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ABSTRACT

INTEGRABLE SYSTEMS ON REGULAR TIME
SCALES

Burcu Silindir Yantır

P.h.D. in Mathematics

Supervisor: Prof. Dr. Metin Gürses

January 8, 2009

We present two approaches to unify the integrable systems. Both approaches are

based on the classical R-matrix formalism. The first approach proceeds from the

construction of (1 + 1)-dimensional integrable ∆-differential systems on regular

time scales together with bi-Hamiltonian structures and conserved quantities.

The second approach is established upon the general framework of integrable

discrete systems on R and integrable dispersionless systems. We discuss the

deformation quantization scheme for the dispersionless systems. We also apply

the theories presented in this dissertation, to several well-known examples.

Keywords: Integrable systems, regular time scale, R-matrix formalism, bi-

Hamiltonian structures, conserved quantities, dispersionless systems, deformation

quantization scheme.
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ÖZET

DÜZGÜN ZAMAN SKALASINDA İNTEGRE
EDİLEBİLİR SİSTEMLER

Burcu Silindir Yantır

Matematik, Doktora

Tez Yöneticisi: Prof. Dr. Metin Gürses

8 Ocak 2009

İntegre edilebilir sistemlerin birleştirilmesi için iki farklı yaklaşım sunuyoruz. Her

iki yaklaşım da klasik R- matris formulasyonuna dayanmaktadır. İlk yaklaşım,

(1+1) boyutlu integre edilebilir ∆- türevlenebilir sistemlerin, onların ikili Hamil-

ton yapılarının ve korunan niceliklerinin elde edilmesi üstüne kuruludur. İkinci

yaklaşım ise R üzerinde integre edilebilir ayrık sistemlerin ve integre edilebilir

dağılımsız sistemlerin genelleştirilmesidir. Dağılımsız sistemler için deformasyon

kuvantumlama yöntemi ele alınmaktadır. Ayrıca bu tezde sunulan teoriler çeşitli

iyi bilinen örneklere uygulanmaktadır.

Anahtar sözcükler : İntegre edilebilir sistemler, düzgün zaman skalası, R-matris

formulasyonu, ikili Hamilton yapıları, korunan nicelikler, dağılımsız sistemler,

deformasyon kuvantumlama yöntemi.
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Chapter 1

Introduction

The theory of integrable systems attracted the attention of many mathemati-

cians and physicists ranging from group theory, topology, algebraic geometry to

quantum theory, plasma physics, string theory and applied hydrodynamics. An

integrable system of nonlinear partial differential or difference-differential equa-

tions arises as a member of an infinite hierarchy. Each member of the hierarchy

generates a commuting flow. Additionally, if we transform a solution of the sys-

tem along a commuting flow, we obtain another solution, which signifies that the

equations in the hierarchy are symmetries of the system. Consequently, what

we mean by an integrable system is a system of nonlinear partial differential or

difference-differential equations which has an infinite-hierarchy of mutually com-

muting symmetries.

The theory of soliton equations, namely integrable nonlinear evolution equations

was initiated in 1895, by Korteweg and de Vries [1] who derived the KdV equa-

tion describing the propagation of waves on the surface of a shallow channel. The

main core of the theory was created in 1967 in the pioneering article by Gardner,

Greene, Kruskal and Miura [2] where the method of inverse scattering transform

was introduced. In 1968 Lax [3] and in 1971 Zakharov and Shabat [4] contributed

the theory by introducing the Lax pair of KdV and nonlinear Schrödinger equa-

tions, respectively. To get rid of the difficulties appearing in the method of Lax,

in 1974 Ablowitz, Kaup, Newell and Segur [5] developed an alternative approach

2



CHAPTER 1. INTRODUCTION 3

called as AKNS scheme, including a wide range of solvable nonlinear evolution

equations such as Sine-Gordon and modified KdV equations.

Integrable systems are characterized in (1 + 1) dimensions, where one of the di-

mensions stands for the evolution (time) variable and the other one denotes the

space variable. The space variable is usually considered on continuous intervals,

or both on integer values and on real numbers or on q-numbers. Depending on

the space variable, integrable systems are classified as continuous (field) soliton

systems, lattice soliton systems and q-discrete soliton systems. The study of con-

tinuous soliton systems was initiated from the pioneering article [6] by Gelfand

and Dickey. In this article, the authors constructed the soliton systems of KdV

type by the use of the so-called R-matrix formalism. This formalism is one of

the most powerful and systematic method to construct integrable systems includ-

ing not only continuous, lattice, q-discrete soliton systems but also dispersionless

(or equivalently hydrodynamic) ones. The idea of creating R-matrices is based

on decomposition of a given Lie algebra into two Lie subalgebras. Thus, R-

matrix formalism allows to produce integrable systems from the Lax equations

on appropriate Lie algebras. Apart from the systematic construction of infinite

hierarchies of mutually commuting symmetries, the most important advantage

of this formalism is the construction of bi-Hamiltonian structures and conserved

quantities. The concept of bi-Hamiltonian structures for integrable systems was

first introduced by Magri [7], who presented an analysis to find a connection be-

tween symmetries and conserved quantities of the evolution equations. Based on

the results of Gelfand and Dickey, Adler [8] showed that the considered systems

of KdV type are indeed bi-Hamiltonian by using a Lie algebraic setting to de-

scribe integrable systems via their Lax representations. This celebrated scheme

is now called as Adler-Gelfand-Dickey (AGD) Scheme. The abstract formalism

of classical R-matrices on Lie algebras was formulated in [9, 10], which gave rise

to many contributions to the theory of continuous soliton systems [11, 12, 13],

lattice soliton systems [14, 15, 16, 17], q-discrete soliton systems [18, 19] and

dispersionless systems [20, 21].

In order to embed the integrable systems into a more general unifying and ex-

tending framework, we establish a new theory, based on two approaches. We
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illustrate these two approaches in the articles [22, 23, 24, 25]. The first approach

is to construct the integrable systems on regular time scales. This approach was

initiated in the landmark article [22], where we extended the Gelfand-Dickey ap-

proach to obtain integrable nonlinear evolution equations on any regular time

scales. The most important advantage of this approach is that it provides not

only a unified approach to study on discrete intervals with uniform step size (i.e.,

lattice }Z), continuous intervals and discrete intervals with non-uniform step size

(for instance q-numbers) but more interestingly an extended approach to study

on combination of continuous and discrete intervals. Therefore, the concept of

time scales can build bridges between the nonlinear evolution equations of type

continuous soliton systems, lattice soliton systems and q-discrete systems. The

second approach lies in constructing integrable discrete systems on R [25] which

also unifies lattice and q-discrete soliton systems.

In Chapter 2, we give a brief review of time scale calculus. For real valued func-

tions on any time scales, we introduce a derivative and integral notion. We col-

lect the fundamental results concerning differentiability and integrability, crucial

throughout this dissertation.

The main goal of Chapter 3, is to present a unified and generalized theory for the

systematic construction of (1 + 1)-dimensional integrable ∆-differential systems

on regular time scales in the frame of classical R-matrix formalism. For this pur-

pose, we define the δ-differentiation operator and introduce the Lie algebra as an

algebra of δ-pseudo-differential operators, equipped with the usual commutator.

We observe that, the algebra of δ-pseudo-differential operators turns out to be

the algebra of usual pseudo-differential operators in the continuous time scale.

Next, we examine the general classes of admissible Lax operators generating con-

sistent Lax hierarchies. We explain the constraints naturally appear between

the dynamical fields of finite-field restrictions of Lax operators, which were first

observed in [22]. Since generating an infinite hierarchy of symmetries proceeds

by applying a recursion operator successively to an initial symmetry, we formu-

late the construction of recursion operators for ∆-differential systems based on

the scheme of [26, 27]. We end up this chapter with illustrations of infinite-field

and finite-field integrable hierarchies on regular time scales. The theory and the
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illustrations presented in this chapter are based on the article [23].

In Chapter 4, we benefit from the R-matrix formalism to present bi-Hamiltonian

structures for ∆-differential integrable systems on regular time scales for the first

time [24] in the literature. The main result of this chapter, is to establish an

appropriate trace form which is well-defined on an arbitrary time scale. More

impressively, this trace form unifies and generalizes the trace forms being studied

in the literature such as trace forms of algebra of pseudo-differential operators,

algebra of shift operators or q-discrete numbers. One of the significant features

of integrable systems is having infinitely many mutually commuting symmetries

and also infinitely many conserved quantities. For this reason, we construct the

Hamiltonians in terms of the trace form and derive the linear Poisson tensors.

The construction of the quadratic Poisson tensors is performed by the use of the

recursion operators presented in Chapter 3. We state the hereditariness of the

recursion operators which assures that both linear and quadratic Poisson tensors

are compatible. Finally, we illustrate the theory by bi-Hamiltonian formulation

of the two finite-field integrable hierarchies given in Chapter 3, in order to be

self-consistent.

Another unifying approach for integrable systems is to formulate different types of

discrete dynamics on continuous line. In Chapter 5, a general theory of integrable

discrete systems on R is presented such that it contains lattice soliton systems as

well as q-discrete systems as particular cases. The main structure of the theory

is hidden in introducing the regular grain structures by one-parameter group of

diffeomorphisms in terms of which shift operators are defined. Having introduced

one parameter group of diffeomorphisms determined by shift operators, we con-

stitute the algebra of shift operators. Accordingly, the construction of integrable

discrete systems on R follows from the scheme of classical R-matrix formalism

and it is parallel to the construction of lattice soliton systems. As illustration,

we construct two integrable hierarchies of discrete chains which are counterparts

of the original infinite-field Toda and modified Toda chains together with their

bi-Hamiltonian structures. We end up this section by presenting the concept of

continuous limit. We choose the class of discrete systems in such a way that as

the limit of diffeomorphism parameter tends to 0, we obtain the dispersionless
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systems.

In the last Chapter, a systematic construction of integrable dispersionless systems

is presented based on the classical R-matrix approach applied to a commutative

Lie algebra equipped with a modified Poisson bracket. We accomplish that the

dispersionless systems together with their bi-Hamiltonian structures are contin-

uous (dispersionless) limits of discrete systems derived in previous chapter. One

of the most important results, is stating the inverse problem to the dispersion-

less limit, which is based on the deformation quantization scheme. This scheme

enables us to deduce that the quantized algebra is isomorphic to the algebra of

shift operators. As a result, we proved that there is a gauge equivalence between

integrable discrete systems and their dispersive counterparts of dispersionless sys-

tems. We refer to the article [25], for the integrable discrete systems on R, the

integrable dispersionless systems and for their correspondence, presented in the

last two chapters.



Chapter 2

Time Scale Calculus

The time scales calculus was initiated by Aulbach and Hilger [28], [29] in order to

create a theory that can unify and extend differential, difference and q-calculus.

What is mentioned as a time scale T, is an arbitrary nonempty closed subset of

real numbers. Thus, the real numbers (R), the integers (Z), the natural numbers

(N), the non-negative integers (N0), the h-numbers (hZ = {}k : k ∈ Z}, where

} > 0 is a fixed real number), and the q-numbers (Kq = qZ ∪ {0} ≡ {qk : k ∈
Z}∪{0}, where q 6= 1 is a fixed real number), [0, 1]∪[2, 3], [0, 1]∪N, and the Cantor

set are examples of time scales. However Q, R − Q and open intervals are not

time scales. Besides unifying discrete intervals with uniform step size (i.e. lattice

}Z), continuous intervals and discrete intervals with non-uniform step size (for

instance q-numbers Kq), the crucial point of time scales is extending combination

of continuous and discrete intervals which are called as mixed time scales in the

literature.

In [28], [29] Aulbach and Hilger introduced also dynamic equations on time scales

in order to unify and extend the theory of ordinary differential equations, dif-

ference equations, and quantum equations [30] (h-difference and q -difference

equations are based on h-calculus and q-calculus, respectively). The existence,

uniqueness and properties of the solutions of dynamic equations have become of

increasing interest [31, 32]. One of the main contributions to the theory of differ-

ential equations is handled by Ahlbrand and Morian [33] who introduced partial

7
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differential equations on time scales. Next, Agarwall and O’Regan [34] carried

some well-known differential inequalities to time scales to improve the theory.

The concept of time scales is utilized not only in dynamic or partial differential

equations but it is spread also to other disciplines of mathematics ranging from

algebra, topology, geometry to applied mathematics [35, 36, 37, 38].

Throughout this work, we assume that a time scale has the standard topology

inherited from real numbers.

2.1 Preliminaries

In this section, we give a brief introduction to the concept of time scales related

to our purpose. We refer to the textbooks by Bohner and Peterson [39, 40] for

the general theory of time scales.

In order to define the derivative on time scales, which is called as delta derivative,

we need the following forward and backward jump operators introduced as follows.

Definition 2.1.1 For x ∈ T, the forward jump operator σ : T→ T is defined by

σ(x) = inf {y ∈ T : y > x}, (2.1)

while the backward jump operator ρ : T→ T is defined by

ρ(x) = sup {y ∈ T : y < x}. (2.2)

Since T is a closed subset of R, for all x ∈ T, clearly σ(x), ρ(x) ∈ T.

In this definition, we set in addition σ(max T) = max T if there exists a finite

max T, and ρ(min T) = min T if there exists a finite min T.

Definition 2.1.2 The jump operators σ and ρ allow the classification of points

x ∈ T in the following way: x is called right dense, right scattered, left dense, left

scattered, dense and isolated if σ(x) = x, σ(x) > x, ρ(x) = x, ρ(x) < x, σ(x) =
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ρ(x) = x and ρ(x) < x < σ(x), respectively. Moreover, we define the graininess

functions µ, ν : T→ [0,∞) as follows

µ(x) = σ(x)− x, ν(x) = x− ρ(x), for all x ∈ T. (2.3)

In literature, Tκ denotes Hilger’s above truncated set consisting of T except for

a possible left-scattered maximal point while Tκ stands for the below truncated

set consisting of points of T except for a possible right-scattered minimal point.

Definition 2.1.3 Let f : T → R be a function on a time scale T. For x ∈ Tκ,

delta derivative of f , denoted by ∆f , is defined as

∆f(x) = lim
s→x

f(σ(x))− f(s)

σ(x)− s
, s ∈ T, (2.4)

while for x ∈ Tκ, ∇-derivative of f , denoted by ∇f , is defined as

∇f(x) = lim
s→x

f(s)− f(ρ(x))

s− ρ(x)
, s ∈ T, (2.5)

provided that the limits exist. A function f : T → R is called ∆-smooth (∇-

smooth) if it is infinitely ∆-differentiable (∇-differentiable).

Similar analogue to calculus is stated in the theorems below.

Theorem 2.1.4 Let f : T → R be a function and x ∈ Tκ. Then we have the

following:

(i) If f is ∆-differentiable at x, then f is continuous at x.

(ii) If f is continuous at x and x is right-scattered, then f is ∆-differentiable

at x with

∆f(x) =
f(σ(x))− f(x)

µ(x)
. (2.6)

(iii) If x is right-dense, then f is ∆-differentiable at x if and only if the limit

lim
s→x

f(x)− f(s)

x− s
(2.7)

exists. In this case, ∆f(x) is equal to this limit.
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(iv) If f is ∆-differentiable at x, then

f(σ(x)) = f(x) + µ(x)∆f(x). (2.8)

Note that, if x ∈ T is right-dense, then µ(x) = 0 and the relation (2.8) is trivially

satisfied. Otherwise, (2.8) follows from (ii).

The following theorem is ∇ analogue of the previous one.

Theorem 2.1.5 Let f : T → R be a function and x ∈ Tκ. Then we have the

following:

(i) If f is ∇-differentiable at x, then f is continuous at x.

(ii) If f is continuous at x and x is left-scattered, then f is ∇-differentiable at

x with

∇f(x) =
f(x)− f(ρ(x))

ν(x)
. (2.9)

(iii) If x is left-dense, then f is ∇-differentiable at x if and only if the limit

lim
s→x

f(x)− f(s)

x− s
(2.10)

exists. In this case, ∇f(x) is equal to this limit.

(iv) If f is ∇-differentiable at x, then

f(ρ(x)) = f(x)− ν(x)∇f(x). (2.11)

In order to be more precise, we clarify the definitions given up to now, for some

special time scales.

Example 2.1.6 (i) If T = R, then σ(x) = ρ(x) = x and µ(x) = ν(x) = 0.

Therefore ∆- and ∇-derivatives become ordinary derivative, i.e.

∆f(x) = ∇f(x) =
df(x)

dx
.
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(ii) If T = }Z, then σ(x) = x + }, ρ(x) = x − } and µ(x) = ν(x) = }. Thus, it

is clear that

∆f(x) =
f(x+ })− f(x)

}
and ∇f(x) =

f(x)− f(x− })

}
.

(iii) If T = Kq, then σ(x) = qx, ρ(x) = q−1x and µ(x) = x(q − 1), ν(x) =

x(1− q−1). Thus

∆f(x) =
f(qx)− f(x)

(q − 1)x
and ∇f(x) =

f(x)− f(q−1 x)

(1− q−1)x
,

for all x 6= 0, and

∆f(0) = ∇f(0) = lim
s→0

f(s)− f(0)

s
, s ∈ Kq,

provided that this limit exists.

As an important property of ∆- and ∇-differentiation on T, we state the product

rule. If f, g : T→ R are ∆-differentiable functions at x ∈ Tκ, then their product

is also ∆-differentiable and the following Lebniz-like rule hold

∆(fg)(x) = g(x)∆f(x) + f(σ(x))∆g(x)

= f(x)∆g(x) + g(σ(x))∆f(x).
(2.12)

Also, if f, g : T → R are ∇-differentiable functions at x ∈ Tκ, then so is their

product fg and the following holds

∇(fg)(x) = g(x)∇f(x) + f(ρ(x))∇g(x)

= f(x)∇g(x) + g(ρ(x))∇f(x).
(2.13)

Definition 2.1.7 A time scale T is regular if both of the following two conditions

are satisfied:

(i) σ(ρ(x)) = x for all x ∈ T and (2.14)

(ii) ρ(σ(x)) = x for all x ∈ T, (2.15)

The first condition (2.14) implies that the operator σ : T→ T is surjective while

the condition (2.15) implies that σ is injective. Thus σ is a bijection so it is



CHAPTER 2. TIME SCALE CALCULUS 12

invertible and σ−1 = ρ. Similarly, the operator ρ : T → T is invertible and

ρ−1 = σ if T is regular.

Set x∗ = min T if there exists a finite min T, and set x∗ = −∞ otherwise. Also

set x∗ = max T if there exists a finite max T, and set x∗ =∞ otherwise.

Proposition 2.1.8 [22] A time scale T is regular if and only if the following two

conditions hold simultaneously

(i) the point x∗ = min T is right dense and the point x∗ = max T is left-dense;

(ii) each point of T \ {x∗, x∗} is either two-sided dense or two-sided scattered.

In particular, R, }Z (} 6= 0) and Kq, [0, 1] and [−1, 0]∪{1/k : k ∈ N}∪{k/(k+1) :

k ∈ N} ∪ [1, 2] are regular time scale examples.

Throughout this work, we deal with regular time scales since the invertibility of

the forward jump operator σ allows us to formulate the Lie algebra, the forthcom-

ing algebra of δ-pseudo-differential operators, in a proper way. For this purpose,

we need a delta-differentiation operator, which we denote by ∆, assigning each

∆-differentiable function f : T→ R to its delta-derivative ∆(f), defined by

[∆(f)](x) = ∆f(x), for x ∈ Tκ. (2.16)

Furthermore, we define the shift operator E by means of the forward jump oper-

ator σ as follows

(Ef)(x) := f(σ(x)), x ∈ T. (2.17)

Since σ is invertible, it is possible to formulate the inverse E−1 of the shift operator

E as

(E−1 f)(x) = f(σ−1(x)) = f(ρ(x)), (2.18)

for all x ∈ T. Note that E−1 exists only in the case of regular time scales and in

general E and E−1 do not commute with ∆ and ∇ operators.

