

Λ
(3)
1 (adS0)P =

∞∑
j=−∞

(α1w
3
j + α2w

2
j + α3wj + α4)

∂

∂wj

,
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and

Λ
(2)
1 (adS0)P =

∞∑
j=−∞

(α5w
2
j + α6wj + α7)

∂

∂wj

generate an infinite dimensional Lie algebra. It proves that case (ii) fails to be

true.

In case (iii), consider

Λ1(λ) =
Λ(λ)

λ− β1

and Λ2(λ) =
Λ(λ)

λ
.

We have

Λ1c(w) = α1e
β1w + α2 and Λ2c(w) = α3w + α4, if µ = 0,

or

Λ1(S0)c(w) = α1e
β1w + α2 and Λ2(S0)c(w) = α5w

2 + α6w + α7, if µ 6= 0,

where αj, 1 ≤ j ≤ 7, are constants with α1 6= 0, α3 6= 0, α5 6= 0. Since vector

fields Λ1(adS0)P and Λ2(adS0)P generate an infinite dimensional Lie algebra, then

case (iii) also fails to exist.

In case (iv), consider

Λ1(λ) =
Λ(λ)

λ− β1

and Λ2(λ) =
Λ(λ)

λ− β2

.

We have, Λ1(S0)c(w) = α1e
β1w + α2, Λ2(S0)c(w) = α3e

β2w + α4, where α1 6= 0,

α2, α3 6= 0, α4 are some constants. Note that

Λ1(adS0)P = α1

( ∞∑
j=−∞

eβ1wj
∂

∂wj

)
+ α2S0,

and

Λ2(adS0)P = α3

( ∞∑
j=−∞

eβ2wj
∂

∂wj

)
+ α4S0,

and vector fields
∑∞

j=−∞ eβ1wj ∂
∂wj

and
∑∞

j=−∞ eβ2wj ∂
∂wj

generate an infinite di-

mensional Lie algebra if β1 + β2 6= 0.

It follows from (i), (ii), (iii), (iv) that c(w) can only be one of the forms

(1) c(w) = c2 + c3e
λw + c4e

−λw, λ 6= 0;

(2) c(w) = c2 + c3w + c4w
2, where c2, c3, c4 are some constants. ¤
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Lemma 3.10 If the Lie algebra generated by the vector fields S0 =
∞∑

j=−∞
∂

∂wj
,

Q =
∞∑

j=−∞
q(wj)

∂
∂wj

and S1 =
∞∑

j=−∞
{ρ̃j + b̃(wj)} ∂

∂wj
is of finite dimension then

q(w) is a constant function.

Proof. It follows from Lemma 3.9 that for the function q(w) we have two possi-

bilities:

(1) q(w) = c2 + c3w + c4w
2, or

(2) q(w) = c2 + c3e
λw + c4e

−λw, λ 6= 0,

where c2, c3, c4 are some constants.

Consider case (1). We have,

[S0, Q] = c3

∞∑
j=−∞

∂

∂wj

+ 2c4

∞∑
j=−∞

wj
∂

∂wj

= c3S0 + 2c4

∞∑
j=−∞

wj
∂

∂wj

.

If c4 6= 0, then
∑∞

j=−∞ wj
∂

∂wj
∈ Lx and

∑∞
j=−∞ w2

j
∂

∂wj
∈ Lx.

If c4 = 0, c3 6= 0, then
∑∞

j=−∞ wj
∂

∂wj
= 1

c3
(Q− c2S0) ∈ Lx.

If c3 = c4 = 0, then q(w) = c2 and there is nothing to prove.

Assume c2
4 + c2

3 6= 0. Denote by P =
∑∞

j=−∞ wj
∂

∂wj
. Construct the vector fields

P1 = [P, S1], Pn = [P, Pn−1], n ≥ 2.

We have,

DS0D
−1 = S0,

DS1D
−1 = S1 − (ew − c̃)S0,

DPD−1 = P,

DP1D
−1 = P1 + (−wew + ew − c̃)S0,

DP2D
−1 = P2 + (−w2ew + wew − ew + c̃)S0.
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In general,

DPnD−1 = Pn + (−wnew + Rn−1(w)ew + cn)S0, n ≥ 3,

where Rn−1 is a polynomial of degree n − 1, and cn is a constant. Since the

algebra Lx is of finite dimension, then there exists a natural number N such that

PN+1 = µNPN + ... + µ1P1 + µ0S0,

and S0, P1, ..., PN are linearly independent. Thus

DPN+1D
−1 = D(µN)DPND−1 + ... + D(µ1)DP1D

−1 + D(µ0)S0,

or the same,

µNPN + ... + µ1P1 + µ0S0 + (−wN+1ew + RN(w)ew + cN+1)S0

= D(µN){PN + (−wNew + RN−1(w)ew + cN)S0}+ ...

+D(µ1){P1 + (−wew + ew − c̃)S0}+ D(µ0)S0.

We compare the coefficients before the vector fields PN , ..., P1 we have

µN = D(µN), ... , µ1 = D(µ1),

which implies that µN , ..., µ1 are all constants. We also compare the coefficients

before S0 and we have

µ0 − wN+1ew + RN(w)ew + cN+1 = µN(−wNew + RN−1(w)ew + cN)

+... + µ1(−wew + ew − c̃) + D(µ0).

The last equality shows that D(µ0) − µ0 is a function of w only. But this is

possible only if D(µ0) − µ0 is a constant, denote it by d0. The last equality

becomes a contradictory one:

wN+1ew = RN(w)ew + cN+1 − µN(−wNew + RN−1(w)ew + cN)

−...− µ1(−wew + ew − c̃)− d0.

As it is seen clearly that on the left hand side we have (N +1)-th power of w but

on the right we do not. This contradiction proves that c2
3+c2

4 = 0, i.e. c3 = c4 = 0

in case (1). Therefore, q(w) = c2.
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Now consider case (2). Since

[S0, Q] = λc3

∞∑
j=−∞

eλwj
∂

∂wj

− λc4

∞∑
j=−∞

e−λwj
∂

∂wj

,

[S0, [S0, Q]] = λ2c3

∞∑
j=−∞

eλwj
∂

∂wj

+ λ2c4

∞∑
j=−∞

e−λwj
∂

∂wj

,

then vector fields Qλ = c3

∑∞
j=−∞ eλwj ∂

∂wj
and Q−λ = c4

∑∞
j=−∞ e−λwj ∂

∂wj
both

belong to Lx. We have, DQλD
−1 = Qλ, DQ−λD

−1 = Q−λ.

Assume c3 6= 0. Construct vector fields

Q1 = [Qλ, S1], Qn = [Qλ, Qn−1], n ≥ 2.

Straightforward calculations show that

DQ1D
−1 = Q1 − c3e

(1+λ)wS0 + (ew − c̃)λQλ,

DQ2D
−1 = Q2 − c2

3(1 + λ)e(1+2λ)wS0 + 2λc3e
(1+λ)wQλ.

It can be proved by induction on n that

DQnQ
−1 = Qn − pnS0 + qnQλ, n ≥ 2, (3.32)

where

pn = cn
3 (1 + λ)(1 + 2λ)...(1 + (n− 1)λ)e(1+nλ)w,

qn = ncn−1
3 λ(1 + λ)...(1 + (n− 2)λ)e(1+(n−1)λ)w.

Since Lx is of finite dimension then there exists a natural number N that

QN+1 = µNQN + ... + µ1Q1 + µλQλ + µ0S0,

and S0, Qλ, Q1, ..., QN are linearly independent. Then

DQN+1D
−1 = D(µN)DQND−1 + ... + D(µ0)DS0D

−1,

or by using (3.32)

µNQN + ... + µ1Q1 + µλQλ + µ0S0 − pN+1S0 + qN+1Qλ

= D(µN){QN − pNS0 + qNQλ}+ ... + D(µ1){Q1 − p1S0 + q1Qλ}
+D(µλ)Qλ + D(µ0)S0.
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We compare the coefficients before QN , ..., Q1 and we have that µk, 1 ≤ k ≤ N ,

are all constants. We also compare the coefficients before S0 and get

µ0 − pN+1 = −µNpN − ...− µ2p2 − µ1p1 + D(µ0). (3.33)

Since pk, 1 ≤ k ≤ N + 1, depend on w only, then D(µ0)− µ0 is a function of w,

and therefore D(µ0)− µ0 is a constant, denote it by d0.

If λ 6= −1
r

for all r ∈ N, then pk 6= 0 for all k ∈ N, and equation (3.33) fails to be

true.

Consider case when λ = −1
r

for some r ∈ N. Substitution uj = e−λwj transforms

vector fields −1
λc3

Qλ,
−1
λ

S1,
−1
λ

S0 into vector fields

Q∗
λ =

∞∑
j=−∞

∂

∂uj

,

S∗1 =
∞∑

j=−∞
{ρ̃∗j + b̃∗(uj)}uj

∂

∂uj

,

S∗0 =
∞∑

j=−∞
uj

∂

∂uj

,

where

ρ̃∗j =





j−1∑
k=0

(ur
k − c̃), if j ≥ 1;

0, if j = 0;

−
−1∑
k=j

(ur
k − c̃), if j ≤ −1,

, b̃∗(uj) = b̃(r ln uj) .

First consider the case r = 1. We have,

T : = [Q∗
λ, S

∗
1 ] =

∞∑
j=−∞

{juj + ρ̃∗j + b̃∗(uj) + uj b̃
∗′(uj)} ∂

∂uj

,

K : =
1

2
[Q∗

λ, T ] =
∞∑

j=−∞
{j + c(uj)} ∂

∂uj

,

where c(uj) = b̃∗
′
(uj) + 1

2
uj b̃

∗′′(uj),

T1 = [T, K] = γ1

∞∑
j=−∞

{j2 + jg
(j)
1,1(uj) + g

(j)
1,0(u, u1, ..., uj)} ∂

∂uj

,

T2 = [T, T1] = γ2

∞∑
j=−∞

{j3 + j2g
(j)
2,2(uj) + jg

(j)
2,1(u, u1, ..., uj) + g

(j)
2,0(u, u1, ..., uj)} ∂

∂uj

,
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where γ1 = −3
2

and γ2 6= 0.

Construct vector fields, Tn = [T, Tn−1], n ≥ 3. Direct calculations show that

Tn = γn

∞∑
j=0

{
jn+1+jngn,n(uj)+

n−1∑

k=0

jkgn,k(u, u1, ..., uj)
} ∂

∂uj

+
−1∑

j=−∞
aj

∂

∂uj

, n ≥ 1.

Since {Tn}∞n=1 is an infinite sequence of linearly independent vector fields from

Lx, then case r = 1 fails to exist.

Consider case r ≥ 2. We have,

adQ∗λS
∗
1 = [Q∗

λ, S
∗
1 ] =

∞∑
j=−∞

{
sgn(j)r

( j−1∑

k=0

ur−1
k

)
uj + ρ̃∗j + b̃∗(uj) + uj b̃

∗′(uj)
} ∂

∂uj

,

and

adr
Q∗λ

S∗1 =
∞∑

j=−∞

{
r!juj + sgn(j)r!

j−1∑

k=0

uk + d(uj)
}

for some function d,

adr+1
Q∗λ

S∗1 =
∞∑

j=−∞

{
2r!j + d′(uj)

} ∂

∂uj

.

Note that vector fields adr
Q∗λ

S∗1 and adr+1
Q∗λ

S∗1 have coefficients of the same kind as

vector fields T and K (from case r = 1) have. It means that adr
Q∗λ

S∗1 and adr+1
Q∗λ

S∗1
generate an infinite dimensional Lie algebra. This contradiction implies that case

r ≥ 2 also fails to exist.

Thus, c3 = 0. By interchanging λ with −λ, we obtain that c4 = 0 also. Hence

c3 = c4 = 0 and q(w) = c2. ¤

We already know that a(τ) = c0τ + c1. The next Lemma shows that c0 6= 0.

Lemma 3.11 c0 is a nonzero constant.
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Proof. Assume contrary that c0 = 0. Then a(τ) = c1 and c1 6= 0, vector fields

(3.28) and (3.29) become

T1 = c1

∞∑
j=−∞

∂

∂τj

= c1T̃1,

and

T = −tT1 − c1

∞∑
j=−∞

{ρj +
1

mc1

b(τj)} ∂

∂τj

= −c1tT̃1 − c1T̃ ,

where

T̃1 =
∞∑

j=−∞

∂

∂τj

, T̃ =
∞∑

j=−∞
{ρj +

1

mc1

b(τj)} ∂

∂τj

.

