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ABSTRACT

Output Regulation for All-Pole and Minimum Phase LTI /

LTV Systems

Naci Saldı

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ömer Morgül

June 2010

In this thesis, the problem of enabling the output of a system to track the refer-

ence signals and reject the disturbances created by the same exogenous system is

considered. This problem is widely known as Output Regulation Problem. Firstly,

we propose a method for all-pole LTI systems by using relative degree property

and then we apply the same method for minimum phase LTI systems along with

some modifications. In order to obtain controllers for a minimum phase LTI

case, the system is converted into an all-pole system by employing the inverse

system as the first part of the controller. Then using the method that we used

in all-pole cases, we obtain the second part of the controller. Combining these

two controllers gives us an overall controller which solves the output regulation

problem. This method for LTI systems is then extended to all-pole and mini-

mum phase LTV systems. However, in order to apply the same methodology we

have to make some assumptions on LTV systems. For minimum phase cases, the

normal form is obtained by applying certain Lyapunov transformations and then

minimum phaseness is defined in accordance with the normal form. Furthermore

we show that, similar to minimum phase LTI cases, pole / zero cancelations oc-

cur between the inverse system and the original system in minimum phase LTV
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cases. The method that we develop depends on analytical calculation of the

controller and gives a certain degree of freedom to change the transient behavior

of the system by only changing some controller parameters.

Keywords: Output Regulation, Tracking, Disturbance Rejection, All-Pole, Mini-

mum Phase, Relative Degree, LTI System, LTV System, Pole / Zero Cancelation,

Inverse System, Lyapunov Transformation
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ÖZET

TÜM-KUTUPLU VE ENKÜÇÜK EVRELİ DOĞRUSAL

ZAMANDA BAĞIMSIZ VE DOĞRUSAL ZAMANLA DEĞİŞEN

SİSTEMLERİN ÇIKIŞ REGÜLASYONU

Naci Saldı

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ömer Morgül

Temmuz 2010

Bu tezde Tüm Kutuplu ve Enküçük Evreli Doğrusal Zamanda Değişmez

Sistemlerin dışsal bir sistem tarafından üretilen referans sinyalini takibi ve

aynı dışsal sistem tarafından üretilen bozucuların engellenmesi konusunu ince-

lenmiştir. Bu problem literatürde Çıkış Regülasyonu olarak adlandırılır. İlk

olarak, Tüm Kutuplu(All-Pole) Sistemlerin göreli derece özelliğini kullanarak

Çıkış Regülasyonu problemini çözmek için bir yöntem geliştirilmiştir ve aynı

yöntem bazı değişiklikler yapılarak Enküçük Evreli Doğrusal Zamanda Bağımsız

sistemlere uygulanmıştır. Bu çözümü, Enküçük Evreli(Minimum Phase) sistem-

lere uygulamak için, sistemin tersi, denetleyicinin ilk parçası olarak kullanılmıştır

ve sistem Tüm Kutuplu hale getirilmiştir. Sonra, bu yöntemle denetleyicinin

ikinci kısmı oluşturulmuştur. Bu parçaları birleştirerek, regülasyon koşullarını

sağlayan toplam denetleyici elde edilmiştir. Bu yöntem daha sonra Tüm Ku-

tuplu ve Enküçük Evreli Doğrusal Zamanla Değişen sistemlere genişletilmiştir.

Ancak, aynı yöntemi Doğrusal Zamanla Değişen sistemlere uygulamak için bazı

varsayımlarda bulunmak gerekmektedir. Enküçük Evreli durum için belirli Lya-

punov dönüşümleri uygulanarak sistem bir normal forma getirilmiştir ve bu
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normal form üzerinden Enküçük Evreli olmak tanımlanmıştır. Bunun yanısıra,

Enküçük Evreli Doğrusal Zamanda Değişmez sistemlere benzer olarak Enküçük

Evreli Doğrusal Zamanla Değişen durumda ters sistem ve orjinal sistem arasında

kutup / sıfır sadeleşmesinin olduğu gösterilmiştir. Geliştirilen bu yöntem denet-

leyicinin analitik olarak hesaplanmasına dayanmaktadır ve bu yöntem bazı denet-

leyici değişkenlerini değiştirerek sistemin geçici davranışını değiştirilebilmesine de

olanak vermektedir.

Anahtar Kelimeler: Çıkış Regülasyonu, Takip, Bozulmaların Engellenmesi Tüm

Kutuplu, Enküçük Evreli, Göreli Derece, Doğrusal Zamanda Bağımsız Sistemler,

Doğrusal Zamanla Değişen Sistemler, Kutup / Sıfır Sadeleşmesi, Ters Sistem,

Lyapunov Dönüşümü
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Chapter 1

INTRODUCTION

In control theory, designing controllers that force the system to track a given

reference signal r(t) and reduce (if possible, reject) the effect of unwanted signal

ν(t) (disturbance) at the output is among the most important problems [1–18].

This problem, which is generally referred to as the output regulation problem, was

studied by many researchers and is still under investigation by considering all

possible aspects of the problem. For this problem, some of the researchers take

into account either disturbance rejection or reference signal tracking only [3–6].

Alternatively, some of the researchers worked on both the disturbance rejection

and the reference signal tracking problem simultaneously [7], [8]. Furthermore,

in this formulation some of the researchers assumed that the reference signals

and the disturbances are considered the signals which are generated by different

dynamical systems. In the latter case, these dynamical systems are assumed to

be separate as shown below :

ν̇(t) = S1ν(t),

ṙ(t) = S2r(t). (1.1)

where r(t) and ν(t) are the reference and disturbance signals, respectively, and

S1 and S2 are matrices which have appropriate dimensions. In this thesis for
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the formulation of the output regulation problem, we will try to find a controller

structure to track the reference signal and to reject the disturbances simultane-

ously. Instead of the model given by (1.1), we will assume that the reference

signal r(t) and the disturbance signal ν(t) are generated by the same dynamical

system, which is called as the exogenous system [9–11, 19–23]. The dynamics of

the exogenous system is assumed to be as given below :

ẇ(t) = Sw(t),

r(t) = Qw(t),

ν(t) = Pw(t). (1.2)

where w(t) is called the exogenous signal, S, Q and P are matrices which have

appropriate dimensions. Note that, even if the reference signal and disturbances

have distinct dynamic behaviors as given in (1.1), one can still transform (1.1)

into the form given by (1.2) as shown below :ẇ1

ẇ2

 =

S1 0

0 S2

w1

w2

 ,

r(t) =
(
I 0

)w1

w2

 ,

ν(t) =
(
0 I

)w1

w2

 . (1.3)

As can be seen, (1.3) has the same form as given by (1.2) where S =

S1 0

0 S2

,

Q =
(
I 0

)
, P =

(
0 I

)
[24]. One disadvantage of using (1.3) instead of (1.1)

might be the following: the pairs (Q,S) and (P, S) in (1.3) are not observable. In

the remaining of the thesis, we assume that the reference signal and disturbances

are generated by the same dynamical system as given by (1.2). Note that the
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state space form of plant for which we will design controllers is given below :

ẋ(t) = A(t)x+B(t)u+ ν, (1.4)

y(t) = C(t)x. (1.5)

where xϵℜn, uϵℜ, yϵℜ, νϵℜn represent the system state, input, output and dis-

turbances .respectively and A(t)ϵℜn×n, B(t)ϵℜn×1, C(t)ϵℜ1×n represent system

matrices. If any of the system matrices is time-varying, then our system become

linear time-varying. Conversely, if all of the system matrices are time-invariant,

then our system becomes linear time-invariant.

In the output regulation problem, the objective is to find such a control law

that the closed-loop system tracks the reference signal and rejects the distur-

bances simultaneously. Actually, if the error is to be defined as the difference

between the reference signal r(t) and the system output y(t), then output regu-

lation problem can be converted into obtaining such a controller that the overall

system satisfies the conditions given below [24]:

(i) For all the initial conditions of the original system and the exogenous sys-

tem,

lim
t−→∞

e(t) = lim
t−→∞

(y(t)− r(t)) = 0. (1.6)

(ii) The closed-loop system is exponentially stable with w = 0.

Throughout the thesis, we will refer to the conditions (i) and (ii) given above

as regulation conditions. Note that if the output regulation problem is de-

fined as the tracking of the reference signal and the rejecting of the disturbances

simultaneously, then any controller which solves the output regulation problem

also satisfies the regulation conditions given above. Conversely, any controller

which satisfies the regulation conditions given above also solves the output reg-

ulation problem. This could be easily seen if the exogenous system given by

(1.2) is combined with the closed-loop system dynamics. In this case, the state
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transition matrix will have a block triangular form. By using this structure, the

equivalence stated above can be shown easily [24].

The LTI part of this problem was studied by many authors. The first attempt

to solve the problem of linear output regulation was made in [1] and [2] where

the case of the constant reference signal and the disturbances was considered.

In [9], a set of equations, called the regulator equations, were introduced and the

controller which solved the output regulation problem was related to the solution

of the regulator equations. In [10], a new concept the internal model principle

was introduced which roughly stated that the controller which solved the output

regulation problem included a model of exogenous system. In [11], polynomial

matrices were used in the output regulation problem, and a primary condition,

which was a single polynomial matrix formulation and that the controller should

satisfy was given. In addition, the internal model principle ,which was first in-

troduced in [10], was clarified by using polynomial matrices. The robust case

of the linear output regulation problem was considered in [12–16]. In [12], the

controller which solved the output regulation problem was shown to be robust

to the perturbations in plant parameters and unmeasurable disturbances if and

only if it regulated a system called the expanded system. Furthermore, in [15]

the case which the disturbances were unmeasurable, arbitrary signals were con-

sidered and two conditions for the solvability of the output regulation problem

were given. The application of the frequency domain techniques for the output

regulation problem can be found in [17,18].

LTV case of the output regulation problem did not receive as much attention

as its LTI counterpart did, possibly due to the mathematical difficulties which

may be encountered in the analysis. In [19], the linear periodic time-varying

exogenous system and the LTI plant case were studied. Differential regulator

matrix equations which were the counterparts of the regulator equations in LTI

cases were found. In [20], the case of minimum phase time-varying systems with
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a time-varying exogenous system were considered and a differential type of reg-

ulator equations were found for the solvability of the output regulation problem.

Then, in [21] a general time-varying system with a time-varying exogenous sys-

tem was considered and differential regulator equations were derived as in the

previous cases.

For the solution of the output regulation problem for nonlinear systems, the

researchers mainly tried to extend the existing approaches for linear systems to

nonlinear cases. In [25], the internal model principle was extended to the non-

linear systems defined on differentiable manifolds. In [26], a PI controller was

employed for the constant disturbances and the reference signal case. In [27], the

work in [9] for linear multivariable systems was extended to the nonlinear setting

with slowly varying or constant exosystem and nonlinear equations ,which were

the nonlinear counterparts of the linear regulator equations in a special case,

were obtained. Then, in [22] the results of [9] was extended to a general setting

in which the exosystem was a time-varying nonlinear system. In the latter, the

nonlinear regulator equations were obtained and their solution guaranteed the

solution of the output regulation problem. After the work in [22], solvability con-

ditions for these nonlinear regulator equations were studied by many researchers,

see e.g. [22,23,28,29]. In [30,31] the case of nonlinear system with nonhyperbolic

zero dynamics was studied. In [32], the results in [22] were extended to the feed-

back linearizable system. In [33], the global robust output regulation with error

feedback was considered. In [34], internal models were used to design output

regulators for nonlinear systems. In [35], global output regulation of uncertain

nonlinear systems was studied and a novel high gain internal model was devel-

oped.

In most of the existing approaches for the output regulation problem, one

tries to obtain a control law which satisfies (i) assuming that (ii) is satisfied.

Thus, in the classical approach, one assumes that the closed-loop system is al-

ready exponentially stable and consequently one tries to find a controller which

5



satisfies the regulation condition (i). Additionally, the existing solutions for the

reduced problem do not give the controller explicitly. Instead, in the classical

approach one obtains a set of equations, called the regulator equations [24], and

the solvability of the output regulation problem depends on the solvability of the

regulator equations. The regulator equations for LTI cases are shown below :

XcS = AcXc + Pc,

0 = CcXc +Qc (1.7)

where Ac, Pc, Cc and Qc are the closed-loop system state transition matrix,

disturbance matrix, output matrix and reference signal matrix, respectively [24].

Here, Xc is the unknown matrix to be found, and onceXc is found, one can design

a controller by using Xc. Note that (1.7) is called as the Sylvester equations. For

details, see [24]. If one uses the same approach in LTV cases, the regulator

equations become as follows :

Ẋc(t) +Xc(t)S(t) = Ac(t)Xc(t) + Pc(t),

0 = Cc(t)Xc(t) +Qc(t) (1.8)

where Ac, Pc, Cc and Qc are the closed-loop system state transition matrix, dis-

turbance matrix, output matrix and reference signal matrix, respectively [20]. As

in LTI cases, here Xc(t) is the unknown matrix, and if one finds a solution, then

by using Xc(t) one can construct a controller. Note that (1.8) is also called the

differential Sylvester equations. For more details, refer to [20]. The fulfillment of

these equations corresponds to the fulfillment of the condition (i).

In this thesis, we restrict ourselves only to all-pole and minimum phase sys-

tems. Since we deal with only some portion of the general systems, our proposed

method has advantages over the existing approaches. The advantages of our

solution to the output regulation problem are as follows;

• Different from existing approaches our solution depends on the analytical

calculation of the controller that satisfies regulation conditions (i), (ii).
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This analytical calculation particularly is very important for LTV systems

because finding controller by using regulator equations, which include a

differential matrix equation, is a very difficult task.

• Our approach does not assume the fulfillment of the condition (ii) like

most of the existing approaches do. Instead, we propose a controller which

satisfies the conditions (i) and (ii). Moreover, in our approach rather than

a single controller, a class of controllers which solve the output regulation

problem is constructed.

• In LTI case, the controller that solves the output regulation problem may

be found easily by using regulator equations. However, in this methodology

we do not have enough degree of freedom to alter the transient behavior

of the system. On the other hand, our approach allows one to alter the

transient behavior of the closed-loop system upto a certain degree only by

changing some controller parameters. By this way, the designer can achieve

some desired specifications other than the regulation conditions.

The outline of this thesis is as follows;

In chapter 2, we study the output regulation problem for all-pole and min-

imum phase LTI systems. First of all, the problem formulation will be given.

Then, by defining and using the relative degree property of the LTI systems, a

static controller for all-pole systems will be obtained. In addition, observers for

the original system and the exogenous system will be designed and combined

with the overall system. Afterwards, we consider the minimum phase systems

and define minimum phaseness. By introducing an inverse system, a dynamic

controller for minimum phase case will be achieved. Then, similar with all-pole

cases, observers will be designed for both the original system and the exogenous

system. Finally, we will show some numerical results.

In chapter 3, we will extend the technique in chapter 2 to the output regu-

lation problem for the all-pole and the minimum phase LTV systems. First the
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problem formulation will be given. Then, by defining and employing relative de-

gree property, controller for all-pole systems will be constructed. After that, the

inverse systems of the minimum phase LTV systems will be found by applying

certain transformations on the original systems. Then, a dynamic controller for

the minimum phase systems will be obtained by using the inverse systems as a

first part of the controller. Then we will show pole/zero cancelations between

the inverse system and the original system. Lastly, some numerical results are

shown.

In the section which we will deal with controller design for minimum phase

LTV systems, we will use pole/zero definitions of LTV systems and we will try

to show pole/zero cancelations between the inverse systems and the original sys-

tems. However, in literature there are no unique definition of poles and zeros

for LTV systems. Thus, to show pole/zero cancelations we will use definitions of

poles and zeros in [36] and these definitions are the generalizations of pole/zero

definitions for LTV systems in [37]. In [37], definition of poles and zeros for

special class of time-varying systems were given. In these definitions, zeros cor-

responds to the modes that make output zero when we apply this as an input

to the system and poles correspond to the modes which determine the stability

of the system. However, in [36] definition of poles and zeros for a general class

of time-varying systems were given. Additionally, there are two different zero

definition in [36] which are transmission zeros and ordinary zeros. The transmis-

sion zeros correspond to the transmission zeros of the MIMO systems and the

ordinary zeros correspond to the zeros of the SISO systems in LTI cases.

In the last chapter, we conclude our remarks by going over some important

points of the output regulation problem, and we propose some further research

areas, as well as some possible extensions of our results.
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Chapter 2

OUTPUT REGULATION for

ALL-POLE and MINIMUM

PHASE LTI SYSTEMS

Throughout this section, we consider single-input-single-output (SISO) linear-

time-invariant (LTI) systems which have the following form :

˙x(t) = Ax+Bu+ ν, (2.1)

y(t) = Cx, (2.2)

where xϵℜn, yϵℜ, uϵℜ represent the system state, output and input respectively

and Aϵℜn×n, Bϵℜn×1, Cϵℜ1×n represent constant system matrices. We assume

the exogenous system that we deal with is in the form which is given below :

˙w(t) = Sw(t), (2.3)

r(t) = −Qw(t), (2.4)

ν(t) = Pw(t), (2.5)

where wϵℜm, dϵℜn and rϵℜ represent exogenous system states, disturbance sig-

nals and reference signal respectively and Sϵℜm×m, Pϵℜn×m, Qϵℜ1×m represent
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constant matrices of exogenous system. The sign ”-” in the equation that gives

reference signal (2.4) is chosen to ensure compliance with the use in the literature.

Then, the tracking error e(t) can be defined as shown below :

e(t) = y(t)− r(t) = Cx+Qw. (2.6)

In order to use the system states x(t) and the exogenous system states w(t) in

the controller, we should make the assumption of the observability for both of

the systems.

Assumption 1. The pairs (C,A) and (Q,S) are both observable.

Assumption 2. S has distinct eigenvalues with zero real parts

Assumption 2 guarantees that the solutions of the exogenous system are

bounded and do not decay to zero as time goes infinity. If the exogenous system

has eigenvalues with negative real parts, then the reference signal or/and the

disturbances may decay to zero. But, decaying reference signal or disturbances

are not considered in the output regulation problem which is investigated here.

Conversely, if the exogenous system has eigenvalues with positive real parts, then

the reference signal and the disturbances become unbounded, but it is not con-

sidered here for simplicity.

Our objective is to design a feedback control law by using both the original

and the exogenous system states such that the closed-loop system satisfies the

regulation conditions (i) and (ii). In the simplest form (All-Pole case), we will use

the relative degree property of the system in order to find the controller which

provides regulation conditions. Therefore we need to define this property first.

10



2.1 Relative Degree Property

If the system satisfies the following conditions :

CA = CAB = . . . = CAr−2B = 0, (2.7)

CAr−1B = α ̸= 0 , r ≤ n, (2.8)

then the system has a ”relative degree r”. If we take the derivative of the output

of the system y(t), input u(t) appears at the rth derivative because of the relative

degree property : i.e.

ẏ = C(Ax+Bu) = CAx+ CB︸︷︷︸u,
...

y(r−1) = CAr−2(Ax+Bu) = CAr−1x+ CAr−2B︸ ︷︷ ︸ u,
y(r) = CAr−1(Ax+Bu) = CArx+ CAr−1Bu = CArx+ αu. (2.9)

The parts, indicated by underbrace are equal to zero. Therefore, this property

of the system can be used to design controllers for All-Pole systems.

2.2 Controller for All-Pole LTI Systems

Figure 2.1: Overall System Block Diagram
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If we have a system that is full-relative degree (i.e. r = n and system di-

mension is n), then this system is called as an ”All-Pole System”. Transfer

function of this kind of systems are expressed as follows : G(s) = 1
d(s)

where

d(s) = sn+αn−1s
n−1 + . . .+α1s+α0. A state space model of the system of this

type can be given as shown below:

ẋ =


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...
...

...

−α0 −α1 . . . −αn−2 −αn−1


x+


0

0

...

1


u,

y =
(
1 0 . . . 0

)
x. (2.10)

Remark 1. Using the system model given by (2.10), the proof of full-relative

degree property of the system can be done easily.

If we take the derivative of the error given by (2.6) repeatedly, and if we use

the system equations given by (2.1)-(2.5) and the equations given by (2.7)-(2.8)

with r = n, then we obtain the following equations :

e = Cx+Qw,

ė = Cẋ+Qẇ,

= C(Ax+Bu+ Pw) +QSw,

= CAx+ (CP +QS)w,

ë = CAẋ+ (CP +QS)ẇ,

= CA2x+ CAPw + (CP +QS)Sw,

...

e(n) = CAnx+ αu+ CAn−1Pw + Sn−1Sw, (2.11)

where in the derivatives we used the relative degree property given by (2.7)-(2.8).

