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ABSTRACT

EXPLICIT RECIPROCITY LAWS

Ali ADALI

M.S. in Mathematics

Supervisors: Prof. Dr. Alexander Klyachko July, 2010

Quadratic reciprocity law was conjectured by Euler and Legendre, and proved

by Gauss. Gauss made first generalizations of this relation to higher fields and

derived cubic and biquadratic reciprocity laws. Eisenstein and Kummer proved

similar relations for extension Q(ζp, n
√
a) partially. Hilbert identified the power

residue symbol by norm residue symbol, the symbol of which he noticed the

analogy to residue of a differential of an algebraic function field. He derived

the properties of the norm residue symbol and proved the most explicit form

of reciprocity relation in Q(ζp, n
√
a). He asked the most general form of explicit

reciprocity laws as 9th question at his lecture in Paris 1900. Witt and Schmid

solved this question for algebraic function fields. Hasse and Artin proved that the

reciprocity law for algebraic number fields is equal to the product of the Hilbert

symbol at certain primes. However, these symbols were not easy to calculate,

and before Shafarevich, who gave explicit way to calculate the symbols, only

some partial cases are treated. Shafarevich’s method later improved by Vostokov

and Brükner, solving the 9th problem of Hilbert. In this thesis, we prove the

reciprocity relation for algebraic function fields as wel as for algebraic function

fields, and provide the explicit formulas to calculate the norm residue symbols.

Keywords: Explicit Reciprocity, Norm Residue Symbol, Power Residue Symbol.
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ÖZET

GENEL KARSILIKLILIK YASASI

Ali ADALI

Matematik, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Alexander Klyachko Temmuz, 2010

Karesel karşılıklılık yasası ilk olarak L. Euler ve A. Legendre tarafından iddia

edildi ve Gauss tarafindan ispatlandı. Gauss daha yüksek alanlara bu ilişkinin ilk

genellemelerini yapmış ve üçüncü ve dördüncü dereceden karşılıklılık yasalarını

bulmuştur. Eisenstein ve Kummer bu yasaları Q(ζp, n
√
a) araştırmış ve ben-

zer kısmi sonuçlar elde etmişlerdir. Hilbert, bu yasayı tanımlamaya yarayan

sembolü cebirsel fonksiyon alanlarında diferansiyel kalana eşdeğer olan başka

bir sembolle tanımlamış ve bu yeni sembolün özelliklerini kullanarak Q(ζp, n
√
a)

alanındaki karşılıklılık yasasını en genel haliyle elde etmiştir. Sayı alanlarında

en genel karşılıklılık yasası Hilbert’in 1900 yılında Paris’teki meşhur konfer-

ansında sorduğu 24 sorundan 9.’sudur. Witt ve Schmid cebirsel fonksiyon alan-

ları için bu soruyu tüm yönleriyle çözdü. Hasse ve Artin bu cebirsel sayi alan-

lari için karşılıklılık yasasının belli asallardaki Hilbert sembollerinin çarpımına

eşit olduğunu kanıtladı. Ancak bu sembollerin değerlerini hesaplamak kolay

degildi ve açik bir şekilde sembolleri hesaplamak için ilk metodu geliştiren Sha-

farevich’ten önce sadece bazı kısmi durumlar için hesaplamalar yapıldı. Sha-

farevich’in yöntemi daha sonra Vostokov ve Brückner tarafindan geliştirildi. Bu

gelişmelerle birlikte Hilbert’in 9. soru tamamen cevaplanmış oldu. Bu tezde,

karşılıklılık ilişkisini hem cebirsel fonksiyon alanları için hem de cebirsel sayı

alanları için ispatlayacağız. Hilbert sembollerinin hesaplaması için geliştirilen

yöntemleri ele alacağız.

Anahtar sözcükler : Genel Karsiliklik Yasasi, Norm Kalan Sembolu, Kuvvet Kalan

Sembolu.
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Chapter 1

Introduction

Leonard Euler and Adrien-Marie Legendre conjectured that for primes p and q,

the solvability of the equation x2 ≡ p (mod q) is dependent on the solvability

of q ≡ x2(mod p) up to an arithmetical relation. This relation, also known as

quadratic reciprocity law, was known by these two mathematicians, however, it

was not proved until the work of Carl Friedrich Gauss. The quadratic residue sym-

bol
(
p
q

)
is defined as 1 or -1 depending on whether the equaiton p ≡ x2 (mod q) is

solvable or not, respectively, and it equals zero in case q | p. The precise relation

between
(
p
q

)
and

(
q
p

)
is the following:

Theorem 1.0.1 (Quadratic Reciprocity Law) For odd primes p, q,(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 ,

and (
2

p

)
= (−1)

p2−1
8 ,

(
−1

p

)
= (−1)

p−1
2 (supplementary laws)

Definition of the symbol can be extended multiplicatively to all rationals by

(a
b

)
=

n∏
i=1

m∏
j=1

(
pi
qj

)αiβj n∏
i=1

(
−1

qj

)αβj n∏
i=1

(
−1

pi

)−βαi
1
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for a, b ∈ Q with a = (−1)αpα1
1 p

α2
2 · · · pαnn , b = (−1)βqβ11 q

β2
2 · · · qβmm , where pi, qj

are different primes and αi, βj ∈ Z. The symbol
(
a
b

)
is known as the Legendre

symbol.

Gauss derived similar relations for cubic reciprocity and for biquadratic reci-

procity for fields Q(ζ3) and Q(ζ4) = Q(i), respectively. Here, ζn denotes the

primitive n-th root of unit. Eisenstein took the process one step further proving

p-th power reciprocity relation for the cyclotomic extension Q(ζp), where p is

an odd prime. In this case, the formula looks considerably simpler; namely, it

states that for non-zero integers a and b, both coprime to p, and α ∈ Z[ζp] with

α ≡ b
(
mod (1− ζp)2

)
, ( a

α

)
p

=
(α
a

)
p
.

In general, one defines n-th power residue symbol
( ·
·

)
n

(see Chapter 6), for

which one has a reciprocity law relating
(
a
b

)
n

to
(
b
a

)−1

n
through a simple formula

involving n-th roots of unity together with similar supplementary laws.

The reciprocity law of Eisenstein holds only for certain cases. E. Kummer

achieved to prove the result of Eisenstein for a larger set of numbers by working

on the fields Q(ζp, p
√
a), which inspired Hilbert to derive more explicit results

by using these fields. One of Hilbert’s most profound achievements was to define

norm residue symbols in terms of which he was able to express n-th power residue

symbols and thereby establish the p-th power reciprocity law for Q(ζp, p
√
a) in full

generality. He noticed that this process can be generalized to larger algebraic

number fields, which appeared as his 9th problem among the 24 problems he

proposed in his famuos lecture in 1900, Paris.

Hilbert noticed that the norm residue symbol
(
a
b

)
n

plays the same role in al-

gebraic number fields as does the residue Res(f dg
g

) in theory of algebraic function

fields. The reciprocity laws in algebraic number fields has analogy to algebraic ex-

tensions of function fields, the relations which come out to be the natural results

of the geometric structure of algebraic function fields. The explicit reciprocity

laws for algebraic function fields were discovered in full generality before than

that of algebraic number fields by the work of H. L. Schmid and E. Witt, both
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of whom are Ph.D students of Hasse.

E. Artin and H. Hasse achieved to derive certain properties of norm residue

symbol by setting geometric-analytic structure on algebraic number fields which

is analogous to that of algebraic function fields. Using these properties they

not only proved the existance of the reciprocity relation in general but also that

the quantity
(
a
b

)
n

(
b
a

)−1

n
is the product of Hilbert symbols at certain primes.

Shafarevich proposed the most general formula for explicit calculations of the

Hilbert symbols using the decomposition of numbers in certain basis. Bruckner

and Vostokov built a comprehensive theory for explicit calculations of the Hilbert

symbols without use of basis in Shafarevich’s method, finishing the proof of the

9th Hilbert problem.

In this thesis, we explain the explicit reciprocity laws in algebraic function

fields and algebraic number fields in full generality.

At Chapter 2 we start with the proof of quadratic reciprocity. We define

the machinery (i.e. norm residue symbols, product formula, reciprocity laws) in

order to show how how the general theory can be interpreted by this simplest case.

Next, we switch to function fields, and prove the reciprocity law for polynomials

over finite fields. This will suggest insight for reciprocity laws in function fields.

At Chapter 3 we define the machinery for algebraic function fields over a

finite constant field and derive the explicit reciprocity laws. We derive two kinds

of reciprocity laws, first is the multiplicative reciprocity law which corresponds

to the case when characteristic is prime to exponent and second is additive law

which corresponds to the character is equal to the exponent.

At Chapter 4 all the machinery that will be needed to settle reciprocity re-

lation in general form will be introduced throughout the quadratic reciprocity.

This chapter is illustration of the following chapter for quadratic case.

At Chapter 5 we define the machinery in general form. We introduce global

fields. We define local and global analytic structures on global fields in order

to define the symbols in explicit form and to derive the reciprocity relation in
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general. All the machinery except the definitions of symbols will be given, leaving

the latter to next chapter.

At Chapter 6 we define of the power residue and norm residue symbols and

derive some of their certain properties which are needed to obtain the reciprocity

relation. We derive the reciprocity relation together with the supplementary

laws. For illustration we prove the quadratic reciprocity formula from the main

theorem. We continue with calculating the ‘simple formula’ for certain extensions,

providing insight for generalization. As application we prove the cubic reciprocity

and Eisenstein reciprocity laws.

At Chapter 7 we give the explicit formulas for algebraic number fields. We

start with explaining the revolutionary work of Shafarevich, in which he explicitly

calculated the values of the ‘simple formula’ up to choice of a certain basis. We

then explain the work of Vostokov where he explicitly calculates the values of

‘simple formula’ without using a basis. We finish the theory by giving the most

general explicit formulas due to Vostokov and Brückner.



Chapter 2

Quadratic Reciprocity and

Reciprocity in Polynomials

In this chapter we start with proving the quadratic reciprocity law. We next

prove the reciprocity law on polynomials over finite fields. We aim this section

to provide examples in order to indicate how the reciprocity relations are treated

for general cases.

2.1 Quadratic Reciprocity

Definition 2.1.1 Let a, p ∈ Z with p prime. Define
(
a
p

)
= 0 if p|a,

(
a
p

)
= 1 if

a ≡ x2(mod p) solvable and
(
a
p

)
= −1 if a ≡ x2(mod p) is not solvable. We call

this symbol quadratic symbol (or Gauss symbol)

Lemma 2.1.2 Let a, p ∈ Z and p be an odd prime with coprime to a. Then

quadratic symbol can be identified by
(
a
p

)
≡ a

p−1
2 (mod p).

Proof : If (a
p
) = 1 then ∃x ∈ Z with a ≡ x2(mod p), hence a

p−1
2 ≡ (x2)

p−1
2 ≡

xp−1 ≡ 1(mod p) by Euler’s (or Fermat’s) theorem. Now assume that a
p−1
2 ≡

5



CHAPTER 2. QUADRATIC RECIPROCITY ANDRECIPROCITY IN POLYNOMIALS6

1(mod p), let c be a primitive root in mod p and a ≡ ca1(mod p).

1 ≡ a
p−1
2 ≡ c

a1(p−1)
2 (mod p)⇔ p− 1|a1(p− 1)

2
⇔ 2|a1 ⇔ a1 = 2a2

for some a2 ∈ Z, then a ≡ (ca2)2(mod p) i.e. (a
p
) = 1.

Theorem 2.1.3 (Quadratic Reciprocity Law) Let p, q be odd primes.(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4

Theorem 2.1.4 (Supplementary Laws) Let p be an odd prime, then(
−1

p

)
= (−1)

(p−1)
2 ,

(
2

p

)
= (−1)

(p2−1)
8

We follow a proof due to Gauss.

Lemma 2.1.5 (Gauss Lemma) Let a, p ∈ Z with prime p coprime to a. Let

S = 1, 2, · · · , (p−1)
2

be set of half residues in mod p. Let v denote the number of

elements in a, 2a, · · · , (p−1)
2
a which are not in S, then (a

p
) = (−1)v.

Proof : {Gauss Lemma} ai ≡ (−1)vii1(mod p) for unique i1 ∈ S and for

unique vi = 0 or 1. On one hand;

a(2a)(
(p− 1)

2
a) ≡ (−1)

∑ p−1
2

i=1 vi1.2 · · · (p− 1)

2
(mod p)

on the other hand

a(2a) · · · ((p− 1)

2
a) ≡ a

(p−1)
2 1.2 · · · (p− 1)

2
≡ (

a

p
)1.2 · · · (p− 1)

2
(mod p)

, hence (a
p
) = (−1)

∑ p−1
2

i=1 vi = (−1)v as desired.

Proof : {Supplementary Laws} Take a = −1 in the Gauss lemma, then

we have no elements of {−1,−2, · · · ,− (p−1)
2
} are in S, v = (p−1)

2
and (−1

p
) =

(−1)
(p−1)

2 .
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Take a = 2 in the Gauss lemma, we count the elements of the set

{2.1, 2.2, · · · , 2 (p−1)
2
} = {2, 4, · · · , p − 1} which are not in S. Clearly v is the

number of integers between p
4

and p
2
. The first of these integers are either p+3

4
or

p+1
4

(according to p ≡ 1, 3(mod 4) respectively) and the last is p−1
2

.

If p ≡ 1(mod 8) then v = p−1
2
− p+3

4
+ 1 = p−1

4
≡ 0 ≡ (p2−1)

8
(mod 2).

If p ≡ 3(mod 8) then v = p−1
2
− p+1

4
+ 1 = p+1

4
≡ 1 ≡ (p2−1)

8
(mod 2).

If p ≡ 5(mod 8) then v = p−1
2
− p+3

4
+ 1 = p−1

4
≡ 1 ≡ (p2−1)

8
(mod 2).

If p ≡ 7(mod 8) then v = p−1
2
− p+1

4
+ 1 = p+1

4
≡ 0 ≡ (p2−1)

8
(mod 2). Hence the

relation (2
p
) = (−1)

(p2−1)
8 .

Proof : {Quadratic Reciprocity} From Gauss lemma we have (p
q
) = (−1)v

where v is the numbers qx with x = 1, 2, · · · , (p−1)
2

whose residue mod p is nega-

tive, i.e.

−p
2
< qx− py < 0

has an integer solution y. On one hand y > 0 since qx > 0, on the other hand

py < qx+ p
2
< qp

2
+ p

2
= p q+1

2
thus y ≤ q−1

2
. In addition y is uniquely determined

by x since −p
2
< qx − py′ < 0 then subtracting from the first equation we get

−p < p(y−y′) < p thus y = y′. We can identify v by number of pairs of x, y such

that x = 1, 2, · · · , (p−1)
2

, y = 1, 2, · · · , (q−1)
2

and −p
2
< qx− py < 0. Analogously,

we have (p
q
) = (−1)v

′
where v′ is the numbers in the same sets satisfying − q

2
<

py − qx < 0 hence 0 < qx − py < q
2
. Therefore (p

q
)( q
p
) = (−1)v+v′ where v + v′

is the number of x, y in the sets defined above and satisfy −p
2
< qx − py < q

2
,

because the equation qx − py = 0 has its smallest solution at x = p, y = q. We

now prove that if a, b are in the same intervals with x and y respectively and

is not the solution of −p
2
< qx − py < q

2
, then p+1

2
− a and q+1

2
− b are another

integers in respective intervals which −p
2
< qx−py < q

2
does not hold. To see this;

q(p+1
2
−a)−p( q+1

2
−b) = q

2
− p

2
−qa+pb. If qa−py > q

2
then q

2
− p

2
−qa+pb < −p

2

and If qa − py < −p
2

then q
2
− p

2
− qa + pb > q

2
. Thus, if we pair (a, b) with

(p+1
2
− a, q+1

2
− b), (a, b) 6= (p+1

2
− a, q+1

2
− b) except perhaps (a, b) = (p+1

4
, q+1

4
),

but (if both integers) (p+1
4
, q+1

4
) is solution to −p

2
< qx − py < q

2
. We can pair

non-solutions and hence the number of solutions x, y with x = 1, 2, · · · , (p−1)
2

and

y = 1, 2, · · · , (q−1)
2

is equivalent to v + v′ in mod 2. Since this number is equal to
(p−1)(q−1)

4
thus (p−1)(q−1)

4
= v+ v′(mod 2) hence (p

q
)( q
p
) = (−1)v+v′ = (−1)

(p−1)(q−1)
4
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as desired.

This quadratic symbol can be extended multiplicatively to all a, b in Z as

following; (a
b

)
=

n∏
i=1

m∏
j=1

(
pi
qj

)αiβj n∏
i=1

(
−1

qj

)αβj n∏
i=1

(
−1

pi

)−βαi
for a, b ∈ Q with a = −1αpα1

1 p
α2
2 · · · pαnn , b = (−1)βqβ11 q

β2
2 · · · qβmm with pi, qj are

different primes and αi, βj ∈ Z. This symbol has is called Legendre symbol. One

may now derive the quadratic reciprocity law over all integers, which is the most

general form;

Theorem 2.1.6 (General Quadratic Reciprocity Law) Let a, b are odd rel-

atively prime integers; then(a
b

)( b
a

)
= (−1)

(a−1)(b−1)
4

+
(sqn(a)−1)(sqn(b)−1)

4 ,

with supplementary laws;(
−1

b

)
= (−1)

b−1
2

+
sgn(b)−1

2 ,

(
2

b

)
= (−1)

b2−1
8 .

Proof : These formulas hold when a and b are odd primes. We need only to

check that formulas have multiplicative property. For reciprocity law this is equiv-

alent to check (aa′−1)(b−1)
4

+ (sqn(aa′)−1)(sqn(b)−1)
4

≡ (a−1)(b−1)
4

+ (sqn(a)−1)(sqn(b)−1)
4

+
(a′−1)(b−1)

4
+ (sqn(a′)−1)(sqn(b)−1)

4
(mod 2) and this is evident by checking the cases

for a,b in mod 4. For supplementary law it is equivalent to check bb′2−1
8
≡

b2−1
8

b′2−1
8

(mod 2) and bb′−1
2

+ sgn(bb′)−1
2

≡ b−1
2

+ sgn(b)−1
2

b−1
2

+ sgn(b)−1
2

(mod 2), which

are evident in similar way.

2.2 Reciprocity Law in Polynomials

In this section we prove the reciprocity law for polynomials over a fixed finite

field. We denote the finite field with q elements by Fq, assuming that field has
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characteristic p and q = pk for some integer k. Fq(t) be rational field of poly-

nomial ring Fq[t]. We can analogously define quadratic symbol for quadratic

symbol (f
g
) for polynomials f, g ∈ Fq[t] with g being prime (we assume primes

are monic). Indeed, we can extend this definition to n-th power residue symbol in

the following. F∗q is cyclic hence has a generator c. We want to observe the roots

of unity in Fq. Let n ∈ N, xn = 1 ⇔ cnx1 = 1 ⇔ q − 1|nx1 where x = cx1 . Thus

non-trivial roots of unity are n-th roots of unity with n|q− 1. It is convenient to

assume n|q − 1 (note that we seek for a multiplicative form of reciprocity). Now

let f, g ∈ Fq[t] and g prime. Residue field of mod g is a finite field with qdeg(g)

elements (for simplicity we denote qdeg(g) by |g|), and mod g∗ is cyclic with |g|−1

elements.

f ≡ bn(mod g) ⇔ ga1c ≡ bn(mod g) ⇔ n|a1 ⇔ g
a1
n

(|g|−1)
c ≡ 1(mod g) ⇔ a

q−1
n ≡

1(mod g) where gc is the generator of mod g∗ and f ≡ ga1c (mod g). It is conve-

nient to define
(
f
g

)
n

by;

Definition 2.2.1 Let a, g, n be as above, n-th power residue symbol
(
f
g

)
n

(or

Legendre symbol) is defined to be the 0 if g|f and the unique n-th root of unity

satisfying (
f

g

)
n

≡ f
|g|−1
n (mod g)

if g coprime to f .

This definition makes sense because if we set x = f
|g|−1
n then xn ≡ f |g|−1 ≡

1(mod g), hence xn − 1 =
∏

ωn=1 (x− ω) ≡ 0(mod g), as g is prime, then it will

divide unique factor (x− ω) with unique n-th root of unity ω.