Since

[T̃1, [T̃1, T̃ ]] =
1

mc1

∞∑
j=−∞

b′′(τj)
∂

∂τj

and T̃1 both belong to a finite dimensional Lx, then, by Lemma 3.9, we have two

possibilities for the function b′′(τ):

1)b′′(τ) = C̃1 + C̃2e
λτ + C̃3e

−λτor2)b′′(τ) = C̃1 + C̃2τ + C̃3τ
2

for some constants C̃1, C̃2, C̃3.

In case 1), the function b(τ) = C1 + C2e
λτ + C3e

−λτ + C4τ
2 + C5τ and

[T̃1, [T̃1, T̃ ]]− λ2T̃ − 2C4 − λ2C1

mc1

T̃1 = −λ2

∞∑
j=−∞

{
ρj +

C4τ
2
j + C5τj

mc1

} ∂

∂τj

is an element in Lx.

In case 2), the function b(τ) = C1 + C2τ + C3τ
2 + C4τ

3 + C5τ
4 and

T̃ − C1

mc1

T̃1 =
∞∑

j=−∞

{
ρj +

C2τj + C3τ
2
j + C4τ

3
j + C5τ

4
j

mc1

} ∂

∂τj

belongs to Lx.

To finish the proof of the Lemma it is enough to show that vector fields

T̃2 :=
∞∑

j=−∞
{ρj + C2τj + C3τ

2
j + C4τ

3
j + C5τ

4
j }

∂

∂τj

,
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and

T̃1 =
∞∑

j=−∞

∂

∂τj

produce an infinite dimensional Lie algebra Lx for any fixed constants C2, C3, C4

and C5. We can prove it by showing that Lx contains vector fields
∞∑

j=−∞
jk ∂

∂τj
,

for all k = 1, 2, . . . . Note that

[T̃1, T̃2] =
∞∑

j=−∞
(−j + C2 + 2C3τj + 3C4τ

2
j + 4C5τ

3
j )

∂

∂τj

.

There are four cases: a) C5 6= 0 and b) C5 = 0, C4 6= 0, c) C5 = C4 = 0, C3 6= 0

and d) C5 = C4 = C3 = 0.

In case a),

[T̃1, [T̃1, [T̃1, T̃2]]]− 6C4T̃1 =
∞∑

j=−∞
24C5τj

∂

∂τj

= 24C5P1 ∈ Lx, P1 =
∞∑

j=−∞
τj

∂

∂τj

,

[T̃1, [T̃1, T̃2]] =
∞∑

j=−∞
{2C3 + 6C4τj + 12C5τ

2
j }

∂

∂τj

∈ Lx,

and therefore,

P2 :=
∞∑

j=−∞
τ 2
j

∂

∂τj

∈ Lx,

and

T̃3 := [T̃1, T̃2]− C2T̃1 − 2C3P1 − 3C4P2 =
∞∑

j=−∞
(−j + 4C5τ

3
j )

∂

∂τj

∈ Lx.

We have,

J1 := −1

3
([T̃3, P1] + 2T̃3) =

∞∑
j=−∞

j
∂

∂τj

∈ Lx.

Now,

[J1, [J1, P2]] =
1

2

∞∑
j=−∞

j2 ∂

∂τj

∈ Lx.

Assuming Jk =
∞∑

j=−∞
jk ∂

∂τj
∈ Lx we have that

Jk+1 :=
1

2
[J1, [Jk, P2]] =

∞∑
j=−∞

jk+1 ∂

∂τj

∈ Lx.
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In case b) we have

P1 :=
1

6C4

{[T̃1, [T̃1, T̃2]]− 2C3T̃1} =
∞∑

j=−∞
τj

∂

∂τj

∈ Lx

and

T̃3 = [T̃1, T̃2]− C2T̃1 − 2C3P1 =
∞∑

j=−∞
(−j + 3C4τ

2
j )

∂

∂τj

∈ Lx.

We have,

J1 := −1

2
([T̃3, P1] + T̃3) =

∞∑
j=−∞

j
∂

∂τj

∈ Lx,

and

P2 =
1

6C4

(T̃3 − [T̃3, P1]) =
∞∑

j=−∞
τ 2
j

∂

∂τj

∈ Lx.

As it was shown in the proof of case a), J1 and P2 produce an infinite dimensional

Lie algebra.

In case c),

T̃3 = [T̃1, T̃2]− C2T̃1 =
∞∑

j=−∞
(−j + 2C3τj)

∂

∂τj

∈ Lx,

T̃4 = [T̃3, T̃2] =
∞∑

j=−∞
(
j(j − 1)

2
− jC2 − 2C3jτj + 2C2

3τ
2
j )

∂

∂τj

∈ Lx.

Also,

T̃5 = [T̃3, T̃4] = 2C3

∞∑
j=−∞

(j(j + 1)

2
+ C2j − 2C3jτj + 2C2

3τ
2
j

) ∂

∂τj

∈ Lx.

Since T̃4 and T̃5 both belong to Lx then either

c)(i) J1 =
∞∑

j=−∞
j

∂

∂τj

∈ Lx, T̃6 =
∞∑

j=−∞
(
j2

2
− 2C3jτj + 2C2

3τ
2
j )

∂

∂τj

∈ Lx,

or

c)(ii) C2 = −1

2
, T̃6 =

∞∑
j=−∞

(
j2

2
− 2C3jτj + 2C2

3τ
2
j )

∂

∂τj

∈ Lx.

In case c) (i),

P1 =
1

4C2
3

{[T̃1, T̃6] + 2C3J1} =
∞∑

j=−∞
τj

∂

∂τj

∈ Lx.
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Since

[P1, T̃6] =
∞∑

j=−∞
(−j2

2
+ 2C2

3τ
2
j )

∂

∂τj

,

and

[P1, [P1, T̃6]] =
∞∑

j=−∞
(
j2

2
+ 2C2

3τ
2
j )

∂

∂τj

both belong to Lx then

J2 =
∞∑

j=−∞
j2 ∂

∂τj

∈ Lx, P2 =
∞∑

j=−∞
τ 2
j

∂

∂τj

∈ Lx,

P2 and J1 generate an infinite dimensional Lie algebra.

In case c) (ii),

T̃1 =
∞∑

j=−∞

∂

∂τj

, T̃2 =
∞∑

j=−∞

(
C3τ

2
j −

1

2
τj + ρj

) ∂

∂τj

.

Note that the Lie algebra generated by the vector fields

T̃ ∗
2 = T̃2−

(
C3τ

2−1

2
τ
)
T̃1 = d(τ, τ1)

∂

∂τ1

−d(τ−1, τ)
∂

∂τ−1

+(d(τ, τ1)+d(τ1, τ2))
∂

∂τ2

+. . .

and

T̃1 =
∞∑

j=−∞

∂

∂τj

is infinite dimensional. It can be proved by comparing this algebra with the

infinite dimensional characteristic Lie algebra of the chain

t1x = tx + C3(t
2
1 − t2)− 1

2
(t1 + t). (3.34)

Indeed, the Lie algebra Lx1 for (3.34) is generated by the operators (3.7) and (3.8)

with d(t, t1) = C3(t
2
1 − t2)− 1

2
(t1 + t). To keep standard notations we put a(τ) =

−2C3τ − 1 and b(τ) = C3τ
2 + 1

2
τ. Note that since C3 6= 0 function a(τ) is not a

constant. It follows from Theorem 3.1 proved below that the characteristic Lie

algebras Lx (and therefore algebra Lx1) for equation (3.34) is of infinite dimension.

Thus, in case c) (ii) we also have an infinite dimensional Lie algebra Lx.

In case d),

T̃2 =
∞∑

j=−∞
(−τ − τ1 − . . .− τj−1 + C2τj)

∂

∂τj

∈ Lx.



CHAPTER 3. EQUATIONS ADMITTING NONTRIVIAL X-INTEGRAL 55

Then

J1 = c2T̃1 − [T̃1, T̃2] =
∞∑

j=−∞
j

∂

∂τj

∈ Lx,

and

J2 = −2
(
[J1, T̃2]−

(1

2
+ C2

)
J1

)
=

∞∑
j=−∞

j2 ∂

∂τj

∈ Lx.

Assuming that Jk, 1 ≤ k ≤ n belong to Lx, by considering [Jn, T̃2] we may show

that Jn+1 =
∞∑

j=−∞
jk+1 ∂

∂τj
∈ Lx. It implies Lx is of infinite dimension. ¤

Let us introduce new variables

wj = ln
(
τj +

c1

c0

)
.

We can rewrite the vector fields T1 and T in variables wj as

T1 = c0

∞∑
j=−∞

∂

∂wj

= c0S0 ,

T = −tc0S0 + c0

∞∑
j=−∞

{ρ̃j + b̃(wj)} ∂

∂wj

= −c0tS0 + c0S1,

where

S0 =
∞∑

j=−∞

∂

∂wj

, S1 =
∞∑

j=−∞
{ρ̃j + b̃(wj)} ∂

∂wj

,

ρ̃j =





j−1∑
k=0

(ewk − c̃), if j ≥ 1;

0, if j = 0;

−
−1∑
k=j

(ewk − c̃), if j ≤ −1,

c̃ =
c1

c0

, b̃(wj) = − 1

m

( b(τj)

c0τj + c1

)
.

We have

DS0D
−1 = S0, DS1D

−1 = S1 − (ew − c̃)S0.

These equalities can be proved by applying DS0D
−1 and DS1D

−1 to the functions

depending on .., w−1, w, w1, w2, ... .

The above Lemmas allow us to prove the following Theorem.
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Theorem 3.12 If equation

t1x = tx + a(τ)tm + b(τ)tm−1 + . . . , m ≥ 1

admits a nontrivial x-integral, then

(1) a(τ) = c0τ , b(τ) = c2τ
2 + c3τ , where c0, c2, c3 are some constants.

(2) m = 1.

Proof. Consider the case (1). Define vector field

Q = [S0, [S0, S1]]− [S0, S1] =
∞∑

j=−∞
(b̃′′(wj)− b̃′(wj))

∂

∂wj

.

By Lemma 3.10, b̃′′(w) − b̃′(w) = C for some constant C. Thus, b̃(w) = C0 +

C1e
w + C2w for some constants C1, C2, C0. Consider vector fields

P = (C2 − C0)S0 + S1 − [S0, S1] =
∞∑

j=−∞
(C2wj + c̃j)

∂

∂wj

,

R = [S0, [S0, S1]] =
∞∑

j=1

{( j∑

k=1

ewk

)
+ C1e

wj

}
∂

∂wj

+ C1e
w ∂

∂w

−
−1∑

j=−∞

{( −1∑

k=j

ewk

)
+ C1e

wj

}
∂

∂wj

,

R1 = [P,R], Rn+1 = [P, Rn], n ≥ 1.

Then

Rn =
∑
j≥0

{ewj(C1C
n
2 wn

j + Pn,j) + rn,j(w,w1, . . . , wj−1)} ∂

∂wj

+
∑
j≤−1

{ewj((C1 − 1)Cn
2 wn

j + Pn,j) + rn,j(w−1, w−2, . . . , wj+1)} ∂

∂wj

,

where Pn,j = Pn,j(wj, j) is a polynomial of degree n−1 whose coefficients depend

on j, and rn,j are the functions that do not depend on wj. Since all vector fields

Rn belong to a finite dimensional Lie algebra Lx then C1C2 = (C1− 1)C2 = 0, or

the same C2 = 0. Therefore,

b̃(w) = C0 + C1e
w .
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Since C2 = 0, then

P = c̃

∞∑
j=−∞

j
∂

∂wj

,

R =
∞∑

j=1

{( j∑

k=1

ewk

)
+ C1e

wj

}
∂

∂wj

+C1e
w ∂

∂w
−

−1∑
j=−∞

{( −1∑

k=j

ewk

)
+ C1e

wj

}
∂

∂wj

and

Rn = c̃n

∞∑
j=1

{ew1 + 2new2 + (j − 1)newj−1 + jnC1e
wj} ∂

∂wj

− c̃n

−1∑
j=−∞

{(−1)new−1 + (−2)new−2 + (j)newj + jnC1e
wj} ∂

∂wj

.

Again, vector fields Rn belong to a finite dimensional Lie algebra only if c̃ = 0,

or the same c1 = 0 since c̃ = c1
c0

. It implies that

a(τ) = c0τ, b(τ) = c2τ
2 + c3τ.

