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ABSTRACT

CHARACTERISTIC LIE ALGEBRA AND
CLASSIFICATION OF SEMI-DISCRETE MODELS

Asli Pekcan
Ph.D. in Mathematics
Supervisor: Prof. Dr. Metin Giirses
September, 2009

In this thesis, we studied a differential-difference equation of the following form
t:(n+1,2) = f(t(n,x), t(n+ 1, 2),t.(n,x)), (1)

where the unknown ¢ = ¢(n, z) is a function of two independent variables: discrete
n and continuous z. The equation (1) is called a Darboux integrable equation
if it admits nontrivial 2- and n-integrals. A function F(z,t,t41, {49, ...) is called
an z-integral if D, F' = 0, where D, is the operator of total differentiation with
respect to z. A function I(xz,t,t,,tss, ...) is called an n-integral if DI = I, where
D is the shift operator: Dh(n) = h(n + 1).

In this work, we introduced the notion of characteristic Lie algebra for semi-
discrete hyperbolic type equations. We used characteristic Lie algebra as a tool to
classify Darboux integrability chains and finally gave the complete list of Darboux
integrable equations in the case when the function f in the equation (1) is of the
special form f =t,(n,z) + d(t(n,x),t(n + 1,x)).

Keywords: Darboux integrability; Characteristic Lie Algebra; First Integrals.
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OZET

KARAKTERISTIK LIE CEBIRI VE YARI-AYRIK
MODELLERIN SINIFLANDIRILMASI

Asli Pekcan
Matematik, Doktora
Tez Yoneticisi: Prof. Dr. Metin Giirses
Eyliil, 2009

Bu tezde
t:(n+1,2) = f(t(n,x),t(n+1,2),t.(n,z)), (1)

halindeki diferansiyel-fark denklemi tizerinde galigtik. Burada ¢ = t(n,x) ayrik
n ve siirekli = bagimsiz degiskenlerinin bir fonksiyonudur. Denklem (1), eger
basit olmayan z- ve n-integrallerini kabul ediyorsa, Darboux integrallenebilir
denklem olarak adlandirihr.  F(z,n,t,t4q,t4e,...) fonksiyonu eger D, F = 0
kogulunu saghyorsa denklem (1)’in z-integrali olarak isimlendirilir. Burada D,,
x’e gore toplam tiirev operatorudiir. I(z,n,t, t,,t,,,...) fonksiyonu eger DI = I
sartin1 saghyorsa denklem (1)’in n-integrali olarak adlandirihir. Burada D,
Dh(n) = h(n + 1) seklindeki denklem (1)’in kaydirma operatériidiir.

Bu ¢alismada, yari-ayrik hiperbolik tipindeki denklemler icin karakteristik Lie
cebir mefhumunu tanittik. Karakteristik Lie cebirini Darboux integrallenebilir
zincir denklemlerini siniflandirmak i¢in kullandik ve son olarak, (1) denklemindeki
f fonksiyonunun, f = t,(n,z) + d(t(n,z),t(n + 1,z)) 6zel haline sahip oldugu
durumdaki Darboux integrallenebilir denklemlerin tam listesini verdik.

Anahtar sozcikler: Darboux integrallanebilirligi; Karakteristik Lie Cebiri; Birinci
Integraller.
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Chapter 1

Introduction

In the literature, there are various definitions for integrability. Different ap-
proaches and methods are applied for classifying different types of integrable
equations (see [1], [2]-[5], [6], [7], [8] and [9]).

Investigation of the class of hyperbolic type differential equations of the form

Ugy = f($ayauau:c>uy) (1'1)

has also a very long history. There are various approaches to seek for particu-
lar and general solutions of these kind equations. In the literature we can find
several definitions of integrability of the equation (1.1). According to one given
by G. Darboux (see [10], [11]), equation (1.1) is called integrable if it reduces
to a pair of ordinary (generally nonlinear) differential equations or, more exactly
if there exist functions F(z,y,u, Uz, Usz, ..., Df'u) and G(x,y, u, uy, Uy, ..., Dju)
such that arbitrary solution of (1.1) satisfies D,F' = 0 and D,G = 0, where D,
and D, are operators of differentiation with respect to x and y. Functions F
and G are called y- and z-integrals of the equation (1.1) respectively. The fa-
mous Liuoville equation u,, = e* provides an illustrative example of the Darboux

integrable hyperbolic type differential equation.

An effective criterion of Darboux integrability has been proposed by G. Dar-

boux himself. Equation (1.1) is integrable if and only if the Laplace sequence of

1



CHAPTER 1. INTRODUCTION 2

the linearized equation terminates at both ends. The definition of the Laplace
sequence and the proof of the criterion can be found in [12], [13]. A complete list

of the Darboux integrable equations of the form (1.1) is given in [14].

In the beginning of the 80’s, A. B. Shabat and R. I. Yamilov developed an
alternative method to the classification problem based on the notion of the char-
acteristic Lie algebra of hyperbolic type systems in [15],[16]. In these articles, an
algebraic criterion of Darboux integrability property has been formulated. An

important classification result was obtained in [15] for the exponential system

u;y = exp(anu' + apu® + ...apu™), i=1,2,..n. (1.2)

It was proved that system (1.2) is Darboux integrable if and only if the matrix
A = (a;;) is the Cartan matrix of a semi-simple Lie algebra. Properties of the

characteristic Lie algebras of the hyperbolic systems

ul = ;kujuk7 1,7, k=1,2,..n (13)

zy

have been studied in [17],[18]. The idea of adopting the characteristic Lie algebras
to the problem of classification of the hyperbolic type equations of the form
Uzy = f(u, uy,), which are integrated by means of the inverse scattering transforms
method is discussed by A. V. Zhiber and R. D. Murtazina in [19)].

The method of characteristic Lie algebras studied in this thesis is closely
connected with the symmetry approach [6] which is proved to be very effective
tool to classify integrable nonlinear equations of evolutionary type [8], [7], [20],
[5] (see also the survey [9] and references therein). However this method meets
very serious difficulties when applied to hyperbolic type models. After the papers

[21] and [22] it became clear that this case needs alternative methods.

In 2005, 1. Habibullin introduced the notion of characteristic Lie algebra for
fully discrete hyperbolic equations in [23]. In our later works with I. Habibullin
and Natalya Zheltukhina (see [24, 25, 26]), an algorithm of classification of in-
tegrable semi-discrete chains is studied based on the notion of characteristic Lie

algebras of the semi-discrete chains of the form

t:(n+1,2) = f(t(n,z),t(n+ 1,2),t.(n,x)). (1.4)
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Efficiency of the algorithm is approved by applying to a particular case of chain
(1.4):
t:(n+1,2) =t,(n,x) +d(t(n,z),t(n + 1, x)). (1.5)

This thesis is completely based on four articles of us which are [24, 25, 26] and
[27] that is not published yet.

The thesis is organized as follows. In Chapter 2, we basically gave the no-
tion of characteristic Lie algebra. In Section 2.1, we introduced characteristic Lie
algebras for hyperbolic type differential equations having continuous variables.
Section 2.2 is devoted to explain characteristic Lie algebras for semi-discrete hy-
perbolic type equations having independent variables: one continuous x and one
discrete n. There is also a subsection here, which gives a special case: equation

with characteristic Lie algebras of the minimal possible dimensions.

Semi-discrete hyperbolic type equations are Darboux integrable if and only if
their characteristic Lie algebras in both direction n and x are of finite dimension
or equivalently, they have both nontrivial n- and z-integrals. Hence in Chapter 3,
we found the equations which are admitting nontrivial z-integrals. In Chapter 4,
we have analyzed these equations one by one and checked whether they also admit
nontrivial n-integrals or under what conditions they have nontrivial n-integrals.
Finally, we gave the complete list of Darboux integrable equations of the form
(1.5).



Chapter 2

Characteristic Lie Algebra

2.1 Characteristic Lie Algebras for Continuous

Case

Almost all the materials in this Chapter comes from [25].

The integrability of hyperbolic type differential equations having continuous vari-

ables of the form

Usy = [(2, Y, U, Ug, uy) (2.1)
has been discussed for so many years. According to G. Darboux’s integrability
definition, equation (2.1) is called integrable if it is reduced to a pair of ordinary
(generally nonlinear) differential equations, or more exactly, if its any solution
satisfies the equations of the form [10], (see also [11])

F(2,y, U, U, Uy, ..., DJ'u) = a(z),  G(z,y,u, Uy, Uyy, ..., Dju) = bly), (2.2)

for appropriately chosen functions a(x) and b(y). Here D, and D, are operators
of differentiation with respect to x and y, u, = D,u, uz, = D?u, u, = Dyu,
Uyy = Dju and so on. Functions F' and G are called y- and z-integrals of the
equation respectively. They are also called as "first integral”’s of the equation
(2.1).
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Let us give a brief explanation of the notion of characteristic Lie algebra by using
y- and z-integrals. We begin with the basic property of the first integrals. Clearly,

each y-integral satisfies the condition
DyF($, Y, Uy Uy, Ugg, -, D;nu) =0.

We take the derivative by applying the chain rule and we define a vector field X;
such that

0 0 0 0

+ >F ~0. (2.3)

Hence the vector field X; solves the equation X;F = 0. Note that the function
F' does not depend on u,. Hence F' should satisfy one more equation XoF = 0,

where

0

Xy = —.
2 Ou,

The commutator of these two operators will also annulate F'. Moreover, for any
operator X from the Lie algebra generated by X; and X5, we get XI = 0.
This Lie algebra is called characteristic Lie algebra of the equation (2.1) in the
direction of y. We can define characteristic Lie algebra in the x-direction in
a similar way. Now by virtue of the famous Jacobi theorem, equation (2.1) is
Darboux integrable if and only if both of its characteristic Lie algebras are of
finite dimension. Equivalently, equation (2.1) is Darboux integrable if it has
nontrivial - and y-integrals. The best known examples of Darboux integrable
equations are the wave equation u,, = 0 with z-integral G = u, and y-integral

2

F = u, and the Liouville equation u,, = e* with z-integral G = u,, — %

y-integral F' = u,, — % In [15] and [16], the characteristic Lie algebras for the

and

systems of nonlinear hyperbolic equations and their applications are studied.

In the following section, we will define characteristic Lie algebras for the semi-

discrete hyperbolic type equations.
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2.2 Characteristic Lie Algebras for Semi-Discrete

Case

Here we will study semi-discrete chains of the following form
t:(n+1,2) = f(t(n,z),t(n+ 1,2),t.(n,x)) (2.4)

from the Darboux integrability point of view. The unknown t = t(n,x) is a
function depending on two independent variables: one discrete n and one con-

tinuous . Chain (2.4) can also be interpreted as an infinite system of ordi-

[e.9]
n=—oo"

nary differential equations for the sequence of the variables {t(n) Here
[ = f(t(n,z),t(n + 1,2),t.(n,z)) is assumed to be locally analytic function of
three variables satisfying at least locally the condition

of

i 70 (2.5)

Subindex denotes a shift or a derivative, for instance, t, = t(n + k,z) and t, =
%t(n, x). Below we use D to denote the shift operator and D, to denote the
a-derivative: Dh(n,z) = h(n+1,z) and D,h(n,z) = £h(n,z). For the iterated
shifts we use the subindex D’h = h;. Set of all the variables {t;}3> __, {D"t}%_,
constitutes the set of dynamical variables. Below we consider the dynamical

variables as independent ones.

Let us give the definition of Darboux integrability for semi-discrete hyperbolic
type equations. Before that we should introduce the notions of the first integrals
i.e. z- and n-integrals for the semi-discrete chain (2.4). The z-integral is defined
similar to the continuous case. We call a function F' = F(z,t,t1y,t4s,...) de-
pending on a finite number of shifts z-integral of the chain (2.4), if D, F = 0. We
also define n-integral similarly. We call a function I = I(x,t,t,,t.,,...) n-integral
of the chain (2.4) if it is in the kernel of the difference operator: (D — 1)I =0
i.e. m-integral should not change under the action of the shift operator DI = I,
(see also [28]). Each solution of the integrable chain (2.4) satisfies following two

equations:

Iz,n,t,te, tes,...) = p(x), F(x,n,tti,tie,...) =q(n)
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with properly chosen functions p(x) and ¢(n).

Definition. Chain (2.4) is called integrable (Darboux integrable) if it admits a

nontrivial n-integral and a nontrivial z-integral.

Darboux integrability implies the so-called C-integrability(solvability via an ap-
propriate change of variables). All Darboux integrable chains of the form (2.4) are
reduced to the d’Alembert wave equation wy, —w, = 0 by a Cole-Hopf type differ-
ential substitution w = F+I. Indeed, (D—1)D,(w) = (D—1)D,F+D,(D—-1)I =
0.

Now let us turn back to z-integral F' = F(x,n,t,t1y, t1o,...) to introduce charac-
teristic Lie algebra in the direction z. Since F' satisfies D, F' = 0, we can expand

this equation by using the chain rule, and we get KoF' = 0, where

9 9 9
K= 2
= o2 o +f&1+gm], ot 9t

Note that the function F' does not depend on the variable ¢,. Hence F' should

+ fig—+ 9 ... (2.6)

also satisfy X F' = 0 where

)
X=gr (2.7)

Vector fields Ky and X as well as any vector field from the Lie algebra generated
by them annulate F. This algebra is called the characteristic Lie algebra L, of
the chain (2.4) in the z-direction. The following result is essential, its proof can
be found in [15].

Theorem 2.1 FEquation (2.4) admits a nontrivial x-integral if and only if its Lie

algebra L, is of finite dimension.

Now we will examine the n-integral I = I(x,n,t,t;,ts, ...) to introduce charac-
teristic Lie algebra in the direction n. By the definition we know that DI = [.

We can write it in an enlarged form
Hx,n+ 1ty f, foo fow, ) = Hx,n,t by, tes, ... (2.8)

Notice that equation (2.8) is a functional equation, the unknown is taken at two

different ”"points”. This causes the main difficulty in studying discrete chains.
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Such problems occur when we try to apply the symmetry approach to discrete
equations (see [29], [30]). However the notion of the characteristic Lie algebra

provides an effective tool to investigate chains.

We introduce vector fields in the following way. We focus on the equation (2.8).
The left hand side of the equation contains the variable ¢; while the right hand
side does not. Hence, the total derivative of the function DI with respect to
t; should vanish. In other words, the n-integral is in the kernel of the operator
Y, = D*1%D. Similarly the function [ is also in the kernel of the operator
Y, = D‘za%DQ. It is because the right hand side of the equation D?*I = [
which immediately follows from (2.8) does not depend on t;, so the derivative
of the function D?I with respect to t; vanishes. If we proceed this way, we can
easily prove that the operator Y; = DJ %Dj solves the equation Y;I = 0 for any

natural j. It is clear that we have the relation Y; 1 = D'Y;D for any natural j.

So far we have shifted the argument n forward, but we can also shift it backward
and use the equation (2.8) written as D~'I = I. We rewrite the original equation

(2.4) in the form
tore = glt,t_1,1,). (2.9)

We can do this because of the condition % # 0 assumed at the beginning of the

section. We again enlarge the equation D™'I = I and get
I(x,n—1,t 1,9, 9z, Gozy ---) = I(x,n, b,y by ... (2.10)

We use the similar approach as before. The left hand side of the last equation
depends on t_q, but the right hand side does not. Therefore the total derivative

1

of D' with respect to t_; is zero, i.e. the operator Y_; := D%D‘ solves

the equation Y_1/ = 0. Moreover, the operators Y_; = DJ %D‘j also satisfy

similar conditions Y_;I = 0 for any natural number j.

If we summarize the reasonings above we can conclude that the n-integral I is
annulated by any operator from the Lie algebra L, generated by the operators
23

{,Y 0, Y 1,V (0, Y, Y1, Y5, ...} (2.11)
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where Yy = a% and Y. o = %. It is clear that we have Yo/ = 0 and Y_of =0

since the function I depends on neither ¢; nor ¢_;.

The algebra L,, consists of the operators from the sequence (2.11), all their pos-
sible commutators, and linear combinations with coefficients depending on n and
x. Obviously equation (2.4) admits a nontrivial n-integral only if the dimension
of the characteristic Lie algebra L, is finite. But it is not clear that the finiteness
of dimension L, is essential for existence of nontrivial n-integrals. Because of
this we introduce another Lie algebra called the characteristic Lie algebra of the
equation (2.4) in the direction n. First we define differential operators

X, 0

J at,j

for y = 1,2, ... in addition to the operators Y, Y5, ....

The following theorem defines the characteristic Lie algebra in the direction n.

Theorem 2.2 Fquation (2.4) admits a nontrivial n-integral if and only if the
following two conditions hold:

1) Linear envelope of the operators {Y;}° is of finite dimension, denote this
dimension N ;

2) Lie algebra L, generated by the operators Y1,Ys, ... YN, X1, Xo, ..., Xy is of
finite dimension. We call L,, the characteristic Lie algebra of (2.4).

Remark 2.3 It is easy to prove that if dimension of {Y;}5° is N then the set

{Y; 1V constitute a basis in the linear envelope of {Y;}5°.

In the next two sections, we will analyze the characteristic Lie algebras L,, and
L, by giving some properties of these algebras. In the Section 2.2.1, which is
devoted to characteristic Lie algebra L,,, we will give the proof of Theorem 2.2 in
detail.
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2.2.1 Characteristic Lie Algebra L,

In this section we study some properties of the characteristic Lie algebra L,
introduced in the Theorem 2.2. We will firstly begin with the proof of the Remark

2.3. It immediately follows from the following Lemma.

Lemma 2.4 If for some integer N the operator Y1 is a linear combination of

the operators with less indices:
YN+1 = 041}/1 + 042}/2 + ...+ OzNYN (212)
then for any integer j > N, we have a similar expression

Y, =0iY1 + BoYo + ... + By Y. (2.13)

Proof. We apply the property Vi1 = D7V, D to the expression (2.12) and get
Yyio =D Ha)Yo+ D ao)Ys + ... + D Hay)(a Y1 + ... + ayYy). (2.14)

By using mathematical induction we can easily complete the proof of the Lemma.

O

Lemma 2.5 The following commutativity relations take place:

[%7 Y—O] - 07 [%7 }/1] = 07 [Y—Ov Y—l] =0.

Proof. Recall that Y, = aitl and Y_g = %. The first of the relations is obvious.
In order to prove the others we should find the coordinate representation of the
operators Y] and Y_; acting in the class of locally smooth functions of the variables
x,n,t,ty, tee, ... By applying V) to a function H depending on these variables,

we get

d
YIiH = D '—DH(t,t, ty,..)

dt,
D—lditlH(tl,f, fur o)
_ {% 4 D%S—i)% T Dl@{f) 82” T ...}H(t,tz,tm, 2,
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which yields

Vi = % +D1<g—£>% +D1<g{f)azz +D1(8aj7;”j‘>atiz + ... (2.15)

Now note that all of the functions f, f,, fiz,... depend on the variables
t1,t,ty, tes, ... and do not depend on t5 hence the coefficients of the vector field Y;
do not depend on t;. Therefore the operators Y; and Y, commute. In a similar
way we find the coordinate representation of Y_; as

Yo = % i D(aii)a% + D(gtg_i) azw * D(ggic) 8tiw T (216)

and clearly [Y_o,Y_1] = 0.00

The following Lemma is very important since we will use it for several times while

studying the characteristic Lie algebra L,.