Proposition 2.2.2 Let f, f ′, g ∈ Fq[t], g prime and coprime to f and f ′(
ff ′

g

)
n

=

(
f

g

)
n

(
f ′

g

)
n

Proof : (ff ′)
|g|−1
n ≡ (f)

|g|−1
n (f ′)

|g|−1
n (mod g) hence the proposition.
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Theorem 2.2.3 (n-th Power Reciprocity Law) Let k be finite field and

f, g ∈ k[t] prime polynomials. Then(
f

g

)
n

(
g

f

)−1

n

= (−1)deg(f) deg(g)
(q−1)
n

We prove this theorem by identifying the power residue symbol with the re-

sultant of of f with g. It is defined to be Res(f, g) =
∏

g(β)=0 f(β). Certain

properties of this geometric object will give not only the proof of this theorem

but also give the multiplicative formula, which is assumed to be the heart of the

reciprocity relation for general forms.

Proof : Let β be root to g, we adjoint β to Fq and get a finite field Fqβ with

|g| = qdeg(g) elements. g(t) is decomposed into linear factors in Fqβ. Due to the

theory of finite fields we have that Fqβ/Fq is cyclic of degree deg(g) and the Galois

group is generated by automorphism f → fp(ref. Hasse Number theory, pg 41)

Hence roots of g are permuted by this automorphism and thus all roots are g are

β, βp, · · · , βpdeg(g)−1
and g(t) =

∏deg(g)−1
i=0 (t− βi). Assume f ∈ Fq[t] coprime to g

and consider the n-th power residue symbol
(

f
t−β

)′
n

where the symbol is to be

understood in Fqβ[t] instead of Fq[t]. This symbol is characterized by(
f

t− β

)′
n

≡ f
qdeg(g)−1

n (mod t− β)

since |t− β| = qdeg(g). On the other hand we have,
(
f
g

)
n
≡ f

qdeg(g)−1
n (mod g). As

(t− β)|g in Fqβ[t] then we have(
f

g

)
n

=

(
f

t− β

)′
n

Since t ≡ β(mod t− β) then f(t) ≡ f(β)(mod t− β).(
f

t− β

)′
n

= f(β)
qdeg(g)−1

n = f(β)
qdeg(g)−1

q−1
q−1
n = f(β)(1+q+···+qdeg(g)−1) q−1

n =

=
(
f(β)f(βq) · · · f(βq

deg(g)−1)
) q−1

n

The last equation is true due to f(β)p = f(βp) since Fq has characteristic p. This

gives us the following expression for n-th power residue symbol(
f

g

)
n

=
(
f(β)f(βq) · · · f(βq

deg(g)−1)
) q−1

n
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This expression can be rewritten as

(
f

g

)
n

=

 ∏
g(β)=0

f(β)


q−1
n

We consider β is in the algebraic closure F̄q
alg

of k. Now let f ∈ Fq[t] be another

prime polynomial. Then

(
f

g

)
n

=

 ∏
g(β)=0

f(β)


q−1
n

=

 ∏
g(β)=0

∏
f(α)=0

(α− β)


q−1
n

=

 ∏
g(β)=0

∏
f(α)=0

(−1)(β − α)


q−1
n

=

= (−1)deg(f) deg(g) q−1
n

 ∏
g(β)=0

∏
f(α)=0

(β − α)


q−1
n

= (−1)deg(f) deg(g) q−1
n

 ∏
f(α)=0

g(α)


q−1
n

=

= (−1)deg(f) deg(g) q−1
n

(
g

f

)
n

(α’s and β’s are in F̄q
alg

). Hence we proved the theorem.

We have a single supplementary law as follows;

Theorem 2.2.4 (Supplementary Law) Let g ∈ Fq[t] prime polynomial and

let ε ∈ Fq, then (
ε

g

)
n

= ε
qdeg(g)−1

n

Proof :
(
ε
g

)
n

is characterized by
(
ε
g

)
n
≡ ε

qdeg(g)−1
n (mod g), set x = ε

qdeg(g)−1
n ,

then xn = εq
deg(g)−1 = 1 as (q − 1)|

(
qdeg(g) − 1

)
and thus x = ε

qdeg(g)−1
n is itself an

n-th root of unity and hence the theorem.

We can multiplicatively extend this symbol to all polynomials in Fq[t] by;

setting its value to 0 if a, b are not coprime, and to(a
b

)
n

=

(
a

g1

)β1
n

(
a

g2

)β2
n

· · ·
(
a

gr

)βr
n

if a, b coprime and b = εbg
β1
1 g

β2
2 · · · gβrr with εb ∈ Fq and gi ∈ Fq[t]. One can

immediately get the most general form of the reciprocity formula for relatively

prime polynomials a, b.
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Theorem 2.2.5 Let a, b ∈ Fq[t]. Write a = εaf
α1
1 fα2

2 · · · f
αl
l and b =

εbg
β1
1 g

β2
2 · · · gβrr where fi, gj are prime polynomials and εa, εb ∈ Fq. Then;

(a
b

)
n

(
b

a

)−1

n

= (−1)
deg(a) deg(b)(q−1)

n

(εa
b

)deg(b)

n

(εb
a

)− deg(a)

n

We observe now a local symbol (which will call the ‘norm residue symbol’)

enters to the picture in the following. Let P be a point on P1 and fP denote the

minimal monic polynolial for P . One may define the symbol for a, b ∈ Fq[t] at P

as; (
a, b

P

)
= (−1)αβ

(
a

fP

)β
n

(
b

fP

)−α
n

Where a = fαPA and b = fβPB with A,B ∈ Fq[t] coprime to fP .

One can identify the n-th power residue symbol by this symbol as;(a
b

)
n

(
b

a

)−1

n

.

The symbol at P =∞ is;(
a, b

∞

)
= (−1)

deg(a) deg(b)(q−1)
n

(εa
b

)−deg(b)

n

(εb
a

)deg(a)

n

Combining these results with the reciprocity law, we get the formula∏
P∈P1

(
a, b

P

)
= 1.

the product is taken over all primes. This symbol is called norm residue symbol,

and the formula called the product formula for norm residue symbol. We shall

see in the context that these are very crucial notions.



Chapter 3

Reciprocity Laws in Algebraic

Function Fields

3.1 Introduction

In this chapter we keep the notations of Fq and n from the previous chapter. We

assume n|q − 1. In the previous chapter it is showed that for prime f, g ∈ Fq(t)
where t ∈ P1 the projective line, the solubility of g ≡ un(mod f) for u ∈ Fq(t)
is equivalent to the solubility of such equation locally at α where α is a root

to f . By this, we mean that g ≡ un(mod f) solvable if and only if g(α) is

an n-th power in Fq(α) and this is if and only if NFq(α)/Fq(g(α)) = Res(g, f)

is an n-th power in Fq. If we now define local ring Oα at α as Taylor series

in x − α with non-negative powers and with coefficients in Fq, the solubility

of the last is equivalent to the solubility of g = un + fh where u, h ∈ Oα;

this is as follows, one part is evident that putting α in equation we get g(α) =

u(α)n + f(α)h(α) = u(α)n with g(α), u(α) ∈ Fq. The inverse part is, we have

f(t) = (t − α)(t − αq) · · · (t − αq
l−1

) for some l ∈ N with αq
l

= 1. t − αq
i

is in Oα and is invertible for i 6= 0, hence u = (t − αq) · · · (t − αq
l−1

) can be

written of the form u(t) = u0 + u1(t − α) + u2(t − α)2 + · · · where ui ∈ Fq,
hence u ∈ Oα. Our aim is to find ui, hi ∈ Fq[t] such that g ≡ uni + fhi where

13
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ui ≡ ui+1(mod (t − α)i) and hi ≡ hi+1(mod (t − α)i) for all i = 0, 1, 2, · · · . We

follow by induction. Write f = (x − α)u, now g(β) = cn for some c ∈ Fq, set

u0 = c and the induction step holds for i = 0. Now assume it holds for 0, 1, · · · , k.

Hence we have g ≡ unk + fhk(mod (x − α)k) for some uk, hk ∈ Fq[t], we choose

uk+1 = uk + U(x− α)k and hk+1 = hk +H(x− α)k for U,H ∈ Fq as follows;

g − unk+1 ≡ g − (uk + U(x− α)k)n − fhk+1 ≡

≡ g − unk − nun−1
k U(x− α)k − fhk − fH(x− α)k(mod (x− α)k+1),

On the other hand by induction step g = unk + fhk(mod (x − α)k), hence g =

unk + fhk = (x− α)kg1 with g1 ∈ Oα writing this above the equation becomes;

g − unk+1 − fhk+1 ≡ (x− α)k(g1 − fH − nun−1
k U)(mod (x− α)k+1)

we want RHS to be 0, or equivalently;

g1 − fH − nun−1
k U ≡ 0(mod (x− α))

or g1(α)−f(α)H−nun−1
k (α)U = 0 solvable in Fq. Taking U = g1(α)

(
nun−1

k (α)
)−1

which is legal since characteristic is prime to n and uk(α) 6= 0, gives a solution.

Hence we prove the assertion.

We now ask for generalizations. One can directly notice that the elements of

the algebraic extension of field of Fq(t) should have symbols which have similar

characterizations and properties that of Fq(t) since the residue field of a prime ra-

tional function is finite. However, contrary to Fq(t) case, the global treatment of

such symbols is complicated. In case, we follow with local treatment, i.e. the pro-

cess what we just postulated for Fq(t), which is advantageous since we know how

to treat algebraic function fields locally. In the polynomial case the symbol (which

is free of arithmetic treatment) was defined as (f, g)P = (−1)vP (f)vP (g) fvP (g)

gvP (f) (P ).

There is no reason to apply this local treatment of polynomials to that of al-

gebraic extensions. We define the symbol to be the just the same; if K/Fq(t) is

finite algebraic extension, f, g are elements of K i.e. f, g are rational functions on

some curve X associated to K, and P be a point on X. Let t local uniformizer

at P and vP be the valuation at P , i.e. if f = tau with u is free of t, then

vP (f) = a. Then the symbol (f, g)P = (−1)vp(f)vp(g) fvP (g)

gvp(f)
(P ) is well defined in

this case. In the context we shall see that this symbol is just the analogue to that

of polynomials and has similar characterization properties.
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3.2 Definitions

3.2.1 Algebraic Curves

Algebraic extensions of the field Fq(t) will be called algebraic function fields. One

may identify these fields by curves in the following. Let X be an algebraic curve

over an algebraically closed field Fq, i.e. X is an algebraic variety of dimension

1. We also suppose X is irreducible, non singular and complete. Let Fq(X) be

the field of the rational functions on X. It is an extension of finite type of Fq
of transcendence degree 1. Conversely, there always exists a curve X associated

any finite type extension K/Fq with transcendence degree 1, which is unique up

to isomorphism (refer to [21]). The study of X is thus equivalent to the study of

the extension of K/Fq when the dimension of the variety is 1, hence there is no

reason to insist on the difference between the ‘geometric’ methods and ‘algebraic’

methods.

3.2.2 Local Rings

Let P be point on X. The local ring OP of X at P is defined as follows: suppose

X is embedded in a projective space Pr(Fq), it is the set of functions induced by

rational functions of the type R/S where R and S are homogeneous polynomials

of the same degree and where S(P ) 6= 0. It is a subring of Fq(X); by virtue of

the general properties of algebraic varieties, it is a Noetherian local ring whose

maximal ideal mP is formed by the functions f vanishing at P and we have

OP/mP = Fq. Since X is a curve, OP is a local ring of dimension 1, in the same

sense of the dimension theory for the local rings: its only prime ideals are (0)

and mP . Since P is a simple point of X, its maximal ideal can be generated by

a single element; such element t will be called the local uniformizer at P . These

properties imply that OP is a discrete valuation ring, the corresponding valuation

will be denoted by vP (for complete treatment of such rings refer to next chapter).

If f ∈ Fq(X) is a non zero element, vP (f) = n, n ∈ N means that f is of the form

f = tnu where t is local uniformizer at P and u is an invertible element of OP .
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Furthermore, the rings OP are the only valuation rings of Fq(X) containing Fq;
indeed, if U is such a ring, U dominates one of the OP since X is assumed to be

complete, thus coincides with OP since OP is a valuation ring.

3.3 The Symbols

Let K/Fq(t) be an algebraic function field and X be the irreducible, non singular

complete curve associated to K. Let f, g ∈ K, hence one may see f as homo-

morphism from X to P1, or removing a finite set S including zeros and poles of

f , one may assume that f is a homomorphism from X − S to the multiplicative

group Gm = Fq∗. Instead of Gm, we begin with any commutative group G and

any homomorphism f : X − S → G. f extends linearly to group of divisors of

X which are prime to S, i.e. D =
∑k

i=1 niPi where ni ∈ Z and Pi ∈ X − S

then f(D) =
∏k

i=1 f(Pi)
ni . Let g ∈ K and P ∈ X, we want to define the symbol

(f, g)P which takes values in G. In order to do that we define the notion of ”mod-

ulus”. A divisor m of X is said to be modulus for f if 1− g ≡ 0(mod m) implies

that (f, g)P = 1G. The notion of modulus comes naturally since we expect that

if g ≡ 1(mod f) or g = 1 + fh then g ≡ un(mod f) is soluble, hence it is solu-

ble locally at P , hence taking m as the divisor of (f) it is convenient to expect

(f, g) = 1G for g ≡ 1(mod f). We call (f, g)P a ”symbol assignment” if it satisfies

the properties: i) linearity on the second coordinate (that of the first coordinate

is followed by linearity of f) (f, g1g2)P = (f, g1)(f, g2), ii) values at P ∈ X − S
equal to (f, g)P = f(P )vP (g), iii) (f, g)P = 1G for all 1 − g ≡ 0(mod m), and iv)∏

P∈X (f, g)P = 1G the product formula. The proof will be followed by showing

that there exists a symbol assignment if and only if there exist a modulus for f .

In the special case when G = Gm = Fq∗ we will derive the reciprocity law

in multiplicative form which corresponds to the case n is prime to characteristic,

indeed we suppose n|q − 1 in order to have ζn ∈ Fq. In the special case when

G = Ga the additive group of Fq we will derive the reciprocity law in additive form

which corresponds to the case n = p, where p is the characteristic of Fq. In the

additive case it comes out to be that the symbol (f, g)P is equal to ResP (f dg
g

), and
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the product formula is the exact analogue of the sum of residues of a differential

on a Riemann surface is 0. This geometric structure is the source of inspiration in

order to introduce ”geometric” methods for algebraic number fields and to derive

similar explicit reciprocity laws.

3.4 Reciprocity Laws

Let k = F̄q
alg

be algebraic closure of Fq, X be an algebraic curve which is irre-

ducible, non-singular and complete. k(X) be the field of rational functions on X.

If S is a finite subset of X, m denote an effective divisor with support in S i.e.

m =
∑
nPP with nP > 0 for P ∈ S and nP = 0 for remaining P . If g ∈ k(X) we

write g ≡ 1(mod m) if vP (1− g) ≥ nP for every P ∈ S.

Note that if g ≡ 1(mod m) the divisor (g) is prime to S. Let G be a group

and f : X − S → G be a map. f extends linearly to a homomorphism from the

group of divisors prime to S to the group G. In particular, if g ≡ 1(mod m) then

the element f((g)) =
∏

P∈X−S f(P )vP (g)

Definition 3.4.1 m said to be modulus for f if f((g)) = 1G for every g ∈ k(X)

with g ≡ 1(mod m).

Definition 3.4.2 Let m modulus supported on S, f : X − S → G be a map.

The map X × k(X)∗ → G which is indicated as (f, g)P is called a local symbol

associated to f and to m if it satisfies following conditions:

i) (f, gg′) = (f, g)(f, g′)

ii) (f, g)P = 0 for P ∈ S and g ≡ 1(mod m)

iii) (f, g)P = f(P )vP (g) if P ∈ X − S

iv)
∏

P∈X (f, g)P = 1.
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Proposition 3.4.3 m is a modulus for f if and only if there exist a local symbol

associated to f and to m, and this symbol is unique.

Proof : if part: Suppose that a local symbol exists, and g ≡ 1(mod m),

f((g)) =
∏

P∈X−S f(P )vP (by iii this is equivalent to) =
∏

P∈X−S (f, g)P (by iv

this is equivalent to) = (
∏

P∈X−S (f, g)P )−1 (and by ii) this product is equivalent

to 1.

only if part: Let m modulus for f , we shall define a local symbol. For P ∈
X − S define (f, g)P = f(P )vP (g) to have iii. For P ∈ S, by approximation

theorem for valuations, we can find gP ∈ k(X)∗ such that gP ≡ 1(mod m) at the

points S − P and g/gP ≡ 1(mod m) at P . Define;

(f, g)P = (
∏

Q∈X−S

f(Q)vQ(gP ))−1

We claim that this is a local symbol assignment. First of all we show that this is

well defined since if g′P is another such function then clearly gP/g
′
P ≡ 1(mod m);

and (f, gP/g
′
P ) = 1 as m is modulus for f .

(f, gP/g
′
P ) = 1 = (

∏
Q∈X−S f(Q)vQ(gP /g

′
p))−1 = (

∏
Q∈X−S f(Q)vQ(gP )/f(Q)vQ(g′P ))−1 =∏

Q∈X−S f(Q)
vQ(gP )∏

Q∈X−S f(Q)
vQ(g′

P
)

Verification of i) Let g, g′ ∈ k(X)∗, choose gP , g
′
P respectively as above;

(f, gg′)P = (
∏

Q∈X−S f(Q)vQ(gP g
′
P ))−1 = (

∏
Q∈X−S f(Q)vQ(gP ))−1(

∏
Q∈X−S f(Q)vQ(g′P ))−1 =

(f, g)(f, g′) Verification of ii) if g ≡ 1(mod m) then gP ≡ 1(mod m) and as m mod-

ulus for f we have (f, g)P = 1. Verification of iii) is by definition. Verification of

iv)
∏

P∈S (f, g)P = (
∏

P∈S
∏

Q∈X−S f(Q)vQ(gP ))−1 = (
∏

Q∈X−S f(Q)vQ(h))−1 with

h =
∏

P gP , g/h ≡ 1(mod m) and m is modulus for f thus;∏
Q∈X−S

f(Q)vQ(g/h) = 1

∏
P∈S (f, g)P = (

∏
Q∈X−S f(Q)vQ(g))−1

∏
Q∈X−S f(Q)vQ(g/h) = (

∏
Q∈X−S f(Q)vQ(g))−1 =∏

Q∈X−S (f, g)Q by iii), and we finally get
∏

P∈X (f, g)P = 1.

The uniqueness: the symbol is uniquely defined on X − S, if P ∈ S by

above we must have (by ii) (f, g)−1
P = (f, gP )−1

P = (
∏

Q∈X−P (f, gP )P ) =∏
Q∈X−S (f, gP )P

∏
Q∈S−P (f, gP )P = (by ii) =

∏
Q∈X−S (f, gP )P =(by iii)∏

Q∈X−S f(Q)v(gP ). This finishes the proof.
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3.4.1 Multiplicative Reciprocity Law

Theorem 3.4.4 If G is the multiplicative group Gm, f has m =
∑

P∈S P as a

modulus with the corresponding local symbol;

(f, g)P = (−1)vP (f)vP (g)f
vP (g)

gvP (f)
(P )

(This formula is well defined since this quantity is different than 0 and ∞.)

Proof : We must verify i, ii, iii, iv. Verification of i);

(f, gg′)P = (−1)vP (f)vP (gg′) fvP (gg′)

gg′vP (f) (P ) = (−1)vP (f)(vP (g)+vP (g′)) fvP (g)fvP (g′)

gvP (f)g′vP (f) (P ) =

(−1)vP (f)vP (g) fvP (g)

gvP (f) (P )(−1)vP (f)vP (g′) fvP (g′)

g′vP (f) (P ) = (f, g)P (f, g′)P . Verification of

ii); if vP (1 − g) > 0 then vP (g) = 0, (f, g)P = 1
gvP (f) (P ) = 1. Verification f iii);

if P ∈ X − S then vP (f) = 0 and (f, g)P = f(P )vP (g). Verification of iv) Let

P1 projective line. If g is constant,
∏

P∈X (f, g)P = g−
∑

vP (f) = g0 = 1. If g

is not constant, then it is surjective which makes X a ramified covering of P1.