Here we have α = CAn−1B ̸= 0 (see (2.8)), and the matrices Si are given as below
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:

Si = Si−1S + CAi−1P, S0 = Q, 1 ≤ i ≤ n , (2.12)

In this case, we can choose the following control law for u(t) :

u =
1

α
{−CAnx− Snw − Ln−1e

n−1 − . . .− L1ė− L0e}. (2.13)

By using (2.6) in (2.11) and by separating the multipliers of x and w, we can

rewrite (2.13) as follows :

u = Kxx+Kww, (2.14)

where Kx and Kw are given as below :

Kx = − 1

α
(CAn + Ln−1CA

n−1 + . . .+ L1CA+ L0C), (2.15)

Kw = − 1

α
(Sn + Ln−1Sn−1 + . . .+ L1S1 + L0Q). (2.16)

Thus, when equation (2.13) is substituted into equation (2.11), we get the fol-

lowing error dynamics :

e(n) + Ln−1e
(n−1) + . . .+ L1ė+ L0e = 0 (2.17)

If we use Laplace transformation, the characteristic polynomial of equation (2.17)

will be as follows :

ch(s) = sn + Ln−1s
n−1 + . . .+ L1s+ L0. (2.18)

Hence, the polynomial given by (2.18) can always be made stable by choosing ap-

propriate controller coefficients Li. In this case, the solution of the error dynamics

given by (2.17) is exponentially stable. Thus, if Li parameters are selected to

make the characteristic equation (2.18) exponentially stable in controller given

by equation (2.13), then the regulation condition (i) is satisfied. In order to

show regulator problem has been resolved with the controller given by (2.13),

the second regulator condition (ii) should be satisfied as well. If the system in

the equations (2.1)-(2.2) and the controller in the equations (2.13)-(2.14) are put
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together, we will obtain the closed-loop system state space form as shown below

:

ẋ = (A+BKx)x+ (P +BKw)w = Aclx+ (P +BKw)w, (2.19)

e = y − r = Cx+Qw. (2.20)

Lemma 1. The static controller

u = Kxx, (2.21)

where Kx = − 1
α
(CAn + Ln−1CA

n−1 + . . .+ L1CA+ L0C) makes the closed-loop

system (2.19)-(2.20) with w = 0 exponentially stable and characteristic equation

of Acl matrix in (2.19) is given by (2.18).

In order to prove Lemma 1, we use the following fact.

Fact 2. For A, B, C given by system (2.10), the following holds :

BCAi =
(
0 . . . 0 ei+1

)T
, (2.22)

where 0 ≤ i ≤ n−1, 0 =


0

...

0

 ϵℜn and ei+1ϵℜn is unit vector with (i+1)th entry

is one.

Proof. In order to show this fact, we use mathematical induction.

When i = 0

BC =


0

...

0

1


(
1 0 . . . 0

)
=

(
0 . . . 0 e1

)T
. (2.23)
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When i=m, BCAm =
(
0 . . . 0 em+1

)T
is true. Then,

BCAm+1 =
(
0 . . . 0 em+1

)T


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...
...

...

−α0 −α1 . . . −αn−2 −αn−1


,

=
(
0 . . . 0 em+2

)T
. (2.24)

Thus, the above statement is true by mathematical induction.

Then, the proof of Lemma 1 is given by using the above fact shown below.

Proof. If we combine the controller (2.14) with the system (2.1), the closed-loop

system is obtained with w = 0. Then, the closed-loop system is given by :

ẋ = Ax+BKxx = (A+BKx)x = Aclx, (2.25)

where

Acl = A−BCAn − Ln−1BCAn−1 − . . .− L1BCA− L0BC. (2.26)

By using Fact 1, we can find Acl as follows :

First we construct BCAn with the help of the Fact 1 :

BCAn =
(
0 . . . 0 en

)T


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...
...

...

−α0 −α1 . . . −αn−2 −αn−1


,

=
(
0 . . . 0 a

)T
. (2.27)

where a =
(
−α0 . . . −αn−1

)T
. Now we know BCAi for 0 ≤ i ≤ n − 1 from

the Fact 1. Hence if we substitute this result and (2.27) into (2.26), the following
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form is obtained for Acl :

Acl =


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...
...

...

−L0 −L1 . . . −Ln−2 −Ln−1


. (2.28)

If we constitute the characteristic equation of Acl, it turns out that it is the

same as (2.18) . In addition, in order to make error e(t) exponentially stable Li

coefficients were chosen such that (2.18) became a Hurwitz polynomial. Hence,

this shows that Acl matrix is a Hurwitz matrix and the closed-loop system with

w = 0 is exponentially stable.

If the results of the equation (2.17) and Lemma 1 is used, the following

theorem can be obtained.

Theorem 3. The static controller given by equations (2.13)-(2.14) satisfies the

regulation conditions (i.e. (i) and (ii)) for the system in the form (2.1)-(2.5)

with the system matrices (2.10).

Proof. (i) From the equations (2.17) and (2.18), it turns out that the error e(t)

is exponentially stable (i.e. |e(t)| < k exp−λt). Hence,

lim
t→∞

|e(t)| = 0. (2.29)

(ii) With w = 0 Lemma 1 showed that the closed-loop system is exponentially

stable. i.e.

Re{eig(Acl)} < 0

where eig(Acl) denotes the eigenvalues of Acl in (2.26) and (2.28).

These two results point out that regulation conditions are satisfied with static

controller given by equations (2.13).
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Remark 2. As we mentioned in Chapter 1, linear output regulation problem

has been studied extensively in the past. Most of the existing approaches rely on

obtaining set of regulator equations which should be satisfied by the controllers

in order to solve the regulator problem. In these approaches, the second part of

the regulator conditions (ii) is assumed to be true and the problem is reduced

to finding the controller part associated with the exogenous system states, if the

controller is a static one. In all-pole case that we deal with above, this corresponds

to finding Kw assuming that Kx is known. In this case, regulator equations

become as given below :

XcS = (A+BKx)Xc + (P +BKw), (2.30)

0 = CXc +Q. (2.31)

If there exists a unique matrix Xc and Kw that satisfies above regulator equations,

then the first part of the regulator conditions (i) is satisfied by the controller which

is given by below form :

u = Kxx+Kww (2.32)

In our approach, the static controller u = Kxx makes the closed-loop system

exponentially stable when the exogenous signal is not present, i.e. when w(t) =

0. Actually, we can assign poles of the closed-loop system with this controller

anything that we desire because the coefficients of the characteristic polynomial

of the closed-loop system given by (2.18) depend only on the controller parameters

Li. Thus, this shows that the static controller class given by the equation (2.13)

covers all the static controllers that can be designed to make the closed-loop system

(2.19)-(2.20) stable without the exogenous system. In addition to this, Kw part

of the controller in equation (2.13) can be achieved from the regulator equations

(2.30)-(2.31) as will be shown below.

Lemma 4. If we take the controller part Kx associated with the system states x(t)

as in (2.21), the controller part Kw associated with the exogenous system states
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w(t) in (2.13)-(2.14) which is given by (2.16) can be obtained from regulator

equations (2.30)-(2.31).

Proof. We know thatKx is in the following form : Kx = − 1
α
(CAn+Ln−1CA

n−1+

. . . + L1CA + L0C). Let us try to find Kw from the equations (2.30)-(2.31) by

using the relative-degree property. For simplicity, we take α in (2.8) as 1.

The first thing that we observe from (2.30)-(2.31) is the following :

e(i) = CAix− CAiXcw, (2.33)

where 0 ≤ i ≤ n− 1. We can prove (2.33) by mathematical induction. We first

show that (2.33) is true for i = 0. From (2.20) we have

e = Cx+Qw. (2.34)

On the other hand, from (2.31) we obtain Q = −CXc. By using this in (2.34)

we obtain the following :

e = Cx− CXcw, (2.35)

which shows that (2.33) holds for i = 0. Now, assume that (2.33) holds for i = m,

i.e. assume that the following holds :

e(m) = CAmx− CAmXcw. (2.36)

Then by differentiating (2.36) once more, we obtain :

e(m+1) = CAmẋ− CAmXcẇ = CAm+1x+ CAmBu+ CAmPw − CAmXcSw,

= CAm+1x+ CAmPw − CAmXcSw, (2.37)

from the relative degree property. If we multiply (2.30) with CAm, then the

following equation is obtained :

CAmXcS = CAm(A+BKx)Xc + CAm(P +BKw) = CAm+1Xc + CAmP

(2.38)
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where to obtain the last equality we used the relative degree property, see (2.7)

and (2.8). Hence, we have the following :

CAmXcS = CAm+1Xc + CAmP. (2.39)

If we substitute (2.39) into (2.37), then we obtain :

e(m+1) = CAm+1x+ CAmPw − (CAm+1Xc + CAmP )w,

= CAm+1x− CAm+1Xcw. (2.40)

Hence, by mathematical induction the statement (2.33) is true.

Secondly, we observe that :

Si = −CAiXc, (2.41)

where Si are given by (2.12) and 0 ≤ i ≤ n. We can again prove this observation

by mathematical induction. We first show that (2.41) holds for r = 0. Indeed,

from (2.12) we see that S0 = Q. On the other hand, from (2.31) we obtain :

S0 = Q = −CXc, (2.42)

which shows that (2.41) holds for i = 0. Assume that (2.41) holds for i = m, i.e.

we have :

Sm = −CAmXc. (2.43)

Then, by using (2.43) in (2.12) we obtain :

Sm+1 = −CAmXcS + CAmP = (−CAm+1Xc − CAmP ) + CAmP,

= −CAm+1Xc, (2.44)

where we used (2.39) to obtain the final equality. Hence, by mathematical in-

duction we show that (2.41) holds.

Let us use (2.33) for i = n− 1, i.e.

e(n−1) = CAn−1x− CAn−1Xcw. (2.45)
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If we differentiate (2.45) with respect to time, and use (2.3) and (2.19), we obtain

:

e(n) = CAn−1[(A−BKx)x+ (P −BKw)w]− CAn−1XcSw. (2.46)

Assuming α = CAn−1B = 1 (without loss of generality), we obtain :

e(n) = CAnx−Kxx+ CAn−1Pw −Kww − CAn−1XcSw. (2.47)

By using (2.41) for i = n− 1 in (2.47), we obtain :

e(n) = CAnx−Kxx+ CAn−1Pw −Kww + Sn−1Sw. (2.48)

Finally, by using (2.12) for i = n in (2.48), we obtain :

e(n) = CAnx−Kxx−Kww + Snw. (2.49)

Hence, when Kx is given by (2.15), then Kw can be obtained from the regulator

equations (2.30)-(2.31) as given below :

−Kww = e(n) − CAnx+Kxx− Snw. (2.50)

Now let us consider the control law obtained by our approach, which is given by

(2.13)-(2.14). If we use the latter in (2.11), we obtain :

e(n) = CAnx−Kxx−Kww + CAn−1Pw + Sn−1Sw. (2.51)

By using (2.12) for i = n in (2.51), we obtain :

−Kww = e(n) − CAnx+Kxx− Snw. (2.52)

By comparing (2.52) and (2.50), we see that the term Kww obtained both by our

approach and by the regulator equations are the same. Hence, we conclude that

if Kx is as given by (2.15), then Kw , which is obtained by our approach, is the

same as the one ,which is obtained from the regulator equations (2.30)-(2.31).
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2.3 Observer Based Controller for All-Pole LTI

Systems

In order to implement the controller given by equations (2.13)-(2.14), in addition

to error term e(t) and various derivatives of it, the signals w(t), x(t) should also

be measurable. If only the system output y(t) and the reference signal r(t) are

known, we can design observers for x(t) and w(t) through Assumption 1 and the

outputs of these observers can be used in the controller equations (2.13)-(2.14).

In the following, we will use the standard full order observer, also known as

Luenberger observer [38], for our observer based controller design.

The observer structure for x(t) is in this below form :

x̂ = Ax̂+Bu+ Lx(y − Cx̂+ Pŵ), (2.53)

and the observer structure for w(t) is given by the below equations :

ŵ = Sŵ + Lw(r +Qŵ), (2.54)

Let us define new state variables ex and ew as shown below :

ex = x− x̂ , ew = w − ŵ. (2.55)

Then, the dynamic equations of the above states can be found as follows :

ėx = ẋ− ˙̂x

= Ax+Bu+ Pw − Ax̂−Bu− Pŵ − LxCx+ LxCx̂

ėx = (A− LxC)ex + Pew (2.56)

and

ėw = ẇ − ˙̂w = Sw − Sŵ + LwQw − LwQŵ

= (S + LwQ)ew (2.57)

Since both (A,C) and (Q,S) pairs are observable, we can find Lx and Lw

such that matrices in (2.56)-(2.57) become Hurwitz . Thus, estimated states
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x̂, ŵ converge true states x, w exponentially. If we combine the system in the

equations (2.1)-(2.5) and the controller (2.13)-(2.14) with the observer equations

(2.56)-(2.57), overall system can be obtained. The overall system (i.e. observer-

controller-plant) state space model with states ex, ew become in the following

form :
ẋ

ėx

ėw

 =


(A+BKx) −BKx −BKw

0 (A− LxC) P

0 0 S + LwQ



x

ex

ew

+


P +BKw

0

0

w,

(2.58)

e =
(
C 0 0

)
x

ex

ew

+Qw. (2.59)

Lemma 5. The system in equations (2.58)-(2.59) satisfies regulation conditions

(i) and (ii).

Proof. (i) Since the error e(t) is exponentially stable with controller (2.13),

the controller-plant system (2.19)-(2.20) satisfies the regulator equations

(2.30)-(2.31) and its inverse is also true. Thus, if the system in (2.58)-

(2.59) satisfies regulator equation formed by its system matrices, then the

error term e(t) is exponentially stable. The regulator equations formed by

the matrices in (2.58)-(2.59) as follows :
Xc1

Xc2

Xc3

S =


(A+BKx) −BKx −BKw

0 (A− LxC) P

0 0 S + LwQ



Xc1

Xc2

Xc3

+


P +BKw

0

0

 ,

(2.60)

0 =
(
C 0 0

)
Xc1

Xc2

Xc3

+Q. (2.61)
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If Xc2 and Xc3 are chosen as zero vectors, then the regulator equations are

reduced to this below form :

Xc1S = (A+BKx)Xc1 + (P +BKw), (2.62)

0 = CXc1 +Q. (2.63)

The equations (2.62)-(2.63) are the same with regulator equations given by

(2.30)-(2.31). Also in Lemma4, we proved that the regulator equations given

by (2.30)-(2.31) are satisfied with the controller given by (2.13)-(2.14). This

implies that the equations (2.62)-(2.63) have a solution. Thus, the regulator

equations given by (2.60)-(2.61) are satisfied. This indicates that the error

e(t) exponentially decays to zero for the system given by the state space

representation (2.58)-(2.59).

(ii) The closed-loop state transition matrix with w = 0 is in block triangular

form as can be seen in equation (2.58). In addition, the matrices (A+BKx),

(A − LxC) and (S + LwQ) are known to be Hurwitz. We know that the

state transition matrix eigenvalues are composed of these three matrices

eigenvalues because of the block triangular structure as shown below: i.e

eig(Acl) = eig(A+BKx)
∪

eig(A− LxC)
∪

eig(S + LwQ), (2.64)

It easily follows that the closed-loop matrix in (2.58) is Hurwitz, which

means that the closed-loop system with w = 0 is exponentially stable.

2.4 Controller for Minimum Phase LTI Systems

In general, the transfer function of LTI systems are as follows : G(s) = n(s)
d(s)

. If

the zeros of the system, i.e. the roots of n(s), are on the left-half-plane (LHP),

this system is called as a ”Minimum Phase System”. Besides, these systems have
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Figure 2.2: Overall System Block Diagram

relative degree r and r is given by r = (number of poles) − (number of zeros) .

In order to obtain a state space model for such systems, suppose that n(s) and

d(s) are given as follows :

n(s) = sm + bm−1s
m−1 + . . .+ b1s+ b0, (2.65)

d(s) = sn + αn−1s
n−1 + . . .+ α1s+ α0. (2.66)

In this case, the system to be controlled can be given as shown below :

ẋ =


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...
...

...

−α0 −α1 . . . −αn−2 −αn−1


x+


0

0

...

1


u,

y =
(
b0 b1 . . . 1 0 . . . 0

)
x. (2.67)

We know that the zeros of the minimum phase system are stable. Then to make

the system in (2.67) equivalent to an all-pole system, we can employ C1(s) =
1

n(s)

as the first part of the controller. Since there is no unstable pole/zero cancelations

between C1(s) and the system in (2.67), the first part of the controller does not

cause any instability problem. The overall system will become equivalent to all-

pole with this first part of the controller and a state space model for C1(s) can
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be given as follows :

ξ̇ =


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...
...

...

−b0 −b1 . . . −bm−2 −bm−1


ξ +


0

0

...

1


v = Gξ +Hv, (2.68)

u =
(
1 0 . . . 0

)
ξ = Kξ, (2.69)

where ξϵℜm, vϵℜ and uϵℜ denote the controller states, input and output re-

spectively. Then Gϵℜm×m, Hϵℜm×1, Kϵℜ1×m, given by (2.68)-(2.69), represent

constant system matrices . If we form the overall system by combining the orig-

inal system in the equations (2.1)-(2.5) and the first part of the controller given

by (2.68)-(2.69), a state space model of augmented system becomes in the form

given below : ẋ
ξ̇

 =

A BK

0 G

x
ξ

+

 0

H

 v +

P
0

w, (2.70)

e =
(
C 0

)x
ξ

+ Sw. (2.71)

This overall system has dimension ñ = n +m where m is the dimension of the

inverse system C1(s). Since the poles of C1(s) and the zeros of the system in

(2.67) are canceled each other, the number of m unobservable states arise in the

overall system given by (2.70)-(2.71).

Fact 6. The system given by (2.70)-(2.71) has relative degree n.

Proof. The first part of controller has transfer function C1(s) =
1

n(s)
and we know

from section (1.2) that this kind of transfer functions represent all-pole systems.

Since the first part has dimension m, the system in (2.68)-(2.69) has relative

degree m : i.e.

KH = KGH = . . . = KGm−2H = 0, (2.72)

KGm−1H = β ̸= 0. (2.73)
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In addition, the original system in (2.67) has relative degree r, thus the following

equations must hold :

CB = CAB = . . . = CAr−2B = 0, (2.74)

CAr−1B = γ ̸= 0. (2.75)

Let us denote z =

x
ξ

, Ac =

A BK

0 G

, Cc =
(
C 0

)
and Bc =

 0

H

.

Then,

Cc =
(
C 0

)
,

CcAc =
(
C 0

)A BK

0 G

 =
(
CA CBK

)
,

CcA
2
c =

(
CA CBK

)A BK

0 G

 =
(
CA2 CABK + CBKG

)
,

...

CcA
r
c =

(
CAr CAr−1BK + CAr−2BKG+ . . .+ CBKGr−1

)
=

(
CAr CAr−1BK

)
,

...

CcA
n−2
c =

(
CAn−2 CAn−3BK + . . .+ CAn−m−2BKGm−1 + . . .+ CBKGn−3

)
=

(
CAn−2 CAn−3BK + . . .+ CAr−1BKGm−2

)
,

CcA
n−1
c =

(
CAn−1 CAn−2BK + . . .+ CAn−m−1BKGm−1 + . . .+ CBKGn−2

)
=

(
CAn−1 CAn−2BK + . . .+ CAr−1BKGm−1

)
.

(2.76)
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where we used (2.74) and the fact that r = n−m. If we multiply these equations

from right with Bc, we obtain the following result :

CcAcBc = 0,

CcA
2
cBc = 0,

...

CcA
n−2
c Bc = 0,

CcA
n−1
c Bc = βγ = ρ ̸= 0,

where we used (2.72), (2.73) and (2.75). This proves that the overall system in

(2.70)-(2.71) has relative degree n.

