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ABSTRACT

A TEMPLATE-INDEPENDENT CONTENT
EXTRACTION APPROACH FOR NEWS WEB PAGES

Ahmet Yenicag
M.S. in Computer Engineering
Supervisor: Prof. Dr. Fazli Can
September, 2012

News web pages contain additional elements such as advertisements, hyperlinks,
and reader comments. These elements make the extraction of news contents a
challenging task. Current news content extraction (NCE) methods are usually
template-dependent. They require regular maintenance, since news providers
frequently change their web page templates. Therefore, there is a need for NCE
methods that extract news contents accurately without depending on web page
templates. In this thesis, a template-independent News content EXTraction ap-
proach, called N-EXT, is introduced. It first parses a web page into its blocks
according to the HTML tags. Then, it examines all blocks to detect the one that
contains the major part of the news content. For this purpose, it assigns weights
to the blocks by considering both their textual sizes and similarities to the news
title. For quantifying the importance of these two weight components, we use
the k-fold cross validation approach; and for assessing the impact of different
possible similarity measures, we use a one-way Analysis of Variance (ANOVA)
with a Scheffé comparison. The block with the highest weight is considered as
the news block. Our approach eliminates the sentences in the news block that
are not related to the news content by considering similarities of sentences to
the news block. Finally, it also examines other blocks to detect the rest of the
news content. The experimental results show the accuracy and robustness of our
method by using two test collections whose web pages are obtained from several

different news websites.

Keywords: Information extraction, news block detection (NBD), news content

extraction (NCE), news portal, web information aggregators, wrappers.
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OZET

HABER INTERNET SAYFALARI ICIN |
SABLON-BAGIMSIZ ICERIK CIKARTMA YONTEMI

Ahmet Yenicag
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Fazli Can
Eylil, 2012

Internet haber sayfalari, reklamlar, baglantilar, ve kullanici yorumlar: gibi fa-
zladan elemanlar icermektedirler. Bu elemanlar, haber iceriklerinin ¢ikartilmasini
zorlu kilmaktadirlar. Giiniimiizdeki haber icerigi cikartma (HIC) yontemleri
genellikle sablon bagimli olarak caligmaktadirlar. Haber saglayicilar, internet
sayfasi sablonlarin siklikla degistirdikleri i¢in, bu yontemler diizenli bakim gerek-
tirmektedirler. Bu nedenle, haber igeriklerini internet sayfasi sablonlarina bagimh
olmaksizin dogru bir sekilde ¢ikartabilecek HIQ yontemlerine gereksinim duyul-
maktadir. Bu tez caligmasinda, bir sablon bagimsiz haber igerigi cikartma
yontemi (N-EXT) onerilmigtir. N-EXT ilk olarak, bir haber sayfasimi HTML
etiketlerine gore bloklara ayrigtirir. Daha sonra haber igeriginin ¢ogunlugunu ya
da tamamini iceren blogu tespit etmek icin ayrigtirdigi tiim bloklari inceler. Bu
amagla, bloklara metinsel boyutlarini ve haber bagligina olan benzerliklerini goz
ontinde tutarak birer agirlik tahsis eder. Bu iki agirlik bilesenlerinin 6nemini be-
lirlemek i¢in k-kat ¢apraz dogrulama yaklagimi ve olasi farkli benzerlik 6l¢iilerinin
etkilerini degerlendirmek igin de tek yonlii varyans analizi (ANOVA) ve Scheffé
coklu karsilagtirma testi birlikte kullanilmigtir. En yiiksek agirliga sahip blok,
haber blogu olarak disiiniiliir. Haber blogu icerisinde yer alan fakat haber
icerigiyle ilgisi olmayan ciimleler, Onerilen yontem tarafindan haber bloguna
olan benzerlikleri degerlendirilerek haber blogundan elenir. Son olarak, onerilen
yontem olas1 haber igerigi kalintilarini tespit etmek icin, haber blogu digindaki
bloklar1 da inceler. Farkli haber sitelerinin internet sayfalarini iceren iki farkh
deney koleksiyonu tizerinde yapilan deneylerce, 6nerilen yontemin dogrulugu ve
dayanikliligi gosterilmistir.

Anahtar sézciikler: Bilgi gikartma, haber blogu tespiti (HBT), haber igerigi

gikartma (HIQ), haber portali, internet bilgi kiimeleyicileri, sarmalayicilar.
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Chapter 1

Introduction

1.1 Motivations

There is a dramatic increase in the amount of information on the web [1] and
news constitutes a significant part of it. PRC [2] and The Economist [3] indicate
that a large number of web users prefer reading news from news websites rather
than traditional printed media. Besides, almost all news websites use news RSS
(Rich Site Summary) feeds to distribute their news to the web users. RSS is an
XML-based web feed format for delivering frequently changing or updated web
contents such as news. It allows web users to keep track of the latest news as

soon as they are published.

Current news web pages usually contain three textual news content elements:
news title, news description, and news text. However, news web pages usually
contain other elements such as textual and visual advertisements, links to the
other websites or other web pages in the same news website, web page menus
and navigation bars, comment fields, and so on. General structure of a news web
page is shown in Figure 1.1: blocks labeled with letters A, B, and C are the
news content elements, such that block A is the title of the news, block B is the
description of the news, and block C is the text of the news; blocks D and H
represent the advertisements of the web page; block E is the field where readers

can write their comments about the news; and blocks F and G contain hyperlinks



to the other web pages and articles of the news website. Besides, although it is
not the interest of this thesis, block I is the media file of the news. (The interest
of this thesis is only textual contents of news.) These elements are not related
to the news content, but together with news content elements, they constitute
the template of a news web page that gives web users a more enhanced browsing
experience on that news website. On the other hand, these noises make news
web pages less structured and increase their heterogeneity and complicate the

extraction of news content from them.

1.2 Problem Statement

Extraction of news content from news web pages is an crucial and difficult task
[4]. As it is known and also confirmed by our bitter experience, it directly af-
fects the performance of information retrieval and various web mining modules
of news aggregators including indexing, ranking, web page clustering, classifica-
tion, summarization, duplicate detection, new event detection, topic tracking,
etc. The task that we undertake in this study follows our research group’s earlier
studies on information retrieval [5], new event detection and topic tracking [6],
novelty detection [7], text summarization [8] and duplicate detection [9]. We
employ the results of these studies and this current study in a coordinated way
for the implementation of a news aggregator [10] and [11]. If news content is
not extracted from news web page accurately, performance of the aforementioned
modules is negatively affected. The research presented in this study is a contribu-
tion in this direction: we use news content extraction (NCE) in our news portal,
called Bilkent News Portal [10], which uses RSS feeds to gather news web pages
from various different news websites, extracts news contents from these news web
pages, and displays the contents to the web users as it is seen in Figure 1.2.
Bilkent News portal also uses extracted news contents in web mining modules.
Thus, extracted news contents need to be noise-free so that performance of other
modules used in this portal is not negatively affected. The results of our study can
be used by other researchers and practitioners in their studies and information

aggregations systems.
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Figure 1.2: Main page of Bilkent News Portal.



1.3 Wrappers and Their Problems

Most of the traditional methods manually or automatically generate wrappers to
extract the news content from web pages. Wrappers perform web page content
extraction by recognizing the template of web pages. Liu [12] indicates that since
they are template-dependent, due to this property in general they only work for
the web pages that they are generated for. These approaches need to be trained
on a set of manually labeled samples before they can be used in the extraction
process. However, web pages of different news websites have different templates,
which require a modification in the approach or training for each different web
page template. But training the approaches for each different web page template
or modifying the approach with respect to any change in the template is costly,
inefficient, and most importantly not automatic. Therefore, an extraction method
needs to be robust and generic, such that it has to extract the news content

accurately without depending on the web page templates.

Han et. al [13] state that traditional wrapper-based web page content ex-
traction approaches need considerable maintenance to work properly for a long
period of time, which is a difficult and costly work, since templates change fre-
quently. Vadrevu et. al [14] specify that wrapper-based approaches also need
human intervention, since manually labeled web pages are required by these ap-
proaches to learn the template of websites. However, Arasu et. al [15] indicate
that human input is time consuming and error-prone. Additionally, some meth-
ods try to automatically detect the template of the news web pages; however,
these methods are less accurate if the number of web pages analyzed to detect
the template is not large enough [13]. Web page templates change frequently;
therefore, providing large number of pages to feed the template detection method

is mostly problematic.

1.4 Proposed NCE Approach: N-EXT

In this thesis, we propose an automatic template-independent web News content

EXTraction approach, called N-EXT, which uses blocking tags to parse a news



web page into blocks, and extracts the news contents from these blocks. The
major part of the news text is stored in one of the blocks, and it is referred to
as the news block. Detecting the news block in a template-independent content
extraction approach is a critical step in the extraction process. If the news block
is not detected correctly news content extraction accuracy decreases. Ziyi et. al
[16] uses largest block approach, which considers only number of words in blocks
to detect the news block. But our experiments show that this approach is not
accurate enough. For this purpose, we propose a news block detection (NBD)
approach, which assigns weights to blocks by considering both their textual size
and similarity to news title. The one with the highest weight is considered as
the news block. We use an HTML parser to generate Document Object Model
(DOM) tree of the web page, and treat all nodes represented with current blocking
tags as blocks rather than trying to detect the blocking tag of a web page as it is
done in the largest block approach. (The largest block approach determines the
frequencies of candidate blocking tags, <DIV> and <TABLE>, in a web page
and selects the one with the highest frequency as the blocking tag, and divides
the page into blocks according to the selected tag.) The experimental results
show that our proposed NBD approach outperforms the largest block approach

and can be used in practical environments due to its high NCE accuracy.

As will be illustrated in detail later, N-EXT first parses an HTML news
web page to identify its blocks according to the HTML tags. Then, it detects
the news block that contains the news content by ranking the web page blocks
according to both their textual size and similarity to the news title. It eliminates
the sentences in the news block that are not related to the news content by
calculating similarities of sentences to the news block. It examines other blocks

to detect the rest of the news content if any exists.

1.5 Research Contributions

In this study, we

e Propose an NCE method (N-EXT) that extracts news contents accurately



without depending on the web page templates, and does not require any

regular maintenance or human intervention,

e Demonstrate the robustness of our method by showing its sustained success

in different environments,

e Outperform the largest block approach by considering not only block size

but also block similarity to the news title,

e Show the positive impact of removing the hyperlink texts from blocks on
the detection of the news block,

e Show that stemming improves the content extraction accuracy,

e Provide an NCE test collection, which also incorporates an NBD compo-
nent, for news content extraction that we will share with other researchers;
to the best of our knowledge there is no previous standard NCE test col-

lection.

1.6 Overview of the Thesis

The rest of the thesis is organized as follows. Chapter 2 gives an overview about
existing content extraction approaches by categorizing them according to tech-
niques they use for content extraction. Chapter 3 provides background infor-
mation about this study. Chapter 4 introduces our proposed web NCE method
(N-EXT) in terms of the stages involved. Chapter 5 defines the measures that
will be used to evaluate the performance of the proposed NCE approach. Our
Turkish and English test collections are described in Chapter 6. Besides, the ex-
perimental results with their evaluations are also given in Chapter 6. Chapter 7
gives configuration information about Bilkent News Portal. Finally, we conclude

with a summary of our findings, and provide some future research pointers.



Chapter 2

Related Work

Chang et. al [4] consider the problem in a more general web page information
extraction (IE) point of view, provide a comprehensive survey, and indicate that
the extraction target of an IE task can be a relation of k-tuple (k is the number of
attributes in a record) or it can be a complex object with hierarchically organized
data. They compare IE systems in three dimensions: a) the "task domain”
that aims to explain why a system fails to handle some websites of particular
structures, b) the "automation degree” that aims to classify systems based on the
techniques used, and c¢) the ”technique used” that aims to measure the degree of

automation for such systems.

Until today, numerous researches have been done, and researchers tried to
find methods for extracting the information from web pages automatically, and
accurately. Earlier works were generally semi-automatic information extraction
approaches, which generate wrappers to extract information. Then, automatic
information extraction approaches have taken the place of these semi-automatic
approaches. In the following sections, an overview of existing semi-automatic
and automatic information extraction approaches is introduced. Summaries of
the approaches presented in the following sections are presented in Tables 2.1
and 2.2



2.1 Wrapper-based Approaches

Most of the traditional information extraction approaches manually or automati-
cally generate wrappers to extract news contents from web pages [12]. Wrappers
perform content extraction from web pages by recognizing templates of web pages.
Some of the existing information extraction approaches that generate wrappers
to extract contents from web pages are classified as semi-automatic, since they
need to be trained on a set of manually labeled samples before they can be used
in the extraction process. Although many of the wrapper-based approaches are

semi-automatic, there are also some automatic approaches.

Laender et. al [17] present a taxonomy, which is based on the methods used
by information extraction approaches to generate wrappers, and provide a quan-
titative analysis of them. They categorize existing manual, semi-automatic, and
automatic approaches into six groups with respect to the method they used for
wrapper generation: 1) declarative languages-based, 2) HTML structure analysis-
based, 3) Natural Language Processing (NLP)-based, 4) machine learning-based,
5) data modeling-based, and 6) ontology-based. In the following subsections, five

of these six groups are explained with details of their representative approaches.

2.1.1 Declarative Language-based Wrappers

Some programming languages, which are alternative to commonly used ones in
wrapper generation such as Java, are developed in purpose to help researchers
in generating wrappers. These languages are specific to the wrapper generation
task. One of the best known approaches, which use languages declared for wrap-
per generation, is WebOQL [18]. Other approaches that develop languages for
wrapper generation are Minerva [19], TSIMMIS [20], Jedi [21], and FLORID
22].