Lemma 2.6 (1) Suppose that the vector field

0 0 9]
Y = oz(())a + a<1)8_t$ + a(2)8tm + ..y

where o, (0) = 0, solves the equation [D,,Y] =0, then Y = a(0)2.
(2) Suppose that the vector field

) )
Y =a(l) - +a(2)5

+ a(3) +

oL

solves the equation [D,,Y] = hY , where h is a function of variables t, t,, tu.,

ceey t:l:l; t:tQ, ceey then' Y = 0.

Proof. The proof of Lemma 2.6 can be easily derived from the following formula

DY) = ~(a0)i+a()fe) g+ (0a(0) — (1) 5
+ (ag(l) — a(2))aitx + (az(2) — a(3))aix + ... (2.17)

Let us just give the proof of part (1). Since the condition [D,, Y] = 0 holds, the

terms before the partial differentials should be zero. In part (1), we have also

9

5, we have a(1) = 0.

the condition «,(0) = 0. Hence from the terms before
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Since a(1) = 0, the terms before a% gives us a(0) = 0. We proceed in this way
and we get all a(i) =0,7=0,1,2,.... Hence the vector field Y = 0 in part (1).

Similarly, we can prove the second part of the Lemma. [

In the formula (2.15) we have already given the coordinate representation of the

operator Y;. We can check that the operator Y5 is a vector field of the form

Yy = D' (A3, + D (Vi(f)dh. + D7 (Vifer))hss + e (218)

It immediately follows from the equation Y, = D~'Y; D and the coordinate rep-

resentation of Y;. By induction we can prove similar formulas for arbitrary j:

Yis1 = D7 (Y3(f))0h, + D (Y;(fo))Okse + DM (Y (fo0))Otr + - (2.19)

Lemma 2.7 For any n > 0, we have
[D,,Y,] = ZD (Y, . (2.20)

In particular,

(D, Yol = Yo ()Yo , [De,Yi] = =Yi(f)Yo — DH(Yo(f))Y. (2.21)

Proof. We have,

[Datai/b]H(tut17t$7t$:B7'“> - Dathl _}/O-D:EH

0
—(Hyt, + Hyty, + ...)

= (Hyte + Hyptip +...) — B
t1

= Ht1ft1 = (f>}/bH

i.e. the first equation of (2.21) holds. By (2.15), (2.17) and [D,, Yo] = —Yo(f) Yo,

we calculate [D,, Y]] as

Da i) = =f) g = D™ o)) 31 + DD Yil - + D7 D Vil hagi .
= KU = D) — D DY) 5 — D o)) g =

= —Yi(f)Yo — D' (Yo(f)Y1.
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It is easy to see by mathematical induction that on the space of smooth functions

of t,ty,t,, 1.z, ... we have

(D, Y,] ZD

for any integer n > 0. Hence the Lemma is proved. [
Lemma 2.8 Lie algebra generated by the operators Yy, Ys, Y3, ... is commutative.

Proof. By Lemma 2.5, [Y],Y;] = 0. As we said in the proof of this Lemma,
the reason for this equality is that the coefficients of the vector field Y; do not
depend on the variable ¢;. They might depend only on t_1, ¢, t., toe, towe, - - - -
The coefficients of the vector field Y; being of the form D~!(Y;(D? f)) which is
seen in (2.18) also do not depend on the variable ¢;. They might depend only
on t_g, t_q, t, ty, tew, tugs, -... Therefore, we have Y3, Yy] = 0. Continuing in
that way we see that for any n > 1 the commutativity relation [Y;,, Yp] = 0 holds.

Consider now the commutator [Y,,, Y, 1], n > 1, m > 1. We have,
Yo, Yaim] = [D7"YoD", D™y, D]
= [D™"Y,D", D~"D~"Y,D™D"|
= [D"Y,D",D"Y,,D"]
— D[Yp, V] D" =0,

that finishes the proof of the Lemma. [
Lemma 2.9 If the operator Yo =0 then [X;,Y1] = 0.

Proof. By the coordinate representation of Y3 given in (2.18), Y5 = 0 implies
that Yi(f) = 0. Due to (2.15), Y;(f) = 0 means that f; + D~'(f;,)f;, = 0. Hence

~1(fi,) does not depend on ¢t i.e. X;(D7!(f;,)) = 0. By using Lemma 2.7
and the fact that [D,, X;] = 0, we conclude that

[D:L“? [XhYlH = _[XlﬂDil(fh)Yl] = _D71<ft1)[X17Yl]a

which means [D,,[X1,Y1]] = —D7'(f,)[X1,Y1]. By Lemma 2.7, part (2), it
follows that [X;,Y;] =0. O
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Lemma 2.10 The operator Yo = 0 if and only if we have

fe+ DN (fu) fro = 0. (2.22)

Proof. Assume Y, = 0. By (2.18), Yi(f) = 0. Due to (2.15), equality Yi(f) =0

is indeed another way of writing the equation (2.22).

Conversely, assume (2.22) holds, i.e. Yi(f) = 0. It follows from (2.18) that
Ys2(f) = 0. Due to Lemma 2.7, we have [D,,Ys] = —D7?(Yy(f))Y> that implies,
by Lemma 2.6, part (2), that Yo = 0. O

Corollary 2.11 The dimension of the Lie algebra L, associated with n-integral
is equal to 2 if and only if (2.22) holds, or the same Yy = 0.

Proof. By Theorem 2.2, the dimension of L,, is 2 if and only if Y5 = A\ Xj + 1Y)
and [X1,Y7] = M X; 4 poY; for some A\;, g, i =1, 2.

Assume the dimension of L,, is 2. Then Y5 = A; Xy + u1Y;7. Since among X7, Y7,
Y, differentiation by ¢_; is used only in X, differentiation by ¢ is used only in Y7,
then A; = py = 0. Therefore, Y5 = 0, or the same, by Lemma 2.10, (2.22) holds.

Conversely, assume (2.22) holds, that is Yo = 0. By Lemma 2.9, [X;,Y]] =
0. Since Y5 and [X7,Y]] are trivial linear combinations of X; and Y; then the

dimension of L,, is 2. O
Now we can pass to the proof of Theorem 2.2.

Proof of Theorem 2.2. Suppose that there exists a nontrivial n-integral I =
I(t,ty, ..., t;n) for the equation (2.4), here t;) = Dt for any j > 0. Then all the
vector fields from the Lie algebra M generated by {Y;, X;} for j = 1,2, ... and
k =1,..., Ny, where N is arbitrary constant satisfying No > N annulate I. We
will show that dimension of the Lie algebra M is finite. We consider first the
projection of the algebra M given by the operator Py:

-1 -1

PN( 3 :U(i)@tijtz:x(i)@tm) -y av(i)(’?tﬁ—Z:x(z’)@t[i]. (2.23)

i=— N> 1=—Ns
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Let L,(N) be the projection of the algebra M. Then evidently, for any Z, in
L,(N) the equation ZyI = 0 is satisfied. Obviously, dim L,(N) < oco. Let the
set {Zo1, Zo2, ---, Zon, } form a basis in L, (V). Hence we can represent any Zj in

L,(N) as a linear combination
Z[) = a1Z01 + OéQZ[)Q —+ ...+ OlezONl. (224)

Suppose that the vector fields Z, 7y, ..., Zy, in M are connected with the op-
erators Zy, Zo1, .-, Zon, in Ly(N) by the formulas Py(Z) = Zy, Pn(Z1) =
Zo1s -, PN(Zn,) = Zon,. We have to prove that Z can be presented as a lin-
ear combination

Z:olel+ozng+...+aNlZNl. (225)

In the proof, we will use the following Lemma.

Lemma 2.12 Let Iy = D,I and I is an n-integral. Then for each Z in M we
have Z1; = 0.

Proof. We should show that Iy = D, is also an n-integral for the algebra M.
Really
DI, =DD,I=D,DI =D,I = 1.

Since [; is also n-integral then for each Z in M we have ZI; = 0. [J

We apply the operator (Z — o121 — agZs — ... — an, Zn, ) to the function I; =
Il<t7tw7t:m?7 "')t[N-‘y-l])a

(Z—Oqu—OCQZQ—...—OéNIZN1>11 =0. (226)
We can write (2.26) as

(Z() — 061Z01 — O[QZOQ — ... OZN1Z0N1>11 + (X(N + 1) — Oéle(N + ].)
- OjQXQ(N + 1) — ... aN1XN1(N+ 1))

Il = 07
LN 11]

(2.27)

where X(N+1), X;(N+1), ..., Xn, (N +1) are the coefficients before d;, ,, of the
vector fields Z, Zy, Z, ..., Zy,. The first summand in (2.27) vanishes by (2.24).

1
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In the second one the factor =—2—1I, = =2—T is not zero. So we end up with the
Ot +1] Ot

equation
X(N+1D) = Xqi(N+1) +aXo(N+1)+ ... +an, Xy, (N +1). (2.28)
Equation (2.28) shows that
Prnir(Z) = a1 Prysi(Z1) + s Pyy1(Z2) + oo+ aony Py (Z,). (2.29)

So by applying mathematical induction, we can prove the formula (2.25). Thus
the Lie algebra M is of finite dimension. Now we construct the characteristic
algebra L, by using M. Since dim M < oo, the linear envelope of the vec-
tor fields {Y;}{° is of finite dimension. We choose a basis in this linear space
consisting of Y}, Y5, ..., Ys for S < N < N,. Then the algebra generated by
Y1,Ys, .. Ye, X1, Xo, ..., Xg is of finite dimension, because it is a subalgebra of

M. This algebra is just characteristic Lie algebra of the equation (2.4).

Suppose that conditions (1) and (2) of the Theorem 2.2 are satisfied. So there
exists a finite dimensional characteristic Lie algebra L, for the equation (2.4).
We show that in this case equation (2.4) admits a nontrivial n-integral. Let
Np is the dimension of L, and N is the dimension of the linear envelope of
the vector fields {Y;}52,. We take the projection L,(N2) of the Lie algebra L,

defined by the operator Py, defined by the formula (2.23)with N, instead of N.
~1

N2
Evidently, L, (NN3) consists of the finite sums Z, = Z x(i)@ti—i-z x(i)0y, where
i=0

i=—N

N = Ny—Nj. Let Zy, ..., Zon, form a basis in L,,(N3). Then we h;we N, = N+ N,
equations Zy;G =0, 7 = 1,..., Ny, for a function G depending on N + Ny +1 =
Ni+ 1 independent variables. Then due to the well-known Jacobi theorem, there
exists a function G = G(t_n,t-n41, -, t—1, L, ta, taa, ..., L ny)), Which satisfies the
equation ZG = 0 for any Z in L,. But really it does not depend on t_y,
vy 21 because X;G = 0, XoG = 0, ...., XyG = 0. Thus the function G is
G = G(t, tz, taa, ... tny]). Such a function is not unique but any other solution of
these equations, depending on the same set of the variables, can be represented

as h(G) for some function h.

Note one more property of the algebra L,,. Let m be a map which assigns to each

Z in L, its conjugation D~'ZD. Evidently, the map 7 acts from the algebra
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L,, into its central extension L, @ {Xyy1}, because for the generators of L, we
have D7'Y;D = Y;;; and D7 'X;D = X,;;. Evidently, [Xy;1,Y;] = 0 and
[Xnt1,X;] = 0 for any integer j < N. Moreover Xy 1 F = 0 for the function
G = G(t,tg, ..., tn,)) mentioned above. This fact implies that ZG; = 0 for
G7 = DG and for any vector field Z in L,. Really, for any Z in L, one has
a representation of the form D~'ZD = 7+ AX 11 where Z in L, and X is a

function. So
ZG = ZDG = D(D'ZDG) = D(Z 4+ AXn11)G = 0. (2.30)

Therefore Gy = h(G) or DG = h(G). In other words function G = G(n) satisfies
an ordinary difference equation of the first order. Its general solution can be
written as G = H(n, ¢) where H is a function of two variables and c is an arbitrary
constant. By solving the equation G = H(n,c) with respect to ¢ one gets ¢ =
F(G,n). The function F' = F(G,n) found is just n-integral searched. Actually,
DF(G,n) = Dc = ¢ = F(G,n). So DF = F. This completes the proof of the
Theorem 2.2. [J

2.2.2 Characteristic Lie Algebra L,

Here we study some properties of the characteristic Lie algebra L,. Consider an

infinite sequence of the vector fields defined as follows,
Klz[X,KQ], KQZ[X7K1], ceey Kn+1:[X,Kn], TLZl, (231)
where K and X are defined by (2.6) and (2.7).

It is easy to see that
0

0 0 0
K, = % +X(f)—(%l +X(g)at_1 Jr)((fl)—at2 +X(g_1)at_2 +...,  (2.32)
Ko=S {0 L cxrn 2L s @)
= ot RS B
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Lemma 2.13 We have,

1 ly
DXD'=_—-X,  DK,D'=K,— MX, (2.34)
fr fr
1
DK D = Lk, — It ftxf“x DKyD™ = Ky — Juute e | ft”;;ftX,
fr. f2 2 fi I,
(2.35)
1 o fuut (ftt ﬁu) ft(ftt fttt)
A e A R 7
(2.36)

Proof. In the proof of this Lemma we will use A and A* to denote the func-
tions A(x,t,ty,t1,t 1,ta,t o,...) and DA = A(z,t_1,9,t,t 9,11,t 3,...) Te-

spectively.
Since

OA* 0A
DXD'A=DA; =D {gtz 99 } D(gtz)at = D(g:,) XA

1
and D(g;,) = 7 then DXD™1A = iXA.

122

Since
0 0 0 0
14 _ A*
DKyD A D((% +fat1+gatl+f18t2+g 18t2+ )
=D %4_15 aA*+t aA*+f A*_|_ 8A*+ %_{_
8A 8 0A 0A
— el el D D(g;)) =

and D(g;_,) = ft , D(g;) = ftl then DKyD'A = KyA — %XA.
Using formulas (2-34) for DXD , DKyD™! and the definition (2.31) of K; we

have

DK\D™' = [DXD™', DK,D™'] = {%X Ko — xft;rfftlx}

1 1 1 toft + ffu laft + [t tats
- g (f) TR ( A )X il (‘ffti )X
_ LKI ft‘l’ftxfth

Jia 2
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Using formulas (2.34) and (2.35) for DXD™!', DK, D" and the definition (2.31)

of Ky we have

DK,D™'=[DXD™' DK,D"~ ]:LCLX fiKl ft+fftzf“x]
e, 1 (1 L (fit
= e ftfﬁ(fm)X gzt ff( 72 )X
t+ JeoJt1 Jtots
= ff : ffth
ftt fttft
_ 1 cta g ot
Ty

Using formulas (2.34) and (2.35) for DX D™ DK,D~! and the definition (2.31)

of K3 we have

DKsD™ ! = [DXD’l,DKQDfl] _ [%X fl Ky — f}m K, + ft}txft ]
- g e (g o ()

fi KQ(ftz) f}i% Kl(fD - ft?”i{ftX(f%)}

= LK 3ftats K, Jrotato fro = 320, K, — fi frototo fro — 312

t
— — ~— z X. [
7 2 fo 3

Lemma 2.14 For any n > 1 we have,
DK, D' =d"™EK, +a" K1+ a" Ky o+ ... +a"K +0™MX, (2.37)

where coefficients b™ and a;") are functions that depend only on variables t, t;
and t, for all k, 1 < k <n. Moreover,

1 -1
al) =, n>1, n"’lz—mfﬁﬁ, n>?2,
te 2 ty
b = _ﬁag"x n>2, (2.38)
fta
—2)(n? -1 2 —2(n—-1
4 21 3 21"

Proof. We use the mathematical induction to prove the Lemma. As Lemma

2.13 shows the base of mathematical induction holds.
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Assume the representation (2.37) for DK,, D~ is true and all coefficients aén) are

functions of ¢, 1, t,, only. Consider DK, ,;D~*. We have,

DK, D' = [DXD*l,DKnD*]
= f—X a Ky + "™ Ky + K s+ 4 aV K+ b X
te
= a0 Kot + 0K, + a5 K+ o R 00,
where
mt1)y _ 1
n+1 - fTa'gz)>
n 1 n I o
an—tfl) = _X(a; )k)+_a£z )k 1 O<k<n—27
fto fta
n 1 n
"™ = —X(a”)

(

It is easy to see then an"jf ), 0 < k <n — 2 are functions of ¢, t1, t, only.

Assuming formulas (2.38) and (2.39) for a\”, o™, and a\", are true, the following

equality

DKn_HD_l — afgﬁ:_ll)Kn-i- + a(n-l—l)K + a(n-i-l)K i+ a(n+1)K1 + b(n+1)X

- [f X, 7 Lk, +a" Ky +a" Ky o+ . 4+ d VK b X
2 te

implies that

(n+1) 1
n+l —  pnt10
ta

o) = 1y (in) 1 o,
. It foo
nfir, = Dfe, o nn+1)f,

n+2 2fn+2 2fn+2 ’

2%

QD fiX( o™ )+f%a< n)
(n—=Dnn+1)(n+2) fi, (=Dnmn+1) fi,

4 2f; 3 3 2f %
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Using the same notation for A and A* as in Lemma 2.13, we have (for n > 2),

oty ot_4 Oty

oAt oA DA* A"
DX NG+ X @G+ X G+ X ) e+
0A 0A 0A 0A

= D(X"(f)) 5 + D(X"(9)) 5 + DX"(9)Dlar ) 5~ + DX ()5 +

A f

n) 0 ny O
= D(X"(g ))E — fTD(Xn(g))XA+Z (al(c )a_thrﬁ}g )8t_k) A
* k=1 -

= 0"X + K +al" Ky + ..+ aM KA.

DYKnD‘lA:D{X"(f)i—I—X"( ) 0 (f1) 9 .. }A*
_l’_

Since among X, K;, 1 <1 < n differentiation by t, is used only in X, differentia-
tion by ¢ is used only in K; and then a(") D(X"(g)) and b™ = —Jj:—tD(X”(g)),
which yields that b = —fft— 1. The fact that b(™ is a function of ¢, t; and t,

follows from the similar result for a§”) .0

Lemma 2.15 Suppose that the vector field

solves the equation DK D™' = hKK, where h is a function of variables t, ti1, tio,
vy by, tow, .., then K =0.