Thus, as in all-pole systems the input appears at the nth derivative of the

error e(t) which is shown below :

ė = Cc ˙̃x+Qw,

= CcAcx̃+ CcBc︸ ︷︷ ︸ v + CcPc +QSw,

...

e(n) = CcA
n
c x̃+ βv + CcA

n−1
c Pcw + S̃n−1w, (2.77)

where S̃i = S̃i−1S + CcA
i−1
c Pc, 1 ≤ i ≤ n, S̃0 = Q, and the part, indicated by

underbrace is equal to zero. In order to find the second part of the controller

that guarantees the regulation conditions, we will use the same methodology,

that we applied in all-pole systems. Therefore, we will choose control input u(t)

as follows :

v =
1

γ
{−CcAnc x̃− S̃nw − L̃n−1e

n−1 − . . .− L̃1ė− L̃0e}. (2.78)

If the equation in (2.78) is substituted into equation in (2.77), we obtain the

error dynamics e(t) as shown below :

e(n) + L̃n−1e
(n−1) + . . .+ L̃1ė+ L̃0e = 0. (2.79)
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The latter is the same with (2.17) that was obtained for all-pole systems. If we

again use Laplace transformation, the characteristic polynomial of the equation

(2.79) will be as given below :

ch(s) = sn + L̃n−1s
n−1 + . . .+ L̃1s+ L̃0 = 0. (2.80)

If the controller parameters {L̃n−1, . . . , L̃1, L̃0} are chosen properly, we can make

the error e(t) exponentially stable as we discussed in Section 1.2. Actually, the

second part of the controller is like a static controller and its state space model

can be shown as follows :

v = Kξξ +Kxx+Kww. (2.81)

In this case, if we combine the first and the second part of the controller given by

(2.68)-(2.69), (2.81) respectively, the overall controller becomes as shown below

:

ξ̇ = (G+HKξ)ξ +HKxx+HKww,

u = Kξ. (2.82)

Thus, the closed-loop system state space model is in the following form :ẋ
ξ̇

 =

 A BK

HKx G+HKξ

x
ξ

+

 P

HKw

w,

e =
(
C 0

)x
ξ

+Qw. (2.83)

We denote

Acl =

 A BK

HKx G+HKξ

 . (2.84)

In order to satisfy the second regulation condition (ii), Acl should be a Hurwitz

matrix. In the system given by (2.70)-(2.71), there are number ofm unobservable

states as a result of the pole/zero cancelations between the original system and

the first part of the controller. This point is proven in the following fact.
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Fact 7. System in (2.70)-(2.71) has m unobservable states.

Proof. First, let us compute the controllability matrix of the system;

Rc =
(
Bc AcBc . . . An+m−1

c Bc

)
=


0 0 . . . 0 1

...
...

... . . . ∗

0 1 ∗ . . . ∗

1 ∗ . . . ∗ ∗


.

Clearly rank(Rc) = n + m. Hence the system is completely controllable. 0n

the other hand, the minimal realization of this system has transfer function

Gm(s) = 1
d(s)

which has dimension n. Thus, there should be n states which is

both controllable and observable. Since, we proved that all states are control-

lable, there has to be m unobservable states in system (2.70)-(2.71) by Kalman

decomposition.

Since the system in (2.70)-(2.71) has m unobservable states as we showed in

Fact 7, there has to be a similarity transformation T which transforms the state

transition matrix of the system in (2.70)-(2.71) into the canonical form shown

below :

T

A BK

0 G

T−1 =

At 0

⋄ Gt

 , (2.85)

where the eigenvalues of A are same with the eigenvalues of At and the eigenvalues

of G is same with the eigenvalues of Gt.

Lemma 8. The closed-loop state transition matrix Acl in (2.83) is a Hurwitz

matrix and its eigenvalues are the combination of the roots of (2.80) and the

eigenvalues of the state transition matrix G of the inverse system given by (2.68).

Proof. From (2.78) we can obtain
(
Kx Kξ

)
as follows :

(
Kx Kξ

)
= CcA

n
c − L̃n−1CcA

n−1
c − . . .− L̃1CcAc − L̃0Cc. (2.86)
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Let us denote

T0 = 0, Tk =
k−1∑
i=0

CAiBKGk−1−i, 1 ≤ k ≤ n. (2.87)

Then it easily follows that CcA
k
c =

(
CAk Tk

)
for 1 ≤ k ≤ n. From this relation,

we can obtain Acl as follows :

Acl =

A BK

X G+ Y

 , (2.88)

where

Y = −H[Tn + L̃n−1Tn−1 + . . .+ L̃1T1], (2.89)

and

X = −H[CAn + L̃n−1CA
n−1 + . . .+ L̃1CA+ L̃0C]. (2.90)

Let us write the transformation matrix T in (2.85) as :

T =

T11 T21

T12 T22

 . (2.91)

Then, from (2.85) we obtain the following :T11 T21

T12 T22

A BK

0 G

 =

At 0

A1 Gt

T11 T21

T12 T22

 . (2.92)

If we carry out the above matrix multiplications, we obtain the following :

T11A = AtT11, (2.93)

T11BK + T21G = AtT21, (2.94)

T12A = A1T11 +GtT12, (2.95)

T12BK + T22G = A1T21 +GtT22. (2.96)

Let us apply the same transformation T to Acl :T11 T21

T12 T22

A BK

X G+ Y

 =

T11A+ T21X T11BK + T21G+ T21Y

T12A+ T22X T12BK + T22G+ T22Y

 ,

(2.97)
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and let us substitute (2.93), (2.94), (2.95) and (2.96) into (2.97) :

TAcl =

 AtT11 + T21X AtT21 + T21Y

A1T11 +GtT12 + T22X A1T21 +GtT22 + T22Y

 . (2.98)

In addition, we know from Kalman decomposition of (2.70)-(2.71) that the fol-

lowing holds : T11 T21

T12 T22

 0

H

 =

 Bt

Buo

 , (2.99)

(
C 0

)
=

(
Ct 0

)T11 T21

T12 T22

 . (2.100)

By using (2.99) and (2.100), we obtain the following :

T21H = Bt, (2.101)

T22H = Buo, (2.102)

CtT11 = C, (2.103)

CtT21 = 0. (2.104)

First we find T21X as follows :

T21X = −T21H[CAn + L̃n−1CA
n−1 + . . .+ L̃1CA+ L̃0C],

= −BtCtT11[A
n + L̃n−1A

n−1 + . . .+ L̃1A+ L̃0],

= −BtCt[A
n
t + L̃n−1A

n−1
t + . . .+ L̃1At + L̃0]T11, (2.105)

where we used (2.101), (2.103) and (2.93). Then, we obtain the following :

AtT11 + T21X = {At −BtCt[A
n
t + L̃n−1A

n−1
t + . . .+ L̃1At + L̃0]}T11 = AlT11

(2.106)

where

Al = At −BtCt[A
n
t + L̃n−1A

n−1
t + . . .+ L̃1At + L̃0].

Actually, the triple (At, Bt, Ct) describes minimal realization of the system in the

form (2.70)-(2.71) with w = 0. Additionally, this state space model is all-pole
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and has transfer function Gm = 1
d(s)

. Since the form of Al is the same with Acl

in (2.26), Al has the characteristic equation as given by (2.80).

By using (2.87), (2.103) and (2.93), we obtain :

Tk = CAk−1BK + CAk−2BKG+ . . .+ CBKGk−1,

= (CtA
k−1
t T11BK + CtA

k−2
t T11BKG+ . . .+ CtT11BKG

k−1). (2.107)

By using (2.107) and (2.101), we obtain:

T21Y = −T21H[T n + L̃n−1T
n−1 + . . .+ L̃1T + L̃0T0]

= −Bt[T
n + L̃n−1T

n−1 + . . .+ L̃1T + L̃0T0]. (2.108)

We know from (2.94) that the following holds :

T11BK = −T21G+ AtT21. (2.109)

If we substitute the latter into (2.107), we obtain :

Tk = (CtA
k
t T21 + CtA

k−1
t T21G+ . . .+ CtAtT21G

k−1)

− (CtA
k−1
t T21G+ . . .+ CtAtT21G

k−1 + CtT21G
k) = CtA

k
t T21 − CtT21G

k,

= CtA
k
t T21, (2.110)

where we used (2.104). By substituting (2.110) into (2.108) we can obtain the

following :

T21Y = −Bt(CtA
n
t + L̃n−1CtA

n−1
t + . . .+ L̃1CtAt + L̃0Ct). (2.111)

Thus, if we put (2.111) into AtT21 + T21Y , then below we obtain :

AtT21 + T21Y = AlT21. (2.112)

Finally, we form T22X and T22Y shown below :

T22X = −BuoCt(A
n
t + L̃n−1A

n−1
t + . . .+ L̃1At + L̃0)T11, (2.113)

T22Y = −BuoCt(A
n
t + L̃n−1A

n−1
t + . . .+ L̃1At + L̃0)T21, (2.114)
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where we used (2.102), (2.103), (2.93) and (2.110). If we substitute (2.106),

(2.112), (2.113) and (2.114) into (2.97), we obtain the following form :

TAcl =

Al 0

Á1 Ag

T11 T21

T12 T22

 , (2.115)

where Á1 = A1 −BuoCt(A
n
t + L̃n−1A

n−1
t + . . .+ L̃1At + L̃0) and Ag = Gt. Thus,

transformed closed-loop matrix is in this following form :

Ãcl = TAclT
−1 =

Al 0

Á1 Ag

 . (2.116)

The eigenvalues of Ãcl are the same as the eigenvalues of Acl. Hence, from (2.116)

we obtain the following :

eig(Ãcl) = eig(Acl) = eig(Al)
∪

eig(Ag) (2.117)

Since we know that the eigenvalues of Al are given by the (2.80) and the eigen-

values of Ag are the same with G, which are stable by minimum phase property,

the closed-loop system state transition matrix Acl in (2.83) is a Hurwitz ma-

trix. In addition, its eigenvalues are combination of the roots of (2.80) and the

eigenvalues of the state transition matrix G of the inverse system in (2.68)

The Lemma 8 proves that the closed-loop system with w = 0 in (2.83) is

exponentially stable.

Theorem 9. The dynamic controller given by (2.82) satisfies regulation condi-

tions (i), (ii) for the system in the form (2.1)-(2.5) with system matrices as given

by (2.67).

Proof. (i) Equations (2.79)-(2.80) indicates that the error term e(t) is expo-

nentially stable (i.e. |e(t)| < k exp−λt for some k > 0, λ > 0). Hence, we

have

lim
t→∞

|e(t)| = 0. (2.118)
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(ii) Lemma 8 proves that the closed-loop system with w = 0 is exponentially

stable. i.e.

Re{eig(Acl)} < 0

where eig(Acl) denotes the eigenvalues of Acl in (2.88).

These two results prove that the dynamic controller in the form (2.82) satisfies

the regulation conditions for the system in the form (2.1)-(2.5) with system

matrices as given by (2.67).

2.5 Observer Based Controller for Minimum

Phase LTI Systems

In order to implement the controller in (2.82), we need to know the system states

x(t) and the exogenous system states w(t). If only the system output y(t) and

the reference signal r(t) are known, observers for x(t) and w(t) can be designed

through Assumption 1, see section 2.3. The observer structure for x(t) and

w(t) is the same with (2.53),(2.54) respectively. Then the observers error terms

ex = x − x̂ and ew = w − ŵ are defined as a new state variables for the overall

system. The observers error dynamics are the same as the ones found in section

2.3 which are given by (2.56)-(2.57) and are again given below :

ėx = (A− LxC)ex + Pew, (2.119)

ėw = (S + LwQ)ew. (2.120)

Since both (A,C) and (Q,S) pair are observable, we can find Lx, Lw such that

the matrices in (2.119) and (2.120) become Hurwitz. Thus estimated states x̂,

ŵ converge true states x, w asymptotically.

If we combine the system in (2.1)-(2.5) and the controller in (2.82) with the

observer error dynamics given by (2.119)-(2.120), the overall controller-observer
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system can be obtained. The overall system state space model with new states

ex, ew turns into the following form :
ẋ

ξ̇

ėx

ėw


=


A BK 0 0

HKx G+HKξ −HKx −HKw

0 0 A− LxC P

0 0 0 S + LwQ




x

ξ

ex

ew


+


P

HKw

0

0


w,

(2.121)

e = y − r =
(
C 0 0 0

)

x

ξ

ex

ew


+Qw. (2.122)

Lemma 10. The system in equations (2.121)-(2.122) satisfies regulation condi-

tions (i) and (ii).

Proof. (i) Since the error e(t) is exponentially stable with the controller in

(2.82), the regulator equations given below are satisfied by the controller-

plant system :

XcS = AclXc +

 P

HKw

 . (2.123)

0 = CcXc +Q, (2.124)

If the controller-observer-plant system given by (2.121)-(2.122) satisfies reg-

ulator equations formed by its system matrices, the error term e(t) also

becomes exponentially stable for the observer-controller-plant system. The
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regulator equations formed by the matrices in (2.121)-(2.122) as follows :
Xc1

Xc2

Xc3

S =


Acl B1 B2

0 (A− LxC) P

0 0 S + LwQ



Xc1

Xc2

Xc3

+


Pc

0

0

 , (2.125)

0 =
(
Cc 0 0

)
Xc1

Xc2

Xc3

+Q. (2.126)

where B1 =

 0

−HKx

, B2 =

 0

−HKw

 and Pc =

 P

HKw

. If Xc2 and

Xc3 are chosen as zero, then the regulator equations (2.125)-(2.126) are

reduced to the form given below :

Xc1S = AclXc1 + Pc, (2.127)

0 = CcXc1 +Q. (2.128)

The equations (2.127)-(2.128) are the same with the regulator equations

(2.123)-(2.124). Hence, there exists an Xc1 such that (2.127)-(2.128) are

satisfied. This implies that the regulator equations given by (2.125)-(2.126)

are satisfied. This proves that the error e(t) is exponentially stable in the

system given by equations (2.121)-(2.122).

(ii) The closed-loop state transition matrix of the system in (2.121)-(2.122)

with w = 0 is in block triangular form. Additionally, the matrices Acl = A BK

HKx G+HKξ

, (A−LxC) and (S+LwQ) are Hurwitz matrices. Since

the eigenvalues of the overall state transition matrix are composed of the

eigenvalues of these three matrices, we have :

eig(Aocl) = eig(Acl)
∪

eig(A− LxC)
∪

eig(S + LwQ) (2.129)

This proves that the closed-loop system in (2.121)-(2.122) with w = 0 is

exponentially stable.
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2.6 Numerical Results

In this section, some simulation results for both All-pole and Minimum Phase

LTI Systems are given. Initially, in the figures we will give graph that shows the

error signal e(t) between system output y(t) and reference signal r(t). Then, we

will put the graph that shows the stability of closed-loop system without exoge-

nous system. Finally, we will give graph of the errors ex, ew.

2.6.1 Example 1

In the first simulation, we consider the following system (see (2.1)-(2.5)) :

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−5 −1 3 −2


x+


0

0

0

1


u+ ν,

y =
(
1 0 0 0

)
x. (2.130)

The exogenous system is given as follows :

ẇ =


0 0 0 −π

0 0 1 0

0 −(π
2
)2 0 0

1 0 0 0


w,

r(t) = −
(
1 −0.5 2 0

)
w,

ν(t) =


1 0 −1 0

2 0 1 0.5

1 0 0 2

−2 1 0 0


w. (2.131)
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Hence according to (2.6), the error e(t) becomes :

e =
(
1 0 0 0

)
x+

(
1 −0.5 2 0

)
w. (2.132)

Note that, when w(t) = 0, the transfer function of this system is given as :

G(s) = C(sI − A)−1B =
1

s4 + 2s3 − 3s2 + s+ 5
. (2.133)

Hence, when w(t) = 0, the uncontrolled system is all-pole and unstable. By using

(2.13)-(2.14), we find the controller which satisfies the regulation conditions as

follows :

u =
(
3 −4 −7 −1

)
x+

(
−1.0953 −10.1245 −1.5728 4.3579

)
w.

(2.134)

With Kx as given above, the characteristic polynomial of the closed-loop system

becomes as follows :

ch(s) = s4 + 3s3 + 4s2 + 5s+ 2 (2.135)

and roots of (2.135) can be given as follows: {−2,−.2151 + 1.3071ı,−.2151 −

1.3071ı,−.5698}. If we assign the eigenvalues of the state observer matrix (A−

LxC) as {−1,−2 + ı,−2 − ı,−3} and the exogenous system observer matrix

(S + LwQ) as {−0.064 + 1.67ı,−0.064− 1.67ı,−0.26 + 1.34ı,−0.26− 1.34ı}, we

obtain Lx and Lw as follows :

Lx =
(
6 15 19 11

)T
(2.136)

Lw =
(
−0.5 −0.1 −0.1 −0.1

)T
(2.137)

Simulation results are obtained for these initial conditions :

x(0) =
(
1 1 1 1

)T
and w(0) =

(
1 1 1 1

)T
.
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Figure 2.3: Tracking of Reference Signal
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In figure 2.3, figure 2.4 and figure 2.5, we can see the simulation results for

system given by (2.130)-(2.131). In figure 2.3, we can observe that the output of

the system tracks the reference signal exponentially when the disturbances are

effective on the system. In figure 2.4, we observe that the closed-loop system

is stable with w = 0. In figure 2.5, we see that the estimated states x̂, ŵ are

converge to the true states x, w.
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2.6.2 Example 2

The system that we will deal with as a second example is given below :

ẋ =


0 1 0

0 0 1

−2 −1 −3

x+


0

0

1

u+ ν,

y =
(
1 0 0

)
x. (2.138)

The exogenous system is given as follows :

ẇ =

 0 2

−2 0

w,

r(t) = −
(
1 2

)
w,

ν(t) =


1 −1

0 1

1 0

w (2.139)

Hence according to (2.6), the error e(t) becomes :

e =
(
1 0 0

)
x+

(
1 2

)
w. (2.140)

Note that, when w(t) = 0, the transfer function of this system is given as :

G(s) = C(sI − A)−1B =
1

s3 + 3s2 + s+ 2
. (2.141)

Hence, when w(t) = 0, the uncontrolled system is all-pole and stable. By using

(2.13)-(2.14), we find the controller which satisfies the regulation conditions as

follows :

u =
(
0.284 −3.31 −0.63

)
x+

(
7.414 14.258

)
w. (2.142)

With Kx as given above, the characteristic polynomial of the closed-loop system

becomes as follows :

ch(s) = s3 + 3.6s2 + 4.31s+ 1.716, (2.143)
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and roots of this polynomial can be given as follows: {−1.1,−1.2,−1.3}. If we

assign the eigenvalues of the state observer matrix (A − LxC) as {−1,−2,−3}

and the exogenous system observer matrix (S + LwQ) as {−2,−1}, we obtain

Lx and Lw as given below :

Lx =
(
3 1 −2

)T
(2.144)

Lw =
(
−1 −1

)T
(2.145)

Simulation results are obtained for the below initial conditions :

x(0) =
(
1 0 −1

)T
and w(0) =

(
0.2 0.5

)T
.

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

time / sec

r(
t)

, y
(t

)

 

 
r(t)
y(t)

Figure 2.6: Tracking of Reference Signal
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In figure 2.6, figure 2.7 and figure 2.8, we can see the simulation results for

the system in (2.138)-(2.139). The graphs are ordered same with Example 1.

2.6.3 Example 3

In Example 3, we will examine a minimum phase system. State space model of

the system is shown below :

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−4 1 3 −5


x+


0

0

0

1


u+ ν,

y =
(
2 2 1 0

)
x. (2.146)

The exogenous system is given as follows :

ẇ =


0 0 0 −π

0 0 1 0

0 −π
2
2 0 0

1 0 0 0


w,

r(t) = −
(
1 −0.5 2 0

)
w,

ν(t) =


1 0 −1 0

2 0 1 0.5

1 0 0 2

−2 1 0 0


w. (2.147)

Hence according to (2.6), the error e(t) becomes :

e =
(
2 2 1 0

)
x+

(
1 −0.5 2 0

)
w. (2.148)

When w(t) = 0, the transfer function of this system is given as :

G(s) = C(sI − A)−1B =
s2 + 2s+ 2

s4 + 5s3 − 3s2 − s+ 4
. (2.149)
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Hence, when w(t) = 0, the uncontrolled system is minimum phase and unstable.

By using (2.68), (2.69), (2.78), (2.81) and (2.82), we find the controller which

satisfies the regulation conditions as follows :

ξ̇ =

 0 1

−9 −3

 ξ +

 0 0 0 0

41 10 −39 −9

 x+

 0 0 0 0

28.16 5.39 −10.7 21.37

w,

u =
(
1 0

)
ξ. (2.150)

With the dynamic controller as given above, the characteristic polynomial of the

closed-loop system becomes as given below :

ch(s) = s6 + 5s5 + 12s4 + 19s3 + 20s2 + 14s+ 4, (2.151)

and the roots of (2.159) can be given as follows: {−0.215 + 1.307ı,−0.215 −

1.307ı,−2,−1 + ı,−1 − ı,−0.569}. If we assign the eigenvalues of the state

observer matrix (A − LxC) as {−4.22,−1.02 + 0.48ı,−1.02 − 0.48ı,−1.13 and

the exogenous system observer matrix (S + LwQ) as {−0.064 + 1.67ı,−0.064−

1.67ı,−0.26 + 1.34ı,−0.26− 1.34ı}, we obtain Lx and Lw as follows :

Lx =
(
0.1 1.1 3 1

)T
, (2.152)

Lw =
(
0.5 0.1 0.1 0.1

)T
. (2.153)

The initial conditions for this simulation are taken as follows :

x(0) =
(
0.2 0 −0.4 0

)T
, ξ(0) =

(
0.9 0

)T
and w(0) =

(
1 1 1 1

)T
.
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Figure 2.9: Tracking of Reference Signal

The simulation results for the system in (2.146)-(2.147) can be seen in figure

2.9, figure 2.10 and figure 2.11 respectively.

