
A TEMPLATE-INDEPENDENT CONTENT
EXTRACTION APPROACH FOR NEWS

WEB PAGES

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Ahmet Yeniçağ
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ABSTRACT

A TEMPLATE-INDEPENDENT CONTENT
EXTRACTION APPROACH FOR NEWS WEB PAGES

Ahmet Yeniçağ

M.S. in Computer Engineering

Supervisor: Prof. Dr. Fazlı Can

September, 2012

News web pages contain additional elements such as advertisements, hyperlinks,

and reader comments. These elements make the extraction of news contents a

challenging task. Current news content extraction (NCE) methods are usually

template-dependent. They require regular maintenance, since news providers

frequently change their web page templates. Therefore, there is a need for NCE

methods that extract news contents accurately without depending on web page

templates. In this thesis, a template-independent News content EXTraction ap-

proach, called N-EXT, is introduced. It first parses a web page into its blocks

according to the HTML tags. Then, it examines all blocks to detect the one that

contains the major part of the news content. For this purpose, it assigns weights

to the blocks by considering both their textual sizes and similarities to the news

title. For quantifying the importance of these two weight components, we use

the k-fold cross validation approach; and for assessing the impact of different

possible similarity measures, we use a one-way Analysis of Variance (ANOVA)

with a Scheffé comparison. The block with the highest weight is considered as

the news block. Our approach eliminates the sentences in the news block that

are not related to the news content by considering similarities of sentences to

the news block. Finally, it also examines other blocks to detect the rest of the

news content. The experimental results show the accuracy and robustness of our

method by using two test collections whose web pages are obtained from several

different news websites.

Keywords: Information extraction, news block detection (NBD), news content

extraction (NCE), news portal, web information aggregators, wrappers.
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ÖZET

HABER İNTERNET SAYFALARI İÇİN
ŞABLON-BAĞIMSIZ İÇERİK ÇIKARTMA YÖNTEMİ

Ahmet Yeniçağ

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Fazlı Can

Eylül, 2012

İnternet haber sayfaları, reklamlar, bağlantılar, ve kullanıcı yorumları gibi fa-

zladan elemanlar içermektedirler. Bu elemanlar, haber içeriklerinin çıkartılmasını

zorlu kılmaktadırlar. Günümüzdeki haber içeriği çıkartma (HİÇ) yöntemleri

genellikle şablon bağımlı olarak çalışmaktadırlar. Haber sağlayıcılar, internet

sayfası şablonlarını sıklıkla değiştirdikleri için, bu yöntemler düzenli bakım gerek-

tirmektedirler. Bu nedenle, haber içeriklerini internet sayfası şablonlarına bağımlı

olmaksızın doğru bir şekilde çıkartabilecek HİÇ yöntemlerine gereksinim duyul-

maktadır. Bu tez çalışmasında, bir şablon bağımsız haber içeriği çıkartma

yöntemi (N-EXT) önerilmiştir. N-EXT ilk olarak, bir haber sayfasını HTML

etiketlerine göre bloklara ayrıştırır. Daha sonra haber içeriğinin çoğunluğunu ya

da tamamını içeren bloğu tespit etmek için ayrıştırdığı tüm blokları inceler. Bu

amaçla, bloklara metinsel boyutlarını ve haber başlığına olan benzerliklerini göz

önünde tutarak birer ağırlık tahsis eder. Bu iki ağırlık bileşenlerinin önemini be-

lirlemek için k-kat çapraz doğrulama yaklaşımı ve olası farklı benzerlik ölçülerinin

etkilerini değerlendirmek için de tek yönlü varyans analizi (ANOVA) ve Scheffé

çoklu karşılaştırma testi birlikte kullanılmıştır. En yüksek ağırlığa sahip blok,

haber bloğu olarak düşünülür. Haber bloğu içerisinde yer alan fakat haber

içeriğiyle ilgisi olmayan cümleler, önerilen yöntem tarafından haber bloğuna

olan benzerlikleri değerlendirilerek haber bloğundan elenir. Son olarak, önerilen

yöntem olası haber içeriği kalıntılarını tespit etmek için, haber bloğu dışındaki

blokları da inceler. Farklı haber sitelerinin internet sayfalarını içeren iki farklı

deney koleksiyonu üzerinde yapılan deneylerce, önerilen yöntemin doğruluğu ve

dayanıklılığı gösterilmiştir.

Anahtar sözcükler : Bilgi çıkartma, haber bloğu tespiti (HBT), haber içeriği

çıkartma (HİÇ), haber portalı, internet bilgi kümeleyicileri, sarmalayıcılar.
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111E030, and BİDEB for their scholarship under the program number 2210. I also

would like to thank Bilkent Computer Engineering department for their financial

and educational support during my studies.

I am also grateful to all of my friends, but especially to Erkam Akkurt, Sefa
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B.7 Scheffé’s test calculation example. . . . . . . . . . . . . . . . . . . 74

B.8 Set-based measures calculation example. . . . . . . . . . . . . . . 75



List of Tables

2.1 Overview of existing wrapper-based information extraction ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Overview of other existing information extraction approaches. . . 20

6.1 Distribution of news web pages to the news categories (CN=CNN

Türk, ML=Milliyet, SB=Sabah, SM=Samanyolu, ST=Star,
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Chapter 1

Introduction

1.1 Motivations

There is a dramatic increase in the amount of information on the web [1] and

news constitutes a significant part of it. PRC [2] and The Economist [3] indicate

that a large number of web users prefer reading news from news websites rather

than traditional printed media. Besides, almost all news websites use news RSS

(Rich Site Summary) feeds to distribute their news to the web users. RSS is an

XML-based web feed format for delivering frequently changing or updated web

contents such as news. It allows web users to keep track of the latest news as

soon as they are published.

Current news web pages usually contain three textual news content elements:

news title, news description, and news text. However, news web pages usually

contain other elements such as textual and visual advertisements, links to the

other websites or other web pages in the same news website, web page menus

and navigation bars, comment fields, and so on. General structure of a news web

page is shown in Figure 1.1: blocks labeled with letters A, B, and C are the

news content elements, such that block A is the title of the news, block B is the

description of the news, and block C is the text of the news; blocks D and H

represent the advertisements of the web page; block E is the field where readers

can write their comments about the news; and blocks F and G contain hyperlinks
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to the other web pages and articles of the news website. Besides, although it is

not the interest of this thesis, block I is the media file of the news. (The interest

of this thesis is only textual contents of news.) These elements are not related

to the news content, but together with news content elements, they constitute

the template of a news web page that gives web users a more enhanced browsing

experience on that news website. On the other hand, these noises make news

web pages less structured and increase their heterogeneity and complicate the

extraction of news content from them.

1.2 Problem Statement

Extraction of news content from news web pages is an crucial and difficult task

[4]. As it is known and also confirmed by our bitter experience, it directly af-

fects the performance of information retrieval and various web mining modules

of news aggregators including indexing, ranking, web page clustering, classifica-

tion, summarization, duplicate detection, new event detection, topic tracking,

etc. The task that we undertake in this study follows our research group’s earlier

studies on information retrieval [5], new event detection and topic tracking [6],

novelty detection [7], text summarization [8] and duplicate detection [9]. We

employ the results of these studies and this current study in a coordinated way

for the implementation of a news aggregator [10] and [11]. If news content is

not extracted from news web page accurately, performance of the aforementioned

modules is negatively affected. The research presented in this study is a contribu-

tion in this direction: we use news content extraction (NCE) in our news portal,

called Bilkent News Portal [10], which uses RSS feeds to gather news web pages

from various different news websites, extracts news contents from these news web

pages, and displays the contents to the web users as it is seen in Figure 1.2.

Bilkent News portal also uses extracted news contents in web mining modules.

Thus, extracted news contents need to be noise-free so that performance of other

modules used in this portal is not negatively affected. The results of our study can

be used by other researchers and practitioners in their studies and information

aggregations systems.

2



Figure 1.1: General structure of a news web page.
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Figure 1.2: Main page of Bilkent News Portal.
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1.3 Wrappers and Their Problems

Most of the traditional methods manually or automatically generate wrappers to

extract the news content from web pages. Wrappers perform web page content

extraction by recognizing the template of web pages. Liu [12] indicates that since

they are template-dependent, due to this property in general they only work for

the web pages that they are generated for. These approaches need to be trained

on a set of manually labeled samples before they can be used in the extraction

process. However, web pages of different news websites have different templates,

which require a modification in the approach or training for each different web

page template. But training the approaches for each different web page template

or modifying the approach with respect to any change in the template is costly,

inefficient, and most importantly not automatic. Therefore, an extraction method

needs to be robust and generic, such that it has to extract the news content

accurately without depending on the web page templates.

Han et. al [13] state that traditional wrapper-based web page content ex-

traction approaches need considerable maintenance to work properly for a long

period of time, which is a difficult and costly work, since templates change fre-

quently. Vadrevu et. al [14] specify that wrapper-based approaches also need

human intervention, since manually labeled web pages are required by these ap-

proaches to learn the template of websites. However, Arasu et. al [15] indicate

that human input is time consuming and error-prone. Additionally, some meth-

ods try to automatically detect the template of the news web pages; however,

these methods are less accurate if the number of web pages analyzed to detect

the template is not large enough [13]. Web page templates change frequently;

therefore, providing large number of pages to feed the template detection method

is mostly problematic.

1.4 Proposed NCE Approach: N-EXT

In this thesis, we propose an automatic template-independent web News content

EXTraction approach, called N-EXT, which uses blocking tags to parse a news

5



web page into blocks, and extracts the news contents from these blocks. The

major part of the news text is stored in one of the blocks, and it is referred to

as the news block. Detecting the news block in a template-independent content

extraction approach is a critical step in the extraction process. If the news block

is not detected correctly news content extraction accuracy decreases. Ziyi et. al

[16] uses largest block approach, which considers only number of words in blocks

to detect the news block. But our experiments show that this approach is not

accurate enough. For this purpose, we propose a news block detection (NBD)

approach, which assigns weights to blocks by considering both their textual size

and similarity to news title. The one with the highest weight is considered as

the news block. We use an HTML parser to generate Document Object Model

(DOM) tree of the web page, and treat all nodes represented with current blocking

tags as blocks rather than trying to detect the blocking tag of a web page as it is

done in the largest block approach. (The largest block approach determines the

frequencies of candidate blocking tags, <DIV> and <TABLE>, in a web page

and selects the one with the highest frequency as the blocking tag, and divides

the page into blocks according to the selected tag.) The experimental results

show that our proposed NBD approach outperforms the largest block approach

and can be used in practical environments due to its high NCE accuracy.

As will be illustrated in detail later, N-EXT first parses an HTML news

web page to identify its blocks according to the HTML tags. Then, it detects

the news block that contains the news content by ranking the web page blocks

according to both their textual size and similarity to the news title. It eliminates

the sentences in the news block that are not related to the news content by

calculating similarities of sentences to the news block. It examines other blocks

to detect the rest of the news content if any exists.

1.5 Research Contributions

In this study, we

• Propose an NCE method (N-EXT) that extracts news contents accurately

6



without depending on the web page templates, and does not require any

regular maintenance or human intervention,

• Demonstrate the robustness of our method by showing its sustained success

in different environments,

• Outperform the largest block approach by considering not only block size

but also block similarity to the news title,

• Show the positive impact of removing the hyperlink texts from blocks on

the detection of the news block,

• Show that stemming improves the content extraction accuracy,

• Provide an NCE test collection, which also incorporates an NBD compo-

nent, for news content extraction that we will share with other researchers;

to the best of our knowledge there is no previous standard NCE test col-

lection.