The following proposition states the relationship between the ∆- and ∇-

derivatives.
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Proposition 2.1.9 [32] Let T be a regular time scale.

(i) If f : T→ R is a ∆-smooth function on Tκ, then f is ∇-smooth and for all

x ∈ Tκ the following relation holds

∇f(x) = E−1∆f(x). (2.19)

(ii) If f : T→ R is a ∇-smooth function on Tκ, then f is ∆-smooth and for all

x ∈ Tκ

∆f(x) = E∇f(x). (2.20)

Thus the properties of ∆- and ∇-smoothness for functions on regular time scales

are equivalent.

We define the closed interval [a, b] on an arbitrary time scale T, by

[a, b] = {x ∈ T : a ≤ x ≤ b}, a, b ∈ T (2.21)

with a ≤ b. Open and half-open intervals are defined accordingly. In the defini-

tions below, we introduce the integral concept on time scales.

Definition 2.1.10 (i) A function F : T → R is called a ∆-antiderivative of

f : T→ R provided that ∆F (x) = f(x) holds for all x in Tκ. Then we define the

∆-integral from a to b of f by∫ b

a

f(x) ∆x = F (b)− F (a) for all a, b ∈ T. (2.22)

(ii) A function F̄ : T → R is called a ∇-antiderivative of f : T → R provided

that ∇F̄ (x) = f(x) holds for all x in Tκ. Then we define the ∇-integral from a

to b of f by ∫ b

a

f(x)∇x = F̄ (b)− F̄ (a) for all a, b ∈ T. (2.23)

Remark 2.1.11 Notice that, for every continuous function f we have∫ σ(x)

x

f(x) ∆x = F (σ(x))− F (x) = µ(x)∆F (x) = µ(x)f(x). (2.24)
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Similarly ∫ x

ρ(x)

f(x) ∇x = ν(x)f(x). (2.25)

Hence, it is clear that ∆- and ∇-integrals are determined by local properties of a

time scale.

In particular, on a closed interval [a, b] on T, the ∆-integral (2.22) is an ordinary

Riemann integral. If all the points between a and b are isolated, then b = σn(a) for

some n ∈ Z+ and as a straightforward consequence of (2.24), ∆-integral becomes∫ b

a

f(x) ∆x =
n−1∑
i=1

µ(σi(a))f(σi(a)).

Similar analogue for ∇-integral can be also formulated. For mixed time scales,

the integrals can be constructed by appropriate gluing of Riemann integrals and

sums.

Proposition 2.1.12 If the function f : T→ R is continuous, then for all a, b ∈
T with a < b we have∫ b

a

f(x)∆x =

∫ b

a

E−1(f(x))∇x and

∫ b

a

f(x)∇x =

∫ b

a

E(f(x))∆x. (2.26)

Indeed, if F : T→ R is a ∆-antiderivative of f , then ∆F (x) = f(x) for all x ∈ Tκ.

By the use of Proposition 2.1.9, we have E−1f(x) = E−1∆F (x) = ∇F (x) for all

x ∈ Tκ, which implies that F is a ∇-antiderivative of E−1f(x). Therefore

F (b)− F (a) =

∫ b

a

E−1(f(x))∇x =

∫ b

a

f(x)∆x. (2.27)

The second part of (2.26) can be derived similarly.

If the functions f, g : T → R are ∆-differentiable with continuous derivatives,

then by the Leibniz-like rule (2.12) we have the following integration by parts

formula, ∫ b

a

g(x)∆f(x) ∆x = f(x)g(x)|ba −
∫ b

a

E(f(x))∆g(x) ∆x, (2.28)



CHAPTER 2. TIME SCALE CALCULUS 15

Furthermore, if the functions f, g : T→ R are ∆- and ∇-differentiable with con-

tinuous derivatives, from (2.13), (2.19) and (2.20), we have additional integration

by parts formulas∫ b

a

g(x)∇f(x)∇x = f(x) g(x)|ba −
∫ b

a

E−1(f(x))∇g(x)∇x, (2.29)∫ b

a

g(x)∆f(x)∆x = f(x) g(x)|ba −
∫ b

a

f(x)∇g(x)∇x, (2.30)∫ b

a

g(x)∇f(x)∇x = f(x) g(x)|ba −
∫ b

a

f(x) ∆g(x)∆x. (2.31)

For Riemann and Lebesgue ∆-integrals on time scales, we refer [41] and [40]. The

generalization of the proper integral (2.22) to the improper integral on time scale

T is straightforward.

Definition 2.1.13 We define ∆-integral over an whole time scale T by∫
T
f(x) ∆x :=

∫ x∗

x∗

f(x) ∆x = lim
x→x∗

F (x)− lim
x→x∗

F (x)

provided that the integral converges.

Now, let us constitute the adjoint of ∆-derivative. The integration by parts

formula (2.28) on the whole time scale T, leads the following relation∫
T
g∆(f)∆x = −

∫
T
f∆E−1(g) ∆x =:

∫
T
f∆†(g) ∆x, (2.32)

if f, g and their ∆-derivatives vanish as x → x∗ or x∗. Thus, we introduce the

adjoint of ∆-derivative as

∆† = −∆E−1. (2.33)

We figure out that by (2.33), it is clear

E−1 = 1 + µ∆†. (2.34)

We end up this chapter with the examples of ∆- and ∇-integrals for some special

time scales.
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Example 2.1.14 (i) If f : T → R then ∆-integral and ∇-integral are nothing

but the ordinary integral, i.e.∫
R
f(x)∆x =

∫
R
f(x)∇x =

∫ ∞
−∞

f(x)dx, (2.35)

(ii) If [a, b] consists of only isolated points, then∫ b

a

f(x)∆x =
∑
x∈[a,b)

µ(x) f(x) and

∫ b

a

f(x)∇x =
∑
x∈(a,b]

ν(x) f(x). (2.36)

In particular, if T = }Z, then∫ b

a

f(x)∆x = }
∑
x∈[a,b)

f(x) and

∫ b

a

f(x)∇x = }
b∑

x∈(a,b]

f(x), (2.37)

while ∆- and ∇-integrals over the whole }Z∫
}Z
f(x)∆x = }

∑
x∈}Z

f(x) and

∫
}Z
f(x)∇x = }

∑
x∈}Z

f(x) (2.38)

and if T = Kq, then ∫
Kq
f(x)∆x = (q − 1)

∑
x∈Kq

xf(x),∫
Kq
f(x)∇x = (1− q−1)

∑
x∈Kq

xf(x).

(2.39)



Chapter 3

Algebra of δ-pseudo-differential

operators

3.1 Leibniz Rule for δ-pseudo-differential oper-

ators

In this section, we deal with the algebra of δ-pseudo-differential operators defined

on a regular time scale T. We denote the delta differentiation operator by δ

instead of ∆, for convenience in the operational relations. The operator δf which

is a composition of δ and f , where f : T→ R, is introduced as follows

δf := ∆f + E(f)δ, ∀f. (3.1)

Note that δ−1f has the form of the formal series

δ−1f =
∞∑
k=0

(−1)k((E−1∆)kE−1)fδ−k−1, (3.2)

which was previously given in [22], in terms of ∇. Equivalently, (3.2) can be

written in terms of the adjoint of the ∆-derivative given in (2.33), as

δ−1f =
∞∑
k=0

E−1(∆†)kfδ−k−1. (3.3)

17
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Remark 3.1.1 One can derive the following relations between the operators δ

and δ−1 which is valid

δfδ−1g = gE(f) + ∆(f)δ−1g, (3.4)

fδ−1gδ = fE−1(g)− fδ−1(∆E−1(g)), (3.5)

for all f, g.

We introduce the generalized Leibniz rule for the δ-pseudo-differential operators

δnf =
∞∑
k=0

Snk fδ
n−k n ∈ Z, (3.6)

where

Snk = ∆kEn−k + . . .+ En−k∆k for n > k > 0,

is a sum of all possible strings of length n, containing exactly k times ∆ and n−k
times E;

Snk = E−1
(

∆†
k
En+1 + . . .+ En+1∆†

k
)

for n < 0 and k > 0

consists of the factor E−1 times the sum of all possible strings of length k−n−1,

containing exactly k times ∆† and−n−1 times E−1; in all remaining cases Snk = 0.

For the structure constants Snk , we have the following recurrence relations

Sn+1
k = SnkE + Snk−1∆ for n > 0 (3.7)

and

Sn−1
k =

k∑
i=0

Snk−iE
−1∆†

i
for n < 0. (3.8)

Lemma 3.1.2 For all n ∈ Z, the relation∑
k>0

(−µ)kSnk = (E − µ∆)n = 1 (3.9)

holds.
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Proof. We verify the Lemma 3.1.2 by the use of induction. For this purpose,

we consider the positive and negative cases of n separately. By (2.6) and (2.34),

we have

E − µ∆ = E−1 − µ∆† = 1.

Case n > 0: Now, assume that (3.9) holds for positive n. If we start with

expanding (E − µ∆)n+1, we have

(E − µ∆)n+1 = (E − µ∆)n(E − µ∆)

= (E − µ∆)nE − µ(E − µ∆)n∆

=
n∑
k=0

(−µ)kSnkE +
n∑
k=0

(−µ)k+1Snk∆

Since Snn+1 = Sn−1 = 0 and by the use of the recurrence relation (3.7), we have

(E − µ∆)n+1 =
n+1∑
k=0

(−µ)kSnkE +
n+1∑
k=0

(−µ)kSnk−1∆

=
n+1∑
k=0

(−µ)k
(
SnkE + Snk−1∆

)
=

n+1∑
k=0

(−µ)kSn+1
k = 1.

Case n < 0: First, we show (3.7) for n = −1. Thus, using the recursive substitu-

tion, we have

(E − µ∆)−1 =
(
E−1 − µ∆†

)
(E − µ∆)−1 = E−1 − µ(E − µ∆)−1∆†

= E−1 − µ
(
E−1 − µ(E − µ∆)−1∆†

)
∆†

= E−1 − µE−1∆† + µ2(E − µ∆)−1∆†
2

= E−1 − µE−1∆† + µ2E−1∆†
2 − µ3E−1∆†

3
+ . . .

=
∞∑
k=0

(−µ)kE−1∆†
k

=
∞∑
k=0

(−µ)kS−1
k .

Assume that (3.9) holds for negative n. Then, using the recurrence relation (3.8),

we have

(E − µ∆)n−1 = (E − µ∆)n(E − µ∆)−1

=
∞∑
k=0

(−µ)kSnk

∞∑
i=0

(−µ)iS−1
i

=
∞∑
k=0

(−µ)kSnk

∞∑
i=0

(−µ)iE−1∆†
i
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Playing with indices we obtain the desired result

(E − µ∆)n−1 =
∞∑
k=0

∞∑
i=0

(−µ)k+iSnkE
−1∆†

i
=
∞∑
k=0

k∑
i=0

(−µ)kSnk−iE
−1∆†

i

=
∞∑
k=0

(−µ)k
k∑
i=0

Snk−iE
−1∆†

i
=
∞∑
k=0

(−µ)kSn−1
k = 1.

Hence (3.9) holds for n− 1, which finishes the proof. �

In order to investigate the generalized Leibniz rule for some special cases, it is

better to divide the discussion into two cases when µ(x) = 0 and when µ(x) 6= 0.

Remark 3.1.3 (i) When x ∈ T is a dense point, i.e. µ(x) = 0, then the

generalized Leibniz rule (3.6) becomes

δnf =
∞∑
k=0

(
n

k

)
∆kfδn−k n ∈ Z, (3.10)

where
(
n
k

)
is a binomial coefficient

(
n
k

)
= n(n−1)·...·(n−k+1)

k!
, and particularly

when x is inside of some interval then ∆ = ∂x. Therefore, we recover the

generalized Leibniz formula for pseudo-differential operators. One can find

the converse formula for (3.10),

fδn =
∞∑
k=0

δn−k
(
n

k

)
∆†

k
f, (3.11)

where the adjoint of ∆ is given by (2.33).

(ii) For x ∈ T such that µ(x) 6= 0, it is more convenient to deal with the operator

ξ := µδ (3.12)

instead of δ. By the use of (3.1), we derive

ξf = µδf = (E − 1)f + Efξ, ∀f,

and the generating rule follows as

ξnf =
∞∑
k=0

(
n

k

)
(E − 1)kEn−kfξn−k n ∈ Z. (3.13)
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Here, we emphasize that the operator A =
∑

i aiδ
i has a unique ξ-

representation A =
∑

i a
′
iξ
i, and there is one-to-one transformation between

ai and a′i. Since, it is well-known that

(Em)† = E−m,

the converse formula for (3.13) yields as

fξn =
∞∑
k=0

ξn−k
(
n

k

)
((E − 1)kEn−k)†f

=
∞∑
k=0

ξn−k
(
n

k

)(
E−1 − 1

)k
Ek−nf (3.14)

We end up this section with the explicit form of the generalized Leibniz rule,

essential in our calculations, stated in the following theorem.

Theorem 3.1.4 The explicit form of the generalized Leibniz rule (3.6) on regular

time scales is given as follows.

(i) For n > 0:

δnf =
n∑
k=0

∑
i1+i2+...+ik+1=n−k

(∆ik+1E∆ikE...∆i2E∆i1)fδk, (3.15)

where iγ > 0 for all γ = 1, 2, .., k+ 1. Here the formula includes all possible

strings containing n− k times ∆ and k times E.

(ii) For n < 0:

δnf =
∞∑

k=−n

∑
i1+i2+...+ik+n+1=k

(−1)k+n(E−ik+n+1∆E−ik+n∆...E−i2∆E−i1)fδ−k,

(3.16)

where iγ > 0 for all γ = 1, 2, .., k + n + 1 > 0. Here the formula includes

strings of length 2k+ 2n+ 1, containing k times E−1 with exactly k+n+ 1

placement and k + n times ∆.
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3.2 Classical R-matrix formalism

In order to construct integrable hierarchies of mutually commuting vector fields

on regular time scales, we deal with a systematic method, so-called the classical

R-matrix formalism [9, 42, 13], presented in the following scheme.

Definition 3.2.1 [44] A Lie algebra G is a vector space together with a bilinear

operation [·, ·] : G × G → G, which is skew-symmetric

[a, b] = −[b, a], a, b ∈ G, (3.17)

and satisfies the Jacobi identity

[[a, b], c] + [[c, a], b] + [[b, c], a] = 0, a, b, c ∈ G. (3.18)

Based on the above definition, let G be an algebra, with an associative multipli-

cation operation, over a commutative field K of complex or real numbers, based

on an additional bilinear product given by a Lie bracket [·, ·] : G × G → G, which

is skew-symmetric and satisfies the Jacobi identity.

Definition 3.2.2 A linear map R : G → G such that the bracket

[a, b]R := [Ra, b] + [a,Rb], (3.19)

is a second Lie bracket on G, is called the classical R-matrix.

The bracket (3.19) is clearly skew-symmetric. When it comes to discuss the

Jacobi identity for (3.19), one finds that

0 = [a, [b, c]R]R + cyclic = [Ra, [Rb, c]] + [Ra, [b, Rc]] + [a,R[b, c]R] + cyclic

= [Rb, [Rc, a]] + [Rc, [a,Rb]] + [a,R[b, c]R] + cyclic

= [a,R[b, c]R − [Rb,Rc]] + cyclic

(3.20)

Hence, it can be clearly deduced that a sufficient condition for R to be a classical

R-matrix is

[Ra,Rb]−R[a, b]R + α[a, b] = 0, (3.21)
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where α ∈ K. The condition (3.21) is called the Yang-Baxter equation YB(α) and

there are two relevant cases for YB(α), α 6= 0 and α = 0. Yang-Baxter equations

for α 6= 0 are equivalent and can be reparametrized.

Additionally, we assume that the Lie bracket is a derivation of multiplication in

G, i.e. the relation

[a, bc] = b[a, c] + [a, b]c a, b, c ∈ G (3.22)

holds. If the Lie bracket is given by the commutator, i.e.

[a, b] = ab− ba, a, b ∈ G,

the condition (3.22) is satisfied automatically, since G is associative.

Proposition 3.2.3 Let G be a Lie algebra fulfilling all the above assumptions and

R be the classical R-matrix satisfying the Yang-Baxter equation, YB(α). Let also

R commutes with derivatives with respect to these evolution parameters. Then the

power functions Ln on G, L ∈ G and n ∈ Z+, generate the so-called Lax hierarchy

dL

dtn
= [R(Ln), L] , (3.23)

of pairwise commuting vector fields on G. Here, tn’s are related evolution param-

eters.

Proof. It is clear that the power functions on G are well defined. Then

(Ltm)tn − (Ltn)tm = [RLm, L]tn − [RLn, L]tm

= [(RLm)tn − (RLn)tm , L] + [RLm, [RLn, L]]− [RLn, [RLm, L]]

= [(RLm)tn − (RLn)tm + [RLm, RLn], L].

Hence, the vector fields (3.23) mutually commute if the so-called zero-curvature

condition (or Zakharov-Shabat equation)

(RLm)tn − (RLn)tm + [RLm, RLn] = 0,
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is satisfied. By the Lax hierarchy (3.23) and the Leibniz rule (3.22), we have

(Lm)tn = [R(Ln), Lm].

Since R commutes with ∂tn ,i.e.

(RL)tn = RLtn ,

and the Yang-Baxter equation holds for R, we deduce

R(Lm)tn −R(Ln)tm + [RLm, RLn] = R[RLn, Lm]−R[RLm, Ln] + [RLm, RLn]

= [RLm, RLn]−R[Lm, Ln]R = −α[Lm, Ln]

= 0.

Hence, zero-curvature condition is satisfied which implies that the vector fields

pairwise commute. �

In practice, the Lax operators in (3.23) have fractional powers. Notice that, the

Yang-Baxter equation is a sufficient condition for mutual commutation of vector

fields (3.23), but not necessary. Therefore, choosing the algebra G properly, the

Lax hierarchy produces abstract integrable systems. In practice, the element L

of G must be properly chosen, in such a way that the evolution systems (3.23)

are consistent on the subspace of G.

3.3 Classical R-matrix on regular time-scales

The theory and illustrations presented in this section and the forthcoming sections

of this chapter are based on the article [23].

We introduce the Lie algebra G as an associative algebra of formal Laurent se-

ries of δ-pseudo-differential operators equipped with a Lie bracket given by the

commutator. We define the decomposition of G in the following form:

G = G>k ⊕ G<k = {
∑
i>k

ui(x)δi} ⊕ {
∑
i<k

ui(x)δi}, (3.24)
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where ui : T→ K are ∆-smooth functions additionally depending on the evolution

parameters tn. The subspaces G>k, G<k are closed Lie subalgebras of G only if

k = 0, 1, i.e., the above decomposition is valid only if k = 0, 1. We introduce the

classical R-matrix as

R :=
1

2
(P>k − P<k) k = 0, 1, (3.25)

where P>k and P<k are the projections onto the Lie subalgebras G>k and G<k,
respectively such that

P>k(A) =
∑
i>k

aiδ
i, P<k(A) =

∑
i<k

aiδ
i for A =

∑
i

aiδ
i ∈ G. (3.26)

Let L ∈ G be the Lax operator of the form

L = uNδ
N + uN−1δ

N−1 + . . .+ u1δ + u0 + u−1δ
−1 + . . . , (3.27)

The Lax hierarchy (3.23), based on the classical R-matrix (3.25), is generated

by the fractional powers of the Lax operator L from the algebra of δ-pseudo-

differential operators

dL

dtn
=
[(
L

n
N

)
>k
, L
]

= −
[(
L

n
N

)
<k
, L
]

k = 0, 1 n ∈ Z+. (3.28)

In fact, the Lax hierarchy (3.28) is an infinite hierarchy of mutually commut-

ing vector fields since R satisfies the sufficiency condition Yang-Baxter equation

(3.21) for α = 1
4
. Moreover, (3.28) represents (1 + 1)-dimensional integrable

∆-differential systems on an arbitrary regular time scale T, involving the time

variable tn and the space variable x ∈ T for an infinite number of fields ui.