Consider the case (2). Assume contrary, that is m ≥ 2. Then the following vector

field

1

m!
adm−2

X̃
(Ỹ ) = Y 1

2
a(τ)t2+ 1

m
b(τ)t+ 1

m(m−1)
c(τ)

= −
∞∑

j=−∞
(
1

2
a(τj)t

2
j +

1

m
b(τj)tj +

1

m(m− 1)
c(τj))

∂

∂τj

= −
∞∑

j=−∞
(
1

2
a(τj)(t + ρj)

2 +
1

m
b(τj)(t + ρj) +

1

m(m− 1)
c(τj))

∂

∂τj

− t2

2

∞∑
j=−∞

a(τj)
∂

∂τj

−t

∞∑
j=−∞

{a(τj)ρj +
1

m
b(τj)} ∂

∂τj

−
∞∑

j=−∞
{1

2
a(τj)ρ

2
j +

1

m
b(τj) +

1

m(m− 1)
c(τj)} ∂

∂τj

is in Lx. In variables wj = ln τj,

1

m!
adm−2

X̃
(Ỹ ) = −t2

2
c0S0 + tc0S1 − c0S2,

where

S2 =
∞∑

j=−∞
{1

2
ρ̃2

j − b̃(wj)ρ̃j + c̃(wj)} ∂

∂wj

, c̃(wj) =
c(τj)

m(m− 1)τj

.



CHAPTER 3. EQUATIONS ADMITTING NONTRIVIAL X-INTEGRAL 58

The vector fields S0 and S1 are as in Lemma 3.10. We have,

[S0, S2] = 2S2+C0S1+P, P =
∞∑

j=−∞
r(wj)

∂

∂wj

, r(w) = c̃′(w)−2c̃(w)−C0b̃(w).

Construct the sequence

S3 = [S1, S2], Sn+1 = [S1, Sn], n ≥ 2.

We can prove by induction on n that

[S0, Sn] = nSn +
n−1∑

k=0

νn,kSk,

and

DSnD−1 = Sn +

{
n(n− 1)

2
− 1

}
ewSn−1 +

n−2∑

k=0

η(n, k)Sk, n ≥ 3. (3.35)

Since Lx is of finite dimension then there exists a natural number N such that

SN+1 = µNSN + µN−1SN−1 + . . . + µ0S0.

Then

DSN+1D
−1 = D(µN)DSND−1 + D(µN−1)DSN−1D

−1 + . . . + D(µ0)DS0D
−1.

On the other hand, by the formula (3.35) we have

DSN+1D
−1 = SN+1 +

{
(N + 1)N

2
− 1

}
ewSN + . . . .

We compare the coefficients before SN and have two equations.

D(µN) = µN +

{
(N + 1)N

2
− 1

}
ew, N ≥ 2,

and

D(µ1) = µ1 + ew, N = 1.

Both equation are contradictory. Therefore, our assumption that m ≥ 2 was

wrong. This finishes the proof of the Theorem. ¤
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3.3 Nonzero root

In this section, we prove that if the equation 3.1) admits a nontrivial x-integral

and if the function d(t, t1) contains terms with λ(t− t1)t
jeαkt, αk 6= 0, then j = 0.

Lemma 3.13 Assume equation (3.1) admits a nontrivial x-integral. Then the

characteristic polynomial of the equation (3.14) can have only simple nonzero

roots.

Proof. Assume that m1 ≥ 2. Introduce polynomials

Λ(2)
α1

(λ) =
Λ(λ)

(λ− α1)2
= λm0(λ− α1)

m1−2...(λ− αi)
mi ,

Λα1(λ) =
Λ(λ)

(λ− α1)
= λm0(λ− α1)

m1−1...(λ− αi)
mi .

Consider vector fields

S∗0 = Λ(2)
α1

(adX̃)Yd = YA(τ)eα1t = A(τ)eα1t ∂

∂t1
+ {A(τ)eα1t + A(τ1)e

α1t1} ∂

∂t2
+ ... ,

S∗1 = Λα1(adX̃)Yd = Y(A(τ)t+B(τ))eα1t = (A(τ)t + B(τ))eα1t ∂

∂t1
+ ...

from the the Lie algebra Lx.

In variables τj = tj − tj+1, we have ∂
∂tj

= − ∂
∂τj−1

+ ∂
∂τj

and so the vector fields S∗0
and S∗1 become

S∗0 = −eα1t

∞∑
j=−∞

A(τj)e
α1ρj

∂

∂τj

= −eα1tS0,

S∗1 = −teα1tS0 − eα1t

∞∑
j=−∞

{A(τj)ρj + B(τj)}eα1ρj
∂

∂τj

= −teα1tS0 − eα1tS1,

with S0 =
∞∑

j=−∞
A(τj)e

α1ρj ∂
∂τj

and S1 =
∞∑

j=−∞
{A(τj)ρj + B(τj)}eα1ρj ∂

∂τj
.

We have

DS0D
−1 = eα1τS0, DS1D

−1 = eα1τS1 + τeα1τS0.
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These equalities can be found easily by applying DS0D
−1 and DS1D

−1 to the

functions depending on ..., τ−1, τ, τ1, ... . Define the sequence

S2 = [S0, S1], Sn+1 = [S0, Sn], n ≥ 2.

We can easily show that

DS2D
−1 = D[S0, S1]D

−1 = [eα1τS0, e
α1τS1 + τeα1τS0]

= e2α1τS2 + α1e
2α1τA(τ)S1 + e2α1τ (A(τ)− α1B(τ))S0 .

It can be proved by induction on n that

DSnD
−1 = enα1τSn + α1

n(n− 1)

2
enα1τA(τ)Sn−1 +

n−2∑

k=0

γ(n, k)Sk . (3.36)

Since the dimension of Lx is finite and S0, S1, . . . belongs to Lx then there exists

a natural number N such that

SN+1 = µNSN + µN−1SN−1 + . . . + µ0S0,

and S0, S1, . . ., SN are linearly independent. Therefore,

DSN+1D
−1 = D(µN)DSND−1 + D(µN−1)DSN−1D

−1 + . . . + D(µ0)DS0D
−1.

On the other hand, by the formula (3.36) we have

DSN+1D
−1 = e(N+1)α1τSN+1 +α1

(N + 1)N

2
e(N+1)α1τA(τ)SN +

N−1∑

k=0

γ(N +1, k)Sk.

We compare the coefficients before SN in the last two equations and we have

e(N+1)α1τµN +
α1(N + 1)N

2
e(N+1)α1τA(τ) = D(µN)eNα1τ .

It follows that µN is a constant and then

A(τ) = C(e−α1τ − 1), C =
2µN

α1N(N + 1)
.

Let us construct a new infinite sequence of vector fields, which are elements of

Lx, enumerated by a multi-index.

T0 := S1, T1 := S0, T2 = [S1, T1], Tn+1 = [S1, Tn], n ≥ 2, Tn,0 = [S0, Tn],
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Tn,0,i1,...,in−1,in = [Sin , Tn,0,i1,...,in−1 ], ij ∈ {0; 1}.
Direct calculations show that

DT2D
−1 = e2α1τT2 + e2α1τ (α1B − A)T1 − α1e

2α1τAT0,

DT3D
−1 = e3α1τT3 + e3α1τ (3α1B −A + 3α1τA)T2 + τe3α1τT2,0 +

∑

m(β)<2

ν(3, β)Tβ .

Here and below we use functions m = m(β) and l = l(β) defined in previous

Section. It can be proved by induction on n that

DTnD−1 = enα1τTn + enα1τ{cnB − A + cnτA}Tn−1

+τenα1τ
∑

m(β)=n−1,l(β)=1

ν∗(n, β)Tβ +
∑

m(β)≤n−2

ν(n, β)Tβ ,

where

cn =
α1n(n− 1)

2
,

and ν∗(n, β) are constants for any β with m(β) = n− 1 and l(β) = 1.

In general, for any γ,

DTγD
−1 = e(m(γ)+l(γ))α1τTγ +

∑

m(β)≤m(γ)−1

ν(γ, β)Tβ .

Among the vector fields Tβ we choose a system P of linearly independent vector

fields in such a way that for some natural number N ,

(i) Tk ∈ P, k ≤ N ,

(ii) m(β) ≤ N for any Tβ ∈ P .

(iii) for any Tγ with m(γ) ≤ N we have Tγ =
∑

Tβ∈P,m(β)≤m(γ)

µ(γ, β)Tβ. Also

TN+1 = µ(N + 1, N)TN +
∑

Tβ∈P

µ(N + 1, β)Tβ.

(iv) for any Tγ /∈ P with m(γ) = N and l(γ) = 1, we have µ(γ, N) = 0.

Indeed,

DTγD
−1 = D(µ(γ,N))DTND−1 +

∑

Tβ∈P,β 6=N

D(µ(γ, β))DTβD−1 .

On the other hand,

DTγD
−1 = e(m(γ)+l(γ))α1τTγ +

∑

m(β)≤N−1

ν(γ, β)Tβ

= e(N+1)α1τ{µ(γ, N)TN +
∑

Tβ∈P,m(β)≤N,β 6=N

µ(γ, β)Tβ}+
∑

m(β)≤N−1

ν(γ, β)Tβ.
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We compare the coefficients before TN and we have

e(N+1)α1τµ(γ,N) = D(µ(γ,N))eNα1τ

which proves that µ(γ, N) = 0 for any γ with m(γ) = N and l(γ) = 1. We have,

TN+1 = µNTN +
∑
Tβ∈P

µ(N + 1, β)Tβ,

here µN = µ(N + 1, N). Then

DTN+1D
−1 = D(µN)DTND−1 +

∑
Tβ∈P

D(µ(N + 1, β))DTβD−1.

We continue and have,

e(N+1)α1τ{µNTN +
∑
Tβ∈P

µ(N + 1, β)Tβ}+ e(N+1)α1τ{cN+1B − A + cN+1τA}TN

+τe(N+1)α1τ
∑

m(β)=N,l(β)=1

ν∗(N + 1, β)Tβ +
∑

m(β)≤N−1

ν(N + 1, β)Tβ

= D(µN){eNα1τTN +
∑

m(β)≤N−1

ν(N, β)Tβ}

+
∑
Tβ∈P

D(µ(N + 1, β)){e(m(β)+l(β))α1τTβ +
∑

m(r)≤N−1

ν(β, r)Tr}.

We compare the coefficients before TN and get

e(N+1)α1τµN + e(N+1)α1τ{cN+1B − A + cN+1τA} = eNα1τD(µN).

Note that, by property (iv), we do not have term τe(N+1)α1τ in the left hand side

of the last equality. Thus, using the expression for A(τ) = C(e−α1τ − 1) and the

fact that µN is a constant, we have

B(τ) = C1A + C2τA = C1(e
−α1τ − 1) + C2τ(e−α1τ − 1) ,

where

C1 =
µN

CcN+1

+
1

cN+1

, C2 = −1.

We introduce new vector fields

S̃0 =
1

C
S0 = (e−α1τ − 1)

∂

∂τ
+ . . . , S̃1 =

1

C
S1 +

C1

C
S0 = τ(e−α1τ − 1)

∂

∂τ
+ . . . .
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S̃2 = [S̃0, S̃1], S̃n+1 = [S̃0, S̃n], n ≥ 2.

We have,

DS̃0D
−1 = eα1τ S̃0, DS̃1D

−1 = eα1τ S̃1 − τeα1τ S̃0,

DS̃nD
−1 =

n∑

k=0

γ̃(n, k)S̃k, γ̃(n, n) = enα1τ ,

where γ̃(n, k) are functions of τ only. Since all vector fields S̃k belong to a finite

dimensional Lie algebra Lx, then there exists a natural number M that

S̃M+1 = µ̃M S̃M + µ̃M−1S̃M−1 + . . . + µ̃0S̃0, (3.37)

and S̃M , S̃M−1, . . ., S̃0 are linearly independent. Then

DS̃M+1D
−1 = D(µ̃M)DS̃MD−1 + . . . + D(µ̃0)DS̃0D

−1,

and

γ̃(M+1,M+1){µ̃M S̃M+. . .+µ̃0S̃0}+
M∑

k=0

γ̃(M+1, k)S̃k = D(µ̃N){γ̃(M, M)S̃M+. . .}+. . . .

We compare the coefficients before S̃M and we have

e(M+1)α1τ µ̃M + γ̃(M + 1, M) = D(µ̃M)eMα1τ ,

which implies that µ̃M is a constant. In the same way, by comparing the co-

efficients before S̃M−1, and then before S̃M−2, and so on, we can show that all

coefficients µ̃k are constants.