1.6 Overview of the Thesis

The rest of the thesis is organized as follows. Chapter 2 gives an overview about

existing content extraction approaches by categorizing them according to tech-

niques they use for content extraction. Chapter 3 provides background infor-

mation about this study. Chapter 4 introduces our proposed web NCE method

(N-EXT) in terms of the stages involved. Chapter 5 defines the measures that

will be used to evaluate the performance of the proposed NCE approach. Our

Turkish and English test collections are described in Chapter 6. Besides, the ex-

perimental results with their evaluations are also given in Chapter 6. Chapter 7

gives configuration information about Bilkent News Portal. Finally, we conclude

with a summary of our findings, and provide some future research pointers.
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Chapter 2

Related Work

Chang et. al [4] consider the problem in a more general web page information

extraction (IE) point of view, provide a comprehensive survey, and indicate that

the extraction target of an IE task can be a relation of k-tuple (k is the number of

attributes in a record) or it can be a complex object with hierarchically organized

data. They compare IE systems in three dimensions: a) the ”task domain”

that aims to explain why a system fails to handle some websites of particular

structures, b) the ”automation degree” that aims to classify systems based on the

techniques used, and c) the ”technique used” that aims to measure the degree of

automation for such systems.

Until today, numerous researches have been done, and researchers tried to

find methods for extracting the information from web pages automatically, and

accurately. Earlier works were generally semi-automatic information extraction

approaches, which generate wrappers to extract information. Then, automatic

information extraction approaches have taken the place of these semi-automatic

approaches. In the following sections, an overview of existing semi-automatic

and automatic information extraction approaches is introduced. Summaries of

the approaches presented in the following sections are presented in Tables 2.1

and 2.2
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2.1 Wrapper-based Approaches

Most of the traditional information extraction approaches manually or automati-

cally generate wrappers to extract news contents from web pages [12]. Wrappers

perform content extraction from web pages by recognizing templates of web pages.

Some of the existing information extraction approaches that generate wrappers

to extract contents from web pages are classified as semi-automatic, since they

need to be trained on a set of manually labeled samples before they can be used

in the extraction process. Although many of the wrapper-based approaches are

semi-automatic, there are also some automatic approaches.

Laender et. al [17] present a taxonomy, which is based on the methods used

by information extraction approaches to generate wrappers, and provide a quan-

titative analysis of them. They categorize existing manual, semi-automatic, and

automatic approaches into six groups with respect to the method they used for

wrapper generation: 1) declarative languages-based, 2) HTML structure analysis-

based, 3) Natural Language Processing (NLP)-based, 4) machine learning-based,

5) data modeling-based, and 6) ontology-based. In the following subsections, five

of these six groups are explained with details of their representative approaches.

2.1.1 Declarative Language-based Wrappers

Some programming languages, which are alternative to commonly used ones in

wrapper generation such as Java, are developed in purpose to help researchers

in generating wrappers. These languages are specific to the wrapper generation

task. One of the best known approaches, which use languages declared for wrap-

per generation, is WebOQL [18]. Other approaches that develop languages for

wrapper generation are Minerva [19], TSIMMIS [20], Jedi [21], and FLORID

[22].

Arocena and Mendelzon [18] propose a query-like language, called WebOQL,

which is declared for extracting data from HTML web pages. WebOQL has two

main components: the data model and the query language. WebOQLs data model

considers the web as a graph of tree. It parses an HTML web page into a special
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kind of ordered tree, called hypertree. Users can search a piece of information in

the hypertree by writing queries. WebOQL’s query language returns the result of

the query by navigating through the hypertree to locate the information queried.

2.1.2 HTML Structure Analysis-based Wrappers

HTML web pages have structural features such that they are organized by HTML

tags. Some of the information extraction approaches uses these structural fea-

tures of HTML web pages for generating wrappers to extract information. These

approaches parse HTML web pages into trees with respect to their HTML tags,

and generate extraction rules to detect templates of the web pages, such as Road-

Runner [23]. Some other approaches based on the structural features of HTML

web pages are W4F [24], and XWRAP [25].

Crescenzi et. al [23] propose an IE approach, called RoadRunner, which uses

the structural features of HTML web pages to automatically generate wrappers

for information extraction. A sample set of web pages from the same website are

compared to generate an extraction rule based on the differences and similari-

ties between them. Each extraction rule is generated for a specific website and

can deal with only HTML web pages of that website. Relevant information is

extracted from the HTML web pages using the generated extraction rules.

2.1.3 Natural Language Processing (NLP)-based Wrap-

pers

Some information extraction approaches use natural language processing (NLP)

techniques such as part-of-speech (POS) tagging to generate wrappers. These

approaches use NLP techniques to learn pattern-match extraction rules by gener-

ating semantic constraints that are used to detect the relevant information within

a document containing only textual information. RAPIER [26] is one of the most

popular IE approaches that use NLP techniques for wrapper generation. There

are also some other approaches that use NLP-based wrappers such as SRV, [27],

and WHISK [28].
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Califf and Mooney [26] propose an IE approach, called RAPIER (Robust

Automated Production of Information Extraction Rules), which uses NLP tech-

niques to extract information from natural language documents that contain only

textual information written in natural languages. RAPIER requires a filled tem-

plate, which represents structure of the information to be extracted. It uses that

template to learn extraction pattern-match rules. Each extraction rule consists

of three parts: 1) a pre-filler pattern that specifies the text exactly before the

filler, 2) a pattern that specifies the actual slot filler, and 3) a post-filler pattern

that specifies the text exactly after the filler. Each pattern matches only a single

word or symbol from each document. Pattern-match rules extract the fillers from

the documents for the slots in the template.

2.1.4 Machine Learning-based Wrappers

Information extraction approaches, which use machine learning techniques for

wrapper induction, generate extraction rules to extract information similarly with

the approaches that use NLP techniques. Although, both techniques generate

delimiter-based extraction rules, which means they specify patterns exactly before

and after the text to be extracted in the document; however, approaches which use

machine learning techniques that rely on the features that specify the structure

of information to be extracted rather than the linguistic constraints NLP-based

approaches rely on. STALKER [29], W1EN [30], SoftMealy [31], and the

approach proposed by Zheng [32] are representatives of the approaches that use

machine learning techniques.

Muslea et. al [29] propose a wrapper induction approach, called STALKER,

which uses machine learning techniques to generate rules for IE. Before the rule

generation process, user needs to provide a labeled set of training samples by using

the graphical user interface (GUI) offered by the approach to mark up the relevant

information in the samples. GUI generates sequences of tokens which represent

the start rules (prefixes) of the information to be extracted from the marked

samples. STALKER generates an extraction rule from these generated sequences

of tokens. If sequences of tokens do not match with each other, which means
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samples do not share a common template, STALKER generate an extraction rule

for each pattern, and returns a set of extraction rules. These rules are used to

extract relevant information from the documents.

2.1.5 Data Modeling-based Wrappers

Some of the information extraction approaches generate a data model that rep-

resents the structure of the web pages or the plain text files from where relevant

data is extracted. Data modeling primitives, such as trees or lists, which consist

of nodes or elements that represent the structural components of the documents,

are used for generating the data model. After modeling the data source, these

approaches try to locate the relevant information in the model by generating

extraction patterns similarly with NLP-based and machine learning-based ap-

proaches. Approaches that adopt data modeling are NoDoSE [33] and DEByE

[34].

Adelberg [33] propose an IE approach, called NoDoSE (Northwestern Docu-

ment Structure Extractor), to extract information from documents by determining

their structures. NoDoSE requires labeled samples from users. Thus, it offers to

users a GUI, which is used to decompose the document to identify the data of

interest. Then, NoDoSE maps the decomposed document into a document tree.

Each node of the tree represents one of the structural components of the docu-

ment such as a record of a list, which holds the starting and ending offset values

indicating the portion of the document that corresponds to the relevant data.

NoDoSE infers the structure of the document from the tree, and extracts the

relevant data.
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IE Method Work Degree of
Automation

Advantages Disadvantages

Declarative
language-based
wrapper

Arocena and
Mendelzon
approach (We-
bOQL) [18]

Manual
(a) allows the representa-

tion of objects with
structural variations

(a) user must examine the
web pages and find the
HTML tags that sepa-
rate the objects of in-
terest

(b) require the user to ex-
ecute all the wrap-
per generation process
manually

(c) works only for HTML
data sources

HTML struc-
ture analysis-
based wrapper

Crescenzi et.
al approach
(RoadRunner)
[23]

Automatic
(a) allows the representa-

tion of objects with
structural variations

(b) does not require any
user intervention, be-
sides providing sample
pages

(c) easy to use

(a) works only for HTML
data sources

(b) extraction rules gen-
erated are specific to
websites

NLP-based
wrapper

Califf and
Mooney
approach
(RAPIER)
[26]

Semi-
automatic (a) good for information

extraction from nat-
ural language docu-
ments

(a) user must provide
training samples

(b) does not support ob-
jects with structural
variations

Machine
learning-based
wrapper

Muslea et.
al approach
(STALKER)
[29]

Semi-
automatic (a) requires fewer samples

(b) allows the representa-
tion of objects with
structural variations

(c) offers a GUI to users
for marking up the rel-
evant information in
the samples

(a) user must provide la-
beled samples

(b) extraction rules gen-
erated are specific to
websites

Data modeling-
based wrapper

Adelberg
approach
(NoDoSE) [33]

Semi-
automatic (a) offers a GUI to users

for decomposing the
samples

(b) allows the representa-
tion of objects with
structural variations

(c) supports a variety of
formats to output the
data extracted

(a) user must provide la-
beled samples

Table 2.1: Overview of existing wrapper-based information extraction ap-
proaches.
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2.2 Classifier-based Approaches

Supervised learning is another technique that is used for information extraction.

Some IE approaches treat the extraction problem as a classification task. Ap-

proaches that use supervised learning techniques generally depend on a classifier

such as Support Vector Machine (SVM) or Condition Random Fields (CRF).

These classifiers are trained on a set of samples before being used in the extrac-

tion process. Each part of a web page is classified as title, text, author, etc. by

classifiers by using structural or semantic features , and the parts that contain

relevant information are extracted from the web pages.

Ibrahim et. al [35] propose a supervised machine learning classification ap-

proach, which uses an SVM classifier to extract textual elements, titles and full

text, from news web pages. Proposed approach parses an HTML web page into

parts with respect to HTML tags (<DIV>, <TD>, <P>, and <BR>). Some

features, such as length of text, percentage of hypertext (the text bounded by

<a> tag), percentage of meta-script text (the text bounded by <meta> and

<script> tags), percentage of decoration text (the text bounded by <input>,

<select>, and <option> tags), and percentage of image, are extracted from

blocks, and each block is classified by using those features as a title, a full-text,

or other. Parts that contain relevant information, which means they are classified

as a title or a full-text, are extracted from the news web pages by the classifier

after training the classifier on a set of samples.

Besides, instead of SVM classifiers, some other proposed IE approaches, such

as [36], [37], and [38], use Conditional Random Fields (CRF) as classifiers for

the extraction process. In addition, Spengler et. al [39] compare support vector

machines (SVM) with conditional random fields (CRF) on a real-world web news

content extraction task.
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2.3 Heuristics-based Approaches

Rather than generating pattern-match extraction rules, some researchers define

various heuristics that are used to recognize the desired information in docu-

ments. Information extraction approaches, which use heuristics for extraction,

analyzes the web page or the document, and then extract the information from

these sources by filtering them with respect to the heuristics that they use. Dif-

ferent sets of heuristics are used for recognizing different kinds of information to

be extracted, such as text or image. Approaches proposed by Parapar and Bar-

reiro [40], and Gupta and Hilal [41] adopt defining and using content extraction

heuristics. Besides, Gottron [42] propose a system, called CombinE, to test and

evaluate combinations of various existing and newly described content extraction

heuristics.

Parapar and Barreiro [40] propose an IE system called, NewsIR, which recog-

nizes and extracts news content elements (news title, news body, and news image)

from news web pages by using the heuristics described by themselves. Different

sets of heuristics are proposed to identify different parts of a news document. To

detect if a web page is a news web page, and if it is a news web page, to identify

and extract the news body from that news web page, they propose a set of heuris-

tics, including that news are composed of paragraphs that are next to each other,

paragraphs are mostly text, and only styling markup and hyperlinks are allowed

in paragraphs, a low number of hyperlinks are allowed in paragraphs, and so on.