Arocena and Mendelzon [18] propose a query-like language, called WebOQL,
which is declared for extracting data from HTML web pages. WebOQL has two
main components: the data model and the query language. WebOQLs data model

considers the web as a graph of tree. It parses an HTML web page into a special



kind of ordered tree, called hypertree. Users can search a piece of information in
the hypertree by writing queries. WebOQL’s query language returns the result of
the query by navigating through the hypertree to locate the information queried.

2.1.2 HTML Structure Analysis-based Wrappers

HTML web pages have structural features such that they are organized by HTML
tags. Some of the information extraction approaches uses these structural fea-
tures of HTML web pages for generating wrappers to extract information. These
approaches parse HTML web pages into trees with respect to their HTML tags,
and generate extraction rules to detect templates of the web pages, such as Road-
Runner [23]. Some other approaches based on the structural features of HTML
web pages are W4F [24], and XWRAP [25].

Crescenzi et. al [23] propose an IE approach, called RoadRunner, which uses
the structural features of HTML web pages to automatically generate wrappers
for information extraction. A sample set of web pages from the same website are
compared to generate an extraction rule based on the differences and similari-
ties between them. Each extraction rule is generated for a specific website and
can deal with only HTML web pages of that website. Relevant information is

extracted from the HTML web pages using the generated extraction rules.

2.1.3 Natural Language Processing (NLP)-based Wrap-

pers

Some information extraction approaches use natural language processing (NLP)
techniques such as part-of-speech (POS) tagging to generate wrappers. These
approaches use NLP techniques to learn pattern-match extraction rules by gener-
ating semantic constraints that are used to detect the relevant information within
a document containing only textual information. RAPIER [26] is one of the most
popular IE approaches that use NLP techniques for wrapper generation. There
are also some other approaches that use NLP-based wrappers such as SRV, [27],
and WHISK [28].

10



Califf and Mooney [26] propose an IE approach, called RAPIER (Robust
Automated Production of Information Extraction Rules), which uses NLP tech-
niques to extract information from natural language documents that contain only
textual information written in natural languages. RAPIER requires a filled tem-
plate, which represents structure of the information to be extracted. It uses that
template to learn extraction pattern-match rules. Each extraction rule consists
of three parts: 1) a pre-filler pattern that specifies the text exactly before the
filler, 2) a pattern that specifies the actual slot filler, and 3) a post-filler pattern
that specifies the text exactly after the filler. Each pattern matches only a single
word or symbol from each document. Pattern-match rules extract the fillers from

the documents for the slots in the template.

2.1.4 Machine Learning-based Wrappers

Information extraction approaches, which use machine learning techniques for
wrapper induction, generate extraction rules to extract information similarly with
the approaches that use NLP techniques. Although, both techniques generate
delimiter-based extraction rules, which means they specify patterns exactly before
and after the text to be extracted in the document; however, approaches which use
machine learning techniques that rely on the features that specify the structure
of information to be extracted rather than the linguistic constraints NLP-based
approaches rely on. STALKER [29], WIEN [30], SoftMealy [31], and the
approach proposed by Zheng [32] are representatives of the approaches that use

machine learning techniques.

Muslea et. al [29] propose a wrapper induction approach, called STALKER,
which uses machine learning techniques to generate rules for IE. Before the rule
generation process, user needs to provide a labeled set of training samples by using
the graphical user interface (GUI) offered by the approach to mark up the relevant
information in the samples. GUI generates sequences of tokens which represent
the start rules (prefixes) of the information to be extracted from the marked
samples. STALKER generates an extraction rule from these generated sequences

of tokens. If sequences of tokens do not match with each other, which means
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samples do not share a common template, STALKER generate an extraction rule
for each pattern, and returns a set of extraction rules. These rules are used to

extract relevant information from the documents.

2.1.5 Data Modeling-based Wrappers

Some of the information extraction approaches generate a data model that rep-
resents the structure of the web pages or the plain text files from where relevant
data is extracted. Data modeling primitives, such as trees or lists, which consist
of nodes or elements that represent the structural components of the documents,
are used for generating the data model. After modeling the data source, these
approaches try to locate the relevant information in the model by generating
extraction patterns similarly with NLP-based and machine learning-based ap-
proaches. Approaches that adopt data modeling are NoDoSE [33] and DEByE
(34].

Adelberg [33] propose an IE approach, called NoDoSE (Northwestern Docu-
ment Structure Extractor), to extract information from documents by determining
their structures. NoDoSE requires labeled samples from users. Thus, it offers to
users a GUI, which is used to decompose the document to identify the data of
interest. Then, NoDoSE maps the decomposed document into a document tree.
Each node of the tree represents one of the structural components of the docu-
ment such as a record of a list, which holds the starting and ending offset values
indicating the portion of the document that corresponds to the relevant data.
NoDoSE infers the structure of the document from the tree, and extracts the

relevant data.
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IE Method ‘Work Degree of | Advantages Disadvantages
Automation
Declarative Arocena and | Manual .
language-based | Mendelzon (a) a.llows the representa- (a) user must examine the
wrapper approach (We- tion of objects with web pages and find the
bOQL) [18] structural variations HTML tags that sepa-
rate the objects of in-
terest
(b) require the user to ex-
ecute all the wrap-
per generation process
manually
(¢) works only for HTML
data sources
HTML struc- | Crescenzi et. | Automatic
ture analysis- | al approach (a) a.llows the representa- (a) works only for HTML
based wrapper (RoadRunner) tion of objects with data sources
23] structural variations (b) extraction rules gen-
(b) does not require any erated are specific to
user intervention, be- websites
sides providing sample
pages
(c) easy to use
NLP-based Califf and | Semi- . . .
wrapper Mooney automatic (a) good f.or information | (a) user  must provide
approach extraction from nat- training samples
(RAPIER) ural language docu- | (b) does not support ob-
[26] ments jects with structural
variations
Machine Muslea et. | Semi- . X
learning-based al approach | automatic (a) requires fewer samples | (a) user must provide la-
wrapper (STALKER) (b) a.llows the r.epresen.ta— beled gamples
[29] tion of objects with | (b) extraction rules gen-
structural variations erated are specific to
(c) offers a GUI to users websites
for marking up the rel-
evant information in
the samples
Data modeling- | Adelberg Semi- .
based wrapper approach automatic (a) offers a GUI 1.30 users | (a) user must provide la-
(NoDoSE) [33] for decomposing the beled samples
samples
(b) allows the representa-
tion of objects with
structural variations
(c) supports a variety of
formats to output the
data extracted

Table 2.1:
proaches.

Overview of existing wrapper-based information extraction ap-
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2.2 Classifier-based Approaches

Supervised learning is another technique that is used for information extraction.
Some IE approaches treat the extraction problem as a classification task. Ap-
proaches that use supervised learning techniques generally depend on a classifier
such as Support Vector Machine (SVM) or Condition Random Fields (CRF).
These classifiers are trained on a set of samples before being used in the extrac-
tion process. Each part of a web page is classified as title, text, author, etc. by
classifiers by using structural or semantic features , and the parts that contain

relevant information are extracted from the web pages.

Ibrahim et. al [35] propose a supervised machine learning classification ap-
proach, which uses an SVM classifier to extract textual elements, titles and full
text, from news web pages. Proposed approach parses an HTML web page into
parts with respect to HTML tags (<DIV>, <TD>, <P>, and <BR>). Some
features, such as length of text, percentage of hypertext (the text bounded by
<a> tag), percentage of meta-script text (the text bounded by <meta> and
<script> tags), percentage of decoration text (the text bounded by <input>,
<select>, and <option> tags), and percentage of image, are extracted from
blocks, and each block is classified by using those features as a title, a full-text,
or other. Parts that contain relevant information, which means they are classified
as a title or a full-text, are extracted from the news web pages by the classifier

after training the classifier on a set of samples.

Besides, instead of SVM classifiers, some other proposed IE approaches, such
as [36], [37], and [38], use Conditional Random Fields (CRF) as classifiers for
the extraction process. In addition, Spengler et. al [39] compare support vector
machines (SVM) with conditional random fields (CRF) on a real-world web news

content extraction task.
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2.3 Heuristics-based Approaches

Rather than generating pattern-match extraction rules, some researchers define
various heuristics that are used to recognize the desired information in docu-
ments. Information extraction approaches, which use heuristics for extraction,
analyzes the web page or the document, and then extract the information from
these sources by filtering them with respect to the heuristics that they use. Dif-
ferent sets of heuristics are used for recognizing different kinds of information to
be extracted, such as text or image. Approaches proposed by Parapar and Bar-
reiro [40], and Gupta and Hilal [41] adopt defining and using content extraction
heuristics. Besides, Gottron [42] propose a system, called CombinE, to test and
evaluate combinations of various existing and newly described content extraction

heuristics.

Parapar and Barreiro [40] propose an IE system called, NewsIR, which recog-
nizes and extracts news content elements (news title, news body, and news image)
from news web pages by using the heuristics described by themselves. Different
sets of heuristics are proposed to identify different parts of a news document. To
detect if a web page is a news web page, and if it is a news web page, to identify
and extract the news body from that news web page, they propose a set of heuris-
tics, including that news are composed of paragraphs that are next to each other,
paragraphs are mostly text, and only styling markup and hyperlinks are allowed
in paragraphs, a low number of hyperlinks are allowed in paragraphs, and so on.
Furthermore, they also propose a set of heuristics, which utilize domain specific
characteristics, to detect news titles and news images, if they exist. According to
their heuristics, news title is mostly placed on the top of news body, and has a

special font style; and news image is placed after or inside the news body.

2.4 Relevance Analysis-based Approaches

Relevance between elements of web pages or documents, such as paragraphs,

sentences, etc., is used to detect the desired information in these data sources.
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In contradistinction to other traditional information extraction approaches, rel-
evance analysis-based approaches do not analyze web page layouts, which is a
time-costly work, before the extraction process. These approaches analyze the
full text of a web page only during the extraction to extract all relevant informa-
tion from that web page. Approaches proposed by Han et. al [13] and Wu et. al

[43] are the representatives of those that use relevance analysis for 1E.

Han et. al [13] proposed an IE approach based on relevance analysis. Pro-
posed approach first obtains the news title from an RSS feed. Then, it gets the
keyword list from the obtained news title. It uses the keywords in the list to
detect the position of the news title in the news web page. Then, it makes a full
analysis of the web page to detect all paragraphs of news content by using the
detected news title position and the keyword list, and extracts them from the

news web page.

2.5 Tree Edit Distance (TED)-based Approaches

HTML web pages have structures which can be easily represented by special trees,
such as Document Object Model (DOM) tree. Some of the information extrac-
tion approaches utilize the structural feature of HTML web pages by evaluating
the structural similarities between web pages of the same website. Tree Edit
Distance (TED), which is first introduced by Levenshtein [44], is the minimum
cost of transforming one tree into another by a sequence of operations consist-
ing of inserting new nodes, deleting and relabeling existing nodes. TED is used
to calculate structural similarities between web pages. A generic representation
is constituted for web pages that are structurally similar. Extraction patterns,
which detect and extract the desired information, are generated from the generic
representation of the web pages. Approaches proposed by Reis et. al [45] and

Lan [46] use TED-based information extraction.

Reis et. al [45] propose a domain oriented IE approach, which use structural

analysis of news web pages. Proposed approach map an HTML news web page
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into a special type of tree, called labeled ordered rooted tree. TED is used to cal-
culate structural similarities between labeled ordered rooted trees that represent
news web pages of the same website. During the calculations, a cost is assigned
to each of three operations: node removal, node insertion, and node replacement
in the tree. With respect to the TEDs calculates, similar web pages are gathered
into clusters that share common characteristics. Relying on the assumption that
news content elements have common formats and layouts, a generic representation
is constituted for each cluster to represent the structure of the web pages in that
cluster. Then, a special kind of extraction pattern, called node extraction pattern
(ne-pattern) is generated from the representation. The relevant information is

extracted from the trees using ne-patterns.

2.6 Visual Features-based Approaches

People gain some experiences during browsing web pages, and subconsciously use
these experiences while they are browsing other similar web pages. For instance,
when people are browsing news web pages, they seek the part of the web page that
contains news content by looking for some visual features of that part such as its
area is larger than other parts around it, there is bold-faced sentence or phrase at
the top of it, it consists of contiguous textual paragraphs, and so on. These visual
features help users to distinguish the part containing the news content from other
parts. Based on this idea, some information extraction approaches simulates how
a reader grasps a web layout structure based on his visual perception, and try
to utilize the visual features of web pages (layout, area size, font size and type,
etc.) to extract the desired information. Approaches proposed by Zheng et. al
[47] and Cai et. al [48] are representatives of those based on visual consistency

of web pages.

Zheng et. al [47] propose a news content extraction approach to easily detect
news contents by using visual consistency of news web pages. Proposed approach
first maps a web page into a visual block tree, in which each node represents a
rectangular area of that web page. During the mapping, instead of using HTML

tags, a set of visual features (position features: left, top; size features: width,
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height; rich format features: font size, font type; and statistical features: image
count, hyperlink count, paragraph count, etc.) are used to represent each part
in the web page. Then, proposed approach derives a composite visual feature,
which is stable enough to represent the domain-level visual consistency. Then,
it uses a machine learning technique (Adaboost [49]) to generate a vision-based
wrapper, called V-Wrapper, for extracting the desired information. V-Wrapper

is generated after training it on a set of manually labeled web pages.

2.7 Block-based Approaches

Some approaches use block-oriented structure of web pages for information ex-
traction. These approaches parse web pages into functional areas, called blocks,
with respect to some criteria, such as HTML tags. News web pages store infor-
mative contents into one or more of the blocks. However, web pages also contain
several non-informative contents, such as textual and visual advertisements, links
to other web pages, navigation bars, comment fields, etc. Hence, these approaches
try to detect the block that contains informative content by using different tech-

niques.