Putting F = k(X) and E = k(P1) we have extension F/E with F = k(g) and

the norm NF/E : F ∗ → E∗ is well defined. Denote the identity map on P1 by

t. First we prove the formula for X = P1. We may write f = α0

∏
(t− α)nα

and g = β0

∏
(t− β)nβ . For α 6= β; (t − α, t − β)P0 = 1 for P0 6= α, β,∞,

(t− α, t− β)α = α− β, (t− α, t− β)β = 1/(β − α), (t− α, t− β)∞ = −1,

for α = β; (t − α, t − α)P0 = 1 for P0 6= α,∞, (t − α, t − α)α = −1,

(t − α, t − α)∞ = −1, thus we get
∏

P0∈P1 (t− α, t− β)P0 = 1, moreover by

above,
∏

P0∈P1 (α0, g)P0 = 1 =
∏

P0∈P1 (f, β0)P0 and as symbol is multiplicative in

both coordinates by definition, we get
∏

P0∈P1 (f, g)P0 = 1. To prove the general

case, we are going to reduce it to a local result. Let P0 ∈ P1 and P ∈ X with

g(P ) = P0. The symbol (f ′, g′)P0 make sense when f ′ and g′ are in the field ÊP0

(the field of completion of E with respect to valuation vP0). For convenience we

denote this symbol by (f ′, g′)ÊP0
. Similarly, define F̂P to be the completion of F

with respect to vP and denote the corresponding symbol by (., .)F̂P . F̂P/ÊP0 is

finite extension and we have the formula NF/Ef =
∏

g(P )=P0
NPf with NP is the

norm NF̂P /ÊP0
. By linearity of symbols we have

(NF/Ef , t) =
∏

g(P )=P0

(NPf, t).
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Assume now we proved (f, g)F̂P = (NPf, t)ÊP0
, consequently;

∏
P∈X (f, g)P =∏

P0∈P1(
∏

g(P )=P0
(f, g)P ) =

∏
P0∈P1(

∏
g(P )=P0

(f, g)F̂P ) =
∏

P0∈P1 (NF/Ef, t)P0 =

1. (Since NF/Ef ∈ k(P1) and the product formula holds for X = P1.) Thus we

are reduced to prove (f, g)F̂P = (NPf, t)ÊP0
. Since (f, g)F̂P and (NPf, t)ÊP0

are

multiplicative in f and in g by definition, it sufficies to do the proof when f and

g are uniformizer of F̂P and ÊP0 respectively, (since every unit is quotient of two

uniformizers and fields are multiplicatively generated by units and uniformizers).

We thus have F̂P = k((f)) and ÊP0 = k((g)). vÊP0
(NPf) = vF̂P (f) = 1 hence

((NPf, t)ÊP0
) = −NP f

g
(P0). On the other hand if the ramification index of f over

ÊP0 is e, then we have that [F̂P : ÊP0 ] = e, and vF̂P (g) = e, whence (f, g)F̂P =

(−1)e f
e

g
(P ). Comparing formula above we want this to be equal to −NP f

g
(P0) i.e

NP f
fe

= (−1)e−1 at P (or P0, it is the same).

As totally ramified with degree e, f has minimal polynomial for over ÊP0

an Eisenstein polynomial of degree e i.e. minimal polynomial is of the form

f e + a1f
e−1 + · · · + ae = 0 with ai ∈ ÊP0 , vÊP0

(a0) = 1 and vÊP0
(ai) ≥ 1.

Clearly ae = (−1)eNPf(P ). vF̂P (aif
e−i) = evÊP0

(ai) + e − i ≥ 2e − i, hence

vF̂P
aif

e−i

fe
≥ e− i > 0. vF̂P (f e + ae) = vF̂P (−a1f

e−1 + · · ·+ ae−1f), dividing both

sides by f e; vF̂P (1 + ae
fe

) = vF̂P (−a1
f
− · · · − ae−1

fe−1 ) > 0 since all the monomials

satisfy vF̂P
ai
f i
> 0. Therefore, we have vF̂P (1 + ae

fe
) takes value 0 at P , hence

1 = −ae
fe

= (−1)e−1NP f
fe

as desired.

Remark 3.4.5 As with the quadratic norm residue symbol
(
a,b
p

)
, the sym-

bol (f, g)P has the following properties (f, g)P (g, f)P = 1, (−f, f)P = 1 and

(1− f, f)P = 1. These properties, indeed, hold for norm residue symbol (Hilbert

symbol) in general.

We get the following result which is due to A. Weil [26];

Proposition 3.4.6 (Weil Reciprocity Law) If f and g are two functions on

X with disjoint divisors then

f((g)) = g((f))
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Proof : By theorem 3.4.6 above we have
∏
P ∈ X(f, g)P = 1. (f, g)P is

either f(P )vP (g) or g(P )−vP (f) thus f((g))g(−(f)) = 1 and f((g)) = g((f)) as

desired.

3.4.2 Arithmetic

(f, g)P is the element of the field Fq(P )/Fq which is non zero. We now want

to define a multiplicative surjective map which sends (f, g)P to ζn satisfying

(f, g)P → 1 if and only if (f, g)P is an n-th power in Fq(P ). One may prove that

a number a ∈ Fq(P ) is an n-th power in Fq(P ) is and only if NFq(P )/Fq(a) is an

n-th power in Fq (just by the same method used for polynomials). We follow a

slightly different way;

Proposition 3.4.7 a ∈ Fq(P ) is an n-th power in Fq(P ) is and only if

NFq(P )/Fq(a) is an n-th power in Fq

Proof : Let cP be a generator of the multiplicative group Fq(P )∗, since

NFq(P )/Fq is surjective homomorphism of Fq(P )∗ onto Fq∗, then NFq(P )/Fq(cG) = c

is a generator of Fq∗. If a ∈ Fq(P )∗ with a = ca1G , a1 ∈ {0, 1, · · · , q − 1}, then

NFq(P )/Fq(a) = NFq(P )/Fq(c
a1
G ) = NFq(P )/Fq(cG)a1 = ca1

a is an n-th power in Fq(P )∗ if and only if n|a1 and this is if and only if NFq(P )/Fq(a)

is an n-th power in Fq∗.

A number in Fq∗ is determined to n-th power in Fq∗ is determined up to taking

the q−1
n

-th power of the number. Combining all these results, we get the explicit

form of multiplicative reciprocity;

Theorem 3.4.8(
f, g

P

)
=

(
NFq(P )/Fq((−1)vP (f)vP (g)f

vP (g)

gvP (f)
(P ))

) q−1
n

.

where
(
f,g
P

)
denotes the norm residue symbol for the field of rational functions on

Fq(X).
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As consequence, we have the reciprocity law as corollary;

Corollary 3.4.9 (Reciprocity Relation) Let f, g ∈ Fq(X) with

supp(f)∩supp(g) = S, where supp denotes the set of poles of the function. Then;(
f

g

)
n

(
g

f

)
n

=
∏
P∈S

(
g, f

P

)
n

.

3.4.3 Additive Reciprocity Law

We are going to verify the theorem 3.4.4 in the case where the group G = Ga

additive group of Fq. We assume that f : X − S → Ga being a regular map. We

can consider f as a rational map from X to G regular away from S. We also

suppose that S is the smallest subset of X having this property.

Theorem 3.4.10 f has a modulus supported on S, the corresponding local sym-

bol being (f, g)P = ResP (f dg
g

).

Remark 3.4.11 ResP (f) is defined as follows; let t be a uniformizing element

at P , write f =
∑∞

i>>−∞ fit
i where fi are in the residue field. Then ResP (f)

defined to be ResP (f) = f−1. The formula ResP (f dg
g

) make sense since f is

a scalar function on X with S as its set of poles. This definition, indeed, is

independent of the choice of the uniformizing element t and is well defined. For

proof we refer to [20], [6].

Proof : If P belongs to S, we put nP = 1 − vP (f); from the fact that P is

a pole of f , we have nP > 1. We are going to check that ResP (f dg
g

) is a local

symbol associated to f and m =
∑
nPP .

Property i) is clear, from the fact that

d(gg′)

gg′
=
dg

g
+
dg′

g′
.
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For ii), we remark that, if vP (1− g) ≥ nP then

vP (dg) ≥ nP − 1 ≥ −vP (f);

as vP (g) = 0 we deduce that vP (f dg
g

) ≥ 0, whence ResP (f dg
g

) = 0. For iii), we

remark that dg
g

has a simple pole at P , thus so does f dg
g

(since P /∈ S) and we

have

ResP (f
dg

g
) = f(P )ResP (

dg

g
) = f(P )vP (g),

Finally, the formula iv): ∑
P∈X

ResP (f
dg

g
) = 0

is just the residue formula
∑

P∈X ResP (f dg
g

) = 0 for any differential f dg
g

on Fq(X).

We leave the proof of the residue formula to [20], [6].

Corollary 3.4.12

ResP (fp
dg

g
) = [ResP (f

dg

g
)]p.

Where p is the characteristic of the field Fq.

Proof : Indeed, the map x→ xp is a homomorphism Ga → Ga and we have

that the local symbols are functorial.

3.4.4 Arithmetic

We have that (f, g)P = ResP (f dg
g

(P )) is an element of Fp(P ). The trace operator

TrFp(P )/Fp is well defined and take values in Fp. It comes out to be ( [20], [21],

[27]) that trace operator plays the same role for additive symbol as the norm

operator for multiplicative symbol.

Theorem 3.4.13 (
f, g

P

)
= TrFp(P )/Fp

(
ResP (f

dg

g
)

)
where

(
f,g
P

)
denotes the norm residue symbol for the field of rational functions on

Fp(X).
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Remark 3.4.14 One can define this symbol multiplicatively which assume values

in p-th roots of unity in such way that setting(
f, g

P

)
= ζ

TrFp(P )/Fp(ResP (f dg
g

))
p .

where TrFp(P )/Fp

(
ResP (f dg

g
)
)

is assumed to have a value in {0, 1, 2, · · · , p− 1}.

Remark 3.4.15 These formulas are due to H. L. Schmidt. [19]



Chapter 4

Motivations Through the

Quadratic Reciprocity

In the quadratic case, the quadratic residue symbol
(
a
p

)
was identified with the

solubility of a ≡ x2(mod pk) for all k ∈ N. The case where p 6 |2 or p 6 |a, the

solubility of a ≡ x2(mod pk) for all k is equivalent to solubility of a ≡ x2(mod p).

This follows by induction; assume a ≡ x2(mod pk) soluble for x = x0, set now

x = x0 + cpk, hence a − (x0 + cpk)2 ≡ a − x2
0 − 2x0cp

k(mod pk+1), setting c ≡
a−x20
pk

1
2x0

(mod p) we have solution for pk+1, inductively we get the assertion.

The idea of solubility of a ≡ x2 equation in modulo powers of p is indeed

equivalent to the solubility of x2 − ay2 − bz2 = 0 in p-adic integers x, y, z with

at least one is non-zero. We recall the p-adic numbers; Qp = {
∑∞

i>>−∞ aip
i :

ai ∈ Zp} is called the p-adic field and elements of its ring of integers Op =

{
∑∞

i≥0 aip
i : ai ∈ Zp} are called the p-adic integers. Representing the rational

numbers in power series of p with coefficients in Zp has analogy with representing

the rational functions of an algebraic function field by Taylor series in powers of

uniformizer at some point P with coefficients from finite field Fp. Consequently,

the p-adic field impose a local analytic structure analogue to that of algebraic

function fields over Fp, and this structure provides certain tools for solubility of

the equation above.

25
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4.1 Norm Residue Symbol

On the other hand, the solubility of the equation x2 − ay2 − bz2 = 0 itself

suggest the solubility of x2 − ay2 = bz2, equivalently; (x
z
)2 − a(x

z
)2 = b =(

x
z
−
√
ay
z

) (
x
z

+
√
ay
z

)
(assuming z 6= 0 without lost of generality) which is equiv-

alent to the assertion ‘b is a norm in the extension Qp(
√
a)/Qp’.

We now define the notion of quadratic norm residue symbol; Let p is a prime

and a and b are integers coprime to p.
(
a,b
p

)
= 1 if x2 − ay2 − bz2 = 0 is solvable

in p-adic integers x, y, z with at least one is non-zero and
(
a,b
p

)
= −1 otherwise.

First we note that this symbol can be extended multiplicatively to integers A,B

which are not coprime to p in following; let A = pApap and B = pBpbp with ap, bp

are coprime to p. Set(
A,B

p

)
=

(
pApap, p

Bpbp
p

)
=

(
p, p

p

)ApBp (ap, p
p

)Bp (p, bp
p

)Ap (ap, bp
p

)
.

Assume now p 6= 2. One may calculate that x2 − py2 − pz2 = 0 soluble then

p|x, writing x = px1 and dividing by p the equation becomes x2
1 = p(y2 + z2),

then p|y2 +z2, assuming at least one y, z is not divisible by p (if so divide through

powers p), hence this is equivalent to y2 ≡ −z2(mod p) or −1 ≡ (y
z
)2(mod p) and

this is if and only if
(
−1
p

)
= 1, hence we have

(
p,p
p

)
= (−1)

p−1
2 . In addition,(

p,bp
p

)
=
(
bp,p

p

)
=
(
bp,p

p

)−1

, combining these results we rewrite the norm residue

symbol as:

(
A,B

p

)
=

(
pApap, p

Bpbp
p

)
= (−1)ApBp

p−1
2

(
ap, p

p

)Bp (bp, p
p

)−Ap (ap, bp
p

)
=

= (−1)
p−1
2
apbp

(
ap
p

)Bp (bp
p

)−Ap
.

since for p 6= 2
(
ap,bp
p

)
= 1 and

(
ap,p

p

)
=
(
ap
p

)
. For p = 2, the solubility

of x2 − py2 − pz2 = 0 in 2-adic integers is not equivalent to solubility of this

equation in mod 2, but rather is equivalent to solution of this equation in mod 8.
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Writing a ≡ 2a1(−1)a
′
1(1 + 22)a

′′
2 (mod 8) and b ≡ 2b1(−1)b

′
1(1 + 22)b

′′
2 (mod 8), and

setting (
a, b

2

)
= (−1)a2b

′′
2+a′1b

′
1+a′′2 b2 ,

one may easily check that this symbol is multiplicative, and for 16 values of

(a, b) ≡ (1, 1), (1, 3), (1, 5), (1, 7), · · · , (7, 7)(mod 8) this symbol coincide with the

solubility of x2 − ay2 − bz2 = 0 in 2-adic integer, with at least one is non zero.

The p-adic field has the following absolute value; |a|p = p−a1 if a = pa1a2 with

a2 has no p divisor. | |p impose a topology on Qp and hence a local analytic struc-

ture on Q. In addition to local analytic structures, Q imposes a global analytic

structure. The coordinates the global analytic structure consist of coordinates

which are generated by p-adic absolute values plus the ordinary absolute value | |
of R. For completeness, we shall also treat the latter field as p-adic identification

of Q by a ‘prime’ which is called as ‘infinite prime’ and denoted by∞. The norm

residue symbol
(
a,b
∞

)
is determined by the solubility of x2 − ay2 − bz2 = 0 in real

numbers. Hence
(
a,b
∞

)
= 1 if at least one of a, b is non negative, and

(
a,b
∞

)
= −1

otherwise.

We have the following evident properties for the norm residue symbol;

(
a,b
p

)
depends only on residue classes a, b mod p and mod 8(

a,b
p

)
6= 1 for finitely many p,(

aa′,b
p

)
=
(
a,b
p

)(
a′,b
p

)
(
a,bb′

p

)
=
(
a,b
p

)(
a,b′

p

)
(
a,b
p

)(
b,a
p

)
= 1

We have less evident property of the norm residue symbol known as the ‘prod-

uct formula’;
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Proposition 4.1.1 For arbitrary non-zero integers a, b;∏
p∈P∪{∞}

(
a, b

p

)
= 1.

where P denotes the set of primes.

Proof : By virtue of properties of multiplication and symmetry, it is sufficient

to check the formula for (−1,−1), (−1, 2), (−1, q), (2, 2), (2, q), (q, q), (q, q′) where

q and q′ are distinct odd primes. Since x2 + y2 − 2z2 and x2 − 2y2 − 2z2 has

integer solution 1, 1, 1 and 2, 1, 1 respectively,
(
−1,2
p

)
= 1 =

(
2,2
p

)
and for all p

hence the product formula.

(
q,q′

2

)
= (−1)

q−1
2

q′−1
2 ,
(
q,q′

q

)
=
(
q′

q

)
,
(
q,q′

q′

)
=
(
q
q′

)
and

(
q,q′

p

)
= 1 for p 6= 2, q

(−1,−1
∞

)
= −1 =

(−1,−1
2

)
and

(
−1,−1
p

)
= 1 for all odd prime p.

(−1,q
2

)
= (−1)

q−1
2 ,
(
−1,q
p

)
= 1 for p 6= 2, q and

(
−1,q
q

)
= (−1)

q−1
2 .

(
2,q
2

)
= (−1)

q2−1
8 ,
(

2,q
q

)
= (−1)

q2−1
8 and

(
2,q
p

)
= 1 for p 6= 2, q

(
q,q
2

)
= (−1)

q−1
2

q−1
2 = (−1)

q−1
2 ,
(
q,q
q

)
= (−1)

q−1
2 and

(
q,q
p

)
= 1 for p 6= 2, q

hence the product formula holds.

We may now recover the quadratic reciprocity law from the properties of the

norm residue symbol in following. Let a and b odd coprime integers, then
(
a,b
p

)
is either

(
a
p

)βp
or
(
b
p

)−αp
where αp and βp is the exact powers of p in a and b

respectively. If we take the product over all odd primes we have
∏

p∈P−{2}

(
a,b
p

)
=(

a
b

) (
b
a

)−1
where P denotes the set of primes. Combining this fact with the product

formula we get

∏
p∈P∪{∞}

(
a, b

p

)
= 1 =

∏
p∈P−{2}

(
a, b

p

)(
a, b

2

)(
a, b

∞

)
=
(a
b

)( b
a

)−1(
a, b

2

)(
a, b

∞

)
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or equivalently(a
b

)( b
a

)−1

=

(
b, a

2

)(
b, a

∞

)
= (−1)

(a−1)(b−1)
4 (−1)

(sqn(a)−1)(sqn(b)−1)
4

hence we get the reciprocity from properties of the norm residue symbol. In

addition, we obtain the supplementary laws by putting a = 2 and a = −1 in the

product formula.

This is a transparent illustration of how reciprocity relation is treated for

general case. Definitions and the notations get more complicated, however the

backbone of the theory remains the same. Norm residue symbol is generalized

and its properties are proved by using the local techiques. Power residue symbol

is identified by the norm residue symbol. This identification together with the

product formula give the reciprocity relation in general.

4.2 Decomposition of Primes

We now return to identification of solubility x2− ay2− bz2 = 0 is equivalent to ‘b

is a norm in the extension Qp(
√
a)/Qp’. The extension Qp(

√
a) is indeed a P-adic

field of Q(
√
a) for some prime ideal P dividing (p). We hence need to know how

primes of Q are decomposed into the primes of the extension Q(
√
a). Let P be

a prime ideal of Qp(
√
a) with Q(

√
a)(p) ⊂ P, we say P divides (or above) (p).

Up to taking conjugates, we have that (p) either remains prime, or is product of

two different prime ideals or is a square of a prime ideal of the field Q(
√
a). We

denote these situations by (p) = P0, (p) = P1P2 and (p) = P2
3 respectively. The

residue field of P1,P2,P3 has p elements whereas that of P0 has p2 elements.

This is the case in general; suppose K is number field and L/K is finite abelian

extension of K. Let p be a prime ideal of K, then p = Pe
1P

e
2 · · ·Pe

g where Pi

are distinct prime ideals of L and each residue field has (Np)f elements where

Np is cardinality of the residue field of p. One has the relation efg = n where

n = [L : K]. We call p is unramified in L if e = 1, and ramified if e > 1.