Furthermore, they also propose a set of heuristics, which utilize domain specific

characteristics, to detect news titles and news images, if they exist. According to

their heuristics, news title is mostly placed on the top of news body, and has a

special font style; and news image is placed after or inside the news body.

2.4 Relevance Analysis-based Approaches

Relevance between elements of web pages or documents, such as paragraphs,

sentences, etc., is used to detect the desired information in these data sources.
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In contradistinction to other traditional information extraction approaches, rel-

evance analysis-based approaches do not analyze web page layouts, which is a

time-costly work, before the extraction process. These approaches analyze the

full text of a web page only during the extraction to extract all relevant informa-

tion from that web page. Approaches proposed by Han et. al [13] and Wu et. al

[43] are the representatives of those that use relevance analysis for IE.

Han et. al [13] proposed an IE approach based on relevance analysis. Pro-

posed approach first obtains the news title from an RSS feed. Then, it gets the

keyword list from the obtained news title. It uses the keywords in the list to

detect the position of the news title in the news web page. Then, it makes a full

analysis of the web page to detect all paragraphs of news content by using the

detected news title position and the keyword list, and extracts them from the

news web page.

2.5 Tree Edit Distance (TED)-based Approaches

HTML web pages have structures which can be easily represented by special trees,

such as Document Object Model (DOM) tree. Some of the information extrac-

tion approaches utilize the structural feature of HTML web pages by evaluating

the structural similarities between web pages of the same website. Tree Edit

Distance (TED), which is first introduced by Levenshtein [44], is the minimum

cost of transforming one tree into another by a sequence of operations consist-

ing of inserting new nodes, deleting and relabeling existing nodes. TED is used

to calculate structural similarities between web pages. A generic representation

is constituted for web pages that are structurally similar. Extraction patterns,

which detect and extract the desired information, are generated from the generic

representation of the web pages. Approaches proposed by Reis et. al [45] and

Lan [46] use TED-based information extraction.

Reis et. al [45] propose a domain oriented IE approach, which use structural

analysis of news web pages. Proposed approach map an HTML news web page
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into a special type of tree, called labeled ordered rooted tree. TED is used to cal-

culate structural similarities between labeled ordered rooted trees that represent

news web pages of the same website. During the calculations, a cost is assigned

to each of three operations: node removal, node insertion, and node replacement

in the tree. With respect to the TEDs calculates, similar web pages are gathered

into clusters that share common characteristics. Relying on the assumption that

news content elements have common formats and layouts, a generic representation

is constituted for each cluster to represent the structure of the web pages in that

cluster. Then, a special kind of extraction pattern, called node extraction pattern

(ne-pattern) is generated from the representation. The relevant information is

extracted from the trees using ne-patterns.

2.6 Visual Features-based Approaches

People gain some experiences during browsing web pages, and subconsciously use

these experiences while they are browsing other similar web pages. For instance,

when people are browsing news web pages, they seek the part of the web page that

contains news content by looking for some visual features of that part such as its

area is larger than other parts around it, there is bold-faced sentence or phrase at

the top of it, it consists of contiguous textual paragraphs, and so on. These visual

features help users to distinguish the part containing the news content from other

parts. Based on this idea, some information extraction approaches simulates how

a reader grasps a web layout structure based on his visual perception, and try

to utilize the visual features of web pages (layout, area size, font size and type,

etc.) to extract the desired information. Approaches proposed by Zheng et. al

[47] and Cai et. al [48] are representatives of those based on visual consistency

of web pages.

Zheng et. al [47] propose a news content extraction approach to easily detect

news contents by using visual consistency of news web pages. Proposed approach

first maps a web page into a visual block tree, in which each node represents a

rectangular area of that web page. During the mapping, instead of using HTML

tags, a set of visual features (position features : left, top; size features : width,
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height; rich format features : font size, font type; and statistical features : image

count, hyperlink count, paragraph count, etc.) are used to represent each part

in the web page. Then, proposed approach derives a composite visual feature,

which is stable enough to represent the domain-level visual consistency. Then,

it uses a machine learning technique (Adaboost [49]) to generate a vision-based

wrapper, called V-Wrapper, for extracting the desired information. V-Wrapper

is generated after training it on a set of manually labeled web pages.

2.7 Block-based Approaches

Some approaches use block-oriented structure of web pages for information ex-

traction. These approaches parse web pages into functional areas, called blocks,

with respect to some criteria, such as HTML tags. News web pages store infor-

mative contents into one or more of the blocks. However, web pages also contain

several non-informative contents, such as textual and visual advertisements, links

to other web pages, navigation bars, comment fields, etc. Hence, these approaches

try to detect the block that contains informative content by using different tech-

niques.

Debnath et. al [50] propose an approach to detect the content blocks in a

web page by looking for 1) blocks that do not occur a large number of times across

web pages, and 2) blocks with desired features (text, tag, list, and style sheet).

Similarly, also Ho and Lin [51] try to discover the informative content blocks in

a web page. But they detect them in another way as their proposed approach

calculates the entropy value based on the occurrence of each term in a block, and

dynamically selects the entropy threshold value, which determines either a block

is informative or redundant. Ziegler and Skubacz [52] propose an approach ,

which extracts the blocks that contain news content from HTML web pages by

computing linguistic and structural features for each block, and deciding whether

a block is a signal or noise. Shen and Zhang [53] propose a block-level links

based content extraction approach, which considers the web pages as continuous

block-level text, and detects the block that contains news content by ranking

blocks according to both their textual sizes and link counts.
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Ziyi et. al [16] propose a news content extraction approach based on blocking

tags. Proposed approach first detects the blocking tag of a web page by consid-

ering the occurrences of certain HTML tags, (<DIV> and <TABLE>). HTML

tag that occurred most times in the web pages is determined as the blocking tag

of that web page. Then, it divides that web page into the blocks and selects

the block with the highest textual size, which means the block that contains the

most number of words (terms), as the block containing news content. Finally, it

extracts the news content from the selected block. This study is the most similar

study to the study given in this thesis.

2.8 General Overview of Related Work

As mentioned earlier, existing content extraction approaches generally have some

disadvantages. The wrappers-based approaches mostly depend on the template

of the web pages, and for each different website, a wrapper is generated, which

is a costly work. Besides, most of these wrapper-based approaches require a

training stage or human intervention to manually label web pages. During the

training stage, if the training dataset is not large enough, as expected a less ac-

curate performance is obtained. On the other hand, extraction rules generated

by the approaches mentioned above are usually specific to a website, and they

need to be modified for different websites. Similarly, information extraction ap-

proaches other than wrapper-based ones also have some disadvantages: some of

them require manually labeled samples; some of them get less accurate results if

the provided samples are not comprehensive enough; some of them need regular

maintenance; and some of them require several threshold values for the selection

of visual features. Besides, detecting the block that contains the news content

cannot be achieved accurately enough with block-based approaches. However,

the approach proposed in this thesis is template-independent, and can be di-

rectly used for extracting contents of different websites without requiring any

maintenance or human intervention. Additionally, it can detect the block that

contains news content very accurately.
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IE Method Work Degree of
Automation

Advantages Disadvantages

Classifier-
based extrac-
tion

Ibrahim et. al
approach [35]

Automatic
(a) high extraction accu-

racy with adequate
number of samples

(b) appropriate for news
web pages that do not
follow proper DOM
tree standards

(a) less accurate if sam-
ples are not compre-
hensive enough

(b) no support for non-
HTML sources

Heuristics-
based extrac-
tion

Parapar and
Barreiro
approach
(NewsIR) [40]

Atuomatic
(a) high precision and re-

call values
(b) detect news content

elements other than
news body (news title
and news image)

(a) need regular mainte-
nance for updating
heuristics

(b) no support for non-
HTML sources

Relevance
analysis-based
extraction

Han et. al ap-
proach [13]

Automatic
(a) high precision and re-

call values
(b) no need for a full anal-

ysis of web page layout
before extraction

(a) no support for non-
HTML sources

(b) news title itself is not
always dependable to
detect news content
paragraphs

TED-based ex-
traction

Reis et. al ap-
proach [45]

Automatic
(a) simple implementa-

tion
(b) describes a new highly

efficient tree structure

(a) works only for struc-
tural data sources

(b) accuracy results are
relatively low

Visual
features-based
extraction

Zheng et. al
approach [47]

Automatic
(a) easier wrapper main-

tenance
(b) good extraction per-

formance even with
structural diversity

(a) requires too many
thresholds that needs
to be trained

(b) user must provide la-
beled samples

Block-based
extraction

Ziyi et. al ap-
praoch [16]

Automatic
(a) has a web news search

engine
(b) high extraction accu-

racy if the block that
contains news content
is correctly detected

(a) considering only size
during news block de-
tection is not accurate
enough

Table 2.2: Overview of other existing information extraction approaches.
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Chapter 3

Background Information

3.1 Terminology

In the following, we define the basic components of news web pages.

Block: It is a small part of an HTML web page which is enclosed by blocking

tags. Each block may consist of other blocks or segments.

Block Node: It is the node in a DOM tree [54], which represents a block of

an HTML web page. Each block node may have block node children in a DOM

tree.

Blocking Tag: It is the HTML tag, <DIV> or <TABLE>, which is used

to separate the elements of a web page (such as advertisements, hyperlinks, and

textual contents) from each other.

Leaf Block Node: It is the block node which has no block node children in

a DOM tree. Leaf block nodes may have children nodes other than block nodes.

News Block: It is detected among all blocks within a news web page, which

generally contains major part of the news content, at least the news text. News

content elements other than the news text (news title and news description) may

also be placed in the news block, but depending on the template of a news web

page, these elements may also be placed in other blocks.
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News Node: It is a leaf block node which is selected as the node that

represents the news block among all leaf block nodes.

Segment: It is a small part of an HTML web page other than blocks, and

enclosed with HTML tags other than blocking tags such as <P>, <BR>, etc.

3.2 HTML News Web Pages and the DOM Tree

An HTML web page is organized by HTML tags including <DIV>, <TABLE>,

<P>, etc. HTML tags divide an HTML web page into smaller parts, called

blocks and segments. An example HTML news web page is shown in Figure 3.1.

As it is seen in Figure 3.1, there are totally seven blocks that are numbered

from 1 to 7, and three segments in the example news web page. The block number

5 in Figure 3.1 is the news block of that web page, since it contains news content

elements: the news description, and the news text. Although all news content

elements are placed in a single block in the example web page given in Figure

3.1, they may be placed in more than one block in other news web pages.

DOM represents an HTML web page as a tree structure. DOM uses HTML

tags of an HTML web page to define the tree structure of that web page. The

DOM tree generated from the example HTML news web page is shown in Figure

3.2. Each node in the DOM tree represents a block or a segment of that news

web page. News related elements are placed in one or more of these nodes. Nodes

that are numbered from 1 to 7 are block nodes, and among these nodes, 3, 4, 5,

6 and 7 are the leaf block nodes.

3.3 News RSS Feeds

RSS (Rich Site Summary) is an XML-based web feed format for delivering fre-

quently changing or updated web contents such as news. It allows web users to

keep track of the latest news as soon as they are published by news websites.
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Figure 3.1: An example HTML news web page divided into its blocks/segments.
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Figure 3.2: DOM tree generated from the example HTML news web page of
Figure 3.1.
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News RSS feed is a document, which consists of items each of which gener-

ally contains news title, brief description of the news, Uniform Resource Locator

(URL) link of the news, category of the news, and publication date of the news.

An example RSS feed is shown in Figure 3.3.

Figure 3.3: Example news RSS feed.