Proof. The proof of Lemma 2.15 can be derived from the following formula

-1 ft a a
DKD = —ED(Q(_l))X+D(a(_1))3t+D( o= 2”%

' Z{ A=)+ Dlal—j = D) (20)

If the function h = 0 then the vector field K = 0 automatically. Assume that
h # 0. Since there is no differentiation with respect to ¢ in K, the coefficient

before £ in the formula (2.40) should be zero which gives a(—1) = 0. This yields

that the coefficient before % in K is zero. Hence the coefficient before % in

(2.40) which is D(a(—2)) = 0 i.e. a(—2) = 0. Proceeding in this way, we get all
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a(t) = 0 for any integer ¢ # 0. Thus the vector field K = 0. O

Consider the linear space L* generated by X and K,, n > 0. It is a subset in
the finite dimensional Lie algebra L,. Therefore, there exists a natural number
N such that

Ky =pX + XKoo+ MK+ ...+ AvKp, (2.41)

and X, K,, 0 < n < N are linearly independent. The coefficients u, A;,
0 <1 < N, are functions depending on a finite number of the dynamical vari-
ables. Since among X, Ky, ..., Ky, we have differentiation with respect to t,
only in X, differentiation with respect to z only in Ky, we get u = A\g = 0. In this
case, we have differentiation with respect to ¢t only in Ky, hence \; = 0. Since
1= Ao = A1 = 0, then the equality (2.41) should be studied only if N > 2, or
the same, if the dimension of L, is 4 or more. Case, when the dimension of L, is

equal to 3 must be considered separately.

Assume N > 2. Then

DKy D' = D(X)DKyD™ ' 4+ D(A\)DK3sD ™ + ...+ D(Ay_1)DKy_1D™*
+ D(Ay)DKxD™.

Rewriting DK; D! in the last equation for each i, 2 < i < N 4+ 1, using formulas
(2.37), and Ky, as a linear combination (2.41) allows us to compare coefficients

before K;, 2 <1 < N and obtain the following system of equations.

a0y +a Y = D)l
ali ) Ant + agv V= DOw-1)alS" + D(Ay)aly?, (2.42)

a4 ™ = D) + DO)al ™) + .+ DOw)a®™,

)

for 2 <7 < N. Since the coefficients \;, 2 <7 < N, depend on a finite number of

arguments, it is clear that all of them are functions of only variables ¢ and t,.

Lemma 2.16 K, =0 if and only if fi s, =0
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Proof. Assume K, = 0. By representation (2.33) we have X?(f) = 0, that is
ftot, =0

Conversely, assume that f; ,, = 0. By (2.35) we have DK,D ™! = %Kg that
implies, by Lemma 2.15, that Ky = 0. [J

Now introduce

Zy = [Ko, Ki. (2.43)
Lemma 2.17 We have,
1 X
pZD =z, - B e o, - Jox (2.44)
Jt. I2 fe.
where C' = —t“f% fJ;ft’:l —|— + ft1 + tzf}iztz + fft};”’:m'

Proof. Using the formulas (2.34) and (2.35) for DKyD~!, DK;D~' and the
definition (2.43) of Z5 we have,

1
DZ,D ' = [DKyD™ ', DK, D] = [K, — AX, f—K1 — BX]

2%

ftz feu feu

—Af—KQ + AX(B)X — BX(A)X

2%

_ %22 Aft K> + (Ko(f )+B—AX (%))Kl
A (B) BX(A) - Ky(B))X, -

where

A:tmft—i_fftl, B:ft—i_.];tzftl'
ft. fi
The coefficient before K is

1 1 B ftz fota ft+ftzft1 frote tafe + f 10,
a(g) ve-ax(5) = Y TRt R TR L

= (.

Note that the coefficient before X is —f—t times the coefficient before K;. To

T

prove it we note that 7, = ml% + a_lati) + (ag% + a_gat;:) + ... for some
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functions a;, i = &1, +2, ..., and then compare coefficients before X H and K1 H
in DZ,D~'H in the same way as we did for DK,,D™'H in Lemma 2.14. [J

Lemma 2.18 The dimension of the Lie algebra L, generated by X and K is
equal to 3 if and only if

and ;
B xf?zt B fﬁ;tl N ffT;: n % _0. (2.46)

Proof. Assume the dimension of the Lie algebra L, generated by X and Kj is
equal to 3. It means that the algebra consists of X, Ky and K; only, and

Ky = MX + MKo+ AKy,
Zy = X+ peKo+ psk;

for some functions \; and ;. Since among X, Ky, K;, Ky and Z, we have
differentiation by ¢, only in X, differentiation by x only in Ky, then A\ = Ay =
1 = po = 0. Therefore, Ky = A3K; and Zy = u3K;. Also, among K, Ky and
Zy we have differentiation by t only in K; then A\3 = u3 = 0. We have proved
that if the dimension of the Lie algebra L, is 3 then Ky = 0 and Z, = 0. By
Lemma 2.16, condition (2.45) is satisfied. It follows from (2.44) that

1
0=DzD ' = Lz Lt g o o o - Tiox

Jt, 12 ft. Tt
Since X and K are linearly independent then equality C' K7 — fthC’X = 0 implies
C = 0. Equality (2.46) follows from (2.45) and C' = 0.

Conversely, assume that properties (2.45) and (2.46) are satisfied. To prove that
the dimension of the Lie algebra L, is equal to 3 it is enough to show that
Ky =0 and Z; = 0. It follows from (2.45) and Lemma 2.16 that Ky = 0. From
the formula (2.44) for DZ,D~!, property (2.46) and since Ky = 0 we have that
DZ,D~1 = iZg, which implies, by Lemma 2.15, that Z, = 0. O
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2.2.3 Special Case: Equations with Characteristic Lie Al-

gebras of the Minimal Possible Dimensions.

Corollary 2.19 If Lie algebras for n— and x— integrals have dimensions 2 and

3 respectively, then equation t1, = f(t,t1,t,) can be reduced to t1, =t, + 11 —t.

Proof. By Lemma 2.18 and Corollary 2.11, the dimensions of the characteristic
Lie algebras L, and L, are 2 and 3 correspondingly means equations (2.22),
(2.45), and (2.46) are satisfied. It follows from property (2.45) that f(¢,t1,t,) =
A(t,t1)t, + B(t, t1) for some functions A(t, t;) and B(t,t;). By (2.22), Ait,+ B+
{D7Y(Ayt, + By,)}A =0, that is

_ At Bt
D YAty + By) = ——t, — —. 2.47
( t1 + t1) A A ( )
Note that t;, = At, + B implies t, = D7 '(A)t_y, + D7'(B) and, therefore,
t 1, = D+(A)tff — g%ﬁg. We continue with (2.47) and obtain the following
equality
_ At _ At B _ At Bt
D=2 )t,—D ' 22 )+ DY By = — Sty — —
()0 (357) o = =G5
which gives to two equations
_ At At _ At B Bt
D) == DB, - "= ) =-= 2.48
(2e)--% (Bo-27) =% ey

By the first equation of (2.48), we see that % is a function that depends only on
variable ¢, even though functions A and A; depend on variables ¢ and t;. Let us

denote a(t) := 4. Then Ay —a(ty). The last two equations imply that A =

A
T1(t1)e™ = Ty(t)e~**) for some functions T} (¢,) and T (t) and a(t) = fot a(t)dr.
We notice that Ty(t;)e®™) = Ty(t)e*® then we conclude that A;(t;)e*™) is a

constant. We denote vy := A;(t;)e?") and have A;(t) := =% we have

At At
At ty) = 1) and therefore flt t,te) =7 i 1)251; + B. (2.49)

A4 A
The second equation of (2.48) implies that
B Ay B
j = —u(t) and B, — 21 = pu(ty), (2.50)



CHAPTER 2. CHARACTERISTIC LIE ALGEBRA 26

for some function pu(t). By using (2.49), the second equation in (2.50) can be

Al(t)B B(t,t1) } _pt)

rewritten as By, — 5 = p(t1), or the same {Al(tl) . = @) It means that

B(t,t)) = Ai(t)Bi(t) + Ay (1) Ba(t), (2.51)

for some functions By (¢;) and Bs(t). We substitute B(t,t;) from (2.51), A(t, t1)

from (2.49) into the second equation of (2.50) and make all cancellations we have,
Ay (t1)Bi(t1) = p(ty), or the same, A;(¢t)B(t) = u(t). (2.52)

By substituting A(t,¢;) from (2.49) and B(¢,¢;) from (2.51) into the first equation
of (2.50) we have,

BY(t) Ay () = —yput). (2.53)
We combine together (2.52) and (2.53), and we obtain that Bj(t)A;(t) =
—vA;(t)B](t), or the same, By(t) = —yB}(t), or (By(t) + vBi(t))" = 0, which
implies that By(t) = —vBi(t) + n for some constant 1. Hence,

 Ai(h)
~ A

f(t, tl, tz) t:v + Al(tl)Bl(tl) - ’}/Al(tl)Bl(t) + ’I]Al(tl) . (254)

Note that up to now we have only used properties (2.45) and (2.22). By

using (2.46) and (2.22) we have 0 = %{—B{(t)fll(t) + Ay (t1)Bi(t1)} i.e.

—B(t)A(t) + Ai(t1)B(t;) = 0. This implies that Bj(t)A;(t) = ¢, where ¢ is
some constant. We substitute A;(t) = == into (2.54) and get

EHO)
Bi(t)

. Bl(tl) Bl(t) C
~Bin)

By B Em) 2

f(tatlutz) tz+c

Now use substitution s = By (), and equation (2.55) is reduced to $1, = s, +¢$1—
cys+nc. We introduce & = cx to rewrite the last equation as sz = ysz+s1—ys+n.
If v = 1 substitution s = 7 — nn reduces the equation to 7z = 7 + 7 — 7. If
v # 1, substitution s = y"7 + n% reduces the equation to 7z = 7 + 11 — 7.
This finishes the proof of the Corollary. [J



Chapter 3

Equations Admitting Nontrivial

x-integral

Almost all the materials in this Chapter comes from [26].
From now on we will study on a particular case of chain (2.4):
tie = f(t, t1,t,) = t, + d(t, ty). (3.1)

The main result of this section, which is given by Theorem 3.1 below, is the

complete list of chains (3.1) admitting nontrivial z-integrals.

Theorem 3.1 Chain (3.1) admits a nontrivial x-integral if and only if d(t,t1) is
one of the kind:

(1) d(t,t) = At —t1),
(2) d(t,t1) = ci(t —t1)t + cot — t1)? + c3(t — t1),
(3) d(t,t) = A(t — t1)e™,

(4) d<t7 tl) = c4<€"&tl - eat) + C5(670‘1&1 - eiat)7

27
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where A = A(t — t1) is a function of T = t — t; and ¢y, ca,c3,¢4,C5 are some
constants with ¢y # 0, ¢4 # 0, ¢5 # 0, and « is a nonzero constant. Moreover,

x-integrals in each of the cases are

i) F=a+ [T if  A(u) #0
F=t—t i Au)=

i) F = (Q—Cllnl( ¢ — )2+ ool + e — e —a for ex(cater) #0,
F=hnn—-Inm+2 for co =0,
F = :—;—lnT—l—lnﬁ for co = —cq,

ig) F = f _audu " %;

e _eaiQ)( atq _eatg)
/[/U) F eat eat3)( atl_eat2)-

3.1 The first integrability condition

In this section we use properly chosen sequence of multiple commutators to make

a very rough classification about the function d(¢,¢;). Now let us see the process.

We define a class F of locally analytic functions each of which depends only on a
finite number of dynamical variables. In particular we assume that the function
f(t,t1,t,) € F. We will consider vector fields given as infinite formal series of the

form
> 0
Y = — 2
kz_oo Yk Ot (3 )

with coefficients y, € F. We introduce notions of linearly dependent and inde-
pendent sets of the vector fields (3.2). We denote through Py the projection

operator acting according to the rule

Py(Y) = Z yk_k (3.3)

Z=> zki. (3.4)
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We say that a set of finite vector fields Z;, Zs, ..., Z,, is linearly dependent in
some open region U, if there is a set of functions 1, o, ..., iy, defined on U such
that the function [uy]® + [u2|> + ... + |pm|* does not vanish identically and the
condition

holds for each point of region U.

We call a set of the vector fields Y7, Ya, ..., Y;, of the form (3.2) linearly depen-
dent in the region U if for each natural N the following set of finite vector fields
Pn(Y7), Pn(Y3), ..., Py(Yy,) is linearly dependent in this region. Otherwise we
call the set Y1, Y5, ..., V), linearly independent in U.

The following proposition is very useful, its proof is almost evident.

Proposition 3.2 If a vector field Y is expressed as a linear combination

where the set of vector fields Y1, Ys, ..., Y,, is linearly independent in U and the
coefficients of all the vector fields Y, Y1, Ys, ..,. Y, belonging to F are defined in
U then the coefficients uy, pa, ..., by, are in F.

Below we focus on the class of chains of the form (3.1). For this special case the
characteristic Lie algebra L, splits down into a direct sum of two subalgebras.
Indeed, since f =t,+d and g = t, —d_; we get fr = t, +d+ Zle d; and
gk =ty — Zf:ll d_y, for k > 1, where d = d(t,t;) and d; = d(t;,t;+1). Due to
this observation the vector field Ky can be rewritten as Ko =t, X + Y, with

o 0 0 0 0

X= -4 = —_ .
o Ton T, Tan To, (3.7)
and
0 0 0 0 0
Y= —+d— —d_;— — —(d_ _
8a:+d8t1 d18t71+(d+d1)at2 (d 1+d2)at72+
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Due to the relations [X, X] = 0 and [X,Y] = 0 we have X = [X, K] € L, hence
Y € L,. Therefore L, = {X} @ L1, where L, is the Lie algebra generated by
the operators X and Y.

Lemma 3.3 If equation (3.1) admits a nontrivial x-integral then it admits a

nontrivial x-integral ' such that e 0.
x

Proof. Assume that a nontrivial z-integral of (3.1) exists. Then the Lie algebra

L, is of finite dimension. We can choose a basis of L,; in the form

0 > 0
T = — E —
1 o7 + Z ai k ot

T‘jzzaj,ka_tk> 2<j<N.
k=—

Hence, there exists an z-integral F' depending on the variables x, ¢, t1, ..., ty_1

satisfying the system of equations

OF

N-1

OF

- — =0
ox + %al’katk ’
N-1
or
> k=0, 2<j<N.
k=0 k

Due to the famous Jacobi Theorem [16] there is a change of variables 6; =

6;(t, t1,...,tn_1) that reduces the system to the form

N-1

oF OF
il 0t p— = 0
or T2 Mg =0,
oF
— =0 2<j<N-2
aek ) — .] — J
which is equivalent to
OF ta or 0
ox N o0,

for ' = F(z,0n_1).

Hence there are two possibilities:
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1) g]/1,]\/—1 = 07
2) a1,n-—1 # 0.
. oF
In case 1), we automatically have - 0. In case 2), we have F' = z +
x
B(On-1) = x4+ B(t,t1,...,ty_1) for some function B. Evidently, [} = DF =
x + B(ty,t,...,ty) is also an z-integral, and F; — F' is a nontrivial x-integral,
which is not depending on the variable x. Hence BFé—x_F = 0. This finishes the

proof of the Lemma. [J

Note that below we look for x-integrals F' depending on dynamical variables ¢,
t41, t9, ... only (not depending on z). In other words, we study Lie algebra

generated by vector fields X and Y, where

- 0 0 0
Y = da_tl - d_18t—_1 + (d+ dl)(?_tg — (d_y +d_»)

0
+ ... 3.8
T, (3.8)
We can prove that the linear operator Z — DZD~! defines an automorphism
of the characteristic Lie algebra L,. This automorphism is important for all of
our further considerations. Further we refer to it as the shift automorphism. For

instance, we have
DXD'=X, DYD'=—-dX+VY. (3.9)

The proof of these statements are simple. Denote H and H* as the functions

H(..,t_q,tty,...) and D™'H = H(....;t_5,t_4,t,...) correspondingly. We have

DXD'H = DXH*
= D(H; +H; +H +..)

= (%+a%+a%+...)f[

= XH

Y
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and similarly

DYD'H = DYH*
= D(dH; —d_H; + H; 4+ (d+d)H] + ..)
= let2 - dHt + (dl + dQ)Ht3 - (d + d,1>Ht_1 + ...
+(dHy, — dHy, + dHy, — dHy, + ...)
0 0 0 0 0 0
= d— —d_ d+d)—+..) —d(— + =
{< ot 1at,1+( + 1)8t2+ ) <8t+8t1+8t1+
= —dX+Y.

Lemma 3.4 Suppose that a vector field of the form Z = Za(j)% with the co-

efficients a(j) = a(j,t,t41,t10,...) depending on a finite number of the dynamical
variables solves an equation of the form DZD~' = XNZ. If for some j = jo we
have a(jo) = 0 then Z = 0.

Proof. We apply the shift automorphism to the vector field Z and we get

DZD ' =3 D(a(j))atil. Now, we compare the coefficients of 2- in the equa-
J J

tion 3. D(a(j)) 52— = A3 a(j)a%. If A = 0, the vector field Z = 0 automatically.

i1

Assume that A # 0. Then we have D(a(j)) = Aa(j + 1) for any j. Clearly, if for

some j = jo we have «a(jy) = 0, then all a(j) =0 for any j. Hence Z = 0. O

We construct an infinite sequence of multiple commutators of the vector fields X
and Y

}71 = [X,Y/], ?k = [X7Yk—l] for k 2 2. (310)

Lemma 3.5 We have,

DY,D7' = —XMd)X + Y, k>1 (3.11)

Proof. We prove the statement by induction on k. The statement is true for
k = 1. Indeed, by (3.9) and (3.10), we have

DY\D'=D[X,Y|D' = [DXD ', DYD '] = [X,—dX + Y] = —-X(d)X + Y.

)y
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Assume the equation (3.11) holds for &k =n — 1. We have
DY, D' =[DXD™ ' DY, D =[X,-X""Yd)X 4+ Y,_1] = - X" ()X +Y,,
that finishes the proof of the Lemma. [

Since vector fields X, X and Y are linearly independent, then the dimension of
Lie algebra L, is at least 3. By (3.11), if Y; = 0, we have X (d) = O i.e. dy+d;, =0
that implies d = A(t — t1), where A(7) is an arbitrary differentiable function of

one variable 7 =t — ¢;.

Assume equation (3.1) admits a nontrivial a-integral and ¥; # 0. Consider the
sequence of the vector fields {Y7, Y3, Y3, ...}, Since L, is of finite dimension, then

there exists a natural number N such that
Vi =Y+ Y+ ..+ WYy, N>1, (3.12)

and Y7, Ys, ..., Yy are linearly independent. Therefore, if we apply shift auto-
morphism to both sides of (3.12) we get

DYn 1 D™t = D(y)DY1D™' + D(7) DY, D™ + ...+ D(yn)DYyD™!, N >1.
Due to Lemma 3.5 and the equation (3.12), the last equation can be rewritten as
— XV DX + Y1+ 7Y+ .o+ Yy =

= D()(—X(d)X + Y1)+ D(72) (- X*(d) X +Y2) +. ..+ D) (— XV (d) X + V).

We compare the coefficients before linearly independent vector fields X, Y7, Y5,

..., Yy, and we obtain the following system of equations

XNHd) = D(m) X (d) + D(72)X2(d) + ... + D(yw) XN (d),
1 =DMm), 7n=D(), ..., w=D(n).