The primes of Q which are ramified at Q(
√
a) are, as we shall the proof in the

‘Kummer Fields’ section of the following chapter, those which divide 2 or a.
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4.3 Localization

The field Qp(
√
a)/Qp is extension of local Qp, and is itself a local field. It’s

maximal ideal is constructed by a prime ideal P of Q(
√
a) which is above (p). P

is generated by an element π, and the field Qp(
√
a) = {

∑∞
i>>−∞ aiπ

i : ai ∈ R}
where R is the set representatives of residue field P.

When (p) is unramified at Q(
√
a) and b is integer coprime to a, the identifica-

tion of b being norm in the extension Qp(
√
a)/Qp has a transparent determination

as follows. Rewrite the unramified cases (p) = P0 and (p) = P1P2 by above. Let

b ∈ Q ⊂ Qp, we are interested in if b is a norm in the extension Qp(
√
a)/Qp of

some element γ = a0 + a1πβ + a2π
2
β + · · · ∈ Qp(

√
a). In the first case the residue

field has p2 elements. The elements of the residue field can be chosen of the form

{u + v
√
a} where u, v ∈ {0, 1, · · · , p − 1}, and the uniformizer can be chosen

π = p. Hence b = Nγ implies b = (b0 + b1π + a2π
2 + · · · )(ā0 + ā1π + ā2π

2 + · · · ).
Checking the equation mod Pk, this amounts to the solution of a ≡ x2(mod pk)

for all k ∈ N. In the second case, extension with respect to prime P1 is isomorphic

to the extension with respect to prime P2 which is evident up to conjugation.

Without loss of generality we may assume P = P1. The residue field has p el-

ements, and uniformizer is of the form π = u + v
√
a where N(π) = p. b = Nγ

implies b = (a0 + a1π + a2π
2 + · · · )(a0 + a1π̄ + a2π̄

2 + · · · ) which amounts to the

solution of a ≡ x2(mod Pk) for all k ∈ N. The induction procedure introduced at

the beginning of the chapter can be applied to this case without any difficulties,

consequently b being norm is equivalent to the solution b ≡ x2(mod P).

We can determine the solubility of b ≡ x2(mod P) as follows. The residue

field of P is finite, hence its multiplicative group is cyclic and generated by some

element c. Write b ≡ cB(mod P) then

b ≡ x2(mod P)⇔ b ≡ x2(mod p)⇔ 2|B ⇔ b
p−1
2 ≡ 1(mod p)

In both unramified cases since P 6 |b

b
p−1
2 ≡

√
b
p−1
≡ 1(mod P)⇔

√
b
p
≡
√
b(mod P).

On the other hand, the Galois group G(QP(
√
a)/Qp) comes out to be cyclic with
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a generator σ which is characterized by;

σ(γ) ≡ γp(mod P)

for all γ in the ring of integers of Qp(
√
a). This automorphism is called the

Frobenius automorphism. The quadratic norm residue symbol take the value

of 2nd root of unity σ(
√
a)√
a

.

4.4 Globalization

The norm residue symbol is characterized by Frobenious automorphism in un-

ramified primes, however, in ramified primes we don’t have such explicit char-

acterization. This is because in unramified cases the norm residue symbol acts

on the multiplicative group of the residue field. This group is cyclic with a gen-

erator which allows the explicit determination of the symbol. In ramified cases,

the norm residue symbol acts on additive group or on both multiplicative and

additive groups, and since the additive group of the residue field is not acting so

‘regularly’ the explicit identification is not as direct as in the previous case. This

is, indeed the reason why quadratic norm residue symbol is in a more complicated

form at 2 than that of at odd primes. In general, as we shall see, such primes

are the ones which divide the power n if we are to find n-th power reciprocity

relation.

In the quadratic case, the only ‘irregular’ prime is 2 we treated this case

by explicit definition of the symbol by using certain form of decomposition. In

general case, we can not always have give such an explicit definition. To treat

this problem we introduce the global analytic structure on field coordinates of

which are generated by local p-adic fields. We next continuously extend the

definition of the norm residue symbol to all primes which is equivalent to that

of identified by the Frobenious automorphism at unramified primes. We briefly

explain this process for quadratic case. Denoting the Frobenious automorphism

for unramified prime p by (p,Q(
√
a)/Q) we have p → (p,Q(

√
a)/Q) is a map

from unramified prime ideals into G(QP(
√
a)/Qp) ⊂ G(Q(

√
a)/Q) (this is evident



CHAPTER 4. MOTIVATIONS THROUGHTHEQUADRATIC RECIPROCITY32

since any automorphism of QP(
√
a) fixing Qp gives an automorphism of Q(

√
a)

fixing Q). This map can be extended multiplicatively in obvious way to all ideals

which contains no ramified primes. The extended map has a special name as

the global Artin map. If principal ideal (b) has no ramified prime divisor and

(b) = pb11 pb22 · · · pbrr then set;

((b),Q(
√
a)/Q) = (p1,Q(

√
a)/Q)b1(p2,Q(

√
a)/Q)b2 · · · (pr,Q(

√
a)/Q)br

and ((b),Q(
√
a)/Q)(

√
a) ≡ (−1)i

√
a(mod P) for some i ∈ N. The ratio

((b),Q(
√
a)/Q)(

√
a)√

a
comes out to be the quadratic residue symbol which is equal to

(−1)i.

We now indicate the global analytic structure. Let S denote the set of ramified

primes of the abelian extension L/K plus the set of infinite primes. Denote the

set of ideals of K which are coprime to primes of S by IS, then the Artin symbol

is a multiplicative map from IS to G(L/K). Define the coordinate system whose

coordinates are identified by primes including infinite primes. We define an idele

to be a vector of this coordinate system whose coordinates are in the multiplicative

sets of corresponding fields. The set of ideles whose almost all coordinates are

units impose a topology, which is called restricted product topology. The Artin

symbol is considered to be a multiplicative map from the set of ideles JS whose

S components are 1 to G(L/K) in canonical way. A theorem of Artin states that

this multiplicative map extends continuously to all ideles in unique way. This

map is called the global Artin map and denoted by ψL/K . The image of the

ideles whose pth coordinate is x and other coordinates are 1 defines a map ψp(x)

what is called the local Artin map. We determine the most general form of

norm residue symbol
(
a,b
p

)
as the image of ψp(b) in L/K. In the quadratic case,

K = Q, L = Q(
√
a); and the norm residue symbol

(
a,b
p

)
n

coincide with ψp(b) in

the extension L = Q( n
√
a).



Chapter 5

Global Fields

In this chapter we define the global fields, the general form of algebraic function

fields and algebraic number fields. We show that the global fields admit local

analytic structure which is similar to that of algebraic function fields, indeed,

former is the generalization of the letter. Next, we generalize the global analytic

structure of algebraic function fields to global fields.

5.1 Global Fields

We start with defining the general form of fields where we treat the algebraic

function fields case and algebraic number fields case together. These fields are

the rational fields of ‘Dedekind domains’. In this section we define Dedekind

domains and define the required machinery which is used in following chapter for

the proof of the reciprocity relation.

33
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5.1.1 Dedekind Domains

Definition 5.1.1 K∗ be the multiplicative group of the field K, Z denote the

integers under addition, a map

v : K → Z ∪∞

is a discrete valuation of K if

i) v defines a surjective homomorphism K∗ → Z

ii) v(0) =∞

iii) v(x+ y) ≥ inf v(x), v(y).

The set Rv = {x ∈ K|v(x) ≥ 0} is an integral domain with quotient field K,

the valuation ring of v, and the set pv = {x ∈ K|v(x) > 0} is a maximal ideal

of Rv, is called the valuation ideal.

Remark 5.1.2 Let F be a field let K be the field of formal series
∑∞

i>>−∞ ait
i,

with ai ∈ F . Then we have a discrete valuation v of K given by

v(
∞∑

i>>−∞

ait
i) = inf

ai 6=0
i

The elements u with v(u) = 0 form a subgroup Uv of K, the group of units

(invertible elements) of Rv. We now choose an element π with v(π) = 1. Then

every a ∈ K∗ has a unique representation a = πa1u, a1 ∈ Z, u ∈ Uv, namely with

a1 = v(a).

Let I be the fractional ideal of Rv, we define v(I) = infx∈I v(x), so v(I) ∈
Z∪∞∪−∞. But I = aJ , where J is a non-zero ideal of Rv and a ∈ K∗. Hence

v(I) = v(J) + v(a) ∈ Z. Choose b ∈ I with v(b) = v(I), then πv(b)Rv = bRv ⊂ I.

On the other hand I ⊂ {x ∈ K|v(x) ≥ v(I)} and if v(x) ≥ v(I) then x = πv(I)y

with y ∈ Rv, thus I ⊂ πv(I)Rv = πv(b)Rv hence I = (πRv)
v(I). In particular pv =
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πRv. This equation shows that Rv has one and only one non-zero prime ideal,

pv, and Rv is a principal ideal domain. We now make the following definition: A

discrete valuation ring R is a principal ideal domain with one and only one

non-zero prime ideal.

Proposition 5.1.3 The valuation ring Rv of a discrete v is a discrete valuation

ring. Conversely, a discrete valuation ring R is the valuation ring Rv for a unique

discrete valuation v of its quotient field K.

Proof : We prove one side, the other is as follows; let p = πR be the non-zero

prime ideal of R. R is a unique factorization domain and hence each non-zero

x ∈ R has a unique representation x = πx1u, u is unit, x1 ≥ 0. Allow x1 to

vary over Z we get the corresponding statement for x ∈ K∗. But then v(x) = x1

defines a discrete valuation of K with R = Rv. Uniqueness is obvious.

The field Rp = {xy−1 ∈ K|x, y ∈ R, y /∈ p} is called localization or local

field of R at p. We now are ready to define the Dedekind domains;

Definition 5.1.4 A Noetherian integral domain R said to be Dedekind do-

main if for every prime ideal p of R, Rp is a discrete valuation ring.

Remark 5.1.5 Fq being a finite field Fq[t] and Z are Dedekind domains.

Definition 5.1.6 A finite Galois extension of Fq(t) or Q is said to be global

field.

We will list a couple of properties of Dedekind domains without proving them.

We refer (Serre Local fields Ch1, Cassels Frochlich Algebraic Number Theory ch1)

for details.

Proposition 5.1.7 Let vp denote the valuation of K defined by Ap, then for

every x ∈ K∗ then vp(x) are zero for almost all p. (’almost’ means ’for all but

finitely many’). In addition, every fractional ideal a of A can be written uniquely

in the form a =
∏

pvp(a) where the vp(a) are almost all zero.
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This property enables to define the symbols on prime ideals, and is one of

the reasons why we observe the theory on Dedekind domains. The next lemma,

known as approximation lemma, is a common tool for approximating arbitrary

ideals by using integral elements, and is frequently used in proofs. An analytic

analogue will be given in the context.

Lemma 5.1.8 (Approximation lemma) Let p1, p2 · · · , pk are k distinct

prime ideals of A, x1, · · · , xk ∈ K and n1, n2, · · · , nk are integers. Then there

exists x ∈ K such that vpi(x − xi) ≥ ni for all i = 1, 2, · · · , k and vq(x) ≥ 0 for

all q different than pi.

The next proposition points that the finite extension of the field of Dedekind

domains is also a rational field of a Dedekind domain. Let L be a finite extension

of K and n = [L : K]. Let A be a Dedekind domain with field of fractions are

K, and B be its integral closure in L. Then

Proposition 5.1.9 B is also a Dedekind domain.

Remark 5.1.10 Z is Dedekind domain with rational field Q, so if L is a finite

extension of Q, then ring of algebraic integers of L is Dedekind domain. More-

over, Fq[t] proved to be a Dedekind domain with field of fractions Fq(t). Assuming

Fq(t)(x) any finite algebraic extension of Fq(t), then the algebraic closure of Fq[t]
in Fq(t)(x) is also Dedekind domain. Hence, finite extensions of Q and Fq(t)
enjoys the properties of Dedekind domains as well.

We continue with definition of ramifications of L/K at primes of K;

Definition 5.1.11 Let P be a non-zero prime ideal of B, if p = A
⋂
P we say P

divides (or above) p and denote by P|p. Set eP = vP(pB) and pB =
∏

P|pP
eP,

eP is called ramification index of P in L/K. As B is finitely generated over A,

B/P is finite extension of A/p. fP = [B/P : A/p] is called the residue degree

of P. If eP = 1 and B/P is separable over A/p we say L/K is unramified at
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p. If eP > 1 we say L/K is ramified at p. When there is only one prime P of

L above p and fP = 1 we say L/K is totally ramified at p. We say L/K is

tamely ramified at p if it is ramified and p does not divide the degree of the

extension [L : K].

Now, we assume that L/K is Galois extension and denote the Galois group

by G(L/K).

Proposition 5.1.12 G(L/K) acts transitively on the set of prime ideals P of B

which are above the prime ideal p of A.

Definition 5.1.13 DP(L/K) = {σ ∈ G(L/K) : σ(P) = P} is called the de-

composition group of P in L/K. TP(L/K) = {σ ∈ G(L/K) : σ(α) ≡
α(mod P)∀α ∈ B} is called the inertia group of P in L/K.

Assume now is (L/K) unramified at P and A/p has Np elements. Then TP = {1}
and there exists unique generator of sP ∈ DP characterized by:

Definition 5.1.14 sP ∈ (G/K) satisfying

sP(b) ≡ bNp(mod P)

for all b ∈ B is called Frobenius automorphism of P and is denoted by

(P, L/K).

By definition Frobenius automorphism generates DP and has order fP.

Definition 5.1.15 Assume L/K is abelian, (P, L/K) depends only on p = P ∩
A. It is denoted by (p, L/K) and called the Artin symbol of p in G(L/K). If a

is a fractional ideal of A which contains no ramified primes, set

(a, L/K) =
∏

(p, L/K)vp(a)

where a =
∏

pvp(a). It is called the Artin symbol of a in G(L/K).
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We note that only the extensions L = K( n
√
a), namely the Kummer fields,

are our fields of interest throughout the reciprocity theory, hence we specialize to

Kummer extensions and treat the ramification by Kummer theory.

5.2 Decomposition of Primes

In this section we define Kummer fields L = K( n
√
a) and determine the ramifica-

tion the extension K( n
√
a)/K at primes of K.

Through this section, K is a field of characteristic p not dividing n (charac-

teristic may be 0), in which xn− 1 splits; and ζn will be a primitive root of unity.

Let a ∈ K∗, if L is extension of K such that xn = a has root α in L, then all the

roots α, ζnα, ζ
2
nα, · · · , ζn−1

n α of xn = a are in L and any automorphism of L over

K permutes them. We denote the minimal splitting field for xn = a by K( n
√
a).

Definition 5.2.1 K( n
√
a)/K is called Kummer extension (or Kummer

field).

If σ is an element of Galois group G(K( n
√
a)/K), then, once we have chosen a

root α of xn = a, σ is determined completely by the image σ(α) = ζbnα. In

particular, if a is of order n in the multiplicative group K∗/(K∗)n, then ar is an

n-th power in K∗ if and only if n|r, so xn− a is irreducible; in this case, the map

σ → ζbn gives an isomorphism of G(K( n
√
a)/K) on to µn the multiplicative group

of n-th roots of unity. We state all this as lemma;

Lemma 5.2.2 If a ∈ K∗, there is a well defined normal extension K( n
√
a), the

splitting field of xn − a. If α is root of xn − a, there is an injective map of

G(K( n
√
a)/K) → K∗ given by σ → σ(α)

α
; in particular, if a is of order n in

the multiplicative group K∗/(K∗)n, the Galois group G(K( n
√
a)/K) is cyclic and

generated by σ with σ(α) = ζnα.

We want to look at the factorization of primes p of K in the extension K( n
√
a)
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in order to determine the ramified and unramified primes. The following theorem

gives the answer for the general case:

Theorem 5.2.3 Let S and R denote the Dedekind domains whose rational fields

are L and K respectively. Assume L/K is finite Galois extension. A prime p of

K is unramified in L if and only if p does not divide the discriminant δ of S/R.

For proof we refer to [5].

As a consequence of this theorem we have the following identification for

primes over Kummer fields;

Lemma 5.2.4 The discriminant of K(
√
a) over K divides nnan−1; p is unram-

ified if p 6 |na. If p|a, p 6 |n and pn 6 |a then p is tamely ramified in K(
√
a); if p|a

and p2 6 |a then p is totally ramified.

Proof : Suppose αn = a; then, if O is the ring of integers of K, O[α] is a

submodule of the ring of integers of K(α), and its discriminant is
∏

αn=a
d(xn−a)

dx
=∏

αn=a nx
n−1 = nan−1. By theorem above p is unramified if and only if p 6 |na. If

p|a and p2 6 |a quite explicitly p = (p, α)n. If p 6 |n, so that p does not divide the

degree of the extension then any ramification must certainly be tame. On the

other hand if p|a but pn 6 |a then p is certainly ramified since (p, α)|p|(p, α)n.

There remains the case where pr|a, pr+1 6 |a, p 6 |n with 2 ≤ r ≤ n − 1. If

(r, n) = 1 then we have k,m so that rk + nm = 1 and choose q ∈ K with p|q
and p2 6 |q. Then K[ n

√
akq−nm] = K( n

√
a) and we got back to the case r = 1. If

(r, n) = s > 1, the ramification is no longer total, and there may or may not be

splitting as well. The ramification index is n/s: p is unramified in the extension

K( s
√
a) of K, and the factors of p are totally ramified in the extension K( n

√
a) of

K( n
√
a).
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5.3 The Local Analytic Structure

Let R be Dedekind domain, p its prime ideal, and Rp is its localization at p. Let

v be discrete valuation of Rp, π denote uniformizer. One may define an absolute

value | |p on K by setting |0|p = 0, |x|p = c−v(x) for non-zero x and for a fixed

0 < c < 1. This absolute value satisfies |x+ y|p ≤ |x|p + |y|p, |xy|p = |x|p|y|p and

|x|p = 0⇔ x = 0, hence it is a metric. This metric imposes a topology on K. In

this section, we show that different primes have different topologies and discuss

certain properties of the analytic structure of K. We reverse the direction and

investigate all absolute values satisfying the three conditions, in order to describe

a global analytic structure. It comes out to be that all absolute values are of form

| |p plus that are isomorphic to ordinary absolute value of C or R which will be

called the infinite primes. We finish the section defining of the topology on the

global analytic structure and deducing the local Artin maps.

We start with defining the absolute value;

Definition 5.3.1 Let K be a field. A function | |K → R∪{0} is called absolute

value if it satisfies

1. |0| = 0 and |a| > 0 for a 6= 0

2. |ab| = |a| |b|

3. |a+ b| ≤ |a|+ |b|

Remark 5.3.2 |1| = 1, | − 1| = 1, |a| = | − a| and |a− b| ≥ | |a| − |b| |.

The valuation satisfying |0| = 0 and |a| = 1 for all a ∈ K is called the trivial

valuation and will be excluded from consideration.

The absolute values differ by the triangle inequality property |x+y| ≤ |x|+ |y|
such that either |x + y| ≤ sup |x|, |y| for all x, y ∈ K which resembles the case

where absolute value is of form | |p, or there always exits a y ∈ K with |x+y| > |x|
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for given x which resembles the case | | is ordinary absolute value of R or C. We

explain it by;

Definition 5.3.3 The absolute value | | said to be non-archimedean if it satisfies

|x + y| ≤ |x| + |y| for all x, y ∈ K and said to be archimedean if it is not non-

archimedean.

Remark 5.3.4 An equivalent but simpler version of the definition is if |n| > 1

for at least one n ∈ N then | | is archimedean, if |n| ≤ 1 for all n ∈ N, | | said to

be non-archimedean valuation.

Definition 5.3.5 Absolute value | | of field K said to be discrete if ∃δ > 0 such

that

1− δ < |a| < 1 + δ ⇒ |a| = 1

Lemma 5.3.6 Let non trivial absolute value | | of field K be non-archimedean.

| | is discrete if and only if the ideal p| | = {x ∈ K : |x| < 1} is a principal ideal.

Proof : If p is principal, then p = (π) for some generating element π ∈ K.

|π| = P < 1. Take δ = 1−P . Assume P < |a| < 2−P , and a = πa1u with u unit.