News websites that distribute their news via RSS feeds use different RSS feed

for each different news category such as business, politics, world, health, sport,

science, technology, magazine, and so on. Bilkent news portal [10] gathers news

of several different news categories from several Turkish news websites by using

news RSS feeds for each news category of these news websites.
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Chapter 4

The Method: N-EXT

N-EXT consists of six stages: 1) parsing news RSS feed to obtain title, publication

date, and URL link of the news, 2) parsing HTML news web page into blocks,

3) eliminating noises from blocks, 4) detecting the news block among all cleaned

blocks, 5) extracting the news content from cleaned news block, and 6) examining

other blocks to detect the rest of the news content if any exists. These stages are

further explained in detail in this section. General schema of N-EXT is shown in

Figure 4.1.

4.1 Stages of N-EXT

4.1.1 Parsing News RSS Feed

In this preprocessing stage, RSS feeds are parsed in order to get title, publication

date, and URL link of each news document. After obtaining the URL link of

a news document, HTML web page of the news document is downloaded from

that URL link to be used in the NCE process. Since news RSS feeds are updated

periodically, we prefer to collect news documents from news websites periodically.

At the beginning of every two hours, N-EXT first updates the RSS feeds of each

news website by re-downloading RSS feeds from their news websites, and repeats

the procedure: parses the updated RSS feeds, obtains the URL links of latest
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Figure 4.1: General schema of the proposed web NCE method (N-EXT).

news documents which are published in the previous two hours, and downloads

HTML web pages of news documents from the obtained URL links. A list of

Turkish news RSS feeds that are used by Bilkent News Portal is given in Table

A.3

4.1.2 Parsing HTML Web Page

After downloading an HTML news web page, the web page is parsed into blocks

and segments as it is shown in Figure 3.1, and a DOM tree is generated from it,

shown in Figure 3.2, by using the Jericho HTML parser [55].

Jericho accepts an HTML web page as the input, parses the page using its

HTML tags, and generates its DOM tree as the output. After parsing an HTML

web page and generating its DOM tree, each node in the DOM tree has four kinds

of information: 1) the HTML tag identity that encloses the block or the segment
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it represents, 2) the text placed between HTML tags of the node, 3) its parent

node information, and 4) the list of its children nodes. By using the methods of

the Jericho HTML parser, N-EXT traverses the DOM tree generated from the

HTML web page in depth-first order [56] to detect leaf block nodes in the DOM

tree. In depth-first order, program starts from the root node and explores all

successor nodes in a branch before exploring other branches.

We observed that in most cases, each piece of information is placed separately

in the leaf block nodes, which represents the blocks that do not consist of any

nested blocks. Although leaf block nodes are the lowest level block nodes in a

DOM tree, they may consist of other segments. Segments do not contain any

of news content elements as a whole. They may contain only a small part of

them such as a paragraph of the news text. N-EXT aims to obtain the leaf block

nodes, which contain news content elements. So, N-EXT traverses the DOM tree

generated from the HTML web page and seeks the leaf block nodes in the DOM

tree.

N-EXT decides whether a node in a DOM tree is a leaf block node by looking

both HTML tag and children nodes of that node. Before searching the children

nodes of a node, N-EXT first examines the HTML tag of that node. If the HTML

tag of a node is one of the blocking tags, <DIV> or <TABLE>, N-EXT realizes

that it is a block node, and it starts to traverse all its successor nodes, i.e., all

nodes that are under the node itself in the DOM tree, to detect any nested block

nodes. If a block node does not have any successor block nodes, then it is labeled

as a leaf block node. After labeling a node as a leaf block node, N-EXT extracts

the text of that node, and keeps that information in a list.

At the end of this stage, N-EXT keeps a list of leaf block nodes in the DOM

tree along with the text placed between HTML tags of the nodes. Figure 4.2

demonstrates the detection process of leaf block nodes in a DOM tree.

4.1.3 Cleaning Blocks: Eliminating Noises from Blocks

After parsing the HTML web page and obtaining the leaf block nodes along with

the text placed between HTML tags of the nodes, all noises which could not be
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Figure 4.2: Demonstration of detecting leaf block nodes in a DOM tree.
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eliminated in the previous stage due to a list of reasons are eliminated from the

leaf block nodes in the cleaning stage, so that leaf block nodes contain only the

text information which may or may not be news related. The reasons are:

• The HTML parser that is used to generate DOM tree, the Jericho HTML

parser treats all HTML tags as a pair. For instance, if an HTML

block/segment is started with ”<a” tag, Jericho works with the rule that

it must end with ”/a>”. But in HTML, there are some HTML tags which

do not obey this rule such as ”input”, ”img”, ”iframe”, and ”link”. These

HTML tags end with just ”/>”, so Jericho accepts these tags as regular

texts, not HTML codes, and could not eliminate them in the previous stage.

Therefore, N-EXT eliminates these tags in the cleaning stage.

• Almost all news web pages contain hyperlinks, which are references to an-

other web pages. The size of the texts containing hyperlinks sometimes

becomes a problem, since N-EXT looks at the textual size of the blocks to

detect the news block. But, hyperlinks are not actually related to the news

content of the current news web page, they are only references to other web

pages. Therefore, N-EXT eliminates hyperlink texts, which are enclosed by

”<a>” tag, to get better news block detection (NBD) accuracy.

4.1.4 Detecting the News Block Using Block Weights

The largest block approach [16] picks the largest leaf block node that has the most

number of words. N-EXT keeps text content of each leaf block node. At this stage

the leaf block node with the most number of words can be selected as the news

node. Although this choice is usually correct, it fails when another block, which

contains other textual items (e.g., there can be several reader comments), contain

more number of words than the actual news block. To address this problem, we

assign a weight to each block and the one with the highest weight is selected as

the news block.

We calculate block weights by paying attention to the block size and block

similarity to the news title extracted from the RSS feed. - The use of similarity

in such cases has a basis in the well-known vector space model [57].- Although
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similarity of blocks to news description is more decisive (news descriptions contain

more information about news contents than that of news titles), but we still go

with the news titles since most RSS feeds do not contain news descriptions. We

calculate the block weight of block i (wi) using the formula (4.1).

wi =

(
β × si

maxi ε {1, ..., n}(si)

)
+

(
(1− β)× simi

maxi ε {1, ..., n}(simi)

)
(4.1)

In the formula given above, si is the size of block i in terms of number of words,

simi is the similarity value of the block to the news title extracted from the

RSS feed, n is the number of blocks in the web page, and β is the ”block weight

assignment coefficient” that controls the effect of size and similarity on the weight

assigned to the block. wi and β have a value between 0 and 1. We derive block

weight by first normalizing block size and similarity of block to news title, and

then assign weights to the normalized size and similarity values.

The similarity value calculation between blocks and news title is illustrated in

Figure 4.3. In this figure, we assume that there are two candidate blocks, Block

1 and Block 2, where only one of them will be selected as the news block. In

the same figure, ”a, b, c, d, e” indicate the terms (stemmed words) that appear

in the news title and blocks (more information on similarity value calculation is

provided in the next section).

Before assigning a term frequency to each word, N-EXT first eliminates stop-

words, which are the most frequent words of a language and are not meaningful

alone but used for semantic integrity of sentences. Since these words exist fre-

quently in the sentences, they affect the term frequency assignment in an unre-

alistic way. Thus, N-EXT eliminates stopwords from all leaf block nodes. (In

the experiments, we use the union of two stopwords lists for Turkish [5] listed

in Table A.1, and the Snowball [58] stopwords list for English listed in Table

A.2.)

We use stemming in order to eliminate morphological variations of words and

to obtain terms. We use the Zemberek [59] and Porter [60] stemmer for Turkish

and English, respectively. Term frequency (actually relative term frequency) of
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Figure 4.3: Example similarity calculation between candidate news blocks and
news title.

each term in blocks is calculated by using the formula na/nB, where na and nB

are, respectively, the frequency of the term and the total number of terms in the

block (we use a similar approach for the news title and sentences when needed).

4.1.5 Extracting Content of the News Block

In this step N-EXT tries to detect the news content related information in the

news block: the news block of a news web page may contain additional textual

information not related to the news content (such as advertisements). In this

context, N-EXT calculates the similarity value of the news block sentences to the

news block itself.
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CosineSimilarity(S,B) =

n∑
k=1

(
tf s,k × tf b,k

)
√√√√ n∑

k=1

tf 2
s,k ×

n∑
k=1

tf 2
b,k

(4.2)

DiceSimilarity(S,B) =

2×
n∑
k=1

(
tf s,k × tf b,k

)
n∑
k=1

tf 2
s,k +

n∑
k=1

tf 2
b,k

(4.3)

JaccardSimilarity(S,B) =

n∑
k=1

(
tf s,k × tf b,k

)
n∑
k=1

tf 2
s,k +

n∑
k=1

tf 2
b,k −

n∑
k=1

(
tf s,k × tf b,k

) (4.4)

OverlapSimilarity(S,B) =

n∑
k=1

(
tf s,k × tf b,k

)
min{

n∑
k=1

tf 2
s,k,

n∑
k=1

tf 2
b,k}

(4.5)

In the formulas (4.2), (4.3), (4.4), and (4.5), k represents the current term, n is

the total number of terms in the news block, and tf is the term frequency assigned

to term k. Notations S and B are both vectors representing a sentence and a news

block, respectively. We treat each sentence in the news block as a query, and the

news block itself as a document, and use the similarity measures listed in the

formulas given above to calculate the similarity of each query to the document.

The similarity between a query and a document represents the similarity of a

sentence to the news block. An example for representing a document and its

sentences as vectors, and calculating similarities between them by using each of

four similarity measures is given in Figures B.1, B.2, B.3, B.4, and B.5.

After calculating the similarity value of each sentence to the news block, N-

EXT compares similarity values calculated with a threshold value t, which is
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calculated dynamically by taking the harmonic mean of similarity values of all

sentences in the news block. If the similarity value of a sentence is less than t,

then that sentence is treated as a noise, and eliminated from the news block.

Note that we use harmonic mean to calculate the threshold value that is used to

determine the relatedness of a sentence to the news content. The harmonic mean

gives a similar weight to each data in the set. It shows the central point of all

data in the set, and each data has an similar impact on the determination of the

central point, not relative to its value, so that an outlier affects the central point

like an ordinary data.

4.1.6 Detecting More Content in Other Blocks

N-EXT analyzes other leaf block nodes in addition to the selected news block

to detect additional news content related sentences. Note that some of the news

related elements, such as news description, may be placed in another leaf block

node. N-EXT analyzes the contents of these blocks sentence by sentence. Each

sentence is treated as a query and term frequencies are obtained sentence by

sentence. If the similarity value of a sentence is greater than the threshold value

detected at the previous step, that sentence is added to the extracted part. After

analyzing all other leaf block nodes sentence by sentence, N-EXT finishes the

news content extraction process.
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4.2 Pseudocode of N-EXT

Pseudocode of N-EXT is given in Algorithm 1.

Algorithm 1 N-EXT Algorithm

1: loop
2: Update RSS feeds by re-downloading them.
3: Parse RSS feeds to obtain n1 titles and URL links of news web pages.
4: Download n1 HTML pages from URL links obtained.
5: for HTML Page No = 1 to n1 do
6: Parse HTML page into a DOM tree.
7: Traverse DOM tree to detect n2 leaf block nodes.
8: for Leaf Block Node No = 1 to n2 do
9: Extract text from the leaf block node.

10: Eliminate noises from the extracted text.
11: Assign a weight to the block by considering textual size and similarity

to the news title of the cleaned text.
12: end for
13: Select the block with highest weight as the news block.
14: Extract news content related sentences from the news block.
15: Examine blocks other than the news block to detect rest of the news

content if any exists.
16: end for
17: end loop
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Chapter 5

Evaluation Measures

5.1 NBD Evaluation Measures

We evaluate the news block detection performance of N-EXT by NBD Accuracy,

which is the ratio of the number of true matches between manually labeled blocks

and the blocks detected by N-EXT to the number of all labeled blocks. As an

example, we have 100 sample web pages, and news blocks of all these 100 web

pages are manually labeled by us. Then, N-EXT performs NBD on these sample

web pages, and extracts the blocks detected as the news block from these web

pages. Then, we check how many of the extracted blocks are labeled, i. e., how

many blocks match with true news blocks. For instance, if 72 of 100 extracted

blocks are labeled, then NBD accuracy = 72/100. To sum up, NBD accuracy is

the ratio of total number of matched blocks to the number of all labeled blocks,

as given in Formula (5.1).