Since the coefficients of the vector fields }N/j depend only on the variables
t,t11,t49, ... the factors 7; might depend only on these variables by Proposition
3.2. Hence the system of equations implies that all coefficients v, 1 < k < N,
are constants, and d = d(t, t1) is a function that satisfies the following differential
equation

XNHd) = 1 X (d) + % X%(d) + ... + ywXN(d), (3.13)
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where X (d) = d; + d;,. We use the substitution s = ¢ and 7 = t — t1, so equation
(3.13) can be rewritten as

oN+ld od 0%d oNd
g1~ Mg +7282+ +7NaN7 (3.14)

which implies
mg—1
d(t, ty) = Z(Z)\Mt—tl ) , (3.15)

for some functions A ;(t — t1), where ay, are roots of multiplicity my for charac-

teristic equation of (3.14).

Let g =0, g, ..., a; be the distinct roots of the characteristic equation (3.13).

Equation (3.13) can be rewritten as

AX)d = X™0(X — o)™ (X — )™ .. (X —;)™d =0, (3.16)
and mo+m;+...+m;=N+1,mg>1.

Initiated by the formula (3.8), we define a map h — Y},, which assigns to any

function h = h(t,t11,t4s,...) a vector field

Yh:hi—h_l 0

0
ot 9t (h + hl)— — (h_l + h_g)

Oty

o
5 T
For any polynomial with constant coefficients P(\) = ¢o + 1A + ... + ¢, A we

have a formula
Pladg)Y = Ypxm, where adxY = [X,Y], (3.17)

which defines an isomorphism between the linear space V' of all solutions of equa-
tion (3.14) and the linear space V = span{Y,Y;,..., Yy} of the corresponding

vector fields.

Represent the function (3.15) as a sum d(t,t) = P(t,t;1) + Q(t,t1) of the
polynomial part P(t,t;) = > 7 "Xoj(t — t1)t/ and the ”exponential” part

Qt,t1) = >, (Z;n:kgl g (t — tl)t3> @t The following Lemma proves that
the function d(t, ;) is either in the form P(t,t1) or Q(¢,¢;).
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Lemma 3.6 Assume equation (3.1) admits a nontrivial x-integral. Then one of
the functions P(t,t1) and Q(t,t1) vanishes.

Proof. Assume in contrary that neither of the functions vanish. Firstly, we prove
that in this case algebra L, contains vector fields T, = Yu(ryeont and T} = Yp(;)
for some functions A(7) and B(7), 7 =t — t;. Let us take Ty := Ag(adg)Y =
Yyo(%)a € La, where

Ao()\) = = /\mo(/\ - Ozl>m1...(/\ — Oék>mk_1<>\ — Oéz)ml

Clearly, the function A(t,t;) = Ag(X)d solves the equation (X — ay)A(t,t,) =
A(X)d = 0 hence A(t,t;) = A()e*'. Now take T} := Aj(adz)Y = Yy (%)a € La,
where

Ay(N) = @ = A" N — )™ (N — )™
Evidently, the function B(t,t;) = A)(X)d = 0 solves the equation X B(t,t,) =
A(X)d = 0, which implies B(t,t;) = B(7). Note that due to our assumption the

functions A(7) and B(7) cannot vanish identically.
Consider an infinite sequence of the vector fields defined as follows
T2 = [TO7T1]7 T3 = [T07T2]7 I Tn = [T07Tn—l]a n Z 27

where T and T} are written explicitly as

0 0 0
_ agt _~ apt—1 ait agti\_—
To = A(7)e a0 A(t_q)e BT + {A(7)e™" + A(m)e }8t2 + ...,
0 0 0
T, = B(T)a_tl — B(T,l)at_l +{B(1) + B(Tl)}a—752 + ...

We can show that

(X, To) = axTy, [X,Ti]=0, [X,T,]=ar(n—1T,, n>2

and
DToD™ ' = —Ae*'X + Ty, DI1D'=—-BX +T),
n—2
-1 -9 ~
pr,p-t =1, " )2<" ) 0o AT,y 4+ 5, K + S ", n>2

k=0
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For the reader’s convenience let us prove the statements. First two equalities
from the first group are clear indeed. The third one can be proved by induction.
Base of induction holds. Assume that it is satisfied for any n > 2 and prove it

for n + 1. We have

[X> Tn+1] = [Xu [TO’ Tn]]
= —[To, [Tn,XH - [Tn’ [Xv TOH
= [Ty, ax(n — 1)T,)] — [T}, o To]

= agnlyy.

Now we prove the second group of the equations. Use the same notation for H
and H* as before. We have

DTwD'H = DT,H*
= D{A(7)e™'H} — A(T_1)e™*' ' H} + ..}
= A(m)e™" Hy, — A(T)e™" H; + ...
+(A(T)e™ Hy, — A(T)e™" Hy, + A(T)e* Hy, — A(T)e™ " Hy, + ...)

0 0
— agt _ . T
—Alr)e ( o T >+°
= (7—) aktX + TO
In a similar way, we can prove that DT} D! = —BX + T,. By mathematical

induction it is also easy to prove the last equality of second group.

Since algebra L, is of finite dimension then there exists number N such that
TN+1 = /\X + MoTo + M1T1 + ...+ ,MNTN, (318)

and vector fields X, Ty, Ty, ..., T are linearly independent. We apply shift

automorphism to both sides of (3.18) and we have

DTy D™' = DX + D(uo){—Ac™' X + Ty} + ...

Dy - D2

apAe Ty + ... }

We compare the coefficients before Ty in the last equation we get

N(N —1)

5 arA(T)e™" = D(uy). (3.19)

UN —
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It follows that py is a function of variable ¢ only. Also, we apply ady; to both
sides of the equation (3.18), we get

NoywTny = [X, Tivia] = X () X+(X (o) +po0s) To+. . +(X (1n)+pn (N=1)ag) Ty

Again, by comparing coefficients before Ty, we have

Nagpn = X(pn) + (N — Dagpy,  ie,  X(un) = axpn.

Therefore, uy = Aje®! where A; is some nonzero constant, and thus from
(3.19) we get A(7)e™! = Age™ ! — Aje® ™. Here Ay is some constant. We have,

Ty = Axe® X — AyS,, where

oo o ) ) )
g — akti _—_ —  4eokt-1_Z 4 eowt 2 4 ot
0 Z © ot; te ot_, HA TR oty *

j=—o0
It is clear that we have
(X, So] = Sy, DSyD™'=5,. (3.20)
Consider a new sequence of vector fields
P =Sy, P,=[T1,S] P=[T,R], P,=[Ti,P,1], n>3.

By induction we can prove the following equalities.

n—2

(X, P, = Py, DP,D™' = Py—ay(n—1)BP,_y+b, X+a,So+Y_aP;, n>2.

=2

Since algebra L, is of finite dimension, then there exists number M such that
Prpr = XX + 5Py + .+ 13, P, (3.21)

and X, Ps, ..., Py are linearly independent. We apply shift automorphism to
both sides of (3.21) and we have

DPy D™ = D)X +D(u){Po+.. 3+ . +D(u ) {Pry—c(M—1)BPy_y+.. .}
We compare the coefficients before Py, in the last equation and get

iy — MawB(7) = D(jihy), (3.22)
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which implies that p}, is a function of variable ¢ only. Also, we apply ady to
both sides of (3.21) and get

arPrri1 = [X, Parga] = X)X + (X (115) + npiy) Po+ ..+ (X (1hy) + ntiys) P

Again, we compare the coefficients before P, and have

i (t) = X (13, (£)) + cwpiy (2),

which yields that p}, is a constant. It follows then from (3.22) that the function
B(7) = 0. This contradiction shows that our assumption that both functions are

not identically zero was wrong. This finishes the proof of the Lemma. [J

3.2 Multiple zero root

In this section we assume that equation (3.1) admits a nontrivial z-integral and
that ap = 0 is a root of the characteristic polynomial A(A). Then, due to Lemma
3.6, zero is the only root and therefore A(A\) = A™*1. From the formula (3.15)

with multiplicity mg = m + 1, we have
d(t,t)) = a(T)t" +b(r)t"  +..., m=mg—1>0.

If m = 0, then we get a very simple equation ¢y, = ¢, + A(t — t1), which is easily
solved in quadratures. So we concentrate on the case m > 1. For this case the
characteristic Lie algebra L, contains a vector field T' = Yz with

E=a(T)t+ %b(T).

Indeed,

1
T om!

- 0
L e A L

— IA{/? [
ot Yot_,

0 9]
+(kR+FR)=—+..€L,. (3.23)

T
Oty

Consider a sequence of multiple commutators defined as follows
To=X, Thv=[T,T0) =Y urn), Ter1 =TT, k>0, Tio=To,Ti.

Note that 71y = 0. We will see below that the linear space spanned by this

sequence is not invariant under the action of the shift automorphism Z — DZD™1
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introduced above. We extend the sequence to provide the invariance property.
We define T, with the multi-index . For any sequence o = k, 0, 41,42, ...,%_1, in,

where k is any natural number, i; € {0; 1}, denote

[T(J,Tk,o,il,...,in_l] , if i, = 0;

T, =
[T7 Tk,o,il,...,in,l] , it i, =1,
k, if a=k;
m(a) = k, if a=k0;

k+ir+ ...+, if a=k0,i,...,0,;
l(a)=k+n+1—m(a).

The multi-index « is characterized by two quantities m(«) and I(«) which allow

to order partially the sequence {T}.

Lemma 3.7 We have,

DTy,D'=1T,, DID'=T—-FkI,, DT\D'=T +dl,.

The first equality has been proved in Section 3.1. The others are also straight-

forward.

We can prove by induction on k that

DL,D' =Ti+aTlh—i > Tp+ > nkB)T;. (3.24)
(8)=h-1

m(B)<k—2

In general, for any «,

DT,D™' =T,+ Y  n(a,p)Ts. (3.25)
m(B)<m(a)—1
We can choose a system P of linearly independent vector fields in the following
way.
1) T and Tj are linearly independent. We take them into P.
2) We check whether T', Ty and 77 are linearly independent or not. If they are
dependent then P = {T,T,} and Ty = uT + N1 for some functions p and .
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3) It T, Ty, Ty are linearly independent then we check whether T', Ty, T3, T5 are
linearly independent or not. If they are dependent, then P = {T, T}, T1}.

4) It T, Ty, Ty, T are linearly independent, we add vector fields Tz, m(3) = 2,
B € I, (actually, by definition I5 is the collection of such ) in such a way that
Jo = A{T,To, T\, Ty, Uper, T} is a system of linearly independent vector fields and

for any T, with m(v) <2 we have T, = > u(y,5)1s.
TgeJ2

5) We check whether T35 U Js is a linearly independent system. If it is not, then

P consists of all elements from Jy, and T3 = > p(vy, 3)Tp. If it is, then to the
TgeJ2

system T3 U Jy we add vector fields T, m(B) = 3, § € I3, in such a way that
J3 == {13, Ja,Uper, T3} is a system of linearly independent vector fields and for
any T., with m(vy) < 3 we have T, = > u(y, 5)1s.

TgeJs
We continue the construction of the system P. Since L, is of finite dimension,

then there exists such a natural number N that

(i) Ty € P, k < N;

(ii) m(B) < N for any T € P;

(iii) for any 7%, with m(vy) < N we have T, = > w(v, B)Ts and also

TgeP,m(B)<m(7)

TN+1 :M<N+1>N)TN+ Z “(N_‘_laﬂ)Tﬁ
TgePm(B)<N

It follows that
(iv) for any vector field T, with m(a) = N, that does not belong to P, the
coefficient (e, N') before Ty in the expansion

To = pla, N)Tx + Y pla, )Ty (3.26)

TgeP
is constant. Indeed, by (3.25),
DT,D™' =T+ Y  nla,f)Ts= NI+ pla, )T+ > nle, B)T5.
m(B)<N-1 TseP m(B)<N—1
From (3.26) we have also
DT,D™' = D(u(e,N))DIND™' + > D(u(e,8))DIsD ™"
TﬁEP

= D(u(a, N){Tn+ ...} + > D(ula, B){Tp+ ...}

Tg eP
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We compare the coefficients before Ty in these two expressions for DT, D™!, we

have
which implies that u(a, N) is a constant.
Lemma 3.8 We have, a(7) = coT + ¢1, where ¢y and ¢, are some constants.

Proof. Since

TN+1 :M(N—l—l,N)TN"’ Z M(N+175)T,37
TQEP

then

DINaD™ ' =D(uN + 1L, N){Ty+...}+ Y D(u(N+1,8){Ts+...}.

TﬁEP

From (3.25), we also have

DInyD™' =Ty +aly—i » Ts+ Y n(N+1,5)Ts.
m(B)=N m(B)<N—1

We compare the coefficients before Tl in the last two expressions. For N > 0

the equation is

pN+1L,N)+a—k > B N)=D(uN+1,N)). (3.27)

TzePm(B)=N

Denote by ¢ = — > w(B,N) and by uy = u(N + 1, N). By property
T5€P7m(ﬁ):N
(iv), c is a constant. It follows from (3.27) that uy is a function of variables ¢

and n only. Hence,

a(t) +c (a(T)t + %6(7)) = un(ty,n+1) — un(t,n).

We differentiate both sides of the equation with respect to t and then t;, we have

() — ¢ (d/(T)t +d(r) + %b%)) 0,
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which implies that a”(7) = 0, or the same, a(7) = coT + ¢; for some constants ¢
and ¢;. O

We rewrite the vector fields T} and 7' in new variables as

= 0 = 0
T, = a(rj)=— = (cotj + 1) =, (3.28)
! j:zoo J aTj j:zoo 0% ! aTj
T Y falt b = = Y )i+ )+ b))
= P m oy = ! m oy
= 0
= —tTh — Z {a(7j)p; + b(TJ)}$7
j=—00 J
(3.29)
where
—T =T —...—Tj_1, if j>1;
p; = 0, it =0

T,1+T,2—|—...+Tj, lf jg—l

The following two Lemmas will be very useful for us.

Lemma 3.9 If the Lie algebra generated by the vector fields Sy = % and

j=—o00
P= Y c(wj)s2 is of finite dimension then c(w) is one of the forms
j=—00 !

(1) c(w) = ¢y + c3e™ + cae™, X £ 0;
(2) c(w) = ¢y + c3w + cyw?, where ¢y, c3, ¢y are some constants.
Proof. Introduce vector fields

Sl = [So, P], SQ = [So, Sl], ceey Sn = [S(), Snfl], n Z 3.
Clearly, we have

= 0
Sp = Z (w))=—, n>1. (3.30)
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Since all vector fields S,, are elements of L,, and L, is of finite dimension, then

there exists a natural number N such that
Sny1 = UNSN + pUN—1SN-1 + ... + 1St + o P 4 pSo, (3.31)

and Sy, P, 51, ..., Sy are linearly independent. (Note that we may assume S; and

P are linearly independent). We have
DSyD™' =Sy, DPD™! = PandDS,D™' = S,
for any n > 1. Then it follows from (3.31) that
Snt1 = D(un)Sn + D(pn-1)Sn-1 + .. + D(p1)S1 + D (o) P + D (1) So.

But we know the expression for Sy41 by (3.31). So the above equation gives that

Iy o, 1, ---, fby are all constants.

We compare the coefficients before -2 in (3.31) we get, with the help of (3.30),

ow
the following equality

N () = ™ (w) 4 ... 4 (w) + poc(w) + .

Thus, c¢(w) is a solution of the nonhomogeneous linear differential equation with

constant coefficient whose characteristic polynomial is
AN = AV — e AN — = — .

Denote by 31, 0, ..., 8; characteristic roots and by my, ms, ..., m; their multiplici-

ties. There are four possibilities:

(i) There exists a nonzero characteristic root, say (1, and its multiplicity m; >
2,

(ii) There exists zero characteristic root, say (1, and m; > 3, =0 or my > 2,
w# 0,

(iii) There are two distinct characteristic roots, say 4, and (B with 8, # 0,
52 = 07
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(iv) There are two nonzero distinct characteristic roots, say (; and fs.

Now we will analyze these cases.

In case (i), consider
_ AN AN
A= 0 (A=)

Then A;(Sp)e(w) = %™ + ay and A§2)(Sg)c(w) = (azw + ay)e®™ + a5, where

AN and AP\ =

aj, 1 < j <5, are some constants with a; # 0, ag # 0. We have,

00 . P
A1 (adSO)P = j_z_:oo(aleﬁlw] —+ aZ)a_U}j
= a1< i e’glei> + O(QS() = @1P1 + OCQS()
je—oo 811]]‘ ’
AP (adg,)P = i ((3w; + cug)e™™ + 045)i = a3< i w;e s i)
1 0 P— J 8wj je—oo J 8wj

+oy P+ 55
= OégPQ + Oé4P1 + Oé5SO

are in L, and therefore vector fields P, = > ¢ efrw; % and P, =
J

j=—00

Z;’;foo wjeﬂle£ belong to L,. Since P; and P, generate an infinite dimen-
J

sional Lie algebra L, then case (i) fails to be true.

In case (ii), consider

A?’)(A)zw and Aﬁz)(A):A(/\) if =0,

x8 x2
or
AP = A;j) and A?)(A):@, if 0.
We have

Ag?’)(So)c(w) = aw® +aw’+azw+a, and A§2) (So)c(w) = asw? + agw + ar,

where a;, 1 < j <7, are some constants with oy # 0, a5 # 0. Direct calculations

show that vector fields
A§3)(ad50)P = Z (aleg- + ozgw? + asw; + ay)

j=—o0

g
8’(1)]' ’
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and
= 0
A§2) (adso)P = Z (a5w§ -+ QeW; + Oé7)a—le

j=—00
generate an infinite dimensional Lie algebra. It proves that case (ii) fails to be

true.

In case (iii), consider

A1<>\) = )\A—(Aﬁ)l and AQ()\) =

AN
DY

We have
Ajc(w) = a1 4+ ay  and Aosc(w) = agw + ay, if p=0,
or
A1 (So)e(w) = aqe®™ + oy and  Ay(Sp)e(w) = asw? + agw + a7, if  p#0,

where a;, 1 < j < 7, are constants with oy # 0, ag # 0, a5 # 0. Since vector
fields Ay (ads,) P and As(adg,) P generate an infinite dimensional Lie algebra, then

case (iii) also fails to exist.

In case (iv), consider

We have, A;(Sp)e(w) = a1e”% + ag, Ay(So)c(w) = aze®? + ay, where ay # 0,

i, ag # 0, ay are some constants. Note that

Ay (ads,)P = oy <j;oo i 0?0) + .S,
and -
AQ(CLCZSO)P = (3 <]:ZOO 652wj ai}J) + 06450,

o w0 o B, D P
and vector fields > -2 "1 5u; and D00 €7 Ju; Generate an infinite di-

mensional Lie algebra if 5, + 35 # 0.