2.6.4 Example 4

Finally, we consider below minimum phase system as an Example 4 :

ẋ =


0 1 0

0 0 1

−2 −5 −3

x+


0

0

1

u+ ν,

y =
(
2 3 1

)
x. (2.154)
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The exogenous system is given as follows :

ẇ =

 0 −1

2 0

w,

r(t) = −
(
1 −3

)
w,

ν(t) =


1 −1

0 1

2 0

w. (2.155)

Hence according to (2.6), the error e(t) becomes :

e =
(
2 3 1

)
x+

(
1 −3

)
w. (2.156)

Note that, when w(t) = 0, the transfer function of this system is given as :

G(s) = C(sI − A)−1B =
s2 + 3s+ 2

s3 + 3s2 + 5s+ 2
(2.157)

Hence, when w(t) = 0, the uncontrolled system is minimum phase and stable.

By using (2.68), (2.69), (2.78), (2.81) and (2.82), we find the controller which
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satisfies the regulation conditions as follows :

ξ̇ =

 0 1

−2 −4

 ξ +

0 0 0

0 2 3

x+

 0 0

20 2

w

u =
(
1 0

)
ξ (2.158)

With dynamic controller as given above, the characteristic polynomial of the

closed-loop system becomes as given below :

ch(s) = s5 + 7s4 + 19s3 + 25s2 + 16s+ 4, (2.159)

and roots of (2.159) can be given as follows: {−2,−2,−1,−1,−1}. If we assign

the eigenvalues of the state observer matrix (A − LxC) as {−6.61,−1.06,−1.8

and the exogenous system observer matrix (S + LwQ) as {−1,−2}, we obtain

Lx and Lw as follows :

Lx =
(
0.1 1.1 3

)T
(2.160)

Lw =
(

3
19

−18
19

)T
(2.161)
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Simulations are done for the below initial conditions :

x(0) =
(
0 1 −2

)T
, ξ(0) =

(
1 0

)T
and w(0) =

(
1 1

)T
.
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Figure 2.12: Tracking of Reference Signal

The simulation results for the system in (2.154)-(2.155) with the controller

(2.158) and observers gain matrices (2.161) can be seen in figure 2.12, figure 2.13

and figure 2.14 respectively.
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Chapter 3

OUTPUT REGULATION for

ALL-POLE and MINIMUM

PHASE LTV SYSTEMS

In this chapter, we will consider single-input-single-output (SISO) all-pole and

minimum phase Linear-Time Varying systems. Since the definitions of all-pole

and minimum phase are not standard for time varying systems, they will be

defined in the sequel. The general state space representation of these systems

are given below :

ẋ(t) = A(t)x+B(t)u+ ν, (3.1)

y(t) = C(t)x. (3.2)

where xϵℜn, uϵℜ, yϵℜ represent the system state, input and output respectively

and A(t)ϵℜn×n, B(t)ϵℜn×1, C(t)ϵℜ1×n represent the time-varying system matri-

ces. The exogenous system model is to be used in this chapter is in the below

51



form :

ẇ(t) = S(t)w(t), (3.3)

r(t) = −Q(t)w(t), (3.4)

ν(t) = P (t)w(t), (3.5)

where wϵℜm, νϵℜn ,rϵℜ represent exogenous system state, disturbance signals

and reference signal respectively and S(t)ϵℜm×m, P (t)ϵℜn×m, Q(t)ϵℜ1×m repre-

sent time-varying matrices of the exogenous system. The matrices A(t), B(t),

C(t), S(t), Q(t) and P (t) are continuous and bounded functions of time. The

negative sign in the equation that gives reference signal (3.4) is again used to

ensure compliance with the use in the literature. Thus, with this reference signal

definition the tracking error e(t) = y(t)− r(t) becomes as given below :

e(t) = y(t)− r(t) = C(t)x+Q(t)w. (3.6)

In the time-varying linear systems, designing an observer for the system states

is not an easy task, even if we will assume that the system states are observable.

Thus, we make an assumption of the observability of the system states and the

exogenous system states but we actually will not design observers for these states

in this chapter.

Assumption 3. The pairs (C(t), A(t)) and (Q(t), S(t)) are both observable.

The cases in which the reference signal r(t) and/or the disturbance signals

ν(t) converge to infinity, although may be meaningful for some applications,

are not considered in this thesis for simplicity. Conversely, the cases ,in which

the reference signal r(t) and/or the disturbances ν(t) converge to zero, are not

considered in the output regulation problem which is investigated here. Thus,

this implies that r(t) and ν(t) should be bounded below and above (i.e. c1 ≤

r(t) ≤ c2 and a1 ≤ r(t) ≤ a2 for any t ≥ t0). Therefore, in order to prevent

above cases we should make below assumption on the exogenous system :
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Assumption 4. d1∥w(t0)∥ ≤ ∥Φs(t, t0)w(t0)∥ ≤ d2∥w(t0)∥ for any t ≥ t0, where

Φs(t, t0) is the transition matrix of the exogenous system, where d1 and d2 are

real constants.

Our objective is to find a control law such that with this control law our

closed-loop system satisfies regulation conditions (i), (ii). Similar to LTI systems,

in the simplest case (All-pole case), we will use the relative degree property of

the time-varying systems. Additionally, we will define all-pole systems by using

the relative degree property, because in linear time-varying systems there is no

transfer function representation in the Laplace domain that will help us to define

the all-pole systems unlike LTI case. Thus, we should first define the relative

degree property of LTV systems.

3.1 Relative Degree Property

If the system in (3.1)-(3.2) satisfies the conditions given below :

T1(t) = C(t)

Ti(t) = Ti−1(t)A(t) + Ṫi−1(t) , 2 ≤ i ≤ n (3.7)

Ti(t)B(t) = 0 , 1 ≤ i ≤ r − 1

Tr(t)B(t) = b(t) ̸= 0 , ∀t ≥ t0 (3.8)

then, the system has a ”relative degree r system” [20]. If the derivative of the

system output y(t) is taken with w = 0, input appears at the rth derivative
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because of the relative degree property as shown below :

ẏ = Ċ(t)x+ C(t)(A(t)x+B(t)u) = (Ċ(t) + C(t)A(t))x+ C(t)B(t)︸ ︷︷ ︸u
= T2(t)x

...

y(r−1) = Ṫr−1(t)x+ Tr−1(t)(A(t)x+B(t)u) = (Ṫr−1(t) + Tr−1(t)A(t))x+ Tr−1(t)B(t)︸ ︷︷ ︸ u
= Tr(t)

y(r) = Ṫr(t)x+ Tr(t)(A(t)x+B(t)u) = (Ṫr(t) + Tr(t)A(t))x+ b(t)u (3.9)

The parts, indicated by underbrace, are equal to zero as a result of the relative

degree property. Therefore, above property will be used to design the controller

for the all-pole systems in the following section.

Remark 3. If the system in question is actually LTI, by using constant matri-

ces A, B, C instead of A(t), B(t), C(t), it is straightforward to show that the

conditions given by (3.7)-(3.8) reduces to (2.7)-(2.8).

3.2 Controller for All-Pole LTV Systems

If the system has full-relative degree (i.e. r = n and n is system dimension), then

this system is called an ”All-Pole LTV System”. Actually, this all-pole definition

is the same with the LTI case. In order to obtain controller for all-pole LTV

systems, we need to make an assumption on the observability matrices of these

systems. To be able to make this assumption, we first need to define a new kind

of transformation, which is called Lyapunov transformation, and it is defined

below.

Definition 11. A matrix T (t) is called a Lyapunov transformation if T (t) is

nonsingular, T (t) and Ṫ (t) are continuous, and T (t) and T (t)−1 are bounded for

all t [39].
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The similarity transformation in LTI systems is special case of the Lyapunov

transformation. Additionally, Lyapunov transformation is a stability preserving

transformation, which is obvious from Definition 11. Note that the observability

matrix of the system (3.1)-(3.2) can be given as follows :

T (t) =


T1(t)

...

Tn(t)

 , (3.10)

see e.g. [36]. Note that if the system is LTI, then by using (3.7), it is easy to see

that T (t) becomes the well known observability matrix for LTI systems.

Assumption 5. The observability matrix given by (3.10) is a Lyapunov trans-

formation.

Remark 4. In the LTI SISO case, assumption 5 is automatically satisfied if the

system is observable, since in this case the observability matrix is nonsingular.

However, in LTV SISO case, one can easily construct examples in which the

system is observable but the observability grammian given by (3.10) is not a

Lyapunov transformation.

If T (t) is a Lyapunov transformation, then we can apply this transformation

to the system in (3.1)-(3.2) to get a canonical form similar with (2.10). Let us

define the new state variables x̃ as x̃ = T (t)x. To guarantee that the stability

properties of x and x̃ are the same, we need to assume that T (t) is a Lyapunov

transformation. In the new state variables x̃, the state equations become:

˙̃x = Ṫ (t)x+ T (t)ẋ = Ṫ (t)x+ T (t)(A(t)x+B(t)u),

= (Ṫ (t) + T (t)A(t))x+ T (t)B(t)u,

= (Ṫ (t) + T (t)A(t))T (t)−1x̃+ T (t)B(t)u, (3.11)

y = C(t)x = C(t)T (t)−1x̃. (3.12)

55



Let us define the new system matrices Ã(t), B̃(t), C̃(t) as :

Ã(t) = (Ṫ (t) + T (t)A(t))T (t)−1 (3.13)

B̃(t) = T (t)B(t) (3.14)

C̃(t) = C(t)T (t)−1 (3.15)

Next we will obtain the structure of Ã(t), B̃(t), C̃(t) by using the relative degree

property. By using (3.14), (3.10) and (3.8), it can be easily shown that B̃(t) has

the following form :

B̃(t) =
(
T1(t) T2(t) . . . Tn(t)

)T
B(t),

=
(
0 . . . 0 b(t)

)T
. (3.16)

Similarly, from (3.15) we obtain :

C̃(t)
(
T1(t) T2(t) . . . Tn(t)

)T
= C(t). (3.17)

Since by (3.7) T1(t) = C(t), from (3.17) we obtain :

C̃(t) =
(
1 0 . . . 0

)
. (3.18)

Finally, to find the form of A(t), let us define :

Ã(t) =


ã1(t)

...

ãn−1(t)

ãn(t)


. (3.19)

Note that (3.13) can be written as :
T1(t)

...

Tn(t)

A(t) +


Ṫ1(t)

...

Ṫn(t)

 = Ã(t)


T1(t)

...

Tn(t)

 . (3.20)

Note that ith row of (3.20) can be written as :

Ti(t)A(t) + Ṫi(t) = ai(t)T (t) , 1 ≤ i ≤ n. (3.21)
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From (3.7), it easily follows that :

ai(t) = eTi+1 , 1 ≤ i ≤ n− 1, (3.22)

where ei denotes i
th unit vector, i.e. a vector whose only ith entry is 1 and the

rest are zero. For n, we have

an(t) = (Tn(t)A(t) + Ṫn(t))T (t)
−1 =

(
λ1(t) . . . λn(t)

)
. (3.23)

Thus, if we put together the equations (3.18),(3.20),(3.22) and (3.23), we obtain

the following state-space representation for the transformed system :

ẋ =


0 1 0 0 0

0 0 1 0 0

...
. . .

...
...

...

λ1(t) λ2(t) . . . λn−1(t) λn(t)


x+


0

0

...

b(t)


u,

y =
(
1 0 . . . 0

)
x. (3.24)

This form is similar with (2.10) in all-pole LTI case except for time-varying

functions. Let us define the observability matrix T̃ (t) of the transformed system

as follows :

T̃ (t) =
(
T̃1(t) T̃2(t) . . . T̃n(t)

)T
. (3.25)

Fact 12. The rows T̃i(t) of T̃ (t) defined similar with (3.7) has the following form

:

T̃i(t) = Ti(t)T (t)
−1 ,1 ≤ i ≤ n. (3.26)

Proof. We use mathematical induction to prove this argument.

When i=1, we have :

T̃1(t) = C̃(t) = C(t)T (t)−1 = T1(t)T (t)
−1
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Hence, (3.26) holds for i = 1. Now, assume that (3.26) holds for i = k ≥ 1,

i.e.T̃k(t) = Tk(t)T (t)
−1. Then, we try to find T̃k+1(t) as follows :

T̃k+1(t) = T̃k(t)Ã(t) +
˙̃Tk(t)

= Tk(t)T (t)
−1(T (t)A(t)T (t)−1 + Ṫ (t)T (t)−1)

+ Ṫk(t)T (t)
−1 + Tk(t)Ṫ (t)

−1. (3.27)

Since T (t)T (t)−1 = I, by differentiating this equation we obtain Ṫ (t)T (t)−1 +

T (t)Ṫ (t)−1 = 0. Hence Ṫ (t)−1 = T (t)−1Ṫ (t)T (t)−1. By using the latter in (3.27),

we obtain :

T̃k+1(t) = Tk(t)A(t)T (t)
−1 + Tk(t)T (t)

−1Ṫ (t)T (t)−1

− Tk(t)T (t)
−1Ṫ (t)T (t)−1 + Ṫk(t)T (t)

−1,

= (Tk(t)A(t) + Ṫk(t))T (t)
−1,

= Tk+1(t)T (t)
−1, (3.28)

where in the last equation we used (3.7). Hence, by mathematical induction the

Fact 12 is true.

By using (3.14) and the Fact 12, one can easily show that the transformed

system given by (3.24) has relative degree n. Furthermore, from the Fact 12, it

easily follows that :

T̃ (t) =
(
T̃1(t) T̃2(t) . . . T̃n(t)

)T
=

(
T1(t) T2(t) . . . Tn(t)

)T
T (t)−1 = In×n,

(3.29)

hence we have :

T̃i(t) = eTi 1 ≤ i ≤ n, (3.30)

where eiϵℜn is ith unit vector as defined before. After we apply the transformation

T (t), the state space representation of the transformed system with exogenous

signal is obtained as shown below :

˙̃x = Ã(t)x̃+ B̃(t)u+ P̃ (t)w

e = C̃(t)x+Q(t)w (3.31)
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where P̃ (t) = T (t)P (t) and the exogenous system is same with (3.3). If the

derivatives of the error e(t) = y(t) − r(t) are taken successively, and if we use

the system equations in (3.31) and the relative degree property, then the input

appears at the nth derivative. This fact is shown below :

e = C̃(t)x+Q(t)w

ė = ˙̃C(t)x+ C̃(t)(Ã(t)x̃+ B̃(t)u+ P̃ (t)w) + Q̇(t)w +Q(t)S(t)w

= T̃2(t)x+ ˜C(t)B̃(t)︸ ︷︷ ︸u+ (C̃(t)P̃ (t) + Q̇(t) +Q(t)S(t))w

= T̃2(t)x+ S1(t)w

...

en = ( ˙̃Tn(t) + T̃n(t)A(t))(x) + T̃n(t)B̃(t)u+ T̃n(t)P̃ (t)w + Sn−1(t)w

= T̃n+1(t)(x) + b(t)u+ Sn(t)w (3.32)

The parts, indicated by underbraces are zero. In (3.32), we denote T̃n+1(t) =

˙̃Tn(t) + T̃n(t)A(t) and Si(t) terms are given as below :

Si(t) = T̃i(t)P̃ (t) + Q̇(t) +Q(t)S(t) , S0(t) = Q(t) , 1 ≤ i ≤ n. (3.33)

Similar to the LTI all-pole case, see (2.13), the control input u(t) is chosen as

given below :

u = − 1

b(t)
{T̃n+1(t)x̃+ Sn(t)w + Ln−1e

n−1 + . . .+ L1ė+ L0e} (3.34)

As in the LTI case, see (2.14), we can express u(t) given by (3.34) :

u = Kx̃(t)x̃+Kw(t)w, (3.35)

where

Kx̃(t) = − 1

b(t)
{T̃n+1(t) + Ln−1T̃n(t) + . . .+ L1T̃2(t) + L0T̃1(t)}, (3.36)

and

Kw(t) = − 1

b(t)
{Sn(t) + Ln−1Sn−1(t) + . . .+ L1S1(t) + L0S0}. (3.37)
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Since b(t) ̸= 0 for all t ≥ t0, division of b(t) in the controller does not cause any

instability problem. Then, if we substitute the control input u(t) given by (3.34)

into (3.32), the error dynamics becomes as follows :

en + Ln−1e
n−1 + . . .+ L1ė+ L0e = 0 (3.38)

If we use Laplace transform for this differential equation, the characteristic poly-

nomial of (3.38) can be given as follows :

ch(s) = sn + Ln−1s
n−1 + . . .+ L1s+ L0. (3.39)

If we will chose coefficients Li in (3.39) properly, the characteristic polynomial

given by (3.39) can always be made exponentially stable. This implies that error

e(t) is exponentially stable with the controller in (3.34). Thus, the regulation

condition (i) is achieved with the controller in (3.34), if controller coefficients

are chosen such that the roots of the polynomial in (3.39) are in the LHP. In

order to claim that the output regulation problem is solved with the controller

structure given by (3.34), we need to prove that the regulation condition (ii)

is also satisfied with this structure. If the system equations in (3.31) and the

controller in (3.35) are put together, the following closed-loop system is obtained

:

˙̃x = (Ã(t) + B̃(t)Kx̃(t))x̃+ (B̃(t)Kw(t) + P̃ (t))w

= Ãcl(t)x̃+ (B̃(t)Kw(t) + P̃ (t))w (3.40)

e = y − r = C̃(t)x+Q(t)w (3.41)

Lemma 13. Consider the time varying controller given by :

u = Kx̃(t)x (3.42)

where Kx̃(t) is as given by (3.36). Then the closed-loop system given by (3.40)-

(3.41) with w = 0 is exponentially stable. Additionally, the closed-loop state

transition matrix Ãcl(t) turns out to be constant and the characteristic equation

of Ãcl(t) is given by the equation (3.39).
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Proof. We know from the equations in (3.30) that T̃i(t) = eTi for 1 ≤ i ≤ n.

Thus, from there we can find B̃(t)T̃i(t) as follows :

B̃(t)T̃i(t) =


0

0

...

b(t)


eTi = b(t)

(
0 . . . 0 ei

)T
, 1 ≤ i ≤ n. (3.43)

In addition to this, we can find T̃n+1(t) by using T̃n(t) as shown below :

T̃n+1(t) =
˙̃Tn(t) + T̃n(t)Ã(t)

=
(
0 0 . . . 0 1

)


0 1 0 0 0

0 0 1 0 0

...
. . .

...
...

...

λ1(t) λ2(t) . . . λn−1(t) λn(t)


T̃n+1(t) =

(
λ1(t) λ2(t) . . . λn−1(t) λn(t)

)
. (3.44)

Then, we obtain :

B̃(t)T̃n+1(t) = b(t)
(
0 . . . 0 λ(t)

)T
(3.45)

where λ(t) =
(
λ1(t) λ2(t) . . . λn−1(t) λn(t)

)T
. If we substitute (3.44)-(3.45)

into closed-loop state transition matrix Ãcl(t) = (Ã(t) + B̃(t)Kx̃(t)) with Kx(t)
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in (3.36), we obtain the following form :

Ã(t) + B̃(t)Kx̃(t) =


0 1 0 0 0

0 0 1 0 0

...
. . .

...
...

...

λ1(t) λ2(t) . . . λn−1(t) λn(t)



+


0 0 0 0 0

0 0 0 0 0

...
. . .

...
...

...

−λ1(t)− L0 −λ2(t)− L1 . . . −λn−1(t)− Ln−2 −λn(t)− Ln−1



Ãcl(t) =


0 0 0 0 0

0 0 0 0 0

...
. . .

...
...

...

−L0 −L1 . . . −Ln−2 −Ln−1


(3.46)

Thus, the closed-loop state transition matrix Ãcl(t) is constant and the charac-

teristic equation of Ãcl(t) is given by the polynomial in (3.39) as we can easily

compute. Additionally, Li coefficients were chosen such that the polynomial in

(3.39) becomes a Hurwitz polynomial. This implies that all the eigenvalues of

Ãcl(t) are in the LHP and the closed-loop system is exponentially stable with

w = 0.

By using Lemma 13 and (3.38), we obtain the following result.

Theorem 14. The time-varying controller given by (3.34)-(3.35) satisfies the

regulation conditions (i) and (ii) for the system in the form (3.1)-(3.5).