The appropriate Lax operators which produce consistent Lax hierarchies (3.28),

are given in the following form:

k = 0 : L = cNδ
N + uN−1δ

N−1 + . . .+ u1δ
1 + u0 + u−1δ

−1 + . . . (3.29)

k = 1 : L = uNδ
N + uN−1δ

N−1 + . . .+ u1δ
1 + u0 + u−1δ

−1 + . . . , (3.30)

where cN is a time-independent field since in the case of k = 0, the derivative of the

coefficient of the highest order term with respect to time vanishes. Additionally

for k = 0, one finds that (uN−1)t = µ(...) and for k = 1, (uN)t = µ(...)(explicitly
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presented in the Remarks 3.5.2 and 3.5.3). Thus the fields uN−1 ( for k = 0),

uN ( for k = 1) are time-independent for dense points x ∈ T, as at these points

µ = 0.

In order deal with extracted closed finite-field integrable ∆-differential systems

on regular time scales, some finite-field restrictions should be imposed on the

appropriate infinite-field Lax operators (3.29) and (3.30). The restriction is valid

if the commutator on the right-hand side of the Lax equation (3.28) does not

produce terms not contained in Ltq . To be more precise, the left- and right-hand

of (3.28) have to span the same subspace of G. Simple computation allows to

conclude with the most general form of the admissible finite-field Lax operators

L = uNδ
N + uN−1δ

N−1 + . . .+ u1δ + u0 + δ−1u−1 +
∑
s

ψsδ
−1ϕs, (3.31)

where for k = 0, u−1 = 0 and uN is a non-zero time-independent field, which can

be denoted as cN . Here also the sum is finite and ψs, ϕs are arbitrary dynamical

fields for all s. When T = R, i.e in the case of the algebra of pseudo-differential

operators the fields ψs and ϕs in (3.31) are special dynamical fields and they are

so-called source terms, as ψs and ϕs are eigenfunctions and adjoint-eigenfunctions,

respectively, of the Lax hierarchy (3.28) [12].

Note that, further admissible reductions of the Lax form (3.31) are given by for

k = 0

L = cNδ
N + uN−1δ

N−1 + . . .+ u1δ + u0. (3.32)

and for k = 1

L = uNδ
N + uN−1δ

N−1 + . . .+ u1δ + u0 + δ−1u−1 (3.33)

L = uNδ
N + uN−1δ

N−1 + . . .+ u1δ + u0 (3.34)

L = uNδ
N + uN−1δ

N−1 + . . .+ u1δ. (3.35)

respectively, where uN−1 (for k = 0), uN (for k = 1) are time-independent at

dense points of a time scale.

In general, for an arbitrary regular time scale T, the Lax hierarchies (3.28) rep-

resent hierarchies of soliton-like integrable ∆-differential systems. In particular,
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the Lax hierarchies (3.28) are lattice and q-discrete soliton systems when T = }Z
or Kq, respectively. When T = R, i.e. the continuous time scale on the whole R,

they are of continuous soliton systems.

Moreover, in some special cases, continuous soliton systems can be obtained from

the continuous limit of integrable systems on time scales. Indeed, if the defor-

mation parameter is properly introduced, it is possible to deal with a continuous

limit of a time scale. For instance, the continuous limit of }Z is the whole real

line R, i.e.

T = }Z −→ T = R, as }→ 0, (3.36)

and the continuous limit of Kq is the closed half line R+ ∪ {0}, i.e

T = Kq −→ T = R+ ∪ {0}, as q → 1. (3.37)

In the case of continuous time scale, the algebra of δ-pseudo-differential operators

(3.24) turns out to be the algebra of pseudo-differential operators

G = G>k ⊕ G<k = {
∑
i>k

ui(x)∂i} ⊕ {
∑
i<k

ui(x)∂i}, (3.38)

where ∂ acts as ∂u = ∂xu+u∂ = ux+u∂. In this case, the decomposition is valid

for k = 0, 1 and 2. However, the algebra G (3.24) of δ-pseudo-differential operators

does not decompose into closed Lie subalgebras for k = 2 on an arbitrary time

scale. To be more precise, the decomposition of the Lie algebra is valid when

T = R, in the case of k = 2, while this case disappears for the rest of the time

scales. Therefore, in the general theory of integrable systems on time scales, we

loose one case contrary to the ordinary soliton systems constructed by the frame

of pseudo-differential operators.

For appropriate Lax operators, finite field restrictions and more information about

the algebra of pseudo-differential operators, we refer to [11, 12, 13, 42].

3.4 Recursion operators

One of the characteristic features of integrable systems is the existence of a re-

cursion operator. A recursion operator [43] of a given system, is an operator such
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that when it acts on one symmetry of the system, it produces another symmetry,

i.e.

Φ(Ltn) = Ltn+N
, n ∈ Z+.

Hence it allows to reconstruct the whole hierarchy (3.28) when applied to the first

(N − 1) symmetries. Gürses et al. [26] presented a very efficient general method

to construct recursion operators for Lax hierarchies and the authors illustrated

the method on finite-field reductions of the KP hierarchy. In [27] the method

was applied to the reductions of modified KP hierarchy as well as to the lattice

systems. Our further considerations are based on the scheme from [26] and [27].

Lemma 3.4.1 The recursion operator of the related Lax operator (3.31) is con-

structed by solving the recursion relation

Ltn+N
= LtnL+ [R,L], (3.39)

where R is the remainder operator of the form

R = aNδ
N + aN−1δ

N−1 + · · ·+ a0 +
∑
s

a−1,sδ
−1ϕs, (3.40)

which has the same degree as the Lax operator L (3.31). Here aN = 0 for the case

k = 0.

Proof. We prove the Lemma, by the continuous analogue presented in [26].

Consider the case k = 0. In this case, u−1 = 0 and uN is time-independent in the

Lax operator (3.31). Since ((L
n
N )>0L)>0 has only positive powers, we have

(L
n+N
N )>0 = ((L

n
N )>0L)>0 + ((L

n
N )<0L)>0

= (L
n
N )>0L−

∑
s

[(L
n
N )>0ψs]0δ

−1ϕs + ((L
n
N )<0L)>0

= (L
n
N )>0L+R,
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where R is of order N −1 and we substituted R = ((L
n
N )<0L)>0, which is exactly

of the form (3.40) with aN = 0. Similarly for k = 1, we have

(L
n+N
N )>1 = ((L

n
N )>1L)>1 + ((L

n
N )<1L)>1

= (L
n
N )>1L− [(L

n
N )>1L]0 −

∑
s

[(L
n
N )>0ψs]0δ

−1ϕs + ((L
n
N )<1L)>1

= (L
n
N )>1L+R,

where R has the form (3.40). Thus, in both cases (3.39) follows from (3.28).

Hence we can extract the recursion operator from (3.39). �

Note that in general, recursion operators on time scales are non-local., i.e., they

contain non-local terms with ∆−1 being formal inverse of ∆ operator. However,

such recursion operators acting on an appropriate domain produce only local

hierarchies.

3.5 Infinite-field integrable systems on time

scales

In this section, we illustrate the theory of integrable ∆-differential sys-

tems on regular time scales by two-infinite field integrable hierarchies which

are ∆-differential counterparts of Kadomtsev-Petviashvili (KP) and modified

Kadomtsev-Petviashvili (mKP).

3.5.1 ∆-differential KP, k = 0:

Consider the following infinite field Lax operator

L = δ + u0 +
∑
i>1

uiδ
−i, (3.41)
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which generates the Lax hierarchy (3.28) as the ∆-differential counterpart of the

KP hierarchy. For (L)>0 = δ + u0, the first flow is given by

du0

dt1
= µ∆u1

dui
dt1

=
i−1∑
k=0

(−1)k+1ui−k
∑

j1+j2+...+jk+1=i

(E−jk+1∆E−jk∆ . . . E−j2∆E−j1)u0

+ µ∆ui+1 + ∆ui + uiu0 ∀i > 0,

(3.42)

where jγ > 0 for all γ > 1.

Similarly, by the use of (L2)>0 = δ2 + ξδ + η, where

ξ := Eu0 + u0 η := ∆u0 + u2
0 + u1 + Eu1, (3.43)

the second flow yields as

du0

dt2
= µ∆(E + 1)u2 + µ∆(∆u1 + u1u0 + u1E

−1u0)

dui
dt2

=
i−1∑
k=−1

(−1)k+2ui−k
∑

j1+j2+...+jk+2=i+1

(E−jk+2∆E−jk+1∆ . . . E−j2∆E−j1)ξ

+
i−1∑
k=0

(−1)k+1ui−k
∑

j1+j2+...+jk+1=i

(E−jk+1∆E−jk∆ . . . E−j2∆E−j1)η (3.44)

+ ∆2ui + (E∆ + ∆E)ui+1 + µ∆(E + 1)ui+2 + ξ(∆ui + Eui+1) + ηui,

where jγ > 0 for all γ > 1.

Example 3.5.1 The simplest case in (2 + 1) dimensions: We rewrite the first

two members of the first flow by setting u0 = w and t1 = y and the first member

of the second flow by setting t2 = t. Since E and ∆ do not commute, note that

in the calculations up to the last step, we use E − 1 instead of µ∆, in order to

avoid confusion.

wy = (E − 1)u1, (3.45)

u1,y = (E − 1)u2 + ∆u1 + u1(1− E−1)(w), (3.46)

wt = (E2 − 1)u2 + (E − 1)(∆u1 + u1w + u1E
−1(w)) (3.47)
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Applying (E + 1) to (3.46) from left we have

(E2 − 1)u2 = (E + 1)u1,y − (E + 1)∆u1 − (E − 1)u1(1− E−1)w. (3.48)

Applying (E − 1) to (3.47) from left and substituting (3.45) and (3.48) into the

new derived equation we finally obtain the (2 + 1)-dimensional one-field system

of the form

µ∆wt = (E + 1)wyy − 2∆wy + 2µ∆(wwy). (3.49)

which does not have a continuous counterpart. For the case of T = hZ, one can

show that (3.49) is equivalent to the (2 + 1)-dimensional Toda lattice system.

The ∆-differential analogue of one-field continuous KP equation is too compli-

cated to write it down explicitly.

Remark 3.5.2 Here we want to illustrate the behavior of u0 in all symmetries

of the difference KP hierarchy. Let (Ln)<0 =
∑
i>1

v
(n)
i δ−i, then by the right-hand

of the Lax equation (3.28), we obtain the first members of all flows

du0

dtn
= µ∆v

(n)
1 . (3.50)

Thus u0 is a time-independent field for dense points x ∈ T since µ = 0. Hence,

in the case of T = R, u0 appears to be a constant.

In T = R case, or in the continuous limit of some special time scales, with the

choice u0 = 0, the Lax operator (3.41) turns out to be a Laurent series of pseudo-

differential operators

L = ∂ +
∑
i>1

ui∂
−i. (3.51)

Moreover, the first flow (3.42) turns out to be exactly the first flow of the KP

system

dui
dt1

= ui,x, ∀i > 1 (3.52)

while the second flow (3.44) becomes exactly the second flow of the KP system

dui
dt2

= (ui)2x + 2(ui+1)x + 2
i−1∑
k=1

(−1)k+1

(
i− 1

k

)
ui−k(u1)kx ∀i > 1. (3.53)
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3.5.2 ∆-differential mKP, k = 1:

Consider the Lax operator of the form

L = u−1δ +
∑
i>0

uiδ
−i (3.54)

which generates the ∆-differential counterpart of the mKP hierarchy. Then,

(L)>1 = u−1δ implies the first flow

du−1

dt1
= µu−1∆u0

dui
dt1

=
i−1∑
k=−1

(−1)k+2ui−k
∑

j1+j2+···+jk+2=i+1

(E−jk+2∆E−jk+1∆ . . . E−j2∆E−j1)u−1

+ u−1Eui+1 + u−1∆ui ∀i > 0, (3.55)

where jγ > 0, γ = 1, 2, . . . , k + 2.

Next, for (L2)>1 = ξδ2 + ηδ, where

ξ := u−1Eu−1, η := u−1∆u−1 + u−1Eu0 + u0u−1, (3.56)

we have the second flow as follows

du−1

dt2
= ξ(E∆u0 + E2(u1)) + µu−1∆u2

0 − u1E
−1ξ − u2

−1∆u0

dui
dt2

=
i−1∑
k=−2

(−1)k+3ui−k
∑

j1+j2+...+jk+3=i+2

(E−jk+3∆E−jk+2∆ . . .∆E−j1)ξ

+
i−1∑
k=−1

(−1)k+2ui−k
∑

j1+j2+...+jk+2=i+1

(E−jk+2∆E−jk+1∆ . . .∆E−j1)η

+ ξ2(∆2ui + (E∆ + ∆E)ui+1 + E2ui+2) + η(∆ui + Eui+1),

(3.57)

where i > 0 and jγ > 0 for all γ > 1.

Remark 3.5.3 Similarly we illustrate the behavior of u−1 in all symmetries of

the ∆-differential mKP hierarchy by considering (Ln)<1 =
∑
i>0

v
(n)
i δ−i. Then we

obtain the first members of all flows

du−1

dtn
= µu−1∆v

(n)
0 , (3.58)
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Thus, u−1 is time-independent for dense x ∈ T. Hence when T = R, u−1 appears

to be a constant.

In T = R case, or in the continuous limit of some special time scales, with the

choice of u−1 = 1, the Lax operator (3.54) turns out to be the pseudo-differential

operator

L = ∂ +
∑
i>0

ui∂
−i, (3.59)

Furthermore, the system of equations (3.55) is exactly the first flow of the mKP

system

dui
dt1

= ui,x, ∀i > 0, (3.60)

while the second flow (3.57) turns out to be the second flow of the mKP system

dui
dt2

= (ui)2x + 2(ui+1)x + 2u0(ui)x + 2u0ui+1

+ 2
i∑

k=0

(−1)k+1

(
i

k

)
ui+1−k(u0)kx ∀i > 0.

(3.61)

3.6 Constraints

There appear natural constraints between the dynamical fields of the admissible

finite-field Lax restrictions (3.31) fulfilling the Lax hierarchy (3.28). We determine

these constraints in the following theorem, which is a consequence of the property

of the algebra of δ-pseudo-differential operators. The property is illustrated in

the following proposition.

Proposition 3.6.1 Let L1, L2 ∈ G be

L1 =
r∑
i=0

aiδ
r−i, L2 =

s∑
i=0

biδ
s−i + ψδ−1ϕ,

with

[L1, L2] =
r+s∑
i=0

Ciδ
r+s−i + Ĉr+s+1δ

−1ϕ+ ψδ−1Cr+s+1, (3.62)
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then

r+s∑
i=0

(−1)iµiCi + (−1)r+s+1µr+s+1(ϕĈr+s+1 + ψCr+s+1) = 0. (3.63)

We verify the Proposition 3.6.1, by the use of the Lemma’s stated and proved

below.

Lemma 3.6.2 Let δrψδ−1ϕ =
r−1∑
i=0

Ciδ
r−i−1 + Crδ

−1ϕ, r > 0, then

r−1∑
i=0

(−1)iµiCi + (−1)rµrϕ Cr = ψϕ. (3.64)

Proof. In order to prove the Lemma we make use of induction. Consider

δr+1ψδ−1ϕ =
r∑
i=0

Diδ
r−i +Dr+1δ

−1ϕ, (3.65)

where

D0 = E(C0),

Di = ∆Ci−1 + E(Ci) =
E − 1

µ
Ci−1 + E(Ci), i = 1, 2, ..., r − 1,

Dr = ∆Cr−1 + ϕE(Cr) =
E − 1

µ
Cr−1 + ϕE(Cr),

Dr+1 = ∆Cr =
E − 1

µ
Cr.

Next, we consider

r∑
i=0

(−1)iµiDi + (−1)r+1µr+1ϕ Dr+1 = D0 +
r−1∑
i=1

(−1)iµiDi

+ (−1)rµrDr + (−1)r+1µr+1ϕDr+1

= E(C0) +
r−1∑
i=1

(−1)iµi(
E − 1

µ
Ci−1 + E(Ci))

+ (−1)rµr(
E − 1

µ
Cr−1 + ϕE(Cr))

+ (−1)r+1µr+1ϕ(
E − 1

µ
Cr)



CHAPTER 3. ALGEBRA OF δ-PSEUDO-DIFFERENTIAL OPERATORS 35

r∑
i=0

(−1)iµiDi + (−1)r+1µr+1ϕ Dr+1 =
r−1∑
i=0

(−1)iµiE(Ci)

+
r∑
i=1

(−1)iµi−1(E − 1)Ci−1

+ (−1)rµrϕ Cr

Thus

r∑
i=0

(−1)iµiDi + (−1)r+1µr+1ϕ Dr+1 =
r−1∑
i=0

(−1)iµiCi + (−1)rµrϕ Cr = ψϕ.

�

Lemma 3.6.3 Assume

[δr, ψδ−1ϕ] =
r−1∑
i=0

Ciδ
r−i−1 + Ĉrδ

−1ϕ+ ψδ−1Cr, r > 0. (3.66)

Then
r−1∑
i=0

(−1)iµiCi + (−1)rµr(ϕĈr + ψCr) = 0. (3.67)

Proof. Similarly, we use induction. The assumption hypothesis of Lemma 3.6.3

implies

[δr+1, ψδ−1ϕ] =
r∑
i=0

Fiδ
r−i + F̂r+1δ

−1ϕ+ ψδ−1Fr+1, (3.68)

By (3.65) and the relation (3.5), we have

[δr+1, ψδ−1ϕ] = δr+1ψδ−1ϕ− δrψδ−1ϕ δ + [δr, ψδ−1ϕ]δ

=
r∑
i=0

Diδ
r−i +Dr+1δ

−1ϕ− (
r−1∑
i=0

Kiδ
r−i +KrE

−1(ϕ)−Krδ
−1(∆E−1ϕ))

+
r−1∑
i=0

Ciδ
r−i + ĈrE

−1(ϕ)− Ĉrδ−1(∆E−1ϕ) + ψE−1Cr

− ψδ−1(∆E−1Cr).
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Now consider
r∑
i=0

(−1)iµiFi + (−1)r+1µr+1(ϕF̂r+1 + ψFr+1) =
r∑
i=0

(−1)iµiDi + (−1)r+1µr+1ϕDr+1

−
r−1∑
i=0

(−1)iµiKi − (−1)rµr(KrE
−1(ϕ))− (−1)r+1µr+1(−Kr∆E

−1(ϕ))

+
r−1∑
i=0

(−1)iµiCi + (−1)rµr(ĈrE
−1(ϕ) + ψE−1(Cr)) + (−1)r+1µr+1(−Ĉr∆E−1(ϕ)

− ψ∆E−1(Cr)).

Then the result of Lemma 3.6.2 and (3.67) implies that

r∑
i=0

(−1)iµiFi + (−1)r+1µr+1(ϕF̂r+1 + ψFr+1) = ψϕ− ψϕ

+ (−1)rµr(ϕKr −KrE
−1(ϕ)

− µKr∆E
−1(ϕ))

+ (−1)rµr(−ϕĈr − ψCr)

+ (−1)rµr(ĈrE
−1(ϕ) + ψE−1(Cr)

+ µ(Ĉr∆E
−1(ϕ) + ψ∆E−1(Cr)))

= 0.