We can show by induction on n that for n ≥ 2,

S̃n = {αn−2
1 (−1)n−2(n− 2)!e−nα1τ +

n−1∑

k=0

r(n, k)e−α1kτ} ∂

∂τ
+ . . . ,

where r(n, k) are some constants. Return to equality (3.37) with constant coeffi-

cients µ̃k and compare the coefficients before ∂
∂τ

:

αM−1
1 (−1)M−1(M − 1)!e−(M+1)α1τ +

M∑

k=0

r(M + 1, k)e−α1kτ

= µ̃M

(
αM−2

1 (−1)M−2(M − 2)!e−Mα1τ +
M−1∑

k=0

r(M, k)e−α1kτ
)

+ . . . + µ̃0(e
−α1τ − 1).
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The last equality fails to be true since on the left hand side we have the factor

e−(M+1)α1τ but on the right hand side we do not. It shows that our assumption

that multiplicity m1 of a nonzero root α1 can be 2 or more was wrong. This

finishes the proof of the Lemma. ¤

If the characteristic polynomial of (3.14) has only one nonzero root α, then

d(t, t1) = A(t − t1)e
αt. In this case equation (3.1) admits a nontrivial x-integral

as seen in Theorem 3.1. In the next section we consider a case when the charac-

teristic polynomial of (3.14) has at least two nonzero roots.

3.4 Two nonzero roots

In this section we prove that if the equation (3.1) admits a nontrivial x-integral

and if the function d(t, t1) contains terms with eαkt and eαjt having nonzero ex-

ponents then αk = −αj.

Let α and β be two nonzero roots. Consider the vector fields

S0 =
∞∑

j=−∞
A(τj)e

αρj
∂

∂τj

, S1 =
∞∑

j=−∞
B(τj)e

βρj
∂

∂τj

from the Lie algebra Lx, and construct a new sequence of vector fields

S2 = [S0, S1], Sn+1 = [S0, Sn], n ≥ 1.

We have,

DS0D
−1 = eατS0, DS1D

−1 = eβτS1 ,

DS2D
−1 = e(α+β)τS2 + βAe(α+β)τS1 − αBe(α+β)τS0 .

In general, for any n ≥ 3,

DSnD
−1 = e((n−1)α+β)τ{Sn + (cnα + dnβ)ASn−1

+(pnA′ + qnA)ASn−2 +
n−2∑

k=0

ν(n, k)Sk} , (3.38)
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where

cn =
(n− 1)(n− 2)

2
, dn = n− 1, pn+1 =

n(n− 1)

2

{
n− 2

3
α + β

}
, n ≥ 2,

qn+1 =
n(n− 2)(n− 1)(3n− 1)

24
α2 +

(n− 1)2n

2
αβ +

n(n− 1)

2
β2 , n ≥ 2.

Let us consider a particular case when

S2 = µ0S0 + µ1S1. (3.39)

We have,

DS2D
−1 = D(µ0)e

ατS0 + D(µ1)e
βτS1 = e(α+β)τS2 + βAe(α+β)τS1 − αBe(α+β)τS0

= e(α+β)τ{µ0S0 + µ1S1}+ βAe(α+β)τS1 − αBe(α+β)τS0.

We compare the coefficients before S0 and S1 and we have the following two

equations

e(α+β)τµ0 − αBe(α+β)τ = D(µ0)e
ατ , e(α+β)τµ1 + βAe(α+β)τ = D(µ1)e

βτ .

It follows that µ0, µ1 are constants and

B(τ) = −µ0

α
(e−βτ − 1), A(τ) =

µ1

β
(e−ατ − 1).

And finally, we compare the coefficients before ∂
∂τ

in equation (3.39) and it implies

that α = −β.

Let us return to the general case. Since Lx is of finite dimension then there exists

a natural number N such that

SN+1 = µNSN + µN−1SN−1 + . . . + µ0S0,

and S0, S1, . . ., SN are linearly independent

Then

DSN+1D
−1 = D(µN)DSND−1 + D(µN−1)DSN−1D

−1 + . . . + D(µ0)DS0D
−1.
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By using the formula (3.38) we have

e(Nα+β)τ{(µNSN+µN−1SN−1+. . .)+A(cN+1α+dN+1β)SN+A(pN+1A
′+qN+1A)SN+1+. . .} =

D(µN){e((N−1)α+β)τ (SN+A(cNα+dNβ)SN−1+. . .)}+D(µN−1){e((N−2)α+β)τSN−1+. . .}+. . . .

We compare the coefficients before SN and it gives

e(Nα+β)τ{µN + A(cN+1α + dN+1β)} = D(µN)e((N−1)α+β)τ .

It follows that µN is a constant and then

A(cN+1α + dN+1β) = µN(e−ατ − 1).

If cN+1α + dN+1β = N
{

N−1
2

α + β
} 6= 0, then

A(τ) = C1(e
−ατ − 1),

for some constant C1.

If cN+1α + dN+1β = N
{

N−1
2

α + β
}

= 0 (in this case µN = 0) we compare

coefficients before SN−1 and have

e(Nα+β)τ{µN−1 + A(pN+1A
′ + qN+1A)} = D(µN−1)e

((N−2)α+β)τ .

It follows that µN−1 is a constant and

pN+1AA′ + qN+1A
2 = µN−1(e

−2ατ − 1).

Note that if cN+1α+dN+1β = N
{

N−1
2

α + β
}

= 0 then pN+1 = −N(N−1)(N+1)
12

α 6=
0 and qN+1 = − (N−1)N(N+1)

24
α2 6= 0 for N ≥ 2. Therefore,

(
2
q N+1

)
pN+1 = α. Case

N = 1 should be studied separately (S2 = µ1S1 + µ0S0). But we have already

studied this case. Let us solve the equation

pN+1AA′ + qN+1A
2 = µN−1(e

−2ατ − 1).

Denote by y = A2. We have,

y′ + αy = k1e
−2ατ − k1
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for some constant k1. The solution is

A2(τ) = K1(e
−2ατ + K2e

−ατ + 1)

for some constants K1 and K2.

Construct new sequence of vector fields

S∗2 = [S1, S0], S∗n+1 = [S1, S
∗
n], n ≥ 2.

Note that S∗2 = −S2. Since Lx is of finite dimension then there exists a natural

number M such that S0, S1, . . ., S∗M are linearly independent and

S∗M+1 = µ∗MS∗M + µ∗M−1S
∗
M−1 + . . . + µ∗0S0.

There are the following possibilities.

1)

{
A(τ) = K1(e

−ατ − 1),

B(τ) = K3(e
−βτ − 1),

2)





A(τ) = K1(e
−ατ − 1),

B2(τ) = K2
3(e−2βτ + K4e

−βτ + 1),

S∗M+1 = µ∗MS∗M + µ∗M−1S
∗
M−1 + . . . + µ∗0S0,

M−1
2

β + α = 0,

3)





B(τ) = K3(e
−βτ − 1),

A2(τ) = K2
1(e−2ατ + K2e

−ατ + 1),

SN+1 = µNSN + µN−1SN−1 + . . . + µ0S0,
N−1

2
α + β = 0,

4)





A2(τ) = K2
1(e−2ατ + K2e

−ατ + 1),

SN+1 = µNSN + µN−1SN−1 + . . . + µ0S0,
N−1

2
α + β = 0,

B2(τ) = K2
3(e−2βτ + K4e

−βτ + 1),

S∗M+1 = µ∗MS∗M + µ∗M−1S
∗
M−1 + . . . + µ∗0S0,

M−1
2

β + α = 0,

where K1, K2 6= −2, K3, K4 6= −2 are some constants, M, N ≥ 2.

In case 1), vector fields S0 and S1 generate an infinite dimensional Lie algebra Lx

unless α + β = 0.
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In case 2), we make a substitution 1−eατ = e−αw. Vector fields S0 and S1 become

S0 = K1
∂

∂w
+ . . . ,

S1 = {K2
3((1− e−αw)−

2β
α + K4(1− e−αw)−

β
α + 1)}1/2 ∂

∂w
+ . . . = g(w)

∂

∂w
+ . . . .

Note that if

S∗M+1 = µ∗MS∗M + µ∗M−1S
∗
M−1 + . . . + µ∗0S0,

then all coefficients µ∗k are constants. We compare the coefficients before ∂
∂w

in

both sides of the last equation and we obtain that g(w) is a solution of linear

differential equation with constant coefficients, that is

g(w) = {K2
3((1− e−αw)−

2β
α + K4(1− e−αw)−

β
α + 1)}1/2 =

∑

k

Rk(w)eνkw , (3.40)

where Rk(w) are some polynomials. We can show that equality (3.40) holds only

if B(τ) = K3(e
ατ + 1). It can be shown that in case 3) A(τ) = K1(e

βτ + 1). In

case 4) we make substitution eατ + K1

2
+
√

e2ατ+K1eατ+1 = eαw. Then

S0 = K1
∂

∂w
+ . . . ,

S1 =
{

K2
3

(1

2
eαw − K1

2
+

(K2
1

8
− 1

2

)
e−αw

)− 2β
α

+ K4

(1

2
eαw − K1

2
+

(K2
1

8
− 1

2

)
e−αw

)− β
α

+ 1
)}1/2 ∂

∂w
+ . . .

= g(w)
∂

∂w
+ . . .

For function g(w) to be of the form
∑
k

Rk(w)eνkw, where Rk(w) are polynomials,

function B(τ) has to be of the form B(τ) = K3(e
ατ + 1). Then, by case 3),

A(τ) = K1(e
−ατ + 1).

It has been proved that in cases 1), 2), 3), 4) we have

1∗)

{
A(τ) = K1(e

−ατ − 1),

B(τ) = K3(e
ατ − 1),

2∗)

{
A(τ) = K1(e

−ατ − 1),

B(τ) = K3(e
ατ + 1),
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3∗)

{
A(τ) = K1(e

−ατ + 1),

B(τ) = K3(e
ατ − 1),

4∗)

{
A(τ) = K1(e

−ατ + 1),

B(τ) = K3(e
ατ + 1).

In case 1∗) function d(t, t1) in (3.1) has a form d(t, t1) = c4(e
αt1−eαt)+c5(e

−αt1−
e−αt), where c4 and c5 are some constants. Equation (3.1) with such function

d(t, t1) admits a nontrivial x-integral as seen in Theorem 3.1.

In the next two sections we show that Cases 3∗) and 4∗) both correspond to infinite

dimensional Lie algebra Lx. Case 2∗) also produces an infinite dimensional Lie

algebra Lx. It can be proved in the same way as it is proved for case 3∗).

3.5 Characteristic Lie Algebra Lx of the chain

t1x = tx + A1(e
αt1 + eαt)− A2(e

−αt − e−αt1)

Since A(τ) = A1(e
−ατ + 1) and B(τ) = A2(e

ατ − 1) then

A(τ)eαt +
k∑

j=1

A(τj)e
αtj = A1

(
eαt +

(
2

k−1∑
j=1

eαtj
)

+ eαtk
)
,

and

B(τ)e−αt +
k∑

j=1

B(τj)e
−αtj = A2(e

−αt − e−αtk).

We have,

1

A1

S0 = (eαt + eαt1)
∂

∂t1
+

∞∑

k=1

(
eαt +

(
2

k−1∑
j=1

eαtj
)

+ eαtk
) ∂

∂tk

+
∞∑

k=1

(
eαt +

(
2

k−1∑
j=1

eαt−j

)
+ eαt−k

) ∂

∂t−k

,

and
1

A2

S1 = e−ατX̃ −
∞∑

k=−∞
e−αtk

∂

∂tk
= e−ατX̃ − S̃1,
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where

S̃1 =
∞∑

k=−∞
e−αtk

∂

∂tk
.

Introduce new variables wj = 1
α
eαtj and so vector fields S̃1 and 1

A1
S0 can be

rewritten as

S̃1 =
∞∑

k=−∞

∂

∂wj

,

1

A1

S0 = α2

∞∑

k=1

{wk(w+2
k−1∑
j=1

wj)+w2
k}

∂

∂wk

+α2

∞∑

k=1

{w−k(w+2
k−1∑
j=1

w−j)+w2
−k}

∂

∂w−k

.

We have

T1 = [S̃1, [S̃1,
1

α2A1

S0]] = 4
∞∑

k=−∞
k

∂

∂wk

= 4T̃1, T̃1 =
∞∑

k=−∞
k

∂

∂wk

,

T2 = [S̃1, [T̃1,
1

α2A1

S0]] = 3
∞∑

k=1

{k2 − k + 1}( ∂

∂wk

+
∂

∂w−k

) = 3T̃2 − 3T̃1 + 3S̃1,

T̃2 =
∞∑

k=−∞
k2 ∂

∂wk

.

Assume that T̃m =
∞∑

k=−∞
km ∂

∂wk
, m = 1, 2 . . . , n, are vector fields from Lx. Then

Tm+1 = [S̃1, [T̃m,
1

α2A1

S0]]

=
∞∑

k=1

{2(1 + 2m + 3m + . . . + km) + 2km+1 − km}
( ∂

∂wk

+
∂

∂w−k

)

=
∞∑

k=1

{
2
( km+1

m + 1
+ dm,m+1k

m + . . . + d0,m+1

)
+ 2km+1 − km

}( ∂

∂wk

+
∂

∂w−k

)

and therefore, T̃m+1 =
∞∑

k=−∞
km+1 ∂

∂wk
∈ Lx. It shows that T̃n =

∞∑
k=−∞

kn ∂
∂wk

∈ Lx

for all n = 1, 2, 3, . . ., and Lx is of infinite dimension.