Proof. (i) From (3.38) and (3.39) it turns out that e(t) is exponentially stable

(i.e. we have ∥e(t)∥ < k exp−βt for some k > 0, β > 0). Hence,

lim
t−→∞

∥e(t)∥ = 0 (3.47)
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(ii) In Lemma 13, we proved that the transformed closed-loop system in (3.40)-

(3.41) is exponentially stable with w = 0. By Assumption 5, T (t) is a

Lyapunov transformation, hence it preserves the stability properties. Thus,

if the transformed system in (3.24) is exponentially stable with controller

(3.34)-(3.35) and w = 0, then the original system given by (3.1)-(3.5) is

also exponentially stable with controller (3.34)-(3.35) and w = 0. Hence,

we have :

∥x̃(t)∥ ≤ α exp−µt (3.48)

for some α > 0 and µ > 0. Hence we have

∥x(t)∥ = ∥T (t)−1x̃(t)∥ ≤ ∥T (t)−1∥∥x̃(t)∥ < γα exp−µt (3.49)

where ∥T (t)−1∥ ≤ γ.

Therefore, the results given above prove that the controller in (3.34)-(3.35)

with Kx(t) = Kx̃(t)T (t) satisfies the regulation conditions (i)-(ii) for the system

given by (3.1)-(3.5).

3.3 Controller for Minimum Phase LTV Sys-

tems

In LTV systems, we can not find Laplace representations of the systems as we

do in LTI cases. For this reason, the inverse systems of the minimum phase LTV

systems can not be specified easily as we did in the minimum phase LTI cases in

Section 2.4. In LTI systems, we can find a similarity transformation such that this

transformation puts minimum phase LTI systems in a normal form. The state

transition matrix of this normal form contains a submatrix whose eigenvalues

correspond to the zeros of the original system [40]. Hence, instead of using

Laplace representations in order to find the inverse systems in minimum phase
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LTI cases, we can use state space representations. Then similar to this method

we can find Lyapunov transformations such that these transformations put the

LTV systems in a normal form which includes the inverse systems dynamics in

the state transition matrices of the original systems.

Firstly, we will show that the minimum phase LTI systems can be put in

a normal form by applying certain transformations. Actually, obtaining of the

normal form and the transformation matrix were carried out in [40] and here

we perform the same methodology to obtain the normal form. To illustrate the

methodology mentioned above, let us first consider an LTI, SISO, and minimum

phase plant model as given below :

G(s) =
n(s)

d(s)
=
sm + bm−1s

m−1 + . . .+ b1s+ b0
sn + αn−1sn−1 + . . .+ α1s+ α0

(3.50)

where n(s) is a stable polynomial and m < n. This minimum phase system has

relative degree r where r = n−m. A state space representation of G(s) in (3.50)

can be obtained as shown below :

ẋ =


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...
...

...

−α0 −α1 . . . −αn−2 −αn−1


x+


0

0

...

1


u

y =
(
b0 b1 . . . 1 0 . . . 0

)
x (3.51)

Let us define the new state variables x̃ =
(
z1 . . . zr ε1 . . . εm

)
ϵℜn, which

are given below :

zi = xi for 1 ≤ i ≤ r (3.52)

εi = CAi−1x for 1 ≤ i ≤ m (3.53)

where A is the state transition matrix and C is the output vector given in (3.51).

If we define the transformation matrix T as x̃ = Tx, Tϵℜn×n can be easily
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obtained as follows :

T =



eT1
...

eTm

C

...

CAr−1


(3.54)

where ei is unit vector. If we perform this transformation, we obtain the repre-

sentation given below, see e.g. [40]:

ż = Gz + Pε1

ε̇1 = ε2

...

ε̇r−1 = εr

ε̇r = K̃z + Sε+ u (3.55)

y = H̃

z
ε

 = ε1 (3.56)

where P , H̃, K̃ are matrices with appropriate dimensions [40]. The form of G is

given below :

G =


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...
...

...

−b0 −b1 . . . −bm−2 −bm−1


(3.57)

The characteristic equation of the G matrix is the same as the n(s) polynomial,

so the eigenvalues of the G matrix correspond to the zeros of the original system

in (3.50)-(3.51). Therefore, we can view the first equation in (3.55) as the inverse

system dynamics, if it is without ε1. Because (sI−G)−1 contains 1
n(s)

. In addition,

we can choose the input vector H and the output vector K used in (2.68)-(2.69),
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which makes the inverse system complete.

As shown above, the inverse of the minimum phase LTI system can be achieved

only by using the state space forms and transformations. Therefore, since we do

not use Laplace representation above, we can apply similar methodology to the

LTV systems to obtain the inverse dynamics .Then, this inverse dynamics can be

used as the first part of the controller. Additionally, after we obtain the inverse

dynamics of the system, we will give the definition of the minimum phaseness in

LTV systems. Her, we only assume that our LTV system has relative degree r.

In order to apply the similar methodology that we used in the LTI case,

the LTV system should be converted into a form similar to (3.51). If we make

appropriate assumptions on the observability and the controllability matrices of

our LTV system, this state space form can be obtained. Let us first define the

controllability matrix of the LTV system.

Definition 15. The controllability matrix of the system in the form (3.1)-(3.2)

is W (t) =
(
W1(t) . . . Wn(t)

)
where

W1(t) = B(t)

Wi(t) = A(t)Wi−1(t)− Ẇi−1(t) , 2 ≤ i ≤ n (3.58)

see [36].

Assumption 6. The observability matrix T (t) =


T1(t)

T2(t)

...

Tn(t)


is a Lyapunov trans-

formation ( see (3.7), (3.10)).

Assumption 7. The controllability matrix W (t) given by (3.58) of the system

in (3.1)-(3.2) is a Lyapunov transformation.

Remark 5. The above assumptions indicate that the minimum and maximum

singular values for the controllability and the observability matrices are bounded
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below and above for all t, respectively. Actually, the boundedness of the minimum

singular values of the controllability and the observability matrices correspond to

the instantaneous controllability and observability, see [36].

Lemma 16. If LTV system in (3.1)-(3.2) has relative degree r and satisfy (3.8),

then the following holds :

Ti(t)Wj(t) = 0 , i+ j − 1 ≤ r − 1 (3.59)

Proof. • First, for j = 1, from (3.59) we obtain i ≤ r − 1. For this case, by

using (3.7) we obtain :

Ti(t)W1(t) = 0. (3.60)

• For j=2, from (3.59) we obtain i ≤ r− 2. For this case, by using (3.58) we

obtain :

Ti(t)W2(t) = Ti(t)(A(t)W1(t)− Ẇ1(t))

= Ti(t)A(t)W1(t) + Ṫi(t)W1(t) (3.61)

Since in this case we have Ti(t)W1(t) = 0, hence Ṫi(t)W1(t)+Ti(t)Ẇ1(t) = 0

, by using the latter and (3.58) in (3.61), we obtain :

Ti(t)W2(t) = Ti+1W1(t) = 0 (3.62)

Note that since i ≤ r − 2, we have i + 1 ≤ r − 1, hence the (3.62) follows

from (3.60).

• For j = 3, from (3.59) we obtain i ≤ r − 3. For this case, by using (3.58)

we obtain :

Ti(t)W3(t) = Ti(t)(A(t)W2(t)− Ẇ2(t))

= Ti(t)A(t)W2(t) + Ṫi(t)W2(t) (3.63)

67



Since in this case we have Ti(t)W2(t) = 0, hence Ṫi(t)W2(t)+Ti(i)Ẇ2(t) = 0,

by using the latter and (3.58) in (3.63), we obtain :

Ti(t)W3(t) = Ti+1(t)W2(t) = 0. (3.64)

Note that since i ≤ r − 3, we have i + 1 ≤ r − 2, hence (3.64) follows

from (3.62). Following recursively, by increasing j, and following exactly

the same analysis, one can show that (3.59) holds. For example, assume

that for j = r − 2, (3.59) holds. Then for j = r − 1, from (3.59) we have

i ≤ 1. For this case, by using (3.58) we obtain :

Ti(t)Wr−1(t) = Ti(t)(A(t)Wr−2(t)− Ẇr−2(t))

= Ti(t)A(t)Wr−2(t) + Ṫi(t)Wr−2(t) (3.65)

Since in this case we have Ti(t)Wr−2(t) = 0, hence Ṫi(t)Wr−2(t) +

Ti(i)Ẇr−2(t) = 0, by using the latter and (3.58) in (3.65) we obtain :

Ti(t)Wr−1(t) = Ti+1(t)Wr−2(t) = 0 (3.66)

Note that the latter equality holds since we assume that (3.59) holds for

j = r − 2. The equations (3.60)-(3.66) show that (3.59) holds (Note that

alternatively, we could prove this lemma by using the mathematical induc-

tion, which would utilize essentially the same calculations given above).

Remark 6. If the system is an LTI, SISO system with relative degree r, then by

using constant system matrices A, B, C, we obtain CAi−1B for i = 1, . . . , r− 1.

In this case, we have Ti = CAi−1 and Wj = Aj−1B for i = 1, . . . , n, j = 1, . . . , n.

Hence we have TiWj = CAi+j−1B. Obviously, for relative degree r case, we have

TiWj = 0 for i + j − 1 ≤ r − 1. This argument shows that Lemma 16 holds

for LTI systems, hence it could be considered as a generalization of this result to

LTV case.
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Remark 7. If we take i = 1 in Lemma 16, then j ≤ r − 1. Since T1(t) = C(t),

this implies the following :

C(t)Wi(t) = 0 for 1 ≤ i ≤ r − 1 (3.67)

C(t)Wr(t) = β(t) (3.68)

Fact 17. β(t) in equation (3.68) and b(t) in equation (3.8) are the same.

Proof.

C(t)Wr(t) = C(t)A(t)Wr−1(t)− C(t)Ẇr−1(t) = C(t)A(t)Wr−1(t) + Ċ(t)Wr−1(t)

= T2(t)Wr−1(t) (3.69)

where we used the facts C(t)Wr−1(t) = 0 and hence −C(t)Ẇr−1(t) =

Ċ(t)Wr−1(t). Then, if we apply similar steps, we obtain T2(t)Wr−1(t) =

T3(t)Wr−2(t). Thus, if we repeat this procedure recursively, we obtain the fol-

lowing :

C(t)Wr(t) = Tr(t)W1(t) = Tr(t)B(t) = b(t) (3.70)

Remark 8. Again, in LTI SISO case, by using constant system matrices A, B,

C, assuming that the system has relative degree r, and by using the fact that

Ti = CAi−1 and Wj = Aj−1B, we obtain

β = CWr = CAr−1B = TrB = b (3.71)

Hence fact 17 holds for LTI case as well.

In order to obtain an appropriate normal form for the LTV system and the

inverse dynamics, we will apply some Lyapunov transformations to the system.

Thus, we should first show that the relative degree property, Lyapunov transfor-

mation property of the controllability and the observability matrices should be

preserved under Lyapunov transformations.
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Fact 18. If we apply Lyapunov transformation P (t) to the LTV system in the

form (3.1)-(3.2), the new observability matrix T̃ (t) and the new controllability

matrix W̃ (t) are still Lyapunov transformations.

Proof. After transformation P (t) is applied to (3.1)-(3.2), the following system

matrices are obtained : Ã(t) = (P (t)A(t) + Ṗ (t))P (t)−1, B̃(t) = P (t)B(t) and

C̃(t) = C(t)P (t)−1. We first prove the observability part and then we prove the

controllability part.

(a)

We use mathematical induction to prove the following equation :

T̃i(t) = Ti(t)P (t)
−1 1 ≤ i ≤ n. (3.72)

where T̃i(t) are the rows of the observability matrix of the transformed system.

For i=1, we have T̃1(t) = C(t)P (t)−1 = T1P (t)
−1. But since T1(t) = C(t), it

follows that (3.72) holds for i = 1. Now assume that (3.72) holds for i = m > 1.

Then, we have :

T̃m+1(t) = T̃m(t)Ã(t) +
˙̃Tm(t)

= TmP (t)
−1((P (t)A(t) + Ṗ (t))P (t)−1 + ṪmP (t)

−1 + TmṖ (t)
−1 (3.73)

Since P (t)P (t)−1 = I, by differentiating we obtain Ṗ (t)P (t)−1 = −P (t)Ṗ (t)−1,

by using latter in (3.73) we obtain :

T̃m+1(t) = TmA(t)P (t)
−1 − TmP (t)

−1P (t)Ṗ (t)−1 + ṪmP (t)
−1 + TmṖ (t)

−1

= (TmA(t) + Ṫm)P (t)
−1

= Tm+1(t)P (t)
−1

By mathematical induction T̃i(t) = Ti(t)P (t)
−1 for 1 ≤ i ≤ n. Thus, the new

observability matrix is given as follows : T̃ (t) = T (t)P (t)−1. Since T (t) and

P (t) are Lyapunov transformations, the new observability matrix T̃ (t) is also a

Lyapunov transformation.
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(b)

We use mathematical induction to prove the following equation :

W̃i(t) = P (t)Wi(t) 1 ≤ i ≤ n (3.74)

where W̃i(t) are the columns of the controllability matrices of the transformed

system. For i = 1, we have W̃1(t) = B̃(t) = P (t)B(t). But sinceW1(t) = B(t), it

follows that (3.74) holds for i = 1. Now assume that (3.74) holds for i = m > 1.

Then we have :

W̃m+1(t) = Ã(t)W̃m(t)− ˙̃Wm(t)

= (P (t)A(t) + Ṗ (t))P (t)−1P (t)Wm(t)− Ṗ (t)Wm(t)− P (t)Ẇm(t)

= P (t)A(t)Wm(t)− P (t)Ẇm(t)

= P (t)Ẇm+1(t)

By mathematical induction W̃i(t) = P (t)Wi(t) for 1 ≤ i ≤ n. Thus, the new

controllability matrix is given as follows : W̃ (t) = P (t)W (t). Since both W (t)

and P (t) are Lyapunov transformation, the new controllability matrix W̃ (t) is

also Lyapunov transformation.

Fact 19. If we apply Lyapunov transformation P (t) to the LTV system in the

form (3.1)-(3.2), the transformed system has also relative degree r.

Proof. We know from Fact (18) that T̃i(t) = Ti(t)P (t)
−1 and also B̃(t) =

P (t)B(t). Then,

T̃i(t)B̃(t) = Ti(t)P (t)
−1P (t)B(t) = Ti(t)B(t) = 0, 1 ≤ i ≤ r − 1

and

T̃r(t)B̃(t) = Tr(t)P (t)
−1P (t)B(t) = Tr(t)B(t) = b(t) ̸= 0

Thus, transformed system has also relative degree r.
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In order to obtain the inverse dynamics, the system given by (3.1)-(3.2) should

be firstly transformed to the similar form given in (3.51), but instead of constant

coefficients in the system matrices, we will have time-varying coefficients. Let us

apply first the inverse controllability matrix W (t)−1 as the first transformation

in order to get a certain form that will help us to transform the system into a

form similar to the one in (3.51). In that case, the transformed system matrices

become as shown below :

An(t) =W (t)−1(A(t)W (t)− Ẇ (t))

Bn(t) =W (t)−1B(t)

Cn(t) = C(t)W (t) (3.75)

Now, let us try to find out the form of An(t), Bn(t) and Cn(t). First, note that

from (3.75) we obtain :

B(t) = W (t)Bn(t) =
(
B(t) W2(t) . . . Wn(t)

)
Bn(t) (3.76)

Since we assume that the system is controllable, W (t) has a full rank, therefore

B(t) has the following form :

Bn(t) =
(
1 0 . . . 0

)T
(3.77)

The form of Cn(t) can be obtained as follows :

Cn(t) = C(t)
(
W1(t) W2(t) . . . Wn(t)

)
=

(
0 . . . 0 b(t) c1(t) . . . cn−r(t)

)
(3.78)

where we used the relative degree property and Lemma 16. Finally, we can find

the An(t) as shown below :

A(t)W (t)− Ẇ (t) = W (t)An(t) (3.79)

Let us denote An(t) =
(
an1(t) an2(t) . . . ann(t)

)
. Then :

A(t)Wi(t)− Ẇi(t) =Wi+1(t) =W (t)ani(t) 1 ≤ i ≤ n (3.80)
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Since we assume that the system is controllable, W (t) has a full rank. Therefore,

from (3.80) we obtain :

ani(t) = ei+1 , 1 ≤ i ≤ n− 1 (3.81)

ann(t) = (A(t)Wn(t)− Ẇn(t))W (t)−1 =
(
β1(t) . . . βn(t)

)
(3.82)

where ei is the i
th unit vector. If we combine (3.77),(3.78) and (3.82), we obtain

the following form for the transformed system :

ẋn =



0 0 . . . β1(t)

1 0 . . . β2(t)

0 1 . . . β3(t)

...
...

. . .
...

0 0 . . . β2(t)


xn +


1

0

...

0


u

y =
(
0 . . . 0 b(t) c1(t) . . . cn−r(t)

)
xn (3.83)

In order to obtain a form similar to (3.51), we will apply another transformation

to the system in (3.83). However, to guarantee that the transformation we apply

is a Lyapunov transformation, we need to make the assumption given below.

Assumption 8. The terms βi(t) and their derivatives are continuous and

bounded.

We want to transform system given by (3.83) into the form given below;

ẋ =


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...
...

...

α1(t) α2(t) . . . αn−1(t) αn(t)


x+


0

0

...

1


u

y =
(
m1(t) m2(t) . . . mn−r(t) k(t) 0 . . . 0

)
x (3.84)

The required transformation matrix is the controllability matrix of the system

(3.84), but we know neither the transformation matrix nor the transformed sys-

tem yet. First we will try to identify the transformation matrix which is the
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controllability matrix of the system (3.84) by using the equations obtained from

the transformation. Then, with this information we will form the system matri-

ces in (3.84). Let us denote system matrices in (3.84) as Ã(t), B̃(t) and C̃(t).

The controllability matrix of this transformed system is given below :

W̃1(t) = B̃(t)

W̃i(t) = An(t)W̃i−1(t)− ˙̃Wi−1(t) for 1 ≤ i ≤ n

W̃ (t) =
(
W̃1(t) . . . W̃n(t)

)
(3.85)

and the form of controllability matrix is lower triangular matrix as shown below

:

W̃ (t) =


0 . . . 0 1

0 . . . 1 αn(t)

... . . . . . . ⋄

1 αn(t) ⋄ ⋄


(3.86)

If we apply the above controllability matrix to the system (3.83), we get the

following system matrices :

B̃(t) =
(
B̃(t) . . . W̃n(t)

)
Bn(t)

Since Bn(t) is in the form (3.77), the above equation is satisfied. This implies

that if we can find the transformation matrix W̃ (t), the transformed system input

vector B̃(t) is in the form (3.84). Secondly, we will show output vector C̃(t) is

in the form (3.84) as shown below :

Cn(t) =
(
0 . . . 0 b(t) c1(t) . . . cn−r(t)

)

= C̃(t)W̃ (t) =
(
m1 m2 . . . mn−r(t) k(t) 0 . . . 0

)

0 . . . 1

0 . . . αn(t)

... . . .
...

1 αn(t) . . .


Since W̃ (t) is lower triangular matrix , above equation is also satisfied. Ad-

ditionally, because of the diagonal elements of W̃ (t) is one, b(t) = k(t) ̸= 0.
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Finally, we will form Ã(t) matrix. Actually, when the transformation equations

are written for Ã(t), we will obtain the time varying coefficients of Ã(t) and the

transformation matrix.

Remark 9. The columns of the transformation matrix W̃ (t) have the structure

given below :

W̃1(t) =



0

0

0

...

0

0

0

1



, W̃2(t) =



0

0

0

...

0

0

1

αn(t)



, W̃3(t) =



0

0

0

...

0

1

αn(t)

r21(t)



. . . W̃i(t) =



0

...

0

1

αn(t)

ri1(t)

...

ri(i−2)(t)



. . . W̃n(t) =



1

αn(t)

rn1(t)

rn2(t)

rn3(t)

...

...

rn(n−2)(t)



(3.87)

where rim(t) = (αn−m(t) + . . .) and the term which is shown by dots only con-

tains (αn−m+1(t), . . . , αn(t)), their derivatives and multiplications, and it does

not contain (αn−m−1(t), αn−m−2(t), . . .) terms.