Then |a| = P a1 > P thus a1 = 0 and |a| = 1. Assume now | | is discrete. Non-

triviality guaranties ∃γ ∈ K with |γ| < 1 and discrete property implies that there

exists λ < 1 such that |γ| < 1 implies |γ| < λ. Assume now λ = sup|γ|<1{|γ|}.
We first prove that ∃π ∈ K with |π| = λ. Assume not, there exist a sequence

γi in K with |γi| → λ, hence | γi
γi+1
| → 1 |γi+1

γi
| → 1, hence there exists an i

with either λ < |γi+1

γi
| < 1 or λ < | γi

γi+1
| < 1 which yields a contradiction. Let

|π| = λ, and a ∈ K with |a| ≤ 1. | a
πn
| → ∞ thus ∃n0 with | a

πn0
| < 1 ≤ | a

πn0+1 |.
| a
πn0
| < 1 ⇒ | a

πn0
| ≤ λ = |π| and hence | a

πn0+1 | ≤ 1 which gives | a
πn0+1 | = 1

therefore a = πn0+1u for some unit, hence the lemma.

Let R be Dedekind domain with its quotient field K, and p be prime ideal of

R. Since p = p| |p is principal ideal, by previous lemma | |p is a non-archimedean
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discrete absolute values of K. Conversely, given a non-archimedean discrete ab-

solute value | | of K, p| | is a prime ideal of K and | | is equivalent to | |p. In the

achimedean case, the absolute value is as follows;

Theorem 5.3.7 (Gelfand-Tornheim) Any field K with achimedean valuation

is isomorphic to a subfield of C, the valuation equivalent to that induced by abso-

lute value on C.

Proof : Refer to [3]

Consequently, all types of valuations of K comes out to be either archimedean,

or non-arhchimedean and discrete.

Different absolute values on K may give the same topological structure. Since

we are interested in the kind of topology rather than that of valuation, we consider

such valuations as equivalent.

Definition 5.3.8 Two valuations of K; | |1 and | |2 said to be equivalent if

|a|1 < |b|1 ⇔ |a|2 < |b|2. Equivalence is denoted by | |1 ' | |2.

Remark 5.3.9 Two valuations | |1 and | |2 are equivalent if and only if ∃s > 0

such that | |1 = | |s2. In addition, | |1 and | |2 are equivalent if and only if both

induce the same topology. For proofs we refer to [9].

We call place to an equivalence class of absolute values. A place which of a

non-archimedean discrete absolute value is determined by fixing the value |π| at

a uniformizer of p| |. For measure theoretical reasons we set |π| = P−1 where P

is the cardinality of the residue field K/p| | (in order to have Haar measure 1 of

the residue field).

Definition 5.3.10 Let K be a field with absolute value | | and residue field with

P <∞ elements. We say that | | is normalized absolute value if

|π| = 1

P
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where p| | = (π) is the maximal ideal of K with respect to | |.

We make some remarks on the analytic properties of absolute values and

completion of fields with referring the proofs to [5].

Remark 5.3.11 An absolute value | | of field K induces a topology with metric

d(x, y) = |x − y|. The topology induced by | | makes K a topological field, i.e.

sum, product, reciprocal are continuous.

We continue with completion. We say that K is complete with respect to

valuation | | if every Cauchy sequence has a convergent point, or more precisely,

for any given sequence an with |an − am| → 0 as m,n→∞ there is a∗ ∈ K with

an → a∗ with respect to | |.

Theorem 5.3.12 Every field K with valuation | | can be embedded in a unique

(up to isomorphism) complete field K̄ with a valuation | |K̄ satisfying | |K̄ = | |
on K. Moreover, | | is non-archimedean if and only if | |K̄ is.

The next theorem is the analytic analogue of the approximation lemma that

we mentioned for fractional ideals. This is, too, a very useful tool to extend the

properties inherited by principal ideals to properties of fractional ideals, and thus

will frequently be used in proofs.

Theorem 5.3.13 (Artin-Whaples) Let | |1, | |2, · · · , | |r be inequivalent non-

trivial valuations of K, then for arbitrary elements a1, a2, · · · , ar ∈ K and

δ1, δ2, · · · , δr > 0 there exists an element a ∈ K with |a − ai| < δi for all

i = 1, 2, · · · , r.

Proof : Refer to [9]

Note that if p is a prime ideal of R and | |p absolute value associated to p, then

the completion K̄p of the field K consist of elements of the form
∑∞

i>>−∞ aiπ
i

where ai are elements in residue field K/p and π is uniformizer.
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5.4 The Global Analytic Structure

We now fix the notation. We start with definitions motivated by analytical struc-

ture. R is a Dedekind domain, K its quotient field. We say prime to an equiv-

alence class of absolute value of K. We say finite prime to a non-archimedean

discrete place and infinite prime to archimedean place. We denote finite and

infinite primes by p and ∞ respectively. We also use p for prime ideal of R, and

| |p for non-archimedean absolute value associated to p. Let v = vp denote the

valuation, Op = {|a|p ≤ 1, a ∈ K} = {vp(a) ≥ 0, a ∈ K} ring of integers, K/p

residue field Up = {|u|p = 1, u ∈ K} = {vp(u) = 0, u ∈ K} units, π uniformizer

of p = {|a|p < 1, a ∈ K} = {vp(a) > 0, a ∈ K}, and K̄p be completion of K with

respect to | |p. For convenience we set U∞ = K∗.

We next fix the definitions motivated by ideal theoretic structure. Let S∞

denote set of infinite primes and M denote the set of all primes of K, i.e. set of

all prime ideals of R plus S∞. IK denote the group of the fraction ideals of R,

then there is a canonical isomorphism from IK to free group generated by M−S∞
given by

pv11 pv22 · · · p
vk
k → pv11 pv22 · · · p

vk
k .

We also fix L/K to be a finite abelian extension of K. Denote by S the set of

primes of K which are ramified plus infinite primes and by IS the set of fractional

ideals of R which are coprime to S.

We now define the global analytical structure by introducing the restricted

product topology:

Definition 5.4.1 Let Ωλ (λ ∈ Λ) be a family of topological spaces and let Θλ ⊂
Ωλ be open subset for all λ ∈ Λ. Consider the space Ω = {{αλ}λ∈Λ, αλ ∈ Θλ

for almost all λ}. We give Ω a topology by taking as basis for open sets
∏

λ∈Λ Γλ

where Γλ ⊂ Ωλ is open for all λ and Γλ = Θλ for almost all λ. We call this

topology as restricted product topology of Ωλ with respect to Θλ.

As we shall see, Ωλ will be identified by primes, and the next corollary shows
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that the topology does not change if we remove a finite set S from Λ (this S will

be consistent with the one defined above).

Corollary 5.4.2 Let S be finite subset of Λ, and let ΩS =
∏

λ∈S Ωλ

∏
λ/∈S Θλ.

Then ΩS is open in Ω and the topology induced in ΩS as a subset of Ω is the same

as the product topology.

Definition 5.4.3 The restricted product topology of the multiplicative groups K∗p

with respect to the units Up of p is called the idele group of K and denoted by

JK. An element(or vector) of JK is called an idele. The set of elements of JK

which have value 1 at the p-th component is denoted by JSK.

K∗ can be embedded into the groups of ideles such that if α ∈ K,

(.., α, α, α, · · · ) = (α)p∈M is in JK since α is unit for almost all primes. We

set α→ (.., α, α, α, · · · ). We call such ideles as principal ideles, and denote the

set of principal ideles also by K∗.

Proposition 5.4.4 The multiplicative group K∗ is embedded as a discrete sub-

group of JK.

Proof : Refer to [5] or [15].

If x ∈ JK it has a non-unit component at only a finite number of p component

xp of x in np ∈ Z, we write

(x)S =
∏
p/∈S

npp ∈ IS.

5.5 Global and Local Artin Maps

Theorem 5.5.1 Let a ∈ IS, recall the Artin symbol of a with respect to L/K;

(a, L/K) =
∏

(p, L/K)vp(a) ∈ G(L/K).
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Then there exists ε > 0 such that a ∈ K∗ and |a− 1|p < ε for all p ∈ S implies

((a)S, L/K) =
∏
p/∈S

(p, L/K)vp(a) = 1

In other words, if a ∈ K∗ is sufficiently near to 1 at all primes in a large enough

set S, then ((a)S, L/K) = 1.

We refer to [1], [5], [15], [25] for the proof.

We briefly indicate how this theorem is interpreted in the quadratic case. Let

Q(
√
a)/Q be the quadratic extension. Then S = {p; p|2a} ∪∞. IS is fractional

ideals prime to 2 and to a. Let p denote a prime dividing 2 or a. Let b ∈ IS, since

Z is principal ideal domain, we may assume b = (b) with b ∈ Q. |b−1|p < ε means

that b ≡ 1(mod pk) for some large k ∈ N. The theorem states that there exists

an integer kp such that a ≡ 1(mod pkp) implies that the quadratic norm residue

symbol
(
a,b
p

)
= 1 i.e. b is a norm for the quadratic extension QP(

√
a)/Qp for any

p|2a. This is evident since p = 2 and b ≡ 1(mod 8) implies that b is norm, and p|a,

p 6= 2 and b ≡ 1(mod pi) implies b is norm. Hence taking ε = minp|a{2−3, p−1},
|a− 1|2 < ε implies

(
a,b
p

)
= 1 for all p|2a.

Theorem 5.5.2 Assume G(L/K) is a topological group endowed with the Krull

topology. Then there exists unique homomorphism ψL/K : JK → G(L/K) such

that

i) ψL/K is continuous;

ii) ψL/K(x) = 1 for all x ∈ K∗;

iii) ψL/K(x) = ((x)S, L/K) for all x ∈ JSK.

Proof : By approximation theorem we can find a sequence an ∈ K∗ such

that |an − x−1|p → 0 as n→∞ at all p ∈ S. We define ψL/K(x) to be

ψL/K(x) = lim
n→∞

((anx)S, L/K)



CHAPTER 5. GLOBAL FIELDS 47

The limit RHS is exists since G(L/K) is complete. This is well defined as follows;

if bm ∈ K∗ is another sequence with |bm − x−1|p → 0, by triangle inequality of

| |p;

|an
bm
− 1|p =

1

|bm|p
|anx− bmx|p ≤

1

|bm|p
(|an − x−1|p + |bm − x−1|p)

taking the limits as m,n→∞,

|bm|p → |x−1|p > 0 and (|an − x−1|p + |bm − x−1|p) → 0, hence | an
bm
− 1|p → 0.

Writing this in the equation;

((anx)S, L/K)

((bmx)S, L/K)
= ((

an
bm

)S, L/K)→ 1 ∈ G(L/K)

by the previous theorem. For continuity, let the p-th component of x are units

for p /∈ S, then we have ψL/K(x) = limn→∞ ((an)S, L/K) and if in addition p-th

component of x are sufficiently close to 1 for p ∈ S, then so will be those of an

for large n, and by previous theorem ((an)S, L/K) = 1 for sufficiently large n,

proving i). Take x ∈ K∗ principle idele whose all components are a, set an = a−1

we get ψL/K(x) = limn→∞ ((1)S, L/K) = 1 proving ii). Let x ∈ JSK , take now

an = 1 for all n, thus we get ψL/K(x) = limn→∞ ((x)S, L/K) = ((x)S, L/K),

proving iii).

Definition 5.5.3 ψL/K is called the global Artin map.

We follow with the local artin maps.

Definition 5.5.4 Denote the idele whose p-th component is x and other compo-

nents are 1 by (· · · , 1, x, 1, · · · )p. The homomorphism ψp : K∗p → G(L/K) defined

as follows; x → ψL/K((· · · , 1, x, 1, · · · )p) is on one hand in G(L/K) since ψL/K

has image G(L/K). On the other hand, by the choice of the idele this can be

identified by an element of G(LP/Kp). We set ψp : Kp → G(LP/Kp) as x → σx

with σx = ψL/K((· · · , 1, x, 1, · · · )p). We call ψp the local Artin map.

In the following remark we give the relation of local Artin maps to Global

Artin map;
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Remark 5.5.5 If x = (xp) ∈ JK, then;

x = lim
S
{
∏
p∈S

(· · · , 1, xp, 1, · · · )p}

and by continuity

ψL/K(x) =
∏
p

ψp(xp)

We end this chapter here, leaving the definition of the norm residue and power

residue symbols to the next chapter.



Chapter 6

Symbols and The Reciprocity

Relation

In this chapter we give the definition of power and norm residue symbols and

prove the main theorem. At first section we define the power residue symbol

and deduce a number of properties. We continue with definition and properties

of the norm residue symbol at the second section. At the last the section we

observe how both symbols are related, and finish by proving the main theorem

of reciprocity theory.

6.1 Power Residue Symbol

We keep the notation of the previous chapter. Let R be Dedekind domain K be

its field of fractions, n be a fixed natural number and let the group µn of n-th root

of unity is contained in K. S denote the set of primes of K consisting of infinite

primes and those dividing n. If a1, a2, · · · , ar ∈ K∗, we let S(a1, a2, · · · , ar)
denote the set of prime primes in S together with the primes such that |ai|p 6= 1

for some i. For a ∈ K, let K( n
√
a) denote the splitting field of xn = a, and M

denote the integral closure of R in K( n
√
a). Let b ∈ IS(a), its prime decomposition

b = pb11 pb22 · · · p
bk
k where bi > 0 and pi for i = 1, 2, .., k. Denote by Pi to a prime

49
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in K( n
√
a) above pi. Since pi are unramified at K( n

√
a), and hence the Frobenius

automorphism (p, K( n
√
a)/K) is characterized by

(pi, K( n
√
a)/K)(γ) ≡ γNpi(mod P)

for all γ ∈M (whereNpi is the number of elements of the residue field R/pi). This

definition is independent of choice of root n
√
a of xn−a since the automorphism is

determined by its action on all elements of M and since it is unique. Extending

this definition;

(b, K( n
√
a)/K) =

k∏
i=1

(pi, K( n
√
a)/K)bi

is uniquely determined up to a.(i.e. independent of choice of n
√
a), and is an

element of the Galois group G(K( n
√
a)/K).

[(b, K( n
√
a)/K)( n

√
a)]n = (b, K( n

√
a)/K)(( n

√
a)n) = a = ( n

√
a)n

[(b, K( n
√
a)/K)( n

√
a)]n − ( n

√
a)n =

n−1∏
i=0

[(b, K( n
√
a)/K)( n

√
a)− ζ in n

√
a] = 0

Thus we have (b, K( n
√
a)/K)( n

√
a) = ζ i0n

n
√
a for some i0 ∈ {0, 1, · · · , n − 1}. We

define n-th power residue symbol
(
a
b

)
n

by

Definition 6.1.1 (a
b

)
n

= ζ i0n

or more transparently

(b, K( n
√
a)/K)( n

√
a) =

(a
b

)
n

n
√
a

is called the n-th power residue symbol associated to a and b.

We list the certain properties of this symbol, and leave the proofs to the end.

Theorem 6.1.2 i) Assume a, a′ ∈ K∗, and b ∈ IS(a,a′) then;(
aa′

b

)
n

=
(a
b

)
n

(
a′

b

)
n
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ii) Assume a ∈ K∗, and b, b′ ∈ IS(a) then;( a

bb′

)
n

=
(a
b

)
n

( a
b′

)
n

and hence (a
b

)
n

=
∏

p/∈S(a)

(a
b

)vp(b)

n

iii) {Generalized Euler Criterion} If p /∈ S(a) then n|Np−1, where Np = [R/p],

and
(
a
p

)
n

is the unique n-th root of unity such that(
a

p

)
n

≡ a
Np−1
n (mod P)

iv) Let a ∈ K∗p and p 6 |n, then
(
a
p

)
n

is the unique n-th root of unity satisfying(
a

p

)
n

≡ a
Np−1
n (mod p).

v) For p ∈ S(a), equivalently p 6 |n and a ∈ K∗p , the following statements are

equivalent

1)
(
a
p

)
n

= 1

2) xn ≡ a(mod p) solvable with x ∈ Op.

3) xn = a is solvable with x ∈ Kp.

vi) If b is an integral ideal prime to n, and ζn be an n-th root of unity, then;(
ζn
b

)
n

= ζ
Nb−1
n

n

vii) If a integral and b ∈ IS(a) integral ideal, and if a′ ≡ a(mod b) then(a
b

)
n

=

(
a′

b

)
n

viii) If b, b′ ∈ IS(a) with b′b−1 = (c) is the principal ideal with c ∈ K∗ such that

c ∈ (K∗p )n for all p ∈ S(a), then( a
b′

)
n

=
(a
b

)
n
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We now prove these properties:

Proof : {Property i} If we show this for only prime ideals b = p, then by

linearity we are done. Fix p, denote primes above p of the fields K( n
√
a), K( n

√
a′),

K( n
√
aa′) and K( n

√
a, n
√
a′) by Pa, Pa′ , Paa′ and P respectively. Let Ma, Ma′ ,

Maa′ and M denote the integral closure of R in the respective fields. Denote the

Frobenius automorphisms (p, K( n
√
a)/K), (p, K( n

√
a′)/K), (p, K( n

√
aa′)/K) and

(p, K( n
√
a, n
√
a′)/K) by σa, σa′ , σaa′ and σ respectively. Since p is unramified at

all these fields; σ is characterized by

σ(γ) = γNp(mod P), ∀γ ∈M.

Putting γ = n
√
aa′ on one hand;

σ(
n
√
aa′) ≡ n

√
aa′

Np
(mod P)

On the other hand n
√
aa′ ∈Maa′ and P is above Paa′ ;

σaa′(
n
√
aa′) ≡ n

√
aa′

Np
(mod P)

Doing the similar process for n
√
a′ and n

√
a′ we get σ( n

√
a) ≡ σa( n

√
a) ≡

n
√
a
Np

(mod P) and σ( n
√
a′) ≡ σa′( n

√
a) ≡ n

√
a
Np

(mod P), combinin these, we

get σaa′(
n
√
aa′) ≡ σa( n

√
a)σa′(

n
√
a′)(mod P). As σaa′(

n
√
aa′), σa( n

√
a) and σa′(

n
√
a′)

are n-th root of 1, thus we have the lemma.

Proof : {Property ii} This is immediate from multiplicative property of the

symbol.

Proof : {Property iii} First we prove that p /∈ S(a) then n|Np− 1. p /∈ S(a)

implies p is unramified and thus the inertia group

Tp = {σ ∈ G(K(
n
√
a′)/K);∀α ∈M,σ(α) ≡ α(mod P)} = (1).

Let σp denote the Frobenius automorphism (p, K( n
√
a′)/K). Due to its charac-

terization, we have

σp(ζn) ≡ ζNp
n (mod P)

. The field [M/P : R/p] has Np elements, thus ζNp−1
n ≡ 1(mod P). Let d be

smallest positive integer with ζdn ≡ 1(mod P). We show that d|n and d|Np − 1.
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Assume d1 = (d, n), then ∃k, l ∈ Z such that kd + ln = d1. ζd1n ≡ ζkd+ln
n ≡

ζkdn ζ
ln
n ≡ 1(mod P), thus d1 ≥ d, and by the choice of d1, d1 ≤ d so d1 = d.

Similar process works if we take Np − 1 instead of d, proving the assertion. We

now prove d = n. ζdn ≡ 1(mod P), G(K( n
√
a′)/K) is cyclic and generated by

σgen : α→ ζnα. Take σdgen.

σdgen(α) ≡ ζdnα ≡ α(mod P),∀α ∈M

hence σdgen ∈ Tp = (1) hence d = n and n|Np− 1. For the second part;(
a

p

)
n

( n
√
a) ≡ n

√
a
Np ≡ a

Np−1
n n
√
a(mod P)

hence the property.

Proof : {Property iv} The characterization of the symbol in the previous

proof is independent of P. This allows us to define the symbol analogously for

the field Kp. The residue field O/p is a finite field with Np elements (O be ring

of integers). Let a ∈ K∗p , then a
Np−1
n make sense, and if also n|Np− 1, is an n-th

root of unity in O/p which is exactly the n-th root of unity determined by power

residue symbol. We can derive the lemma above just in a similar manner up to

slight modifications. The crucial point is p is unramified in K( n
√
a)/K, which

equivalently, thanks to Kummer Theory, is p 6 |na or equivalently a ∈ K∗p and

p 6 |n.