�

Lemma 3.6.4 :Assume

[Aδr, Bδs] =
r∑
i=0

Ciδ
r+s−i, (3.69)

for all r > s > 0, then
r∑
i=0

(−1)iµiCi = 0. (3.70)

Proof. If δrF =
r∑
i=0

Ciδ
r−i, for all r > 0, then the following holds

r∑
i=0

(−1)iµiCi = F, (3.71)
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which can be proved easily similar to the proof of the Lemma 3.6.2. The proof

of the lemma proceeds by making use of the following expansion

[Aδr+1, Bδs] = Aδr(∆B)δs + Aδr(µ∆B)δs+1 + [Aδr, Bδs]δ,

and induction. �

Hence, the virtue of Lemma 3.6.2, Lemma 3.6.3 and Lemma 3.6.4 straightfor-

wardly imply the proof of the Proposition 3.6.1.

In order to explain the source of the Proposition 3.6.1, it is much simpler to

consider the Lemma 3.6.4. Let A be a purely δ-differential operator such that

A =
∑
i>0

aiδ
i, (3.72)

where the sum is finite. In order to expand A with respect to the shift operator

E : Eu = E(u)E , we need an explicit relation between the shift operator E and

δ-pseudo-differential operator δ, which is presented below.

Proposition 3.6.5 [22] The operator formula

E = I + µ δ, (3.73)

holds, where I denotes the identity operator.

The equality (3.70) from Lemma 3.6.4 is trivially satisfied for dense x ∈ T, since

in this case µ = 0. Therefore, it is enough to consider remaining points in a

time scale so assume that µ 6= 0. Thus, the operator formula (3.73) implies the

relation for µ 6= 0,

δ = µ−1E − µ−1. (3.74)

The relation (3.72) can be rewritten, by the use of (3.74), as

A(E) =
∑
i

a′iE i. (3.75)

Thus, the constant term of the polynomial A in E can be obtained by substitut-

ing E = 0, which implies the replacement δ with −µ−1 by (3.74). Replacing δ
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with −µ−1 in the assumption hypothesis (3.69) of Lemma 3.6.4, the commutator

vanishes and this allows us to find

r∑
i=0

(−µ)−r−s+iCi = 0, (3.76)

which is equivalent to (3.70).

The above procedure can be also extended to the operators A which are not purely

δ-differential and contain finitely many negative ordered terms . For this purpose

consider the Proposition 3.6.1. Replacing δ with −µ−1 in (3.62) the commutator

vanishes, and we obtain (3.63).

Such behavior of the algebra of δ-pseudo-differential operators leads us to deter-

mine the general form of the constraints between the dynamical fields of the Lax

operators (3.31), stated in the following theorem.

Theorem 3.6.6 The constraint between the dynamical fields of Lax operators

(3.31), generating the Lax hierarchy (3.28), has the following form

N+k−1∑
i=−k

(−µ)N+k−1−iui + (−µ)N+k
∑
s

ψsϕs = a, k = 0, 1, (3.77)

where a is a time-independent function. (for k = 1, a is nonzero when µ = 0 )

Proof. Clearly, the right-hand side of (3.28) can be represented in the form of

Ltn . If we replace δ with −µ−1 in both sides of (3.28), we deduce that

Ltn|δ=−µ−1 = [(Ln)>k, L]|δ=−µ−1 = 0, k = 0, 1. (3.78)

since the commutator vanishes. Analysing furthermore, we obtain

(−µ)N+k−1Ltn
∣∣
δ=−µ−1 = 0, k = 0, 1. (3.79)

For k = 1, applying (3.79) on the Lax operator (3.31), the constraint

N∑
i=−1

(−µ)N−iui + (−µ)N+1
∑
s

ψsϕs = a (3.80)



CHAPTER 3. ALGEBRA OF δ-PSEUDO-DIFFERENTIAL OPERATORS 39

follows. Similarly for k = 0, we have the following constraint

N−1∑
i=0

(−µ)N−1−iui + (−µ)N
∑
s

ψsϕs = a (3.81)

since uN is time-independent and u−1 = 0 in this case. The constraints (3.80)

and (3.81) imply the general form of the constraint between the dynamical fields

of (3.31) as (3.77). �

As a consequence, the constraint (3.77) with a fixed value of a, is valid for the

whole Lax hierarchy (3.28) which allows to generalize the above theorem for

further finite-field restrictions.

3.7 Finite-field integrable systems on time

scales

3.7.1 ∆-differential AKNS, k = 0:

Let the Lax operator (3.31) for N = 1 and u1 = c1 = 1 be of the form

L = δ + u+ ψδ−1ϕ. (3.82)

The constraint (3.77) between fields, with a = 0, becomes

u = µψϕ. (3.83)

For (L)>0 = δ + u, one finds the first flow

du

dt1
= µ∆(ψE−1ϕ),

dψ

dt1
= ∆ψ + uψ,

dϕ

dt1
= ∆E−1ϕ− uϕ.

(3.84)
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Eliminating field u by (3.83), we have

dψ

dt1
= ∆ψ + µψ2ϕ,

dϕ

dt1
= ∆E−1ϕ− µϕ2ψ.

(3.85)

Next we calculate (L2)>0 = δ2 + ξδ + η where

ξ := (E + 1)u, η := ∆u+ u2 + ϕE(ψ) + ψE−1(ϕ). (3.86)

Thus, the second flow takes the form

du

dt2
= µ∆

[
∆(ψE−1(ϕ)) + ψE−1(uϕ) + uψE−1ϕ

]
− µ∆(E + 1)ψE−1∆E−1(ϕ),

dψ

dt2
= ∆2ψ + ψη + ξ∆ψ, (3.87)

dϕ

dt2
= −(∆E−1)2ϕ− ϕη + ∆E−1(ϕξ).

By the use of the constraint (3.83), the second flow can be written as

dψ

dt2
= ∆2ψ + ψη̄ + ξ̄∆ψ,

dϕ

dt2
= −(∆E−1)2ϕ− ϕη̄ + ∆E−1(ϕξ̄),

(3.88)

where

ξ̄ := (E + 1)µψϕ, η̄ := ∆µψϕ+ (µψϕ)2 + ϕE(ψ) + ψE−1(ϕ). (3.89)

In order to obtain higher elements of the hierarchy of ∆-differential AKNS, it is

much simpler to derive the recursion operator. For this purpose, one finds that

the appropriate reminder (3.40) has the form

R = ∆−1
(
µ−1utn

)
− ψtnδ−1ϕ. (3.90)

Then, (3.39) implies the following recursion formula
u

ψ

ϕ


tn+1

=


u− µ−1 φE ψE−1

ψ + ψ∆−1µ−1 ∆ + u+ ψ∆−1ϕ ψ∆−1ψ

−ϕ∆−1µ−1 −ϕE∆−1ϕ u−∆E−1 − ϕE∆−1ψ



u

ψ

ϕ


tn

(3.91)
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which is valid for isolated points x ∈ T, i.e. when µ 6= 0. For dense points, its

reduction by the constraint (3.83) follows as,(
ψ

ϕ

)
tn+1

=

(
∆ + 2µψϕ+ 2ψ∆−1ϕ µψ2 + 2ψ∆−1ψ

−µϕ2 − 2ϕ∆−1ϕ −∆E−1 − 2ϕ∆−1ψ

)(
ψ

ϕ

)
tn

. (3.92)

In the case of T = R, or in the continuous limit of some special time scales, the

recursion formula (3.92) turns out to be:(
ψ

ϕ

)
tn+1

=

(
∂x + 2ψ∂−1

x ϕ 2ψ∂−1
x ψ

−2ϕ∂−1
x ϕ −∂x − 2ϕ∂−1

x ψ

)(
ψ

ϕ

)
tn

. (3.93)

Using the recursion operator (3.92), the third flow is calculated in the form

dψ

dt3
=∆3ψ + ∆(ψη̄ + ξ̄∆ψ) + 2ψ∆−1(ϕ∆2ψ − ψ(∆E−1)2ϕ)

+ 2ψ∆−1(ϕξ̄∆ψ + ψ∆E−1(ϕξ̄)) + 2µψϕ(∆2ψ + ξ̄∆ψ)

+ µψ2(ϕη̄ + ∆E−1ϕξ̄ − (∆E−1)2ϕ)

dϕ

dt2
=(∆E−1)3ϕ+ 2ϕ∆−1(ψ(∆E−1)2ϕ− ϕ∆2ψ) + ∆E−1ϕη̄

− 2ϕ∆−1(ψ∆E−1ϕξ̄ + ϕξ̄∆ψ)− (∆E−1)2ϕξ̄

− µϕ2(∆2ψ + ψη̄ + ξ̄∆ψ).

(3.94)

where ξ̄, η̄ are given in (3.89). In T = R case, or in the continuous limit of some

special time scales, with the apparent choice u = 0 (the constraint (3.83) implies

that u = 0 since µ = 0), the Lax operator (3.82) takes the form L = ∂ + ψ∂−1ϕ.

Then, the continuous limits of (3.84) and (3.87) respectively, imply that the first

flow is the translational symmetry

dψ

dt1
= ψx

dϕ

dt1
= ϕx

and the first non-trivial equation from the hierarchy is the AKNS equation

dψ

dt2
= ψxx + 2ψ2ϕ,

dϕ

dt2
= −ϕxx − 2ϕ2ψ.

(3.95)
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Furthermore, the continuous limit of the third flow (3.94) of ∆-differential AKNS

becomes

dψ

dt3
= ψ3x + 6ψϕψx,

dϕ

dt3
= ϕ3x + 6ψϕϕx,

(3.96)

which can be also derived by directly applying the recursion operator (3.93) to

the continuous second flow (3.95). Note that, the choice of ϕ = 1 in (3.96) implies

the usual KdV-equation while setting ψ = ϕ in (3.96) yields the usual modified

KdV-equation.

In T = R case, the first nontrivial flow is the second one (3.88), i.e. the AKNS

system. When T = Z and T = Kq we get the lattice and q-discrete counterparts

of the AKNS hierarchy where the first nontrivial flow is (3.85).

3.7.2 ∆-differential KdV, k = 0:

A further admissible reduction of the Lax operator (3.31) for k = 0 is given by

(3.32). Consider the following finite-field Lax operator, with N = 2 and c2 = 1

L = δ2 + vδ + u, (3.97)

which generates the ∆-differential counterpart of KdV hierarchy. The constraint

(3.77) between the dynamical fields, with a = λ, where λ is an arbitrary time

independent function, becomes

v = µu+ λ. (3.98)

Straightforward calculation for

L1/2 = δ + α0 + α1 δ
−1 + α2 δ

−2 + · · · (3.99)

allows to obtain the coefficients αi, i > 0 in terms of the dynamical fields u and

v, as

E(α0) + α0 = v, (3.100)

E(α1) + α1 + ∆α0 + (α0)2 = u, (3.101)

E(α2) + α2 + α1E
−1(α0) + ∆α1 = 0. (3.102)
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We obtain the members of the KdV hierarchy by the choice of n = {2k + 1 : k ∈
N0}.

(1). Let n = 1. Then Lax hierarchy (3.28)

Lt = [(L1/2)≥0, L] (3.103)

implies the first flow as

du

dt
= ∆u− v∆α0 −∆2α0, (3.104)

dv

dt
= ∆v + (E − 1)u− v(E − 1)α0 − E∆α0 −∆Eα0,

= µ(∆u− v∆α0 −∆2α0). (3.105)

By the constraint (3.98) the first flow can be rewritten as

du

dt
= ∆u− (µu+ λ) ∆α0 −∆2α0, (3.106)

where α0 is,

E(α0) + α0 = µu+ λ. (3.107)

We investigate the reduced first flow (3.106) for particular cases of T with the

ansatz λ = 0.

(i) In T = R case, or in the continuous limit of some special time scales, with

the choice v = 0 (in this case, µ = 0 and by the assumption λ = 0, the constraint

(3.98) implies that v = 0), the Lax operator (3.97) takes the form L = ∂2 + u.

Then, the relations (3.100), (3.101), (3.102) imply the first three coefficients of

the operator L1/2

α0 = 0, α1 =
1

2
u, α2 = −1

4
ux, (3.108)

and the continuous limit of (3.106) becomes

ut = ux, (3.109)

which is a linear equation explicitly solvable:

u(x, t) = ϕ(x+ t), (3.110)

where ϕ is an arbitrary differentiable function.



CHAPTER 3. ALGEBRA OF δ-PSEUDO-DIFFERENTIAL OPERATORS 44

(ii) In T = Z case, we have µ = 1 and (3.107) is satisfied by

α0(n) = −
n−1∑
k=−∞

(−1)n+k u(k), n ∈ Z (3.111)

and therefore the equation (3.106) becomes

du(n)

dt
= −u2(n) + 2u(n) + 2(−1)n [2 + u(n)]

n−1∑
k=−∞

(−1)k u(k), (3.112)

for n ∈ Z.

(iii) In T = Kq case, we have µ(x) = (q−1)x and (3.107) is satisfied by α0(0) = 0

and

α0(x) = −(q − 1)
∑

y∈(0,q−1x]

(−1)logq(xy) yu(y) (3.113)

for x ∈ Kq and x 6= 0. Substituting (3.113) into (3.106) we obtain an evolution

equation for u.

(iv) Let T = (−∞, 0) ∪ Kq = (−∞, 0] ∪ qZ. Here, by the choice of this special

time scale we have two different types of graininess functions. If x ∈ (−∞, 0],

we have µ(x) = 0 which implies clearly α0 = 0. On the other hand, if x ∈ qZ,

the graininess function is µ(x) = (q − 1)x and thus α0(x) is exactly equivalent

to the form given as (3.113). As a result, (3.106) produces an evolution equation

that coincides on (−∞, 0] and qZ with the evolution equations described in the

examples (i) and (iii), respectively. Note that the solution u has to satisfy the

smoothness conditions

u(0−) = u(0+), u′(0−) = ∆u(0+), (3.114)

at x = 0.

(2). Let n = 3, we obtain

(L3/2)>0 = δ3 + p δ2 + q δ + r (3.115)
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where

p = α0 + E(v), (3.116)

q = ∆v + E(u) + α0 v + α1, (3.117)

r = ∆u+ α0 u+ α1E
−1(v) + α2, (3.118)

and the Lax equation (3.28) implies the second flow as

du

dt
= ∆3u+ p∆2u+ q∆u−∆2r − v∆r, (3.119)

dv

dt
= ∆3v + E∆2u+ ∆E∆u+ ∆2Eu+ p [∆2v + E∆u

+∆Eu] + q (∆v + E(u)− u) + rv −∆2q − E∆r

−∆Er − v∆q − vE(r). (3.120)

By the use of the constraint (3.98) with the choice λ = constant, the reduced

second flow yields as

du

dt
= ∆3u+ p∆2u+ q∆u−∆2r − v∆r, (3.121)

Similar to the discussions given in part (i), when T = R, or in the continuous

limit of some special time scales, the relations (3.116), (3.117), (3.118) imply the

first three coefficients of the operator L3/2

p = 0, q =
3

2
u, r =

3

4
ux (3.122)

and the continuous limit of (3.121) becomes the KdV equation

ut =
1

4
u3x +

3

2
uux. (3.123)

Remark 3.7.1 The recursion operator of KdV hierarchy can be calculated by

taking the square of the recursion operator (3.92) of AKNS hierarchy. Note that,

such a behavior leads us to deduce that the Lax hierarchies and bi-Hamiltonian

structures of ∆-differential KdV are hidden inside of ∆-differential AKNS.

3.7.3 ∆-differential Kaup-Broer, k = 1:

The admissible finite field restrictions (3.31) with N = 1 and without the finite

sum on the right hand side of (3.31) leads to consider the simplest Lax operator
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of the form

L = uδ + v + δ−1w. (3.124)

The constraint (3.77), with a = 1, implies

u = 1 + µv − µ2w. (3.125)

Calculating (L)>1 = uδ, the Lax equation (3.28) implies the first flow as

du

dt1
= µu∆v,

dv

dt1
= u∆v + µ∆E−1(uw),

dw

dt1
= ∆E−1(uw).

(3.126)

By the use of the constraint (3.125), one can rewrite the first flow in the form

dv

dt1
= (1 + µv − µ2w)∆v + µ∆E−1(w(1 + µv − µ2w)),

dw

dt1
= ∆E−1

(
w + µvw − µ2w2

)
.

(3.127)

Next, we calculate (L2)>1 = ξδ2 + ηδ, where

ξ := uEu, η := u∆u+ uEv + vu, (3.128)

that yields the second flow

du

dt2
= µu∆(E−1 + 1)uw + µu∆v2 + µu∆(u∆v),

dv

dt2
= ξ(∆2v + ∆w) + µ∆E−1(wη) + E−1∆E−1(wξ) + η∆v,

dw

dt2
= −∆E−1∆E−1(wξ) + ∆E−1(wη).

(3.129)

Since it is cumbersome to write the second flow in terms of the constraint, we

skip this complicated coupled equation.

In the case of T = R, or in the continuous limit of some special time scales, with

the apparent choice u = 1 (the constraint (3.125) implies that u = 1 since µ = 0),
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the Lax operator (3.124) takes the form L = ∂ + v + ∂−1w. Then the similar

continuous analogue allows us to obtain the first flow

dv

dt1
= vx,

dw

dt1
= wx,

(3.130)

and the first non-trivial equation from the hierarchy is the Kaup-Broer equation

dv

dt2
= v2x + 2wx + 2vvx,

dw

dt2
= −w2x + 2(vw)x.

(3.131)

The appropriate remainder (3.40) of ∆-differential KB is given by

R = u∆−1(µu)−1utnδ − vtn −∆−1wtn . (3.132)

Hence, from (3.39) we have the following recursion formula
u

v

w


tn+1

=


Ruu uE µu

Rvu v + u∆ (1 + E−1)u

Rwu w −∆E−1u+ v − µw



u

v

w


tn

, (3.133)

which is valid when µ 6= 0 and

Ruu = E(v)− µ−1u+ µu∆(v)∆−1(µu)−1

Rvu = ∆(v) + w + u∆(v)∆−1(µu)−1 + (1− E−1)uw∆−1(µu)−1

Rwu = ∆E−1uw∆−1(µu)−1.

(3.134)

Its reduction by the constraint (3.125) is(
v

w

)
tn+1

=

(
v + u∆ +Rvuµ (1 + E−1)u−Rvuµ

2

w +Rwuµ −∆E−1u+ v − µw −Rwuµ
2

)(
v

w

)
tn

, (3.135)

with u given by (3.125). In the case of T = R, or in the continuous limit of some

special time scales, the recursion formula (3.135) turns out to be(
v

w

)
tn+1

=

(
∂x + v + vx∂

−1
x 2

w + ∂xw∂
−1
x −∂x + v

)(
v

w

)
tn

. (3.136)
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3.7.4 ∆-differential Burgers equation, k = 1:

A further admissible reduction of the Lax operator (3.31) for k = 1 is given by

(3.34). Thus we can consider the reduction of the Lax operator (3.124) as

L = uδ + v. (3.137)

By eliminating the field w from (3.129), we derive the second flow,

du

dt2
= µu∆(u∆v + v2),

dv

dt2
= uE(u)∆2v + (u∆u+ uE(v) + uv)∆v = u∆(u∆v + v2).

