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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Asst. Prof. Dr. Behçet Uğur Töreyin
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ABSTRACT

OPTIMAL STOCHASTIC APPROACHES FOR SIGNAL

DETECTION AND ESTIMATION UNDER

INEQUALITY CONSTRAINTS

Berkan Dülek

Ph.D. in Electrical and Electronics Engineering

Supervisors: Asst. Prof. Dr. Sinan Gezici

and Prof. Dr. Ahmet Enis Çetin

June 2012

Fundamental to the study of signal detection and estimation is the design of

optimal procedures that operate on the noisy observations of some random phe-

nomenon. For detection problems, the aim is to decide among a number of

statistical hypotheses, whereas estimating certain parameters of the statistical

model is required in estimation problems. In both cases, the solution depends

on some goodness criterion by which detection (or estimation) performance is

measured. Despite being a well-established field, the advances over the last sev-

eral decades in hardware and digital signal processing have fostered a renewed

interest in designing optimal procedures that take more into account the practi-

cal considerations. For example, in the detection of binary-valued scalar signals

corrupted with additive noise, an analysis on the convexity properties of the error

probability with respect to the transmit signal power has suggested that the error

performance cannot be improved via signal power randomization/sharing under

an average transmit power constraint when the noise has a unimodal distribution
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(such as the Gaussian distribution). On the contrary, it is demonstrated that per-

formance enhancement is possible in the case of multimodal noise distributions

and even under Gaussian noise for three or higher dimensional signal constella-

tions. Motivated by these results, in this dissertation we adopt a structured ap-

proach built on concepts called stochastic signaling and detector randomization,

and devise optimal detection procedures for power constrained communications

systems operating over channels with arbitrary noise distributions.

First, we study the problem of jointly designing the transmitted signals, de-

cision rules, and detector randomization factors for an M -ary communications

system with multiple detectors at the receiver. For each detector employed at the

receiver, it is assumed that the transmitter can randomize its signal constellation

(i.e., transmitter can employ stochastic signaling) according to some probability

density function (PDF) under an average transmit power constraint. We show

that stochastic signaling without detector randomization cannot achieve a smaller

average probability of error than detector randomization with deterministic sig-

naling for the same average power constraint and noise statistics when optimal

maximum a-posteriori probability (MAP) detectors are employed in both cases.

Next, we prove that a randomization between at most two MAP detectors corre-

sponding to two deterministic signal vectors results in the optimal performance.

Sufficient conditions are also provided to conclude ahead of time whether the

correct decision performance can or cannot be improved by detector randomiza-

tion.

In the literature, the discussions on the benefits of stochastic signaling and

detector randomization are severely limited to the Bayesian criterion. Therefore,

we study the convexity/concavity properties for the problem of detecting the

presence of a signal emitted from a power constrained transmitter in the pres-

ence of additive Gaussian noise under the Neyman-Pearson (NP) framework.

First, it is proved that the detection probability corresponding to the α−level
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likelihood ratio test (LRT) is either concave or has two inflection points such that

the function is concave, convex and finally concave with respect to increasing val-

ues of the signal power. Based on this result, optimal and near-optimal power

sharing/randomization strategies are proposed for average and/or peak power

constrained transmitters. Using a similar approach, the convexity/concavity

properties of the detection probability are also investigated with respect to the

jammer power. The results indicate that a weak Gaussian jammer should employ

on-off time sharing to degrade the detection performance.

Next, the previous analysis for the NP criterion is generalized to channels with

arbitrary noise PDFs. Specifically, we address the problem of jointly designing

the signaling scheme and the decision rule so that the detection probability is

maximized under constraints on the average false alarm probability and average

transmit power. In the case of a single detector at the receiver, it is shown that

the optimal solution can be obtained by employing randomization between at

most two signal values for the on-signal and using the corresponding NP-type

LRT at the receiver. When multiple detectors are available at the receiver, the

optimal solution involves a randomization among no more than three NP decision

rules corresponding to three deterministic signal vectors.