It follows from (i), (ii), (iii), (iv) that ¢(w) can only be one of the forms
(1) c(w) = cg + 36 + cqe™™, X £ 0;

(2) c(w) = ca + czw + cqw?, where ¢y, c3, ¢4 are some constants. [J
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Lemma 3.10 If the Lie algebra generated by the vector fields Sy = > %,

j=—00

Q= > q(wj)a%j and S1 = ) {p; + B(wj)}% is of finite dimension then
j=s0 j=—oo
q(w) is a constant function.

Proof. It follows from Lemma 3.9 that for the function ¢(w) we have two possi-

bilities:

(1) g(w) = 2 + czw + c4w?, or

(2) q(w) = cg + c3eM + cue™™ N #£ 0,

where ¢y, c3, ¢4 are some constants.

Consider case (1). We have,

[SoQl=es D G2 ) wim =St ), wg

j=—o0 j=—o0 j=—o0

If ¢4, # 0, then Z?‘;_Oo wj% €L, and > 7 20 ..

j:—OO w.] 8’LU]'

If ¢4 =0, c3 #0, then Z;’;_Oo wja%j = 1(Q — c25) € L,.

c3

If ¢ = ¢4 = 0, then g(w) = ¢ and there is nothing to prove.

Assume 3 + ¢3 # 0. Denote by P = Z;’i_oo w; 2. Construct the vector fields

Bu;

PIZ[P751]7P’VL:[P7P’H—1]; TLZQ

We have,
DS,D™' = S,
DSlD_l == Sl - (ew - 6)50,
DPD™!' = P,

DP,D™' = P+ (—we" +e" —¢)S,,
DP,D™' = P+ (—w?e” +we” — e +¢)Sp.
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In general,
DP,D™' = P, + (—w"e” + R,_1(w)e” 4+ ¢,)Sy, n >3,

where R, is a polynomial of degree n — 1, and ¢, is a constant. Since the

algebra L, is of finite dimension, then there exists a natural number N such that
Py = pn Py + o 4 i Py poSo,
and Sy, Py, ..., Py are linearly independent. Thus
DPyy D7 = D(un)DPyD ™ + ...+ D(1)DPLD ™" + D(p)So,
or the same,

pUnPy 4 oo P+ p10So + (—w™N e + Ry (w)e” + en11)So
= D(un){Py + (—w™e” + Ry _1(w)e” + cn)So} + ...
+D(p){ P + (—we® + e —¢)So} + D(o)So-

We compare the coefficients before the vector fields Py, ..., P, we have

UN = D(MN>7 ey M1 = D(ul)a

which implies that py, ..., 1 are all constants. We also compare the coefficients

before Sy and we have

po — wN e + Ry(w)e” + enp1 = pun(—we” + Ry_1(w)e® + cy)

...+ i (—we” +e* —¢) + D(up).

The last equality shows that D(ug) — po is a function of w only. But this is
possible only if D(uo) — po is a constant, denote it by dy. The last equality

becomes a contradictory one:

whV e = Ry(w)e” +cyp1 — un(—w™e” + Ry_1(w)e” + c)

—. ul(—wew + e’ — E) — do.
As it is seen clearly that on the left hand side we have (N + 1)-th power of w but

on the right we do not. This contradiction proves that c2+c =0, i.e. c3 =c4 =0

in case (1). Therefore, ¢(w) = cs.
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Now consider case (2). Since

0
_ E Aw; E —Aw;
[S(), (Q] = )\03 2 € awj — /\04 € —awj,

then vector fields Q) = ¢3> - e)‘“’j% and Q_y = ¢4 Z;’;_oo e_’\wﬂ'% both
J J

j=—o0

belong to L,. We have, DQ D! = Qy, DQ_\D™' = Q_,.
Assume c3 # 0. Construct vector fields

Q1 =[Qx 5], Qn=1[QxQn1], n=2
Straightforward calculations show that

DQ:D7' = Qp — VUS4 (¥ — E)AQa,
DQyD™' = Qy — A1+ N)el TG 4 2\czelTVYQ,.

It can be proved by induction on n that
DQnQil = Qn - anO + QnQ/\a n =2, (332)
where

pn = A1+ N1 +2N)..(14 (n— D)A)elFdw
G = ncy A1+ N)..(1+ (n— 2)/\)e(l+(n—1))\)w'

Since L, is of finite dimension then there exists a natural number N that
Qn1 = pN@N + .o + Q1 + @i + 1050,
and Sy, @y, Q1, ..., Qn are linearly independent. Then
DQn1 D™t = D(un)DQND ™ + ... 4+ D(po) DSy D1,
or by using (3.32)

UNQN + .o+ 1 Q1 + @y + 1oSo — Pn+1S0 + qn 1@
= D(un){QN — pnSo + qnQr} + ... + D(11){Q1 — p1So + ¢1Qx}
+D(112)Qx + D(110) So-



CHAPTER 3. EQUATIONS ADMITTING NONTRIVIAL X-INTEGRAL 49

We compare the coefficients before Qy, ..., )1 and we have that pp, 1 < k < N,

are all constants. We also compare the coefficients before Sy and get

fo — PN4+1 = —HUNDPN — - — fl2P2 — pap1 + D(po). (3.33)
Since pg, 1 <k < N + 1, depend on w only, then D(pg) — po is a function of w,
and therefore D(1) — o is a constant, denote it by dj.

If X # —1 for all r € N, then py, # 0 for all k € N, and equation (3.33) fails to be

true.

Consider case when \ = —% for some r € N. Substitution u; = e~ M5 transforms
vector fields /\_—éQ,\, _TISl, _TISO into vector fields
. — 0
Q)\ - ]ZOO a_uja
St o= DA+ )l
j=—00
. = 9
SO - j:ZOO j%?
where
( j—l
Z(UZ—C), if j>1>
k=0 3 )
7= 0. =0 . b(uy) = b(rinu).
-1
— > (u —¢), if j<-1,
\ k=j

First consider the case r = 1. We have,

0
T: = [Q\5]]= ZU%"‘% —i—b*(uj)—l—ujb* (u])}au]
j=—00
K: = o T] = ST 0
= ST Y Gl

where c(u;) = b (u;) + u;b*" (u;),

0
T, = [T,K]=v Z {57+ 3% () + g (u,ua, .., wy) R
J=—00 J
T, = [I,T\] =% Z{j + 72080 (wy) + jg8h (o, oy ug) + g8 (o) b2

]_—OO
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where 7 = —% and o # 0.

Construct vector fields, T,, = [T, T,,_1], n > 3. Direct calculations show that

00 n—1 —1
n n . 0 0
To=) {J " g ()4 Y 5 g (s, -..,“f)}a_uj+ 2. Uy "2 1.
=0 k=0 j=—o0

Since {T,,}52, is an infinite sequence of linearly independent vector fields from

L,, then case r = 1 fails to exist.

Consider case r > 2. We have,

0 7j—1
* * * . r— ~x I* ! 0
adg; ST = (@3, S1] = Z {sgn(y)r(Zuk 1)u]~ + p; + 0" (u;) + usb (u])}%,
j=—o00 k=0 J
and
o] J—1
adg, Sy = Z {r!juj + sgn(j)r! Zuk + d(uj)}
for some function d,
adl, 'St = i": {27" |+ d’(u)}i
Q3 ~1 = -] 7 au] .

Note that vector fields adgi ST and adz;;Sf have coefficients of the same kind as
vector fields T and K (from case r = 1) have. It means that adg: ST and ad’g; ST
generate an infinite dimensional Lie algebra. This contradiction implies that case

r > 2 also fails to exist.

Thus, c3 = 0. By interchanging A with —\, we obtain that ¢4 = 0 also. Hence

c3=c4 =0 and g(w) =cp. O

We already know that a(7) = ¢o7 + ¢1. The next Lemma shows that c¢q # 0.

Lemma 3.11 ¢y is a nonzero constant.
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Proof. Assume contrary that ¢ = 0. Then a(7) = ¢; and ¢; # 0, vector fields
(3.28) and (3.29) become

o 8 5
Ih=a Z or aly,
j=—00 =7
and
o] 1 _ _
T = —tTl — C1 Z {p] + b(T])}—T = —CltTl — ClT,
j=—00 /
where
. X 9 I 0
= — T = b —_—
1 R o j:zoo{pj + <TJ)}8TJ
Since

and T} both belong to a finite dimensional L,, then, by Lemma 3.9, we have two

possibilities for the function b”(7):
DY (1) = Cy 4 Che 4 Cse M or2)b" (1) = Cy 4 Cyr + Ci7?
for some constants é’l, 02, C~’3.

In case 1), the function b(7) = Oy + Cye*™ + Cse™ + Cy72 + Cs7 and

L .20 — N0 - = Cyi +C57j\ 0
T, [T, T —/\QT——T:_)?Z . j
(T, [T, 7] mey ! = {pj—i_ mey }0Tj

is an element in L.

In case 2), the function b(7) = C; + Cot + C37% + Cy73 + C57* and

~ Cl ~ s CQT]‘ + C’37'-2 + 047'3 + C’57’4 8
T _ —T — { . J J J }_
mcy ! Z Pi + 873

. mc
Jj=—0o0

belongs to L,.

To finish the proof of the Lemma it is enough to show that vector fields

TQ = Z {p] + CQT]‘ + 037']2 + C’47']:-5 4+ 057';-1}

j=—00

9
aTj ’
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and

produce an infinite dimensional Lie algebra L, for any fixed constants Cs, C3, Cy
o0

and C5. We can prove it by showing that L, contains vector fields jkai

j=—00
for all k =1,2, ... . Note that
~ ~ o0 3 a
T Ta) = Y (= +Co+ 207, + 8Cu7} +4Cs7)) 5~
j=—o0 J

There are four cases: a) C5 # 0 and b) C5 =0,Cy #0,¢) C5=Cy, =0, C3 £ 0
andd)C5:C'4:C'3:0.

In case a),

o a
[Ty, [Th, [T1, To]]] — 6C4T = Z 24C57;—— o = 24C5P, € L,, P, = Z T

Jj=—00 j=—00

[T, (11, T5]) = Z {205 +6Cy7; + 120572}_ €L,
Jj=—00

and therefore,

- 2
PQ _j;OOTja_T] ELan
and
. - . - > . 0
Ty:= [0, T — CoTy = 2C3P1 = 3CsPy = ) (—=j +4C57)) 5~ € La.
j=—00 /
We have,
J .__1([T Py +2T3) = i ey
1= 3 3,171 3 _j_,oojaTJ' z-
Now,
P = — e L,.
[J1, [J1, Po] Z J 0T] €

]_—OO

Assuming J, = Z JF o= o ~ € Ly we have that

j_—OO

Jpi1 = = [Jl, T, Pol] Z jk“

]_—OO
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In case b) we have

1
P = [Tl, [T1, Tz] — 2C3T1 Z Tya

604 =
and
3 o N > B
T3 = [Tl,TQ] — CQTl — 203P1 = Z (—] + 3047']2)? S Lx
j=—00 g
We have,
1~ 5 = 0
Jy === (15, P+ T3) = Z 15 € Ly,
j=—oco Y
and
P —L(T — [T, P1]) = i 29
2 = 6C, 3 3,41 —j:_oo jaTj -

As it was shown in the proof of case a), J; and P, produce an infinite dimensional

Lie algebra.

In case ¢),

N L - > , 0
T3 = [Tl,TQ] — CQTl = Z (—] + 203’7']')5 c an

j=—o0 J

~ o 00 (i1 . . P
T4 = [T37T2] = Z (‘% —]CQ — 203]Tj + 203?7}2)% € Lx
J

j=—00
Also,

o — (j+1 _ . 0
T5 = [Tg,T4] = 203 Z (j(j 9 ) + OQ] - 203]Tj + 2037-]2)8_7' S Lx
J

j=—o00

Since T4 and Tg) both belong to L, then either

o0 -9

: - , 0
c)(1) Z ja— € L,, Ts = Z (% — 205571 + 2C§Tj2)8—7_j

j=—o0 j=—o0

€ L,

or

In case ¢) (i),

0
P1 = TlaTG] + 203J1} = Z Ti 87‘ L

]_—OO

1
ezt
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Since
T = j2 2_2 a
V%TH:jgaf“§+2Qﬂﬂ5E7
and
. s 0
P [PL TS = Y (5 +2C57) -
P— 73

both belong to L, then

_ E -2 _ E 2
JQ = ] 873 € Lx, PQ = Tj _87'J € L:m

P, and J; generate an infinite dimensional Lie algebra.

In case ¢) (ii),

o0

N = 9 - 1 0
f- 5 6 % (een)

j=—o00 j=—00

Note that the Lie algebra generated by the vector fields

L 1 -
Ty =Ty— (037'2—§T>T1 =d(r, Tl)i—d(T,l,T)

87'1 87'_1 87'2

and

o4

L +<d(777'1)+d(7'1,7'2))i+...

is infinite dimensional. It can be proved by comparing this algebra with the

infinite dimensional characteristic Lie algebra of the chain

1
tie = tp + C3(t] — %) — §(t1 +1). (3.34)

Indeed, the Lie algebra L, for (3.34) is generated by the operators (3.7) and (3.8)
with d(t,t1) = Cs(t] — ¢*) — 3(t1 +t). To keep standard notations we put a(r) =
—2C37 — 1 and b() = Cy7% + 7. Note that since C3 # 0 function a(7) is not a

constant. It follows from Theorem 3.1 proved below that the characteristic Lie

algebras L, (and therefore algebra L) for equation (3.34) is of infinite dimension.

Thus, in case ¢) (ii) we also have an infinite dimensional Lie algebra L,.

In case d),

0
TQZ Z<_7__7_1_~~-_7-j—1+027_j)%ELm-
J

j=—o0
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Then
Jp = C2T1 T1>T2 Z J— € L,

_]_700

J2:—2<[J1,T2]— (%JFOQ)Jl) Z j —EL

j=—00

and

Assuming that Jy,, 1 < k < n belong to L,, by considering [.J,,, T5] we may show
that J,p1 = > jk“% € L,. It implies L, is of infinite dimension. [J

j=—o0

Let us introduce new variables

C
UJj :11’1<Tj—|—c—;>.

We can rewrite the vector fields 7} and 7" in variables w; as

T) = co Z —60507

jf—OO

N L = 0
T = —tCoSo + ¢ E {p] + b(wj)}% = —CotSo + CoSl,
J

Jj=—00
where
> 8 0
So= 5~ Z{ﬂﬁbwy pt
j:—oo j=—00
4 ]71
do(ewr —¢), if j>1;
k=0
_ _ o 1/ b(my)
= foi= . = <_ﬂ) ,
p] . Oa 1 ] 07 c co ( J) m COTj + 1
— > (e —¢), if j< -1,
\ k=j
We have

1)501)71 = S[), DSlDil = Sl — (ew — E)SO

These equalities can be proved by applying DSoD~! and D.S; D~! to the functions

depending on .., w_1, w, wy, ws, ... .

The above Lemmas allow us to prove the following Theorem.
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Theorem 3.12 If equation
te =ty +a(Tt™ +b(T)t" +..., m>1

admits a nontrivial x-integral, then
(1) a(T) = co7, b(T) = coT? + 37, where ¢y, c2, c3 are some constants.
(2) m=1.

Proof. Consider the case (1). Define vector field

Q = [S0: [S0: S]] = S0, 51) = 3 (F"(uwy) 5’%‘))@%'

By Lemma 3.10, & (w) — I/(w) = C for some constant C. Thus, b(w) = Cy +

Che" + Cyw for some constants C, Cy, Cy. Consider vector fields

o0 o a
P = (Cy = Co)Sp + Si — [So, 81] = j;owgwj ) g
00 J
Wi 'Ll)j a w 8
R:[So,[SO,Sl]] = Z{( e )+Cle }a—w]+(flea—w
7j=1 k=1
—1 —1
— Wk Wi -
2 {< > )+ Cre }awj’
j=—o00 k=j
Rl:[PvR]v Rn+1:[P7Rn]a n > 1
Then
R, = Z{ewj(CHCSIUn + P)+ 1o i(w,wy, ... ,w-_l)}i
0 J 5J 5J 7 aw]
+ ]gl{e (Cy = 1)CFw? + Poj) + i (wg,wos, .. ,wﬂl)}a_wj,

where P, ; = P, j(w,, j) is a polynomial of degree n — 1 whose coefficients depend
on j, and 7, ; are the functions that do not depend on wj;. Since all vector fields
R, belong to a finite dimensional Lie algebra L, then C;Cy = (C; —1)Cy = 0, or
the same Cy = 0. Therefore,

b(w) = Cy+ Cre®.



CHAPTER 3. EQUATIONS ADMITTING NONTRIVIAL X-INTEGRAL 57

Since Cy = 0, then

= . 0
P:C'Z Ja—w],
j=—00
oo J w w; 0 w 0 w w;j 0
R—;{(;e ’“)—l—C’le }8—%4—016 ——J_Zw{(kze ’“)+Cle }a—w]

and

x 0
o = Z{ewl +2Me" 4 (= 1) 4 M Cret o

—1
~n n_ w_i n_w_o KR N wj a
— ¢ jzzoo{(—l) eVl 4 (=2)"e" 2 + (j)"e" 4 j"Che }8wj

Again, vector fields R,, belong to a finite dimensional Lie algebra only if ¢ = 0,

or the same ¢; = 0 since ¢ = 2—; It implies that
a(T) = coT, b(T) = o + 3T

Consider the case (2). Assume contrary, that is m > 2. Then the following vector

field

I
_!adX 2Y) = Yl )2+ Lb(r)t+

m m(m—1) ¢ e(r)
_ 2 1 L A
= Jz_:oo a(T)t; b(T])t + e — 1)0(7']))87_]
1 0 < 0

_ _]_ZOO a(mj)(t + p;)* + —b(r;)(t + pj) + o (1) Ej_ooa(fj)(%j

= 1 9 = 1 , 1 1 0
_tjzzoo{a(Tj)pj + Eb(rj)}a—ﬁ - jzzw{éa(mpj + —b(73) + mc(rj)}a—n

is in L,. In variables w; = In7;,
1 - t?

madg_Q(Y) = —ECOSO + tCOSl — C()SQ,

where

0 _
Z { PJ w] Pj —i—c(wj)}a—wj, ¢(wj) = 771(771——1)7']

j=—00
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The vector fields Sy and S are as in Lemma 3.10. We have,

o a B
[So, So] = 283+ CoS1+P, P= Y r(wj)a_%, -

j==o0

Construct the sequence
Sg = [Sl, SQ], Sn+1 = [Sl, Sn], n Z 2.

We can prove by induction on n that

n—1

(S0, Snl = S0 + > VniSk,
k=0
and
n(n —1) =2
DS, D' =8, + {T - 1} e"Su 1+ Y n(n,k)Se, n>3.  (3.35)
k=0

Since L, is of finite dimension then there exists a natural number N such that
SN+1 = uUNSN + pun—1SN—1 + ... + 1oSo.
Then
DSy 1Dt = D(un)DSyD™ + D(pn_1)DSy_ 1D~ 4 ... 4+ D(1o) DSy D~

On the other hand, by the formula (3.35) we have

(N +1)N

DSy D' = Syyq + { 5

—l}ewSN—l—....