(3.138)

which is equivalent to Burgers equation on time scales

dv

dt2
= (1 + µv)∆((1 + µv)∆v + v2), (3.139)

together with the constraint

u = 1 + µv. (3.140)

(i) In the case of T = R, or in the continuous limit of some special time scales,

(3.139) becomes the standard Burgers equation on R

dv

dt2
= v2x + 2vvx. (3.141)

(ii) When T = }Z then µ(x) = }. Then considering the constraint u = µv = }v
(i.e a = 0 in the constraint (3.77)), we find

dv(x)

dt
= v(x) v(x+ h) [v(x+ 2h)− v(x)], (3.142)

where x ∈ }Z. The evolution equation (3.142) represents the difference version

of the Burgers equation.

(iii) When T = Kq, we have µ(x) = (q − 1)x. If we consider the constraint

u = µv = (q − 1)xv, we get from (3.139)

dv(x)

dt
= v(x)v(qx)[v(q2x)− v(x)]. (3.143)

The evolution equation (3.143) represents the q-difference version of the Burgers

equation.
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Remark 3.7.2 Note that, we obtained the Burgers hierarchy directly in [22]

rather than eliminating the field w from KB hierarchy. By the frame of the

reduced Lax operator (3.137), the Lax equation (3.28) turns out to be

dL

dtn
=
[
(Ln)>1 , L

]
= −

[
(Ln)<1 , L

]
= [− (Ln)0 , L] , n > 1. (3.144)

Since (Ln)0 is a scalar function, letting (Ln)0 = ρn implies the general form of

all flows as

du

dtn
= µu∆ρn, (3.145)

dv

dtn
= u∆ρn, (3.146)

where the first three ρn are given by

ρ1 = v, (3.147)

ρ2 = u∆v + v2, (3.148)

ρ3 = (v + u∆)(u∆v + v2). (3.149)

The above hierarchy reduces to a single evolution equation

dv

dtn
= (1 + µ v)∆ρn, n > 1, (3.150)

with the constraint (3.140).



Chapter 4

Bi-Hamiltonian Theory

4.1 Classical bi-Hamiltonian structures

In this section we collect the fundamental notions and definitions in the theory

of bi-Hamiltonian structures for the algebra of pseudo-differential operators, i.e.

in R [42, 44, 13].

Let U be a linear space of N tuples

u := (u1(x), u2(x), ..., uN(x))T , (4.1)

of smooth functions ui : Ω → K, where K is a field of complex or real numbers

and the space Ω ⊆ R is chosen such that ui and all derivatives are rapidly decaying

functions, i.e. ui and all derivatives tend to 0 as |x| → ∞. Then, U arises as an

infinite dimensional phase space with local coordinates {u, ux, u2x, ...}. A smooth

vector field on U is given by a system of differential equations

ut = K[u], (4.2)

where ut := ∂u
∂t

and

K[u] := (K1[u], K2[u], ..., KN [u])T.

The scalar fields on U are functionals F : U → K of the form

F (u) =

∫
Ω

f [u]dx. (4.3)

50
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Let F = {F : U → K} be a space of functions on U , defined through functionals

(4.3). Let V be a linear space over K of smooth vector fields on U . and V∗ be

the dual space to V with respect to the duality map

〈·, ·〉 : V∗ × V → K.

Then, the dual space V∗ is a space of all linear maps η : V → K and the action of

η = (η1, η2, ..., ηN)T ∈ V∗ on K ∈ V can be defined through a duality map given

by

〈η,K〉 =

∫
Ω

N∑
i=1

ηiKidx =

∫
Ω

ηT .K.dx, (4.4)

Definition 4.1.1 The directional derivative of an arbitrary tensor field F at u ∈
U in the direction of the vector field K ∈ V is defined by

F ′(u)[K] =
d

dε
F (u+ εK) |ε=0 (4.5)

Remark 4.1.2 By the above definition, the directional derivative of the func-

tional F (4.3) is written as

F ′[K] = 〈dF,K〉 =

∫
Ω

dF T .K.dx, (4.6)

and one can derive the related differential (or gradient) dF ∈ V∗ of F , in the

following scheme: If we differentiate F with respect to t in the direction of K

(4.2), we find out that

F ′(u)[ut] =
dF (u)

dt
=

∫
Ω

∂f

∂(ui)jx
((ui)jx)t.dx =

∫
Ω

N∑
i=1

δF

δui
(ui)t.dx. (4.7)

Here by the use of integration by parts, variational derivative is as follows

δF

δui
=
∑
j>0

(−∂)j
∂f

∂(ui)jx
(4.8)

and the differential of F yields as

dF (u) =

(
δF

δu1

,
δF

δu2

, ...,
δF

δuN

)T
. (4.9)
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Note that, the above scheme is valid only for the algebra of pseudo-differential

operators. Now, we can pass through the remarkable concept of bi-Hamiltonian

structures.

Definition 4.1.3 A bilinear product {·, ·} : F × F → F which defines the Lie

algebra structure on F is called a Poisson bracket. A linear operator π : V∗ → V
is called Poisson operator if the bracket

{H,F}π = 〈dF, πdH〉 =

∫
Ω

dF T .πdH.dx F,H ∈ F (4.10)

is a Poisson bracket.

Definition 4.1.4 A vector field K ∈ V is called a bi-Hamiltonian with respect to

Poisson operators π0 and π1, if there exists functionals H0, H1 ∈ F such that

K = π0dH1 = π1dH0. (4.11)

Definition 4.1.5 The pair of Poisson tensors π0 and π1 is called compatible if

π0 + λπ1 is also a Poisson tensor for any constant λ.

Definition 4.1.6 [44] A linear operator π : V∗ → V is degenerate if there is a

nonzero operator π̄ : V → V∗ such that π̄.π = 0.

The following theorem summarizes the main properties of bi-Hamiltonian sys-

tems.

Theorem 4.1.7 [44] Assume

ut1 = K1[u] = π0dH1 = π1dH0

be a bi-Hamiltonian system of evolution equations. Let the operator π0 be nonde-

generate and Φ : V → V be of the form

Φ = π1.π
−1
0 (4.12)
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(which is so-called recursion operator). Let us also define recursively

ut0 = K0[u] := π0dH0 ⇒ Ki = Φ.Ki−1 (4.13)

for each i = 1, 2, ..., i.e. for each i, Ki−1 lies in the image of π0. Then for all

i > 0, there exists a sequence of functionals Hi satisfying

(i) For each i > 1, the evolution equation

uti = Ki[u] = π0dHi = π1dHi−1, (4.14)

is a bi-Hamiltonian system.

(ii) The evolutionary vector fields Ki mutually commute

[Ki, Kj] = 0, ∀i, j > 0. (4.15)

(iii) The Hamiltonian functionals Hi are all in involution with respect to each

Poisson bracket, i.e.

{Hi, Hj}π0 = {Hi, Hj}π1 = 0, i, j > 0. (4.16)

Hence, the Hamiltonian functionals Hi is an infinite collection of conserved

quantities for each of the bi-Hamiltonian systems (4.14).

Remark 4.1.8 Since we have defined integrable systems as systems which has

infinite hierarchy of mutually commuting symmetries (all symmetries in the hi-

erarchy are Hamiltonian), the theorem 4.1.7 ensures that bi-Hamiltonian system

of evolution equations are completely integrable.

4.2 ∆-differential systems

We present now the theory of bi-Hamiltonian structures on an arbitrary regular

time scale, based on the article [24].
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Let U be the linear space of N -tuples

u := (u1, . . . , uN)T

of ∆-smooth functions uk : T → R, on a regular time scale T and assuming

values on the field R. Additionally assume that, uk’s depend on an appropriate

set of evolution parameters, i.e. uk’s are dynamical fields. Consider the set of

∆-differential smooth functions

C = {Λuk(x) : k = 1, . . . , N ; Λ ∈ S} ,

where

S =
{

∆i1∆†
j1 · . . . ·∆in∆†

jn
: n ∈ N0, i1, j1 . . . , in, jn ∈ N

}
.

and ∆† is given in (2.33). Note that, S is the set of all possible strings of ∆ and

∆† operators which do not commute.

Definition 4.2.1 A system of evolution equations of the form

ut = K[u], (4.17)

is called a ∆-differential system, where ut := ∂u
∂t

and K := (K1, K2, ..., KN)T with

Ki being finite order polynomials of elements from C, with coefficients that might

be time independent ∆-smooth functions.

The system (4.17) represents a (1 + 1) dimensional dynamical system since t ∈ R
can be treated as an evolution (time) parameter and x as a spatial (space) one

on an arbitrary regular time scale. Furthermore, the linear space U defines an

infinite-dimensional phase space which assures that the system of evolution equa-

tions (4.17) creates a vector space on this phase space of ∆-differential smooth

functions of elements from C.

We have an additional assumption on the fields such that all fields uk : T → R
together with their ∆ derivatives are rapidly decaying functions, i.e. all fields and

their ∆-derivatives tend to zero sufficiently rapidly as x goes to x∗ or x∗, where

x∗ = min T if there exists a finite min T and x∗ = −∞ otherwise, x∗ = max T
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if there exists a finite max T and x∗ = ∞ otherwise. Thus, we define a space

F = {F : U → R} of functions on U through linear functionals

F (u) =

∫
T
f [u] ∆x, (4.18)

where f [u] are polynomial functions of C. Let V be a linear space of all vector

fields on U . Then, the dual space V∗ is a space of all linear maps η : V → R
and the action of η ∈ V∗ on K ∈ V can be defined through a duality map by

means of the functionals (4.18). Moreover, since (4.17) are evolution equations,

the concept of variational derivative which is defined by

δF

δuk
:=
∑
Λ∈S

Λ†
∂f [u]

∂(Λuk)
k = 1, . . . , N. (4.19)

is well-posed. Therefore, the notions of directional derivative and the differential

of a functional (4.18) is also well-posed. Hence, we follow the procedure presented

in the previous section, for ∆-differential systems on regular time scales. Note

that, since δ
δu

∆ = 0, the definition of variational derivative (4.19) is consistent

with the definition of functionals (4.18).

4.3 The Trace Functional

In this section, we will introduce a trace form which is well-defined on an arbitrary

time scale and at the same time which recovers in T = R case the trace form of

pseudo-differential operators, in T = Z case the trace form of shift operators and

in T = Kq case the one of q-numbers after constraints are taken into consideration.

Definition 4.3.1 The trace form Tr : G → K is introduced by

TrA := −
∫

T

1

µ
(A<0)|δ=− 1

µ
∆x ≡

∫
T

∑
i<0

(−µ)−i−1ai ∆x, (4.20)

where A<0 =
∑

i<0 aiδ
i for the δ-pseudo-differential operator A =

∑
i aiδ

i.

In order to show that the substitution δ = − 1
µ

given in the trace form (4.20) is

well-posed, we state the following proposition.
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Proposition 4.3.2 Let A and B be δ-differential operators such that the follow-

ing relation holds

(AB)<0 = AB.

Then the multiplication operation in the algebra G of δ-pseudo-differential opera-

tors commutes with the substitution δ = − 1
µ

, i.e,∫
T

1

µ
(AB)|δ=− 1

µ
∆x =

∫
T

1

µ
(A)|δ=− 1

µ
(B)|δ=− 1

µ
∆x. (4.21)

Proof. It is sufficient to prove (4.21) for the monomials A = aδm and B = bδn

such that m + n < 0. Substituting the monomials into the left-hand-side of the

expression (4.21) and using the Leibniz rule (3.6) we obtain

Tr(AB) = −
∫

T

1

µ
aδmbδn|δ=− 1

µ
∆x = −

∫
T

1

µ
a
∑
k>0

Smk bδ
m+n−k

∣∣∣∣∣
δ=− 1

µ

∆x

=

∫
T
a
∑
k>0

(−µ)k−m−n−1Smk b ∆x =

∫
T
ab(−µ)−m−n−1 ∆x,

where the last equality follows from the relation (3.9). Consequently, (4.21) fol-

lows. �

Remark 4.3.3 Here, we want to investigate the trace form (4.20) for two par-

ticular cases by reconsidering the Remark 3.1.3. The trace functional (4.20)

TrA :=

∫
T

∑
i<0

(−µ)−i−1ai ∆x =

∫
T
[a−1 + (−µ)a−2 + (−µ)2a−3 + ...]∆x, (4.22)

turns out to be the following form when µ(x) = 0;

TrA =

∫
T
a−1 ∆x. (4.23)

Thus, when T = R, we recover the trace formula for the algebra of pseudo-

differential operators [8].

For the case µ(x) 6= 0, by the definition of ξ-operator (3.12), the substitution

δ = − 1
µ

implies ξ = −1 and the trace form (4.20) within the algebra of ξ-operators



CHAPTER 4. BI-HAMILTONIAN THEORY 57

is given by

TrA := −
∫

T

1

µ
A<0|ξ=−1 ∆x ≡ −

∫
T

1

µ

∑
i<0

(−1)ia′i ∆x, (4.24)

with ξ-representation A =
∑

i a
′
iξ
i.

The simplest way to define an appropriate inner product is to identify it by a

trace form. Thus, we introduce the inner product on G by the bilinear map

(·, ·)G : G × G → K and in terms of the trace form (4.20) as follows

(A,B)G := Tr(AB). (4.25)

Theorem 4.3.4 The inner product (4.25) is

(i) nondegenerate, i.e. A = 0 is the only element of G fulfilling

(A,B)G = 0, ∀B ∈ G.

(ii) symmetric, i.e.

(A,B)G = (B,A)G , ∀A,B ∈ G.

(iii) ad-invariant, i.e.

(A, [B,C])G + ([B,A], C)G = 0, ∀A,B,C ∈ G.

Proof. The nondegeneracy of (4.25) follows immediately from the definition of

the trace.

In order to show that (4.20) is symmetric, it is enough to make use of the

monomials A = aδm and B = bδn once again. Then, depending on m + n,

we have three cases. If m,n > 0, obviously by the definition of the trace we

have Tr(AB) = Tr(BA) = 0. If m,n < 0, the Proposition 4.3.2 implies the

symmetricity. Therefore, it remains to prove the case when m.n < 0. Without

loss of generality, let m > 0 and n < 0. Now, we consider the cases µ(x) = 0 and

µ(x) 6= 0, separately.
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(i) For µ(x) = 0, applying the generalized Leibniz rule (3.10) to the term δmb

below, we have

Tr(AB) = Tr (aδmbδn) = Tr

(
m∑
k=0

(
m
k

)
a∆kbδm+n−k

)
.

Since, in this case the trace functional is of form (4.23), k = m+ n+ 1 and trace

form becomes

Tr(AB) =

∫
T

(
m

m+n+1

)
a∆m+n+1b ∆x. (4.26)

Applying the converse formula (3.11) to the below term aδm and using (4.23), we

obtain

Tr(BA) = Tr (bδnaδm) = Tr

(
m∑
k=0

(
m
k

)
bδm+n−k∆†

k
a

)

=

∫
T

(
m

m+n+1

)
b∆†

m+n+1
a ∆x

Using the integration by parts formula (2.32), finally we have

Tr(BA) =

∫
T

(
m

m+n+1

)
a∆m+n+1b ∆x = Tr(AB) (4.27)

which immediately follows the symmetricity.

(ii) For µ(x) 6= 0, we pass to the ξ-pseudo-differential operators. Let A = aξm

and B = bξn with m > 0 and n < 0. Applying the generalized Leibniz rule (3.13)

to the below term ξmb and using the trace form (4.24), we have

Tr(AB) = Tr (aξmbξn) = Tr

(
m∑
k=0

(
m
k

)
a(E − 1)kEm−kbξm+n−k

)

= −
∫

T

1

µ

m∑
k=m+n+1

(
m
k

)
(−1)m+n−ka(E − 1)kEm−kb ∆x.

Applying the converse formula (3.14) to the below term aξm and using (4.24), we

have

Tr(BA) = Tr (bξnaξm) = Tr

(
m∑
k=0

(
m
k

)
bξm+n−k (E−1 − 1

)k
Ek−ma

)

= −
∫

T

1

µ

m∑
k=0

(
m
k

)
(−1)m+n−kb

(
E−1 − 1

)k
Ek−ma ∆x

At this point notice the following remark.
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Remark 4.3.5 By (2.6), we have E = 1+µ∆ and by the use of (2.33) we derive

the following relation

(Eµ)† = µE† = µ(1 + µ∆)† = µ(1 + ∆†µ) = µ− µ∆E−1µ

= µ− (E − 1)E−1µ = E−1µ. (4.28)

Let f(E) be a polynomial function of E. Then by (4.28), it follows that(
1

µ
f (E)

)†
=

1

µ
f
(
E−1

)
and finally trace form yields as

Tr(BA) = −
∫

T

1

µ

m∑
k=m+n+1

(
m
k

)
(−1)m+n−ka(E − 1)kEm−kb ∆x = Tr(AB).

The symmetricity of the trace functional on the algebra of ξ-pseudo-differential

operators implies the symmetricity of the trace functional on the algebra of δ-

pseudo-differential operators for µ(x) 6= 0.

Hence, the inner product (4.25) is symmetric. Finally, since the inner product

(4.25) is from now on symmetric and the multiplication operation defined on the

algebra G of δ-pseudo-differential operators is associative, then the inner product

(4.25) is ad-invariant. �

The following proposition provides us to interrelate the trace form (4.20) with

the ones that will be defined in this section.

Proposition 4.3.6 The expansion of (1 + µδ)−1 into non-negative order terms

of δ-pseudo-differential operators is given by

(1 + µδ)−1 :=
∞∑
k=0

(−δ)k(µk + ∆µk+1) ≡
∞∑
k=0

(−δ)kEµ
k+1

µ
, (4.29)

while its expansion into negative order terms is

(1 + µδ)−1 := −
∞∑
k=1

(−δ)−k 1

µEµk−1
. (4.30)
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Note that, the first expansion (4.29) is valid for all points of T including the dense

points, however the second expansion (4.30) is valid only for µ 6= 0. It is sufficient

to prove the first expansion (4.29).

Proof. We verify the Proposition 4.3.6 by multiplying both sides of the expres-

sion (4.29) with (1 + µδ) from right-hand side. Then, using (3.1) we have

(1 + µδ)−1(1 + µδ) =
∞∑
k=0

(−δ)kEµ
k+1

µ
+
∞∑
k=0

(−δ)kEµk+1δ

=
∞∑
k=0

(−δ)kEµ
k+1

µ
+
∞∑
k=0

(−δ)k(δµk+1 −∆µk+1)

=
∞∑
k=0

(−δ)kEµ
k+1

µ
−
∞∑
k=0

(−δ)k+1µk+1 −
∞∑
k=0

(−δ)k∆µk+1

=
Eµ

µ
−∆µ+

∞∑
k=1

(−δ)k
(
Eµk+1

µ
− µk −∆µk+1

)
= 1.

Similarly one can verify the second expansion (4.30). �

Proposition 4.3.7 The trace form (4.20) is equivalent to the following trace

form

TrA =

∫
T

E−1µ

µ
res
(
A(1 + µδ)−1

)
∆x, (4.31)

where

resA := a−1 for A =
∑
i

aiδ
i.

Proof. First we calculate the residue term res (A(1 + µδ)−1), by assuming the

expansion (4.29) of (1 + µδ)−1 into nonnegative terms.

res
(
A(1 + µδ)−1

)
= res

(
∞∑
k=0

∑
i

(−1)kaiδ
i+k (Eµ)k+1

µ

)

= res

(∑
i<0

(−1)−i−1aiδ
−1 (Eµ)−i

µ
+ . . .

)
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Using the rule (3.2), residue follows as

res
(
A(1 + µδ)−1

)
= res

(∑
i<0

(−1)−i−1ai
µ−i

E−1µ
δ−1 + . . .

)

= −
∑
i<0

(−µ)−i

E−1µ
ai.