NBDAccuracy =

(
nmatched blocks
nall labeled blocks

)
(5.1)
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5.2 NCE Evaluation Measures

News contents extracted from news web pages are compared to the contents of the

same web pages in the ground truth dataset to evaluate the NCE (news content

extraction) performance of N-EXT. Figure 5.1 illustrates the terms used during

comparisons.

Figure 5.1: Illustration of the terms used in the set-based measures.

In this figure, TP (True Positive) is the set of relevant words (tokens, a

relevant word is any word that appears in the ground truth version of the page)

extracted from web page; FP (False Positive) is the set of unrelevant words

extracted from web page; and FN (false negative) is the set of relevant words

that could not be extracted from web page. Additionally, terms FN and TP

together represents the true news content of a news web page, which is the set of

all relevant words, and FP and TP together represents the news content extracted

by N-EXT from new web page, which is the set of all extracted words. These

terms are used in the set-based measures: precision, recall, and the F-measure as

defined in the formulas (5.2), (5.3), and (5.4), respectively. In the formulas below,

|TP |, |FP |, and |FN | represent the word counts in the sets. Measures given in

the formulas have values between 0 and 1, and 1 represents the best case [61]. A

demonstration for calculation of these set-based measures is given in Figure B.8

Precision =

(
|TP |

|TP |+ |FP |

)
(5.2)
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Recall =

(
|TP |

|TP |+ |FN |

)
(5.3)

F −measure = 2×
(
Precision×Recall
Precision+Recall

)
(5.4)

We use the F-measure value to evaluate the NCE performance of N-EXT.

5.3 Means Comparison Measures

To assess the impact of similarity measures on NBD accuracy, we perform a means

comparison using a one-way Analysis of Variance (ANOVA) with a Scheffé com-

parison [62]. ANOVA tests whether one or more sample means are significantly

different from each other. It is similar to the t-test, but they differ from each other,

since more than 2 groups can be tested simultaneously in ANOVA, whereas only

2 groups can be tested in t-test. Formulas given below are used to calculate

one-way ANOVA.

SStotal =
(∑

x1
2 +

∑
x2

2 + ...+
∑

xr
2
)
−

(∑
x1 +

∑
x2 + ...+

∑
xr
)

N
(5.5)

SSamong =


(∑

x1
)2

n1
+

(∑
x2
)2

n2
+ ...+

(∑
xr
)2

nr

−
(∑

x1 +
∑

x2 + ...+
∑

xr
)

N
(5.6)

SSwithin = SStotal − SSamong (5.7)

dfamong = r − 1 (5.8)

dfwithin = N − r (5.9)

MSamong =
SSamong
dfamong

(5.10)

MSwithin =
SSwithin
dfwithin

(5.11)

F =
MSamong
MSwithin

(5.12)

In the formulas given above, SS represents Sum of Squares value, MS repre-

sents Mean Square value, df represents Degrees of Freedom, x represents an indi-

vidual observation, r is the number of groups, N is total number of observations
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in all groups, and n is the number of observations in a group. A demonstration

for calculation of F score is given in Figure B.6. After calculating F score, it

is compared to the value given in F table for alpha = .05 [63]. If calculated F

score is bigger than the F score given in that table, then calculated F score is

statistically significant. If calculated F score is statistically significant, it only

indicates that at least two means are significantly different from each other, but

it can’t be known which mean pairs are significantly different from each other

until a post-hoc test.

If a significant difference is found among sample means, post hoc testing is

performed to determine which or how many sample means are different from

each other. There are some post hoc testing procedures such as Bonferroni test,

Duncan’s test, Tukey’s HSD test, and Scheffé’s test. Scheffé’s test is one of the

most popular of the post hoc tests. Scheffé’s test is generally used with unequal

sample sizes, although it can be used with samples with equal sizes. Formula

given below is used to calculate Scheffé’s test.

Fcritical = (k − 1)× Ftable (5.13)

Fi,j =
(Mi −Mj)

2

MSwithin ×
(

1
ni

+ 1
nj

) (5.14)

In the formulas given above, k is the number of means, Ftable is the value

given in F table for alpha = .05 [63], ni and nj repsesent the sizes of samples i

and j, respectively; and Mi and Mj represent the mean values of samples i and j,

respectively. After calculating F scores for each pair of samples, each calculated

Fi,j score is compared to calculated Fcritical value. Then, for example, if only one

of the calculated F scores is bigger than Fcritical value, such that F1,3, then the

means comparison between samples 1 and 3 is significantly different, but not the

other comparisons. A demonstration for calculation of Scheffé’s test is given in

Figure B.7
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Chapter 6

Experimental Environment and

Experimental Results

In this section, we present the experimental environment and experimental re-

sults.

6.1 Experimental Environment

6.1.1 Implementation

We implemented N-EXT in Java language using the Eclipse IDE Helios Service

Release 2nd version, and performed our experiments on a computer which has

an Intel Core 2 Quad Q9550@2.83 GHz CPU with 8 GB of main memory on

Windows 7 64-bit operating system.

6.1.2 Test Collections

We perform our experiments on a ground truth test collection that we created

during the course of this study. It consists of four components and they are

manually
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• extracted textual content of 3,500 Turkish news web pages published in

2012 (TR-Text),

• labeled blocks of 1,000 Turkish news web pages randomly chosen from TR-

Text dataset (TR-Block),

• extracted textual content of 100 English news web pages published in 2012

(ENG-Text),

• labeled blocks of ENG-Text dataset (ENG-Block).

News web pages of the TR-Text and TR-Block are gathered from seven popu-

lar Turkish news websites which regularly use RSS feeds to disseminate the latest

news:

• CNN Türk (http://www.cnnturk.com)

• Milliyet (http://www.milliyet.com.tr)

• Sabah (http://www.sabah.com.tr)

• Samanyolu (http://www.samanyoluhaber.com)

• Star (http://www.stargazete.com)

• Yeni Şafak (http://yenisafak.com.tr)

• Zaman (http://www.zaman.com.tr)

We try to gather different kinds of news documents by choosing news docu-

ments from different news categories into the ground truth dataset to observe the

extraction performance of N-EXT over a wide variety of news documents. Since,

textual size of the news contents differs from news category to news category; for

example, economy, politics, and sport news web pages have larger textual sizes

than those of magazine and technology news web pages. The distribution of the

news documents among the news categories is listed in Table 6.1.

The news web pages of the ENG-Text and ENG-Block are from various news

categories and are obtained from five popular world-wide English news websites:

• BBC News (http://www.bbc.com/news)
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Category
News Websites

CN ML SB SM ST YŞ ZM
Agenda 0 0 80 80 80 80 80
Economy 70 80 80 70 80 60 75
Life 30 25 40 60 0 60 80
Local 80 80 0 0 0 0 0
Magazine 65 80 60 40 80 40 45
Politics 0 75 0 70 70 60 80
Sport 95 80 80 80 80 80 90
Technology 80 0 90 20 30 40 25
World 80 80 80 80 80 80 85

Total 500 500 500 500 500 500 500

Table 6.1: Distribution of news web pages to the news categories (CN=CNN
Türk, ML=Milliyet, SB=Sabah, SM=Samanyolu, ST=Star, YŞ=Yeni Şafak,
ZM=Zaman).

• CNN (http://www.cnn.com)

• Fox News (http://www.foxnews.com)

• Los Angeles Times (http://www.latimes.com)

• The New York Times (http://www.nytimes.com)

The size of the English dataset is smaller since it is our secondary test collec-

tion; however, its use in our work is important since it enables us to demonstrate

that

• N-EXT is a language-independent NCE method,

• observations we had in one language are also applicable to another lan-

guages.

6.2 Experimental Results

Our experiments have two components: we first show that we successfully detect

the news block, and after that we show our success in news content extraction.
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6.2.1 News Block Detection (NBD) Results

We firstly evaluate the NBD performance of N-EXT and compare it with our

baseline, the largest block approach [16], and show that it outperforms the

baseline and is highly accurate. In the experiments, we use the TR-Block and

ENG-Block datasets. In the TR-Block experiments, we use the k-fold cross-

validation approach [64] for choosing the block weight assignment coefficient

(β), which allocates importance to block size and similarity in the calculation of

block weights. In k-folding approach, we use 10 for k. During the experiments,

TR-Block dataset is partitioned into ten subsets, each having equal number of

news web pages (1000/10 = 100). For each of the ten experiments, nine of the

subsets are used for training, and one of the subsets is used for testing. We

repeat these experiments for each one of the four similarity measures used in the

calculation of block weights. Figure 6.1 demonstrates the k-fold cross validation

approach.

Figure 6.1: K-fold cross-validation approach.

Table 6.2 gives the detailed NBD results obtained using TR-Block dataset

for different β values from 0.0 to 1.0 in the training and testing using the Dice

similarity measure in the calculation of block weights (in test results we give two

digits after the decimal point since in each fold we have 100 test cases). Besides,
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H
HHHHk

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.922 0.928 0.936 0.940 0.949 0.955 0.963 0.951 0.942 0.929 0.918
2 0.919 0.926 0.937 0.941 0.949 0.958 0.967 0.950 0.949 0.924 0.912
3 0.925 0.929 0.939 0.941 0.952 0.954 0.955 0.957 0.948 0.932 0.921
4 0.923 0.926 0.937 0.943 0.950 0.954 0.961 0.952 0.947 0.930 0.922
5 0.921 0.925 0.934 0.938 0.947 0.955 0.954 0.952 0.946 0.931 0.924
6 0.923 0.932 0.939 0.946 0.954 0.958 0.969 0.959 0.948 0.938 0.928
7 0.924 0.927 0.935 0.943 0.949 0.955 0.963 0.951 0.942 0.929 0.918
8 0.924 0.931 0.938 0.942 0.944 0.951 0.953 0.956 0.947 0.933 0.925
9 0.923 0.926 0.938 0.945 0.949 0.952 0.954 0.955 0.946 0.939 0.931
10 0.925 0.929 0.936 0.945 0.947 0.956 0.968 0.953 0.944 0.927 0.920

Avg. 0.923 0.928 0.937 0.942 0.949 0.955 0.961 0.954 0.946 0.931 0.922

a) NBD accuracy training results.
H
HHHHk

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.95 0.93 0.93 0.92
2 0.91 0.92 0.94 0.94 0.95 0.96 0.97 0.95 0.94 0.92 0.91
3 0.92 0.93 0.94 0.94 0.94 0.95 0.95 0.96 0.95 0.93 0.92
4 0.90 0.92 0.93 0.94 0.94 0.94 0.96 0.95 0.94 0.93 0.92
5 0.91 0.93 0.93 0.94 0.94 0.95 0.95 0.95 0.93 0.93 0.92
6 0.91 0.93 0.94 0.95 0.95 0.96 0.97 0.96 0.95 0.94 0.93
7 0.92 0.92 0.93 0.94 0.95 0.95 0.96 0.95 0.94 0.93 0.91
8 0.90 0.91 0.93 0.94 0.94 0.95 0.96 0.95 0.94 0.92 0.92
9 0.91 0.92 0.93 0.94 0.95 0.95 0.95 0.95 0.94 0.93 0.92
10 0.92 0.93 0.93 0.94 0.94 0.95 0.96 0.95 0.94 0.92 0.91

Avg. 0.910 0.922 0.932 0.940 0.944 0.951 0.959 0.952 0.940 0.928 0.918

b) NBD accuracy testing results.

Table 6.2: News block detection (NBD) accuracy training and testing results of
N-EXT with TR-Block dataset (without hyperlink texts) using Dice similarity
measure and 10-fold cross-validation.

Tables C.1, C.2, and C.3 give detailed NBD results obtained on TR-Block

dataset using other similarity measures (Cosine, Dice, and Jaccard) with the

same parameters.