Proof : {Property v} 1) ⇔ 2); Let c be generator of the field O/p, and

a ≡ ca1(mod p).
(
a
p

)
n

= 1 ⇔ a
Np−1
n ≡ 1(mod p) ⇔ c

a1(Np−1)
n ≡ 1(mod p) ⇔

n|a1 ⇔ a1 = na2 ⇔ a ≡ ca2n ≡ (ca2)n(mod p) ⇔ a ≡ xn(mod p) solvable in

Op since a2 is arbitrary integer and ca2 spans all the residue field when a2 spans

integers.

2) ⇔ 3); the ”⇐” part is obvious. Assume xn ≡ a(mod p) solvable. we claim

that we can find ai i = 1, 2, · · · such that (a0 +a1p+a2p
2 + · · · )n ≡ a(mod pk) for

all k ∈ N. We use induction. Set a0 = x, this makes the assertion true for k = 1.

Set uk = a0+a1p+a2p
2+· · ·+ak−1p

k−1. (uk+akp
k)n ≡ unk+nun−1

k akp
k−1(mod pk)

thus a− (uk + akp
k)n ≡ a− unk − nun−1

k ak(mod pk). By induction step a− unk is

divisible by pk−1, thus equation becomes
a−unk
pk−1 −nun−1

k ak(mod p). We are allowed
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to set ak ≡
a−unk

nun−1
k pk−1 (mod p) since characteristic of the residue field is prime to

n, hence n are un−1
k invertible. This choice of an proves the induction step hence

the lemma.

Proof : {Property vi} Assume b = p a prime ideal, then since p ∈ S(a),(
ζn
p

)
n

= ζ
Np−1
n

n , hence the property. Now write b =
∏k

i=1 p
bi
i , on one hand

(a
b

)
n

=
k∏
i=1

(
a

pi

)bi
n

= ζ
∑k
i=1 bi

Npi−1

n
n

On the other hand, setting Npi = 1 + nri then;

Nb ≡
k∏
i=1

(1 + nri)
bi ≡

k∏
i=1

1 + nribi ≡ 1 + n
k∑
i=1

ribi(mod n2)

hence
Nb− 1

n
≡

k∑
i=1

bi
(Npi − 1)

n
(mod n)

and the property.

Proof : {Property vii} If a′ ≡ a(mod b) then p ∈ IS(a,a′). By ii)(
a′a−1

b

)
n

=

(
a′

b

)
n

(a
b

)−1

n

and by property iv), this is equivalent to 1 since a′a−1 ≡ 1(mod b).

Proof : {Property viii} Artin theorem for the extension K( n
√
a/K) implies

that for all pi ∈ S(a) there exit ki ∈ N such that x ∈ K∗ and x ≡ 1(mod pi)

implies (x,K( n
√
a/K)) = 1. Now fix these ki. The assumption of c ∈ (K∗p )n

implies that c ≡ xni (mod pkii ) is solvable with xi ∈ Oi integer rinf of pi. By

approximation lemma we can find a c0 such that c0 ≡ xi(mod pkii ). By Artin’s

theorem we clearly have (c/(c0)n, K( n
√
a/K)) = 1. On the other hand

1 = (c/(c0)n, K( n
√
a/K)) = (c,K( n

√
a/K))(c0, K( n

√
a/K))−n = (c,K( n

√
a/K)) =

= (b′b−1, K( n
√
a/K)) = (b′, K( n

√
a/K))(b, K( n

√
a/K))−1

Hence (b′, K( n
√
a/K)) and (b, K( n

√
a/K) are the same element of G(K( n

√
a/K))

and both send n
√
a to the same number, thus

(
a
b′

)
n

=
(
a
b

)
n
.
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Now we specialize to the case K = Q, n = 2. Let a, b denote arbitrary integers,

and p, q denote positive odd primes. For (a, p) = 1 the quadratic residue symbol(
a
p

)
=
(

a
(p)

)
= 1 is defined, is multiplicative in each argument separately, and

satisfies;
(
a
p

)
=
(
b
p

)
by vii and

(
a
p

)
=
(
a
q

)
if p ≡ q(mod 8a0) by viii where a0

is the odd part of a. The second follows from the fact that integers ≡ 1(mod 8)

are 2-adic squares. We now get the classical form of quadratic reciprocity;

Theorem 6.1.3(
−1

p

)
= (−1)

p−1
2 ,

(
2

p

)
= (−1)

p2−1
8 ,

(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4 .

Proof : Taking a = −1 by property
(
a
p

)
=
(
a
q

)
if p ≡ q(mod 8) we are

reduced to check this for p = 3, 5, 7, 17, which evidently satisfy
(
−1
p

)
= (−1)

p−1
2 .

Taking a = 2, by similar property we are reduced to cases p = 3, 5, 7, 17 and these

evidently satisfy
(

2
p

)
= (−1)

p2−1
8 . For the last one, define

< p, q >=

(
p

q

)(
q

p

)
.

If p ≡ q(mod 8), writing q = p+ 8a then(
q

p

)
=

(
8a

p

)
=

(
8a

q

)
=

(
−p
q

)
=

(
−1

q

)(
p

q

)
.

hence we get < p, q >=
(
−1
q

)
for p ≡ q(mod 8). Now assume p, q arbitrary, then

there is a prime r different than q with rp ≡ q(mod 8), and another prime s

different than q such that s ≡ pr(mod 8) then

< p, q >< r, q >=< pr, q >=< s, q >=

(
−1

q

)
.

We see that < p, q > depends only on q modulo 8. by symmetry since < p, q ><

q, p >= 1, we are reduced to check the cases for p = 3, 5, 7, 17 and q = 3, 5, 7, 17,

which, up to a long calculation, evidently satisfy
(
p
q

)(
q
p

)
= (−1)

(p−1)(q−1)
4 .
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6.2 Norm Residue Symbol

Let a, b ∈ K∗, let p be an arbitrary prime. Let P be a prime of the Kummer

extension K( n
√
a)/K above p. Denote by K( n

√
a)P the completion of K( n

√
a) with

respect to P. ψp : Kp → G(KP( n
√
a)/Kp) denote the local Artin map associated

with K( n
√
a)/K. The image of G(KP( n

√
a)/Kp) is identified by the decomposition

group DP(K( n
√
a)/K) ⊂ G(K( n

√
a)/K), and is independent of the choice of the

root n
√
a. Let b ∈ K∗ and (b) denote the its principal. If we consider a as element

of K∗p then ψp((b))( n
√
a) makes sense, in fact;

[ψp((b))(
n
√
a)]n = ψp((b))((

n
√
a)n) = a = ( n

√
a)n

since G(KP( n
√
a)/Kp) acts trivially on K∗p , therefore

[ψp((b))(
n
√
a)]n − ( n

√
a)n =

n−1∏
i=0

[ψp((b))(
n
√
a)− ζ in n

√
a]

for some i0 ∈ N, ψp((b))( n
√
a) = ζ i0n

n
√
a. i0 is independent of n

√
a, and depends

only on a, b and p;

Definition 6.2.1 (
a, b

p

)
n

= ζ i0n

or more transparently

(ψp((b))(
n
√
a) =

(
a, b

p

)
n

n
√
a

is called the norm residue symbol associated to a and b at p.

Norm residue symbol also possesses certain properties similar to that of power

reside symbol.

Theorem 6.2.2 Let a, a′, b, b′ ∈ K∗p , S denote the set of infinite primes,

S(a1, · · · , ar) denote the set of primes S ∪ {p : ∃i such that vp(ai) 6= 0}. Then

the following properties hold;
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i) (
a, b

p

)
n

(
a, b′

p

)
n

=

(
a, bb′

p

)
n

and (
a, b

p

)
n

(
a′, b

p

)
n

=

(
aa′, b

p

)
n

ii) If one of a, b ∈ (K∗p )n, then; (
a, b

p

)
n

= 1

iii) If b is a norm for the extension Kp( n
√
a)/Kp then;(

a, b

p

)
n

= 1.

iv) If a+ b ∈ (K∗)n then (
a, b

p

)
n

= 1

In particular; (a,−a) = 1 and (a, 1− a) = 1.

v) If a, b ∈ K∗ then (
a, b

p

)
n

(
b, a

p

)
n

= 1

vi) If p is infinite prime, then
(
a,b
p

)
2

= −1 if both a < 0 and b < 0 in Kp, and

for all other cases; (
a, b

p

)
n

= 1

vii) {Relation between norm-residue and power residue symbols} If p /∈ S(a) then(
a, b

p

)
n

=

(
a

p

)vp(b)

n

in particular,
(
a,b
p

)
n

= 1 for for p /∈ S(a, b).

viii) If p /∈ S then; (
a, b

p

)
n

=

(
(−1)vp(a)vp(b)avp(b)b−vp(a)

p

)
n
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ix) {The Product formula} For a, b ∈ K∗, we have∏
p∈M

(
a, b

p

)
n

= 1

where M is the set of all primes of K (including the infinite primes).

We prove the properties;

Proof : {Property i} First one is immediate from norm residue symbol defini-

tion and the multiplicative property of local artin maps. The second part; let Pa,

Pa′ ,Paa′ , P denote the primes ofK( n
√
a), K( n

√
a′), K( n

√
aa′), K( n

√
a, n
√
a′) above p

respectively, KPa(
n
√
a), KPa′

( n
√
a′), KPaa′

( n
√
aa′), KP( n

√
a, n
√
a′) denote respective

closures, σa ∈ G(KPa(
n
√
a)/K), σa′ ∈ G(KPa′

( n
√
a′)/K) σaa′ ∈ G(KPaa′

( n
√
a)/K)

σ ∈ G(KP( n
√
a, n
√
a′)/K) be respective elements of the respective Galois groups

which correspond to local artin maps associated to a, b and respective primes.

On one hand σ( n
√
a) = σa( n

√
a) = ζ in

n
√
a for some i ∈ N since n

√
a ∈ KPa(

n
√
a).

Similarly σ( n
√
a′) = σa′(

n
√
a′) = ζjn

n
√
a′ for some j ∈ N since n

√
a′ ∈ KPa′

( n
√
a′). On

the other hand σ( n
√
aa′) = σ( n

√
a)σ( n
√
a′) = ζ i+jn

n
√
aa′, but σ( n

√
aa′) = σaa′(

n
√
aa′)

since n
√
aa′ ∈ KPaa′

( n
√
aa′) hence i).

Proof : {Property ii} Assume b ∈ (K∗p )n, write b = xn with x ∈ K∗p . The

local Artin map associated with x, a and p is identified by a decomposition group,

and hence is a subgroup of a cyclic group of order n. This map’s action on n
√
a

is uniquely determined by an element σ ∈ G(K( n
√
a)/K) by n

√
a→ σ( n

√
a). Due

to linearity we have; (
a, b

p

)
n

n
√
a = σn( n

√
a) = n

√
a

Hence the property. Assume now a ∈ (K∗p )n; and let x = n
√
a with x ∈ Kp. Local

Artin map is identified by Galois group G(KP( n
√
a)/Kp) and acts trivially on K∗p .

Let σ as before; then (
a, b

p

)
n

n
√
a = σ( n

√
a) = n

√
a

hence the property.

We need a couple of lemma in order to prove iii.
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Lemma 6.2.3 Let L/K and L′/K ′ be abelian extensions with Galois groups G

and G′ respectively, such that L′ ⊃ L and K ′ ⊃ K, let θ be the natural map

G′ → G (every automorphism of L′/K ′ induces one of L/K). S denote finite set

of primes of K including infinite primes and those ramified in L′, let S ′ be the

set of primes of K ′ above those in S. Then the diagram

G

G′

IS

IS
′

......................................................................................................................................................................................... ............
(,L/K)

....................................................................................................................................................................................... ............
(,L′/K′)

..........................................................................................................................................
.....
.......
.....

NK′/K

..........................................................................................................................................
.....
.......
.....

θ

is commutative, where N denotes norm.

Proof : By linearity, it is clear that it is enough to check that

θ((p′, L′/K ′)) = (NK′/Kp
′, L/K)

for an arbitrary prime p′ of K ′ such that p′ /∈ S ′. Let NK′/Kp
′ = pf , where p is teh

prime of K below p′; thus f = [Kp′ : Kp]. Let σ′ = (p′, L′/K ′) and σ = (p, L/K).

We must show θ(σ′) = σf . Now σ and σ′ are determined by their effect on the

residue fields. Let P′ be a prime of L′ above p′ and let P be the prime of L below

P′. For x ∈ KP ⊂ KP′ we have

σ′(x) = xNp′ = xNpf = xσ
f

as required.

Lemma 6.2.4 Keeping the notations of previous lemma, and assuming that

global Artin maps ψL/K and ψL′/K′ exists for L/K and L′/K ′ respectively, then;

G

G′

JK

JK′

....................................................................................................................................................................................... ............
ψL/K

.................................................................................................................................................................................... ............
ψL′/K′

..........................................................................................................................................
.....
.......
.....

NK′/K

..........................................................................................................................................
.....
.......
.....

θ

is a commutative diagram.
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Proof : Let S be finite set of primes of K including infinite primes and those

ramified in L′, and S ′ be set of primes of K ′ above S. We have the diagram;

JSK

JS
′

K′

G

G′

ISK

IS
′

K′

.............................................................................................................................................................................................................................................................................................................................. ............
ψL/K

................................................................................................................................................................................................................................................................................................................................ ............
ψL′/K′

..........................................................................................................................................
.....
.......
.....

NK′/K

..........................................................................................................................................
.....
.......
.....

θ

..............
..............

..............
..............

..............
..............

..............
..............

..............
........................
............ ...................................................................................................................................................... .........

...

(,L/K)

..............
..............

..............
..............

..............
..............

..............
..............

..............
........................
............ ...................................................................................................................................................... .........

...

(,L′/K′)..........................................................................................................................................
.....
.......
.....

The non-rectangular parallelograms are commutative by the compatibility of ideal

and idele norms, and by previous lemma. The triangles are commutative by iii)

property of the global Artin map (i.e. ψL/K(x) = ((x)S, L/K) for all x ∈ JSK).

Thus the rectangle is commutative, i.e. the restrictions of ψL/K ◦ NK′/K and

θ ◦ ψL′/K′ to JS
′

K′ coincide. But those two homomorphisms take 1 on principal

ideles by ii) property of global Artin maps, so the coincide on (K ′)∗JS
′

K′ , which

is a dense subset of JK′ by the weak approximation theorem. Since the two

homomorphism are continuous, the coincide on all of JK′ , proving the lemma.

Lemma 6.2.5 Suppose the abelian extension L/K has a global Artin map ψL/K

and K ⊂ M ⊂ L intermediate field. Then ψL/K(NM/KJM) ∈ G(L/M) where

G(L/M) is the Galois groups of L/M .

Proof : If we replace L′ = L, K ′ = M with the diagram in the previous

proof we get G′ = G(L/M) and;

JSK

JS
′

M

G(L/K)

G(L/M)

ISK

IS
′

M

........................................................................................................................................................................................................................................................................................... ............
ψL/K

........................................................................................................................................................................................................................................................................................... ............
ψL/M

..........................................................................................................................................
.....
.......
.....

NM/K

..........................................................................................................................................
.....
.......
.....

θ

..............
..............

..............
..............

..............
..............

..............
..............

..............
........................
............ .......................................................................................................................... .........

...

(,L/K)

..............
..............

..............
..............

..............
..............

..............
..............

..............
........................
............ ....................................................................................................................... .........

...

(,L/M)..........................................................................................................................................
.....
.......
.....
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It shows that ψL/K(NM/KJ
S′
M ) ⊂ G(L/M). Consequently the same is true with

JS
′

M replaced by M∗JS
′

M , and since this set is dense in JM we are done.

Lemma 6.2.6 Let L/K abelian extension, p be prime of K, and P be prime

of L above p. Denote Kp and LP the completion of K and L with respect to p

and P respectively. Assume that the global Artin map ψL/K exists for L/K, and

let ψp denote the local Artin map associated to extension LP/Kp. If M is an

intermediate field Kp ⊂M ⊂ LP, then ψp(NM /KpM
∗) ⊂ G(LP/M ).

Proof : Let M = L∩M be the fixed field of G(LP/M ) in L, so that G(L/M)

is identified with G(LP/M ) under the identification of the decomposition group

with the local Galois group. Then M = MP′ , where P′ is a prime above p and

the diagram

JK

JM

Kp

MP′

....................................................................................................................................................................................... ............
ip

............................................................................................................................................................................. ............
iP′

..........................................................................................................................................
.....
.......
.....

NM/Kp

..........................................................................................................................................
.....
.......
.....

NM/K

is commutative where ip and iP′ denote the natural injection. By the previous

lemma we get

ψp(NM /KpM
∗) ⊂ ψL/KNM/K ⊂ G(L/M) ' G(LP/M )

hence the lemma.

Proof : {Property iii} In the previous lemma taking M = LP we get

ψp(NLP/Kp(LP)∗) = {1}, hence the property.

Proof : {Property iv} Let a + b = xn and n
√
a be an n-th root of a. The

map G(K( n
√
a)/K) → µn given by σ → σ( n

√
a)

n√a is an isomorphism of the Galois

group of K( n
√
a)/K onto a subgroup µd of µn, which is independent of choice

of n
√
a ( µd and µn are groups of d-th and n-th root of unity respectively). If

(ζain )
n/d
i=1 is a system of representatives of the co sets of µd in µn, we have then;

b = xn − a =
∏

ζn∈µm (x− ζn n
√
a) = NK( n

√
a)/K(

∏n/d
i=1 x− ζain n

√
a), hence if y =
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∏n/d
i=1 (x− ζain n

√
a) then b = NK( n

√
a)/K(y) and by iii) we have

(
a,b
p

)
n

= 1, as

desired.

Proof : {Property v}

1 =

(
ab,−ab

p

)
n

=

(
a,−a
p

)
n

(
a, b

p

)
n

(
b,−a
p

)
n

(
b,−b
p

)
n

(
b,−1

p

)
n

=

(
a, b

p

)
n

(
b, a

p

)
n

Proof : {Property vi} All primes of function fields are discrete, so are non-

archimedean. The infinite primes can occur only in number field case, hence we

consider K to be number field. For n = 2, there is

Proof : {Property vii} Since p is unramified in K( n
√
a) both symbols, by defi-

nition, are determined by the action of corresponding Frobenious automorphisms

on a up to power vp(b), hence the proposition is immediate.

Proof : {Property viii} Write a = πvp(a)a0 with π is uniformizer for p and

b = πvp(b)b0 with a0 and b0 are units.(
a, b

p

)
n

=

(
πvp(a)a0, π

vp(b)b0

p

)
n

=

(
πvp(a), πvp(b)

p

)
n

(
a0, π

vp(b)

p

)
n

(
πvp(a), b0

p

)
n

(
a0, b0

p

)
n

=

=

(
π, π

p

)vp(a)vp(b)

n

(
avp(b)b−vp(a)

p

)
n

By linearity of symbol and by vii. We are reduced to show
(
π,π
p

)
n

= −1.(
π, π

p

)
n

=

(
−1, π

p

)
n

(
−π, π
p

)
n

=

(
−1, π

p

)
n

= (−1)vp(π) = −1

as desired.

Proof : {Property ix} This is the direct consequence of the Artin’s theorem

5.5.2

Hence we finish the proofs of the properties.
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6.3 The General Power Reciprocity Law

Theorem 6.3.1 (The General Power Reciprocity Law) Let a, b ∈ K∗, de-

fine the n-th power residue symbol of a with respect to b to be(a
b

)
n

=
∏

p/∈S(a)

(
a

p

)vp(b)

n

=

(
a

(b)S(a)

)
n

Then we have (a
b

)
n

(
b

a

)−1

n

=
∏

p∈S(a)∩S(b)

(
b, a

p

)
n

in particular, if S(a) ∩ S(b) = S then(a
b

)
n

(
b

a

)−1

n

=
∏
p∈S

(
b, a

p

)
n

and if S(λ) = S, then; (
λ

b

)
n

=
∏
p∈S

(
λ, b

p

)
n

Remark 6.3.2 The second particular case is analogue of the supplementary laws.