Debnath et. al [50] propose an approach to detect the content blocks in a
web page by looking for 1) blocks that do not occur a large number of times across
web pages, and 2) blocks with desired features (text, tag, list, and style sheet).
Similarly, also Ho and Lin [51] try to discover the informative content blocks in
a web page. But they detect them in another way as their proposed approach
calculates the entropy value based on the occurrence of each term in a block, and
dynamically selects the entropy threshold value, which determines either a block
is informative or redundant. Ziegler and Skubacz [52] propose an approach ,
which extracts the blocks that contain news content from HTML web pages by
computing linguistic and structural features for each block, and deciding whether
a block is a signal or noise. Shen and Zhang [53] propose a block-level links
based content extraction approach, which considers the web pages as continuous
block-level text, and detects the block that contains news content by ranking

blocks according to both their textual sizes and link counts.
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Ziyi et. al [16] propose a news content extraction approach based on blocking
tags. Proposed approach first detects the blocking tag of a web page by consid-
ering the occurrences of certain HTML tags, (<DIV> and <TABLE>). HTML
tag that occurred most times in the web pages is determined as the blocking tag
of that web page. Then, it divides that web page into the blocks and selects
the block with the highest textual size, which means the block that contains the
most number of words (terms), as the block containing news content. Finally, it
extracts the news content from the selected block. This study is the most similar

study to the study given in this thesis.

2.8 General Overview of Related Work

As mentioned earlier, existing content extraction approaches generally have some
disadvantages. The wrappers-based approaches mostly depend on the template
of the web pages, and for each different website, a wrapper is generated, which
is a costly work. Besides, most of these wrapper-based approaches require a
training stage or human intervention to manually label web pages. During the
training stage, if the training dataset is not large enough, as expected a less ac-
curate performance is obtained. On the other hand, extraction rules generated
by the approaches mentioned above are usually specific to a website, and they
need to be modified for different websites. Similarly, information extraction ap-
proaches other than wrapper-based ones also have some disadvantages: some of
them require manually labeled samples; some of them get less accurate results if
the provided samples are not comprehensive enough; some of them need regular
maintenance; and some of them require several threshold values for the selection
of visual features. Besides, detecting the block that contains the news content
cannot be achieved accurately enough with block-based approaches. However,
the approach proposed in this thesis is template-independent, and can be di-
rectly used for extracting contents of different websites without requiring any
maintenance or human intervention. Additionally, it can detect the block that

contains news content very accurately.
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IE Method

‘Work

Degree of
Automation

Advantages

Disadvantages

Classifier- Ibrahim et. al | Automatic . . .
based extrac- | approach [35] (a) high extraction accu- (a) less accurate if sam-
tion racy with adequate ples are not compre-
number of samples hensive enough
(b) appropriate for news | (b) no support for non-
web pages that do not HTML sources
follow proper DOM
tree standards
Heuristics- Parapar and | Atuomatic . . .
based extrac- | Barreiro (a) high precision and re- | (a) need regular mainte-
tion approach call values nance for wupdating
(NewsIR) [40] (b) detect news content heuristics
elements other than | (b) no support for non-
news body (news title HTML sources
and news image)
Relevance Han et. al ap- | Automatic . .
analysis-based proach [13] (a) high precision and re- | (a) no support for non-
extraction call values HTML sources
(b) no need for a full anal- | (b) news title itself is not
ysis of web page layout always dependable to
before extraction detect news content
paragraphs
TED-based ex- | Reis et. al ap- | Automatic . .
traction proach [45] (a) simple implementa- | (a) works only for struc-
tion tural data sources
(b) describes a new highly | (b) accuracy results are
efficient tree structure relatively low
Visual Zheng et. al | Automatic . . .
foatures-based approach [47] (a) easier wrapper main- | (a) requires too many
extraction tenance thresholds that needs
(b) good extraction per- to be trained
formance even with | (b) user must provide la-
structural diversity beled samples
Block-based Ziyi et. al ap- | Automatic L .
extraction praoch [16] (a) has a web news search | (a) considering only size

engine

(b) high extraction accu-
racy if the block that
contains news content
is correctly detected

during news block de-
tection is not accurate
enough

Table 2.2:

Overview of other existing
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Chapter 3

Background Information

3.1 Terminology

In the following, we define the basic components of news web pages.

Block: It is a small part of an HTML web page which is enclosed by blocking

tags. Each block may consist of other blocks or segments.

Block Node: It is the node in a DOM tree [54], which represents a block of
an HTML web page. Each block node may have block node children in a DOM

tree.

Blocking Tag: It is the HTML tag, <DIV> or <TABLE>, which is used
to separate the elements of a web page (such as advertisements, hyperlinks, and

textual contents) from each other.

Leaf Block Node: It is the block node which has no block node children in
a DOM tree. Leaf block nodes may have children nodes other than block nodes.

News Block: It is detected among all blocks within a news web page, which
generally contains major part of the news content, at least the news text. News
content elements other than the news text (news title and news description) may
also be placed in the news block, but depending on the template of a news web

page, these elements may also be placed in other blocks.
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News Node: It is a leaf block node which is selected as the node that

represents the news block among all leaf block nodes.

Segment: It is a small part of an HTML web page other than blocks, and
enclosed with HTML tags other than blocking tags such as <P>, <BR>, etc.

3.2 HTML News Web Pages and the DOM Tree

An HTML web page is organized by HTML tags including <DIV>, <TABLE>,
<P>, etc. HTML tags divide an HTML web page into smaller parts, called

blocks and segments. An example HTML news web page is shown in Figure 3.1.

As it is seen in Figure 3.1, there are totally seven blocks that are numbered
from 1 to 7, and three segments in the example news web page. The block number
5 in Figure 3.1 is the news block of that web page, since it contains news content
elements: the news description, and the news text. Although all news content
elements are placed in a single block in the example web page given in Figure

3.1, they may be placed in more than one block in other news web pages.

DOM represents an HTML web page as a tree structure. DOM uses HTML
tags of an HTML web page to define the tree structure of that web page. The
DOM tree generated from the example HTML news web page is shown in Figure
3.2. Each node in the DOM tree represents a block or a segment of that news
web page. News related elements are placed in one or more of these nodes. Nodes
that are numbered from 1 to 7 are block nodes, and among these nodes, 3, 4, 5,

6 and 7 are the leaf block nodes.

3.3 News RSS Feeds

RSS (Rich Site Summary) is an XML-based web feed format for delivering fre-
quently changing or updated web contents such as news. It allows web users to

keep track of the latest news as soon as they are published by news websites.
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Figure 3.1: An example HTML news web page divided into its blocks/segments.
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<HTML>

<HEAD> <BODY>

1 <DIv>

6 <DIv> 2 <DIV>

3 <biv> | 4 <DIv> | 5 <DIv> | 7/ <DIV>

<P> <P> <pP>

Figure 3.2: DOM tree generated from the example HTML news web page of
Figure 3.1.
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News RSS feed is a document, which consists of items each of which gener-
ally contains news title, brief description of the news, Uniform Resource Locator
(URL) link of the news, category of the news, and publication date of the news.
An example RSS feed is shown in Figure 3.3.

<category domain="http://www.nytimes.com/nhamespaces/">Histori
<category domain="http://www.nytimes.com/namespaces/">Murders
</item>
<item>
<title>A Distinctly British Show Cleoses Olympics</title>
<link>http://feeds.nytimes.com/click.phdo?i=6a2b0a9%9%feal7fcef
<pheedo:origLink>http://www.nytimes.com/2012/08/13/sports/oly
<guid isPermalink="false">http://www.nytimes.com/2012/08/13/s
<atom:link rel="standout" href="http://www.nytimes.com/2012/0
<media:content url="http://graphics8.nytimes.com/images/2012/
<media:credit>Chang W. Lee/The New York Times</media:credit>
<description>The host of the Summer Games capped a fortnight
<dc:creator>By DAVID SEGAL</dc:creator>
<pubDate>Mon, 13 Aug 2012 18:17:27 GMT</pubDate>
<category domain="http://www.nytimes.com/namespaces/keywords/
<category domain="http://www.nytimes.com/namespaces/keywords/
<category domain="http://www.nytimes.com/namespaces/keywords/
</item>
<item>
<title>THT Rendezvous: Olympic Politiecs: What Does It Mean fo
<link>http://feeds.nytimes.com/click.phdo?i=6d685735b37425c391

Figure 3.3: Example news RSS feed.

News websites that distribute their news via RSS feeds use different RSS feed

for each different news category such as business, politics, world, health, sport,
science, technology, magazine, and so on. Bilkent news portal [10] gathers news
of several different news categories from several Turkish news websites by using

news RSS feeds for each news category of these news websites.
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Chapter 4

The Method: N-EXT

N-EXT consists of six stages: 1) parsing news RSS feed to obtain title, publication
date, and URL link of the news, 2) parsing HTML news web page into blocks,
3) eliminating noises from blocks, 4) detecting the news block among all cleaned
blocks, 5) extracting the news content from cleaned news block, and 6) examining
other blocks to detect the rest of the news content if any exists. These stages are
further explained in detail in this section. General schema of N-EXT is shown in

Figure 4.1.

4.1 Stages of N-EXT

4.1.1 Parsing News RSS Feed

In this preprocessing stage, RSS feeds are parsed in order to get title, publication
date, and URL link of each news document. After obtaining the URL link of
a news document, HTML web page of the news document is downloaded from
that URL link to be used in the NCE process. Since news RSS feeds are updated
periodically, we prefer to collect news documents from news websites periodically.
At the beginning of every two hours, N-EXT first updates the RSS feeds of each
news website by re-downloading RSS feeds from their news websites, and repeats
the procedure: parses the updated RSS feeds, obtains the URL links of latest
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Figure 4.1: General schema of the proposed web NCE method (N-EXT).

news documents which are published in the previous two hours, and downloads
HTML web pages of news documents from the obtained URL links. A list of
Turkish news RSS feeds that are used by Bilkent News Portal is given in Table
A3

4.1.2 Parsing HTML Web Page

After downloading an HTML news web page, the web page is parsed into blocks
and segments as it is shown in Figure 3.1, and a DOM tree is generated from it,

shown in Figure 3.2, by using the Jericho HTML parser [55].

Jericho accepts an HTML web page as the input, parses the page using its
HTML tags, and generates its DOM tree as the output. After parsing an HTML
web page and generating its DOM tree, each node in the DOM tree has four kinds
of information: 1) the HTML tag identity that encloses the block or the segment
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it represents, 2) the text placed between HTML tags of the node, 3) its parent
node information, and 4) the list of its children nodes. By using the methods of
the Jericho HTML parser, N-EXT traverses the DOM tree generated from the
HTML web page in depth-first order [56] to detect leaf block nodes in the DOM
tree. In depth-first order, program starts from the root node and explores all

successor nodes in a branch before exploring other branches.

We observed that in most cases, each piece of information is placed separately
in the leaf block nodes, which represents the blocks that do not consist of any
nested blocks. Although leaf block nodes are the lowest level block nodes in a
DOM tree, they may consist of other segments. Segments do not contain any
of news content elements as a whole. They may contain only a small part of
them such as a paragraph of the news text. N-EXT aims to obtain the leaf block
nodes, which contain news content elements. So, N-EXT traverses the DOM tree
generated from the HTML web page and seeks the leaf block nodes in the DOM

tree.

N-EXT decides whether a node in a DOM tree is a leaf block node by looking
both HTML tag and children nodes of that node. Before searching the children
nodes of a node, N-EXT first examines the HTML tag of that node. If the HTML
tag of a node is one of the blocking tags, <DIV> or <TABLE>, N-EXT realizes
that it is a block node, and it starts to traverse all its successor nodes, i.e., all
nodes that are under the node itself in the DOM tree, to detect any nested block
nodes. If a block node does not have any successor block nodes, then it is labeled
as a leaf block node. After labeling a node as a leaf block node, N-EXT extracts

the text of that node, and keeps that information in a list.

At the end of this stage, N-EXT keeps a list of leaf block nodes in the DOM
tree along with the text placed between HTML tags of the nodes. Figure 4.2

demonstrates the detection process of leaf block nodes in a DOM tree.

4.1.3 Cleaning Blocks: Eliminating Noises from Blocks

After parsing the HTML web page and obtaining the leaf block nodes along with
the text placed between HTML tags of the nodes, all noises which could not be
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Figure 4.2: Demonstration of detecting leaf block nodes in a DOM tree.
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eliminated in the previous stage due to a list of reasons are eliminated from the
leaf block nodes in the cleaning stage, so that leaf block nodes contain only the

text information which may or may not be news related. The reasons are:

e The HTML parser that is used to generate DOM tree, the Jericho HTML
parser treats all HTML tags as a pair. For instance, if an HTML
block /segment is started with ”<a” tag, Jericho works with the rule that
it must end with ”/a>". But in HTML, there are some HTML tags which
do not obey this rule such as ”input”, “img”, "iframe”, and ”link”. These
HTML tags end with just ”/>", so Jericho accepts these tags as regular
texts, not HTML codes, and could not eliminate them in the previous stage.

Therefore, N-EXT eliminates these tags in the cleaning stage.

e Almost all news web pages contain hyperlinks, which are references to an-
other web pages. The size of the texts containing hyperlinks sometimes
becomes a problem, since N-EXT looks at the textual size of the blocks to
detect the news block. But, hyperlinks are not actually related to the news
content of the current news web page, they are only references to other web
pages. Therefore, N-EXT eliminates hyperlink texts, which are enclosed by
7<a>" tag, to get better news block detection (NBD) accuracy.