Next, we will show that the transformation between An(t) and Ã(t) is consis-

tent. By consistency, we mean the following transformation equation holds for

some αi(t), where W̃ (t), An(t) and Ã(t) are given by (3.87), (3.83) and (3.84)

respectively. Let us write the transformation equations between An(t) and Ã(t)
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as given below :

W̃ (t)An(t) = Ã(t)W̃ (t)− ˙̃W (t)

= Ã(t)
(
W̃1(t) . . . W̃n(t)

)
−
(
˙̃W1(t) . . . ˙̃Wn(t)

)
(3.88)

By using (3.88), we obtain:

W̃ (t)ani(t) = W̃ (t)ei+1

= Ã(t)W̃i(t)− ˙̃Wi(t) = Ã(t)W̃i+1(t) , 1 ≤ i ≤ n− 1

This implies that the transformation between An(t) and Ã(t) is consistent up to

the first n− 1 column of An(t). If we do the procedure given above for the last

column of An(t), the time-varying coefficients of Ã(t) can be found as indicated

below:


0 . . . 1

0 . . . αn(t)

... . . .
...

1 αn(t) . . .




β1(t)

β2(t)

...

βn(t)


=


0 1 0 0 . . . 0

0 0 1 0 . . . 0

...
. . .

...
...

...

α1(t) α2(t) . . . αn−1(t) αn(t)





1

αn(t)

rn1(t)

...

rn(n−2)



−



0

α̇n(t)

ṙn1(t)

...

ṙn(n−2)


(3.89)

From the property of W̃ (t) matrix which is mentioned in Remark 9, we can find

the time varying coefficients {αn(t), . . . , α1(t)} by using the substitution of the

coefficients found in each step. If we specify these time-varying coefficients, then

we can easily form the transformation matrix W̃ (t) and from that transforma-

tion matrix, the output vector C̃(t) and the state transition matrix Ã(t) can be

constructed. Therefore, we can always transform the system given by (3.83) into

(3.84) with the transformation matrix given by (3.85)-(3.86). The procedure that
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we applied to transform the system given by (3.83) into (3.84) is applied to the

following example for further clarification

Let us consider the system given below :

ẋ =


0 0 β1(t)

1 0 β2(t)

0 1 β3(t)

x+


1

0

0

u

y =
(
0 b(t) c2(t)

)
x (3.90)

Note that (3.90) is in the form given by (3.83). We want to transform (3.90) into

the form given below :

˙̃x =


0 1 0

0 0 1

α1(t) α2(t) α3(t)

 x̃+


0

0

1

 u

y =
(
m1(t) b(t) 0

)
(3.91)

Note that (3.91) is in the form given by (3.84). The transformation matrix that

converts (3.90) into (3.91) is the controllability matrix of the system given by

(3.91). By using (3.87), we find the columns of W̃ (t) as follows :

W̃1(t) =
(
0 0 1

)T

W̃2(t) =


0 1 0

0 0 1

α1(t) α2(t) α3(t)



0

0

1

 =


0

1

α3(t)


T

W̃3(t) =


0 1 0

0 0 1

α1(t) α2(t) α3(t)




0

1

α3(t)

−


0

0

α̇3(t)

 =


1

α3(t)

α2(t) + α3(t)
2 − α̇3(t)


T

Hence we have :

W̃ (t) =
(
W̃1(t) W̃2(t) W̃3(t)

)
=


0 0 1

0 1 α3(t)

1 α3(t) α2(t) + α3(t)
2 − α̇3(t)

 (3.92)
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If we perform the multiplication similar to (3.89) so as to find the coefficients of

W̃ (t), the following matrix equation is obtained :
0 0 1

0 1 α3(t)

1 α3(t) α2(t) + α3(t)
2 − α̇3(t)



β1(t)

β2(t)

β3(t)

 =


0 1 0

0 0 1

α1(t) α2(t) α3(t)




1

α3(t)

α2(t) + α3(t)
2 − α̇3(t)

−


0

α3(t)

α̇2(t) + 2α3(t)α̇3(t)− α̈3(t)


Then, from above matrix multiplications we obtain the following :

β3(t) = α3(t),

β2(t) + α3(t)β3(t) = α2(t) + α3(t)
2 − α̇3(t)− α3(t),

β1(t) + α3(t)β2(t) + (α2(t) + α3(t)
2 − α̇3(t))β3(t) = α1(t) + α2(t)α3(t),

+ α3(t)(α2(t) + α3(t)
2 − α̇3(t))− (α̇2(t) + 2α3(t)α̇3(t)− α̈3(t)). (3.93)

Thus, we can see that since the coefficients {β1(t), β2(t), β1(t)} are already known,

the coefficients {α1(t), α2(t), α1(t)} is calculated by using the equations in (3.93)

recursively. Indeed, from the first equation in (3.93) we obtain α3(t), by using

α3(t) in the second equation in (3.93), we obtain α2(t) and finally by using α3(t)

and α2(t) in the last equation of (3.93), we obtain α1(t) recursively. Consequently,

the transformation matrix W̃ (t) that converts the system given by (3.83) into

the system in (3.84) can be calculated by using the procedure outlined above

and shown in the preceding example for illustrative purposes. However, in order

to preserve stability, the transformation matrix W̃ (t) should be a Lyapunov

transformation.

Fact 20. The transformation matrix W̃ (t) in (3.85) is a Lyapunov transforma-

tion.

Proof. If we look at the form of W̃ (t) in (3.86), it is a lower triangu-

lar matrix with diagonals 1. In the lower part of diagonals, there are
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time-varying functions and these functions are composed of the coefficients

{β1(t), β2(t), . . . , βn(t)}, their derivatives and multiplications. From Assump-

tion 8, coefficients {β1(t), β2(t), . . . , βn(t)}, their derivatives and multiplications

are bounded and continuous. This implies that W̃ (t) matrix is bounded and

continuous. Additionally, if we write the inverse of W̃ (t), we obtain the form

given below:

W̃ (t)−1 =
adj(W̃n(t))

det(W̃n(t))
(3.94)

Since det(W̃n(t)) = (−1)n and the elements of the adj(W̃n(t)) contain the coeffi-

cients {β1(t), β2(t), . . . , βn(t)}, their derivatives and their multiplications which

are bounded and continuous, it follows that W̃ (t)−1 is bounded and continuous.

Thus, the transformation matrix W̃ (t) is a Lyapunov transformation.

Therefore, the system given by (3.83) can be transformed the system given by

(3.84) by employing the Lyapunov transformation W̃ (t) in (3.85). After obtain-

ing the transformed system given by (3.84) which is similar with system given

by (3.51) in LTI case, another transformation should be applied to this system

in order to get inverse dynamics. The transformation, that will be applied, is

time-varying counterpart of the transformation in (3.54) and is shown below :

T̃ (t) =



e1

e2
...

en−r

T̃1(t)

...

T̃r(t)


(3.95)
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where T̃1(t), . . . , T̃r(t) are first r rows of the observability matrix of the system

in (3.84) and is formed as follows :

T̃1(t) = C̃(t)

T̃i(t) = T̃i−1(t)Ã(t) +
˙̃Ti−1(t) , 1 < i ≤ r (3.96)

We know that T̃1(t), . . . , T̃r(t) are bounded by the Assumption 6 and the Fact

18. Additionally, by using the Fact 19 we can say that the transformed system

given by (3.84) has relative degree r as shown below :

T̃i(t)B̃(t) = 0 , 1 ≤ i ≤ r − 1

T̃r(t)B̃(t) = b(t) ̸= 0 ∀t ≥ t0. (3.97)

If the transformation given by (3.95) is applied to the system given by (3.84),

the following system matrices are obtained :

Â(t) = (T̃ (t)Ã(t) + ˙̃T (t))T̃ (t)−1

B̂(t) = T̃ (t)B̃(t)

Ĉ(t) = C̃(t)T̃ (t) (3.98)

First, we will find the input vector B̂(t) of the transformed system as follows

:

B̂(t) =



e1
...

en−r

T̃1(t)

...

T̃r(t)


B̃(t) =



0

...

0

0

0

b(t)


(3.99)

where we used the relative degree property and the form of B̃(t) is given by

(3.84).
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Secondly, we will construct the output vector Ĉ(t) as follows :

C̃(t) = Ĉ(t)



eT1
...

eTn−r

T̃1(t)

...

T̃r(t)


.

Since T̃1(t) = C̃(t), the following form will be obtained for Ĉ(t) :

Ĉ(t) =
(
0 . . . 0 1 0 . . . 0

)
= eTn−r+1. (3.100)

Finally, we will form the new state transition matrix Â(t). The states of the

transformed system is as follows :

x̂ = T̃ (t)x̃ =



x̃1
...

x̃n−r

T̃1(t)x̃

...

T̃r(t)x̃


(3.101)

where x̂ are the states of the transformed system and x̃ are the states of the

system given by (3.84). Since the first n − r states do not change, the first

n− r−1 rows of Â(t) are same as the first n− r−1 rows of Ã(t), which is shown

below :

âi(t) = ei+1 , 1 ≤ i ≤ n− r − 1 (3.102)

where {â1(t), . . . , ân−r−1(t)} denotes first n−r−1 rows of Â(t). Besides, from the

system given by (3.84) we see that ˙̃xn−r = x̃n−r+1 and also the state x̃n−r does not

change with this transformation as can be seen in (3.101). If the dynamics of the

state x̃n−r = x̂n−r is obtained by using the transformed system state transition
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matrix, we obtain the following :

˙̂xn−r = ân−r(t)x̂ = ân−r(t)



x̃1
...

x̃n−r

T̃1(t)x̃

...

T̃r(t)x̃


= ˙̃xn−r = x̃n−r+1 (3.103)

Since T̃1(t) = C̃(t) =
(
m1(t) . . . mn−r(t) b(t) 0 . . . 0

)
, we obtain :

T̃1(t)x̃ = m1(t)x̃1 + . . .+mn−r(t)x̃n−r + b(t)x̃n−r+1 (3.104)

If we combine (3.103) and (3.104), we obtain ân−r(t) as follows :

ân−r(t) =
1

b(t)

(
−m1(t) . . . −mn−r(t) 1 0 . . . 0

)
(3.105)

If we use (3.105) in (3.103), we obtain the following :

˙̂xn−r = ˙̃xn−r =
1

b(t)
(−m1(t)x̃1 − . . .−mn−rx̃n−r(t) + T̃1(t)x̃) = x̃n−r+1 (3.106)

Thus, (3.106) proves that ân−r(t) in (3.105) is the (n − r)th row of Â(t). The

remaining rows of the matrix Â(t) can be found by using (3.98) as shown below

:

T̃i(t)Ã(t) +
˙̃Ti(t) = T̃i+1 = ân−r+iT̃ (t) , 1 ≤ i ≤ r − 1

(3.107)

which implies:

ân−r+i = eTn−r+i+1 (3.108)

and the last row of the matrix Â(t) is as follows :

ân = (T̃r(t)Ã(t) +
˙̃Tr(t))T̃ (t)

−1 (3.109)
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Therefore, if we put together (3.99), (3.100), (3.102), (3.105), (3.109) and if we

divide the states of the transformed system into two parts x̃ =

z
ε

 where

zϵℜn−r and εϵℜr, we obtain the following system :

ż = G(t)z + P (t)ε1

ε̇1 = ε2

...

ε̇r−1 = εr

ε̇r = R(t)z + F (t)ε+ b(t)u

y = ε1 (3.110)

where

G(t) =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . . 0

0 0 . . . . . . 1

−m1(t)
b(t)

−m2(t)
b(t)

. . . . . . −mn−r(t)
b(t)


, (3.111)

P (t) =


0

...

0

b(t)


. (3.112)

and (
R(t) F (t)

)
= (T̃n(t)Ã(t) +

˙̃T (t))T (t)−1 (3.113)

Note that G(t) in (3.110)-(3.111) is similar with G given by (3.57) except for the

time-varying coefficients. Thus, the inverse system state transition matrix for

LTV system, which is given by (3.110), is characterized by G(t). Additionally,

let us denote the input vector as H(t) and the output vector as K(t) for the
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inverse system which is shown below :

η̇ = G(t)η +H(t)v,

u = K(t)η. (3.114)

Note that at this pointH(t) andK(t) are not defined yet. In fact, there are many

possible selections for H(t) and K(t), and one particular choice will be given in

the sequel, see Remark 10. The observability matrix of the inverse system given

by (3.114) can be obtained as follows :

M1(t) = K(t)

Mi(t) =Mi−1(t)G(t) + Ṁi−1(t) for 2 ≤ i ≤ n− r

M(t) =


M1(t)

...

Mn−r(t)

 (3.115)

In order to determine the inverse system completely, the vectors H(t), K(t)

should be chosen such that :

(1) The inverse system becomes all-pole (i.e. full relative degree)

(2) the observability matrix M(t) should be a Lyapunov transformation.

Hence, from the full relative degree condition (1), the inverse system should

satisfy the equations given below :

Mi(t)H(t) = 0 , 1 ≤ i ≤ n− r − 1

Mi(t)H(t) = d(t) ̸= 0 ∀t (3.116)

If we simply choose :

K(t) =
(
1 0 . . . 0

)
, (3.117)
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and

H(t) =


0

...

0

1


, (3.118)

then the inverse system satisfies equations in (3.116) and the inverse system

observability matrix ,which isM(t) = I(n−r)×(n−r), is a Lyapunov transformation.

These facts can be shown easily. Hence, the inverse system satisfies conditions

(1) and (2), which is given above, with K(t) in (3.117) and H(t) in (3.118).

Remark 10. The H(t) and K(t) that satisfy conditions (1) and (2) on the

inverse system are not unique. We can find other (H(t), K(t)) pairs. Thus the

inverse system can be given as a class which consist of LTV systems with the

triple {G(t), H(t), K(t)}, where G(t) has the form given by (3.111), and where

H(t) and K(t) satisfy the conditions (1) and (2) given above.

As a result, we can choose the following system as an inverse system :

η̇ =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . . 0

0 0 . . . . . . 1

−m1(t)
b(t)

−m2(t)
b(t)

. . . . . . −mn−r(t)
b(t)


η +


0

...

0

1


v

u =
(
1 0 . . . 0

)
η (3.119)

where ηϵℜn−r, vϵℜ and uϵℜ represent system state, input and output, respec-

tively. However, to preserve the stability results from transformed system to the

original system, the transformation matrix T̃ (t) in (3.95) should be a Lyapunov

transformation. The following result resolves this question.

Fact 21. The transformation matrix T̃ (t) in (3.95) is a Lyapunov transforma-

tion.
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Proof. Let us write the transformation matrix T̃ (t) in the form given below :

T̃ (t) =

I(n−r)×(n−r) 0(n−r)×r

K1(t) K2(t)

 , (3.120)

where 
T̃1(t)

...

T̃r(t)

 =
(
K1(t) K2(t)

)
, (3.121)

and K1(t)ϵℜr×(n−r), K2(t)ϵℜr×r where r is the relative degree of the original

system. Also, the elements of K1(t) and K2(t) are continuous and bounded as

a result of the Assumption 6 and the Fact 18. Thus, the transformation matrix

T̃ (t) is also continuous and bounded. Additionally, K2(t) has the form which is

shown below :

K2(t) =


b(t) 0 0 . . . 0

⋄ b(t) 0 . . . 0

...
...

. . .
...

...

⋄ ⋄ . . . ⋄ b(t)


, (3.122)

where the terms below the diagonal, indicated by diamond, are bounded and

b(t) ̸= 0 ∀t, (see (3.8)). Since the transformation matrix is in the block triangular

form, its inverse is also in the block triangular form which is shown below :

T̃ (t)−1 =

I(n−r)×(n−r) 0(n−r)×r

L1(t) L2(t)

 , (3.123)

where L1(t)ϵℜr×(n−r), L2(t)ϵℜr×r. If the transformation matrix in (3.120) is

multiplied with its inverse in (3.123) , we will obtain the following :I(n−r)×(n−r) 0(n−r)×r

K1(t) K2(t)

I(n−r)×(n−r) 0(n−r)×r

L1(t) L2(t)

 =

I(n−r)×(n−r) 0(n−r)×r

0r×(n−r) Ir×r

 .

(3.124)
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The above multiplication gives us set of equations which is given below :

K1(t) +K2(t)L1(t) = 0, (3.125)

K2(t)L2(t) = Ir×r (3.126)

In order to find L1(t) and L2(t) from (3.125) and (3.126), K2(t) should be in-

vertible. The invertibility of K2(t) easily follows from the lower triangular form

of K2(t) given by (3.122), where b(t) ̸= 0. Obviously, K2(t)
−1 can be calculated

as follows :

K2(t)
−1 =

adj(K2(t))

det(K2(t))
, (3.127)

We know that the elements of adj(K2(t)) are the multiplication of theelements

of K2(t) which are continuous and bounded. This implies that the elements of

adj(K2(t)) are also continuous and bounded. Since det(K2(t)) = b(t)r ̸= 0 ∀t,

K2(t) has an inverse and its inverse matrix is continuous and bounded for all t.

By using the inverse of K2(t), we can find L1(t) and L2(t) from (3.125)-(3.126)

which is shown below :

L1(t) = −K2(t)
−1K1(t),

L2(t) = K2(t)
−1. (3.128)

Since the elements of K1(t) are continuous and bounded, and K2(t)
−1 is also a

continuous and bounded matrix. Then both L1(t) and L2(t) become continu-

ous and bounded matrices for all t as a result of (3.128). Thus, we prove that

the transformation matrix T̃ (t) in (3.95) is continuous, invertible and bounded.

Additionally, its inverse matrix is also continuous and bounded for all t. Con-

sequently, our transformation matrix which is given by (3.95) is a Lyapunov

transformation.

Until now, the definition of the minimum phaseness for the LTV systems is

not given, because we could not identify the inverse of the LTV systems yet.

Since the inverse of the LTV system is identified by above calculations, we can

make the definition of minimum phaseness in LTV systems.
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Definition 22. The system which is given by (3.110) is a minimum phase, if

the inverse of this system is exponentially stable : i.e.

∥ΦG(t, t0)∥ ≤ ke−λt (3.129)

where ∥ΦG(t, t0)∥ is transition matrix of G(t).

Remark 11. The systems, which are Lyapunov equivalent to a minimum phase

systems, are also called as a minimum phase systems, because there always exist

Lyapunov transformations which can be used to convert minimum phase systems

into other systems. Thus, the systems which are given by (3.83), (3.84) and

original system in (3.1)-(3.2) are also called as a minimum phase, because we

proved that the transformation matrices between these systems and minimum

phase system in (3.110) are Lyapunov.

Similar with LTI minimum phase case, we will employ the inverse system

given by triple (G(t), H(t), K(t)) as a first part of the controller. Then, the

combination of the inverse system given by (3.119) and the original system given

by (3.110) which is called as an overall system is given as follows : ˙̂x

η̇

 =

Â(t) B̂(t)K(t)

0 G(t)

x̂
η

+

 0

H(t)

 v,

y =
(
Ĉ(t) 0

)x̂
η

 . (3.130)

Fact 23. where Â(t), B̂(t) and Ĉ(t) are the system matrices of the system in

(3.110). The overall system which is given by (3.130) has relative degree n.
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Proof. Let us compute observability matrix of the system in (3.110) as shown

below :

T̂1(t) = Ĉ(t),

T̂i(t) =
˙̂
Ti−1(t) + T̂i−1(t)Â(t), 2 ≤ i ≤ n,

T̂ (t) =


T̂1(t)

...

T̂n(t)

 . (3.131)

In addition, the system given by (3.110) has relative degree r and satisfies the

following :

T̂i(t)B̂(t) = 0, 1 ≤ i ≤ r − 1,

T̂r(t)B̂(t) = b(t) ̸= 0 ∀t ≥ t0 (3.132)
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Then let us compute the first n rows of the observability matrix of the overall

system given by (3.130) as shown below :

To1(t) =
(
T̂1(t) 0

)
,

To2(t) =
(
˙̂
T1(t) 0

)
+
(
T̂1(t) 0

)Â(t) B̂(t)K

0 G(t)

 ,

=
(
˙̂
T1(t) + T̂1(t)Â(t) T̂1(t)B̂(t)K(t)

)
,

=
(
T̂2(t) 0

)
,

To3(t) =
(
˙̂
T2(t) 0

)
+
(
T̂2(t) 0

)Â(t) B̂(t)K

0 G(t)

 ,

=
(
˙̂
T2(t) + T̂2(t)Â(t) T̂2(t)B̂(t)K(t)

)
,

=
(
T̂3(t) 0

)
,

...