Proof :(a
b

)
n

(
b

a

)−1

n

=
∏

p/∈S(a)

(
a

p

)vp(b)
n

∏
p/∈S(b)

(
b

p

)−vp(b)
n

=
∏

p/∈S(a)∩S(b)

(
a

p

)vp(b)
n

(
b

p

)−vp(b)
n

=

=
∏

p/∈S(a)∩S(b)

(
a, b

p

)
n

=
∏

p∈S(a)∩S(b)

(
b, a

p

)
n

hence the theorem. Particular cases are obvious.

We now apply this result to Q and obtain the classical quadratic reciprocity;

6.3.1 Quadratic Reciprocity Revisited

Let K = Q and n = 2. The infinite prime is the ordinary absolute value of Q,

which we denote by∞, and the completion is R+∪{0}. The only ramified prime
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is p = 2 since this is the unique prime divisor n = 2. Then S = {2,∞}. Let a, b

are odd primes which are coprime, then by definition
(
a
b

)
2

becomes the ordinary

quadratic symbol. By the law we have;(a
b

)
2

(
b

a

)−1

2

=

(
a, b

2

)
2

(
a, b

∞

)
2(

a,b
∞

)
2

= −1 if both a, b < 0 and 1 otherwise, thus
(
a,b
∞

)
2

= (−1)
(sgn(a)−1)(sgn(b)−1)

4 .

By previous section, hence we get the reciprocity law;(a
b

)
n

(
b

a

)
n

= (−1)
(a−1)(b−1)

4
+

(sgn(a)−1)(sgn(b)−1)
4

and supplementary laws;(
−1

p

)
n

= (−1)
p−1
2 ,

(
2

p

)
n

= (−1)
p2−1

8

where p is positive odd prime.

On the other hand, these formulas easily established working locally in Q2 in

the following way;

Lemma 6.3.3 b, c be non negative integers;

(1 + 4c, b)2 = (−1)v2(b)c

where v2(b) is the order of 2 dividing b.

Proof : Let p odd prime, then x2 ≡ 1 + 4c(mod p) solvable iff x2 − 1 ≡
(x−1)(x+1) ≡ 4c(mod p) solvable. Taking x ≡ 4+c

2
(mod p) which is legal, hence

(1+4c, p)2 = 1. Now, 1+4c is a 2-adic square iff c is even, thus (1+4c, 2)2 = (−1)c

and by multiplicativity, (1 + 4c, b)2 = (−1)v2(b)c.

Now (3, 3)2 = 1 hence we can get the reciprocity law by just applying the

multiplication formula. We see generalization in following section.

6.4 Generalizations

The localization idea and the properties of norm residue symbol suggest that it

is enough to calculate the symbol only at certain numbers and get explicit form
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of the reciprocity law for all numbers. According to the reciprocity theorem only

the primes divisors n is in our field of interest. We now begin to calculate the

symbol starting with the simplest case. Assume p is an odd prime, n = p and

K = Q(ζp). First we observe that p is totally ramified at K;

Lemma 6.4.1 p is totally ramified at K. Let p be the prime ideal above p, then

π = 1− ζp is uniformizer of p and (p) = πp−1.

Proof : ζp is root to Xp − 1 = 0 =
∏p−1

i=0 (X − ζ ip), dividing by X − 1 and

putting X = 1 we get p =
∏p−1

i=1 (1− ζ ip). We now show that for relatively prime

integers a and b with p 6 |ab the number
1−ζap
1−ζbp

is a unit in K. To prove it choose

k ∈ Z such that a ≡ bk(mod p) hence
1−ζap
1−ζbp

=
1−ζbkp
1−ζbp

= 1 + ζbp + · · ·+ ζ
b(k−1)
p which

is in the ring of integers of K. Similar process works for
1−ζbp
1−ζap

and this is also in

the ring of integers, hence both must be units. In particular
1−ζip
1−ζp is a unit, hence

p = πp−1u for some unit u, proving (p) = (π)p−1. On the other hand the degree

of the extension Q(ζp)/Q = p − 1, by ramification theory we must have (π) is a

prime ideal with p elements in in its residue field, hence p = (π) and the lemma.

Set Kp to be the completion of K with respect to p. Let U denote the units

of Kp and Ui = {u ∈ U : u ≡ 1(mod pi)} for i = 1, 2, · · · . We denote ηi = 1− πi.
In the following we are going to prove that any nonzero number x of Kp is of

the form x = xp1x2 where x1 ∈ K and x2 is generated by π, η1, η2, · · · , ηp. The

advantage of this representation is that explicit calculation of the norm residue

symbol amounts to calculation of this symbol only at certain numbers, i.e. at the

numbers generated by π and ηi’s. We will come to this point after proving the

assertion.

Lemma 6.4.2 ηi generates Ui/Ui+1, which is a cyclic group of order p.

Proof : Let U = 1 + πi+1U1 ∈ Ui+1, we show ∃u ∈ Ui such that u = 1 + πiu1

and U = ηjiu for some j ∈ {0, 1, 2, · · · , p− 1}. This is equivalent to

ηjiu = (1− πi)j(1 + πiu1) ≡ U ≡ 1 + πi+1U1 ≡ 1(mod pi+1)
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but this is if and only if (1−πi)j(1+πiu1) ≡ 1+πi(u1+j) ≡ 1(mod pi+1). Choosing

j ≡ u1(mod p) gives the assertion. Ui/Ui+1 is isomorphic to the multiplicative

group of {1, ηi, · · · , ηp−1
i } where the powers are in mod p, hence it’s cyclic of order

p.

Lemma 6.4.3 The image of π generates K∗p/(K
∗
p )pU1.

For proof we need another lemma;

Lemma 6.4.4

Up+1 ⊂ (K∗p )p.

Proof : Let u = 1 + πp+1a1 + πp+2a2 + · · · ∈ Ui+1 with ai’s are in the

representative set of mod p. We want to show existence of x ∈ K∗p such that

xp = u, which is equivalent to say that xp ≡ u(mod pp+k) solvable for all k ∈ N.

We show this by induction; for k = 1 this is evident. Let assume assertion holds

for k, i.e. xpk ≡ u(mod pp+k) for some xk ∈ K∗p , set xk+1 = x+ πk+1c where c will

be suitably chosen.

xpk+1 ≡ (x+ πkc)p ≡ xp + pπkcxp−1 ≡ xp + u0π
k+pcxp−1(mod pp+k)

where p = πp−1u0 for fixed unit u0. Choosing c ≡ xp−u
u0xp−1 (mod p), which is

evidently legal, proves the assertion for k + 1. By induction, hence the lemma.

Proof : {of the previous lemma} We now show that any γ ∈ K∗p is of the

form γ = πkγp1(1 + lπ) with k ∈ Z and l ∈ O (the ring of integers of Kp). We are

reduced to show that every unit in Kp is of the form γp1(1 + lπ) = (γ̄0 + γ̄1π +

γ̄2π
2 + · · · )p(1 + lπ), and this is equivalent to

u ≡ (γ̄0 + γ̄1π + γ̄2π
2 + · · · )p(1 + lπ)(mod pk)

is solvable for fixed u ∈ U and every k ∈ N. Choose γ̄0 ≡ u(mod p), and thus

γ̄0
p ≡ γ̄0(mod p). On the other hand (γ̄0 + γ̄1π + γ̄2π

2 + · · · )p = γ̄0
p + γ̃1π

p +

γ̃2π
p+1 + · · · , hence choosing l = u−γ̄0p

π
works for k ≤ p, for k > p, it is just the

similar induction step that we used at the proof before.
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Corollary 6.4.5 Any element x ∈ K∗p is of the form x = πα0ηα1
1 · · · η

αp
p x

p
1

where the representation is unique, hence, if y ∈ K∗p and of the form y =

πP0ηP1
1 · · · η

Pp
p yp1 then (

x, y

p

)
p

=
∏

i,j∈{0,1,2,··· ,p}

(
ηi, ηj
p

)αiPj
p

.

For convenience we set η0 = π.

Proof : By above lemmas and bi linearity property of the norm residue

symbol gives the corollary. The only thing to show is uniqueness. But this follows

from checking x in mod pk for k = 1, 2, 3, · · · inductively, hence the corollary.

We now calculate the symbol explicitly at the basis, i.e. at ηi’s and π.

Proposition 6.4.6 a)
(
ηi,ηj
p

)
p

=
(
ηi,ηi+j

p

)
p

(
ηi+j ,ηj

p

)
p

(
ηi+j ,π

p

)−j
p
.

b) If i+ j ≥ p+ 1, then
(
a,b
p

)
p

= 1 for all a ∈ Ui and b ∈ Uj.

c)
(
ηi,π
p

)
p

= 1 for 1 ≤ i ≤ p− 1 and
(
ηp,π

p

)
p

= ζp.

Proof : {a), b) and first part of c)}We have by definition that ηi+j = ηj+π
jηi,

hence 1 =
ηj
ηi+j

+ πj ηi
ηi+j

. By vi), i) and ii) properties of norm residue symbol

respectively;

1 =

(
ηj/ηi+j, π

jηi/ηi+j
p

)
p

=

(
ηj, π

jηi
p

)
p

(
ηj, ηi+j

p

)−1

p

(
ηi+j, ηiπ

j

p

)
p

(
ηi+j, ηi+j

p

)−1

p

.

And by v), vi) properties equation becomes;(
ηi, ηj
p

)
p

=

(
ηj/ηi+j, π

j

p

)−1

p

(
ηi, ηi+j

p

)
p

(
ηi+j, ηj

p

)
p

.

Thus we are reduced to calculate
(
ηi+j/ηj ,π

j

p

)−1

p
;

(
ηi+j/ηj, π

j

p

)−1

p

=

(
ηi+j, π

j

p

)−j
p

(
ηj, π

j

p

)
p

=

(
ηi+j, π

p

)−j
p
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since ηj + πj = 1 and by v), proving a).

For b) we are reduced to show this for
(
ηi,ηj
p

)
p

= 1 if i+ j ≥ p+ 1. ηi + ηj ∈
Up+1 ⊂ (K∗p )p hence by v) we have the equality.

The first part of c) is also evident, since(
ηi, π

p

)i
p

=

(
ηi, π

i

p

)
p

= 1.

by v), hence
(
ηi,π
p

)
p

should be i-th root of unity, we also know that it is a p-th

root of unity and i < p so it should be 1.

The second part of c) is rather non trivial, and is not a direct consequence of

the properties of the norm residue symbol. We introduce p-primary numbers.

Definition 6.4.7 An element a ∈ K is called p -primary for n if p is unramified

at K( n
√
a)/K.

Note that in our case n = p.

Lemma 6.4.8
πp−1

p
≡ −1(mod p).

Proof :

p =

p−1∏
i=1

(1− ζ ip) =

p−1∏
i=1

(1− ζp)(1 + ζp + · · ·+ ζ i−1
p ) = πp−1

p−1∏
i=1

(1 + ζp + · · ·+ ζ i−1
p )

hence

πp−1

p
≡

p−1∏
i=1

(1 + ζp + · · ·+ ζ i−1
p )

−1 ≡ ((p− 1)!)−1 ≡ −1(mod p)

since ζp ≡ 1(mod p) and by Wilson theorem.

Proposition 6.4.9 Let a ∈ K satisfy that a = 1 + cπp, then a is p-primary and(
a, b

p

)
= ζ

−Trp/Fp (c)vp(b)
p .

where Tr denotes the trace from p to the prime field Fp
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Let αp = a = 1 + cπp for some c ∈ op. One one hand;

αp ≡ (1 + πx)p ≡ 1 + pπx+
p(p− 1)

2
π2x2 + · · ·+ xpπp ≡ πp(xp − x)(mod πp+1),

on the other hand

αp ≡ a ≡ 1 + cπp(mod πp+1)

hence we get xp − x− c ≡ 0(mod p). If f(X) ∈ op[X] is the minimal polynomial

for x, then f(X) ≡ Xp−X−1(mod p). Since f ′(X) ≡ 1 6= 0(mod p), so Kp(x) =

Kp(α) is indeed unramified, proving α is p-primary. Now xp ≡ x + c(mod p), so

if Np = pf and σ is the Frobenius automorphism associated to the unramified

extension K( n
√
α)/K, then

σ(x) = xNp ≡ xp
f ≡ (x+c)p

f−1 ≡ xp
f−1

+cp
f−1 ≡ (x+c)p

f−2

+cp
f−1 ≡ xp

f−2

+cp
f−2

+cp
f−1 ≡

≡ · · · ≡ x+ c+ cp + · · ·+ cp
f−1 ≡ x+ Trp/Fp(c)(mod p),

on the other hand, ζpα = ζp(1 + πx) = ζp + ζpπx = 1 + (ζp − 1) + ζpπx =

1 − π + ζpπx ≡ 1 = 1 + πx1, since x1 ≡ ζpx − 1 ≡ x − 1(mod p) then we have

inductively that if ζkpα = 1 + πxk then xk ≡ x − k(mod p). On the other hand

Frobenius automorphism σ determines the value of the symbol;

σ(α) ≡ ζ lpα(mod p),

where ζ lp =
(
a,π
p

)
since σ(x) = x + Trp/Fp(c), then k = −Trp/Fp(c). We have(

a,π
p

)
= −Trp/Fp(c), set b = πvp(b)ub with ub is unit, hence we get by multiplicative

property in the second coordinate that(
a, b

p

)
= ζ

−Trp/Fp (c)vp(b)
p

and hence the proposition.

Proof : {remaining part of c)} The proof of the remaining part of c) follows

from the lemma when one takes b = π.
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6.5 Applications

6.5.1 Cubic Reciprocity Law

We now specialize to p = 3. Let ζ3 be 3rd roof of unity, first we determine the

ring of integers R of Q(ζ3).

Lemma 6.5.1 R = Z(ζ3) = Z + ζ3Z.

Proof : Let a + bζ3 ∈ R with a, b ∈ Q, then we have N(a + bζ3) = (a +

bζ3)(a+ bζ2
3 ) = a2 + b2−ab is in Z and Tr(a+ bζ3) = (a+ bζ3)+(a− bζ3) = 2a− b

in Z. a2 + b2 − ab ∈ Z⇒ 4a2 + 4b2 − 4ab ∈ Z⇔ (2a− b)2 + 3b2 ∈ Z⇔ 3b2 ∈ Z,

since b ∈ Q, this evidently implies b ∈ Z and hence a ∈ Z proving the lemma.

We next investigate how the integers are decomposed into product of powers

of π = 1− ζ3, ηi = 1− πi’s and certain units.

Proposition 6.5.2 Any element a ∈ R = Z[ζ3] is of the form ζa13 π
a2a3 where

a3 = (−1)i(1 + 3(m+ nζ3)) with i,m, n are integers.

Proof : Let A+Bζ3 ∈ R, A,B ∈ Z. Write A+ζ3B = 3k(A1 +ζ3B1) where 3k

is the maximal power of 3 dividing both A and B. 3 = −ζ2
3 (1−ζ3)2. Hence we are

reduced to show this for A1+ζ3B1 with at least one non divisible to 3, now if A1 6=
0(mod 3) and B1 ≡ 0(mod 3) then A1 + ζ3B1 of the form above. If, conversely

B1 6= 0(mod 3) and A1 ≡ 0(mod 3), writing A1 + ζ3B1 = ζ2
3 (ζ3A1 + ζ2

3B1) =

ζ2
3 (−B1 +ζ3(A1−B1)) and by previous result this is also in the desired form. Now

assume both A1 and B1 are not divisible by 3, if A1 ≡ B1(mod 3), by previous

assertion we have A1 + ζ3B1 = ζ2
3 (−B1 + ζ3(A1 − B1)) reducing to the previous

case. If now A1 6= B1(mod 3) we have that A1 + ζ3B1 = (1 − ζ3)(a+b
3

+ 2a−b
3
ζ3),

applying this step for finitely many will reduce to the previous cases, hence the

proposition.
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Theorem 6.5.3 (Cubic Reciprocity Law) Let a, b ∈ R with a and b are rel-

atively prime and both are of the form ±(1 + 3(M + ζ3N)) i.e. ≡ ±1(mod 3R).

Then (a
b

)
=

(
b

a

)
,

with supplementary laws; (
ζ3

a

)
= ζ−m−n3 ,

(π
a

)
= ζm3 ,

where a = ±(1 + 3(m+ ζ3m)).

Proof : By main theorem of explicit reciprocity we have
(
a
b

) (
b
a

)−1
is equal to(

a,b
p

)
where p is generated by 1−ζ3. a, b ≡ ±1(mod 3R) hence both are 3-primary

integers. Then by lemma above we have
(
a,b
p

)
= ζ

Trp/F3vp(b)

3 = 1 since vp(b) = 0,

and hence the rule. For supplementary laws, first one is followed by iv) property of

the power residue symbol hence
(
ζ3
a

)
= ζ

N(a)−1
3

3 = ζ
(3m+1)2+(3n)2−(3m+1)3n

3
3 ≡ ζ−m−n3 ,

and the second one is followed by the formula for 3-primary numbers taking

b = π = 1 − ζ3 so vp(π) = 1, and Trp/F3(a) ≡ −2m ≡ m(mod 3), thus
(
π,a
p

)
=(

a,π
p

)−1

= ζ
Trp/F3 (a)vp(π)

3 = ζm3 .

6.5.2 Eisenstein Reciprocity Law

We now prove the Eisenstein reciprocity law;

Theorem 6.5.4 (Eisenstein Reciprocity Law) Let p be an odd prime, ζp is

primitive p-th root of unity, K = Q(ζp) and R be the ring of integers of K. Let

p = (1 − ζp) the prime ideal of Q(ζp). Let α, a ∈ R relatively prime elements

which are not divisible by p such that a is integer and α ≡ b(mod (1−ζp)2). Then

K has the reciprocity equation; ( a
α

)
=
(α
a

)
.
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Proof : a is integer, and relatively prime to p hence ap−1 ≡ 1(mod p) hence

ap−1 = 1 + pa1, hence one may write it of the form ap−1 = ηpup where ηp−1 =

1 − pip−1 and up ∈ Up. On the other hand, since α ≡ b(mod π2) then αp−1 ≡
1(mod π2), hence we may write α = η2η

c3
3 · · · η

cp−1

p−1 u
′
p where ηi = 1− πi and ci are

non negative integers. By the main theorem we have that( a
α

)(α
a

)−1

=

(
a, α

p

)
.

by 6.4.6,(
ap−1, αp−1

p

)
=

(
ηpup, η2η

c3
3 · · · η

cp−1

p−1 u
′
p

p

)
=

(
ηp, η2

p

)(
ηp, η3

p

)c3
· · ·
(
up, u

′
p

p

)
= 1

On the other hand (
ap−1, αp−1

p

)
=

(
a, α

p

)(p−1)2

,

,
(
a,α
p

)
is (p− 1)2-th root of unity and also p-th root of unity hence

(
a,α
p

)
= 1.



Chapter 7

Explicit Reciprocity Laws

We begin with the explanation of the explicit reciprocity law of Shafarevich.

7.1 Explicit Reciprocity Law of Shafarevich

7.1.1 Introduction

Prime ideals in theory of algebraic numbers play the same part as points on the

Riemann surface, etc. The problem arose of a systematic carrying over of results

from the theory of algebraic functions which have been proved analytically, into

the theory of algebraic numbers.

Hilbert pointed out that the formula
∏

p

(
a,b
p

)
= 1 plays the same role in the

theory of algebraic numbers as does Cauchy’s integral formula in the theory of

abelian integrals. Further developments in theory abelian integrals as well as the

theory of algebraic numbers show that the relation is more precisely the corollary

of the integral formula namely that integral of the abelian differential αdβ in all

points of the Riemann surface is 0. From this point of view
(
a,b
p

)
n

is analogous

to αdβ at point p.

73
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In spite of the fact that the norm residue symbol plays the part of a residue, its

definition has nothing in common with the definition of the abelian differential.

Shafarevich gave a construction of the symbol
(
a,b
p

)
n
, which is exactly the

analogous to the definition of the residue of an abelian differential.

In doing this he shows that the expansion of an algebraic function in a series

in a neighborhood correspond to the decomposition of an algebraic number into

a certain product (i.e. similar to that of the last chapter). One may apply to the

product into which α and β decompose the same the same operations which are

applied to to the series expansions of functions in calculating the residue, we get

the value of the symbol. All the fundamental properties of abelian differentials

are carried to the field of algebraic numbers.