Substituting the residue into the trace form (4.31), we obtain

TrA =

∫
T

E−1µ

µ
res
(
A(1 + µδ)−1

)
∆x =

∫
T

∑
i<0

(−µ)−i−1ai ∆x

= −
∫

T

1

µ
(A<0)|δ=− 1

µ
∆x

which ensures that the trace forms (4.20) and (4.31) are equivalent. �

Remark 4.3.8 The trace form (4.31) is the most general form for the trace

functional. We proved in the previous Proposition that the trace form (4.31) is

equivalent to the form (4.20) if the expansion (4.29) of (1+µδ)−1 into nonnegative

order terms are considered. If on the contrary, we make use of the expansion

(4.30) of (1 +µδ)−1 into negative order terms, the trace formula (4.31) yields the

following trace form

Tr′A :=

∫
T

1

µ
A>0|δ=− 1

µ
∆x ≡ −

∫
T

∑
i>0

(−µ)−i−1ai ∆x. (4.32)

Observe that, this alternative trace form (4.32) is valid on regular-discrete time

scales, i.e. when µ 6= 0.

In order to show the correspondence between the trace form (4.32) and the trace

form of the algebra of shift operators explicitly, we make use of the relation

(3.74), which is valid µ 6= 0. Now, if we assume that δ−1 expands into negative

order terms of shift operator E and we expand the operator A by means of shift

operators E , as A =
∑

i a
′
iE i, then from the alternative trace form (4.32) we regain

the standard trace form of the algebra of shift operators

Tr′A :=

∫
T

1

µ
a′0 ∆x.
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The traces (4.20) and (4.32) are not equivalent in general, although they are

produced from the most general trace form (4.31). This lies in using different

expansions of (1 + µδ)−1. Nevertheless, they are closely related to each other on

regular-discrete time scales. To be more precise, consider the constraints (3.77)

for the Lax operators of the form (3.31). For an arbitrary constrained operator

A|δ=− 1
µ

= const, it is clear that,

A|δ=− 1
µ

= (A>0 + A<0)|δ=− 1
µ

= A>0|δ=− 1
µ

+ A<0|δ=− 1
µ

(4.33)

which implies that

A>0|δ=− 1
µ

= − A<0|δ=− 1
µ

+ const.

Thus, on regular-discrete time scales if we apply the traces (4.20) and (4.32) to

the constrained operator A|δ=− 1
µ

= const, then both traces yield the same results

up to a constant. Hence, the traces (4.20) and (4.32) are equivalent up to a

constant if the constraints are taken into consideration.

Note that, by similar observations for T = Kq, one recovers from (4.32) the trace

form of q-discrete numbers (we refer the appendix of [45]).

As a summary, we state the following Remark involving the relationships between

the trace forms introduced in this section.

Remark 4.3.9 The trace form (4.20) is valid on arbitrary regular time scales and

in particular for T = R, it produces the standard trace form of pseudo-differential

operators. Furthermore, if the appropriate constraints are taken into considera-

tion, (4.20) also recovers the trace forms for T = Z of lattice shift operators and

for T = Kq of q-discrete numbers.

Hence, we establish an appropriate trace form which is well-defined on an arbi-

trary regular time scale. More impressively, in this work, we fulfill the gap of

a trace form which unifies and generalizes the trace forms being studied in the

literature.
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4.4 Bi-Hamiltonian structures on regular time

scales

In order to define the Hamiltonian structures for the Lax hierarchy (3.28), we

need to derive the Poisson tensors. For this purpose, by the use of the relation

(A,RB)G = (R†A,B)G,

the adjoint of R-matrices (3.25), R†, is found as

R† = P †>k −
1

2
k = 0, 1 , (4.34)

where trace form (4.31) implies

P †>kA =
(
A(1 + µδ)−1

)
<−k (1 + µδ). (4.35)

Here the projections are of the form

B<−k =
∑
i<−k

δibi for B =
∑
i

δibi.

which are hardly different than the projections performed in (3.26).

The existence of the well-defined inner product (4.25) allows us to identify the

Lie algebra G of δ-pseudo-differential operators with its dual G∗.

Remark 4.4.1 The general theory of bi-Hamiltonian structures are presented

in section 4.1 due to the linear space U of smooth functions which corresponds,

in our case, to the space U of ∆-smooth functions on regular time scales. In

order to utilize a very essential tool, classical R-matrix formalism, which allows

to produce infinite hierarchy of mutually commuting symmetries together with

bi-Hamiltonian structures at once, we have to pass from the linear space U of

∆-smooth functions on regular time scales to a Lie algebraic setting. For this

purpose, let ι : U → G∗, be the embedding of the linear space U into the algebra

G ∼= G∗ of δ-pseudo-differential operators

ι : U → G∗ ∼= G u→ ι(u) = η

dι : V → G∗ ∼= G ut → dι(ut) = ηt,
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where dι is the differential of the embedding. Then every functional F : U → R
can be extended to a ∆-smooth function on G∗ ∼= G. Therefore, let F(G ∼= G∗)
be the space of smooth function on G∗ ∼= G of the form F ◦ ι−1 : G ∼= G∗ → R,

consisting of functionals (4.18). Then, the differentials dF (η) of F (η) ∈ F(G ∼=
G∗), at the point η ∈ G∗ ∼= G belong to G.

Hence, we formulate the bi-Hamiltonian system of integrable ∆-differential equa-

tions (3.28) as follows

Ltn = π0dHn = π1dHn−N , (4.36)

where H ∈ F(G ∼= G∗) are constructed in terms of (4.20)

Hn(L) =
N

n+N
Tr
(
L

n
N

+1
)

(4.37)

and the differentials dH belong to G ∼= G∗.

Note that, the functionals (4.37) are the related Hamiltonians (conserved quan-

tites) (integrals of motion) since the derivative of Hn with respect to time param-

eter t vanishes. They are such that dHn = L
n
N .

The linear Poisson tensor [13, 46] has the general form;

π0 : dH → [RdH,L] +R† [dH,L] .

Then, the R-matrix and its adjoint allows us to derive the linear Poisson tensor

as follows:

π0dH = [RdH,L] +R† [dH,L]

= [L, dH<k] +
(
[dH,L] (1 + µδ)−1

)
<−k (1 + µδ) k = 0, 1.

(4.38)

Since there appears additional conditions on R and R† (4.34) with the chaotic

projection (4.35), we do not construct the quadratic Poisson tensor by proceeding

the R-matrix scheme [13, 46, 14, 15]. Thus, rather than the standard procedure,

we utilize the recursion operators Φ, derived for the Lax hierarchies (3.28) such

that

ΦLtn = Ltn+N
. (4.39)
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Since, the linear Poisson tensor π0 is formulated as in (4.38), the quadratic Poisson

tensor π1 can be reconstructed by the frame of π0 and the recursion operator Φ,

i.e.

π1 = Φπ0. (4.40)

The recursion operator Φ is hereditary [47], [48] at least on the vector space

spanned by the symmetries from the related Lax hierarchy (3.28). In some par-

ticular degenerated cases, the recursion operator Φ may not be hereditary and

therefore equivalently π1 may not be compatible with π0 or in a worse case, π1

may not even a Poisson tensor. In general, showing the fact that an opera-

tor is hereditary, i.e it is an operator with vanishing Nijenhuis torsion [49] is so

troublesome that we omit this calculation. The following remark guarantees the

hereditariness property of Φ, which is closely related with the compatibility of

Poisson tensors.

Remark 4.4.2 We consider the quadratic Poisson tensor π1 for dense points

(µ = 0) and for regular-discrete points µ 6= 0, separately. When µ = 0, the

construction of π1 within the algebra of δ-pseudo-differential operators, using the

generalized Leibniz rule (3.10), proceeds parallel to the construction by the frame

of the algebra of pseudo-differential operators [11, 12]. On the other hand, when

µ 6= 0, the construction of π1 on regular-discrete time scales, using (3.13), is

completely parallel to the construction by means of the algebra of shift operators

[15]. In this case, note that dependence on µ, different than a scalar, should be

taken into consideration. Therefore, the construction of π1 in both cases assures

that it is a Poisson tensor and furthermore it is compatible with π0. Hence, the

recursion operator Φ = π1π
−1
0 , fulfilling (4.39) is hereditary.

When it comes to derive the differentials dH with respect to Lax operators (3.31),

we present them in an implicit form given in the following scheme. Let

dH =
n∑
i=1

δi−N−kγi, (4.41)

where N is the order of the Lax operator (3.31), n is the number of the rest of

the dynamical fields of (3.31) after taking the constraint (3.77) into consideration
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and clearly k is either 0 or 1. Our aim is to express γi’s in terms of dynamical

fields of (3.31) and their variational derivatives. For this purpose, we assume that

(dH,Lt)G =

∫
T

(
N+k−2∑
i=k

δH

δui
(ui)t +

∑
s

(
δH

δψs
(ψs)t +

δH

δφs
(ψs)t

))
∆x. (4.42)

where the dynamical fields u, ψ, ϕ belong to the Lax operator (3.31). Therefore,

substituting the form (4.41) into the ansatz (4.42), the terms γi ’ s can be written

in terms of the related dynamical fields.

We end up this section with some formulae used in the calculations of the linear

Poisson tensor.

P †>0(aδ−1b) = aδ−1b+ µab

P †>1(aδ−1b) = aδ−1b− δ−1ab

P †>1(δ−1aδ−1b) = δ−1aδ−1b+ δ−1µab.

4.5 Examples: ∆-differential AKNS and Kaup-

Broer

In this section, we fill the gap of the bi-Hamiltonian structures of the finite-field

examples ∆-differential AKNS and ∆-differential Kaup-Broer, presented in Chap-

ter 3. These ∆-differential illustrations are chosen in such a way that they are

the simplest ∆-differential examples and at the same time they are counterparts

of famous field and lattice soliton systems.

Example 4.5.1 ∆-differential AKNS, k = 0: For the Lax operator (3.82) with

the constraint (3.83), we have N = 1, n = 2. Thus, in this case, (4.41) implies

that the differential for ∆-differential AKNS is of the form

dH = γ1 + δγ2, (4.43)
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where

γ1 =
1

ϕ

δH

δψ
+

∆†(ϕ)

ψϕE−1(ϕ)
∆−1(A),

γ2 = − 1

ψE−1(ϕ)
∆−1(A),

and

A = ψ
δH

δψ
− ϕδH

δϕ

Here ∆−1 is a formal inverse of ∆ and adjoint ∆† is applied to only ϕ. Then,

the general form (4.38) implies the linear Poisson tensor

π0 =

(
0 1

−1 0

)
. (4.44)

The quadratic Poisson tensor based on the recursion operator (3.92) is

π1 = Φπ0 =

(
−µψ2 − 2ψ∆−1ψ ∆ + 2µψϕ+ 2ψ∆−1ϕ

−∆† + 2ϕ∆−1ψ −µϕ2 − 2ϕ∆−1ϕ

)
. (4.45)

The first three Hamiltonians are

H0 =

∫
T
ψϕ ∆x

H1 =

∫
T

(
1

2
µψ2ϕ2 + ϕ∆ψ

)
∆x

H2 =

∫
T

(
1

3
µ2ψ3ϕ3 + ψ2ϕ2 + ϕ∆2ψ + µψϕ2∆ψ + µψ2ϕ∆†ϕ

)
∆x

In order to check the bi-Hamiltonian property (4.36) for this example, let us

rewrite the first two flows (3.84), (3.87) in terms of ∆ and ∆† only. Thus, we

have

ψt1 = µψ2ϕ+ ∆ψ,

ϕt1 = −µϕ2ψ −∆†ϕ.
(4.46)

and

ψt2 = µ2ψ3ϕ2 + 2ψ2ϕ+ ∆2ψ + ∆
(
µψ2ϕ

)
+ 2µψϕ∆ψ + µψ2∆†ϕ

ϕt2 = −µ2ψ2ϕ3 − 2ψϕ2 −∆†
2
ϕ−∆†

(
µψϕ2

)
− µϕ2∆ψ − 2µψϕ∆†ϕ.

(4.47)
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In particular, when T = R the above bi-Hamiltonian hierarchy becomes exactly the

bi-Hamiltonian field soliton AKNS hierarchy [12]. For T = Z, the system (4.46),

together with its bi-Hamiltonian structure, is equivalent to the system considered

in [15].

Example 4.5.2 ∆-differential Kaup-Broer, k = 1: For the Lax operator (3.124)

with the constraint (3.125), it is clear that N = 1 and n = 2. Then, from the

implicit form (4.41), the differentials yields as

dH = δ−1γ1 + γ2,

where

γ1 =
δH

δv
, γ2 =

δH

δw
+ µ

δH

δv
. (4.48)

Thus, the general form (4.38) implies the linear Poisson tensor

π0 =

(
u∆µ− µ∆†u u∆

−∆†u 0

)
.

The recursion operator has the form

Φ =

(
w + u∆ +R µv − µw + (2 + µ∆†)u−Rµ

w −∆†uw∆−1u−1 ∆†u+ v − µw∆†uw∆−1µu−1

)
,

where

R = u∆v∆−1u−1 − µ∆†uw∆−1u−1.

Hence

π1 = Φπ0 =

(
πvv u∆v + u∆u∆ + µuw∆− µ∆†uw

−v∆†u−∆†u∆†u+ uw∆µ−∆†µuw uw∆−∆†uw

)
,

where

πvv = u∆µv−µv∆†u+u∆u−u∆†u+u∆u∆µ−µ∆†u∆†u+µuw∆µ−µ∆†µuw.

The first three Hamiltonians are calculated as

H0 =

∫
T
w ∆x

H1 =

∫
T

(
vw − 1

2
µw2

)
∆x

H2 =

∫
T

(
w2 + v2w + (w + µvw − µ2w2)∆v − 2

3
µ2w3

)
∆x
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Similarly, let us rewrite the first two flows (3.127), (3.129) in terms of ∆ and ∆†,

as follows

vt1 = (1 + µv − µ2w)∆v − µ∆†(w + µvw − µ2w2),

wt1 = −∆†
(
w + µvw − µ2w2

)
,

(4.49)

and

vt2 = u∆
(
v2 + 2uw + u∆v + µ∆†(uw)

)
− µ∆†

(
2uvw + µuw∆v + u∆†(uw)

)
,

wt2 = −∆†
(
2uvw + µuw∆v + u∆†(uw)

)
.

(4.50)

When T = R the above construction recovers the field Kaup-Broer hierarchy with

its bi-Hamiltonian structure [11]. In T = Z case, the above bi-Hamiltonian hier-

archy is equivalent to the relativistic Toda hierarchy considered in [15] and, (4.49)

is equivalent to the relativistic Toda system.



Chapter 5

Integrable discrete systems on R

5.1 One-parameter regular grain structures on

R

The main goal of this chapter is the formulation of a general unifying framework

of integrable discrete systems on R, that contains lattice soliton systems as well as

q-discrete systems as particular cases, in such a way that the domain of dynamical

fields u is always R. The theory presented in this chapter is based on the article

[25]. We first introduce the concept of a regular grain structure on R which

is described by discrete one-parameter groups of diffeomorphisms σm}(x). We

construct the shift operators by means of forward jump operator, i.e. σ(x) =

σ}(x).

Reconsider the forward (2.1) and backward jump operators (2.2) such that they

are the maps of the form σ : R → R and ρ : R → R, (i.e. here T = R). We

introduce the range of all possible points to which we map x by forward and

backward operators (including x), as

Gx := {ρn(x) : n ∈ Z+} ∪ {x} ∪ {σn(x) : n ∈ Z+} . (5.1)

Thus, for each point x of R, we associate a set Gx.

70
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Definition 5.1.1 The union of all Gx, given by

G :=
⋃
x∈R

Gx.

is called the grain structure on R.

Similar to the definition 2.1.7 of regularity, we define the regular grain structures.

Definition 5.1.2 If there exist inverse maps σ−1 and ρ−1, such that σ(x) =

ρ−1(x) and ρ(x) = σ−1(x) for all x ∈ R, then G is called as the regular grain

structure.

If we assume that σ0 ≡ idR, then the set (5.1) turns out to be Gx =

{σn(x) : n ∈ Z}. Note that, bijective σ defines a discrete one-parameter group of

bijections on R:

Z 3 m 7→ {σm : R→ R} ,

such that σm := σm, and on the other direction one-parameter group of bijections

on R defines the regular grain structure on R with the forward jump operator de-

fined by σ := σ1. Therefore, it is clear that the regular grain structure introduces

equivalence classes between points of R, such that

x ∼ y; if Gx = Gy x, y ∈ R,

in other words, there exists k ∈ Z such that y = σk(x).

As we are interested in infinite-dimensional systems of smooth dynamical fields,

it is better to introduce a regular grain structure G on R by one-parameter group

of diffeomorphisms instead of bijections. Let Z 3 m 7→ σm} be a discrete one-

parameter group of diffeomorphisms on R: σm} : R→ R, i.e

σ0(x) = x and σm} (σn}(x)) = σ(m+n)}(x) m,n ∈ Z,

where } > 0 is some deformation parameter. It follows that (σn})−1(x) = σ−n}(x).

Consider the continuous one-parameter group of diffeomorphisms

t 7→ σt
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with the deformation parameter t ∈ R. By Taylor expansion of σt around t = 0,

σt(x) = σ0(x) + t.
dσt(x)

dt

∣∣∣∣
t=0

+O(t2) = x+ t.
dσt(x)

dt

∣∣∣∣
t=0

+O(t2), (5.2)

it is clear that one-parameter group of diffeomorphism is generated by a vector

field which is called as the infinitesimal generator, denoted by X (x)∂x;

σt(x) = x+ t.X (x) +O(t2). (5.3)

We assume that the component X (x) is smooth on R except at most finite number

of points. Thus, there is a one-to-one correspondence between one-parameter

group of diffeomorphisms and their infinitesimal generators,

X (x) =
dσt(x)

dt

∣∣∣∣
t=0

⇔ dσt(x)

dt
= X (σt(x)) . (5.4)

Arbitrary X∂x generates a continuous one-parameter group of diffeomorphisms

only when it is a complete vector field, for which maximal integrals are defined

on the whole R, i.e. R is a domain of the mapping t 7→ σt. In such a case, the

above discrete one-parameter group is well-defined since it is enough to consider

subgroup Z of R. Incomplete X∂x might still well define a discrete group of

diffeomorphisms, if } is properly chosen.

Lemma 5.1.3 Let σt(x) be a one-parameter group of diffeomorphisms generated

by X (x)∂x. Then, the following relation is valid

X (x)
dσt(x)

dx
= X (σt(x)) . (5.5)

Proof. From (5.4) one observes that

X (σs+t(x)) = X (σs(σt(x))) =
dσs+t(x)

ds
. (5.6)

Acting σs on the left-hand-side of (5.5), we have the following relation

X (σs(x))
dσs+t(x)

dσs(x)
=
dσs(x)

ds
.
dσs+t(x)

dσs(x)
=
dσs+t(x)

ds
= X (σs+t(x)) ,

which implies the desired relation (5.5). �
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The computation of one-parameter group generated by a vector field is often

referred to as an exponentiation of the infinitesimal generator. Therefore, an

element of one-parameter group of diffeomorphisms, σ}(x) is computed as

σ}(x) = e}X (x)∂xx, (5.7)

equivalently we have

e}X (x)∂xu(x) = u
(
e}X (x)∂xx

)
. (5.8)

Similar to (2.17), we use the following notation for the shift operator E

Emu(x) := (Emu)(x) = u (σm}(x)) , m ∈ Z, (5.9)

where u(x) is a dynamical field. Note that, the shift operator E is compatible

with the grain structure defined by σ}(x). The formulae (5.7) and (5.8) are valid

on the whole real line if X (x)∂x is complete or where a discrete one-parameter

group of diffeomorphisms is well defined. Thus, the shift operator E can be

identified with e}X (x)∂x , i.e.