3.6 Characteristic Lie Algebra Lx of the chain

t1x = tx + A1(e
αt1 + eαt) + A2(e

−αt + e−αt1)
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It is seen in previous studies (see, for instance, [16]) that S-integrable mod-

els have the characteristic Lie algebra of finite growth. The chain studied

in this section can be easily reduced to the semi-discrete sine-Gordon model

t1x = tx + sin t + sin t1, which belongs to the S-integrable class. It is remarkable

that its characteristic Lie algebra Lx is of finite growth. Or, more exactly, the

dimension of the linear space of multiple commutators grows linearly with the

multiplicity. Below we prove that the linear space Vn of all commutators of mul-

tiplicity ≤ n has a basis {P1, P2, P3, ...P2k; Q2, Q4, ...Q2k} for n = 2k and a basis

{P1, P2, P3, ...P2k+1; Q2, Q4, ...Q2k} for n = 2k +1, where the operators Pj and Qj

are defined consecutively

P1 = [S0, S1] + αS0 + αS1, Q1 = P1,

P2 = [S1, P1], Q2 = [S0, Q1],

P3 = [S0, P2] + αP2, Q3 = [S1, Q2]− αQ2,

P2n = [S1, P2n−1], Q2n = [S0, Q2n−1],

P2n+1 = [S0, P2n] + αP2n, Q2n+1 = [S1, Q2n]− αQ2n,

for n ≥ 1. Direct calculations show that

DP1D
−1 = P1 − 2α(S0 + S1),

DP2D
−1 = e−ατ (P2 + 2αP1 − 2α2(S0 + S1)),

DP3D
−1 = P3 + 2αQ2 − 2αP2 − 4α2P1 + 4α3(S0 + S1),

DP4D
−1 = e−ατ (P4 + 2αQ3 − 4α2P2 + 4α2Q2 − 4α3P1 + 4α4(S0 + S1)),

DQ2D
−1 = eατ (Q2 − 2αP1 + 2α2(S0 + S1)),

DQ3D
−1 = Q3 + 2αQ2 − 2αP2 − 4α2P1 + 4α3(S0 + S1),

DQ4D
−1 = eατ (Q4 − 2αP3 + 2α2(P2 −Q2) + 4α3P1 − 4α4(S0 + S1)),

P3 = Q3 , [S1, P2] = −αP2, [S0, Q2] = αQ2, [S1, P4] = −αP4, [S0, Q4] = αQ4.

(3.41)

The coefficient before
∂

∂τ
in all vector fields DPiD

−1, DQiD
−1, 1 ≤ i ≤ 4 is zero.

Lemma 3.14 For n ≥ 1 we have,

(1) DP2n+1D
−1 + 2αeατDP2nD

−1 = P2n+1 + 2αQ2n,
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(2) eατDP2n+2D
−1 − αDP2n+1D

−1 = P2n+2 + αQ2n+1,

(3) DQ2n+1D
−1 − 2αe−ατDQ2nD

−1 = Q2n+1 − 2αP2n,

(4) e−ατDQ2n+2D
−1 + αDQ2n+1D

−1 = Q2n+2 − αP2n+1,

(5) P2n+1 = Q2n+1,

(6) [S1, P2n+2] = −αP2n+2,

(7) [S0, Q2n+2] = αQ2n+2.

Moreover, the coefficient before
∂

∂τ
in all vector fields DPkD

−1, DQkD
−1 is zero.

Proof. We prove the Lemma by induction on n. It follows from (3.41) that the

base of induction holds for n = 1. Assume (1)− (7) are true for all n, 1 ≤ n ≤ k.

Let us prove that (1) is true for n = k + 1.

DP2n+3D
−1 = D([S0, P2n+2] + αP2n+2)D

−1 = [eατS0, DP2n+2D
−1] + αDP2n+2D

−1

= [eατS0, αe−ατDP2n+1D
−1 + e−ατP2n+2 + αe−ατQ2n+1] + αDP2n+2D

−1

= −α2(1 + e−ατ )DP2n+1D
−1 + αe−ατ [eατS0, DP2n+1D

−1]− α(1 + e−ατ )P2n+2

−α2(1 + e−ατ )Q2n+1 + P2n+3 − αP2n+2 + αQ2n+2 + αDP2n+2D
−1

= −α2(1 + e−ατ )DP2n+1D
−1 + αe−ατD[S0, Q2n+1]D

−1 − α(2 + e−ατ )P2n+2

−α2(1 + e−ατ )Q2n+1 + P2n+3 + αQ2n+2 + αDP2n+2D
−1

= −α2(1 + e−ατ )DP2n+1D
−1 + αQ2n+2 − α2P2n+1 − α2DQ2n+1D

−1 − α(2 + e−ατ )P2n+2

−α2(1 + e−ατ )Q2n+1 − 2α2Q2n+1 − 2αP2n+2 + P2n+3

= −2α2DP2n+1D
−1 + 2αQ2n+2 − 2α2Q2n+1 − 2αP2n+2 + P2n+3

= 2αP2n+2 + 2α2Q2n+1 − 2αeατDP2n+2D
−1 + 2αQ2n+2 − 2α2Q2n+1 − 2αP2n+2 + P2n+3

= −2αeατDP2n+2D
−1 + 2αQ2n+2 + P2n+3.

The proof of (3) is the same as the proof of (1). Let us show that (5) is true for

n = k + 1. We have,

DP2n+3D
−1 = −2αeατDP2n+2D

−1 + 2αQ2n+2 + P2n+3

= −2α(αDP2n+1D
−1 + P2n+2 + αQ2n+1) + 2αQ2n+2 + P2n+3,
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and

DQ2n+3D
−1 = 2αe−ατDQ2n+2D

−1 − 2αP2n+2 + Q2n+3

= 2α(−αDQ2n+1D
−1 + Q2n+2 − αP2n+1)− 2αP2n+2 + Q2n+3.

By (5), P2n+1 = Q2n+1 and therefore

D(P2n+3 −Q2n+3)D
−1 = −2αP2n+2 − 2αQ2n+2 + 2αQ2n+2 + 2αP2n+2 = 0.

Hence, P2n+3 = Q2n+3.

Let us prove (2) is true for n = k + 1. We have,

eατDP2n+1D
−1 = eατD[S1, P2n+3]D

−1 = eατ [e−ατS1, DP2n+3D
−1]

= eατ [e−ατS1,−2αeατDP2n+2D
−1 + 2αQ2n+2 + P2n+3]

= eατ (−2α2(1 + eατ )DP2n+2D
−1)− 2αe2ατ [e−ατS1, DP2n+2D

−1] + P2n+4

+2αQ2n+3 + 2α2Q2n+2

= −2α2(eατ + e2ατ )DP2n+2D
−1 + 2α2e2ατDP2n+2D

−1 + P2n+4

+2αQ2n+3 + 2α2Q2n+2

= −2α2eατDP2n+2D
−1 + P2n+4 + 2αQ2n+3 + 2α2Q2n+2

= αDP2n+3D
−1 − αP2n+3 − 2α2Q2n+2 + P2n+4 + 2αQ2n+3 + 2α2Q2n+2

= αDP2n+3D
−1 + αQ2n+3 + P2n+4.

The proof of (4) is similar to the proof of (2).
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Let us prove that (6) is true for n = k + 1.

D[S1, P2n+4]D
−1 = [e−ατS1, αe−ατDP2n+3D

−1 + e−ατP2n+4 + αe−ατQ2n+3]

= [e−ατS1, αe−ατ (−2αeατDP2n+2D
−1 + P2n+3 + 2αQ2n+2) + e−ατP2n+4 + αe−ατQ2n+3]

= [e−ατS1,−2α2DP2n+2D
−1 + 2αe−ατP2n+3 + 2α2e−ατQ2n+2 + e−ατP2n+4]

= −2α2D[S1, P2n+2]D
−1 − 2α2e−2ατ (1 + eατ )P2n+3 − 2α3e−2ατ (1 + eατ )Q2n+2

+2αe−2ατP2n+4 + 2α2e−2ατQ2n+3 + 2α3e−2ατQ2n+2 − αe−2ατ (1 + eατ )P2n+4

+e−2ατ [S1, P2n+4]

= 2α3DP2n+2D
−1 − 2α2e−ατP2n+3 + α(e−2ατ − e−ατ )P2n+4

−2α3e−ατQ2n+2 + e−2ατ [S1, P2n+4]

= α2e−ατP2n+3 + 2α3e−ατQ2n+2 − α2e−ατDP2n+3D
−1 − 2α2e−ατP2n+3

+α(e−2ατ − e−ατ )P2n+4 − 2α3e−ατQ2n+2 + e−2ατ [S1, P2n+4]

= −α2e−ατP2n+3 + α(e−2ατ − e−ατ )P2n+4 − αDP2n+4D
−1 + αe−ατP2n+4

+α2e−ατQ2n+3 + e−2ατ [S1, P2n+4].

Thus,

D[S1, P2n+4]D
−1 = e−2ατ [S1, P2n+4] + αe−2ατP2n+4 − αDP2n+4D

−1

D([S1, P2n+4] + αP2n+4)D
−1 = e−2ατ ([S1, P2n+4] + αP2n+4).

Hence, [S1, P2n+4] = −αP2n+4.

Proof of (7) is similar to the proof of (6). ¤
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Corollary 3.15 We have,

e−ατDQ2nD
−1 + eατDP2nD−1 = Q2n + P2n,

DP2n+1D
−1 = P2n+1 +

n∑

k=1

(µ
(2n+1)
2k P2k + ν

(2n+1)
2k Q2k) +

n−1∑

k=0

µ
(2n+1)
2k+1 P2k+1

+µ
(2n+1)
0 S0 + ν

(2n+1)
0 S1,

DP2nD−1 = e−ατ
(
P2n +

n−1∑

k=1

(µ
(2n)
2k P2k + ν

(2n)
2k Q2k)

+
n−1∑

k=0

µ
(2n)
2k+1P2k+1 + µ

(2n)
0 S0 + ν

(2n)
0 S1

)
,

DQ2nD
−1 = eατ

(
Q2n −

n−1∑

k=1

(µ
(2n)
2k P2k + ν

(2n)
2k Q2k)

−
n−1∑

k=0

µ
(2n)
2k+1P2k+1 − µ

(2n)
0 S0 − ν

(2n)
0 S1

)
.

Moreover, µ
(2n+1)
2n = −2α, ν

(2n+1)
2n = 2α, µ

(2n)
2n−1 = 2α.

Assume Lx is of finite dimension. There are three possibilities:

1) S0, S1, P1, P2, Q2, P3, P4, Q4, ..., P2n−1 are linearly independent and

S0, S1, P1, P2, Q2, P3, P4, Q4, ..., P2n−1, P2n are linearly dependent,

2) S0, S1, P1, P2, Q2, P3, P4, Q4, ..., P2n−1, P2n are linearly independent and

S0, S1, P1, P2, Q2, P3, P4, Q4, ..., P2n−1, P2n, Q2n are linearly dependent,

3) S0, S1, P1, P2, Q2, P3, P4, Q4, ..., P2n, Q2n are linearly independent and

S0, S1, P1, P2, Q2, P3, P4, Q4, ..., P2n, Q2n, P2n+1 are linearly dependent.

In case 1),

P2n = γ2n−1P2n−1 + γ2n−2P2n−2 + η2n−2Q2n−2 + ...

and

DP2nD
−1 = D(γ2n−1)DP2n−1D

−1+D(γ2n−2)DP2n−2D
−1+D(η2n−2)DQ2n−2D

−1+... .

(3.42)
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We use Corollary 3.15 to compare the coefficients before P2n−1 in (3.42) and have

the contradictory equality,

e−ατ (γ2n−1 + 2α) = D(γ2n−1).

It shows that case 1) is impossible to have.

In case 2),

Q2n = γ2nP2n + γ2n−1P2n−1 + η2n−2Q2n−2 + ...

and

DQ2nD−1 = D(γ2n)DP2nD
−1+D(γ2n−1)DP2n−1D

−1+D(η2n−2)DQ2n−2D
−1+ ... .

(3.43)

We use Corollary 3.15 to compare the coefficients before P2n−1 in (3.43) and have

the contradictory equation,

eατ (γ2n−1 − 2α) = D(γ2n−1).

It shows that case 2) is impossible to have.