Tor(t) =
(
˙̂
Tr−1(t) 0

)
+
(
T̂r−1(t) 0

)Â(t) B̂(t)K

0 G(t)

 ,

=
(
˙̂
Tr−1(t) + T̂r−1(t)Â(t) T̂r−1(t)B̂(t)K(t)

)
,

=
(
T̂r(t) 0

)
,

To(r+1)(t) =
(
˙̂
Tr(t) 0

)
+
(
T̂r(t) 0

)Â(t) B̂(t)K

0 G(t)

 ,

=
(
˙̂
Tr(t) + T̂r(t)Â(t) T̂r(t)B̂(t)K(t)

)
,

=
(
T̂r+1(t) b(t)M1(t)

)
,

To(r+2)(t) =

 ˙̂
Tr+1(t) ḃ(t)M1(t),

+b(t)Ṁ1(t)


+
(
T̂r+1(t)b(t)M1(t)

)Â(t) B̂(t)K(t)

0 G(t)

 ,

=
(
˙̂
Tr+1(t) + T̂r+1(t)Â(t) (ḃ(t) + T̂r+1(t)B̂(t))M1(t) + b(t)Ṁ1(t) + b(t)M1(t)G(t)

)
,

=
(
T̂r+2(t) ⋄M1(t) + b(t)M2(t)

)
,

...

Ton(t) =
(
T̂n(t) ⋄M1(t) + . . .+ ⋄Mn−r−1(t) + b(t)Mn−r(t)

)
, (3.133)
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where we used (3.132) and where ⋄ refers to arbitrary functions which result in

from the development given above and are not important for the development

given in the sequel . By using (3.116), we will obtain the following :

Toi(t)

 0

H(t)

 = 0, 1 ≤ i ≤ n− 1,

Ton(t)

 0

H(t)

 = d(t)b(t) ̸= 0 ∀t ≥ t0. (3.134)

Thus, we proved that the overall system given by (3.130) has relative degree

n.

Since we applied transformations to the system given by (3.1)-(3.2) in order

to obtain an inverse system, the matrix P (t) associated with disturbance ν in

the equation (3.5) is also affected by these transformations. Thus, let us denote

transformed disturbance matrix as P̂ (t) and let us add the exogenous system

given by (3.3)-(3.5) to the overall system given by (3.130). Then the state space

representation of the overall system and the exogenous system takes the form

given below : ˙̂x

η̇

 =

Â(t) B̂(t)K(t)

0 G(t)

x̂
η

+

 0

H(t)

 v +

P̂ (t)
0

w,

e =
(
Ĉ(t) 0

)x̂
η

+Qw, (3.135)

ẇ = S(t)w. (3.136)

Let us denote xo =

x̂
η

, Ao(t) =

Â(t) B̂(t)K(t)

0 G(t)

, Bo(t) =

 0

H(t)

 and

Po(t) =

P̂ (t)
0

. Since the overall system given by (3.130) has relative degree

n, if we take derivative of the error in (3.135), the input v appears at the nth
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derivative of the error which is shown below :

e = To1(t)xo +Q(t)w,

ė = Ṫo1(t)xo + To1(Ao(t)xo +Bo(t)v + Po(t)w) +Q(t)ẇ + Q̇(t)w,

= (Ṫo1(t) + To1(t)Ao(t))xo + To1(t)Bo(t)︸ ︷︷ ︸ v + (To1(t)Po(t) +Q(t)S(t) + Q̇(t))w,

= To2(t)xo + So1(t)w,

ë = Ṫo2(t)xo + To2(t)(Ao(t)xo +Bo(t)v + Po(t)w) + So1(t)ẇ + Ṡo1(t)w,

= (Ṫo2(t) + To2(t)Ao(t))xo + To2(t)Bo(t)︸ ︷︷ ︸ v + (To2(t)Po(t) + So1(t)S(t) + Ṡo1(t))w,

= To3(t)xo + So2(t)w,

...

e(n) = Ton(t)xo + b(t)d(t)v + (To(n−1)(t)Po(t) + So(n−1)S + Ṡo(n−1))w,

= Ton(t)xo + b(t)d(t)v + Son(t)w, (3.137)

where Soi(t) = So(i−1)(t)S + Ṡo(i−1)(t) + Toi(t)Po(t), So0(t) = Q(t)4, 1 ≤ i ≤ n

and the parts, indicated by underbrace are equal to zero. In order to find the

second part of the controller, we will use the same methodology that we applied

for the all-pole LTV systems. Therefore, we will choose the control input v as

follows :

v =
1

b(t)d(t)
{−Ton(t)xo − Son(t)w − Lo(n−1)e

(n−1) − . . .− Lo1ė− Lo0e}.

(3.138)

If (3.138) is substituted into (3.137), we obtain the error dynamics of e(t) as

given below :

e(n) + Lo(n−1)e
(n−1) + . . .+ Lo1ė+ Lo0e = 0. (3.139)

The latter is the same with (3.39) that has obtained for all-pole LTV systems.

If we again use Laplace transformation, the characteristic polynomial of the

equation (3.139) will be as follows :

ch(s) = sn + Lo(n−1)s
n−1 + . . .+ Lo1s+ Lo0 = 0. (3.140)
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If the controller parameters {Lo(n−1), . . . , Lo1, Lo0} are chosen properly, we can

make the error e(t) exponentially stable as we did for all-pole LTV systems.

Actually, the second part of the controller given by (3.138) has the form which

is shown below :

v = Kη(t)η +Kx̂(t)x̂+Kw(t)w. (3.141)

If the first and the second part of the controller given by (3.119), (3.141)-(3.138)

are combined, then the overall controller becomes as follows :

η̇ = (G(t) +H(t)Kη(t))η +H(t)Kx̂(t)x̂+H(t)Kw(t)w,

u = K(t)η. (3.142)

Therefore, the closed-loop system state space model with controller in (3.142)

becomes as shown below : ˙̂x

η̇

 =

 Â(t) B̂(t)K(t)

H(t)Kx̂(t) G(t) +H(t)Kη(t)

x̂
η

+

 P̂ (t)

H(t)Kw(t)

w,

e =
(
Ĉ(t) 0

)x̂
η

+Qw. (3.143)

In order to complete the solution of the output regulation problem for minimum

phase LTV systems, the system given by (3.143) should satisfy the second reg-

ulation condition (ii). Thus, this implies that the system in (3.143) should be

exponentially stable with w = 0. This is indicated by the following lemma.

Lemma 24. The system given by (3.143) is exponentially stable with w = 0. i.e.

∥

x̂
η

 ∥ ≤ ae−ϑt (3.144)

Proof. If we take w = 0, then the error e(t) becomes equal to the system output

y(t). By applying the second part of the controller in (3.138) to the overall

system in (3.135), the dynamics of the error e(t) becomes the equation given by
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(3.139). This indicates that the dynamics of the output y takes the form which

is given below with w = 0 :

y(n) + Lo(n−1)y
(n−1) + . . .+ Lo1ẏ + Lo0y = 0. (3.145)

Since we chose the controller parameters {Lo(n−1), . . . , Lo1, Lo0} properly, the

system output y(t) is exponentially stable. If the y(t) is exponentially stable,

then its derivatives are also exponentially stable. This fact will be used to prove

the exponential stability of the closed-loop system states. Let us denoteKxo(t) =(
Kη(t) Kx̂(t)

)
, then :

y = To1(t)xo,

ẏ = Ṫo1(t)xo + To1(Ao(t) +Bo(t)Kxo(t))xo

= To2(t)xo,

ÿ = Ṫo2(t)xo + To2(Ao(t) +Bo(t)Kxo(t))xo

= To2(t)xo,

...

y(n−1) = Ṫo(n−1)(t)xo + To(n−1)(Ao(t) +Bo(t)Kxo(t))xo

= Ton(t)xo, (3.146)

where we used (3.134). Thus we obtain the following from (3.146) :

∥


y

ẏ

...

y(n−1)


∥ = ∥


To1
...

Ton

 xo∥ ≤ ke−λt

(3.147)

Actually, the matrix in (3.147) is the first n rows of the observability matrix of

the closed-loop system given by (3.130). This matrix was already computed in
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the proof of the Fact 23 and is given below in a more detailed form :

To1(t) =
(
0 . . . 0 e1 0 . . . 0

)
,

To2(t) =
(
0 . . . 0 e2 0 . . . 0

)
,

...

Tor(t) =
(
0 . . . 0 er 0 . . . 0

)
,

To(r+1) =
(
Q1(t) P1(t) b(t)M1(t)

)
,

To(r+2) =
(
Q2(t) P2(t) ⋄M1(t) + b(t)M2(t)

)
,

...

Ton =
(
Qn−r(t) Pn−r(t) ⋄M1(t) + . . .+ ⋄Mn−r−1(t) + b(t)Mn−r(t)

)
,

(3.148)

where eiϵℜr is unit vector, Qi(t)ϵℜn−r and Pi(t)ϵℜr. If we take the first r row

vectors in (3.148) and use (3.147), we will obtain the form given below :

∥
(
0r×(n−r) Ir×r 0r×(n−r)

)
z

ε

η

 ∥ = ∥ε∥ ≤ me−γt,

(3.149)

This implies that the states ε are exponentially stable.

The dynamics of the states z in the closed-loop system is given below (see

(3.110) and (3.143)) :

ż = G(t)z + P (t)ε1. (3.150)

We know that the state transition matrix of the G(t) is exponentially stable

because of the minimum phase property and P (t) matrix is bounded and the

states ε are also exponentially stable. This implies that the states z are also

exponentially stable which can be shown easily. In other words, we have :

∥z∥ ≤ re−ϱt,

(3.151)
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Finally, if we take the last n− r row vectors in (3.148), we will obtain :

∥


Q1(t) P1(t) b(t)M1(t)

...
...

...

Qn−r(t) Pn−r(t) ⋄M1(t) + . . .+ ⋄Mn−r−1(t) + b(t)Mn−r(t)

xo∥ = ∥


y(r)

...

y(n−1)

 ∥ ≤ ce−ρt

(3.152)

We know that the rows
(
Qi(t) Pi(t)

)
are bounded and the states z, ε are expo-

nentially stable, then from (3.152) we get the below equation :
b(t) 0 . . . 0

⋄ b(t) . . . 0

⋄ ⋄ . . .
...

⋄ ⋄ ⋄ b(t)




M1(t)

...

Mn−r−1(t)

Mn−r(t)


η = Γ(t)M(t)η

= −


Q1(t) P1(t)

...
...

Qn−r(t) Pn−r(t)


z
ε

+


y(r)

...

y(n−1)

 (3.153)

We know that the lower triangular elements of the matrix Γ(t) are multiplications

of the bounded functions and also b(t) ̸= 0 ∀t ≥ t0. Thus, Γ(t) is a bounded

matrix. Then, if we write the inverse of Γ(t), we get the following :

Γ(t)−1 =
adj(Γ(t))

det(Γ(t))
. (3.154)

Since det(Γ(t)) = b(t)n−r ̸= 0 ∀t ≥ t0, Γ(t)
−1 exists and is bounded. Additionally,

the matrix M(t) is the observability matrix of the inverse system in (3.115)

which is a Lyapunov transformation. Thus, both Γ(t) and M(t) are bounded

and invertible matrices, and their inverses are also bounded. By using (3.153),
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we can conclude as follows :

∥Γ(t)M(t)η∥ = ∥ −


Q1(t) P1(t)

...
...

Qn−r(t) Pn−r(t)


z
ε

+


y(r)

...

y(n−1)

 ∥

∥η∥ = ∥(Γ(t)M(t))−1(−


Q1(t) P1(t)

...
...

Qn−r(t) Pn−r(t)


z
ε

+


y(r)

...

y(n−1)

)∥

≤ ∥(Γ(t)M(t))−1∥(∥


Q1(t) P1(t)

...
...

Qn−r(t) Pn−r(t)

 ∥∥

z
ε

 ∥+ ∥


y(r)

...

y(n−1)

 ∥)

≤ d(sme−δt + ce−ρt) = ce−τt

(3.155)

where

∥(Γ(t)M(t))−1∥ ≤ d

∥


Q1(t) P1(t)

...
...

Qn−r(t) Pn−r(t)

 ∥ ≤ s

∥

z
ε

 ∥ ≤ me−δt

∥


y(r)

...

y(n−1)

 ∥ ≤ ke−ρt.

(3.156)

Therefore, the results in (3.149), (3.151) and (3.155) proves that the closed-loop

system given by (3.143) is exponentially stable with w = 0.
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Theorem 25. The dynamic controller given by (3.142) satisfies the regulation

conditions (i), (ii) for the minimum phase system given by (3.110) with the

exogenous system in (3.3)-(3.5).

Proof. (i) Equations (3.139)-(3.140) indicates that the error term e(t) is expo-

nentially stable. i.e.

|e(t)| < k exp−λt

for some k > 0, λ > 0. Hence, we have :

lim
t→∞

|e(t)| = 0. (3.157)

(ii) Lemma 24 proves that the closed-loop system given by (3.143) with w = 0

is exponentially stable. i.e.

∥

x̂
η

 ∥ ≤ he−ζt, (3.158)

These two results prove that the dynamic controller in the form (3.142) sat-

isfies the regulation conditions for the minimum phase system given by (3.110)

with the exogenous system in (3.3)-(3.5).

In Theorem 25, we showed that the controller in (3.142) satisfies the regulation

conditions (i) and (ii) for the transformed system in (3.110). We know that there

is a Lyapunov transformation between the transformed system in (3.110) and the

original system in (3.1)-(3.2) as shown below :

x̂ = Ts(t)x, (3.159)

where Ts(t) = T̃ (t)W̃ (t)W (t)−1 (see (3.58), (3.85) and (3.95)). And also we have

: x̂
η

 =

Ts(t) 0

0 I

x
η

 , (3.160)
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Since Ts(t) and I are Lyapunov transformations and Lyapunov transformation

preserve the stability between the original system and the transformed system,

the states of the original system in (3.1)-(3.2) are also exponentially stable. Ad-

ditionally, the error e(t) dynamics is not affected by the transformations, hence

it remains exponentially stable for the original system in (3.1)-(3.2). Therefore,

the minimum phase system in (3.1)-(3.5) with transformed system matrices in

(3.110) satisfies regulation conditions (i), (ii) with the following dynamic con-

troller :

η̇ = (G(t) +H(t)Kη(t))η +H(t)Kx(t)x+H(t)Kw(t)w,

u = K(t)η. (3.161)

where Kx(t) = Kx̂(t)T
−1
s (t).

3.4 Pole/Zero Cancelation in LTV Systems

In the minimum phase LTI case, the original system zeros which are the roots of

the polynomial given by (2.65) are canceled by the poles of the inverse system

given by (2.68)-(2.69). It is the way we obtained a system which is equivalent to

an all-pole system and we designed the second part of the controller accordingly.

Additionally, these cancelations result in m unobservable states and m denotes

the number of pole/zero cancelations.

In this section, we will try to show pole/zero cancelations in the design of the

controller for the minimum phase LTV system given in the Section 3.3. That’s

how we can obtain an analogy between the minimum phase LTI and LTV cases

and justify the reasoning behind defining the system given by (3.119) as an

inverse system.

In order to show pole/zero cancelations in LTV systems, we will use the LTV

system pole/zero definition of O’Brien in [36]. Before making definitions we

should show some facts which are used later in this section.
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Fact 26. (G(t),R(t)) pair (see (3.110)) is observable.

Proof. We know that the observability matrix of the system in (3.110) is a Lya-

punov transformation. If we form the observability matrix of this system, we

will get the rows of the observability matrix as shown below :

T1(t) =
(
0

... e1

)
...

Tr(t) =
(
0

... er

)
Tr+1(t) =

(
L1(t)

... ⋄
)

...

Tn(t) =
(
Ln−r(t) + ⋄Ln−r−1(t) + . . .+ ⋄L1(t)

... ⋄
)

(3.162)

where Li(t) are the rows of the observability matrix which is formed by the pair

(G(t), R(t)) as given below :

L1(t) = R(t)

Li(t) = Li−1(t)G(t) + L̇i−1(t), 2 ≤ i ≤ n− r

L(t) =
(
L1(t) . . . Ln−r(t)

)
(3.163)

As we can see, the observability matrix in (3.162) is in the block triangular

form and this matrix is invertible. Then, from block triangular property of the

matrix in (3.162), we see that the matrix ,which is the left bottom block of the

observability matrix in (3.162) is also invertible and it is given below :
1 0 . . . 0

⋄ 1 . . . 0

...
...

. . .
...

⋄ ⋄ . . . 1


L(t) = O(t) (3.164)

Since O(t) is invertible, the matrix L(t) is also invertible which implies that the

pair (G(t), R(t)) is observable.
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Fact 27. The pair (G(t), −R(t)
b(t)

) is observable.

Proof. If we form the observability matrix of the pair (G(t), −R(t)
b(t)

), we will obtain

L̄(t) =



1
b(t)

0 . . . 0

⋄ 1
b(t)

. . . 0

...
...

. . .
...

⋄ ⋄ . . . 1
b(t)


L(t) (3.165)

Since b(t) is bounded above and below for all t and L(t) is invertible, the observ-

ability matrix L̄(t) is also invertible which implies that the pair (G(t), −R(t)
b(t)

) is

observable.

In [36], O’Brien gives two types of zero definitions which are called ”Trans-

mission Zero” and ”Ordinary Zero”. The definitions of these zeros are given as

follows.

Definition 28. Suppose the system that we have has a minimal realization. A

function q(t) is a transmission zero for this system if there exists an initial state

and a function r(t) ,which is bounded above and do not converge to zero as

t −→ ∞, such that the output of the system is zero for all t ≥ t0 when the input

is r(t)ϕq(t) where ϕq(t) is the transition function of the scalar equation given

below

ẋ = q(t)x.

Definition 29. Suppose the system that we have has a minimal realization. A

function q(t) is an ordinary zero for this system if there exists an initial state

such that the output of the system is zero for all t ≥ t0 when the input is the

transition function ϕq(t) given in Definition 28.

The definition of a pole for LTV systems is given below.
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Definition 30. The functions {p1(t), . . . , pn(t)} are poles of the LTV system if

there exists an invertible matrix S0 such that

S(t) = ΦA(t, 0)S0ΦP (t, 0)
−1, (3.166)

is a Lyapunov transformation and ΦA(t, 0) is the transition matrix of A(t) which

is system matrix, ΦP (t, 0) is the transition matrix of the P (t) which is given

below

P (t) = diag{pi(t)} (3.167)

Actually, S(t) diagonalizes the system matrix A(t) and preserves the stability

property of the system. Then, the diagonal entries are called as the poles of the

system.

First we will show that the poles of the inverse system in (3.119) correspond

to the transmission zeros of the system in (3.110) and vice versa.

Fact 31. The poles of the system given by (3.119) and the transmission zeros of

the system given by (3.110) are cancel out eachother.

Proof. If the output of the original system in (3.110) is set to zero, then we

obtain :

y = ε1 = 0

ε̇1 = 0 = ε2

...

εr = 0 (3.168)

Then, by using (3.168) in (3.110), we obtain :

ż = G(t)z

u =
−1

b(t)
R(t)z (3.169)
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Therefore, the output zeroing input u(t) = r(t)ϕq(t, 0) should satisfy (3.169), see

Definition 28. If we consider (3.169) to be a system with states z and output

u(t), then the zero input response of this system is equal to u(t) = r(t)ϕq(t, 0).

Since (G(t), −R(t)
b(t)

) has a minimal realization as we proved, we can use Lemma

21 in [36]. This lemma claims that a function p(t) is a pole of a system if and

only if the zero input response of this system can be written as r(t)ϕp(t, 0) where

r(t) is bounded above and does not converge to zero as t −→ ∞. It implies

that, if the system in (3.169) has a zero input response r(t)ϕγ(t, 0), then this

γ(t) function is a pole for the system in (3.169) and additionally a transmission

zero for the system in (3.110) (see Definition 28). Thus, the poles of the system

in (3.169) and the transmission zeros of the system in (3.110) correspond to each

other, if they exist. Additionally, we know that the poles of the system in (3.169)

actually are the poles of the system matrix G(t). The inverse system in (3.119)

also contains G(t) as a system matrix and the inverse system has a minimal

realization. It shows that the poles of the system in (3.169) are equivalent to the

poles of the inverse system in (3.119). This proves that the poles of the inverse

system in (3.119) and the transmission zeros of the system in (3.110) cancel out

each other.

In the following fact we will use equivalence between functions of time, hence

we first give the definition of the equivalence below.

Definition 32. The functions associated with f1, f2 ,which are continuous and

bounded, are equivalent if there exists a scalar Lyapunov transformation seq such

that

seq(t)ϕf1(t, 0) = ϕf2(t, 0) , ∀t (3.170)

where ϕf1(t, 0), ϕf2(t, 0) are transition functions [36].

Fact 33. If G(t) has a pole set {p1(t), . . . , pn(t)} in which no two poles are

equivalent and additionally if G(t)(k) and (−R(t)
b(t)

)(k) are continuous, bounded and
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do not decay to zero for k = 1, . . . , n− r− 1, then the poles of the inverse system

in (3.119) and the ordinary zeros of the system in (3.110) cancel out each other.