Em ≡ em}X (x)∂x . (5.10)

Example 5.1.4 Consider vector fields of the form

X (x)∂x = x1−n∂x, n ∈ Z.

(i) For n = 0, let y = lnx, then ∂y = x∂x, which implies that

σt(x) = etx∂x = et∂yx = et∂yey = ey+t = et.x

and

σm}(x) = em}x = qmx q ≡ e},

which is defined for all t ∈ R and so X∂x = x∂x is a complete vector field.

Therefore, when n = 0, we deal with systems of ’q-discrete’ type.

(ii) For n 6= 0, let y = 1
n
xn. Then, ∂y = x1−n∂x and σt(x) has the general implicit

form

σt(x) = etx
1−n∂xx = et∂yx = et∂y(ny)

1
n = (n(y + t))

1
n = (xn + nt)

1
n ,
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which implies that

(σt(x))n = xn + nt.

As a subcase when n = 1, we have

σt(x) = x+ t ⇒ σm}(x) = x+m},

and X∂x = ∂x is obviously complete. In this case we deal with systems of ’lattice’

type. However, when n = −1, the related vector field X∂x = x2∂x is incomplete

as t 6= 1
x
:

σt(x) =
x

1− tx
⇒ σm}(x) =

x

1−m}x
.

On the other hand, if x 6= 1
m} , the related discrete one-parameter group of diffeo-

morphisms is well-defined. When n is odd, it is always possible to define discrete

one-parameter group of diffeomorphisms generated by X∂x = x1−n∂x.

Remark 5.1.5 All integrable discrete systems defined by different vector fields

X (x)∂x are not equivalent. However, it is possible to find a local transformation

relating respective vector fields. If we reconsider X (x) = x1−n for odd n 6= 0 and

another component X ′(x′) = 1 (the lattice case), we deduce that x′ = 1
n
xn is a

bijection on R \ {0}. Hence, all discrete systems generated by X∂x = x1−n∂x,

with odd n, can be reduced to the original lattice Toda type systems, excluding

the point x = 0. However, for n = 0, X (x) = x (the q-discrete case) and let

X ′(x′) = 1. Then, we have x = ex
′

which is not a bijection. However, if the

domain of dynamical fields of q-discrete systems is restricted to x ∈ R+, then the

above map is a bijection and q-discrete systems on R+ are equivalent to the lattice

systems on R.

5.2 Difference-differential-Systems

In order to introduce a phase space related to discrete systems, consider an

infinite-tuple of dynamical fields

u := (u0(x), u1(x), u2(x), ...)T
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where each ui : R→ K assumes values on the field K = R or C. Let U be a linear

topological space, with local independent coordinates u (σm}(x)) for all m ∈ Z,

which defines infinite-dimensional phase space. Let C be the algebra over K of

functions on U of the form

f [u] :=
∑
m>0

∑
i1,...,im>0

∑
s1,...,sm∈Z

ai1i2...ims1s2...sm
(Es1ui1)(E

s2ui2) · · · (Esmuim) (5.11)

where f [u] are polynomials in u (σm}(x)) of finite order, with coefficients

ai1i2...ims1s2...sm
∈ K and the shift operator E is defined in (5.9). The algebra C can be

extended into operator algebra C [E,E−1] (C[x, y, ...] stands for the linear space

of polynomials in x, y, ... with coefficients from C). A space F = {F : U → K} of

functions on U is defined through linear functionals∫
(·) d}x : C → K f [u] 7→ F (u) :=

∫
f [u] d}x, (5.12)

such that the following property is fulfilled∫
Ef [u] d}x =

∫
f [u] d}x. (5.13)

Here
∫
d}x is a formal integration symbol.

Definition 5.2.1 The explicit form of appropriate functionals can be introduced

in two ways.

(i) A discrete representation is defined as

F (u) =

∫
f [u] d}x := }

∑
n∈Z

f [u (σn}(x))] . (5.14)

(ii) A continuous representation is given as

F (u) =

∫
f [u] d}x :=

∫ ∞
−∞

f [u(x)]
dx

X (x)
, (5.15)

where we assume that ui(x) vanishes as |x| → ∞ (if X (x)→ 0 for |x| → ∞,

then ui(x) must vanish faster then X (x) does). The above integral is in

general improper, so additionally we assume that ui(x) behave properly as

x tends to critical points xc of X (x) (X (xc) = 0). Then, evaluating the

integral we take its principal value.
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We have explicitly defined the functionals in two ways reflecting two different

approaches developed for the lattice soliton systems. The first one is with the

domain of dynamical fields Z [16, 15], the second one with R [50, 51]. So, the func-

tionals (5.14) and (5.15) are appropriate generalizations of these two approaches.

Proposition 5.2.2 Both functionals (5.14) and (5.15) are well defined and sat-

isfy the property (5.13).

Proof. Clearly both functionals are linear. The discrete case trivially satisfy

the property (5.13) by changing freely the boundaries of the sum over the whole

Z. For the continuous case, we have∫
Ef [u] d}x =

∫ ∞
−∞

f [u (σ}(x))]
dx

X (x)
=

∫ ∞
−∞

f [u(x)]
dσ−}(x)

X (σ−}(x))

=

∫ ∞
−∞

f [u(x)]
dσ−}(x)

dx

dx

X (σ−}(x))

=

∫ ∞
−∞

f [u(x)]
X (σ−}(x))

X (x)

dx

X (σ−}(x))

=

∫ ∞
−∞

f [u(x)]
dx

X (x)
=

∫
f [u] d}x,

where the third equality is obtained by the change of variables x 7→ σ}(x), while

the fifth one follows from Lemma 5.1.3, as

X (x)
dσ−}(x)

dx
= X (σ−}(x)) . (5.16)

�

Definition 5.2.3 A system of equations of the form

ut = K(u), (5.17)

is called a difference-differential system if the difference calculus is performed

with respect to the grain structure defined by σ} while the first order differential

calculus is with respect to the evolution parameter t, where ut := ∂u
∂t

and

K(u) :=
1

}
(K1[u], K2[u], ...)T

with Ki[u] ∈ C.
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Remark 5.2.4 The particular choice of the algebra C, and consequently the alge-

bra C[E,E−1], determines the class of discrete systems. The class of the discrete

systems is chosen in such a way that in the continuous limit }→ 0, we obtain dif-

ferential systems of first order (dispersionless systems)(systems of hydrodynamic

type). This assumption explains the appearance of the factor } in K.

The following definition introduces the form of the duality maps.

Definition 5.2.5 Let V be a linear space over K, of all such vector fields on U .

The dual space V∗ is a space of all linear maps η : V → K. The action of η ∈ V∗

on K ∈ V is defined through a duality map (bilinear functional) 〈·, ·〉 : V∗×V → K
given by functional (5.12) as

〈η,K〉 =

∫ ∞∑
i=0

ηiKi d}x =

∫
ηT ·K d}x, (5.18)

where the components of η := (η1, η2, ...)
T belong to C.

The duality map (5.18) implies the adjoint of Em as (Em)† = E−m.

Proposition 5.2.6 The differential

dF (u) =

(
δF

δu0

,
δF

δu1

, ...

)T

∈ V∗

of a functional F (u) =
∫
f [u] d}x, such that its pairing with K ∈ V assumes the

usual Euclidean form

F ′[K] = 〈dF,K〉 =

∫ ∞∑
i=0

δF

δui
(ui)t d}x, (5.19)

where F ′[K] is the directional derivative, is defined by variational derivatives of

the form
δF

δui
:=
∑
m∈Z

E−m
∂f [u]

∂ui (σm}(x))
.
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Proof. Let ut = K(u), then

F ′(u)[ut] ≡
dF (u)

dt
=

∫ ∞∑
i=0

∑
m∈Z

∂f [u]

∂ui (σm}(x))

dui (σm}(x))

dt
d}x =

∫ ∞∑
i=0

δF

δui
(ui)t d}x,

where the last equality follows from (5.13). �

Having introduced the form of the differentials, it is time to present the related

Poisson tensors in order to deal with bi-Hamiltonian structures. Consider bi-

vector fields on U defined through linear operators π : V∗ → V , which are matrices

with coefficients from C[E,E−1] multiplied by 1
} in a local representation.

Remark 5.2.7 Alternative approach for the construction of discrete systems on

R with the grain structure G, is based on the ∆-derivative (2.6), instead of the

shift operator. In this case, the restriction (5.13) on the functional is replaced by∫ ′
∆f [u] d}x = 0. (5.20)

We denote
∫ ′

in (5.20) to differ the functional satisfying property (5.20) from the

functional satisfying property (5.13). Nevertheless, both functionals are interre-

lated by the relation ∫ ′
(·) d}x =

∫
(·)µ}(x) d}x,

which is a consequence of the restrictions imposed on them.

5.3 R-matrix approach to integrable discrete

systems on R

The construction of integrable discrete systems following from the scheme of

classical R-matrix formalism presented in chapter 3, is parallel to the procedure

used in the case of lattice soliton systems [16, 13, 50].

Let G be the grain structure defined by some diffeomorphism σ}. We denote the

shift operator by E , rather than E for convenience in operational relations. Thus,
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by the use of (5.9), we have the following notation

Emu(x) := (Emu)(x)Em ≡ u(σm}(x))Em σm} := σm} , m ∈ Z, (5.21)

We introduce the algebra of shift operators of finite highest order as follows

G = G>k−1 ⊕ G<k−1 =

{
N∑

i>k−1

ui(x)E i
}
⊕

{∑
i<k−1

ui(x)E i
}

(5.22)

equipped with the Lie bracket

[A,B] =
1

}
(AB −BA) , A,B ∈ G. (5.23)

Here ui(x) are smooth dynamical fields additionally depending on the evolution

parameters tn.

Proposition 5.3.1 The multiplication operation on G defined by (5.21) is non-

commutative and associative.

Proof. Non-commutativity is obvious. Associativity follows from straightfor-

ward calculation and from the fact that σm} is a one-parameter group of diffeo-

morphisms. �

The subspaces G>k−1 and G<k−1 of G are closed Lie subalgebras of G only if k = 1

and k = 2. As a result, we define the classical R-matrices as

R =
1

2
(P>k−1 − P<k−1) = P>k−1 −

1

2
, (5.24)

where P>k−1 and P<k−1 are the projections onto the Lie subalgebras G>k−1 and

G<k−1, respectively such that

P>k−1(A) =
∑
i>k−1

aiE i, P<k(A) =
∑
i<k−1

aiE i for A =
∑
i

aiE i ∈ G.

(5.25)

The Lax hierarchy (3.23), based on the classical R-matrix (5.24) is generated by

the integer powers (in general rational powers) of the Lax operator L from the

algebra of shift operators

Ltn =
[
(Ln)>k−1 , L

]
= π0dHn = π1dHn−1 n ∈ Z+ k = 1, 2. (5.26)
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And indeed it is an infinite hierarchy of mutually commuting symmetries. The

appropriate Lax operators producing consistent Lax hierarchies are given in the

form:

k = 1 : L = E +
∑
i>0

uiE−i (5.27)

k = 2 : L =
∑
i>0

uiE1−i. (5.28)

Note that, we do not consider finite-field reductions of (5.27), (5.28) since the

procedure immediately follows from [16, 50]. We calculate the first chains

(ui)t1 =
1

}
[
(E − 1)ui+1 + ui(1− E−i)u0

]
(5.29)

(ui)t2 =
1

}
[
(E2 − 1)ui+2 + Eui+1(E + 1)u0 − ui+1(E−i + E−i−1)u0

+ui(1− E−i)u2
0 + ui(E + 1)(1− E−i)u1

]
...

for k = 1, and

(ui)t1 =
1

}
[
u0Eui+1 − ui+1E

−iu0

]
(5.30)

(ui)t2 =
1

}
[u0Eu0E

2ui+2 − ui+2E
−i−1u0E

−iu0

+ u0(E + 1)u1Eui+1 − ui+1E
−iu0(E1−i + E−i)u1 (5.31)

...

for k = 2. Throughout this chapter, the shift operators Em in the evolution

equations and conserved quantities act only on the nearest field on the right and

in Poisson operators act on everything on the right of the symbol Em.

Example 5.3.2 The lattice case: X = 1. Let } = 1. The first flows (5.29) and

(5.30) yields the Toda and modified Toda chains, respectively,

k = 1 : ui(x)t1 = ui+1(x+ 1)− ui+1(x) + ui(x) (u0(x)− u0(x− i)) ,

k = 2 : ui(x)t1 = u0(x)ui+1(x+ 1)− u0(x− i)ui+1(x).
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Example 5.3.3 The q-discrete case: X = x (q ≡ e}). In this case, we obtain

q-deformed analogues of the same flows (5.29) and (5.30)

k = 1 : ui(x)t1 = ui+1(qx)− ui+1(x) + ui(x)
(
u0(x)− u0(q−ix)

)
k = 2 : ui(x)t1 = u0(x)ui+1(qx)− u0(q−ix)ui+1(x),

where the constant factor } is absorbed into the evolution parameter t1 through

simple rescaling.

To construct bi-Hamiltonian structures for the Lax hierarchy (5.26), we have

to define an appropriate inner product on G. Since the simplest way to define

an inner product is identifying it by a trace functional, we state the following

definition.

Definition 5.3.4 Let Tr : G → K be a trace form, being a linear map, such that

Tr(A) :=

∫
res(AE−1) d}x,

where res(AE−1) := a0 for A =
∑

i aiE i. Then, the bilinear map (·, ·) : G×G → K
defined as

(A,B) := Tr (AB) , (5.32)

is an inner product on G.

Proposition 5.3.5 The inner product (5.32) is nondegenerate, symmetric and

ad-invariant.

Proof. The nondegeneracy of (5.32) is obvious by the definition. The sym-

metricity follows from (5.13). Finally, the ad-invariance is a consequence of the

symmetricity of the inner product and the associativity of the multiplication op-

eration defined in G. �



CHAPTER 5. INTEGRABLE DISCRETE SYSTEMS ON R 82

We present the explicit form of the differentials dH of functionals H(L) ∈ F(G)

with respect to the Lax operators (5.27), (5.28) by assuming that the inner prod-

uct on G is compatible with (5.19), i.e.

(dH,Lt) =

∫ ∞∑
i=0

δH

δui
(ui)t d}x.

Thus, the differentials have the following forms

k = 1 : dH =
∑
i>0

E i δH
δui

,

k = 2 : dH =
∑
i>0

E i−1 δH

δui
,

We present the linear Poisson tensor for both cases k = 1, 2

π0 : dH 7→ [L, (dH)<k−1] + ([dH,L])<2−k

and the quadratic Poisson tensors as follows

k = 1 : π1 : dH 7→ 1

2

([
L, (LdH + dHL)<0

]
+ L ([dH,L])<1 + ([dH,L])<1 L

)
+ }

[
(E + 1)(E − 1)−1res

(
[dH,L] E−1

)
, L
]

k = 2 : π1 : dH 7→ 1

2

([
L, (LdH + dHL)<1

]
+ L ([dH,L])<0 + ([dH,L])<0 L

)
.

Here the operation (E − 1)−1 is the formal inverse of (E − 1) and note that

(E + 1)(E − 1)−1 =
∞∑
i=1

(E−i − Ei).

The appropriate Hamiltonians are

Hn(L) =
1

n+ 1
Tr
(
Ln+1

)
,

such that

dHn(L) = Ln

and the explicit bi-Hamiltonian structure of the Lax hierarchies (5.26) is given

by

(ui)tn =
∑
j>0

πij0
δHn

δuj
=
∑
j>0

πij1
δHn−1

δuj
i > 0.
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The Poisson tensors for k = 1 are

πij0 =
1

}
[
Ejui+j − ui+jE−i

]
πij1 =

1

}

[ i∑
k=0

(
ukE

j−kui+j−k − ui+j−kEk−iuk + ui
(
Ej−k − E−k

)
uj
)

+ ui
(
1− Ej−i)uj + Ej+1ui+j+1 − ui+j+1E

−i−1
]

together with the first three Hamiltonians

H0 =

∫
u0 d}x

H1 =

∫ (
u1 +

1

2
u2

0

)
d}x

H2 =

∫ (
u2 + u0(E + 1)u1 +

1

3
u3

0

)
d}x

... .

For k = 2, the linear Poisson tensor is the form

π10
0 =

1

}
(1− E−1)u0, π01

0 =
1

}
u0(E − 1),

πij0 =
1

}
[
Ej−1ui+j−1 − ui+j−1E

1−i] , i, j > 2,

with all remaining πij0 equal to zero. The quadratic Poisson tensor is

πij1 =
1

}

[ i−1∑
k=0

(
ukE

j−kui+j−k − ui+j−kEk−iuk
)

+
1

2
ui(E

1−i − 1)(Ej−1 + 1)uj

]
and the first Hamiltonians are

H0 =

∫
u1 d}x

H1 =

∫ (
1

2
u2

1 + u0Eu2

)
d}x

H2 =

∫ (
1

3
u3

1 + u0Eu0E
2u3 + u0u1Eu2 + u0Eu1Eu2

)
d}x

... .
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5.4 The continuous limit

The aim of this section is to consider the limit of discrete systems (5.17) as }→ 0.

We explain the continuous limit first emphasized in Remark 5.2.4 and determine

the class of discrete systems by the choice of the algebra C. Now, assume that

the dynamical fields from C depend on } in such a way that the expansion, with

respect to } near zero, is of the form

ui(x) = u
(0)
i (x) + u

(1)
i (x)} +O

(
}2
)
,

i.e. ui tends to u
(0)
i as } → 0. In further considerations we use ui instead of

u
(0)
i . In the continuous limit, the algebra C of functions (5.11) turns out to be

the algebra of polynomial functions in ui(x), denoted by C0,

C0 3 f(u) :=
∑
m>0

∑
i1,...,im>0

ai1i2...im ui1(x)ui2(x) · · ·uim(x).

In general, the limit of discrete systems (5.17) does not have to exist. For the

limit procedure, we should first expand the coefficients of K(u) into a Taylor

series with respect to } near 0, i.e.

Emu = em}X∂xu = u+m}Xux +
m2

2
}2
(
XXxux + X 2u2x

)
+O

(
}3
)
.

Thus, the continuous limit of (5.17) exists only if zero order terms in } will

mutually cancel in the above expansion . In this case, as } → 0, the discrete

systems (5.17) tend to the systems of hydrodynamic type given in the following

form

ut = X A(u)ux, (5.33)

where A(u) is the matrix with coefficients from C0, and the continuous limit is

indeed the dispersionless limit.

Proposition 5.4.1 Assume that the fields ui(x) vanish as |x| → ∞, in the con-

tinuous limit. Then the functionals from Definition 5.2.1 turn out to be∫
(·) d0x : C0 → K f [u] 7→ F (u) =

∫
f(u) d0x =

∫ ∞
−∞

f(u(x))
dx

X (x)
. (5.34)



CHAPTER 5. INTEGRABLE DISCRETE SYSTEMS ON R 85

Proof. For the continuous case (5.15) the proof is straightforward. In the case

of discrete functionals (5.14), by the concept of Riemann integral construction,

we have∫
f [u] d0x ≡ lim

}→0

∫
f [u] d}x = lim

}→0

∑
n∈Z

} f [u (σn}(x))]

= lim
}→0

∑
n∈Z

f [u (σn}(x))]
}

µ}(x)
.µ}(x)

= lim
}→0

∑
n∈Z

f [u (σn}(x))]

(
µ}(x)

}

)−1

µ}(x) =

∫ ∞
−∞

f(u(x))
dx

X (x)
.

�

Thus, π are matrices with coefficients of the operator form aX∂xb, where a, b ∈ C0.