We compare the coefficients before Sy and have two equations.

(N+1)N

—1}& N >2,
2

D(py) = pn + {

and
D(p) =m +e“, N=1

Both equation are contradictory. Therefore, our assumption that m > 2 was

wrong. This finishes the proof of the Theorem. [J
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3.3 Nonzero root

In this section, we prove that if the equation 3.1) admits a nontrivial z-integral

and if the function d(t,¢,) contains terms with A(t —t;)t/e®!, ay # 0, then j = 0.

Lemma 3.13 Assume equation (3.1) admits a nontrivial x-integral. Then the
characteristic polynomial of the equation (3.14) can have only simple nonzero

T0018.

Proof. Assume that m; > 2. Introduce polynomials

AP () = —(AA_(Z)I)Q = AN — )™ 2 (N — )™,
Aay(N) = % = AN — )™ (N = )™

Consider vector fields

0

So = A (ad )Y = Yagremre = A(T)e™ —— T

0
+ {A(T)e™ + A(m)e™ M} — + ...,
Ota

* D
57 = Aoy (adg)Ya = Yiampeyent = (A(T)E + B(r))e™ o+ ..

from the the Lie algebra L,.
s

In variables 7; = t; — t;11, we have o = 3T -+ a_ and so the vector fields S§
J—

and S} become

Z 0
SS _ alt A alp] — _ealtS(],

j=—00

* o a = a1p; 9 « «
Sl = —te 1t5’0 — e ltj:ZOO{A(Tj)pj + B(Tj)}e 1pja—7_j = —te ltSO — e 1t51,

with Sy = > A(r et and Sy = 3 {A(ry)p; + Blr)yeiri g2

j=—o0 j=—00

We have
DSyD ' =¢e"7S,, DS;D7!=¢eMTS| + 7e™TS,.
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These equalities can be found easily by applying DSyD~! and DS, D! to the

functions depending on ..., 7_1, 7,71, .... Define the sequence
52 == [So, Sl], Sn+1 = [So, Sn], n Z 2
We can easily show that

DSQD_l — D[Sg, Sl]D_l _ [GalTS[), 604175«1 + TehoSO]
@78 + 1 TA(N)S) + T (A(r) — n B(r)S).

It can be proved by induction on n that

n—2
—1
DS@D‘l:eﬁmTSn+xh@ﬁ%f—l€W”A(ﬂsg%—%EZq(nJﬁSk. (3.36)
k=0
Since the dimension of L, is finite and Sy, Si, ... belongs to L, then there exists

a natural number N such that
SN41 = UNSN + pun—1SN—1 + ... + oS0,
and Sy, S1, ..., Sy are linearly independent. Therefore,
DSy D' = D(un)DSyD ™ + D(un_1)DSy_ 1Dt + ...+ D(uo) DSy D™

On the other hand, by the formula (3.36) we have

N-1
N+1)N
DSN+1D_1 = e(N+1)alTSN+1 + al%e(N—H)QWA(T)SN + Z ’7(N+ 1, ]{T)Sk
k=0

We compare the coefficients before Sy in the last two equations and we have

N+ 1N
aV+ DN

N+1)a17A(7_) _ D(/JN)eNalT-

It follows that uy is a constant and then

2,[LN

Ar) = Cle™—1), C= s,

Let us construct a new infinite sequence of vector fields, which are elements of

L,, enumerated by a multi-index.

TD = S17 Tl = SO; T2 = [SlaTl]v T’I’H—l = [Sl7Tn]7 n 2 27 Tn,D = [SO7T7L]7
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Tn707i17~--ain717in = I:Sin7Tn,0,i1,...,in,1]7 ZJ S {07 1}

Direct calculations show that
DT,D™ ! = e®7Ty + *' 7 (B — A)Ty — a7 ATy,

DT3D ™' = ®™ Ty +* 7 (3nB — A+ 3anm ATy + 7™ o+ > v(3,8)T;.
m(B8)<2
Here and below we use functions m = m(8) and [ = () defined in previous

Section. It can be proved by induction on n that
DT,D™' = ™77, +e"{c,B — A+ c,TAYT,_,
+7e" T Z v*(n, B)1p + Z v(n,3)Ts,
m(B)=n—1,I(8)= m(B)<n—2
where
an(n —1)
Cp = ———,

2
and v*(n, 3) are constants for any § with m(5) =n — 1 and [(3) = 1.

In general, for any ~,

DT, D™ =m0+ N (v, B)T
m(B)<m(y)-1
Among the vector fields T we choose a system P of linearly independent vector
fields in such a way that for some natural number N,
(i)T,eP, k<N,
(ii) m(B) < N for any T € P.
(iii) for any 7%, with m(y) < N we have T, = > w(y, B)Ts. Also

TgeP,m(B)<m(v)

TN-H = M(N+ laN)TN + Z M(N+ 176)T5

TgEP

(iv) for any 7', ¢ P with m(y) = N and () = 1, we have u(vy, N) = 0.
Indeed,
DI,D' = D(u(y, N)DTND ™ + 3 D(u(, 8)DT;D" .
TyeP,BAN
On the other hand,

DT,D™ = e ST y(y, )Ty,
m(B)<N-1

= NNy )T+ Y p(n AT+ Y. v BT

TzePm(B)<N,B#N m(B)<N-1
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We compare the coefficients before T and we have
eNFTVNT (4 N) = D(p(y, N))eNerT
which proves that p(y, N) = 0 for any v with m(vy) = N and I(y) = 1. We have,

TNy = pnTy + Z (N +1,8)1p,
T@EP

here puy = p(N + 1, N). Then

DTy D™ = D(un)DTx D™ + 37 D(u(N + 1,8))DT;D "

TBEP

We continue and have,

e(N—i—l)alT{'uNTN + Z M(N + 1’ 6)TB} + e(N+1)alT{CN+lB — A+ CN+17'A}TN

TgeP
treV Tl N NN+ LA) T+ Y v(N+1,8)Ty
m(8)=N,l(8)=1 m(B)<N—1
= D(MN){eNalTTN —+ Z N ﬂ T,B}
m(B)<N-1
+ > D(u(N + 1, 8)){er Py 1 N y(5,r)T .
TpeP m(r)<N—1

We compare the coefficients before Ty and get

eWHbarr ) oy eWHDar s B — A+ enmA} = N7 D(py).

Note that, by property (iv), we do not have term 7e(™ +1ea7 ip the left hand side
of the last equality. Thus, using the expression for A(7) = C(e”®7 — 1) and the

fact that ux is a constant, we have

B(T) == ClA + OQTA == C’l(e_a” - 1) + CQT(G_C“T — ].) s

where .
Cl = ,UN y 02 - —1
Cenia CN+1
We introduce new vector fields
~ 1 0 (& 0
— G = (e™MT _1 = _ —5Sy = AT ) — 4.
SO OSO (e )87'+ Sl 051+ CSO 7'( )87'+
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SNQ = [So, gl], gn+1 = [g(], gn], n Z 2.

We have,
DS’()D_I = eango, Dng_l = e‘”Tgl - Teangm

DS,D7! = Z’y(n, k)Sk, A(n,n) =emar,
k=0

where 4(n, k) are functions of 7 only. Since all vector fields S;, belong to a finite

dimensional Lie algebra L,, then there exists a natural number M that
Sure1 = funeSar + fini—1Sm—1 + . .. + fioSo, (3.37)
and Sy, Sv_1, ..., Sy are linearly independent. Then

DSw1D™t = D(jing) DSy D™ + ... + D(jig) DS, D,

and
~ ~ M ~ ~
A(MA+1, M+1){ fips Spr+- - .+[LOSO}+Z F(M+1,k)Sk = D(an){y(M, M)Spy~+.. . }+. ...
k=0

We compare the coefficients before Sy; and we have
eMHNT iy + F(M + 1, M) = D(fuar)e ™7,

which implies that fij; is a constant. In the same way, by comparing the co-
efficients before gM,l, and then before SM,Q, and so on, we can show that all

coefficients i, are constants.

We can show by induction on n that for n > 2,

—_

3

S, ={ai2(=1)"2(n—2)le ™7 + Y r(n, k:)e_‘“]"}% +...,

0

i

where 7(n, k) are some constants. Return to equality (3.37) with constant coeffi-

cients ix and compare the coefficients before %:
M
AT (=DM (M = D)le MEDNT LN (M 4 1 k)T
k=0
M-1

= fim (aiWQ(—l)M*Z(M —2)le” M 1N (M, k)e*‘“’”) Yot (e — 1),
k=0
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The last equality fails to be true since on the left hand side we have the factor
e~ (M+Daa7 [yt on the right hand side we do not. It shows that our assumption
that multiplicity m; of a nonzero root a; can be 2 or more was wrong. This

finishes the proof of the Lemma. [J

If the characteristic polynomial of (3.14) has only one nonzero root «, then
d(t,t;) = A(t — t1)e®. In this case equation (3.1) admits a nontrivial a-integral
as seen in Theorem 3.1. In the next section we consider a case when the charac-

teristic polynomial of (3.14) has at least two nonzero roots.

3.4 Two nonzero roots

In this section we prove that if the equation (3.1) admits a nontrivial z-integral
and if the function d(t,t;) contains terms with e®’ and e®* having nonzero ex-

ponents then oy = —a;.

Let a and 8 be two nonzero roots. Consider the vector fields

[e.o]

- i, 0
So = Z A(Tj)eap’g, Sy = Z B(Tj)eﬁp”a—

. 7—.
Jj=—00 J j=—00 J

from the Lie algebra L,, and construct a new sequence of vector fields
SQ - [807 Sl]u Sn+1 - [S()u Sn]a n Z 1.
We have,
DSyD™' =e*"S,, DS, D '=¢e""5,,
DS, D! = el@A7G, 4 BATITS — aBel* TS,

In general, for any n > 3,

DS,D7' = el DetBrig 4 (e o+ d,B)AS,

n—2

+(pnA' + gnA)AS, 2 + > v(n, k)Sik} (3.38)

k=0
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where
—1)(n—2 -1 -2
cn:(n )(n ), d, =n—1, an:n(n ) [n a+pBr, n>2
2 2 3
—2)(n—1)3n—1 —1)? -1
B T S VI PR e | SN s P
24 2 2
Let us consider a particular case when
SQ = ,LL()SO -+ ulsl. (339)

We have,

DS, DY = D(110)e® Sy + D(p1)e’™ Sy = e @978, 4 pAeletATg — qBeletAT g,
eCFATL10S 4+ 1 Sh Y + BACTTS, — aBeletATS,

We compare the coefficients before Sy and S; and we have the following two

equations
e(aJrﬁ)TMo — aBeltT = D(po)e®, e(MmTM + 5146(&%)7 = D(Ml)eﬁT-
It follows that ug, 1 are constants and

B(r) = —%@—ﬂf 1), A(r) = %(e—m —1).

And finally, we compare the coefficients before a% in equation (3.39) and it implies
that a = —f.

Let us return to the general case. Since L, is of finite dimension then there exists

a natural number N such that

Snt1 = UNSN + n—1SN-1 + ... + oS0,
and Sy, S, ..., Sy are linearly independent
Then

DSy 1Dt = D(un)DSyD ™ + D(pn_1)DSy_ 1D~ 4 ... 4+ D(1o) DSy D~
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By using the formula (3.38) we have
eVt Sy+un—1Sn_1+. . )+ A(ens10+dy1 ) Sv+ AN A+an i1 A) Sy +. .} =

D(un){e N1t (Sn+ A(eyatdnB)Sn_1+. . ) }+D(pn_1){e VDA g

We compare the coefficients before Sy and it gives
Nt + Alensia + dyaa 8)} = D(uy )e (N0t
It follows that py is a constant and then
Alenpia+dyaB) = pn(e™ = 1).
If cyyia+dy1f=N {%a + ﬁ} # 0, then
A(r) = Ci(e™ " = 1),

for some constant Cf.

If eyprao+ dyif = N{%a—l—ﬁ} = 0 (in this case uy = 0) we compare

coefficients before Sy_; and have
e(Na+5)T{MN—1 + Alpy 1A + v A)} = D(MN—l)e((N_2)a+’g)T-
It follows that py_1 is a constant and
PN AA + qu a1 AP = o (e = 1).

Note that if ey 1a+dy 18 =N {%a + ﬁ} = 0 then py, 1 = _Wa #

0 and gyy1 = —WQQ # (0 for N > 2. Therefore, <§N+1)pN+1 = «. Case

N = 1 should be studied separately (Sy = 151 + 10S0). But we have already

studied this case. Let us solve the equation
PN AA + qu A = o (e = 1).
Denote by y = A%. We have,

y/ +oay = kle_Qw —k
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for some constant k;. The solution is
AQ(T) = Kl(e_zm + Koe T + 1)

for some constants K; and K.

Construct new sequence of vector fields

Sy =[51,5], S;

n

+1:[Slvs;kz]7 n 2.

Note that S5 = —S5. Since L, is of finite dimension then there exists a natural

number M such that Sy, Sy, ..., S}, are linearly independent and
Shr = BaSi + Hy—1S—1 T - -+ S0

There are the following possibilities.

A(T) = Kl(e—om’ — 1)’
2){ B(7) = K3(e 27" 4+ Kje %™ + 1),
Sirer = WirSir + a1 Sir + -+ gSo, LB +a =0,

B(1) = K3(e P — 1),
3) ¢ A1) = K2(e ™2 + Kye ™ + 1),
SNn41 = UNSN + N-1SN-1 + ...+ 10Se,  “Fra+ =0,

A%(1) = K2(e™27 + Kye ™7 + 1),

Sni1 = UNSN + piN—1SN-1 + -+ + HoSo, %Oé + 6 =0,
B(7) = K3(e " + Kue " + 1),

Sirer = HarSir + ih—1Siro1 + -+ pgSo, M5B+ a =0,
where K7, Ky # —2, K3, K4 # —2 are some constants, M, N > 2.

In case 1), vector fields Sy and S; generate an infinite dimensional Lie algebra L,

unless a + 3 = 0.
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In case 2), we make a substitution 1 —e®” = e~**. Vector fields Sy and S; become

0
=Ki—+ ...
So e +...
2 0 0
S1={K3((1 =) + Ki(1 =) + D} b= glw)z o+

Note that if
Sy = UaSar + Har—1Shy—1 + -+ 150,

then all coefficients p are constants. We compare the coefficients before a% in

both sides of the last equation and we obtain that g(w) is a solution of linear

differential equation with constant coefficients, that is

g(w) = {KZ((1—e ) & + K,(1—e ™) a4 1)}/2 = ZRk e (3.40)

where Ry (w) are some polynomials. We can show that equality (3.40) holds only
if B(t) = K3(e®™ + 1). It can be shown that in case 3) A(7) = K;(e’” +1). In
case 4) we make substitution e®” + L 4 y/e20m+Kieo7+1 — gow  Thep

0
So = Ki—+...
2B

1 K K? 1 -
si= {8 -5+ (F-3)™)

1 K, K2 1 -£ 1/2 9
g (F ) o)
+ 4 28 5 + 3 5 e + aw—l-

0
= g(w)%—l—...

For function g(w) to be of the form ) Ry (w)e” ", where Ry(w) are polynomials,

k
function B(7) has to be of the form B(7) = K3(e®” 4+ 1). Then, by case 3),
A(T) = Ky(e7*7 4+ 1).

It has been proved that in cases 1), 2), 3), 4) we have

oy AP = Kl =),
B(1) = K3(e* — 1),
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In case 1*) function d(t, ;) in (3.1) has a form d(¢,t;) = c4(e* —e™) +c5(e " —
e "), where ¢; and c5 are some constants. Equation (3.1) with such function

d(t,t1) admits a nontrivial z-integral as seen in Theorem 3.1.

In the next two sections we show that Cases 3*) and 4*) both correspond to infinite
dimensional Lie algebra L,. Case 2*) also produces an infinite dimensional Lie

algebra L,. It can be proved in the same way as it is proved for case 3*).

3.5 Characteristic Lie Algebra L, of the chain

t1, = t, + Al(eo‘t1 + eo‘t) — Ag(e_o‘t — e_o‘tl)

Since A(7) = A1(e7*" + 1) and B(7) = Ay(e®” — 1) then

k k-1
A(T)e + Z A(r;)e™ = Ay (eo‘t + (2 eo‘tj> + eat’“>,

=1 =1
and

B(r)e™™ + ) B(rj)e i = Ay(e " — e ).

and
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where
(o)
Sl = E e_at’“ .
oty
k=—00
Introduce new variables w; = éeo‘tﬂ' and so vector fields S; and A%So can be

rewritten as

~ > 0
:kz—ooa_ujj,

oo k-1 0 k-1
1 0 0
—Sy=0a") 42wy Hwit——+a? > fw (w2 w_j)+w? '
A= kl{wk(w 2. w;) wk}awk o kl{w k(w j:1w i)tw k}aw_k

We have

. > 0
=4 § "k =4Ty, T\ = 7
[Sla[Slv kawk 1, 1 k;wkawk’
1 ) L
=[Sy, [T}, —— i —SZ{k k+1}<awk aw_k)_:J,T2—3T1+351,

TQZ Z 1{72812%

Assume that T, = Z Em -2 Fos M = =1,2...,n, are vector fields from L,. Then
k=—0o0
. 1
Tm+1 — [817 [Tm7 042—14150“

- 0 0
m m m m+1 m
E {2142 4+3" 4+ ...+ k™) + 2™ — k }(8101c aw_k)

1

i

NE

{2 b o) 2870 k) ()

e
I

1

and therefore, T}, 1 = z k59— € L,. It shows that T, = 2 krgo- € Ly

k=—00 k=—00
foralln=1,2,3,..., and L, is of mﬁmte dimension.