By main theorem proved in previous chapter, explicit reciprocity law reduces

the problem of calculating
(
a,b
p

)
n

at primes p|n. Shafarevich achieved to calculate

this symbol explicitly by using the analogy between algebraic function fields to

algebraic number fields.

We now describe the work of Shafarevich. We first fix some notations. Let K

be a number field, i.e. finite Galois extension of Q. We are interested in the value

of the symbol at prime p ⊂ K such that p|n. Let p be a prime integer below p

and degree of p at n be np i.e. pnp | |n, we always assume that ζn is in K, hence

in particular we have ζpnp is in K. Kp be the p-adic completion of K, π be a

uniformizer of p, vp denote the valuation, Op denote the ring of integers of Kp, p

be the characteristic of the residue field K/p, Σ denote set of representatives of

the residue field, then any α ∈ Kp is uniquely represented as α =
∑∞

i>>−∞ aiπ
i

for ai ∈ Σ. U denote the units and U1 denote the units with u ≡ 1(mod p) which

is also called the principal units.

p = uπe

if e = 1 then we call Kp is unramified. Kp/Qp is finite Galois extension, hence

there exist a maximal field T with T/Qp is maximal unramified subfield of Kp/Qp.

T is called the inertia field of Kp. The degree of Kp/T = e and every number in

T is of the form
∑∞

i>>−∞ aip
i with ai ∈ Σ. Let T̄ be discrete unramified field with
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a valuation which is obtained from T by the algebraic closure of the residue class

field. R, R̄ denote the systems of representatives of T/(p) and T̄ /(p) and OT , OT̄
denote the ring of integers of T and T̄ respectively. Let F denote the Frobenious

automorphism of T/Qp, define the map ℘ : OT → OT given by ℘(α) = F (α)−α,

is an endomorphism of O+
T onto O+

T where O+
T denotes the ring of integers which

are not units of OT̄ . A number ω in K∗p is called pnp-primary if K( pnp
√
ω)/K is

unramified at p. Denote the set of pnp-primary numbers in K∗ by Ω.

7.1.2 Shafarevich and Artin-Hasse Maps

In the ring of formal power series in x with coefficients in T we consider the series

L(α, x) = αx+ p−1αpxp + p−2αp
2

xp
2

+ · · ·

where α ∈ OT . Obviously the series satisfy L(α1 + α2, x) = L(α1, x) + L(α2, x)

and L(aα1, x) = aL(α1, x) for p-adic integer a. From this it follows that the

series, which is also known as Shafarevich function,

E(α, x) = eL(α,x)

has the properties E(α1 +α2, x) = E(α1, x)E(α2, x) and E(aα, x) = E(α, x)a. In

case α ∈ Σ we have the following identity:

E(α, x) =
∏

(1− αmxm)−
µ(m)
m

where µ(n) is the Möbius µ function i.e. µ(1) = 1, µ(p1p2 · · · pl) = (−1)l for

prime pi’s and µ(n) = 0 if n is not square free integer. This identity shows that

for α ∈ Σ, E(α, x) has integral p-adic coefficients. In the view of above relations

for E(α, x) this is true for any α ∈ T . From this it follows that E(α, x) converges

if we substitute for x any number of Kp which is divisible by π. Moreover we

have that

E(α, x) ≡ 1 + αx(mod x2).

The function E(1, ξ) has p-adic integral coefficients and the equation

1 + η = E(1, ξ)
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is solvable in the power series of η with p-adic coefficients. Moreover,

ξ ≡ η(mod η2).

Applying this to the case η = ζpnp − 1 we see that for ξ = Q(ζpnp − 1) where Q(η)

is the p-adic representation, we will have

E(1, ξ) = ζpnp ,

ξ = ζpnp − 1(mod (ζpnp − 1)2).

For every integer α of T , there exist an integer A in T̄ such that

℘(A) = α,

We introduce the notation, also known as Artin - Hasse function,

E(pnpA, ξ) = E(α).

This notation meaningful because it can be easily seen that different A’s satisfying

℘(A) = α give the same E(pnpA, ξ). It can be proved that E(α) is pnp-primary.

It is clear that E(α) satisfies E(α + β) = E(α)E(β) and E(aα) = E(α)a where

a is p-adic integer. It can also be proved that every pnp-primary number ω is

representable in the form

ω = E(α)λp
np
,

where α is an integer of Kp and λ is any number in Kp.

7.1.3 Canonical Decomposition

Hensel found a very broad conditions for a system of units to be the system of

generators the principal units group. We will give the formulation of the theorem

and leaving the proof to Hensel’s paper. Before that we note that T (ζpnp )/T =

(p− 1)pnp−1, hence p− 1|e and we set e1 = e/(p− 1).

Theorem 7.1.1 Let us select for every i such that i 6= 0(mod p) for 1 ≤ i <

pe1 as well as for i = pe1, and for every α ∈ Σ a principal unit εi(α) ∈ U1,
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satisfying the condition εi(α) ≡ 1 + απi(mod pi+1).Then every principal unit ε

can be represented in the form ε =
∏

i,r εi(αi,r)
pr , where the product extends over

all i mentioned above and over all non negative integer r.

Proof : Refer to [11]

Theorem 7.1.2 (Theorem on canonical decomposition) Every principal unit

ε ∈ U1 can be represented in the form ε = E(α)
∏
E(αi, π

i), where α and αi are

integer in Kp and i goes over all the values between 1 to pe1, which are not divisible

by p. Moreover, this decomposition is unique in the sense if E(α)
∏
E(αi, π

i) =

E(β)
∏
E(βi, π

i) then α ≡ β + ℘(η)(mod pnp) and αi ≡ βi(mod pnp) for some

η ∈ Σ.

Proof : Refer to [22]

In what follows we shall be interested only in equalities up to a multiplier

which is pnp power. We express by λ ≈ µ if λ = µµp
np

1 for µ1 ∈ Kp. To every ε in

its canonical decomposition corresponds the first factor E(α) determined up to a

pp
np

power. We introduce

δ(ε) ≈ E(α).

It is clear that δ(ε1ε2) ≈ δ(ε1)δ(ε2) and δ(εp
np

) ≈ 1. Therefore the mapping

ε→ δ(ε) is a homomorphism of the group on the group U1/(U1)p
np

on the group

Ω/Ω∩ (U1)p
np

. Note that E(α) does not only depend on ε but also on the choice

of π. Kp/Qp is a finite Galois extension. Let Tr denote the trace in Kp/Qp,

then the mapping χE(α) = ζ
Tr(α)
pnp is an isomorphism of the group Ω/Ω ∩ (U1)p

np

and the cyclic group generated by ζpnp . This map is multiplicative since trace is

additive, and E(α) is multiplicative. Since

Tr(αp − α) = Tr(αp)− Tr(α) = 0.

χ maps Ω/Ω ∩ (U1)p
np

into units. The group Ω/Ω ∩ (U1)p
np

is the center of the

homomorphism since Tr(α) ≡ 0(mod pnp) and α ≡ ℘(β)(mod pnp) (Refer to

[27]). Since finite fields are seperable, χ gives a mapping over the whole group.
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The expression of a pnpprimary number ω in the form E(α) depends on the

choice of ζ
np
p , but Hasse [10] has shown that

χω = ζ
Tr(α)
pnp

does not depend on the choice of ζ
np
p .

7.1.4 The Symbol (λ, µ)

Every number λ ∈ Kp is of the form

λ = πawε

where a is an integer, w ∈ Σ and ε is a principal unit. We are interested in

equalities up to a multiple of a pnp-th power and we may disregard w since it is

a pnp-th power, and will consider a in mod pnp . Then we have

λ ≈ πaE(α)
∏

E(αi, π
i).

Let µ be another number of Kp represented in the same form

µ ≈ πbE(β)
∏

E(βj, π
j).

We introduce the function

(λ, µ) ≈ E(aβ − bα + γ),

where E(γ) ≈ δ(
∏

i,j E(iαiβj, π
i+j)).

The main work of Shafarevich was to prove that the norm residue symbol(
λ,µ
p

)
coincide with the symbol χ(λ, µ);

Theorem 7.1.3 λ, µ ∈ Kp, then(
λ, µ

p

)
= χ(λ, µ).
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The proof of the theorem is based on the fact that the values of χ(λ, µ) concide

with
(
λ,µ
p

)
for the three cases (λ, µ) = (π,E(α)), (π, ε), (ε1, ε2) on the following

four properties of the symbol (λ, µ)(which are similar to that of
(
λ,µ
p

)
);

Theorem 7.1.4 I. Bilinearity: (λ1λ2, µ) ≈ (λ1, µ)(λ2, µ) and (λ, µ1µ2) ≈
(λ, µ1)(λ, µ2).

II. Anti-symmetry: (λ, µ) ≈ (µ, λ)−1.

III. Separability: If in the residue field not every element is of the form xp−x,

then

(λ, µ) ≈ 1, ∀µ⇒ λ ≈ 1.

(λ, µ) ≈ 1, ∀λ⇒ µ ≈ 1.

Invariability (λ, µ) is independent of the choice of π.

that uniquely determines the value of the symbol.

We comment that proofs are based on carefully following of certain calcula-

tions, and leave the proofs to the paper of Shafarevich [22]. We continue with the

formulation of explicit reciprocity of Shafarevich. We keep the notation above;

Theorem 7.1.5 1. χ(π,E(α, πi)) = 1 for p 6 |i, α ∈ OT .

2. χ(π,E(α)) = ζ
Tr(α)
pnp if α ∈ OT .

3. χ(π, π) = χ(π,−1).

4. χ(E(α), ε) = 1 for α ∈ OT and ε ∈ U .

5. If p 6= 2, then χ(E(α, πi), E(β, πj)) = χ(πj, E(αβ, πi+j)), If p = 2 then

χ(E(α, πi), E(β, πj)) = χ(−πj, E(αβ, πi+j))
∏∞

s=1 χ(−1, E(αF s(β), πi+jp
s
))∏∞

r=1 χ(−1, E(αF r(β), πip
r+j)) for α, β ∈ OT and p 6 |i, p 6 |j.

6. If p = 2, then χ(−1, E(α, πi)) =
∏∞

s=0 χ(π,E(i2sF s+1(α), πi2
s+1

)) for α ∈
OT and p 6 |i.



CHAPTER 7. EXPLICIT RECIPROCITY LAWS 80

7.2 Explicit Reciprocity Laws of Brückner and

Vostokov

The reciprocity law of Shafarevich is not as explicit as one would like since if

one wants to compute the symbol (λ, µ) one has to write λ and µ of the form

λ ≈ πaE(α)
∏
E(αi, π

i) and µ ≈ πbE(β)
∏
E(βj, π

j), and then one has to write

E(αiβj, π
i+j) in such form if p|(i + j). A more explicit general reciprocity law

was found by Brückner (1967) and Vostokov (1978).

We follow from Vostokov. We start by the simpler case, we assume that p > 2

is odd prime. p = 2 case will be treated afterwards. Let OT denote the ring

of integers of T , R system of representatives of the residue field of Kp in OT .

Suppose that ζpnp expanded into power series in π with coefficients in OT , that

is ζpnp = 1 + c1π + c2π
2 + · · · we then denote by z(X) and z0(X) the following

series; z0(X) = c1X + c2X
2 + · · · and z(X) = 1 + c1X + c2X

2 + · · · . By a formal

series ϕ(X) we shall understand a series of the form

ϕ(X) =
∞∑

i=−∞

diX
i, di ∈ OT

where di → 0 if i → −∞. Such series, which we denote by OT{{X}} forms a

ring containing the formal power series OT [[X]] = {
∑∞

i>>−∞ diX
i, di ∈ OT} as

a sub ring. It is easy to verify that any ϕ ∈ OT{{X}} is invertible if and only

if at least one of its coefficients. We denote the inverse ϕ by ϕ−1, if dm the least

coefficient of ϕ which is invertible, if ϕ = dmX
m(1 + ψ(X)) then

ϕ−1 = (dmX
m)−1(1− ψ + ψ2 − ψ3 + · · · ).

We define the action of the Frobenius automorphism F on the formal series

ϕ(X) =
∑

i aiX
i as follows:

F (ϕ) =
∑
i

F (ai)X
pi.
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7.2.1 The Functions l and E

We now introduce a kind of logarithm l and a kind of exponent E on formal

power series both of which are analogous to that of on elements of Kp. Let

O0
T [[X]] denote the formal series of the form ϕ = a1X + a2X

2 + · · · , ai ∈ OT .

Let ε(X) ∈ 1 +O0
T [[X]], we define the function l(ε) as follows;

l(ε) =

(
1− F

p

)
log(ε(X)).

where log(ϕ) =
∑∞

i=1
(−1)i+1ϕi

i
.

Lemma 7.2.1 l(ε) ∈ O0
T [[X]], and l(εν) = l(ε) + l(ν).

Proof : Refer to [24].

Let us now define the inverse mapping from O0
T [[X]] + 1 to O0

T [[X]]. To do so

we consider the Shafarevich function:

E(X) = exp

(
∞∑
i=0

Xpi

pi

)
.

By Möbius inversion formula we have

E(X) =
∏

(m,p)=1

(1−Xm)−
µ(m)
m .

We connect E with the Frobenius automorphism F and define it for any series

ϕ ∈ O0
T [[X]] as follows;

E(ϕ) := exp

(
∞∑
i=0

ϕF
i

pi

)
= exp

((
1 +

F

p
+
F 2

p2
+ · · ·

)
(ϕ)

)
.

Lemma 7.2.2 E(ϕ) ∈ 1 +O0
T [[X]], E(ϕ+ψ) = E(ϕ)E(ψ). Moreover E(ϕ) and

l(ε) are inverse mappings i.e. E(l(ε)) = ε(X) and l(E(ϕ)) = ϕ(X).

Proof : Refer to [24]
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7.2.2 The Pairing [A,B]

In this section we define a symbol on formal power series. We consider the

multiplicative group G of the formal power series

G = {Xmθε(X);m ∈ Z, θ ∈ R, ε(X) ∈ 1 +O0
T [[X]]}

Let A(X), B(X) ∈ G with A = Xaθε(X) and B = Xbθ′ν(X), we introduce the

pairing in G with values in OT as follows;

[A,B] = resX (Φ(X)W (X)) ,

where

Φ(X) = l(ε)
dl(µ)

dX
− l(ε)B−1 dB

dX
+ l(µ)A−1 dA

dX
,

and W (X) is formal series with coefficients in OT having, in general, terms of

negative powers such that

d

dX
W (X) ≡ 0(mod pnp).

We are going to choose the function in most explicit and simple form in a while

W , but before that we highlight some properties of the pairing [A,B] which are

similar to that of Shafarevich.

Theorem 7.2.3 The pairing [A,B] satisfies;

Bilinearity: [A1A2, B] = [A1, B] + [A2, B] and [A,B1B2] = [A,B1] + [A,B2].

Skew-Symmetry: [A,B] + [B,A] ≡ 0(mod pnp).

Invariance: The value of [A,B] in mod pnp is independent of the choice of the

function X.

Proof : Refer to [24]
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7.2.3 The Pairing < α, β >π

With the help of pairing [A,B] we shall construct a pairing in K∗p with values in

the group of pnp-th roots of unity. Let α = πaθε and β = πbθ′η elements of Kp,

where θ, θ′ ∈ R, and ε, η are principal units. Let ε = 1 + a1π + a2π
2 + · · · be an

expansion of ε into a series in π with ai ∈ OT . We denote by A(X) the series

Xaθε(X) where ε(X) = 1 + a1X + a2x
2 + · · · . The series B(X) and η(X) are

defined similarly for β. Let z(X) be the series obtained from the expansion of

ζpnp into a power series π. Consider the following pairing;

< α, β >π= ζ
Tr[A,B]
pnp ,

where 1/2 +
(
zp

np − 1
)−1

is taken for W (X). By
(
zp

np − 1
)−1

we mean the

following Laurent series;

(
zp

np − 1
)−1

= z−p
np

0

(
1 +

pnp−1∑
i=0

Ci
pnz
−i
0

)
.

This pairing, too, satisfies similar properties that of [A,B] and that of Shafare-

vich;

Theorem 7.2.4 < α, β >π is bilinear, skew symmetric and invariant under the

choice of π.

The first two properties are evident from that of [A,B], but the last one is not

direct and is a consequence of carefully followed calculations. We refer to Vos for

the proofs. One of the most profound achievement of Vostokov’s paper was to

show that the value of the norm residue symbol
(
π,ε
p

)
n

is equal to the value of

the symbol < α, β >π;

Theorem 7.2.5 Let ε = 1 + a1π + a2π
2 + · · · be a principal unit of Kp, then(

π, ε

p

)
= ζ

Tr(γ)
pnp ,

where γ = resX

(
X−1l(ε)

(
zp

np − 1
)−1
)

.
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Proof : Refer to [24].

This theorem states that

< π, ε >π=

(
π, ε

p

)
.

Let η also be a principal unit; then

< ε, η >π=< πε, η >π< π, η >−1
π =< πε, η >πε< π, η >−1

π =

(
πε, η

p

)(
π, η

p

)−1

=

(
ε, η

p

)
.

And similarly, in general case for α = πaθε and β = πbθ′η we have

< α, β >π=< π, η >a
π< π, ε >−bπ < ε, η >π=

(
π, η

p

)a(
π, ε

p

)−b(
ε, η

p

)
=

(
α, β

p

)
.

Hence, we have that < α, β >π=
(
α,β
p

)
everywhere, hence we have the theorem

for explicit reciprocity law as follows;

Theorem 7.2.6 Let α, β ∈ Kp, α = πaθε, β = πbθ′η with θ, θ′ ∈ R, ε, η are

principal units, write ε = 1 + a1π + a2π
2 + · · · as expansion of ε into series in

prime element π and coefficients in OT . Denote by A(X) the series Xaθε(X)

where ε(X) = 1 + a1X + a2X
2 + · · · and by l(ε) the function

(
1− F

p

)
log(ε(X)).

The series B(X) and l(η) are defined in similar way for β. Let z(X) be the series

obtained from the expansion of ζpnp into π. Then;(
α, β

p

)
= ζ

Tr(γ)
pnp ,

where

γ = resX

(
l(ε)

dl(η)

dX
− l(ε)B−1 dB

dX
+ l(η)A−1 dA

dX

)(
1

2
+

1

zp
np − 1

)

7.2.4 The Case p = 2

In this section we give the formula for special case p = 2. Although the calcula-

tions are highly technical, the same way of proof just works here. For a suitable

function one may prove that the values of the function at principal units and
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prime elements coincide with that of Hilbert symbol, and finish the proof by

bilinearity. We leave all the technical detail to [8] or to [4], and give the formula.

The first essential difference with the case p > 2 is that the pairing for formal

series is not defined for all invertibe series in O0
T ((X)) but series which belong to

Q := {Xmcε(X) : ε(X) ∈ 1 + O0
T [[X]], c ∈ O0

T
∗
, F (a) ≡ a2(mod 4), m ∈ Z}.

For α, β in Kp, set α = πaθε, β = πbθ′η, A(X) = Xaθε(X), B(X) = Xbθ′η(X),

define

Φ(1) =
d

dX

(
F

2

(
A2 − F (A)

2F (A)

B2 − F (B)

2F (B)

))
,

Φ(2) = X−1vX(A)vX(B)l(z(X)2n2−1

),

where vX is the discrete valuation ofOT ((X)) correspond to X. We now introduce

a series h(X) and a polynomial r(X) for p = 2. Define

h(X) =
F (z(X)2n2−1 − 1)− (z(X)2n2 − 1)

2n2

Let r0(X) be a polynomial in XOT [X] of degree e− 1 satisfying the condition:

F 2(r0) + (1 + 2n2−1(z(X)2n2−1 − 1))F (r0) + ((z(X)2n2−1 − 1))r0 =
∑
m≥0

amX
m

with a2m ≡ 0(mod 2). We have the following formula for p = 2

Theorem 7.2.7
(
α,β
p

)
= ζγ2n2 where

γ = resX

(
l(ε)

dl(η)

dX
− l(ε)B−1 dB

dX
+ l(η)A−1 dA

dX
+ Φ(1) + Φ(2)

)
r(X)

(
1

2
+

1

z2n2 − 1

)
.

Proof : Refer to [8]
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