With respect to the duality map defined by the ’dispersionless’ functional (5.34),

the adjoint of the operator ∂x is given as

(∂x)
† =
Xx
X
− ∂x. (5.35)

Consequently, the variational derivatives of functionals F =
∫
fd0x =

∫∞
−∞ f

dx
X

are given by the derivatives of densities f with respect to the fields ui, i.e.

δF

δui
=
∂f

∂ui
.

Example 5.4.2 The dispersionless limit of the system (5.29) together with its

Hamiltonian structure with respect to the first Poisson tensor is given by

(ui)t1 = X [(ui+1)x + iui(u0)x] = πij0
δH1

δuj
, (5.36)

where

πij0 = jX∂xui+j + iui+jX∂x and H1 =

∫ (
u1 +

1

2
u2

0

)
d0x.

The Hamiltonian representation of the systems (5.33) with the functional (5.34)

follows directly from the continuous limit and leads to the nonstandard form with

the adjoint operator of the differential operator given by (5.35). A more natural
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representation is the one with the components X (x) included in the densities of

functionals given in the standard form

F (u) =

∫ ∞
−∞
X (x)−1f(u(x)) dx ≡

∫ ∞
−∞

ϕ(u(x)) dx,

for which the variational derivatives preserve the form δF
δui

= ∂ϕ
∂ui

. As a con-

sequence, π from the previous representation must be multiplied on the right-

hand side by X . Now, the adjoint of the operator ∂x takes the standard form

(∂x)
† = −∂x. Therefore, we use only the natural Hamiltonian representation of

dispersionless systems (5.33).

Example 5.4.3 The natural Hamiltonian structure of (5.36) is given by

πij0 = jX∂xXui+j + iui+jX∂xX and H1 =

∫ ∞
−∞
X−1

(
u1 +

1

2
u2

0

)
dx.



Chapter 6

Integrable dispersionless systems

on R

6.1 R-matrix approach to integrable dispersion-

less systems on R

The theory of classical R-matrices on commutative algebras, with the multi-

Hamiltonian formalism, was given in [20]. In this section we consider the R-

matrix formalism of the dispersionless systems (5.33), which were developed in

[21, 52, 25].

Before passing through the details, let us introduce what we mean by a disper-

sionless system. First order partial differential equations of the form

(ui)t =
∑
j

Aji (u)(uj)x, i, j = 1, 2, ..., n (6.1)

where Aji is a square matrix with coefficients in u, are called hydrodynamic type or

dispersionless systems in (1 + 1) dimension. Now, let G be the algebra of Laurent

series in the auxiliary variable p

G =

{
∞∑

i=−∞

ui(x)pi

}
, (6.2)

87
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where ui’s are smooth functions, equipped with a Poisson bracket

{f, g}k := pk
(
∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂p

)
, f, g ∈ G, k ∈ Z. (6.3)

Recall that, for k = 0 the Lie bracket is called the standard Poisson bracket. The

Lax equation on the algebra G is given by,

Lt = {A,L}k (6.4)

with appropriate functions L,A ∈ G. Such non-standard Lax representations

are called dispersionless Lax equations. Throughout this section, we deal with

the algebra A of polynomials in p of finite highest order, equipped with the Lie

bracket induced by the Poisson bracket of the form

{f, g} := pX (x)

(
∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂p

)
, f, g ∈ A, (6.5)

with such a decomposition:

A = A>k−1 ⊕A<k−1 =

{
N∑

i>k−1

ui(x)pi

}
⊕

{∑
i<k−1

ui(x)pi

}
. (6.6)

The subspaces A>k−1 and A<k−1 are closed Lie subalgebras of A only if k = 1

and k = 2. We define the classical R-matrices as R = P>k−1 − 1
2

. Thus, the

Lax hierarchy (3.23), based on this classical R-matrix, is generated by the integer

powers of the Lax operator L from the algebra of polynomials

Ltn =
{

(Ln)>k−1 , L
}

= π0dHn = π1dHn−1, n ∈ Z+, k = 1, 2. (6.7)

The appropriate Lax operators producing consistent Lax hierarchies (6.7) are

given below

k = 1 : L = p+
∑
i>0

uip
−i (6.8)

k = 2 : L =
∑
i>0

uip
1−i. (6.9)

The first dispersionless chains for k = 1, take the following form

(ui)t1 = X [(ui+1)x + iui(u0)x] (6.10)

(ui)t2 = 2X [(ui+2)x + u0(ui+1)x + (i+ 1)ui+1(u0)x + iuiu0(u0)x + iui(u1)x]

... ,
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while for k = 2, we derive

(ui)t1 = X [u0(ui+1)x + iui+1(u0)x] (6.11)

(ui)t2 = 2X
[
u2

0(ui+2)x + (i+ 1)u0ui+2(u0)x + u0u1(ui+1)x + iui+1(u0u1)x
]

... .

Example 6.1.1 For X = 1 the chains (6.10) and (6.11) are dispersionless Toda

and modified Toda chains, respectively, while for X = x the chains (6.10) and

(6.11) are dispersionless limits of the q-analogues of Toda and modified Toda.

In order to discuss bi-Hamiltonian structures for the algebra of polynomials, we

should define the appropriate trace form on this algebra.

Definition 6.1.2 Let Tr : A → K be a trace form, being a linear map, such that

Tr(A) :=

∫ ∞
−∞
X−1res(Ap−1) dx,

where res(A) := a−1 for A =
∑

i aip
i. Then, the bilinear map (·, ·) : A×A → K

defined as

(A,B) := Tr (AB) , (6.12)

is an inner product on A.

Proposition 6.1.3 The inner product (6.12) is nondegenerate, symmetric and

ad-invariant with respect to the Poisson bracket (6.5), i.e.

({A,B} , C) = (A, {B,C}) A,B,C ∈ A.

Proof. The nondegeneracy and symmetricity is obvious. The ad-invariance is a

consequence of the following equality: Tr {A,B} = 0, which is valid for arbitrary

A,B ∈ A. �
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We give the explicit form of the differentials dH(L) of functionals H(L) ∈ F(A)

related to the Lax operators (6.8-6.9) as follows:

k = 1 : dH = X
∑
i>0

δH

δui
pi

k = 2 : dH = X
∑
i>0

δH

δui
pi−1.

The bi-Hamiltonian structure of the Lax hierarchies (6.7) is defined through the

compatible (for fixed k) Poisson tensors:

k = 1, 2 : π0 : dH 7→ {L, (dH)<k−1}+ ({dH,L})<2−k

and

k = 1 : π1 : dH 7→
{
L, (dHL)<0

}
+ L ({dH,L})<1 +

{
∂−1
x res(X−1p−1 {dH,L}), L

}
k = 2 : π1 : dH 7→

{
L, (dHL)<1

}
+ L ({dH,L})<0 .

Then, for Hamiltonians

Hn(L) =
1

n+ 1
Tr
(
Ln+1

)
dHn(L) = Ln,

the explicit bi-Hamiltonian structure of (6.7) is given by

(ui)tn =
∑
j>0

πij0
δHn

δuj
=
∑
j>0

πij1
δHn−1

δuj
i > 0.

The Poisson tensors for k = 1 are given by

πij0 = X [j∂xui+j + iui+j∂x]X

πij1 = X
[ i∑
k=0

((j − k)uk∂xui+j−k + (i− k)ui+j−k∂xuk) + i(j + 1)ui∂xuj

+ (j + 1)∂xui+j+1 + (i+ 1)ui+j+1∂x

]
X

where the related Hamiltonians are

H0 =

∫ ∞
−∞
X−1u0 dx

H1 =

∫ ∞
−∞
X−1

(
u1 +

1

2
u2

0

)
dx

H2 =

∫ ∞
−∞
X−1

(
u2 + 2u0u1 +

1

3
u3

0

)
dx

... .
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For k = 2, the linear Poisson tensor yields as

π10
0 = X∂xXu0 π01

0 = u0X∂xX

πij0 = X [(j − 1)∂xui+j−1 + (i− 1)ui+j−1∂x]X i, j > 2,

where all remaining πij0 are equal to zero, while the quadratic Poisson tensor is

as follows

πij1 = X
[ i−1∑
k=0

((j − k)uk∂xui+j−k + (i− k)ui+j−k∂xuk) + (1− i)ui∂xuj
]
X .

Finally the related Hamiltonians are

H0 =

∫ ∞
−∞
X−1u1 dx

H1 =

∫ ∞
−∞
X−1

(
1

2
u2

1 + u0u2

)
dx

H2 =

∫ ∞
−∞
X−1

(
1

3
u3

1 + u2
0u3 + 2u0u1u2

)
dx

... .

Remark 6.1.4 Here we emphasize that the R-matrix formalism of the disper-

sionless systems together with their bi-Hamiltonian structures are the continuous

limit of the formalisms of the integrable discrete systems presented in Section 5.3.

6.2 Deformation quantization procedure

The aim of this section is to formulate the inverse procedure of the continuous

limit (dispersionless limit) presented in Section 5.2. This inverse procedure is

based on the quantization deformation formalism which is a unified approach to

the lattice and field soliton systems. We follow the procedure presented in [50].

The most important point of the deformation quantization theory is that a clas-

sical system can be obtained from a quantum system by the quasi-classical limit

as } → 0, where } is the related deformation parameter. In other words, the



CHAPTER 6. INTEGRABLE DISPERSIONLESS SYSTEMS ON R 92

quantization of classical systems is performed by appropriate deformations de-

pending on }. The idea of deformation quantization is based on the deformation

of the usual multiplication to a new non-commutative, associative product, which

is called as ?-product. Here the crucial point is that as } → 0, the ?-product re-

duces to the standard multiplication and the deformed Poisson bracket reduces to

the Poisson bracket. To have a well-defined ?-product, let us state the following

definition.

Definition 6.2.1 A deformed multiplication ? is a formal quantization of the

algebra and is called the ?-product if all the following relations are satisfied

(i) lim}→0 f ? g = fg,

(ii) c ? f = f ? c = cf , c ∈ R or C,

(iii) lim}→0 {f, g}? = {f, g},

where the deformed Poisson bracket is given by

{f, g}? =
1

}
(f ? g − g ? f) . (6.13)

Since an arbitrary Poisson bracket can be written by a wedge product of appro-

priate commuting vector fields, the Poisson bracket (6.5) can be written in the

form

{f, g} := f (p∂p ∧ X (x)∂x) g f, g ∈ A,

where the derivations p∂p and X (x)∂x obviously commute. Hence, the Poisson

bracket on A can be quantized in infinitely many ways via the ?-products satis-

fying the conditions presented in the Definition 6.2.1. We consider the following

non-commutative ?α-product

f ?α g = f exp

[
}
2

((α + 1)p∂p ⊗X (x)∂x + (α− 1)X (x)∂x ⊗ p∂p)
]
g. (6.14)
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whose associativity follows from purely algebraic consequence of the construction

(for the proof we refer [50]). The algebra A (6.6) with the multiplication defined

by (6.14), with a fixed α, is an associative, non-commutative algebra with the

deformed Poisson bracket,

{f, g}?α =
1

}
(f ?α g − g ?α f) . (6.15)

Then, as }→ 0, we have

lim
}→0

f ?α g = fg,

lim
}→0
{f, g}?α = {f, g} ,

which implies that the ?α-product (6.14) is well-defined. From now on, we will

denote the algebra A equipped with the deformed bracket (6.15), based on ?α-

product (6.14) as Aα. Note that, the ?α-product (6.14) for α = 0 and α = 1 is

the generalization of the Moyal and Kuperschmidt-Manin products, respectively.

In order to make the ?α-products (6.14) consistent with the introduced grain

structures, we assume that X∂x is complete or it generates well defined discrete

one-parameter group of diffeomorphisms. By simple observation, one can derive

the following properties.

Proposition 6.2.2 For the ?α-product (6.14) the following properties hold

(i)(p∂p)
kpm = mkpm,

(ii)pm ?α u(x) =
∞∑
k=0

}k

2kk!
(α + 1)kmk(X∂x)ku(x) pm = em(α+1) }

2
X∂xu(x) pm = Emα+1

2 u(x) pm,

(iii)u(x) ?α pm =
∞∑
k=0

}k

2kk!
(α− 1)kmk(X∂x)ku(x) pm = em(α−1) }

2
X∂xu(x) pm = Emα−1

2 u(x) pm,

Expanding (6.14) one finds that

f ?α g =
∞∑
k=0

}k

2kk!

k∑
j=0

(α + 1)k−j(α− 1)j
[
(p∂p)

k−j(X∂x)jf
] [

(X∂x)k−j(p∂p)jg
]

(6.16)

Here we do not require a convergence of the sum in (6.16).
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Remark 6.2.3 The decomposition of (6.6) into Lie subalgebras with respect to

the Lie bracket (6.15) is preserved after deformation quantization. Hence, the

Lax hierarchies, generated by powers of the Lax operators of the form (6.8) and

(6.9), with respect to ?α-products, i.e. Ln = L ?α ... ?α L are as follows

Ltn =
{

(Ln)>k−1 , L
}
?α
, n ∈ Z+, k = 1, 2. (6.17)

We calculate the first chains from the Lax hierarchies (6.17)

k = 1 : (ui)t1 =
1

}

[
(E − 1)E

α−1
2 ui+1 + ui(1− E−i)Ei 1−α

2 u0

]
k = 2 : (ui)t1 =

1

}

[
Ei 1−α

2 u0E
α+1

2 ui+1 − E
α−1

2 ui+1E
−i(α+1

2
)u0

]
.

which coincide with the discrete systems (5.29) and (5.30) for α = 1.

Let Dα′−α : Aα → Aα′ be an isomorphism of the form

Dα′−α = exp

[
(α− α′)}

2
X (x)∂x p∂p

]
, (6.18)

The isomorphism (6.18) allows to produce a new ?α
′
-product

f ?α
′
g = Dα′−α

[
Dα−α′f ?α Dα−α′g

]
, (6.19)

which is well-defined and associative ensured by the associativity of the ?α-

product. These two products ?α and ?α
′

are gauge equivalent under the iso-

morphism (6.18) which implies the gauge equivalence of all algebras Aα.

Note that, under the above isomorphism the Lax hierarchy structure is preserved.

Let Lα =
∑

i uip
i ∈ Aα and Lα′ =

∑
i u
′
ip
i ∈ Aα′ . Then, the transformation

between fields is as follows

Lα′ = Dα′−αLα ⇒ u′i = Eiα−α
′

2 ui.

On the other hand, (6.14) implies the following commutation rules:

u ? v = uv

pm ? pn = pm+n

pm ? u =
(
em}X∂xu

)
? pm = Emu ? pm

u ? pm = pm ?
(
e−m}X∂xu

)
= pm ? E−mu,



CHAPTER 6. INTEGRABLE DISPERSIONLESS SYSTEMS ON R 95

which are independent of the choice of ?α-product. Therefore we skip the related

index.

Now we consider the following algebra

a =

{∑
i

ui ? p
i

}
,

which is clearly associative by the commutation rules presented above. Here

instead of standard multiplication we make use of the ?-product and we quantize

the algebra A of polynomials in p to the algebra a separately [53].

Remark 6.2.4 Note that

u ?1 pm = upm, pm ?1 u = Emupm, (6.20)

which implies that the algebra a is trivially equivalent to the algebra A1.

Moreover, a is isomorphic to the algebra of shift operators G (5.22) defined on

the grain structure by some discrete one-parameter group of diffeomorphisms on

R. As a conclusion, the algebra (6.6) with Poisson bracket (6.5) is the limit of

the algebra of shift operators (5.22) with the Lie bracket (5.23) as } → 0, which

assures the existence of the inverse problem to the dispersionless limit.



Chapter 7

Conclusion

In order to embed the integrable systems into a more general unifying framework,

we established two approaches depending on construction of integrable systems

either on regular time scales or discrete ones on R. We made use of R-matrix

formalism not only to construct systematically integrable systems but also to

present the related bi-Hamiltonian structures and conserved quantities. The main

result of this dissertation is to present a unified and generalized theory for (1 +

1)-dimensional integrable ∆-differential systems which builds bridges between

continuous, lattice and q-discrete soliton systems.

We would like to emphasize that for both unifying approaches, by the use of

the continuous limit, discrete systems give rise to either continuous systems (dis-

persive counterpart of continuous systems) or dispersionless systems (systems of

hydrodynamic type). In the first approach algebra of δ-pseudo-differential op-

erators on regular discrete time scales are utilized while in the second approach

algebra of shift operators being introduced on one parameter group of diffeo-

morphisms, which unifies lattice and q-discrete soliton systems, are considered.

Therefore, these two results are hidden in the particular choice of the Lie algebras

for discrete systems.

There are many open problems such as generalization and unification of soliton

96
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solutions of the nonlinear equations or construction of integrable systems on com-

mutative algebras to find soliton solutions to construct Bäcklund transformations

on arbitrary time scales.



Bibliography

[1] Korteweg D. J. and de Vries G., On the change of form of long waves ad-

vancing in rectangular canal and on a new type of long stationary waves,

Philos. Mag. Ser. 5, 39, 422-443(1895)

[2] Gardner C. S., Greene J. M., Kruskal M. D. and Miura R. M., Method

for solving the Korteweg-de Vries equation, Phys.Rev.Lett., 19, 1095-1097

(1967)

[3] Lax P. D., Integrals of non-linear equations of evolution and solitary waves,

Commun. Pure Appl. Math., 21, 467-490 (1968)

[4] Zakharov V. E. and Shabat A. B., Exact theory of two-dimensional self-

focusing and one-dimensional self-modulation of waves in non-linear media,

Zh. Exp. Theor. Fiz., 61, 118-134 (1971)[Russian], English Transl. in Soviet

Phys. JETP 34, 62-69 (1972)

[5] Ablowitz M. J., Kaup D. J., Newell A. C. and Segur H., The inverse scatter-

ing transform-Fourier analysis for non-linear problems, Stud. Appl. Math.,

53, 249-315 (1974)

[6] Gelfand I. M. and Dickey L. A., Fractional powers of operators and Hamil-

tonian systems, Funct. Anal. Appl. 10 259-273 (1976)

[7] Magri F., A simple model of the integrable Hamiltonian equation, J. Math.

Phys., 19, 1156-1162 (1978)

98



BIBLIOGRAPHY 99

[8] Adler M., On a Trace Functional for Formal Pseudo-Differential Operators

and the Synmplectic Structure of the Korteweg-deVries Type Equations, In-

vent. Math. 50 (1979) 219-248

[9] Semenov-Tian-Shansky M. A., What is a classical r-matrix?, Funct. Anal.

Appl. 17 259 (1983)

[10] Reyman A. G. and Semenov-Tian-Shansky M. A., Family of Hamiltonian

structures, hierarchy of Hamiltonians and reduction for matrix first order-

differential operators, Funkz. Analys. Priloz. 14 77-78 (1980)

[11] Konopelchenko B.G. and Oevel W., An r-matrix approach to nonstandard

classes of integrable equations, Publ. RIMS, Kyoto Univ. 29 581-666 (1993)

[12] Oevel W. and Strampp W., Constrained KP hierarchy and bi-Hamiltonian

structures, Commun. Math. Phys.157 51 (1993)

[13] B laszak M., Multi-Hamiltonian Theory of Dynamical Systems, Texts and

Monograhps in Physics (Springer-Verlag, Berlin, 1998) 350pp.

[14] Suris Y. B.,On the bi-Hamiltonian structure of Toda and relativistic Toda

lattices, Phys. Lett. A 180 (1993) 419

[15] Oevel W., Poisson Brackets in Integrable Lattice Systems in Algebraic As-

pects of Integrable Systems edited by A.S. Fokas and I.M. Gelfand, Progress

in Nonlinear Differential Equations Vol. 26 (Birkhäuser-Boston) (1996) 261
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