In case 3),

P2n+1 = η2nQ2n + γ2nP2n + ...

and

DP2n+1D
−1 = D(η2n)DQ2nD

−1 + D(γ2n)DP2nD−1 + ... . (3.44)

We use Corollary 3.15 to compare the coefficients before P2n in (3.44) and have

the contradictory equation,

(γ2n − 2α) = D(γ2n)e−ατ .

It shows that case 3) also fails to be true. Therefore, characteristic Lie algebra

Lx is of infinite dimension.
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3.7 Finding x-integrals

In this section, we will complete the proof of Theorem 3.1, given in the beginning

of the Chapter. In the previous sections we proved that if chain (3.1) admits a

nontrivial x-integral then it is one of the forms (1)−(4). The list i)−iv) allows us

to prove the inverse statement: each of the equations from the list admits indeed

a nontrivial x-integral.

Let us explain briefly how we found the list i)− iv). Since for each equation

(1) − (4) we have constructed the related characteristic Lie algebra to find x-

integral F we have to solve the corresponding system of the first order partial

differential equations. Below we illustrate the method with the case (2), for which

the basis of the characteristic Lie algebra Lx is given by the vector fields

Ỹ = ∂x + Ya(τ)t+b(τ), T1 = Y−a(τ), X̃ =
∂

∂t
+

∂

∂t1
+

∂

∂t−1

+
∂

∂t2
+

∂

∂t−2

+ . . . ,

where a(τ) = c0τ and b(τ) = c2τ
2 + c3τ . Note that x-integral F of (2) should

satisfy the equations Ỹ F = 0, T1F = 0 and X̃F = 0. Introduce new variables

t,w,w±1, . . . where wj = ln(τj) and τj = tj− tj+1. We can rewrite the vector fields

X̃, T1, Ỹ in new variables as

X̃ =
∂

∂t
, T1 =

∞∑
j=−∞

c0
∂

∂wj

,

Ỹ =
∂

∂x
− t

∞∑
j=−∞

c0
∂

∂wj

+ c0

∞∑
j=−∞

{ρ̃j + b̃(wj)} ∂

∂wj

=
∂

∂x
− tT1 + c0

∞∑
j=−∞

{ρ̃j + b̃(wj)} ∂

∂wj

,

where

ρ̃j =





j−1∑
k=0

ewk , if j ≥ 1;

0, if j = 0;

−
−1∑
k=j

ewk , if j ≤ −1,

b̃(wj) = − 1

c0

(c2e
wj + c3) .

Note that since we have X̃F = 0, F does not depend on t. Now let us consider
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the vector field

Ỹ + tT1 = A =
∂

∂x
+ c0

∞∑
j=−∞

{ρ̃j + b̃(wj)} ∂

∂wj

.

We can write the vector field A explicitly as

A =
∂

∂x
+

∞∑
j=−∞

{(
c0

j−1∑

k=0

ewk

)
− c2e

wj − c3

} ∂

∂wj

=
∂

∂x
− c3

c0

T1 +
∞∑

j=−∞

{(
c0

j−1∑

k=0

ewk

)
− c2e

wj

} ∂

∂wj

.

The commutator [T1, A] gives

[T1, A] = c0A− c0
∂

∂x
+ c3T1.

Thus we have three vector fields

A− ∂

∂x
+

c3

c0

T1 := Ã =
∞∑

j=−∞

{(
c0

j−1∑

k=0

ewk

)
− c2e

wj

} ∂

∂wj

,

T1

c0

:= T̃1 =
∞∑

j=−∞

∂

∂wj

, X̃1 =
∂

∂x
,

which solve ÃF = 0, T̃1F = 0, X̃1F = 0. Note that [T̃1, Ã] = Ã. Since X̃1F = 0,

F does not depend on x. Hence we end up with two equations. By Jacobi theorem

the system of equations has a nontrivial solution F (w,w1, w2) depending on three

variables. Therefore we need first three terms of Ã and T̃1;

Ã = −c2w
∂

∂w
+ (c0e

w − c2e
w1)

∂

∂w1

+ (c0e
w + c0e

w1 − c2e
w2)

∂

∂w2

,

T̃1 =
∂

∂w
+

∂

∂w1

+
∂

∂w2

.

Now we again introduce new variables w = ε, w−w1 = ε1, w1−w2 = ε2. We

can rewrite the vector fields Ã and T̃1 in new variables as

Ã = eε
{
− c2

∂

∂ε
+ ((−c2 − c0) + c2e

−ε1)
∂

∂ε1

+ ((−c2 − c0)e
−ε1 + c2e

−ε1−ε2)
∂

∂ε2

}
,

T̃1 =
∂

∂ε
.

We find the x-integral ii) in Theorem 3.1 by solving (use the characteristic

method) the equation
{

((−c2 − c0) + c2e
−ε1)

∂

∂ε1

+ e−ε1((−c2 − c0) + c2e
−ε2)

∂

∂ε2

}
F = 0.



Chapter 4

Equations Admitting Both x-

and n-integrals

Here we analyze the equations given in Theorem 3.1. We check whether these

equations having nontrivial x-integrals also have nontrivial n-integrals.

4.1 Case 1) t1x = tx + A(t− t1)

Introduce ω = t1 − t and also to express the equation in a simpler form write

B(t1 − t) instead of A(t − t1). We can do this since A is an arbitrary function

of t − t1. Hence we can rewrite the equation as ωx = B(ω). We study the

question when this equation admits a nontrivial n-integral or the same when the

corresponding Lie algebra Ln is of finite dimension.

Since in this case

Y0f = B′(ω)ωt1 = DωB(ω),

Y0fx = B′′(ω)B(ω) + B′(ω)B′(ω) = DωB(ω)DωB(ω),

and Y0D
k
xf = (DωB(ω))k+1, we can write Y1 as

Y1 =
∂

∂t
+

∞∑

k=1

D−1(DωB(ω))k ∂

∂Dk
xt

. (4.1)

79
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Now let us introduce new variables: ω+ = t, ω = t1−t, ω−1 = t−t−1, ωj = tj+1−tj.

Since

∂

∂t
=

∂

∂ω+

− ∂

∂ω
+

∂

∂ω−1

,

then the expression (4.1) for Y1 becomes

Y1 =
∂

∂ω+

− ∂

∂ω
+

∂

∂ω−1

+
∞∑

k=1

D−1(DωB(ω))k ∂

∂Dk
xω+

. (4.2)

We can ignore the term containing ∂
∂ω

since coefficients in the vector fields used

below do not depend on ω.

We multiply Y1 by B(ω−1),

B(ω−1)Y1 = B(ω−1)
∂

∂ω+

+ B(ω−1)
∂

∂ω−1

+
∞∑

k=1

B(ω−1)D
−1(DωB(ω))k ∂

∂Dk
xω+

.

(4.3)

Introduce

p(θ) = B(ω−1(θ)), where dθ =
dω−1

B(ω−1)
. (4.4)

The equation (4.3) becomes

B(ω−1)Y1 = p(θ)
∂

∂ω+

+
∂

∂θ
+

∞∑

k=1

Dk
x(p(θ))

∂

∂Dk
xω+

. (4.5)

Now instead of X1 = ∂
∂t−1

, define

X̃1 = B(ω−1)X1 = −B(ω−1)
∂

∂ω−1

+ B(ω−1)
∂

∂ω−2

.

It is indeed with new variables

X̃1 = − ∂

∂θ
+

p(θ)

p(θ−1)

∂

∂θ−1

. (4.6)

Note that [Dx, X̃1] = Dx

(
p(θ)

p(θ−1)

)
W1, where W1 = ∂

∂θ−1
. Since [Dx, X1] =

−X1(g)X1−X1(g−1)X2, then [Dx, X̃1] ∈ Ln. Therefore, we have two possibilities;

i) Dx

(
p(θ)

p(θ−1)

)
= 0, or
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ii) W1 ∈ Ln.

First let us consider case i). We have

Dx

( p(θ)

p(θ−1)

)
=

p′(θ)p(θ−1)− p(θ)p′(θ−1)

p2(θ−1)
= 0.

The solution of this equation is p(θ) = B(ω−1(θ)) = µeλθ, µ 6= 0 and λ are some

constants. Since dθ
dω−1

= 1
B(ω−1)

, we have B(ω) = λω + c, c is a constant.

Now we concentrate on case ii). Since Dx

(
p(θ)

p(θ−1)

)
W1 ∈ Ln, then W1 ∈ Ln and,

due to (4.6), W = ∂
∂θ
∈ Ln.

Lemma 4.1 If equation ωx = B(ω) admits a nontrivial n-integral then function

p(θ), defined by (4.4), is a quasi-polynomial.

Proof. Instead of Y1, X1, we take the pair of the operators W = ∂
∂θ

and

Z = B(ω−1)Y1 −W = p(θ)
∂

∂ω+

+ Dxp(θ)
∂

∂ω+x

+ D2
x(p(θ))

∂

∂ω+xx

+ ... . (4.7)

We construct a sequence of the operators

C1 = [W,Z], C2 = [W,C1], Ck = [W,Ck−1], k ≥ 2. (4.8)

Since algebra Ln is of finite dimension then there exists a natural number N such

that

CN+1 = µ0Z + µ1C1 + ... + µNCN , (4.9)

and Z, C1, . . ., CN are linearly independent.

Direct calculations show that [Dx,W ] = [Dx, Z] = 0. Therefore, we have

[Dx, Cj] = 0 for all j. It follows from (4.9) that

0 = Dx(µ0)Z + Dx(µ1)C1 + ... + Dx(µN)CN ,

which implies Dx(µj) = 0. Clearly µj = µj(θ) and Dx(µj) = µ′j(θ) = 0. Hence µj

is constant for all j ≥ 0.

Terms before ∂
∂ω+

in (4.9) give the equation

µ0p(θ) + µ1p
′(θ) + ... + µNp(N)(θ) = p(N+1)(θ). (4.10)
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This means p(θ) is a quasi-polynomial, i.e. it takes the form

p(θ) =
s∑

j=1

qj(θ)e
λjθ. (4.11)

¤

Lemma 4.2 Let p(θ) be an arbitrary quasi-polynomial solving a differential equa-

tion of the form (4.10) and which does not solve any equation of this form of less

order. Then the equation t1x = tx + B(t1 − t) with B found from the conditions

B(ω−1) = p(θ),

ω−1 =

∫ θ

0

p(θ̃)dθ̃

admits a nontrivial n-integral.

Proof. Introduce

L(Dx) = DN+1
x − µNDN

x − µN−1D
N−1
x − ...− µ1Dx − µ0.

Equation (4.10) can be rewritten as L(Dx)p(θ) = 0. However L(Dx)p(θ) =

L(Dx)B(ω−1). Since L(Dx)t1x = L(Dx)tx + L(Dx)B(ω) and L(Dx)B(ω) = 0, we

have L(Dx)t1x = L(Dx)tx. But L(Dx)t1x = DL(Dx)tx, therefore DL(Dx)tx =

L(Dx)tx. Denote L(Dx)tx = I so we have DI = I. Hence L(Dx)tx is an n-

integral.¤

Therefore the condition (4.11) is necessary and sufficient for our equation to have

nontrivial n-integral.

Example Take p(θ) = 1
2
eθ + 1

2
e−θ = cosh θ, then

B(ω−1) = cosh θ

ω−1 = sinh θ + c,

or B(ω−1)
2 − (ω−1 − c)2 = 1 which gives B(ω−1) =

√
1 + (ω−1 − c)2. So t1x =

tx +
√

1 + (t1 − t− c)2, where c is arbitrary constant, is Darboux integrable.

Moreover, its general solution is given by t(n, x) = G(x)+nc+
∑n−1

k=0 sinh(x+ck),

where G(x) is arbitrary function depending on x, and ck are arbitrary constants.
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4.2 Case 2) t1x = tx +c1(t− t1)t+c2(t− t1)
2 +c3(t− t1)

Since c1, c2 and c3 are arbitrary constants, let us express the equation as t1x =

tx + c1(t1 − t)t + c2(t1 − t)2 + c3(t1 − t) for simplicity. We have the following

relation between c1 and c2.

Lemma 4.3 If equation t1x = tx+d(t, t1) = tx+c1(t1−t)t+c2(t1−t)2+c3(t1−t)

admits a nontrivial n-integral, then there exists a natural number k such that

(k + 1)c2 − kc1 = 0 . (4.12)

Proof. Introduce vector fields T1 = [X1, Y1], Tn = [X1, Tn−1], n ≥ 2. Direct

calculations show that

[Dx, T1] = (−c1 + 2c2)X1 + (−c1 + 2c2)Y1 + (dt−1(t−1, t)− dt(t−1, t))T1,

[Dx, Tn] = −A
(n)
n−1Tn−1 − A(n)

n Tn, (4.13)

where

A
(n)
j = Xn−j

1 {−C(n, j−1)dt−1(t−1, t)+C(n, j)dt(t−1, t)}, C(n, k) =
n!

k!(n− k)!
.