4.1.4 Detecting the News Block Using Block Weights

The largest block approach [16] picks the largest leaf block node that has the most
number of words. N-EXT keeps text content of each leaf block node. At this stage
the leaf block node with the most number of words can be selected as the news
node. Although this choice is usually correct, it fails when another block, which
contains other textual items (e.g., there can be several reader comments), contain
more number of words than the actual news block. To address this problem, we
assign a weight to each block and the one with the highest weight is selected as

the news block.

We calculate block weights by paying attention to the block size and block
similarity to the news title extracted from the RSS feed. - The use of similarity

in such cases has a basis in the well-known vector space model [57].- Although
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similarity of blocks to news description is more decisive (news descriptions contain
more information about news contents than that of news titles), but we still go
with the news titles since most RSS feeds do not contain news descriptions. We

calculate the block weight of block i (w;) using the formula (4.1).

S; stm;
.= 1— , 41
v (ﬁ . maxie{l,...,n}(si)) " (( B~ maXie{l,...,n}(Szmz’)) 1)

In the formula given above, s; is the size of block i in terms of number of words,
stm; is the similarity value of the block to the news title extracted from the
RSS feed, n is the number of blocks in the web page, and S is the "block weight
assignment coefficient” that controls the effect of size and similarity on the weight
assigned to the block. w; and S have a value between 0 and 1. We derive block
weight by first normalizing block size and similarity of block to news title, and

then assign weights to the normalized size and similarity values.

The similarity value calculation between blocks and news title is illustrated in
Figure 4.3. In this figure, we assume that there are two candidate blocks, Block
1 and Block 2, where only one of them will be selected as the news block. In
the same figure, "a, b, ¢, d, e¢” indicate the terms (stemmed words) that appear
in the news title and blocks (more information on similarity value calculation is

provided in the next section).

Before assigning a term frequency to each word, N-EXT first eliminates stop-
words, which are the most frequent words of a language and are not meaningful
alone but used for semantic integrity of sentences. Since these words exist fre-
quently in the sentences, they affect the term frequency assignment in an unre-
alistic way. Thus, N-EXT eliminates stopwords from all leaf block nodes. (In
the experiments, we use the union of two stopwords lists for Turkish [5] listed
in Table A.1, and the Snowball [58] stopwords list for English listed in Table
A2))

We use stemming in order to eliminate morphological variations of words and
to obtain terms. We use the Zemberek [59] and Porter [60] stemmer for Turkish

and English, respectively. Term frequency (actually relative term frequency) of
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1tz t3 XN 5 5
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Cosine Similarity (4 4) (4 4) (4 ) ( 4) = 0.500
(News Title & Block 2) Jzz 12 12 J12 12 22
1 Tz Tz XNz t1 *31

Figure 4.3: Example similarity calculation between candidate news blocks and

news title.

each term in blocks is calculated by using the formula n,/ng, where n, and ng

are, respectively, the frequency of the term and the total number of terms in the

block (we use a similar approach for the news title and sentences when needed).

4.1.5 Extracting Content of the News Block

In this step N-EXT tries to detect the news content related information in the

news block: the news block of a news web page may contain additional textual

information not related to the news content (such as advertisements). In this

context, N-EXT calculates the similarity value of the news block sentences to the

news block itself.
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CosineSimilarity(S, B) = —£= (4.2)

n
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=1

k=1

3
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DiceSimilarity(S, B) = k=l (4.3)

tf2 e+ Z tfis
k=1

k=1

NE

(tfs,k X tfb,k)

JaccardSimilarity(S, B) = — k=l — (4.4)
Z L+ thgk - Z (tfor X tfy)
k=1 k=1 k=1
(tfs,k X tfb,k)
OverlapSimilarity(S, B) = —=" (4.5)

min{) tf2> tfix}
k=1 k=1

In the formulas (4.2), (4.3), (4.4), and (4.5), k represents the current term, n is
the total number of terms in the news block, and tf is the term frequency assigned
to term k. Notations S and B are both vectors representing a sentence and a news
block, respectively. We treat each sentence in the news block as a query, and the
news block itself as a document, and use the similarity measures listed in the
formulas given above to calculate the similarity of each query to the document.
The similarity between a query and a document represents the similarity of a
sentence to the news block. An example for representing a document and its
sentences as vectors, and calculating similarities between them by using each of

four similarity measures is given in Figures B.1, B.2, B.3, B.4, and B.5.

After calculating the similarity value of each sentence to the news block, N-

EXT compares similarity values calculated with a threshold value t, which is
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calculated dynamically by taking the harmonic mean of similarity values of all
sentences in the news block. If the similarity value of a sentence is less than t,
then that sentence is treated as a noise, and eliminated from the news block.
Note that we use harmonic mean to calculate the threshold value that is used to
determine the relatedness of a sentence to the news content. The harmonic mean
gives a similar weight to each data in the set. It shows the central point of all
data in the set, and each data has an similar impact on the determination of the
central point, not relative to its value, so that an outlier affects the central point

like an ordinary data.

4.1.6 Detecting More Content in Other Blocks

N-EXT analyzes other leaf block nodes in addition to the selected news block
to detect additional news content related sentences. Note that some of the news
related elements, such as news description, may be placed in another leaf block
node. N-EXT analyzes the contents of these blocks sentence by sentence. Each
sentence is treated as a query and term frequencies are obtained sentence by
sentence. If the similarity value of a sentence is greater than the threshold value
detected at the previous step, that sentence is added to the extracted part. After
analyzing all other leaf block nodes sentence by sentence, N-EXT finishes the

news content extraction process.
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4.2 Pseudocode of N-EXT

Pseudocode of N-EXT is given in Algorithm 1.

Algorithm 1 N-EXT Algorithm
1: loop

2:  Update RSS feeds by re-downloading them.
3:  Parse RSS feeds to obtain nl titles and URL links of news web pages.
4:  Download n; HTML pages from URL links obtained.
5. for HI'ML Page No =1 to n, do
6: Parse HTML page into a DOM tree.
7 Traverse DOM tree to detect ny leaf block nodes.
8: for Leaf Block Node No =1 to ny do
9: Extract text from the leaf block node.
10: Eliminate noises from the extracted text.
11: Assign a weight to the block by considering textual size and similarity
to the news title of the cleaned text.
12: end for
13: Select the block with highest weight as the news block.
14: Extract news content related sentences from the news block.
15: Examine blocks other than the news block to detect rest of the news

content if any exists.
16:  end for
17: end loop
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Chapter 5

Evaluation Measures

5.1 NBD Evaluation Measures

We evaluate the news block detection performance of N-EXT by NBD Accuracy,
which is the ratio of the number of true matches between manually labeled blocks
and the blocks detected by N-EXT to the number of all labeled blocks. As an
example, we have 100 sample web pages, and news blocks of all these 100 web
pages are manually labeled by us. Then, N-EXT performs NBD on these sample
web pages, and extracts the blocks detected as the news block from these web
pages. Then, we check how many of the extracted blocks are labeled, i. e., how
many blocks match with true news blocks. For instance, if 72 of 100 extracted
blocks are labeled, then NBD accuracy = 72/100. To sum up, NBD accuracy is
the ratio of total number of matched blocks to the number of all labeled blocks,

as given in Formula (5.1).

(5.1)

TNmatched blocks
NBDAccuracy = (M)

Nall labeled blocks
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5.2 NCE Evaluation Measures

News contents extracted from news web pages are compared to the contents of the
same web pages in the ground truth dataset to evaluate the NCE (news content
extraction) performance of N-EXT. Figure 5.1 illustrates the terms used during

comparisons.

True News Content

FN = False Negative

FP = False Positive

TP =True Positive

FP

Extracted News Content

Figure 5.1: Illustration of the terms used in the set-based measures.

In this figure, TP (True Positive) is the set of relevant words (tokens, a
relevant word is any word that appears in the ground truth version of the page)
extracted from web page; FP (False Positive) is the set of unrelevant words
extracted from web page; and FN (false negative) is the set of relevant words
that could not be extracted from web page. Additionally, terms FN and TP
together represents the true news content of a news web page, which is the set of
all relevant words, and FP and TP together represents the news content extracted
by N-EXT from new web page, which is the set of all extracted words. These
terms are used in the set-based measures: precision, recall, and the F-measure as
defined in the formulas (5.2), (5.3), and (5.4), respectively. In the formulas below,
|TP|, |FP|, and |F'N| represent the word counts in the sets. Measures given in
the formulas have values between 0 and 1, and 1 represents the best case [61]. A

demonstration for calculation of these set-based measures is given in Figure B.8

- |TP|
P = == 5.2
recision <|TP| 7P (5.2)
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7P|
= —""1 )
Recal (\TP] PN (5.3)

(5.4)

F — measure — 2 x (Precision X Recall)

Precision + Recall

We use the F-measure value to evaluate the NCE performance of N-EXT.

5.3 Means Comparison Measures

To assess the impact of similarity measures on NBD accuracy, we perform a means
comparison using a one-way Analysis of Variance (ANOVA) with a Scheffé com-
parison [62]. ANOVA tests whether one or more sample means are significantly
different from each other. It is similar to the ¢-test, but they differ from each other,
since more than 2 groups can be tested simultaneously in ANOVA, whereas only

2 groups can be tested in t-test. Formulas given below are used to calculate

one-way ANOVA.

SS,0ra1 = (lez 1 2122 T ZITQ) _ (Zl"l + Zx;+ et Zxr) 5.5)
2 2 2
SSamong = (anfl> N (Znﬂ:2> - (anr) B <Z T + Zx;+ ot Zaw) (5.6)
stithin = SStotal - SSamong (57)
Afamong =7 — 1 (5.8)
dfwithin =N — 1 (5.9)
SS,
MSamon = 5.10
T (5:10)
SSwz'thm
" dfwithm ( )
MS,
F =7 5.12
Mswithin ( )

In the formulas given above, SS represents Sum of Squares value, MS repre-
sents Mean Square value, df represents Degrees of Freedom, x represents an indi-

vidual observation, r is the number of groups, N is total number of observations
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in all groups, and n is the number of observations in a group. A demonstration
for calculation of F score is given in Figure B.6. After calculating F score, it
is compared to the value given in F table for alpha = .05 [63]. If calculated F
score is bigger than the F score given in that table, then calculated F score is
statistically significant. If calculated F score is statistically significant, it only
indicates that at least two means are significantly different from each other, but
it can’t be known which mean pairs are significantly different from each other

until a post-hoc test.

If a significant difference is found among sample means, post hoc testing is
performed to determine which or how many sample means are different from
each other. There are some post hoc testing procedures such as Bonferroni test,
Duncan’s test, Tukey’s HSD test, and Scheffé’s test. Scheffé’s test is one of the
most popular of the post hoc tests. Scheffé’s test is generally used with unequal
sample sizes, although it can be used with samples with equal sizes. Formula

given below is used to calculate Scheffé’s test.

Fcritical = (k - 1) X Ftable (513)
M; — M;)?
F;= ( ) (5.14)
MSwithin X <ni + T%)

In the formulas given above, k is the number of means, Fj,,. is the value
given in F table for alpha = .05 [63], n;, and n; repsesent the sizes of samples i
and j, respectively; and M; and M; represent the mean values of samples i and j,
respectively. After calculating F scores for each pair of samples, each calculated
F; ; score is compared to calculated Fi,cq; value. Then, for example, if only one
of the calculated F scores is bigger than Fi iticq value, such that Fj 3, then the
means comparison between samples 1 and 3 is significantly different, but not the
other comparisons. A demonstration for calculation of Scheffé’s test is given in
Figure B.7
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Chapter 6

Experimental Environment and

Experimental Results

In this section, we present the experimental environment and experimental re-

sults.

6.1 Experimental Environment

6.1.1 Implementation

We implemented N-EXT in Java language using the Eclipse IDE Helios Service
Release 2"¢ version, and performed our experiments on a computer which has
an Intel Core 2 Quad Q9550@2.83 GHz CPU with 8 GB of main memory on
Windows 7 64-bit operating system.

6.1.2 Test Collections

We perform our experiments on a ground truth test collection that we created
during the course of this study. It consists of four components and they are

manually
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extracted textual content of 3,500 Turkish news web pages published in
2012 (TR-Text),

labeled blocks of 1,000 Turkish news web pages randomly chosen from TR-
Text dataset (TR-Block),

extracted textual content of 100 English news web pages published in 2012
(ENG-Text),

labeled blocks of ENG-Text dataset (ENG-Block).

News web pages of the TR-Text and TR-Block are gathered from seven popu-

lar Turkish news websites which regularly use RSS feeds to disseminate the latest

news:

CNN Tirk (http://www.cnnturk.com)
Milliyet (http://www.milliyet.com.tr)

Sabah (http://www.sabah.com.tr)

Samanyolu (http://www.samanyoluhaber.com)
Star (http://www.stargazete.com )

Yeni Safak (http://yenisafak.com.tr)

Zaman (http://www.zaman.com.tr)

We try to gather different kinds of news documents by choosing news docu-

ments from different news categories into the ground truth dataset to observe the

extraction performance of N-EXT over a wide variety of news documents. Since,

textual size of the news contents differs from news category to news category; for

example, economy, politics, and sport news web pages have larger textual sizes

than those of magazine and technology news web pages. The distribution of the

news documents among the news categories is listed in Table 6.1.