As it is seen in Table 6.2, in most cases, we obtained the best NBD accuracy

when β = 0.6 in training and testing. Besides, the other similarity measures also

give the best NBD accuracy in most cases when β = 0.6. For brevity we only

show the detailed results for the Dice similarity measures.

Table 6.3 shows the NBD accuracy test results using the TR-Block dataset
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k
Similarity Measures

Cosine Dice Jaccard Overlap
1 0.93 0.96 0.96 0.91
2 0.93 0.97 0.96 0.91
3 0.92 0.95 0.95 0.90
4 0.92 0.96 0.95 0.91
5 0.91 0.95 0.94 0.90
6 0.93 0.97 0.96 0.92
7 0.93 0.96 0.96 0.91
8 0.92 0.95 0.95 0.92
9 0.92 0.95 0.94 0.91
10 0.94 0.97 0.96 0.93

Average 0.925 0.959 0.953 0.911

Table 6.3: News block detection (NBD) accuracy testing results of N-EXT with
TR-Block dataset (without hyperlink texts) using different similarity measures
in the calculation of weight of a block when β = 0.6.

for all similarity measures with β = 0.6. The results show that we obtain the best

NBD accuracy using the Dice similarity measure. Since we are comparing the

NBD means (average values) of four similarity measures, we should do a means

comparison using a one way ANOVA with a Scheffé comparison [62]. The test

shows that the means of NBD results obtained by using the Cosine, Dice, Jaccard,

and Overlap measures are significantly different at p < 0.05; only exception is the

Dice and Jaccard similarity measures, i.e., they do not have significantly different

means. Although Dice and Jaccard are not statistically significantly different, we

prefer Dice since it gives the highest average NBD accuracy in the tests.

Our NBD approach performs best when β = 0.6 as it is seen in Table 6.2.

The value of β is the only coefficient that needs to be determined by training.

Table 6.4 gives the detailed NBD results obtained using ENG-Block dataset

for different β values from 0.0 to 1.0 in the training and testing using the Dice

similarity measure in the calculation of block weights. Additionally, Tables C.4,

C.5, and C.6 give detailed NBD results obtained on ENG-Block dataset using

other similarity measures (Cosine, Dice, and Jaccard) with the same parameters.

The test results given in Table 6.4, arguably show that N-EXT detects the news

blocks most accurately when β = 0.6 as suggested by the results based on the
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H
HHHHht

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

W. H. T.1 0.77 0.78 0.79 0.79 0.80 0.80 0.82 0.81 0.80 0.79 0.79
W/O. H. T.1 0.88 0.88 0.89 0.91 0.91 0.91 0.92 0.91 0.89 0.88 0.87

Table 6.4: News block detection (NBD) accuracy results of N-EXT with ENG-
Block dataset using Dice similarity measure.

Approaches
Datasets Only Similarity Size & Similarity Only Size (Baseline)

(β = 0) (β = 0.6) (β = 1)

Turkish
with hyperlink texts 0.818 0.856 0.809
w/o hyperlink texts 0.910 0.959 0.918

English
with hyperlink texts 0.770 0.820 0.790
w/o hyperlink texts 0.880 0.920 0.870

Table 6.5: Summary of the news block detection (NBD) accuracy results of N-
EXT with TR-Block and ENG-Block datasets using Dice similarity measure.

TR-Block dataset.

Summary of the NBD results obtained in the experiments is provided in

Table 6.5. The experimental results show that our NBD approach outperforms

the baseline in both languages.

6.2.1.1 Additional Observations Based on NBD Experiments

It is observed that our approach have difficulty in detecting the news block when

the textual size of news is comparatively smaller than the other elements of web

pages, especially hyperlink texts. This deteriorates the NBD effectiveness. On the

other hand, hyperlink text percentage of news contents is less than one percent

of the entire text we extract from news. Hence deleting hyperlink texts is a

negligible loss in content extraction. The experimental results given in Tables

6.4 and 6.5 show that cleaning hyperlink texts improves the NBD performance

of N-EXT. Accordingly the NCE experiments presented in the next subsection

are also performed after deleting hyperlinks.

The experimental results given in Table 6.5 also demonstrate that NBD with

the Turkish dataset has a higher accuracy than that of the English dataset. After

1W. H. T = With Hyperlink Texts, W/O. H. T = Without Hyperlink Texts
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examining both Turkish and English datasets, we conclude that the reason of the

difference in the detection accuracy is due to higher heterogeneity of English news

web pages. Because of that, the detection of the news block is negatively affected;

however, note that the decrease is small.

6.2.2 News Content Extraction (NCE) Results

Average F-measure values obtained in the NCE experiments performed on the

TR-Text dataset is given in Table 6.6. We observe the highest average F-measure

values with the Dice similarity measure.

Datasets Stemming
Similarity Measures

Cosine Dice Jaccard Overlap

Turkish
With Stemming 0.908 0.922 0.917 0.902
Without Stemming 0.897 0.914 0.910 0.894

English
With Stemming 0.886 0.907 0.902 0.874
Without Stemming 0.880 0.899 0.893 0.868

Table 6.6: Average F-measure values for news content extraction (NCE) using
TR-Text and ENG-Text datasets.

Moreover, when we perform the NCE experiments on the ENG-Text dataset,

we obtain slightly better performance with stemming. Like that of the TR-Text

dataset, we again obtain the best performance with the Dice similarity measure

in the ENG-Text dataset.

In the NCE experiments, we observe that the experiments done on the Turk-

ish dataset obtain higher F-measure values than those of the English dataset.

This is again due to higher heterogeneity of the English news web pages: the

heterogeneity of pages complicates the extraction.

Additionally, Table 6.7 details the average F-measure values obtained with

using stemming in the experiments performed on the TR-Text dataset. These

results show that NCE accuracy shows variation among news websites. Average

values in the table demonstrate that NCE is slightly more accurate for the news

web pages of Star, Yeni Şafak, and Zaman since these websites store all news

content elements only in one block; however, in the other websites news content
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News Websites
Similarity Measures

Average
Cosine Dice Jaccard Overlap

CNN Türk 0.902 0.927 0.919 0.895 0.911
Milliyet 0.901 0.909 0.907 0.897 0.904
Sabah 0.901 0.912 0.910 0.899 0.906
Samanyolu 0.907 0.915 0.912 0.902 0.909
Star 0.918 0.938 0.926 0.908 0.923
Yeni Şafak 0.912 0.929 0.924 0.905 0.918
Zaman 0.915 0.923 0.921 0.909 0.917

Average 0.908 0.922 0.917 0.902 0.913

Table 6.7: Average F-measure values for different news websites obtained with
using stemming.

elements are distributed among more than one block. Average F-measure values

obtained without using stemming are given in C.10

6.2.3 Multithreading Results

To analyze and evaluate the impact of multithreading on total extraction time

of N-EXT, we also implemented the multithreaded version of the stages except

the first stage of the news extraction process. We prefer using Single Instruction

Stream, Multiple Data Stream (SIMD) architecture [65], which has a single con-

trol unit that dispatches the same instruction to various processors (that work

on different data) demonstrated in Figure 6.2.

As seen from the model given in Figure 6.2, a control unit dispatches the

same instruction, which is extracting the news content from news web pages

in our example, to all processors including the one on which that control unit

executes. Then, each processor works on its own set of news web pages, and

extracts contents from them.

We prepared an additional dataset for multithread experiments by randomly

chosing 100 news pages from TR-Text dataset. In multithread experiments, we

compute total extraction time of extracting news contents from this additional

dataset for each thread count given to the multhreaded implementation of N-EXT

as a parameter. Tests for each thread count parameter are repeated for 10 times.
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Figure 6.2: A typical SIMD architecture.

Figure 6.3 shows the results of multithreading experiments, which are the mean

values of results obtained in those 10 experiments.

Figure 6.3: Total extraction time VS. thread count.

As it is seen in Figure 6.3, total extraction time decreases obvioulsy until

selecting 4 as the thread count for the extraction process. Then, total extraction

time becomes nearly stable. After performing a one-way ANOVA with Scheffe’s

comparison to the mean values obtained for different thread counts, we observed

that
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• mean values obtained for thread count = 1 are significantly different

than mean values obtaine for thread count = 2,

• mean values obtained for thread count = 2 are significantly different

than mean values obtaine for thread count = 4,

• mean values obtained for thread count = 4 are not significantly different

than mean values obtaine for thread count = 8,

• mean values obtained for thread count = 8 are not significantly different

than mean values obtaine for thread count = 16.

As the comparison results show, we cannot gain any significant decrease in

total extraction time after selecting the thread count as 4. Main reason of this

is that the computer we are running our experiments have a CPU with 4 proces-

sors. When we select thread count parameter as 4, the processor assigned as the

dispatcher, dispatches a single thread to each of four processors. After analyzing

total load of an extraction process, we observed that N-EXT reserves approxi-

mately %90-95 of processor load during the extraction process. That much load

ratio does not cause any bottleneck for processor load. But, this condition changes

when we choose to divide the extraction process into 8 threads. This time, dis-

patcher dispatches 2 threads to each of four processors. When more than one

thread share a processor, load of that processor is divided into number of threads

using that processor. However, as we observed, N-EXT needs more than %90

of a processor load to work properly. Hence, a bottleneck for the processor load

occurs, which causes a latency in execution of instructions dispatched to each

processor. As a result, although total number of news pages being executed is

increased, total extraction time of each news pages also increases due to latency

occuring. Therefore, we could not gain any significant decrease in total extrac-

tion time for more than 4 threads. As a result, we select 4 as the thread count

parameter for the multithreaded implementation of N-EXT.
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Chapter 7

Bilkent News Portal

7.1 Configuration of Bilkent News Portal

As it is mentioned before, news content extraction (NCE) is used in our news

portal, called Bilkent News Portal [10], which uses RSS feeds to gather news

web pages from various different news websites, extracts news contents from these

news web pages, and displays the contents to the web users.

Configuration of Bilkent News Portal is demonstrated in Figure 7.1. As it

is seen in Figure 7.1, Bilkent News Portal has three main PCs: a dispatcher, a

PHP server, and a database server. All of these three PCs have Linux operating

system installed on themselves. Dispatcher is the only PC of Bilkent News Portal

that can be directly accessed over Internet. Secure Shell (SSH) [66] is used to

make a remote access to a Linux machine, since we use a free Telnet/SSH Client

tool, called PuTTY [67] to access the dispatcher. After accessing the dispatcher,

”ssh host address” Linux command is used to make remote accesses to PHP and

database servers. IP configurations of these three PCS are listed on Table 7.1.

When a user opens one of the web browsers, and requests a connection to

Bilkent News Portal using ”http://139.179.21.201/PortalTest/ ” address; the dis-

patcher directs the browser request to the PC on which PHP server is installed.

Then, PHP server PC displays Bilkent News Portal web pages to the user.
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Figure 7.1: Configuration of Bilkent News Portal.

Definition PC name Host Address
Dispatcher portal-alive 139.179.21.201
PHP Server news-portal1 139.168.20.100
Database Server news-portal2 139.168.20.101

Table 7.1: PC list of Bilkent News Portal.