3.6 Characteristic Lie Algebra L, of the chain

tiy =ty + Ay (e + ) + Ay(e™ 4 e7)
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It is seen in previous studies (see, for instance, [16]) that S-integrable mod-
els have the characteristic Lie algebra of finite growth. The chain studied
in this section can be easily reduced to the semi-discrete sine-Gordon model
t1, = t, +sint + sint;, which belongs to the S-integrable class. It is remarkable
that its characteristic Lie algebra L, is of finite growth. Or, more exactly, the
dimension of the linear space of multiple commutators grows linearly with the
multiplicity. Below we prove that the linear space V,, of all commutators of mul-
tiplicity < n has a basis {Py, Ps, Ps, ... Pog; Q2, Qy, ...Qax } for n = 2k and a basis
{Py1, Py, Ps, ... Pyjy1; QQ2, Qu, ...Qax } for n = 2k + 1, where the operators P; and Q);

are defined consecutively

Py = [So, S1] + aSy + Sy, Q1 = P,

Py, =[S, P, Q2 = [So, Q1]

Py =[Sy, o] + aP,, Q3 = [S1, Q2] — aQs,

Py, = [S1, Pon—1], Q2n = [So0, Q2n-1],

Poni1 = [So, Pon] + aPay, Qant1 = [S1, Qan] — aQ2n,

for n > 1. Direct calculations show that

DP, D' = P, —2a(Sy+ S),

DP,D™' = e (P, +2aP;, —2a*(Sy + S1)),

DP;D™' = Py +2aQ, —2aP, — 40P + 4a3(Sy + S1),

DP, D™ = e (P +2aQs — 40Py + 40°Qy — 40* Py 4 4a*(Sy + S1)),

D@Dt = e*(Qy — 2aP; + 20°(Sy + S1)),

DQsD™' = Q3+ 2aQ; — 2aP; — 4a* Py + 40*(Sy + S1),

DQD™' = e*(Qy — 2aPs + 2% (Py — Q) + 403 Py — 4a*(Sy + S1)),

Py=Qs , [S1,P]=—aP,,[S), Q] = aQs, [S1, Py = —aPy, [Sy, Q4] = aQy.
(3.41)

0
The coefficient before 7 in all vector fields DP,D~!, DQ, D=, 1 < i < 4 is zero.
T

Lemma 3.14 For n > 1 we have,

(1) DPQn_HD_l + QQGQTDPQnD_l = P2n+1 + QOéan,
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(2) €™ DPoyisD™ — aDPopy1 D' = Poyio + aQopy1,
(3) DQopi1 D' — 207" DQop D' = Qopy1 — 20 Py,
(4) e DQop12D™" + aDQ2p1 D' = Qapyo — aPopya,
(5) Pant1 = Qant1,

(6) [S1, Panya] = —aPanya,

(7) [507 Q2n+2] = aQ2n+2.
, 0 . B N
Moreover, the coefficient before 5, " all vector fields DP, D™, DQD™" s zero.
T

Proof. We prove the Lemma by induction on n. It follows from (3.41) that the
base of induction holds for n = 1. Assume (1) — (7) are true for all n, 1 <n < k.
Let us prove that (1) is true for n =k + 1.

DPyy 13D~ = D([So, Panso] + aPani2) D™ = [e*7So, DPayso D] + @D Py, 2D

=[Sy, ae™ " DPp 1 D' 4+ e Pyyyyg + 0 Qopy1] + @D Poy oD

= —a*(1+ efo”)DPMHD*1 + ae e Sy, DPypy 1 D7 — a(l + e ) Pyt
a’ Qan1 + Ponis — Ponis + 0Qonio + aD Py s D™

"D Py D7 + e D[Sy, Qans1]D T — a2+ €77) Py

)

2 e )
e NQan+1 + Ponys + aQopyio + OéDP2n+2D_1

)

(1+
(1+
—a?(1 +
—a*(1+
(14 e ) Qanp1 — 20°Qans1 — 20Ponis + Panys
= —2a? DP2n+1D_ + 20Q2p 12 — 202 Qont1 — 2Py, 0+ Poyys

D Py 1D+ aQona — &P Popi1 — a°DQap i1 DT — (24 €7

aT) P2n+2

= 20 P12+ 20°Qony1 — 206" D Pay 2 D™ 4 20Q0p 12 — 20°Qany1 — 200 Panys + Ponts

= —20e*" D Py oD 4 20Q2n19 + Ponys.

The proof of (3) is the same as the proof of (1). Let us show that (5) is true for
n =k + 1. We have,

DPypi3D™' = —20e* " DPyyoD ™" + 20Qan12 + Ponys
= —20(aDPos1 D" + Payyo + aQops1) + 20Qan40 + Poyys,
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and

DQani3D™' = 200" DQapioaD ™t — 20Poy 1o + Qonss
= 204(—04DQ2”+1D*1 + Qant2 — aPoyi1) — 20Pop o + Qapgs.

By (5), Pant1 = Qany1 and therefore
D(Pypy3 — Qoniz) D' = —2aPsyy 10 — 20Qan 12 + 20Q2n19 + 2Py ig = 0.

Hence, Pypi3 = Qonys-

Let us prove (2) is true for n = k + 1. We have,

e*"DPy, 1Dt =" D[S, Py 3)D7! = e*[e77 S, DPyy 3D

= e[S, —20e®™ D Py oD + 20Q0n 49 + Paps)

= e (—20%(1 + ") D Py, oD 7Y) — 2™ (™" S, DPoy oD ] + Popiy
+20Q2+3 + 20°Qanso

= —20%(e*7 + €*") D Py oD + 202" D Py oD + Poyiy
+20Q2+3 + 20°Qanso

= —20%€*"DPy, 5D + Pypig 4 20Qon43 + 20°Qonso

= aDPs 3D — aPoyiz — 20°Qanya + Papia + 20Qan 13 + 20° Qo0
= aDPy3D 7" + aQopiz + Papia.

The proof of (4) is similar to the proof of (2).
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Let us prove that (6) is true for n = k + 1.

DI[S1, Poypia] D7' = [e77S1, 06 "D Py 3D~ 4 €™ Poys + ae T Qopys)

=778, ae (=20 D Py oD+ Popys + 20Qon10) + € Py + ae” Qo 5]

= (6778}, =202 D Py oD 4 2007 Py ys + 207 Qoppa + € Py 4]

= —20° D[Sy, Panyo] D' — 207727 (1 + €°7) Pypis — 20727 (1 + €*7) Qapi2
+20e 72 Py, g + 20772 Qo s + 20°€ 2 Qoo — ae 2 (14 €27) Popyy
+e72°7[S), Payy4]

=20°DPy, 0D — 202 Pyyis + (e 2T — e ) Pyyyy
—20%e7 " Qapyo + € 27[S1, Popyd]

= 042e_°‘TP2n+3 + 2a3e_“TQ2n+2 - aQe_’”DPQnJrgD_l - 2a2e_‘”P2n+3
+a(e — e ) Py — 207 Qopya + € 27[S1, Papd]

= —a?e " Py iz + (e — e )Py — aD Py DTt ae T P,y

+042€7MQ2n+3 +e %7 [S1, Poptal.

Thus,
D[Sy, Py a) D™ = €727[S), Payya] + € ** Pypiy — aD Py y D7
D([S1, Ponya] + aP2n+4)D_l = e_zm([sl, Popiy] + aPoyiy).
Hence, [S1, Popta] = —aPopi4.

Proof of (7) is similar to the proof of (6). [
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Corollary 3.15 We have,

e " DQ2 D! + e*"DPy, D" = Qs + Pay,
DPy D7 = Py + Z Mzinﬂ Py, + V(2n+1 Qo) + Z uéi’ff Py
k=1

+M02n+1 Sy + v 2n+1)51’

-1
DPD~ = e (P, Z (5 Paw + v Q)
k=

+ ZM%HP%H + Mo So + V02n 51)

n—1
D@y, D7' = €7 (an - Z(Mék 'Py + ng )Q%)
k=1
n—1
2n 2n 2n
= s Poer — " So — v )51)-
k=0
Moreover, 2" = —2a, ™™ = 20, 12, = 2a.

Assume L, is of finite dimension. There are three possibilities:

1) So, Sl, P17 PQ, QQ, Pg, P4, Q4, ey P2n71 are hnearly independent and
S(), 817 Pl, P27 QQ, P3, P4, Q4, . Pgn_l, Pgn are linearly dependent,

2) So, 51, P1, P2, Q2, P, Py, Qy, ..., Pay_1, P, are linearly independent and
S0, S1, Pry Pa, Q2, P3, Py, Qy, ..., Poy_1, Py, Qo are linearly dependent,

3) S(), 817 Pl, P27 QQ, P3, P4, Q4, ceey Pgn, an are linearly independent and
So, 51, P1, Po, Qo, P3, Py, Qy, ..., Poy, Qopn, P11 are linearly dependent.

In case 1),
Pon = Yon-1Pon—1 + Yon—2Pon—2 + Non—2Q2n—2 + ...
and

DPy, D! = D(/72n—1)DPQn—lD_l+D(’72n—2)DPZn—QD_1+D(n2n—2)DQ2n—2D_1+~-' .
(3.42)
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We use Corollary 3.15 to compare the coefficients before Py, ;1 in (3.42) and have
the contradictory equality,

e " (Van—1 + 20) = D(Y2n—1)-

It shows that case 1) is impossible to have.

In case 2),

Qon = YonPon + Von—1Pon—1 + N2n—2Q2n—2 + ...

and

DQQTLD_I = D(”ygn)DPQnD_l +D(’}/2n_1>DP2n_1D_1 +D(7]2n_2)DQ2n_2D_1 “+....
(3.43)
We use Corollary 3.15 to compare the coefficients before Py, in (3.43) and have

the contradictory equation,

e (Yan-1 — 20) = D(Y2n-1)-

It shows that case 2) is impossible to have.

In case 3),

Py = 12, Q2n + Yon Pon + ...

and
DPsy 1D = D(12,) DQ2n D™ + D(72n) DPo, D™ + ... (3.44)

We use Corollary 3.15 to compare the coeflicients before P, in (3.44) and have

the contradictory equation,

(Van — 2a) = D(7ya,)e 7.

It shows that case 3) also fails to be true. Therefore, characteristic Lie algebra

L, is of infinite dimension.
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3.7 Finding x-integrals

In this section, we will complete the proof of Theorem 3.1, given in the beginning
of the Chapter. In the previous sections we proved that if chain (3.1) admits a
nontrivial -integral then it is one of the forms (1) —(4). The list i) —iv) allows us
to prove the inverse statement: each of the equations from the list admits indeed

a nontrivial z-integral.

Let us explain briefly how we found the list i) — iv). Since for each equation
(1) — (4) we have constructed the related characteristic Lie algebra to find z-
integral F' we have to solve the corresponding system of the first order partial
differential equations. Below we illustrate the method with the case (2), for which

the basis of the characteristic Lie algebra L, is given by the vector fields

N ~ 0 0 0 0 0
Y:a$ YaT )9 T:Y—aT, X == - —_—
+ Ya(r)t+b(r) 1 (r) 8t+8t1 +8t_1 +8t2 +

at_2+...,

where a(7) = co7 and b(7) = co7% + c37. Note that z-integral F' of (2) should
satisfy the equations YF = 0, T3 F = 0 and XF = 0. Introduce new variables
t,w,wyy, ... where w; = In(7;) and 7; = t; —t;41. We can rewrite the vector fields

X, T7,Y in new variables as

XZQ T1:ZCO%

ot’ = Oy
- ) > ) - 0
Vot g e 2 iy
0 =\ 0
= 5 tT1 + ¢o j:ZOO{Pj + b(wj)}ﬁ_wj’
where
( j_l
>oev, if j>1;
k=0 5 1
pj = 0, if j=0;  bw;)=——(c2e" +c3).

Co

1
- Zewka if .]S _17
k=j

\

Note that since we have XF = 0, F does not depend on t. Now let us consider
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the vector field
~ ) ) ) ~ 9

j=—o00

We can write the vector field A explicitly as

o0 j—1
A = %—Fj;oo{(co;ewk> —czewj—c;;}aiwj

The commutator [T}, A] gives

0
[Tl, A] = C()A — Coa—x + Cng.

Thus we have three vector fields

j=—00 k=0
T, - = 0 - 0
R — I X, = —
Co ! j;oo 8wj ’ ! al”

which solve AF =0, T)F = 0, X;F = 0. Note that [Tl,fl] = A. Since X, F =0,
F does not depend on z. Hence we end up with two equations. By Jacobi theorem
the system of equations has a nontrivial solution F'(w,wy,ws) depending on three

variables. Therefore we need first three terms of A and T;;

- 0 0 0
A = —Czw% + (Coew — Cgewl)a—ujl + (Coew + coe“” — Czewz)a—wQ,
~ 0 0 0
o= — 4 —f—.

! 3w * 811)1 + 8’[1)2

Now we again introduce new variables w =€, w—w; =€, w;—ws = €3. We

can rewrite the vector fields A and Tl in new variables as

_ B 0 J
A = eE{ - CQ& + ((—ca — o) + 028_61)8_61 + ((—c2 — cp)e™ + 628_61_62)3_62}7
0

&.
We find the z-integral ii) in Theorem 3.1 by solving (use the characteristic

Tl =

method) the equation

{((—CQ o)+ CZe_El)ai

—€1 —€2 8 —
€1 +e ((—CQ—CQ)+CQG )a_EQ}F_O



Chapter 4

Equations Admitting Both x-

and n-integrals

Here we analyze the equations given in Theorem 3.1. We check whether these

equations having nontrivial z-integrals also have nontrivial n-integrals.

4.1 Casel) ty, =t, + At —t)

Introduce w = t; — t and also to express the equation in a simpler form write
B(t; —t) instead of A(t —t;). We can do this since A is an arbitrary function
of t —t;. Hence we can rewrite the equation as w, = B(w). We study the
question when this equation admits a nontrivial n-integral or the same when the

corresponding Lie algebra L, is of finite dimension.

Since in this case
Yof = B'(w)wy, = D,B(w),

Yo, = B'(@)B(w) + B'(w)B'() = DuB(w)D.B(w)
and YoD* f = (D, B(w))**!, we can write Y] as

0 &K L 0
m_at+;D (D, B(w)) Tk (4.1)

79
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Now let us introduce new variables: w, =t,w =t —t,w_1 = t—t_1,w; = tj11—1;.

Since

o o o > o
Y= — — — D YD, B(w))* . 4.2
! Oowy Ow + Ow_q + ; (DoB(w)) 0DkFw, (42)

We can ignore the term containing a% since coefficients in the vector fields used
below do not depend on w.
We multiply Y; by B(w_1),

0 0 > 1 PG,
Blw_1)Y; = B(w_l)m + B(w_g@w_l + ; B(w_1)D"Y(D,B(w)) TDE
(4.3)
Introduce p
w_
p(0) = B(w_1(0)), where df = Blo ! 7 (4.4)
-1
The equation (4.3) becomes
0 0 = 0
B(w-1)Y1 = p(@m togt ; Dx(p(e))m- (4.5)
Now instead of X; = %, define
X, = Bw_1)X; = —B(w_,) + B(w_,) 0
1= —1)A&1 = Vo, Vo,
It is indeed with new variables
- 0 p(@) 0O
Xy =——= : 4.
' T06 T p6) 06, (4.6)
Note that [Dy, Xi] = D, (%5 ) Wi, where Wy = glo. Since [D,, Xi] =

—X1(9) X7 —X1(g9-1) X2, then [D,, Xl] € L,,. Therefore, we have two possibilities;

: 0 \ _—
i) Dx(pf;il)) =0, or
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11) Wi € L,.

First let us consider case i). We have

D < p(6) ) _ PO)p(0-1) —p(O)p'(0-1) _
T — 2 — U
p(0-1) p*(0-1)
The solution of this equation is p(f) = B(w_1(0)) = ue?’, u # 0 and \ are some
constants. Since % = ﬁ, we have B(w) = A\w + ¢, ¢ is a constant.

Now we concentrate on case ii). Since D, <p€)9(?)1 )>W1 € L,, then Wy € L, and,
due to (4.6), W = & € L,.

Lemma 4.1 If equation w, = B(w) admits a nontrivial n-integral then function

p(0), defined by (4.4), is a quasi-polynomial.

Proof. Instead of Y;, X;, we take the pair of the operators W = % and
0 0

0
Z =Bw.1)Y1 =W =p(0)=— + D.p(0 D2(p(0 o (4
(w-1)Y1 = W = p( )&u+ + Dup( )awﬂ + D3 (p( ))awm + (4.7)
We construct a sequence of the operators
Cy=[W,Z7], Co=[W,Cy], Cp=I[W,Cy 4], k=>2. (4.8)

Since algebra L, is of finite dimension then there exists a natural number N such

that

Ong1 = poZ + pnCr + ... + unCly, (4.9)
and Z, C1, ..., Cy are linearly independent.
Direct calculations show that [D,,W]| = [D,,Z] = 0. Therefore, we have

[D,,C;] =0 for all j. It follows from (4.9) that

which implies D, (p;) = 0. Clearly p; = p;(0) and D, (p;) = p5(6) = 0. Hence yu;
is constant for all j > 0.
)

Terms before 57— in (4.9) give the equation

op(0) + iy (0) + .. + pnp™(9) = p(0). (4.10)



CHAPTER 4. EQUATIONS ADMITTING BOTH X- AND N-INTEGRALS82

This means p(f) is a quasi-polynomial, i.e. it takes the form
p(0) = q;(0)eM’. (4.11)
j=1

O

Lemma 4.2 Let p(0) be an arbitrary quasi-polynomial solving a differential equa-
tion of the form (4.10) and which does not solve any equation of this form of less
order. Then the equation ti, = t, + B(t; —t) with B found from the conditions

admits a nontrivial n-integral.

Proof. Introduce
L(D,) = DY — unDY — pn—1 DY — = Dy — pug.

Equation (4.10) can be rewritten as L(D,)p(d) = 0. However L(D,)p(f) =
L(D,)B(w-1). Since L(D,)t1, = L(D,)t, + L(D,)B(w) and L(D,)B(w) = 0, we
have L(D,)t1, = L(D,)t,. But L(D,)t;, = DL(D,)t,, therefore DL(D,)t, =
L(D,)t,. Denote L(D,)t, = I so we have DI = I. Hence L(D,)t, is an n-
integral.l]

Therefore the condition (4.11) is necessary and sufficient for our equation to have

nontrivial n-integral.

Example Take p(f) = 3¢’ + 3% = cosh 6, then

B(w-1) = coshf

w_1 = sinhf +c,

or B(w_1)? — (w_1 — ¢)? = 1 which gives B(w_1) = \/1+ (w_1 —¢)2. So t;, =
t: +/1+ (t1 —t — c), where c is arbitrary constant, is Darboux integrable.

Moreover, its general solution is given by (n, z) = G(x) +nc+ > 4, sinh(z +cy),

where G(z) is arbitrary function depending on z, and ¢ are arbitrary constants.
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4.2 Case 2) t1, =t +ci(t—t)t+co(t—t1)? +c3(t—ty)

Since ¢, ¢o and c3 are arbitrary constants, let us express the equation as ti, =
ty + C1(ty — t)t + Gty — t)? + ¢3(t; — ) for simplicity. We have the following

relation between ¢; and ¢s.

Lemma 4.3 ]f equation tlx = tx—l—d(t, t1> = tx—f—él (tl —t)t+52<t1 —t)2+63(t1 —t)

admits a nontrivial n-integral, then there exists a natural number k such that

Proof. Introduce vector fields T} = [X1,Y1], T, = [X1,T,-1], n > 2. Direct

calculations show that
Dy, Th] = (—¢1 + 262) X1 + (—¢1 + 262) Y1 + (dp_, (t-1,t) — de(t—1,1))T1,

D, T, = —A™ T, | — AT, (4.13)

n

where

n n—j . . n!
A§ ) — Xl ]{—C(n,]—l)dt71 (t_l,t)+0(n,])dt(t_1,t)}7 C(?%k) = m

Since algebra L, is of finite dimension then there exists a natural number M such
that
Trs1 = Ty + pTs + ..o+ ppT,

and T, T, ..., Ty are linearly independent. We have,
(Do, Tars1] = [Doy Ty + poTo + -+ piar T,
that can be rewritten by (4.13) in the following form:
— AN — ANVGLT 4 Ty 4+ T} = (=1 + 262) i (X3 + Y7)

H{Da (1) — mAY = APYT + -+ {Da(pv—r) — v AR — v AR YTy
+H{Da (i) — ux A} Ty (4.14)

We can prove equation (4.12) by comparing the coefficients before linearly inde-
pendent vector fields Xy, Yy, Tx, 1 < k < M in the equality (4.14). O
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Now introduce w = t; — t. Hence we can rewrite the equation ¢y, = t, + ¢1(t; —
Dt + Gty — t)> +c3(t — t) as

Wy = Crwt + Cow? + Caw.
In this case we have two important relations;

1) Yof = D, In H, where

w@l/e w1 El
2)Yif=D,In RH 4, where
» 0
}{_1 =D }{, R = ZRET;?ES, when € #;0.