The news web pages of the ENG-Text and ENG-Block are from various news

categories and are obtained from five popular world-wide English news websites:

BBC News (http://www.bbc.com/news)
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Category News Websites
CN | ML | SB |[SM | ST | YS | ZM
Agenda 0 0 80 | 80 | 80 | &80 80
Economy 70 80 80 70 80 60 75
Life 30 25 | 40 | 60 0 60 80
Local 80 80 0 0 0 0 0
Magazine 65 80 60 40 80 | 40 45
Politics 0 75 0 70 | 70 | 60 30
Sport 95 80 80 | 80 | 80 | &80 90
Technology | 80 0 90 20 30 | 40 25
World 80 80 80 | 80 | 80 | 80 85
| Total | 500 | 500 | 500 | 500 | 500 | 500 | 500 |

Table 6.1: Distribution of news web pages to the news categories (CN=CNN
Turk, ML=Milliyet, SB=Sabah, SM=Samanyolu, ST=Star, YS=Yeni Safak,
ZM=Zaman).

e CNN (http://www.cnn.com)

e [ox News (http://www.foxnews.com)

e Los Angeles Times (http://www.latimes.com)

e The New York Times (http://www.nytimes.com)

The size of the English dataset is smaller since it is our secondary test collec-
tion; however, its use in our work is important since it enables us to demonstrate

that
e N-EXT is a language-independent NCE method,

e observations we had in one language are also applicable to another lan-

guages.

6.2 Experimental Results

Our experiments have two components: we first show that we successfully detect

the news block, and after that we show our success in news content extraction.
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6.2.1 News Block Detection (NBD) Results

We firstly evaluate the NBD performance of N-EXT and compare it with our
baseline, the largest block approach [16], and show that it outperforms the
baseline and is highly accurate. In the experiments, we use the TR-Block and
ENG-Block datasets. In the TR-Block experiments, we use the k-fold cross-
validation approach [64] for choosing the block weight assignment coefficient
(), which allocates importance to block size and similarity in the calculation of
block weights. In k-folding approach, we use 10 for k. During the experiments,
TR-Block dataset is partitioned into ten subsets, each having equal number of
news web pages (1000/10 = 100). For each of the ten experiments, nine of the
subsets are used for training, and one of the subsets is used for testing. We
repeat these experiments for each one of the four similarity measures used in the
calculation of block weights. Figure 6.1 demonstrates the k-fold cross validation

approach.

1-fold k-1 folds

1 Training Training
2 Mﬁaining Training

k | Training Training

Figure 6.1: K-fold cross-validation approach.

Table 6.2 gives the detailed NBD results obtained using TR-Block dataset
for different 8 values from 0.0 to 1.0 in the training and testing using the Dice
similarity measure in the calculation of block weights (in test results we give two

digits after the decimal point since in each fold we have 100 test cases). Besides,
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B B Values
k 00 [ 01 [ 02 ] 03] 04 05 ] 06 [ 07 [ 08709710
1 0.922 [ 0.928 [ 0.936 [ 0.940 | 0.949 | 0.955 | 0.963 | 0.951 | 0.942 [ 0.929 [ 0.918
2 0.919 [ 0.926 [ 0.937 [ 0.941 [ 0.949 | 0.958 | 0.967 | 0.950 | 0.949 [ 0.924 [ 0.912
3 0.925 [ 0.929 [ 0.939 [ 0.941 | 0.952 | 0.954 | 0.955 | 0.957 | 0.948 [ 0.932 | 0.921
4 0.923 [ 0.926 [ 0.937 [ 0.943 | 0.950 | 0.954 | 0.961 | 0.952 | 0.947 [ 0.930 [ 0.922
5 0.921 | 0.925 [ 0.934 [ 0.938 | 0.947 | 0.955 | 0.954 | 0.952 | 0.946 [ 0.931 [ 0.924
6 0.923 [ 0.932 [ 0.939 [ 0.946 | 0.954 | 0.958 | 0.969 | 0.959 | 0.948 [ 0.938 [ 0.928
7 0.924 [ 0.927 [ 0.935 [ 0.943 | 0.949 | 0.955 | 0.963 | 0.951 | 0.942 [ 0.929 [ 0.918
8 0.924 [ 0.931 [ 0.938 [ 0.942 [ 0.944 | 0.951 | 0.953 | 0.956 | 0.947 [ 0.933 [ 0.925
9 0.923 [ 0.926 [ 0.938 [ 0.945 | 0.949 | 0.952 | 0.954 | 0.955 | 0.946 [ 0.939 | 0.931
10 0.925 | 0.929 [ 0.936 | 0.945 | 0.947 | 0.956 | 0.968 | 0.953 | 0.944 [ 0.927 [ 0.920
[Avg.  [0.923]0.928 [ 0.937 [ 0.942 [ 0.949 [ 0.955 [ 0.961 | 0.954 [ 0.946 | 0.931 [ 0.922
a) NBD accuracy training results.
B B Values
k 00 [ 01 ] o02] 03[ 04[] 05] 06 [077] 087097 10
1 0.90 | 0.91 [ 0.92 [ 093 [ 094 | 0.95 | 0.96 | 0.95 [ 0.93 [ 0.93 | 0.92
2 0.91 | 092 | 0.94 [ 094 [ 095 | 0.96 | 0.97 [ 0.95 [ 0.94 [ 0.92 | 0.91
3 0.92 | 0.93 [ 0.94 [ 094 [ 094 [ 095 | 095 [ 0.96 [ 0.95 [ 0.93 | 0.92
4 0.90 | 0.92 [ 0.93 [ 094 [ 094 | 094 | 0.96 | 0.95 [ 0.94 [ 0.93 | 0.92
5 0.91 | 0.93 [ 093 [ 094 [ 094 [ 0.95| 0.95 | 0.95 [ 0.93 [ 0.93 | 0.92
6 0.91 | 0.93 | 0.94 [ 095 [ 095 | 0.96 | 0.97 | 0.96 [ 0.95 [ 0.94 | 0.93
7 0.92 | 0.92 [ 093 [ 094 [ 095 | 0.95 | 0.96 | 0.95 [ 0.94 [ 0.93 | 0.91
8 0.90 | 0.91 | 0.93 [ 094 [ 094 | 095 | 0.96 | 0.95 [ 0.94 [ 0.92 | 0.92
9 0.91 [ 0.92 [ 093 [ 094 [ 095 0.95 | 0.95 | 0.95 [ 0.94 [ 0.93 | 0.92
10 0.92 | 0.93 | 0.93 [ 094 [ 094 | 0.95 | 0.96 | 0.95 [ 0.94 [ 0.92 | 0.91
[Avg. 0910 ] 0.922 [ 0.932 [ 0.940 | 0.944 | 0.951 [ 0.959 [ 0.952 | 0.940 | 0.928 [ 0.918 |

b) NBD accuracy testing results.

Table 6.2: News block detection (NBD) accuracy training and testing results of
N-EXT with TR-Block dataset (without hyperlink texts) using Dice similarity
measure and 10-fold cross-validation.

Tables C.1, C.2, and C.3 give detailed NBD results obtained on TR-Block
dataset using other similarity measures (Cosine, Dice, and Jaccard) with the

Ssalimne parameters.

As it is seen in Table 6.2, in most cases, we obtained the best NBD accuracy
when § = 0.6 in training and testing. Besides, the other similarity measures also
give the best NBD accuracy in most cases when § = 0.6. For brevity we only

show the detailed results for the Dice similarity measures.

Table 6.3 shows the NBD accuracy test results using the TR-Block dataset
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K Similarity Measures
Cosine | Dice | Jaccard | Overlap

1 0.93 0.96 0.96 0.91
2 0.93 0.97 0.96 0.91
3 0.92 0.95 0.95 0.90
4 0.92 0.96 0.95 0.91
5 0.91 0.95 0.94 0.90
6 0.93 0.97 0.96 0.92
7 0.93 0.96 0.96 0.91
8 0.92 0.95 0.95 0.92
9 0.92 0.95 0.94 0.91
10 0.94 0.97 0.96 0.93

| Average | 0.925 [0.959 | 0.953 | 0.911 |

Table 6.3: News block detection (NBD) accuracy testing results of N-EXT with
TR-Block dataset (without hyperlink texts) using different similarity measures
in the calculation of weight of a block when g = 0.6.

for all similarity measures with 8 = 0.6. The results show that we obtain the best
NBD accuracy using the Dice similarity measure. Since we are comparing the
NBD means (average values) of four similarity measures, we should do a means
comparison using a one way ANOVA with a Scheffé comparison [62]. The test
shows that the means of NBD results obtained by using the Cosine, Dice, Jaccard,
and Overlap measures are significantly different at p < 0.05; only exception is the
Dice and Jaccard similarity measures, i.e., they do not have significantly different
means. Although Dice and Jaccard are not statistically significantly different, we

prefer Dice since it gives the highest average NBD accuracy in the tests.

Our NBD approach performs best when 8 = 0.6 as it is seen in Table 6.2.
The value of g is the only coefficient that needs to be determined by training.
Table 6.4 gives the detailed NBD results obtained using ENG-Block dataset
for different S values from 0.0 to 1.0 in the training and testing using the Dice
similarity measure in the calculation of block weights. Additionally, Tables C.4,
C.5, and C.6 give detailed NBD results obtained on ENG-Block dataset using
other similarity measures (Cosine, Dice, and Jaccard) with the same parameters.
The test results given in Table 6.4, arguably show that N-EXT detects the news
blocks most accurately when g = 0.6 as suggested by the results based on the
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B B Values
ht 0.0 | 0.1 0.2 | 0.3 | 04 | 0.5 0.6 0.7 | 0.8 | 0.9 1.0
W.H. T.! 0.77 1 0.78 | 0.79 | 0.79 | 0.80 | 0.80 | 0.82 | 0.81 | 0.80 | 0.79 | 0.79
W/O.H. T.' [0.88]0.88] 089 [ 0.91 091 [091]0.92]0.91]0.8 | 088 | 0.87

Table 6.4: News block detection (NBD) accuracy results of N-EXT with ENG-
Block dataset using Dice similarity measure.

Approaches
Datasets Only Similarity | Size & Similarity | Only Size (Baseline)
(B=0) (B =0.6) B=1)

. with hyperlink texts 0.818 0.856 0.809
Turkish w/o h;g)erlink texts 0.910 0.959 0.918
English with hyperlink texts 0.770 0.820 0.790

w/o hyperlink texts 0.880 0.920 0.870

Table 6.5: Summary of the news block detection (NBD) accuracy results of N-
EXT with TR-Block and ENG-Block datasets using Dice similarity measure.

TR-Block dataset.

Summary of the NBD results obtained in the experiments is provided in
Table 6.5. The experimental results show that our NBD approach outperforms

the baseline in both languages.

6.2.1.1 Additional Observations Based on NBD Experiments

It is observed that our approach have difficulty in detecting the news block when
the textual size of news is comparatively smaller than the other elements of web
pages, especially hyperlink texts. This deteriorates the NBD effectiveness. On the
other hand, hyperlink text percentage of news contents is less than one percent
of the entire text we extract from news. Hence deleting hyperlink texts is a
negligible loss in content extraction. The experimental results given in Tables
6.4 and 6.5 show that cleaning hyperlink texts improves the NBD performance
of N-EXT. Accordingly the NCE experiments presented in the next subsection

are also performed after deleting hyperlinks.

The experimental results given in Table 6.5 also demonstrate that NBD with
the Turkish dataset has a higher accuracy than that of the English dataset. After

'W. H. T = With Hyperlink Texts, W/O. H. T = Without Hyperlink Texts
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examining both Turkish and English datasets, we conclude that the reason of the
difference in the detection accuracy is due to higher heterogeneity of English news
web pages. Because of that, the detection of the news block is negatively affected;

however, note that the decrease is small.

6.2.2 News Content Extraction (NCE) Results

Average F-measure values obtained in the NCE experiments performed on the
TR-Text dataset is given in Table 6.6. We observe the highest average F-measure

values with the Dice similarity measure.

Datasets | Stemming Similarity Measures

Cosine | Dice | Jaccard | Overlap
Turkish With Stemming 0.908 | 0.922 0.917 0.902
Without Stemming | 0.897 | 0.914 0.910 0.894
English With Stemming 0.886 | 0.907 0.902 0.874
Without Stemming | 0.880 | 0.899 0.893 0.868

Table 6.6: Average F-measure values for news content extraction (NCE) using
TR-Text and ENG-Text datasets.

Moreover, when we perform the NCE experiments on the ENG-Text dataset,
we obtain slightly better performance with stemming. Like that of the TR-Text
dataset, we again obtain the best performance with the Dice similarity measure
in the ENG-Text dataset.

In the NCE experiments, we observe that the experiments done on the Turk-
ish dataset obtain higher F-measure values than those of the English dataset.
This is again due to higher heterogeneity of the English news web pages: the

heterogeneity of pages complicates the extraction.

Additionally, Table 6.7 details the average F-measure values obtained with
using stemming in the experiments performed on the TR-Text dataset. These
results show that NCE accuracy shows variation among news websites. Average
values in the table demonstrate that NCE is slightly more accurate for the news
web pages of Star, Yeni Safak, and Zaman since these websites store all news

content elements only in one block; however, in the other websites news content
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. Similarity Measures
News Websites Cosine | Dice | Jaccard | Overlap Average
CNN Tirk 0.902 | 0.927 0.919 0.895 0.911
Milliyet 0.901 | 0.909 0.907 0.897 0.904
Sabah 0.901 | 0.912 0.910 0.899 0.906
Samanyolu 0.907 | 0.915 0.912 0.902 0.909
Star 0.918 | 0.938 0.926 0.908 0.923
Yeni Safak 0.912 | 0.929 0.924 0.905 0.918
Zaman 0.915 | 0.923 0.921 0.909 0.917
| Average | 0908 |0.922| 0917 | 0902 | 0913 |

Table 6.7: Average F-measure values for different news websites obtained with
using stemming.

elements are distributed among more than one block. Average F-measure values

obtained without using stemming are given in C.10

6.2.3 Multithreading Results

To analyze and evaluate the impact of multithreading on total extraction time
of N-EXT, we also implemented the multithreaded version of the stages except
the first stage of the news extraction process. We prefer using Single Instruction
Stream, Multiple Data Stream (SIMD) architecture [65], which has a single con-
trol unit that dispatches the same instruction to various processors (that work

on different data) demonstrated in Figure 6.2.