Java programs, which perform basic operations such as news content extrac-

tion, topic tracking, novelty detection, etc., runs on the PC on which database

server is installed. The program proposed in this thesis, N-EXT, is the Java pro-

gram, which performs news content extraction. Firstly, it downloads HTML web

pages to the same PC on which it runs. Then, it extracts news contents from

those web pages, and inserts them into the news database. News contents stored

in that database is displayed to the user via PHP server.
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7.2 Deployment of N-EXT to the Portal

To deploy N-EXT to Bilkent News Portal, following steps are required:

• Use PuTTY [67] to make a remote access to ”139.179.21.201 ”, which is

the IP address of Bilkent News Portal’s dispatcher PC,

• Type ”root” for login name and ”**********” for password, and press ”EN-

TER” button,

• Use ”ssh” linux command to make another remote access from accessed

dispatcher (ssh 192.168.20.101 ),

• Type ”**********” for password, and press ”ENTER” button,

• Change current directory to the directory that contain news extraction

source files (cd /var/www/PortalTest/workspaceCrawlerParse/RSSCrawlerParser/src/ ),

• Put related Java files (Parser.java) into this directory,

• Change current directory to another directory (cd /var/www/PortalTest/ ),

• Open ”NewsPortal.sh” shell script file by using a text editor, such as ”vi”

(vi NewsPortal.sh),

• Edit the following command, which executes current Java file (Down-

load News.java) that performs news extraction with respect to the changes

made in that file (java -cp ... Download News 4),

• To save the changes made, first press ”ESC” button to enter into command

mode, and then type ”:w” and press ”ENTER” button,

• Finally, to quit from the editor, first press ”ESC” button to enter into

command mode, and then type ”:q” and press ”ENTER” button.

• If you want to quit without saving, first press ”ESC” button to enter into

command mode, and then type ”:q!” and press ”ENTER” button.

• To test the portal, connect to the IP address ”http://139.179.21.201/PortalTest”,

which is the address of portal’s main page, from a browser.
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Chapter 8

Conclusion

Content extraction accuracy of news web pages is important since it directly

affects the performance of information retrieval and web mining modules of news

aggregators. In this thesis, we propose a template-independent content extraction

method (N-EXT) for news web pages. Our approach avoids the major problems

of template-based extraction methods, such as human intervention and regular

maintenance. Our method N-EXT examines all web page blocks to detect the

news block that contains the major part of the news content. For this purpose, we

assign weights to blocks using their size and similarity to news title. The block

with the maximum weight is selected as the news block. For quantifying the

importance of these two weight components and selecting a similarity measure

we use the k-fold cross validation approach and one way ANOVA with a Scheffé

comparison, respectively. We show that removing hyperlink texts and stemming

respectively improves the NBD (news block detection) and NCE (news content

extraction) accuracy. Besides, we also show that multithreading positively effects

total extraction time up to 4 threads.

We experimentally demonstrate the effectiveness of N-EXT on pages obtained

from several Turkish and English news websites. The experimental results show

that our method is robust and highly accurate and can be used in real life appli-

cations. In this study, we also provide an NCE test collection that we will share

with other researchers.
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In future work, our approach can be modified according to the needs of other

web information aggregators such as blog portals [68]. The extraction accuracy of

N-EXT may be further increased by using other similarity measures such as earth

movers distance (EMD) measure [69], or combining various measures together

to calculate similarity of sentences to the news block.
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[40] J. Parapar and Àlvaro Barreiro, “An effective and efficient web news ex-

traction technique for an operational NewsIR system,” in Proceedings of the

XIII Conferencia de la Asociación Española para la Inteligencia Artificial
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Appendix A

Data

A.1 Stopwords Lists

To eliminate stopwords from the sentences, two stopwords list is used: one for

Turkish news, and another for English news. Turkish and English stopwords lists

consist of 217 and 221 words, respectively, listed below.
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acaba birşey demek her mu oysa şimdi

altı birşeyi diğer herkes mü oysaki şöyle

ama biz diğeri herkese nasıl öbürü şu

ancak bize diğerleri herkesi ne ön şuna

arada bizi diye hiç neden önce şunda

artık bizim dokuz hiçbiri nedir ötürü şundan

ayrıca böyle dolayı hiçbirine neler öyle şunlar

asla böylece dolayısıyla hiçbirini nerde pek şunu

aslında böylesi dört için nerede peki şunun

az bu eğer içinde nereden rağmen tabi

bana budur elbette iki nereye sadece tamam

bazen buna en ile nesi sana tarafından

bazı bunda fakat ilgili neyse sanki tüm

bazıları bundan falan ise niçin sekiz tümü

bazısı bunlar felan işte niye sen üç

belki bunları filan itibaren olan senden üstelik

ben bunların gene kaç olarak seni üzere

bence bunu gibi kadar oldukça senin var

beni bunun göre kendi olma siz ve

benim burada hala kendine olmak sizden veya

beri bütün halen kendini on size veyahut

beş çoğu hangi ki ona sizi ya

bile çoğuna hangisi kim ondan sizin yalnızca

bir çoğunu hani kime onlar son yani

birçoğu çok hatta kimi onlara sonra yapmak

birçok çünkü hem kimin onlardan şayet yedi

birçokları da henüz kimisi onları şey yerine

biri daha hep kimse onların şeyden yine

birisi dahası hepsi madem onu şeye yoksa

birkaç de hepsine mı onun şeyi zaten

birkaçı değil hepsini mi orada şeyler zira

Table A.1: Turkish stopwords list.
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a did here like ourselves them we’ve
about didnt here’s long out themselves we’d
above do hers made over then we’ll
after does herself make own there wasn’t
again doesn’t high many put there’s weren’t

against doing him may said these won’t
all don’t himself me same they wouldn’t

also down his might say they’d who’s
am during how more says they’ll what’s
an each how’s most second they’ve when’s

and even however must see they’re where’s
another ever he’s mustn’t seen this why’s

any every he’d my shall those while
are few he’ll myself should three with

arent first i never she’s through when
as five i’d no she to where
at for if nor she’d too why

back four i’ll not she’ll two very
be from i’m now shan’t under well

because further in new shouldn’t until way
been get into of since up you

before go is off so whether you’d
being goes isn’t old some we you’ll
below had it on still what your

between hadn’t its one such which you’re
both has it’s once take who yours
but hasn’t itself only than whom yourself
by have i’ve or that was yourselves
can haven’t just other that’s were you’ve

can’t having least ought the will
cannot he less our their would
could her lets ours theirs we’re

Table A.2: English stopwords list.
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A.2 Turkish News RSS Feeds List

Bilkent News Portal gathers news in several different categories from 8 most

popular Turkish news websites, which distribute frequently updated RSS feeds.

The list of Turkish news RSS feeds is given below.
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News Website Category URL of RSS Feed

CNN Türk

Bilişim http://www.cnnturk.com/servisler/rss/bilim.teknoloji.rss
Dünya http://www.cnnturk.com/servisler/rss/dunya.rss
Ekonomi http://www.cnnturk.com/servisler/rss/ekonomi.rss
Hava Durumu http://www.cnnturk.com/servisler/rss/havadurumu.rss
Kültür-Sanat http://www.cnnturk.com/servisler/rss/kultur.sanat.rss
Sağlık http://www.cnnturk.com/servisler/rss/saglik.rss
Spor http://www.cnnturk.com/servisler/rss/spor.rss
Türkiye http://www.cnnturk.com/servisler/rss/turkiye.rss
Yaşam http://www.cnnturk.com/servisler/rss/yasam.rss

Hürriyet

Ana Sayfa http://rss.hurriyet.com.tr/rss.aspx?sectionId=1
Dünya http://rss.hurriyet.com.tr/rss.aspx?sectionId=2249
Ekonomi http://rss.hurriyet.com.tr/rss.aspx?sectionId=4
Kültür-Sanat http://rss.hurriyet.com.tr/rss.aspx?sectionId=13
Magazin http://rss.hurriyet.com.tr/rss.aspx?sectionId=2035
Sağlık http://rss.hurriyet.com.tr/rss.aspx?sectionId=2208
Spor http://rss.hurriyet.com.tr/rss.aspx?sectionId=14

Milliyet

Dünya http://www.milliyet.com.tr/D/rss/rss/Rss 2.xml
Ekonomi http://www.milliyet.com.tr/D/rss/rss/Rss 3.xml
Sağlık http://www.milliyet.com.tr/D/rss/rss/Rss 31.xml
Siyaset http://www.milliyet.com.tr/D/rss/rss/Rss 4.xml
Spor http://www.milliyet.com.tr/D/rss/rss/Rss 6.xml
Teknoloji http://www.milliyet.com.tr/D/rss/rss/Rss 36.xml
Yaşam http://www.milliyet.com.tr/D/rss/rss/Rss 5.xml

Sabah

Dünya http://www.sabah.com.tr/rss/Dunya.xml
Ekonomi http://www.sabah.com.tr/rss/Ekonomi.xml
Gündem http://www.sabah.com.tr/rss/Gundem.xml
Magazin http://www.sabah.com.tr/rss/Magazin.xml
Sağlık http://www.sabah.com.tr/rss/Saglik.xml
Spor http://www.sabah.com.tr/rss/Spor.xml
Teknoloji http://www.sabah.com.tr/rss/Teknoloji.xml
Yaşam http://www.sabah.com.tr/rss/Yasam.xml

Star

Dünya http://www.stargazete.com/dunya.xml
Ekonomi http://www.stargazete.com/ekonomi.xml
Güncel http://www.stargazete.com/guncel.xml
Magazin http://www.stargazete.com/rss/magazin.xml
Politika http://www.stargazete.com/politika.xml
Sağlık http://www.stargazete.com/rss/saglik.xml
Sanat http://www.stargazete.com/rss/sanat.xml
Spor http://www.stargazete.com/spor.xml
Teknoloji http://www.stargazete.com/rss/teknoloji.xml
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Yeni Şafak

Bilişim http://yenisafak.com.tr/rss/?xml=bilisim
Gündem http://yenisafak.com.tr/rss/?xml=gundem
Dünya http://yenisafak.com.tr/rss/?xml=dunya
Ekonomi http://yenisafak.com.tr/rss/?xml=ekonomi
Kültür-Sanat http://yenisafak.com.tr/rss/?xml=kultursanat
Politika http://yenisafak.com.tr/rss/?xml=politika
Sağlk http://yenisafak.com.tr/rss/?xml=saglik
Spor http://yenisafak.com.tr/rss/?xml=spor

Vatan

Dünya http://rss.gazetevatan.com/rss/dunya.xml
Ekonomi http://rss.gazetevatan.com/rss/ekonomi.xml
Gündem http://rss.gazetevatan.com/rss/gundem.xml
Magazin http://rss.gazetevatan.com/rss/magazin.xml
Siyaset http://rss.gazetevatan.com/rss/siyaset.xml
Spor http://rss.gazetevatan.com/rss/spor.xml
Teknoloji http://rss.gazetevatan.com/rss/teknoloji.xml
Yaşam http://rss.gazetevatan.com/rss/yasam.xml

Zaman

Aile-Sağlık http://www.zaman.com.tr/aile.rss
Dış Haberler http://www.zaman.com.tr/dishaberler.rss
Ekonomi http://www.zaman.com.tr/ekonomi.rss
Gündem http://www.zaman.com.tr/gundem.rss
Kültür-Sanat http://www.zaman.com.tr/kultursanat.rss
Politika http://www.zaman.com.tr/politika.rss
Spor http://www.zaman.com.tr/spor.rss

Table A.3: Turkish news RSS feeds list.
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Appendix B

Calculation Examples

B.1 Similarity Calculation Examples

B.1.1 Vector Representations

Figure B.1: Term frequency assignment and vector representation example.
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B.1.2 Cosine Similarity Calculation Example

Figure B.2: Calculation of the Cosine similarities of the example given in Figure
B.1.

B.1.3 Dice Similarity Example

Figure B.3: Calculation of the Dice similarities of the example given in Figure
B.1.
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B.1.4 Jaccard Similarity Example

Figure B.4: Calculation of the Jaccard similarities of the example given in Figure
B.1.