Remark 4.4 The case € = 0, i.e ¢ = ©Cy, 1S not realized due to Lemma 4.5.
The case ¢, = 0, due to Lemma 4.3, leads to ¢, = 0, and the equation becomes

t1z =ty + C3(t1 — t) with an n-integral I = t, — ¢st.

These two relations allow us to simplify the basis operators Yy, Y7, X;. Really, we
take
Yi=H.Yi, Y,=HY,

and get [D,,Yy] = 0 and [D,, Y1] = AY;, where A = —%Dm In(RH_,).

First we will restrict the set of the variables as follows: t,¢,t_1,%.,tsz,... and
change the variables t* = t, w_; = t —t_; keeping the other variables unchanged.

Then some of the differentiations will change

0 0 0 0 0

i T . TR W

So we have X; = —% = —X; and

9
dDkt

~ 0
Y, :HA((??—F

-1 k—1
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Since [DZ,X]] = D,(In R_l)Xl, we can introduce X, = RL_le and get [Dx,Xl] =
0. Here R_y = D7 'R.

We introduce vector fields Cy = [5(1,171], Cy = [Xl,CQ], Cp = [Xl,Ck_l], k> 3.
We have,

[Dxachrl] = X{(A)YEH j Z 1.

Since the algebra L, is of finite dimension then there is a natural number N such
that
CN+1 :NNCN+...+/11202+/1/1}~/1, (416)

where Y7, Cy, Cs, ... are linearly independent.
Applying the commutator with D, we get D,(y;) =0 for j =1,..., N and
(XN — pun XNt — L — A =0. (4.17)

All the operators in our sequence have coefficients depending on w,w_1,t. So p;,
j =1,...,N also depend on these variables. But the relation D, ;(w,w_1,t) =0
shows that % = 01ie p; = pj(w,w_1). Since the minimal z-integral for an
equation in case 2)(see Theorem 3.1) depends on variables ¢, ¢, ta, t3, the rela-

tion D,(u;) = 0 implies that y; is constant for all j.

Now we introduce new variables ¢, ¢, n as

5] :t17 £:t+7

— W-1 . B E en
n=In <w—1 i t)) ; or the same  w_;= ; (1 — e")' (4.18)
Then
aW—l B &u_l 87’]’
90 o
ot ot otoy
00 o
ot, ot Otion

In these new variables X 1 takes the form
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and equation (4.17) becomes

dN del
<dn N g —ul)A: 0, (4.19)
where

H_ 4 H_{/0f _,0f

AN = — | D.InH | )=——|—4+D"—

g (W Bt DolnH o) H <at + 8t1>

H 4

= —?(Cl — 202)(@ —w,1). (420)

Let us show that ¢; —2¢; = 0. Assume contrary. It follows from (4.19) and (4.20)
that both functions H_; and w_; H_; should solve the linear differential equation

with constant coefficients:
dN dN—l

Therefore, both functions H_; and w_1H_; must be quasi-polynomials in 7.

Due to (4.15) and (4.18), we have

and

w H | = %e "1 — e")%_Q.

To be quasi-polynomials in 7 it is necessary that € = % for some natural m > 2.

We rewrite our vector fields X 1 }71 in the new variables;

- 0
X = —
1 o’
~ 0 on on \ 0
Vi = H.,— H,( )—
! ot o T e oy T
and study the projection on the direction a%
The operators X; = and H_ ( 5o T a ) o generate a finite dimensional Lie

algebra over the ﬁeld of constants. Due to Lemma 3.9 from Chapter 3, in this

case the coeflicient H_ should be of one of the forms

1at

G1e 4+ Goe™ M £ G5 o1 En* + Con + Cs, (4.21)
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but we have

(g e ) = (1 ()=t

with % = m > 2 and it is never of the form (4.21). This contradiction shows that

¢ —2¢, = 0.0

4.3 Case 3) t1, =t, + At — t1)e™

Introduce w = t; — t and also to express the equation in a simpler form write
B(t; —t) instead of A(t —t1). We can do this since A is an arbitrary function of
t—t;. Hence we can rewrite the equation as w, = B(w)e®. We will find out when
the equation admits a nontrivial n-integral or the same when the corresponding
Lie algebra L,, is of finite dimension.

Instead of the vector fields Y, = a% and Y] = % +D! (g—i) % + D! <g—{f) % +

.., we will use the vector fields Yy = B(w)Y; and Y; = B(w_;)Y;. They are more

convenient since they satisfy more simple relations:
(D2, Yo] =0, [Da,Y1] = MY

as operators acting on the enlarged set ¢1,¢t,t_1,t_9,... ; ts, toe, toas, ... . Here the
coefficient )\ is

A = Bg@” (B’(@ —aB(w) — B'(w,l)e*aw*)eat.

Since the equation is represented as w, = B(w)e™ it is reasonable to introduce
new variables as wy =t,w 1 =t —t_1,w_o=1%t_1 —1t_5, such that

0 0 0 0 0 0 0 0

O 0w, 0w, Ot 0w, dwa Oty dwa

Instead of the operators X; = % and Xy, = % we use new ones

X, = B(w,l)e_awfl&il and X, = B(w_g)e 2 7. LThey satisfy relations
[D,, X5] =0 and [D,, X;] = uX,. Here the coefficient y is

—2ow_1+at

p=aB(w_j)e
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We construct a sequence by taking X;,Y;,Cy = [Xl,}N/l],Cg = [Xl,C'g],C'k =
[f(l, Cl_1] for k > 3. We can easily check that

[Da, O = =Yi(1) Xz + X1(A1)Yp = b2X + X1 (M),
[D., Cs] = XF(A1)Yo — (Co + X1Y71) ()Xo = XF(A1)Yo + b3 Xo,
and for any k£ we have
[Da, Ci] = X{H(M)Yo + b KXo,
which can be proved by induction.

Since the characteristic Lie algebra L, is of finite dimension then there is a number
N such that
CN+1 :MNCN+-.-+,U1Y/1+,U0X1, (4.22)

where X 1, }71, C1, Cy, ... are linearly independent.
We commute both sides of (4.22) with D, and get

XN Yo +bxi1Xo = Dy(un)Cn + oo + Dy(p1)Ya + Dylpio) Xa
N

Fun XD Yo + e+ Yo + {Z Drepr } Xo.
=2

We collect the coefficients before the operators and get D,(u;) = 0 for j =
0,1,..., N, and

(XN = v XN =y XN 2 — = )M = 0. (4.23)

Introduce new variables n,7_; as solutions of the following ordinary differential

equations y y
wW_1 _ W_2 _
= B(w_ aw-1 = B(w_ -2 4.24
an (w-1)e I (w-2)e (4.24)
Thus our vector fields are rewritten as
- o ~ 0 - 0
~ 0 0 0
Y ="' — 4+ Blw_1)=— + D, (Blw_1))— + ....
1=e€ an + B(w 1>8w+ + D, (B(w 1))5’15;,; +
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By looking at the projection on (% we get an algebra generated by a% and e*“—1 8%
containing all possible commutators and all possible linear combinations with
constant coefficients. Due to Lemma 3.9 from Chapter 3, we get that e*“~! can

be only one of the forms

a) el = 1P 4 coe P + ¢,

b) et = ¢1n? + con + c3,

where (3, ¢1, ¢o, c3 are some constants.

The equation B(w_1) = %d%eo‘“’*l implies that
in case a) we have B(w_1) = (3/a)(c1e®" — coe™P"), or the same
B%(w) = 6—2 (€™ — c3)? — 4ciep} (4.25)
- a2 3 121, .

and

in case b) we have B(w_1) = (1/a)(2¢1n + ¢3), or the same,

4cq 2 — 4cqcs
B*(w) = — e 2 = SR
a a

(4.26)

In addition to the operators X, X», Yy, Y; introduced above we will use Yy =
B(w_s) DY (Y1£)0s, + B(w_2)D Y (Y1£,)0,,. + ... defined as Yy = B(w_y)Ys. It

satisfies the commutativity relation

[D,,Ys] = A\V; + €Y, + v X, (4.27)
where
£ = —%Dl(lﬁf)
—Bét;;) {(=B'(w_1) + aB(w_1))e 1 + B'(w_g)e -2 70w-1} ¢,
(4.28)
N I T s ey

B(w_l)
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Lemma 4.5 (1) Equation ti, = t, + 2(e® — c3)e® admits a nontrivial n-
integral if and only if c3 = +1.

(2) Equation t1, = t, + cse™, c5 # 0 does not admit a nontrivial n-integral.

Proof. In this case the equation w, = B(w)e® is reduced by evident scaling of
x and ¢ to

tiy = tp + et, or tiy =t + el + eel.

By induction on n we can easily see that for the equation ¢, = ¢, + €', the basic

vector fields Y, are

o 0
Y, = t(n-1) t—(n—1) ty — b)) —— .
R T S T

Since these vector fields Y,,, n > 1, are linearly independent then equation ¢, =

t, + €' does not admit a nontrivial n-integral.

For equation t;, = t, + e!* + ee?, the basic vector fields Y,, are

_a ta t t 8
=g teg, telte)

ath““"

0 0
Y,=(c+ 1)et*<n71>6’T + (e + et (¢, + (1 — g)et—mfn)—at +...

We can see that vector fields Y,,, n > 1, are linearly independent if ¢ # +1.
Therefore, if € # +1, equation ti, = t, + €' + ce! does not admit a nontrivial
n-integral. If ¢ = —1, the equation becomes ti, = t, + e¢* — €', and one of its
n-integrals is I = t, — e!. If ¢ = 1, the equation becomes t;, = t, + e'* + e!, and

one of its n-integrals is [ = 2t,, — t2 — e*. [J

Lemma 4.6 Let equation ti, = t, + B(t; — t)e®" with
(a) B*(w) = 5—2{(6““ —3)? —4cico}, or
(b) BA(w) = dgeo 4 S0,

admit a nontrivial n-integral. Then

in case (a), we have, B(ty —t) = Z\/(eci=0 — ;)2 — 2 + 1, where c3 is an

arbitrary constant, and

in case (b), we have, B(t, —t) = ce2"=Y where c is an arbitrary constant.



CHAPTER 4. EQUATIONS ADMITTING BOTH X- AND N-INTEGRALS91

In cases (a) and (b) the corresponding n-integrals are I = §12 — t,, + $€** and

I = —=5t2 +ty,.

Proof. Note that

B(w_s)
D.p =\, where S _ Lawoo
’ g B(w-1)
This implies that the vector field
R2 = }72 - pi}h

satisfies very simple and convenient relation

B(u)_g)

Do) = vy, €= =D M=, v = e D )
Study now the sequence
Rjiy = X, R, j7>2, where X=X +e1X,.
Direct calculations show that
[D,, Ry] = X" 2(&)Yy + X 2(0) X, + b, X5 (4.29)

Since X;, Xs, Yy, Ry are linearly independent, then there exists a number N > 2
such that
Ryy1 = pnvBy +pn—1Ryn—1 + .. o R + ,M1X1,

and
[Dy, Ryi1] = [Dy, un By + v 1Ry 1+ - .. pra Ry + 11 X1 - (4.30)

We use [Dy, X1] = aB(w_y)e 21t X, [D,. X;] = 0 and (4.29) to compare
the coefficients before linearly independent vector fields Ry, and Yy in (4.30). We
have, D,(ur) =0, k=2,3,..., N, and

XNDE) = pn XNV=2(E) + .+ ok (4.31)

Under the change of variables

n =z, n-1=2_1 —q(2), 5, — ¢ ,
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equation (4.31) is reduced to
(DY = un DY = = )€ = 0, (4.32)

where pup = pgp(w_1,w_9) = pg(z,2-1). Since D,(z_1) = 0, D,(z) = e* # 0
and 0 = D, () = D._, (1) Dr(2-1) + D.(1x) D, (2), then coefficients p do not
depend on variable z . Since, due to (4.32),

B(W,Q)
B(w)

E= e e (=Bl wa) + aBlw) + Blwa)e )

$2) ot () — aB(w) - Blome ™)

B(w_
—éfw)l)ea”‘Qeo‘t{B'(w) — aB(w) — B'(w_1)e” 1}
is a quasi-polynomial in z = 7 for any w and ¢, then %(éB(w)e_o‘t) is a quasi-

polynomial as well. Hence we have,
(B"(w) — aB'(w){B(w-2) + B(w-1)e™*}

is a quasi-polynomial in z, which is possible only if

B'(w) —aB'(w) = 0,0rB(w_2) + B(w_1)e™?

is a quasi-polynomial in z.
In case (a) we have,

e?oau

B"(w) — aB'(w) = —afcy ,
(w) (w) B VT

cy = 4cico,

and in case (b) we have

o? o?

4 2_ Y —3/2
B"(w) — aB'(w) = —4cia~2e* (ﬂeaw e clcg)

Therefore, B"(w) — aB'(w) = 0 if ¢jco = 0 in case (a) and if ¢; = 0 in case (b).

Both these cases are considered in Lemma 4.5.

It follows from Z—Z = —e ™1 that, in case (a), if r = \/c3 — 4cicp # 0, then

1

q(n) = —@ln

P —py —cs+r —c3—r

) P1= 261 P2 =

6577 — D2 261
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and if r = y/c2 — 4cicp = 0, then

a(n) !

B af(e’n —p1)

In case (b), if r; = \/c3 — 4c¢1c3 # 0, then

q():_ilnn_pi p*:_CQ—’_rl p*:_CQ_Tl
?7 ﬂ’rl 77 _p; ) 1 201 I 2 201 )
and if r; = \/c3 — 4¢1c3 = 0, then
B 1
ciB(n—pi)

In case (a) we have,

g(B(cu,g)—|—B(u),1)eaw—2) = 1711 —coe P11 - (1€P1—coe TP (1P ege P11 4 c3)

6
= 16”1 (1€ — e £ 1) + coe P11 (1€ — e — 1) + c3c1€PM — czcpe™PT
= ¢ e#-17Pa02) (cleﬁz—cge’&#—1)+cge’ﬁz‘1+5Q(Z) (cleﬁz—cge’[h—1)—1—030165‘2—03026’&.
We can see that B(w_3) + B(w_1)e*¥=2 is a quasi-polynomial in case (a)
only if r = /&2 —4cico = £1. If r = =£1, function B(¢t; — t) becomes
B /(exti=) —¢3)2 — 2 +-1, where ¢y is an arbitrary constant, and one of n-

integrals for ¢, = t, + geat\/(ea(“*t) —c3)? — 3+ 1is [ = $t2 — by + S

In case (b) direct calculations show that,
B(w-2) + B(w-1)e*™* = Q(2) + P(z,2-1) + J(2, 2-1),

where ()(z) is some function depending only on z, P(z,z_1) is a polynomial
function of two variables, and
2c
J(z,21) = —fz_lq(z)(chz + c2).
Since B(w_g) + B(w_1)e*2 — P(z,2_1) = Q(2) + J(z, 2_1) is a quasi-polynomial

in z, then

a(Q(Z’) (;—Zjl(zy Z—l)) _ %q(z)(chz -+ 02)

is also a quasi-polynomial in z, which is possible only if ry = /3 — 4cie3 = 0. If

r1 = 0 we have B(t; —t) = ce2® ™ where c is an arbitrary constant, and the

corresponding n-integral is [ = —$t2 + t,,. O
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4.4 Case 4) t1, = t, + cy(e™ — ™) + c5(e™ 1 — e )

It is clear that this equation has a nontrivial n-integral without any additional
condition. For this equation n-integral is I = t, — c4e® + cse~*'. It satisfies the

equation DI = I since DI = t,, — cqe®™ + cxe ™ = I.

4.5 List of Darboux Integrable Semi-discrete

Equations

Summarizing the reasonings given in the previous sections of Chapter 3 and

Chapter 4, we give the following Theorem.

Theorem 4.7 Chain (3.1) admits nontrivial x- and n-integrals if and only if
d(t,ty) is one of the kind:

(1) d(t,t;) = B(t; —t), where B(t; — t) is given in implicit form B(t; —t) =
d%P(G), t1 —t = P(0), P(9) is a quasi-polynomial on 0,

(2) d(t,t1) = Ci(t] —t*) + Co(ty — 1)

(3) d(t,tl) = \/03€2at1 + O4€a(t1+t) + 0362at,
(4) d(t,t1) = Cs(e™ — ) + Cg(e ™ — eo),

where a #£ 0, C;, 1 < 1 <6, are arbitrary constants. Moreover, some nontrivial

x-integrals F' and n-integrals I in each of the cases are

i) F =x— ftl*t%, I = L(D,)t,, where L(D,) is a differential operator

which annihilates % P(6) where D0 = 1.

) (a—t)(te—t) 7 _
n)F_m,]_tx—Cth—CQt,
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t1—t e~ S dg ta—11 ds 2

wi) F o= - I = 2t,, — ot —
) f V/C3e205 4-Cyevs+C3 f \V/C3e2es 4-Cyens+C3 o v
aCse®t,

iv) F= oz 2e-erd) [ — ¢, — Cyeot — Coe .

(eat_eatg ) (eatl _eat2 ) ]



Chapter 5

Conclusion

In this thesis we studied the problem of classification of Darboux integrable non-
linear semi-discrete chains of hyperbolic type. We used an approach based on the
notion of characteristic Lie algebra. At first, we gave the properties of charac-
teristic Lie algebras for the equation t1, = f(t,,¢,t1) and passed to analyze the

special form of this equation which is

We found out all equations of this form, which are Darboux integrable. To
be Darboux integrable, equation (5.1) should admit nontrivial z- and n-integrals
or equivalently characteristic Lie algebras of it should be of finite dimensions.
Hence we firstly find equations admitting nontrivial xz-integrals and then ana-
lyzed these equations whether they have also nontrivial n-integrals. Finally, we
gave a complete list of Darboux integrable hyperbolic type chains (5.1). We
showed that the method of characteristic Lie algebras provides an effective tool
to classify integrable discrete chains. This method did not get much attention in
the literature. As we know, there are only two studies (see [15] and [19]), where
the characteristic Lie algebras are used to solve the classification problem for the
partial differential equations and systems. It is interesting that the first paper

was published in 1981 and the second one twenty five years later.
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