As seen from the model given in Figure 6.2, a control unit dispatches the
same instruction, which is extracting the news content from news web pages
in our example, to all processors including the one on which that control unit
executes. Then, each processor works on its own set of news web pages, and

extracts contents from them.

We prepared an additional dataset for multithread experiments by randomly
chosing 100 news pages from TR-Text dataset. In multithread experiments, we
compute total extraction time of extracting news contents from this additional
dataset for each thread count given to the multhreaded implementation of N-EXT

as a parameter. Tests for each thread count parameter are repeated for 10 times.
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Figure 6.2: A typical SIMD architecture.

Figure 6.3 shows the results of multithreading experiments, which are the mean

values of results obtained in those 10 experiments.
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Figure 6.3: Total extraction time VS. thread count.

As it is seen in Figure 6.3, total extraction time decreases obvioulsy until
selecting 4 as the thread count for the extraction process. Then, total extraction
time becomes nearly stable. After performing a one-way ANOVA with Scheffe’s
comparison to the mean values obtained for different thread counts, we observed

that
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e mean values obtained for thread count = 1 are significantly different

than mean values obtaine for thread count = 2,

e mean values obtained for thread count = 2 are significantly different

than mean values obtaine for thread count = 4,

e mean values obtained for thread count = 4 are not significantly different

than mean values obtaine for thread count = 8,

e mean values obtained for thread count = 8 are not significantly different

than mean values obtaine for thread count = 16.

As the comparison results show, we cannot gain any significant decrease in
total extraction time after selecting the thread count as 4. Main reason of this
is that the computer we are running our experiments have a CPU with 4 proces-
sors. When we select thread count parameter as 4, the processor assigned as the
dispatcher, dispatches a single thread to each of four processors. After analyzing
total load of an extraction process, we observed that N-EXT reserves approxi-
mately %90-95 of processor load during the extraction process. That much load
ratio does not cause any bottleneck for processor load. But, this condition changes
when we choose to divide the extraction process into 8 threads. This time, dis-
patcher dispatches 2 threads to each of four processors. When more than one
thread share a processor, load of that processor is divided into number of threads
using that processor. However, as we observed, N-EXT needs more than %90
of a processor load to work properly. Hence, a bottleneck for the processor load
occurs, which causes a latency in execution of instructions dispatched to each
processor. As a result, although total number of news pages being executed is
increased, total extraction time of each news pages also increases due to latency
occuring. Therefore, we could not gain any significant decrease in total extrac-
tion time for more than 4 threads. As a result, we select 4 as the thread count

parameter for the multithreaded implementation of N-EXT.
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Chapter 7

Bilkent News Portal

7.1 Configuration of Bilkent News Portal

As it is mentioned before, news content extraction (NCE) is used in our news
portal, called Bilkent News Portal [10], which uses RSS feeds to gather news
web pages from various different news websites, extracts news contents from these

news web pages, and displays the contents to the web users.

Configuration of Bilkent News Portal is demonstrated in Figure 7.1. As it
is seen in Figure 7.1, Bilkent News Portal has three main PCs: a dispatcher, a
PHP server, and a database server. All of these three PCs have Linux operating
system installed on themselves. Dispatcher is the only PC of Bilkent News Portal
that can be directly accessed over Internet. Secure Shell (SSH) [66] is used to
make a remote access to a Linux machine, since we use a free Telnet/SSH Client
tool, called PuTTY [67] to access the dispatcher. After accessing the dispatcher,
" ssh host_address” Linux command is used to make remote accesses to PHP and

database servers. IP configurations of these three PCS are listed on Table 7.1.

When a user opens one of the web browsers, and requests a connection to
Bilkent News Portal using " http://139.179.21.201/PortalTest/” address; the dis-
patcher directs the browser request to the PC on which PHP server is installed.
Then, PHP server PC displays Bilkent News Portal web pages to the user.
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Figure 7.1: Configuration of Bilkent News Portal.

Definition PC name Host Address
Dispatcher portal-alive | 139.179.21.201
PHP Server news-portall | 139.168.20.100
Database Server | news-portal2 | 139.168.20.101

Table 7.1: PC list of Bilkent News Portal.

Java programs, which perform basic operations such as news content extrac-

tion, topic tracking, novelty detection, etc., runs on the PC on which database

server is installed. The program proposed in this thesis, N-EXT) is the Java pro-

gram, which performs news content extraction. Firstly, it downloads HTML web

pages to the same PC on which it runs. Then, it extracts news contents from

those web pages, and inserts them into the news database. News contents stored

in that database is displayed to the user via PHP server.
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7.2 Deployment of N-EXT to the Portal

To deploy N-EXT to Bilkent News Portal, following steps are required:

e Use PuTTY [67] to make a remote access to ”139.179.21.201”, which is
the IP address of Bilkent News Portal’s dispatcher PC,

d” Kokokokokoskoko sk k k)

e Type "root” for login name an for password, and press ” EN-

TER” button,

e Use ”ssh” linux command to make another remote access from accessed
dispatcher (ssh 192.168.20.101),

o Type VHxHHRIIHRET for password, and press "ENTER” button,

e Change current directory to the directory that contain news extraction
source files (¢d /var/www/PortalTest/workspace CrawlerParse/RSSCrawlerParser/src/ ),

e Put related Java files (Parser.java) into this directory,
e Change current directory to another directory (cd /var/www/PortalTest/),

e Open "NewsPortal.sh” shell script file by using a text editor, such as ”vi”
(vi NewsPortal.sh),

e Edit the following command, which executes current Java file (Down-
load_News.java) that performs news extraction with respect to the changes

made in that file (java -cp ... Download News 4),

e To save the changes made, first press "ESC” button to enter into command
mode, and then type ”":w” and press "ENTER” button,

e Finally, to quit from the editor, first press "ESC” button to enter into
command mode, and then type ”:q” and press "ENTER” button.

e [f you want to quit without saving, first press "ESC” button to enter into

command mode, and then type ”:q!” and press "ENTER” button.

e To test the portal, connect to the IP address " hittp://139.179.21.201/PortalTest”,

which is the address of portal’s main page, from a browser.
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Chapter 8
Conclusion

Content extraction accuracy of news web pages is important since it directly
affects the performance of information retrieval and web mining modules of news
aggregators. In this thesis, we propose a template-independent content extraction
method (N-EXT) for news web pages. Our approach avoids the major problems
of template-based extraction methods, such as human intervention and regular
maintenance. Our method N-EXT examines all web page blocks to detect the
news block that contains the major part of the news content. For this purpose, we
assign weights to blocks using their size and similarity to news title. The block
with the maximum weight is selected as the news block. For quantifying the
importance of these two weight components and selecting a similarity measure
we use the k-fold cross validation approach and one way ANOVA with a Scheffé
comparison, respectively. We show that removing hyperlink texts and stemming
respectively improves the NBD (news block detection) and NCE (news content
extraction) accuracy. Besides, we also show that multithreading positively effects

total extraction time up to 4 threads.

We experimentally demonstrate the effectiveness of N-EXT on pages obtained
from several Turkish and English news websites. The experimental results show
that our method is robust and highly accurate and can be used in real life appli-
cations. In this study, we also provide an NCE test collection that we will share

with other researchers.
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In future work, our approach can be modified according to the needs of other
web information aggregators such as blog portals [68]. The extraction accuracy of
N-EXT may be further increased by using other similarity measures such as earth
movers distance (EMD) measure [69], or combining various measures together

to calculate similarity of sentences to the news block.
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Appendix A

Data

A.1 Stopwords Lists

To eliminate stopwords from the sentences, two stopwords list is used: one for
Turkish news, and another for English news. Turkish and English stopwords lists

consist of 217 and 221 words, respectively, listed below.
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acaba birsey demek her mu oysa simdi
alt1 birgeyi diger herkes mil oysaki s0yle
ama biz digeri herkese nasil obiiri su
ancak bize digerleri herkesi ne on suna
arada bizi diye hig neden once sunda
artik bizim dokuz higbiri nedir otiiri sundan
ayrica boyle dolay1 hicbirine neler Oyle sunlar
asla boylece | dolayisiyla | hicbirini nerde pek sunu
aslinda boylesi dort icin nerede peki sunun
az bu eger icinde nereden | ragmen tabi
bana budur elbette iki nereye sadece tamam
bazen buna en ile nesi sana | tarafindan
baz1 bunda fakat ilgili neyse sanki tlim
bazilar: bundan falan ise nicin sekiz timi
bazisi bunlar felan iste niye sen iig
belki bunlar: filan itibaren olan senden istelik
ben bunlarin gene kag olarak seni lizere
bence bunu gibi kadar oldukca senin var
beni bunun gore kendi olma Siz ve
benim burada hala kendine olmak sizden veya
beri biitiin halen kendini on size veyahut
bes cogu hangi ki ona sizi ya
bile goguna hangisi kim ondan sizin yalnizca
bir cogunu hani kime onlar son yani
bir¢cogu cok hatta kimi onlara sonra yapmak
bircok clinkii hem kimin onlardan | sayet yedi
bircoklari da hentiz kimisi onlar: sey yerine
biri daha hep kimse onlarin | seyden yine
birisi dahas1 hepsi madem onu seye yoksa
birkag de hepsine mi onun seyi zaten
birkagi degil hepsini mi orada seyler zira
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a did here like ourselves them we've
about didnt here’s long out themselves we’'d
above do hers made over then we'll

after does herself make own there wasn’t
again | doesn’t high many put there’s weren’t
against | doing him may said these won’t
all don’t | himself me same they wouldn’t
also down his might say they’d who’s
am during how more says they’ll what’s
an each how’s most second they’ve when’s
and even | however | must see they’re where’s
another ever he’s mustn’t seen this why’s
any every he’d my shall those while
are few he’ll myself should three with
arent first i never she’s through when
as five i’d no she to where
at for if nor she’d too why
back four i’ll not she’ll two very
be from i'm now shan’t under well
because | further in new shouldn’t until way
been get into of since up you
before 2o is off SO whether you’d
being goes isn’t old some we you'll
below had it on still what your
between | hadn’t its one such which you're
both has it’s once take who yours
but hasn’t itself only than whom yourself
by have i've or that was yourselves
can haven’t just other that’s were you've
can’t having least ought the will
cannot he less our their would
could her lets ours theirs we're

Table A.2: English stopwords list.
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A.2 Turkish News RSS Feeds List

Bilkent News Portal gathers news in several different categories from 8 most
popular Turkish news websites, which distribute frequently updated RSS feeds.
The list of Turkish news RSS feeds is given below.
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News Website Category URL of RSS Feed
Bilisim http://www.cnnturk.com/servisler /rss/bilim.teknoloji.rss
Diinya http://www.cnnturk.com /servisler/rss/dunya.rss
Ekonomi http://www.cnnturk.com/servisler/rss/ekonomi.rss
Hava Durumu | http://www.cnnturk.com/servisler /rss/havadurumu.rss
CNN Tiurk Kiltiir-Sanat | http://www.cnnturk.com/servisler /rss/kultur.sanat.rss
Saghk http://www.cnnturk.com/servisler/rss/saglik.rss
Spor http://www.cnnturk.com/servisler/rss/spor.rss
Tirkiye http://www.cnnturk.com/servisler/rss/turkiye.rss
Yasam http://www.cnnturk.com /servisler/rss/yasam.rss
Ana Sayfa http://rss.hurriyet.com.tr/rss.aspx?sectionld=1
Diinya http://rss.hurriyet.com.tr /rss.aspx?sectionld=2249
Ekonomi http://rss.hurriyet.com.tr/rss.aspx?sectionld=4
Hiirriyet Kiltiir-Sanat | http://rss.hurriyet.com.tr/rss.aspx?sectionld=13
Magazin http://rss.hurriyet.com.tr/rss.aspx?sectionld=2035
Saghk http://rss.hurriyet.com.tr /rss.aspx?sectionld=2208
Spor http://rss.hurriyet.com.tr/rss.aspx?sectionld=14
Diinya http://www.milliyet.com.tr/D /rss/rss/Rss_2.xml
Ekonomi http://www.milliyet.com.tr/D /rss/rss/Rss_3.xml
Saglik http://www.milliyet.com.tr/D/rss/rss/Rss_31.xml
Milliyet Siyaset http://www.milliyet.com.tr/D /rss/rss/Rss_4.xml
Spor http://www.milliyet.com.tr/D /rss/rss/Rss_6.xml
Teknoloji http://www.milliyet.com.tr/D /rss/rss/Rss_36.xml
Yagam http://www.milliyet.com.tr/D /rss/rss/Rss_5.xml
Diinya http://www.sabah.com.tr/rss/Dunya.xml
Ekonomi http://www.sabah.com.tr/rss/Ekonomi.xml
Gilindem http://www.sabah.com.tr/rss/Gundem.xml
Sabah Magazin http://www.sabah.com.tr/rss/Magazin.xml
Saghk http://www.sabah.com.tr/rss/Saglik.xml
Spor http://www.sabah.com.tr/rss/Spor.xml
Teknoloji http://www.sabah.com.tr/rss/Teknoloji.xml
Yasam http://www.sabah.com.tr/rss/Yasam.xml
Diinya http://www.stargazete.com/dunya.xml
Ekonomi http://www.stargazete.com/ekonomi.xml
Giincel http://www.stargazete.com/guncel.xml
Magazin http://www.stargazete.com/rss/magazin.xml
Star Politika http://www.stargazete.com/politika.xml
Saglk http://www.stargazete.com/rss/saglik.xml
Sanat http://www.stargazete.com/rss/sanat.xml
Spor http://www.stargazete.com/spor.xml
Teknoloji http://www.stargazete.com/rss/teknoloji.xml
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Biligim http://yenisafak.com.tr/rss/?xml=Dbilisim
Giindem http://yenisafak.com.tr/rss/?xml=gundem
Diinya http://yenisafak.com.tr/rss/?xml=dunya
Yeni Safak Elionf)mi http:// yen%safak.com.tr /rss/ Txml=ekonomi
Kiltiir-Sanat | http://yenisafak.com.tr/rss/?xml=kultursanat
Politika http://yenisafak.com.tr/rss/?xml=politika
Saglk http://yenisafak.com.tr/rss/?xml=saglik
Spor http://yenisafak.com.tr/rss/?xml=spor
Diinya http://rss.gazetevatan.com/rss/dunya.xml
Ekonomi http://rss.gazetevatan.com/rss/ekonomi.xml
Gilindem http://rss.gazetevatan.com /rss/gundem.xml
Vatan Magazin http://rss.gazetevatan.com/rss/magazin.xml
Siyaset http://rss.gazetevatan.com/rss/siyaset.xml
Spor http://rss.gazetevatan.com/rss/spor.xml
Teknoloji http://rss.gazetevatan.com /rss/teknoloji.xml
Yasam http://rss.gazetevatan.com/rss/yasam.xml
Aile-Saghk http://www.zaman.com.tr/aile.rss
Dis Haberler http://www.zaman.com.tr/dishaberler.rss
Ekonomi http://www.zaman.com.tr/ekonomi.rss
Zaman Gilindem http://www.zaman.com.tr/gundem.rss
Kiiltir-Sanat | http://www.zaman.com.tr/kultursanat.rss
Politika http://www.zaman.com.tr/politika.rss
Spor http://www.zaman.com.tr/spor.rss