B.1.5 Overlap Similarity Example

Figure B.5: Calculation of the Overlap similarities of the example given in Figure
B.1.
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B.2 Means Comparison Calculation Examples

B.2.1 ANOVA Calculation Example

Figure B.6: ANOVA calculation example.
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B.2.2 Scheffé’s Test Calculation Example

Figure B.7: Scheffé’s test calculation example.
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B.3 Set-based Measures Calculation Example

Figure B.8: Set-based measures calculation example.
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Appendix C

Additional Experimental Results

Using Cosine, Jaccard, and

Overlap Similarity Measures

C.1 Additional NBD Results

News block detection (NBD) accuracy training and testing results of N-EXT

with TR-Block and ENG-Block datasets using other similarity measures (Cosine,

Jaccard, and Overlap) are given below.
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HHH
HHk

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.901 0.907 0.911 0.916 0.920 0.925 0.930 0.924 0.919 0.913 0.905
2 0.899 0.905 0.909 0.916 0.923 0.927 0.932 0.929 0.925 0.918 0.910
3 0.902 0.904 0.907 0.911 0.920 0.923 0.926 0.929 0.927 0.921 0.912
4 0.895 0.903 0.906 0.909 0.911 0.915 0.921 0.919 0.917 0.912 0.906
5 0.908 0.910 0.914 0.918 0.920 0.925 0.925 0.922 0.919 0.914 0.911
6 0.902 0.908 0.910 0.915 0.921 0.928 0.929 0.927 0.923 0.920 0.913
7 0.906 0.908 0.911 0.913 0.917 0.921 0.927 0.924 0.920 0.915 0.908
8 0.901 0.905 0.909 0.912 0.914 0.921 0.925 0.929 0.923 0.920 0.914
9 0.900 0.904 0.907 0.912 0.916 0.921 0.922 0.921 0.916 0.915 0.910
10 0.904 0.910 0.915 0.919 0.923 0.927 0.932 0.930 0.927 0.926 0.918

Avg. 0.902 0.906 0.910 0.914 0.918 0.923 0.927 0.925 0.922 0.918 0.911

a) NBD accuracy training results.
HHH

HHk

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.87 0.88 0.89 0.89 0.91 0.92 0.93 0.92 0.91 0.91 0.89
2 0.85 0.87 0.88 0.89 0.91 0.91 0.93 0.91 0.90 0.90 0.88
3 0.86 0.87 0.89 0.90 0.90 0.91 0.92 0.93 0.91 0.91 0.90
4 0.85 0.87 0.88 0.90 0.91 0.91 0.92 0.90 0.89 0.88 0.87
5 0.85 0.87 0.88 0.88 0.90 0.91 0.91 0.90 0.88 0.87 0.87
6 0.87 0.89 0.91 0.91 0.91 0.92 0.93 0.92 0.90 0.89 0.88
7 0.88 0.90 0.90 0.90 0.91 0.91 0.93 0.91 0.91 0.90 0.89
8 0.86 0.87 0.89 0.89 0.91 0.92 0.92 0.92 0.90 0.90 0.88
9 0.87 0.88 0.90 0.90 0.91 0.92 0.92 0.91 0.90 0.89 0.87
10 0.89 0.90 0.91 0.91 0.91 0.93 0.94 0.93 0.91 0.90 0.88

Avg. 0.865 0.880 0.893 0.897 0.908 0.916 0.925 0.915 0.903 0.895 0.881

b) NBD accuracy testing results.

Table C.1: News block detection (NBD) accuracy training and testing results of
N-EXT with TR-Block dataset (without hyperlink texts) using Cosine similarity
measure and 10-fold cross-validation.
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HHH
HHk

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.919 0.926 0.933 0.941 0.945 0.953 0.961 0.952 0.944 0.933 0.924
2 0.923 0.931 0.936 0.939 0.947 0.954 0.958 0.947 0.939 0.930 0.921
3 0.922 0.929 0.935 0.938 0.943 0.948 0.950 0.952 0.943 0.932 0.925
4 0.918 0.923 0.935 0.941 0.945 0.949 0.956 0.945 0.938 0.929 0.919
5 0.921 0.925 0.934 0.938 0.947 0.954 0.954 0.948 0.944 0.935 0.924
6 0.922 0.933 0.937 0.944 0.950 0.955 0.962 0.953 0.944 0.936 0.926
7 0.917 0.925 0.933 0.942 0.950 0.954 0.959 0.946 0.938 0.929 0.920
8 0.923 0.930 0.934 0.939 0.946 0.952 0.955 0.954 0.946 0.935 0.924
9 0.918 0.924 0.931 0.938 0.947 0.952 0.952 0.954 0.945 0.938 0.929
10 0.920 0.925 0.933 0.942 0.948 0.956 0.963 0.954 0.944 0.931 0.922

Avg. 0.920 0.927 0.934 0.940 0.947 0.953 0.957 0.951 0.943 0.934 0.923

a) NBD accuracy training results.
HHH

HHk

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.90 0.91 0.92 0.92 0.94 0.94 0.96 0.94 0.94 0.92 0.91
2 0.91 0.92 0.92 0.94 0.94 0.95 0.96 0.95 0.94 0.92 0.90
3 0.90 0.91 0.92 0.92 0.92 0.94 0.95 0.96 0.94 0.93 0.91
4 0.90 0.91 0.93 0.93 0.93 0.94 0.95 0.93 0.93 0.92 0.90
5 0.89 0.90 0.92 0.92 0.93 0.93 0.94 0.93 0.93 0.91 0.90
6 0.90 0.91 0.93 0.93 0.95 0.95 0.96 0.95 0.94 0.92 0.92
7 0.90 0.91 0.92 0.92 0.94 0.94 0.96 0.96 0.94 0.92 0.90
8 0.89 0.90 0.91 0.93 0.93 0.94 0.95 0.94 0.92 0.92 0.90
9 0.90 0.90 0.92 0.92 0.93 0.94 0.94 0.92 0.92 0.92 0.91
10 0.92 0.92 0.93 0.93 0.94 0.94 0.96 0.95 0.93 0.92 0.90

Avg. 0.901 0.909 0.922 0.926 0.935 0.941 0.953 0.943 0.933 0.920 0.905

b) NBD accuracy testing results.

Table C.2: News block detection (NBD) accuracy training and testing results of
N-EXT with TR-Block dataset (without hyperlink texts) using Jaccard similarity
measure and 10-fold cross-validation.
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HHH
HHk

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.922 0.928 0.936 0.940 0.909 0.915 0.919 0.951 0.942 0.929 0.918
2 0.919 0.926 0.937 0.941 0.949 0.958 0.967 0.950 0.949 0.924 0.912
3 0.925 0.929 0.939 0.941 0.952 0.954 0.955 0.957 0.948 0.932 0.921
4 0.923 0.926 0.937 0.943 0.950 0.954 0.961 0.952 0.947 0.930 0.922
5 0.921 0.925 0.934 0.938 0.947 0.955 0.954 0.952 0.946 0.931 0.924
6 0.923 0.932 0.939 0.946 0.954 0.958 0.969 0.959 0.948 0.938 0.928
7 0.924 0.927 0.935 0.943 0.949 0.955 0.963 0.951 0.942 0.929 0.918
8 0.924 0.931 0.938 0.942 0.944 0.951 0.953 0.956 0.947 0.933 0.925
9 0.923 0.926 0.938 0.945 0.949 0.952 0.954 0.955 0.946 0.939 0.931
10 0.925 0.929 0.936 0.945 0.947 0.956 0.968 0.953 0.944 0.927 0.920

Avg. 0.923 0.928 0.937 0.942 0.949 0.955 0.961 0.954 0.946 0.931 0.922

a) NBD accuracy training results.
HHH

HHk

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.85 0.87 0.88 0.89 0.90 0.90 0.91 0.89 0.88 0.86 0.86
2 0.85 0.86 0.88 0.88 0.88 0.90 0.91 0.89 0.89 0.87 0.85
3 0.85 0.87 0.87 0.88 0.89 0.89 0.90 0.90 0.88 0.86 0.85
4 0.84 0.86 0.86 0.88 0.90 0.90 0.91 0.90 0.89 0.87 0.87
5 0.85 0.87 0.87 0.88 0.88 0.90 0.90 0.88 0.87 0.86 0.84
6 0.84 0.86 0.87 0.87 0.89 0.90 0.92 0.91 0.90 0.88 0.87
7 0.85 0.86 0.86 0.88 0.88 0.89 0.91 0.89 0.89 0.87 0.86
8 0.86 0.86 0.88 0.89 0.91 0.91 0.92 0.90 0.90 0.88 0.87
9 0.85 0.85 0.87 0.88 0.90 0.90 0.91 0.90 0.89 0.88 0.88
10 0.84 0.85 0.87 0.89 0.91 0.91 0.93 0.92 0.90 0.90 0.89

Avg. 0.848 0.861 0.871 0.882 0.894 0.900 0.911 0.898 0.889 0.873 0.864

b) NBD accuracy testing results.

Table C.3: News block detection (NBD) accuracy training and testing results of
N-EXT with TR-Block dataset (without hyperlink texts) using Overlap similarity
measure and 10-fold cross-validation.
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HHH
HHht

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

With Hyperlink
Texts

0.75 0.76 0.76 0.77 0.77 0.79 0.80 0.79 0.77 0.77 0.76

Without Hyper-
link Texts

0.83 0.84 0.85 0.85 0.87 0.88 0.89 0.87 0.87 0.86 0.84

Table C.4: News block detection (NBD) accuracy results of N-EXT with ENG-
Block dataset using Cosine similarity measure.

HHH
HHht

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

With Hyperlink
Texts

0.77 0.78 0.79 0.79 0.80 0.80 0.82 0.80 0.80 0.78 0.78

Without Hyper-
link Texts

0.86 0.86 0.88 0.88 0.89 0.89 0.91 0.90 0.88 0.88 0.87

Table C.5: News block detection (NBD) accuracy results of N-EXT with ENG-
Block dataset using Jaccard similarity measure.

H
HHHHht

β β Values
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

With Hyperlink
Texts

0.72 0.74 0.75 0.75 0.75 0.77 0.77 0.76 0.76 0.75 0.73

Without Hyper-
link Texts

0.81 0.83 0.83 0.83 0.84 0.85 0.86 0.85 0.84 0.84 0.83

Table C.6: News block detection (NBD) accuracy results of N-EXT with ENG-
Block dataset using Overlap similarity measure.
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Approaches
Datasets Only Similarity Size & Similarity Only Size

(β = 0) (β = 0.6) (β = 0)

Turkish
with hyperlink texts 0.802 0.831 0.805
w/o hyperlink texts 0.865 0.925 0.881

English
with hyperlink texts 0.750 0.800 0.760
w/o hyperlink texts 0.830 0.890 0.840

Table C.7: Summary of the news block detection (NBD) accuracy results of N-
EXT with TR-Block and ENG-Block datasets using Cosine similarity measure.

Approaches
Datasets Only Similarity Size & Similarity Only Size

(β = 0) (β = 0.6) (β = 0)

Turkish
with hyperlink texts 0.815 0.849 0.809
w/o hyperlink texts 0.901 0.953 0.905

English
with hyperlink texts 0.770 0.820 0.780
w/o hyperlink texts 0.860 0.910 0.870

Table C.8: Summary of the news block detection (NBD) accuracy results of N-
EXT with TR-Block and ENG-Block datasets using Jaccard similarity measure.

Approaches
Datasets Only Similarity Size & Similarity Only Size

(β = 0) (β = 0.6) (β = 0)

Turkish
with hyperlink texts 0.792 0.824 0.799
w/o hyperlink texts 0.848 0.911 0.864

English
with hyperlink texts 0.720 0.770 0.730
w/o hyperlink texts 0.810 0.860 0.830

Table C.9: Summary of the news block detection (NBD) accuracy results of N-
EXT with TR-Block and ENG-Block datasets using Overlap similarity measure.
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C.2 Additional NCE Results

News Websites
Similarity Measures

Average
Cosine Dice Jaccard Overlap

CNN Türk 0.890 0.915 0.911 0.884 0.900
Milliyet 0.886 0.906 0.902 0.888 0.896
Sabah 0.887 0.912 0.908 0.891 0.899
Samanyolu 0.901 0.915 0.910 0.895 0.905
Star 0.906 0.921 0.919 0.903 0.912
Yeni Şafak 0.902 0.914 0.911 0.901 0.907
Zaman 0.904 0.914 0.909 0.899 0.906

Average 0.897 0.914 0.910 0.894 0.904

Table C.10: Average F-measure values for different news websites without using
stemming.
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