Since algebra Ln is of finite dimension then there exists a natural number M such

that

TM+1 = µ1T1 + µ2T2 + . . . + µMTM ,

and T1, T2, . . ., TM are linearly independent. We have,

[Dx, TM+1] = [Dx, µ1T1 + µ2T2 + . . . + µMTM ],

that can be rewritten by (4.13) in the following form:

−A
(M+1)
M TM − A

(M+1)
M+1 {µ1T1 + µ2T2 + . . . + µMTM} = (−c1 + 2c2)µ1(X1 + Y1)

+{Dx(µ1)− µ1A
(1)
1 − µ2A

(2)
1 }T1 + . . . + {Dx(µN−1)− µN−1A

(N−1)
N−1 − µNA

(N)
N1
}TN−1

+{Dx(µN)− µNA
(N)
N }TN . (4.14)

We can prove equation (4.12) by comparing the coefficients before linearly inde-

pendent vector fields X1, Y1, Tk, 1 ≤ k ≤ M in the equality (4.14). ¤
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Now introduce ω = t1 − t. Hence we can rewrite the equation t1x = tx + c1(t1 −
t)t + c2(t1 − t)2 + c3(t1 − t) as

ωx = c1ωt + c2ω
2 + c3ω.

In this case we have two important relations;

1) Y0f = Dx ln H, where

H =
ωθ1/ε

(θ + ε)1/ε
, θ =

ω1

ω
, ε =

c1

c2

− 1 . (4.15)

2) Y1f = Dx ln RH−1, where

H−1 = D−1H, R =
θ

ω(θ + ε)
, when ε 6= 0.

Remark 4.4 The case ε = 0, i.e c1 = c2, is not realized due to Lemma 4.3.

The case c2 = 0, due to Lemma 4.3, leads to c1 = 0, and the equation becomes

t1x = tx + c3(t1 − t) with an n-integral I = tx − c3t.

These two relations allow us to simplify the basis operators Y0, Y1, X1. Really, we

take

Ỹ1 = H−1Y1, Ỹ0 = HY0,

and get [Dx, Ỹ0] = 0 and [Dx, Ỹ1] = ΛỸ0, where Λ = −H−1

H
Dx ln(RH−1).

First we will restrict the set of the variables as follows: t1, t, t−1, tx, txx, ... and

change the variables t+ = t, ω−1 = t− t−1 keeping the other variables unchanged.

Then some of the differentiations will change

∂

∂t
=

∂

∂t+
+

∂

∂ω−1

,
∂

∂t−1

= − ∂

∂ω−1

.

So we have X1 = − ∂
∂ω−1

= −X̂1 and

Ỹ1 = H−1

( ∂

∂t+
+

∂

∂ω−1

)
+

∞∑

k=1

H−1D
−1(Y0D

k−1
x f)

∂

∂Dk
xt

.
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Since [Dx, X̂1] = Dx(ln R−1)X̂1, we can introduce X̃1 = 1
R−1

X̂1 and get [Dx, X̃1] =

0. Here R−1 = D−1R.

We introduce vector fields C2 = [X̃1, Ỹ1], C3 = [X̃1, C2], Ck = [X̃1, Ck−1], k ≥ 3.

We have,

[Dx, Cj+1] = X̃j
1(Λ)Ỹ0, j ≥ 1.

Since the algebra Ln is of finite dimension then there is a natural number N such

that

CN+1 = µNCN + ... + µ2C2 + µ1Ỹ1, (4.16)

where Ỹ1, C1, C2, . . . are linearly independent.

Applying the commutator with Dx we get Dx(µj) = 0 for j = 1, ..., N and

(X̃N
1 − µNX̃N−1

1 − ...− µ1)Λ = 0. (4.17)

All the operators in our sequence have coefficients depending on ω, ω−1, t. So µj,

j = 1, ..., N also depend on these variables. But the relation Dxµj(ω, ω−1, t) = 0

shows that
∂µj

∂t
= 0 i.e. µj = µj(ω, ω−1). Since the minimal x-integral for an

equation in case 2)(see Theorem 3.1) depends on variables t, t1, t2, t3, the rela-

tion Dx(µj) = 0 implies that µj is constant for all j.

Now we introduce new variables t̃1, t̃, η as

t̃1 = t1, t̃ = t+,

η = ln
( ω−1

ω−1 + 1
ε
(t1 − t)

)
; or the same ω−1 =

ω

ε

( eη

1− eη

)
. (4.18)

Then

∂

∂ω−1

=
∂η

∂ω−1

∂

∂η
,

∂

∂t+
=

∂

∂t̃
+

∂η

∂t

∂

∂η
,

∂

∂t1
=

∂

∂t̃1
+

∂η

∂t1

∂

∂η
.

In these new variables X̃1 takes the form
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X̃1 =
ω−1(θ−1 + ε)

θ−1

∂

∂ω−1

=
∂

∂η
,

and equation (4.17) becomes

( dN

dηN
− µN

dN−1

dηN−1
− ...− µ1

)
Λ = 0, (4.19)

where

Λ = −H−1

H
(ωx ln R + Dx ln H−1) = −H−1

H

(∂f

∂t
+ D−1 ∂f

∂t1

)

= −H−1

H
(c1 − 2c2)(ω − ω−1). (4.20)

Let us show that c1−2c2 = 0. Assume contrary. It follows from (4.19) and (4.20)

that both functions H−1 and ω−1H−1 should solve the linear differential equation

with constant coefficients:
( dN

dηN
− µN

dN−1

dηN−1
− ...− µ1

)
y(η) = 0.

Therefore, both functions H−1 and ω−1H−1 must be quasi-polynomials in η.

Due to (4.15) and (4.18), we have

H−1 =
ω

ε
eη(1− eη)

1
ε
−1

and

ω−1H−1 =
ω2

ε2
e2η(1− eη)

1
ε
−2 .

To be quasi-polynomials in η it is necessary that ε = 1
m

for some natural m ≥ 2.

We rewrite our vector fields X̃1, Ỹ1 in the new variables;

X̃1 =
∂

∂η
,

Ỹ1 = H−1
∂

∂t̃
+ H−1

( ∂η

∂t+
+

∂η

∂ω−1

) ∂

∂η
+ ...

and study the projection on the direction ∂
∂η

.

The operators X̃1 = ∂
∂η

and H−1

(
∂η
∂t+

+ ∂η
∂ω−1

)
∂
∂η

generate a finite dimensional Lie

algebra over the field of constants. Due to Lemma 3.9 from Chapter 3, in this

case the coefficient H−1
∂η
∂t

should be of one of the forms

c̃1e
α̃η + c̃2e

−α̃η + c̃3 or c̃1η
2 + c̃2η + c̃3, (4.21)
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but we have

H−1

( ∂η

∂t+
+

∂η

∂ω−1

)
=

(
1 +

(1

ε
− 1

)
eη

)
(1− eη)

1
ε ,

with 1
ε

= m ≥ 2 and it is never of the form (4.21). This contradiction shows that

c1 − 2c2 = 0.¤

4.3 Case 3) t1x = tx + A(t− t1)e
αt

Introduce ω = t1 − t and also to express the equation in a simpler form write

B(t1 − t) instead of A(t− t1). We can do this since A is an arbitrary function of

t−t1. Hence we can rewrite the equation as ωx = B(ω)eαt. We will find out when

the equation admits a nontrivial n-integral or the same when the corresponding

Lie algebra Ln is of finite dimension.

Instead of the vector fields Y0 = ∂
∂t1

and Y1 = ∂
∂t

+D−1
(

∂f
∂t1

)
∂

∂tx
+D−1

(
∂fx

∂t1

)
∂

∂txx
+

..., we will use the vector fields Ỹ0 = B(ω)Y0 and Ỹ1 = B(ω−1)Y1. They are more

convenient since they satisfy more simple relations:

[Dx, Ỹ0] = 0, [Dx, Ỹ1] = λ1Ỹ0

as operators acting on the enlarged set t1, t, t−1, t−2, ... ; tx, txx, txxx, ... . Here the

coefficient λ1 is

λ1 =
B(ω−1)

B(ω)

(
B′(ω)− αB(ω)−B′(ω−1)e

−αω−1

)
eαt.

Since the equation is represented as ωx = B(ω)eαt it is reasonable to introduce

new variables as ω+ = t, ω−1 = t− t−1, ω−2 = t−1 − t−2, such that

∂

∂t
=

∂

∂ω+

+
∂

∂ω−1

,
∂

∂t−1

= − ∂

∂ω−1

+
∂

∂ω−2

,
∂

∂t−2

= − ∂

∂ω−2

.

Instead of the operators X1 = ∂
∂t−1

and X2 = ∂
∂t−2

we use new ones

X̃1 = B(ω−1)e
−αω−1 ∂

∂ω−1
and X̃2 = B(ω−2)e

−αω−2 ∂
∂ω−2

. They satisfy relations

[Dx, X̃2] = 0 and [Dx, X̃1] = µX̃2. Here the coefficient µ is

µ = αB(ω−1)e
−2αω−1+αt.
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We construct a sequence by taking X̃1, Ỹ1, C2 = [X̃1, Ỹ1], C3 = [X̃1, C2], Ck =

[X̃1, Ck−1] for k ≥ 3. We can easily check that

[Dx, C2] = −Ỹ1(µ)X̃2 + X̃1(λ1)Ỹ0 = b2X̃2 + X̃1(λ1)Ỹ0,

[Dx, C3] = X̃2
1 (λ1)Ỹ0 − (C2 + X̃1Ỹ1)(µ)X̃2 = X̃2

1 (λ1)Ỹ0 + b3X̃2,

and for any k we have

[Dx, Ck] = X̃k−1
1 (λ1)Ỹ0 + bkX̃2,

which can be proved by induction.

Since the characteristic Lie algebra Ln is of finite dimension then there is a number

N such that

CN+1 = µNCN + ... + µ1Ỹ1 + µ0X̃1, (4.22)

where X̃1, Ỹ1, C1, C2, . . . are linearly independent.

We commute both sides of (4.22) with Dx and get

X̃N
1 (λ1)Ỹ0 + bN+1X̃2 = Dx(µN)CN + ... + Dx(µ1)Ỹ1 + Dx(µ0)X̃1

+µNX̃N−1
1 (λ1)Ỹ0 + ... + µ1λ1Ỹ0 + {

N∑

k=2

bkµk}X̃2.

We collect the coefficients before the operators and get Dx(µj) = 0 for j =

0, 1, ..., N , and

(X̃N
1 − µNX̃N−1

1 − µN−1X̃
N−2
1 − ...− µ1)λ1 = 0. (4.23)

Introduce new variables η, η−1 as solutions of the following ordinary differential

equations
dω−1

dη
= B(ω−1)e

−αω−1 ,
dω−2

dη−1

= B(ω−2)e
−αω−2 . (4.24)

Thus our vector fields are rewritten as

X̃1 =
∂

∂η
, X̃2 =

∂

∂η−1

, Ỹ0 = B(ω)
∂

∂t1
,

Ỹ1 = eαω−1
∂

∂η
+ B(ω−1)

∂

∂ω+

+ Dx(B(ω−1))
∂

∂tx
+ ... .
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By looking at the projection on ∂
∂η

we get an algebra generated by ∂
∂η

and eαω−1 ∂
∂η

containing all possible commutators and all possible linear combinations with

constant coefficients. Due to Lemma 3.9 from Chapter 3, we get that eαω−1 can

be only one of the forms

a) eαω−1 = c1e
βη + c2e

−βη + c3,

b) eαω−1 = c1η
2 + c2η + c3,

where β, c1, c2, c3 are some constants.

The equation B(ω−1) = 1
α

d
dη

eαω−1 implies that

in case a) we have B(ω−1) = (β/α)(c1e
βη − c2e

−βη), or the same

B2(ω) =
β2

α2
{(eαω − c3)

2 − 4c1c2} , (4.25)

and

in case b) we have B(ω−1) = (1/α)(2c1η + c2), or the same,

B2(ω) =
4c1

α2
eαω +

c2
2 − 4c1c3

α2
. (4.26)

In addition to the operators X̃1, X̃2, Ỹ0, Ỹ1 introduced above we will use Ỹ2 =

B(ω−2)D
−1(Y1f)∂tx + B(ω−2)D

−1(Y1fx)∂txx + ... defined as Ỹ2 = B(ω−2)Y2. It

satisfies the commutativity relation

[Dx, Ỹ2] = λỸ1 + ξỸ0 + νX̃1, (4.27)

where

ξ = −B(ω−2)

B(ω)
D−1(Y1f)

= −B(ω−2)

B(ω)
{(−B′(ω−1) + αB(ω−1))e

−αω−1 + B′(ω−2)e
−αω−2−αω−1}eαt.