Table A.3: Turkish news RSS feeds list.
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Appendix B

Calculation Examples

B.1 Similarity Calculation Examples

B.1.1 Vector Representations

IA_Il' aksam eve geg geldi.“Babam, Ali'nin eve gec gelmesine klzdl“A_Ii buna evde cok Uz'uldu.l

Sentence #1 Sentence #2 Sentence #3
Location '\ Term Ali aksam ey geg gel baba | gelme kiz azal
Document 3 1 3 2 1 1 1 1 1
Sentence #1 1 1 1 1 1 0 0 0 0
Sentence #2 1 0 1 1 0 1 1 1 0
Sentence #3 1 0 1 0 0 0 0 0 1

DocumentVector =[— — — — — — — — —
14 14 14 14 14 14 14 14 14

111110000

Figure B.1: Term frequency assignment and vector representation example.
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B.1.2 Cosine Similarity Calculation Example

Cos. Similarity (0.5, - B ) B B (D (3D D
JEmr @ @ B B BT T [ O O B2 D 9 O O

Cos. Smilarty (0.5, - Gl e G (e D))
1@+ @+ @+ DG+ G [+ Q2 O+ D+ D O+ D+ v

(B PG D EDEY (PG EDrcd s

Cos. Similarity (D, S;) = = - = = = = ——
(14)2+( g2+(§)2+(§)2+(ﬁ)2+(g)“(;)“(;)“(g)zw' (;)2+(%32+(§)2+ ;)2+(§)2+ 2)2+(5)2+(;)2+(;)2

Figure B.2: Calculation of the Cosine similarities of the example given in Figure
B.1.

B.1.3 Dice Similarity Example

1.0 10
2 j(-14 5) (EHS)]OZ =0.833

0
5
1 1 1
1 )+5 5 5 5 5+5+5 5 )

l
14 +l4 +14 +14- +l4 +14 1a 4

g o) (d) (i*l) Garg) G

12 6/ \14 6/ 12 &) \1a 126/ \14 6

z 12% 12 uz 2 12 12 o2 =0.846
12 )+ 6 '6 &

Dice Coefficient (D, S;) = (32 12 32 EarE

L M G

Dice Coefficient (D, S;]:(gz 12 37 22 12

11
1t Y Tttt o

1 1 0 i 9 1} 0 iﬁ i 1
oecotont 051 SO EEN GGG,
14 4

14 14 14 14 14 3yt t3)

Figure B.3: Calculation of the Dice similarities of the example given in Figure
B.1.
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B.1.4 Jaccard Similarity Example

Jaccard Index (D, 5,) =

3.1 1.1\, /3 .1\ (2 1y /1 1 1.0 1.0 1.0 1.0
(ﬁg5)+(14‘x5}+(14’*5}+(14)‘5}*—(l4”§)+(14x5}+(14x5)+(14)‘5}*—(14“5) =0.714
32 12 32 22 12 12 42 12 312y 12 42 12 32 42 o2 pZ ¢2 o2 31 11 31 2.1 11 1.0 1.0 1.0 10 -
(E i il i i vl il IR B ) () A i) G A ) B i) B ey A A G et
Jaccard Index (D, S;) =
3,1 O () () () (L) (e D (L) 4 (LD
{ﬁ E}+(E'e}+{14'6}+{14 5)+(14'5}+(14'e}+{14'6)+{14 5)+(14'e} -0.733
32 12 32 22 12 12 12 12 42 12 02 12 12 02 12 12 12 o2 3 1 10 3 1 2 1 10 11 11 11 10 "
(E TR T VIR v IR VIR VIR Y] )*(g tetetetetetete e )‘ (o) e Cvay i B ) A ey A Evar A Evie ) e A )
Jaccard Index (D, S3) =
3.1 1.0),(23.1\,/2.0 1.0 1.0 1.0 1.0 1.1
(E?}+(14?)+(14K3)+(14“3)"‘(14“3}"‘(14?)-'-(14-).‘3)-'—(14‘“3}-'-(14‘“3} -0.538
32 12 32 22 12 12 12 12 12 12 o2 12 p? 02 o2 o2 0% 12 31 1.0 3.1 2.0 1.0 1.0 10 10 1.1 )
(ﬁ e i i i i e T e e B e e ) o (G G ) e B o e e R e v e |

Figure B.4: Calculation of the Jaccard similarities of the example given in Figure
B.1.

B.1.5 Overlap Similarity Example

(3_1) (1 1) (3 1} (2_1} (1_1) (1 0) (1_0} (1_0) (1_0)

— = || —— || —— | —— || —— )| —— || —F—= || —E== | —=—

- 14 5/ \14 5/ " \1a 5/ \1a 5/ "\1e 5/ " \1e 5/ " \1a 5/ e 5/ e 5 -

Overlap Measure (D, Sy) = ) 12+L2 32 22 12 312 12 12 12\ (12 32 12 12 12 02 o2 02 @2 =1
14 12 14 14 12 14 14 14 14 stetssts s ts s

Overiap Messure (0,5 - PGV CEI GG GGG CD oo
f”(ﬁ FrIR VIR v IR VIR Vi v E)’(E s e s e st g)}

3 1), (L0, (3 1y, (2 Oy (1 0V (1 0) (1 0y (1.0y (11
OVerlap Measure (D, SE] - 3(214 '132}+£1§ 33:{1;1— 2?.}:(214 1?.2'4-{11% 3}1-;{14 2;2"“{(’%’4- ;7.24-0(54- 0?5'}4-0{2149;.} R -1.166
M'(EEEEEEEEE)’( “““““ )

Figure B.5: Calculation of the Overlap similarities of the example given in Figure
B.1.
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B.2 Means Comparison Calculation Examples

B.2.1 ANOVA Calculation Example

Groups Test Scores
1 7/a|6|8|6|6|2|9
2 s|s5|3lalal7]|2]2
3 214|7|1]|2|1]|5]5
X1 x12 X2 X222 X3 x3?
7 49 5 25 2 4
4 16 5 25 4 16
& 36 3 9 7 49
g8 64 4 16 1 1
& 36 4 16 2
& 36 7 49 1 1
2 4 2 4 5 25
g 81 2 a 5 75
Txa =48 Txi? =322 Exz =32 Txz® = 148 Exz = 27 Txz? = 125
(Ex2)* = 2304 (Ex2)? = 1024 (Exa)? = 729
Mi1=6 Mz=4 Mz = 3.375
(48 4+ 324 27)?
55, =1(322+148+125)— ———————— = 595 - 477.04 = 117.96

24
2304 1024

729
Ssmmnn_q = (T + 8

+ ?)— 477.04 = 50713 — 477.04= 30.08

S8 ienin — 117.96 — 30.08 = 87.88

W

dfmmnng =3-1=2 dfwithiu=24 —3=21
30.08 57.88
Msmmcmg = T = 15.04 Mswitkiﬂ = T =418
15.04
F:‘micu!ﬂ.ted = m = 3.59 Ftﬂ.&!e = 3.4668

Fotcutated = Frapie == Fscore is statistically significant.

Figure B.6: ANOVA calculation example.
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B.2.2 Scheffé’s Test Calculation Example

MSwithin =418, M1 =6, Mz =4, Mz =3, dfwithin = 21, dfamang = 2

ni =8, nz = 8, k=3, Frabizfz,21) = 3.4668

Fcrisicmi = (3 - 1j X 3.4668 = 6.9336
(6—4)°
Fi.= - 1 1. 3.828 => F,; < F riical
4,18 x (E + Ej
(6—3)°
Fizs = - 1 1 8612=> F 3> F_uical
418 x (E + Ej
(4—3)°
'FZ,H = = 0957 == Fz,;; < Foritical

418 ¥ (% + %}

Hence, only means 1 and 3 are significantly different from each other.

Figure B.7: Scheffé’s test calculation example.
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B.3 Set-based Measures Calculation Example

True News Content

20
80

40

Extracted News Content

| True News Content| = 100

| Extracted News Content| = 120

| True Positive (Relevatn & Extracted)| = 80
|False Negative (Relevant & Not Extracted)| = 20
|False Positive (lrrelevant & Extracted )| = 40

80
Precizion = — = 0.667
120

80
Recall =——= 0.8
100
(0.667 x0.8)
F — measure =2 % =0.727
(0.667 + 0.8)

Figure B.8: Set-based measures calculation example.
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Appendix C

Additional Experimental Results
Using Cosine, Jaccard, and

Overlap Similarity Measures

C.1 Additional NBD Results

News block detection (NBD) accuracy training and testing results of N-EXT
with TR-~Block and ENG-Block datasets using other similarity measures (Cosine,

Jaccard, and Overlap) are given below.
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B B Values
k 00 [ 01 ] o02] 03] 04] 05 06 [ 07 [ 0.8 [ 0.9 [ 1.0
1 0.901 | 0.907 [ 0.911 [ 0.916 | 0.920 | 0.925 | 0.930 | 0.924 | 0.919 [ 0.913 [ 0.905
2 0.899 | 0.905 [ 0.909 [ 0.916 | 0.923 | 0.927 | 0.932 | 0.929 | 0.925 [ 0.918 [ 0.910
3 0.902 | 0.904 [ 0.907 [ 0.911 [ 0.920 | 0.923 | 0.926 | 0.929 | 0.927 [ 0.921 [ 0.912
4 0.895 | 0.903 [ 0.906 [ 0.909 | 0.911 | 0.915 | 0.921 | 0.919 | 0.917 [ 0.912 [ 0.906
5 0.908 [ 0.910 [ 0.914 [ 0.918 | 0.920 | 0.925 | 0.925 | 0.922 [ 0.919 [ 0.914 [ 0.911
6 0.902 | 0.908 [ 0.910 [ 0.915 | 0.921 | 0.928 | 0.929 | 0.927 | 0.923 [ 0.920 [ 0.913
7 0.906 | 0.908 [ 0.911 [ 0.913 [ 0.917 | 0.921 | 0.927 | 0.924 | 0.920 [ 0.915 [ 0.908
8 0.901 | 0.905 [ 0.909 [ 0.912 ] 0.914 | 0.921 | 0.925 | 0.929 | 0.923 [ 0.920 | 0.914
9 0.900 | 0.904 [ 0.907 [ 0.912 ] 0.916 | 0.921 | 0.922 | 0.921 | 0.916 [ 0.915 [ 0.910
10 0.904 [ 0.910 [ 0.915 [ 0.919 | 0.923 | 0.927 | 0.932 | 0.930 | 0.927 [ 0.926 [ 0.918
[Avg. [ 0.902 ] 0.906 [ 0.910 [ 0.914 | 0.918 | 0.923 [ 0.927 [ 0.925 [ 0.922 [ 0.918 | 0.911 |
a) NBD accuracy training results.
B B Values
k 00 01 ] o02]03([04]05] 06 |07 7] 08709710
1 0.87 | 0.88 | 0.89 [ 0.89 [ 0.91 | 0.92 | 0.93 | 0.92 [ 091 [ 0.91 | 0.89
2 0.85 | 0.87 | 0.88 [ 0.89 [ 0.91 | 0.91 | 0.93 | 0.91 [ 0.90 [ 0.90 | 0.88
3 0.86 | 0.87 | 0.89 [ 0.90 [ 0.90 | 0.91 | 0.92 | 0.93 [ 0.91 [ 0.91 | 0.90
4 0.85 | 0.87 | 0.88 [ 0.90 [ 0.91 | 0.91 | 0.92 | 0.90 [ 0.89 [ 0.88 | 0.87
5 0.85 | 0.87 | 0.88 [ 0.88 [ 0.90 [ 0.91 | 0.91 | 0.90 | 0.88 [ 0.87 [ 0.87
6 0.87 | 0.89 | 0.91 [ 091 [ 091 [ 0.92 | 0.93 | 0.92 [ 0.90 [ 0.89 | 0.88
7 0.88 | 0.90 | 0.90 [ 0.90 [ 091 | 091 | 0.93 | 0.91 [ 0.91 [ 0.90 | 0.89
8 0.86 | 0.87 | 0.89 [ 0.89 [ 0.91 [ 0.92 | 0.92 | 0.92 [ 0.90 [ 0.90 | 0.88
9 0.87 | 0.88 | 0.90 [ 0.90 [ 091 | 0.92 | 0.92 | 0.91 [ 0.90 [ 0.89 | 0.87
10 0.89 | 0.90 | 0.91 [ 091 [ 091 [ 0.93 | 0.94 | 0.93 [ 0.91 [ 0.90 | 0.88
[Avg. [ 0.865 | 0.880 | 0.893 [ 0.897 | 0.908 | 0.916 [ 0.925 | 0.915 | 0.903 | 0.895 [ 0.881 |