Proof. We know that;

• The pair (G(t), −R(t)
b(t)

) is observable.

• G(t), −R(t)
b(t)

are the analytic functions of t.

• G(t)(k) and (−R(t)
b(t)

)(k) are continuous, bounded and do not decay to zero for

k = 1, . . . , n− r − 1.

• G(t) has a pole set {p1(t), . . . , pn(t)} in which no two poles are equivalent.

Then we can use Lemma 22 in [36] which states that ψ(t) is a pole for the

system in (3.169) if and only if the zero input response of this system can be

written as u(t) = ϕψ(t, 0). It implies that if the zero input response of the

system in (3.169) can be written as ϕψ(t, 0), then ψ(t) is a pole for the system in

(3.169) and an ordinary zero for the system in (3.110)(see Definition 29). Thus,

poles of the system in (3.169) correspond to the ordinary zeros of the system

in (3.110). Additionally, the poles of the system in (3.169) and the poles of the

inverse system in (3.119) are equivalent. This proves that the poles of the inverse

system in (3.119) and the ordinary zeros of the system in (3.110) cancel out each

other.

In Fact 31 and Fact 33, we showed that there occur transmission zero/pole

or/and ordinary zero/pole cancelations between the system in (3.110) and the

inverse system in (3.119) similar to the LTI case. If some certain conditions,

which are given in the below fact, are satisfied, then the ordinary zero/pole

cancelations make the overall system unobservable as a result of the Theorem 49

in [36] similar to what happens in LTI cases.
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Fact 34. If the inverse system in (3.119) and the system in (3.110) satisfy the

hypothesis of Lemma 48 in [36] ,and additionally if H(t)k is continuous, bounded

and does not decay to zero for k = 1, . . . , n − r − 1, then ordinary zero/pole

cancelations between the inverse system in (3.119) and the system in (3.110)

make the overall augmented system unobservable.

Proof. The proof of above fact follows directly from Theorem 49 in [36].

Therefore, the ordinary zero/pole cancelations in LTV systems and the ones

in LTI systems have similar effects on the overall augmented systems. Actually,

we can think the ordinary zero/pole cancelations as the generalization of the

pole/zero cancelations in LTI cases, if the poles and the ordinary zeros exist for

the LTV systems. However, the transmission zero/pole cancelations may not

result in unobservable states unlike the LTI cases because the functions r(t) as-

sociated with transmission zeros may prevent the formation of the unobservable

states. Even if, the transmission zero/pole cancelations do not affect the overall

LTV system like they do in LTI systems, we may still show the transmission

zero/pole cancelations between the system given by (3.110) and the inverse sys-

tem given by (3.119). Because by this way we can indicate the analogy between

the method that we used in the minimum phase LTV systems and the method

that we used in the minimum phase LTI systems.

3.5 Numerical Results

In this section, some simulation results for All-pole and Minimum Phase LTV

systems are given. In these simulations, we will use the transformed system

matrices in order to prevent complicated matrix computations. Actually, we can

go back to the original system matrices by applying transformations ,which we

applied, in the reverse direction. In the figures of the examples, we will first give
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the figure which shows the error signal e(t) between the system output y(t) and

the reference signal r(t). Then we give the figure which shows the stability of

the closed-loop system when w = 0.

3.5.1 Example 1

In the first simulation, we consider the following system (see (3.1)-(3.2)) :

ẋ =


0 1 0

0 0 1

sin(wt) − sin(wt) cos(wt)

 x+


0

0

2 + sin(wt)

u+ ν,

y =
(
1 0 0

)
x (3.171)

where w = 0.2π. The exogenous system is given as follows :

ẇ =

 0 1

−(1.6 + 1.2 cos(2t)) 0

w,

r(t) = −
(
1 0

)
w,

ν(t) =


0 1

−1 0

1 1

w. (3.172)

Hence according to (3.6), the error e(t) becomes :

e =
(
1 0 0

)
x+

(
1 0

)
w. (3.173)

By using (3.34)-(3.35), we find the controller which satisfies the regulation con-

ditions as follows :

u =
(

− sin(wt)−5
2+sin(wt)

sin(wt)−20
2+sin(wt)

− cos(wt)−2
2+sin(wt)

)
x

+
(
−2.41+2 sin(2t)−4 cos(t)2

2+sin(wt)
0.8−46+3 cos(2t)

2+sin(wt)

)
w (3.174)

With Kx̃(t) as given above, the characteristic polynomial of the closed-loop sys-

tem becomes as follows :

ch(s) = s3 + 2s2 + 20s+ 5, (3.175)
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and the roots of (3.175) can be given as follows: {−0.87 + 4.33ı,−0.87 −

4.33ı,−0.25}. Simulation results are obtained for these initial conditions :

x(0) =
(
1 1 1

)T
and w(0) =

(
0.5 0.2

)T
.
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Figure 3.1: Tracking of Reference Signal

In figure 3.1 and 3.2, we can see the simulation results for the system given

by (3.171)-(3.172). As can be seen in Figure 3.1, the tracking error decays to

zero, in fact exponentially fast. Also Figure 3.2 indicates that the closed-loop

system is stable when w = 0.
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Figure 3.2: Stability of Closed-Loop System

3.5.2 Example 2

In the second simulation, the system that we consider is shown below :

ẋ =


0 1 0

0 0 1

sin(2wt) − cos(wt)2 sin(wt)

x+


0

0

2 + cos(2wt)

u+ ν,

y =
(
1 0 0

)
x. (3.176)
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where w = 0.2π. The exogenous system is given as follows :

ẇ = sin(t)


0 0 1

−1 0 1

−π
4
2 0 0

w,

r(t) = −
(
cos(t) 0 − sin(t)

)
w,

ν(t) =


0 0 sin(t)

0 0 cos(t)

− sin(t) 0 − cos(t)

w. (3.177)

Hence according to (3.6), the error e(t) becomes :

e =
(
1 0 0

)
x+

(
cos(t) 0 − sin(t)

)
w. (3.178)

By using (3.34)-(3.35), we find the controller which satisfies the regulation con-

ditions as follows :

u =
(

− sin(2wt)−60
2+cos(2wt)

cos(wt)2−47
2+cos(2wt)

− sin(wt)−12
2+cos(2wt)

)
x

+
(

α(t)
2+cos(2wt)

0 − β(t)
2+cos(2wt)

)
w (3.179)

where

α(t) = 16.5 cos2(t)− 19.73 cos(t) sin(t) + 3.7 sin(t) cos2(t) + 45.1 sin(t)

− 40.5 cos(t)− 18.74− 7.4 cos(t) + 0.38 cos4(t) (3.180)

and

β(t) = 3.78 sin(t) + 39.3 cos(t) sin(t)− 24− 19.2 cos(t)− 6.7 sin(t) cos2(t)

+ 0.61 sin(t) cos3(t)− 3.7 cos(t) + 36 cos2(t). (3.181)

With Kx̃(t) as given above, the characteristic polynomial of the closed-loop sys-

tem becomes as follows :

ch(s) = s3 + 12s2 + 47s+ 60, (3.182)
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and the roots of (3.182) can be given as follows: {−3,−4,−5}. Simulation re-

sults are obtained for these initial conditions :

x(0) =
(
1 1 1

)T
and w(0) =

(
0.7 0.9 0.8

)T
.
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Figure 3.3: Tracking of Reference Signal

In figure 3.3 and 3.4, we can see the simulation results for the system given

by (3.176)-(3.177). As can be seen in Figure 3.3, the tracking error decays to

zero, in fact exponentially fast. Also Figure 3.4 indicates that the closed-loop

system is stable when w = 0.
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Figure 3.4: Stability of Closed-Loop System

3.5.3 Example 3

In example 3, we will consider a minimum phase system. State space model of

the system is given below :

ẋ =


0 1 0

6
t2+2

9
t+1

t+4
2t+2

t2 cos(wt)+1
t2+2

(t+5) sin(wt)
t+2

2 t
3 sin(wt)−cos(wt)

t3+15

x+


0

0

2t+2
t+4

u+ ν,

y =
(
0 0 1

)
x. (3.183)
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where w = 0.4π. The exogenous system is shown below :

ẇ =

 0 1

−(1.6 + 1.2 cos(2t)) 0

w,

r(t) = −
(
1 0

)
w,

ν(t) =


0 1

−1 0

1 1

w. (3.184)

Hence according to (3.6), the error e(t) becomes :

e =
(
0 0 1

)
x+

(
1 0

)
w. (3.185)

By using (3.119), (3.138), (3.141) and (3.142), we find the controller which sat-

isfies the regulation conditions as follows :

η̇ =

 0 1

g1(t) g2(t)

 η +

 0 0 0

h1(t) h2(t) h3(t)

 x̂+

 0 0

p1(t) p2(t)

w (3.186)

Since the functions in the matrices are extremely long and complicated, we can-

not give these functions in detail here ( see Appendix). Note that these functions

are obtained from Symbolic Toolbox of MATLAB. The initial conditions for this

simulation are taken as follows :

x(0) =
(
0.1 0.2 0.1 −0.1 0.3

)T
and w(0) =

(
0.4 0.6

)T
.
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Figure 3.5: Tracking of Reference Signal

In figure 3.5 and 3.6, we can see the simulation results for the system given

by (3.183)-(3.184). As can be seen in Figure 3.5, the tracking error decays to

zero, in fact exponentially fast. Also Figure 3.6 indicates that the closed-loop

system is stable when w = 0.
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Figure 3.6: Stability of Closed-Loop System

3.5.4 Example 4

In the last example, we will examine minimum phase system which is shown

below :

ẋ =


0 1 1

sin(wt) cos(wt) − sin(wt)(cos(wt) + 2 sin(wt)) 1
8+cos(wt)

sin(wt) 2 cos(wt) sin(wt)− cos(wt)

 x

+


0

0

8 + cos(wt)

u+ ν,

y =
(
0 0 1

)
x. (3.187)
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where w = 0.4π. The exogenous system is shown below :

ẇ = sin(t)


0 0 1

−1 0 1

−(π
4
)2 0 0

w,

r(t) = −
(
cos(t) 0 − sin(t)

)
w,

ν(t) =


0 0 sin(t)

0 0 cos(t)

− sin(t) 0 − cos(t)

w. (3.188)

The vectors K(t), H(t) of the inverse system can be chosen from a class as

Remark 10 indicated. Hence in this example, instead of using K(t) =
(
1 0

)
,

H(t) =

0

1

 in the inverse system, we use K(t) and H(t) as given below :

K(t) =

(
− sin( 2π t

5 )
cos( 2π t

5 )+8
− 2 cos( 2π t

5 )
cos( 2π t

5 )+8

)

H(t) =

 − 320 cos( 2π t
5 )+20 cos( 4π t

5 )+20

16π+10 cos( 4π t
5 )−5 cos( 8π t

5 )+40 sin( 4π t
5 )−5

160 sin( 2π t
5 )+10 sin( 4π t

5 )
16π+10 cos( 4π t

5 )−5 cos( 8π t
5 )+40 sin( 4π t

5 )−5

 (3.189)

Hence according to (3.6), the error e(t) becomes :

e =
(
0 0 1

)
x+

(
cos(t) 0 − sin(t)

)
w. (3.190)

By using (3.119), (3.138), (3.141) and (3.142), we find the controller which sat-

isfies the regulation conditions as follows :

η̇ =

g3(t) g4(t)

g5(t) g6(t)

 η +

h3(t) h4(t) h5(t)

h6(t) h7(t) h8(t)

 x̂+

p3(t) p4(t) p5(t)

p6(t) p7(t) p8(t)

w

(3.191)

Since the functions in the matrices are extremely long and complicated, we can-

not give these functions in detail here ( see Appendix). Note that these functions

are obtained from Symbolic Toolbox of MATLAB. The initial conditions for this

simulation are taken as follows;
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x(0) =
(
−1 0.2 0 0.2 2

)T
and w(0) =

(
0 1 π

8

)T
.
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Figure 3.7: Tracking of Reference Signal

In figure 3.7 and 3.8, we can see the simulation results for the system given

by (3.187)-(3.188). As can be seen in Figure 3.7, the tracking error decays to

zero, in fact exponentially fast. Also Figure 3.8 indicates that the closed-loop

system is stable when w = 0.

3.5.5 Appendix

In Example 3 and Example 4, we obtain extremely long and complicated functions

from Symbolic Toolbox of MATLAB for the dynamic controllers given by (3.186),

(3.191). Hence, in below we only give g1(t) ,which is in (3.186), in order to

indicate how complicated and long these functions are. Since the space is not
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Figure 3.8: Stability of Closed-Loop System

enough to write g1(t) in a one line, we write g1(t) term by term as given below :

a1(t) =
4 t6

(
cos

(
2π t
5

)
− sin

(
2π t
5

))2
(t3 + 15)2

a2(t) =

2 t3
(

2π cos( 2π t
5 )

5
+

2π sin( 2π t
5 )

5

)
t3 + 15

a3(t) =
6 t2

(
cos

(
2π t
5

)
− sin

(
2π t
5

))
t3 + 15

a4(t) =
6 t5

(
cos

(
2π t
5

)
− sin

(
2π t
5

))
(t3 + 15)2

a5(t) =
sin

(
2π t
5

)
(t+ 4) (t+ 5)

(2 t+ 2) (t+ 2)
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d0(t) =
18

t+ 4
− 4

(t+ 4)2
+

4 t+ 4

(t+ 4)3
− 18 t+ 18

(t+ 4)2
+

52 t+ 52

t+ 4

12 t+ 12

(t2 + 2) (t+ 4)

d1(t) =
(2 t+ 2) (a1(t) + a2(t)− a3(t) + a4(t) + a5(t))

t+ 4

d2(t) =
4 t3

(
cos

(
2π t
5

)
− sin

(
2π t
5

))
(t3 + 15) (t+ 4)

d3(t) =

2 t3 (2 t+ 2)

(
2π cos( 2π t

5 )
5

+
2π sin( 2π t

5 )
5

)
(t3 + 15) (t+ 4)

d4(t) =
6 t2 (2 t+ 2)

(
cos

(
2π t
5

)
− sin

(
2π t
5

))
(t3 + 15) (t+ 4)

d5(t) =
18 t3 (2 t+ 2)

(
cos

(
2π t
5

)
− sin

(
2π t
5

))
(t3 + 15) (t+ 4)

d6(t) =
2 t3 (2 t+ 2)

(
cos

(
2π t
5

)
− sin

(
2π t
5

))
(t3 + 15) (t+ 4)2

d7(t) =
6 t5 (2 t+ 2)

(
cos

(
2π t
5

)
− sin

(
2π t
5

))
(t3 + 15)2 (t+ 4)

g1(t) = − 6

t2 + 2
− (t+ 4) (d0(t) + d1(t)− d2(t) + d3(t)− d4(t)− d5(t) +−d6(t) + d7(t))

2 t+ 2

(3.192)

As we can see from the expression given above, even we write one function, this

is extremely long and complicated. For this reason, we give only g1(t) as an

example and other functions in (3.186), (3.191) can easily be obtained by using

Symbolic Toolbox of MATLAB.
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Chapter 4

CONCLUSION

In this thesis, we dealt with the output regulation problem for all-pole and min-

imum phase LTI / LTV systems. Our main approach is to find a controller,

which solves the output regulation problem analytically. Since obtaining con-

trollers analytically for the output regulation problem was difficult, we restricted

the systems that we dealt with to a certain class of LTI/LTV systems. We devel-

oped a solution for the output regulation problem for all-pole and minimum phase

systems. First, we found a design procedure for all-pole and minimum phase LTI

cases. Then, the same methodology was applied to the LTV cases. However,

in the LTV part of the problem we first needed to obtain canonical forms for

all-pole and minimum phase systems in order to apply the same methodology as

we used in LTI part.

In the first part of the thesis, we considered the output regulation problem

for all-pole and minimum phase LTI systems. The relative degree property of

LTI systems was first introduced. Then, the relative degree property was used

to obtain a controller for all-pole cases by taking the derivative of the error up to

a system degree. Since the original system and the exogenous system states are

generally not available for measurement and since the designed controller uses

these states, we designed observers both for the original system states and the
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exogenous system states. In the minimum phase part, an inverse system was

employed as the first part of the controller. By using this inverse system as the

first part, the overall system become equivalent to an all-pole system. Then, we

used the same procedure with all-pole cases for this overall system and obtained

the second part of the controller. Combining these two parts gave us the total

controller which solved the output regulation problem for minimum phase cases.

Secondly, the LTV part of the problem was studied. First we defined the

relative degree property for LTV systems. Since Laplace transform techniques

are not applicable to time-varying systems, we tried to transform the LTV sys-

tems into some certain state space forms similar to the LTI state space forms

in order to apply the same methodology with LTI cases. Observability matrix

was used as a transformation matrix to obtain canonical form for all-pole case.

Actually, while obtaining this canonical form, we used the relative degree prop-

erty of the all-pole systems. After obtaining the canonical form, we designed a

controller with the same method as we used in LTI all-pole cases. In the mini-

mum phase part of the LTV systems, obtaining certain state space form, which

is called the normal form, was carried out by applying three transformations

on the system. However, in order to preserve stability property between the

original system and the transformed system, we made some assumptions on con-

trollability and observability matrices of the minimum phase system. Actually,

the minimum phaseness definition was given after we obtained the normal form.

Then, the same procedure was applied as in the LTI case. The inverse system

was employed as the first part of the controller and then by taking the derivative

of the error, the second part of the controller was obtained. As a final step,

we showed pole/zero cancelations between the inverse system and the minimum

phase system like we did in the LTI minimum phase case. In order to show these

cancelations we used pole/zero definitions which are given in [36].
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Since we restrict ourselves to a certain class of LTI / LTV systems, our ap-

proach has some advantages over the previous ones. The advantages of our

method for the output regulation problem are as follows:

• Different from existing approaches, our solution depends on the analytical

calculation of the controller that satisfies the regulation conditions (i), (ii).

This analytical calculation is particularly very important for LTV systems

because finding a controller by using regulator equations, which include

differential matrix equation, is a very difficult task.

• Our approach does not assume the fulfillment of the condition (ii) like most

of the existing approaches. Instead, we proved that the controller which

we proposed also satisfies the condition (ii).

• In the LTI cases, the controller that solves the output regulation problem

may be found relatively easily by using the regulator equations . However,

in this methodology we have no degree of freedom to alter the transient

behavior of the system. On the other hand, our approach allows one to

alter the transient behavior of the closed-loop system up to a certain degree

by only changing some controller parameters. By this way, the designer can

achieve some desired specification with no difficulty.

In addition to above advantages, we find a normal form for minimum phase

LTV systems under some assumptions on the original systems controllability and

observability matrices. Then we define minimum phaseness in LTV systems in

accordance with this normal form. Furthermore, we show pole/zero cancelations

between the inverse systems and the original systems in minimum phase LTV

cases like we do in LTI cases. When we show pole/zero cancelations in LTV

systems, we use the definitions for poles and zeros given in [36].

Our contributions in this thesis can be listed as follows :
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(I) In an analytical manner, we can find a controller, which solves the output

regulation problem.

(II) We do not give only one controller structure. Instead we give a class of

controllers and this whole class of controllers can be obtained by only

changing some scalar parameters.

(III) In the LTV case, we obtain a normal form for the minimum phase part

and define minimum phaseness for time-varying systems.

(IV) We show under which conditions the normal form and the original system

are Lyapunov equivalent.

(V) By using the pole/zero definitions given in [36], we show pole/zero cancela-

tions between the inverse system and the original system in LTV minimum

phase case. These cancelations are presented in order to point out the anal-

ogy between the controller design methodologies that we used both for the

LTI and the LTV minimum phase systems.

In the future, we may try to extend our approach to the continuous nonlinear

time-invariant and time-varying cases. In the nonlinear part of this problem,

we will need to define the relative degree property and the minimum phaness

again. In order to obtain an inverse system for minimum phase cases, we will

need to find a normal form. Additionally the transformation, which we will

apply to the original system in order to find the normal form, should preserve

stability. Afterwards, we will try to find the extension of our method to the

LTI/LTV/Nonlinear discrete time systems. In discrete time cases, first we will

develop methodology for all-pole and minimum phase LTI case and extend this

for LTV and Nonlinear discrete systems. However, since stability conditions are

different between continuous and discrete systems, this may cause additional

assumptions on discrete time systems. In addition to this, pole / zero definition

for discrete LTV systems may be defined or existing definitions may be used
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in order to show cancelations in LTV discrete time minimum phase case. Also,

since there is no unique pole/zero definition for the continuous time LTV systems

in literature, definitions of the poles and the zeros for the continuous time LTV

systems may be modified in order to make the analogy between minimum phase

continuous time LTI cases and LTV cases more precise.
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