(4.28)

λ = −B(ω−2)

B(ω−1)
D−1(Y1f) and ν = −λeαω−1 .
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Lemma 4.5 (1) Equation t1x = tx + β
α
(eαω − c3)e

αt admits a nontrivial n-

integral if and only if c3 = ±1.

(2) Equation t1x = tx + c5e
αt, c5 6= 0 does not admit a nontrivial n-integral.

Proof. In this case the equation ωx = B(ω)eαt is reduced by evident scaling of

x and t to

t1x = tx + et, or t1x = tx + et1 + εet.

By induction on n we can easily see that for the equation t1x = tx + et, the basic

vector fields Yn are

Y1 =
∂

∂t
,

Yn = et−(n−1)
∂

∂tx
+ et−(n−1)(tx − et−(n−1))

∂

∂txx

+ . . . .

Since these vector fields Yn, n ≥ 1, are linearly independent then equation t1x =

tx + et does not admit a nontrivial n-integral.

For equation t1x = tx + et1 + εet, the basic vector fields Yn are

Y1 =
∂

∂t
+ et ∂

∂tx
+ et(tx + et)

∂

∂txx

+ . . . ,

Yn = (ε + 1)et−(n−1)
∂

∂tx
+ (ε + 1)et−(n−1)(tx + (1− ε)et−(n−1))

∂

∂txx

+ . . .

We can see that vector fields Yn, n ≥ 1, are linearly independent if ε 6= ±1.

Therefore, if ε 6= ±1, equation t1x = tx + et1 + εet does not admit a nontrivial

n-integral. If ε = −1, the equation becomes t1x = tx + et1 − et, and one of its

n-integrals is I = tx − et. If ε = 1, the equation becomes t1x = tx + et1 + et, and

one of its n-integrals is I = 2txx − t2x − e2t. ¤

Lemma 4.6 Let equation t1x = tx + B(t1 − t)eαt with

(a) B2(ω) = β2

α2{(eαω − c3)
2 − 4c1c2}, or

(b) B2(ω) = 4c1
α2 eαω +

c22−4c1c3
α2 ,

admit a nontrivial n-integral. Then

in case (a), we have, B(t1 − t) = β
α

√
(eα(t1−t) − c3)2 − c2

3 + 1, where c3 is an

arbitrary constant, and

in case (b), we have, B(t1 − t) = ce
α
2
(t1−t), where c is an arbitrary constant.
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In cases (a) and (b) the corresponding n-integrals are I = α
2
t2x − txx + α

2
e2αt and

I = −α
2
t2x + txx.

Proof. Note that

Dxρ = λ, where ρ = −B(ω−2)

B(ω−1)
− eαω−2 .

This implies that the vector field

R2 = Ỹ2 − ρỸ1,

satisfies very simple and convenient relation

[Dx, R2] = ξ̃Ỹ0+νX̃1 , ξ̃ = −B(ω−2)

B(ω)
D−1(Y1f)−ρλ1, ν = eαω−1

B(ω−2)

B(ω−1)
D−1(Y1f).

Study now the sequence

Rj+1 = [X̂, Rj], j ≥ 2, where X̂ = X̃1 + e−αω−1X̃2 .

Direct calculations show that

[Dx, Rn] = X̂(n−2)(ξ̃)Ỹ0 + X̂(n−2)(ν̃)X̃1 + bnX̃2 . (4.29)

Since X̃1, X̃2, Ỹ0, R2 are linearly independent, then there exists a number N ≥ 2

such that

RN+1 = µNRN + µN−1RN−1 + . . . µ2R2 + µ1X̃1,

and

[Dx, RN+1] = [Dx, µNRN + µN−1RN−1 + . . . µ2R2 + µ1X̃1] . (4.30)

We use [Dx, X̃1] = αB(ω−1)e
−2αω−1+αtX̃2, [Dx, X̃2] = 0 and (4.29) to compare

the coefficients before linearly independent vector fields Rk and Ỹ0 in (4.30). We

have, Dx(µk) = 0, k = 2, 3, . . . , N , and

X̂(N−1)(ξ̃) = µNX̂(N−2)(ξ̃) + . . . + µ2ξ̃ . (4.31)

Under the change of variables

η = z, η−1 = z−1 − q(z),
∂q(z)

∂z
= −e−αω−1 ,
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equation (4.31) is reduced to

(DN−1
z − µNDN−2

z − . . .− µ2)ξ̃ = 0, (4.32)

where µk = µk(ω−1, ω−2) = µk(z, z−1). Since Dx(z−1) = 0, Dx(z) = eαt 6= 0

and 0 = Dx(µk) = Dz−1(µk)Dx(z−1) + Dz(µk)Dx(z), then coefficients µk do not

depend on variable z . Since, due to (4.32),

ξ̃ = −B(ω−2)

B(ω)
e−αω−1eαt{−B′(ω−1) + αB(ω−1) + B′(ω−2)e

−αω−2}

+
B(ω−2)

B(ω)
eαt{B′(ω)− αB(ω)−B′(ω−1)e

−αω−1}

+
B(ω−1)

B(ω)
eαω−2eαt{B′(ω)− αB(ω)−B′(ω−1)e

−αω−1}

is a quasi-polynomial in z = η for any ω and t, then d
dω

(ξ̃B(ω)e−αt) is a quasi-

polynomial as well. Hence we have,

(B′′(ω)− αB′(ω)){B(ω−2) + B(ω−1)e
αω−2}

is a quasi-polynomial in z, which is possible only if

B′′(ω)− αB′(ω) = 0, orB(ω−2) + B(ω−1)e
αω−2

is a quasi-polynomial in z.

In case (a) we have,

B′′(ω)− αB′(ω) = −αβc4
e2αω

(
√

(eαω − c3)2 − c4)3
, c4 = 4c1c2,

and in case (b) we have

B′′(ω)− αB′(ω) = −4c2
1α

−2e2αω

(
4c1

α2
eαω +

c2
2 − 4c1c3

α2

)−3/2

Therefore, B′′(ω) − αB′(ω) = 0 if c1c2 = 0 in case (a) and if c1 = 0 in case (b).

Both these cases are considered in Lemma 4.5.

It follows from dq
dz

= −e−αω−1 that, in case (a), if r =
√

c2
3 − 4c1c2 6= 0, then

q(η) = − 1

βr
ln

∣∣∣∣
eβη − p1

eβη − p2

∣∣∣∣ , p1 =
−c3 + r

2c1

, p2 =
−c3 − r

2c1

,
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and if r =
√

c2
3 − 4c1c2 = 0, then

q(η) =
1

c1β(eβη − p1)
.

In case (b), if r1 =
√

c2
2 − 4c1c3 6= 0, then

q(η) = − 1

βr1

ln

∣∣∣∣
η − p∗1
η − p∗2

∣∣∣∣ , p∗1 =
−c2 + r1

2c1

, p∗2 =
−c2 − r1

2c1

,

and if r1 =
√

c2
2 − 4c1c3 = 0, then

q(η) =
1

c1β(η − p∗1)
.

In case (a) we have,

α

β
(B(ω−2)+B(ω−1)e

αω−2) = c1e
βη−1−c2e

−βη−1+(c1e
βη−c2e

−βη)(c1e
βη−1+c2e

−βη−1+c3)

= c1e
βη−1(c1e

βη − c2e
−βη + 1) + c2e

−βη−1(c1e
βη − c2e

−βη − 1) + c3c1e
βη − c3c2e

−βη

= c1e
βz−1−βq(z)(c1e

βz−c2e
−βz+1)+c2e

−βz−1+βq(z)(c1e
βz−c2e

−βz−1)+c3c1e
βz−c3c2e

−βz.

We can see that B(ω−2) + B(ω−1)e
αω−2 is a quasi-polynomial in case (a)

only if r =
√

c2
3 − 4c1c2 = ±1. If r = ±1, function B(t1 − t) becomes

β
α

√
(eα(t1−t) − c3)2 − c2

3 + 1, where c3 is an arbitrary constant, and one of n-

integrals for t1x = tx + β
α
eαt

√
(eα(t1−t) − c3)2 − c2

3 + 1 is I = α
2
t2x − txx + α

2
e2αt.

In case (b) direct calculations show that,

B(ω−2) + B(ω−1)e
αω−2 = Q(z) + P (z, z−1) + J(z, z−1),

where Q(z) is some function depending only on z, P (z, z−1) is a polynomial

function of two variables, and

J(z, z−1) = −2c1

α
z−1q(z)(2c1z + c2).

Since B(ω−2)+B(ω−1)e
αω−2 −P (z, z−1) = Q(z)+J(z, z−1) is a quasi-polynomial

in z, then
∂(Q(z) + J(z, z−1))

∂z−1

=
2c1

α
q(z)(2c1z + c2)

is also a quasi-polynomial in z, which is possible only if r1 =
√

c2
2 − 4c1c3 = 0. If

r1 = 0 we have B(t1 − t) = ce
α
2
(t1−t), where c is an arbitrary constant, and the

corresponding n-integral is I = −α
2
t2x + txx. ¤
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4.4 Case 4) t1x = tx + c4(e
αt1 − eαt) + c5(e

−αt1 − e−αt)

It is clear that this equation has a nontrivial n-integral without any additional

condition. For this equation n-integral is I = tx − c4e
αt + c5e

−αt. It satisfies the

equation DI = I since DI = t1x − c4e
αt1 + c5e

−αt1 = I.

4.5 List of Darboux Integrable Semi-discrete

Equations

Summarizing the reasonings given in the previous sections of Chapter 3 and

Chapter 4, we give the following Theorem.

Theorem 4.7 Chain (3.1) admits nontrivial x- and n-integrals if and only if

d(t, t1) is one of the kind:

(1) d(t, t1) = B(t1 − t), where B(t1 − t) is given in implicit form B(t1 − t) =
d
dθ

P (θ), t1 − t = P (θ), P (θ) is a quasi-polynomial on θ,

(2) d(t, t1) = C1(t
2
1 − t2) + C2(t1 − t)

(3) d(t, t1) =
√

C3e2αt1 + C4eα(t1+t) + C3e2αt,

(4) d(t, t1) = C5(e
αt1 − eαt) + C6(e

−αt1 − e−αt),

where α 6= 0, Ci, 1 ≤ 1 ≤ 6, are arbitrary constants. Moreover, some nontrivial

x-integrals F and n-integrals I in each of the cases are

i) F = x − ∫ t1−t ds
B(s)

, I = L(Dx)tx, where L(Dx) is a differential operator

which annihilates d
dθ

P (θ) where Dxθ = 1.

ii) F = (t3−t1)(t2−t)
(t3−t2)(t1−t)

, I = tx − C1t
2 − C2t,
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iii) F =
∫ t1−t e−αsds√

C3e2αs+C4eαs+C3

− ∫ t2−t1 ds√
C3e2αs+C4eαs+C3

, I = 2txx − αt2x −
αC3e

2αt,

iv) F = (eαt−eαt2 )(eαt1−eαt3 )
(eαt−eαt3 )(eαt1−eαt2 )

, I = tx − C5e
αt − C6e

−αt.



Chapter 5

Conclusion

In this thesis we studied the problem of classification of Darboux integrable non-

linear semi-discrete chains of hyperbolic type. We used an approach based on the

notion of characteristic Lie algebra. At first, we gave the properties of charac-

teristic Lie algebras for the equation t1x = f(tx, t, t1) and passed to analyze the

special form of this equation which is

t1x = tx + d(t, t1). (5.1)

We found out all equations of this form, which are Darboux integrable. To

be Darboux integrable, equation (5.1) should admit nontrivial x- and n-integrals

or equivalently characteristic Lie algebras of it should be of finite dimensions.

Hence we firstly find equations admitting nontrivial x-integrals and then ana-

lyzed these equations whether they have also nontrivial n-integrals. Finally, we

gave a complete list of Darboux integrable hyperbolic type chains (5.1). We

showed that the method of characteristic Lie algebras provides an effective tool

to classify integrable discrete chains. This method did not get much attention in

the literature. As we know, there are only two studies (see [15] and [19]), where

the characteristic Lie algebras are used to solve the classification problem for the

partial differential equations and systems. It is interesting that the first paper

was published in 1981 and the second one twenty five years later.
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[3] M. Gürses, A. Karasu, Degenarate Svinolupov KdV Systems, Physics Letters

A, 214, 21-26 (1996).
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