Table C.1: News block detection (NBD) accuracy training and testing results of
N-EXT with TR-Block dataset (without hyperlink texts) using Cosine similarity
measure and 10-fold cross-validation.

b) NBD accuracy testing results.
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B B Values
k 00 [ 01 [ 02 ]03[]o04] 05 ] 06 [ 07 [087]09]1.0
1 0.919 [ 0.926 [ 0.933 [ 0.941 | 0.945 | 0.953 | 0.961 | 0.952 | 0.944 [ 0.933 [ 0.924
2 0.923 [ 0.931 [ 0.936 [ 0.939 | 0.947 | 0.954 | 0.958 | 0.947 | 0.939 [ 0.930 [ 0.921
3 0.922 [ 0.929 [ 0.935 [ 0.938 | 0.943 | 0.948 | 0.950 | 0.952 | 0.943 [ 0.932 [ 0.925
4 0.918 [ 0.923 [ 0.935 [ 0.941 | 0.945 | 0.949 | 0.956 | 0.945 | 0.938 [ 0.929 [ 0.919
5 0.921 | 0.925 [ 0.934 [ 0.938 | 0.947 | 0.954 | 0.954 | 0.948 | 0.944 [ 0.935 [ 0.924
6 0.922 [ 0.933 [ 0.937 [ 0.944 | 0.950 | 0.955 | 0.962 | 0.953 | 0.944 [ 0.936 [ 0.926
7 0.917 [ 0.925 [ 0.933 [ 0.942 [ 0.950 | 0.954 | 0.959 | 0.946 | 0.938 [ 0.929 [ 0.920
8 0.923 [ 0.930 [ 0.934 [ 0.939 | 0.946 | 0.952 | 0.955 | 0.954 | 0.946 [ 0.935 [ 0.924
9 0.918 [ 0.924 [ 0.931 [ 0.938 | 0.947 | 0.952 | 0.952 | 0.954 | 0.945 [ 0.938 [ 0.929
10 0.920 | 0.925 [ 0.933 [ 0.942 | 0.948 | 0.956 | 0.963 | 0.954 | 0.944 [ 0.931 [ 0.922
[Avg.  10.920 ] 0.927 [ 0.934 [ 0.940 [ 0.947 [ 0.953 [ 0.957 | 0.951 [ 0.943 | 0.934 [ 0.923 |
a) NBD accuracy training results.
B B Values
k 00 01 ] o02]03([04]05] 06 |07 7] 08709710
1 0.90 | 0.91 | 092 [ 092 [ 0.94 | 0.94 | 0.96 | 0.94 [ 0.94 | 0.92 | 0.91
2 0.91 | 0.92 [ 0.92 [ 094 [ 094 | 0.95 | 0.96 | 0.95 [ 0.94 [ 0.92 | 0.90
3 0.90 | 0.91 | 092 [ 092 [ 092 | 0.94 | 0.95 | 0.96 [ 0.94 | 0.93 | 0.91
4 0.90 | 0.91 [ 0.93 [ 093 [ 093 | 0.94 | 0.95 | 0.93 [ 0.93 [ 0.92 | 0.90
5 089 [ 0.90 [ 0.92 | 0.92 | 093 [ 093 [ 0.94 | 093 | 0.93 [ 0.91 | 0.90
6 0.90 | 0.91 [ 093 [ 093 [ 095 | 0.95 | 0.96 | 0.95 [ 0.94 [ 0.92 | 0.92
7 0.90 | 0.91 [ 0.92 [ 092 [ 094 | 0.94 | 0.96 | 0.96 [ 0.94 [ 0.92 | 0.90
8 0.89 | 0.90 | 0.91 [ 0.93 [ 093 | 0.94 | 0.95 | 0.94 [ 0.92 [ 0.92 | 0.90
9 0.90 | 0.90 | 0.92 [ 092 [ 093 | 0.94 | 0.94 [ 0.92 [ 0.92 [ 0.92 | 0.91
10 0.92 ] 0.92 [ 093 [ 093 [ 094 | 094 | 0.96 | 0.95 [ 0.93 [ 0.92 | 0.90
[Avg. [0.901 | 0.909 | 0.922 [ 0.926 | 0.935 | 0.941 [ 0.953 [ 0.943 | 0.933 | 0.920 [ 0.905 |

Table C.2: News block detection (NBD) accuracy training and testing results of
N-EXT with TR-Block dataset (without hyperlink texts) using Jaccard similarity
measure and 10-fold cross-validation.

b) NBD accuracy testing results.
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B B Values
k 00 [ 01 [ 02 ]03[]o04] 05 ] 06 [ 07 [087]09]1.0
1 0.922 | 0.928 [ 0.936 [ 0.940 | 0.909 | 0.915 | 0.919 | 0.951 | 0.942 [ 0.929 [ 0.918
2 0.919 [ 0.926 [ 0.937 [ 0.941 | 0.949 | 0.958 | 0.967 | 0.950 | 0.949 [ 0.924 [ 0.912
3 0.925 [ 0.929 [ 0.939 [ 0.941 | 0.952 | 0.954 | 0.955 | 0.957 [ 0.948 [ 0.932 [ 0.921
4 0.923 [ 0.926 [ 0.937 [ 0.943 | 0.950 | 0.954 | 0.961 | 0.952 | 0.947 [ 0.930 [ 0.922
5 0.921 | 0.925 [ 0.934 [ 0.938 | 0.947 | 0.955 | 0.954 | 0.952 | 0.946 [ 0.931 [ 0.924
6 0.923 [ 0.932 [ 0.939 [ 0.946 | 0.954 | 0.958 | 0.969 | 0.959 | 0.948 [ 0.938 [ 0.928
7 0.924 [ 0.927 [ 0.935 [ 0.943 | 0.949 | 0.955 | 0.963 | 0.951 | 0.942 [ 0.929 [ 0.918
8 0.924 [ 0.931 [ 0.938 [ 0.942 | 0.944 | 0.951 | 0.953 | 0.956 | 0.947 [ 0.933 [ 0.925
9 0.923 [ 0.926 [ 0.938 [ 0.945 | 0.949 | 0.952 | 0.954 | 0.955 | 0.946 [ 0.939 [ 0.931
10 0.925 [ 0.929 [ 0.936 [ 0.945 | 0.947 | 0.956 | 0.968 | 0.953 | 0.944 [ 0.927 [ 0.920
[Avg. 10.92370.928 [0.937 [ 0.942 [ 0.949 [ 0.955 [ 0.961 | 0.954 [ 0.946 | 0.931 [ 0.922 |
a) NBD accuracy training results.
B B Values
k 00 01 ] o02]03([04]05] 06 |07 7] 08709710
1 0.85 | 0.87 | 0.88 [ 0.89 [ 0.90 | 0.90 | 0.91 | 0.89 | 0.88 [ 0.86 | 0.86
2 0.85 | 0.86 | 0.88 [ 0.88 [ 0.88 | 0.90 | 0.91 | 0.89 [ 0.89 [ 0.87 | 0.85
3 0.85 | 0.87 | 0.87 [ 0.88 [ 0.89 | 0.89 | 0.90 | 0.90 | 0.88 [ 0.86 | 0.85
4 0.84 | 0.86 | 0.86 [ 0.88 [ 0.90 | 0.90 | 0.91 | 0.90 [ 0.89 [ 0.87 | 0.87
5 0.85 | 0.87 [ 0.87 | 0.88 | 0.88 [ 0.90 [ 0.90 | 0.88 | 0.87 [ 0.86 | 0.84
6 0.84 | 0.86 | 0.87 [ 0.87 [ 0.89 | 0.90 | 0.92 | 0.91 [ 0.90 [ 0.88 | 0.87
7 0.85 | 0.86 | 0.86 [ 0.88 [ 0.88 | 0.89 | 0.91 | 0.89 [ 0.89 [ 0.87 | 0.86
8 0.86 | 0.86 | 0.88 [ 0.89 [ 0.91 | 0.91 | 0.92 | 0.90 [ 0.90 [ 0.88 | 0.87
9 0.85 | 0.85 | 0.87 [ 0.88 [ 0.90 | 0.90 | 0.91 | 0.90 [ 0.89 [ 0.88 | 0.88
10 0.84 | 0.85 | 0.87 [ 0.89 [ 0.91 [ 0.91 | 0.93 | 0.92 [ 0.90 [ 0.90 | 0.89
[Avg. [0.848 | 0.861 | 0.871 [ 0.882 | 0.894 | 0.900 [ 0.911 [ 0.898 | 0.889 | 0.873 [ 0.864 |

b) NBD accuracy testing results.

Table C.3: News block detection (NBD) accuracy training and testing results of
N-EXT with TR-Block dataset (without hyperlink texts) using Overlap similarity
measure and 10-fold cross-validation.
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B B Values
ht 00| 01|02)|03|04|05]| 06 |07 )|08]09]1.0
With Hyperlink | 0.75 | 0.76 | 0.76 | 0.77 | 0.77 | 0.79 | 0.80 | 0.79 | 0.77 | 0.77 | 0.76
Texts
Without Hyper- | 0.83 | 0.84 | 0.85 | 0.85 | 0.87 | 0.88 | 0.89 | 0.87 | 0.87 | 0.86 | 0.84
link Texts

Table C.4: News block detection (NBD) accuracy results of N-EXT with ENG-
Block dataset using Cosine similarity measure.

B B Values
ht 0.0 | 0.1 | 02| 03| 04| 0.5 0.6 0.7 | 0.8 | 09 | 1.0
With Hyperlink | 0.77 | 0.78 | 0.79 | 0.79 | 0.80 | 0.80 | 0.82 | 0.80 | 0.80 | 0.78 | 0.78
Texts
Without Hyper- | 0.86 | 0.86 | 0.88 | 0.88 | 0.89 | 0.89 | 0.91 | 0.90 | 0.88 | 0.88 | 0.87
link Texts

Table C.5: News block detection (NBD) accuracy results of N-EXT with ENG-
Block dataset using Jaccard similarity measure.

B B Values
ht 0.0 | 01|02 )| 03| 04| 0.5 0.6 0.7 | 0.8 | 09 | 1.0
With Hyperlink | 0.72 | 0.74 | 0.75 | 0.75 | 0.75 | 0.77 | 0.77 | 0.76 | 0.76 | 0.75 | 0.73
Texts
Without Hyper- | 0.81 | 0.83 | 0.83 | 0.83 | 0.84 | 0.85 | 0.86 | 0.85 | 0.84 | 0.84 | 0.83
link Texts

Table C.6: News block detection (NBD) accuracy results of N-EXT with ENG-
Block dataset using Overlap similarity measure.
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Approaches

Datasets Only Similarity | Size & Similarity | Only Size
(8 =0) (8 = 0.6) (8 =0)
. with hyperlink texts 0.802 0.831 0.805
Turkish w/o hyperlink texts 0.865 0.925 0.881
Enelish with hyperlink texts 0.750 0.800 0.760
g w/o hyperlink texts 0.830 0.890 0.840

Table C.7: Summary of the news block detection (NBD) accuracy results of N-
EXT with TR-Block and ENG-Block datasets using Cosine similarity measure.

Approaches
Datasets Only Similarity | Size & Similarity | Only Size
(8 = 0) (8 = 0.6) (8 = 0)
. with hyperlink texts 0.815 0.849 0.809
Turkish w/o h;g)erlink texts 0.901 0.953 0.905
English with hyperlink texts 0.770 0.820 0.780
w/o hyperlink texts 0.860 0.910 0.870

Table C.8: Summary of the news block detection (NBD) accuracy results of N-
EXT with TR-Block and ENG-Block datasets using Jaccard similarity measure.

Approaches
Datasets Only Similarity | Size & Similarity | Only Size
(8 = 0) (8 = 0.6) (8 = 0)
. with hyperlink texts 0.792 0.824 0.799
Turkish | h;g)erlink texts 0.848 0.911 0.864
English with hyperlink texts 0.720 0.770 0.730
w/o hyperlink texts 0.810 0.860 0.830

Table C.9: Summary of the news block detection (NBD) accuracy results of N-

EXT with TR-Block and ENG-Block datasets using Overlap similarity measure.
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C.2 Additional NCE Results

. Similarity Measures
News Websites Cosine | Dice | Jaccard | Overlap Average
CNN Turk 0.890 | 0.915 0.911 0.884 0.900
Milliyet 0.886 | 0.906 0.902 0.888 0.896
Sabah 0.887 | 0.912 0.908 0.891 0.899
Samanyolu 0.901 | 0.915 0.910 0.895 0.905
Star 0.906 | 0.921 0.919 0.903 0.912
Yeni Safak 0.902 | 0.914 0.911 0.901 0.907
Zaman 0.904 | 0.914 0.909 0.899 0.906
| Average | 0.897 |0.914| 0910 | 0.894 | 0904 |

Table C.10: Average F-measure values for different news websites without using
stemming.
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