Up to this point, we have focused on signal detection problems. In the fol-

lowing, the trade-offs between parameter estimation accuracy and measurement

device cost are investigateed under the influence of noise. First, we seek to deter-

mine the most favorable allocation of the total cost to measurement devices so

that the average Fisher information of the resulting measurements is maximized

for arbitrary observation and measurement statistics. Based on a recently pro-

posed measurement device cost model, we present a generic optimization problem

without assuming any specific estimator structure. Closed form expressions are

obtained in the case of Gaussian observations and measurement noise.
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Finally, a more elaborate analysis of the relationship between parameter es-

timation accuracy and measurement device cost is presented. More specifically,

novel convex measurement cost minimization problems are proposed based on

various estimation accuracy constraints assuming a linear system subject to addi-

tive Gaussian noise for the deterministic parameter estimation problem. Robust

allocation of the total cost to measurement devices is also considered by assum-

ing a specific uncertainty model on the system matrix. Closed form solutions are

obtained in the case of an invertible system matrix for two estimation accuracy

criteria. Through numerical examples, various aspects of the proposed optimiza-

tion problems are compared. Lastly, the discussion is extended to the Bayesian

framework assuming that the estimated parameter is Gaussian distributed.

Keywords: Detection, Stochastic Signaling, Detector Randomization, Probability

of Error, Neyman-Pearson (NP), Convexity, Gaussian Noise, Multimodal Noise,

Power Constraint, Jamming, Parameter Estimation, Measurement Cost, Cramer-

Rao Bound (CRB), Wireless Sensor Networks (WSN).
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ÖZET

EŞİTSİZLİK KISITLARI ALTINDA İŞARET SEZİMİ VE

KESTİRİMİ İÇİN OPTİMAL STOKASTİK YAKLAŞIMLAR

Berkan Dülek

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticileri: Yrd. Doç. Dr. Sinan Gezici

ve Prof. Dr. Ahmet Enis Çetin

Haziran 2012

İşaret sezimi ve kestirimi çalışmalarının temelinde, rasgele bir olaya ait gürültülü

gözlemler üzerinde işlem gören optimal yöntemlerin tasarlanması yer almaktadır.

Sezim problemlerinde amaç, bir takım istatistiksel hipotezler arasında karar ve-

rilmesi iken kestirim problemlerinde istatistiksel modele ait belirli parametrelerin

kestirimi gerekmektedir. Her iki durumda da çözüm, sezim (veya kestirim)

başarımının ölçüleceği bazı kriterlere dayanır. Sezim ve kestirim kuramının

köklü bir alan olmasına karşın, son yıllarda sayısal işaret işleme ve donanım

alanlarındaki gelişmeler, pratik hususların daha fazla dikkate alındığı optimal

yöntemlerin tasarlanmasına olan ilgiyi artırmıştır. Örneğin, toplanır gürültü

altında ikili sayıl işaretlerin sezimi konusunda, hata olasılığının verici işaret

gücüne bağlı dışbükeylik özelliklerinin analizi sonucunda gürültünün tek doruklu

dağılıma (Gauss dağılımı gibi) sahip olduğu durumlarda, hata başarımının işaret

gücü rasgeleleştirme/paylaşımı yöntemiyle artırılamayacağı saptanmıştır. Öte

yandan, gürültünün çok doruklu olduğu ya da Gauss gürültüsü altında üç

veya yüksek boyutlu işaret yıldız kümelerinin kullanıldığı durumlarda başarımda

artışların mümkün olduğu gösterilmiştir. Bu sonuçlardan hareketle tezde,
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stokastik işaretleme ve sezici rasgeleleştirme kavramlarına dayanan yapısal bir

yöntem izlenmekte ve genel gürültü dağılımına sahip kanallar üzerinde çalışan

güç kısıtlı iletişim sistemleri için optimal sezim yöntemleri geliştirilmektedir.

İlk olarak, alıcıda birden çok sezicinin bulunduğu M -li iletişim sistemleri için

gönderilen işaretlerin, karar kurallarının ve sezici rasgeleleştirme oranlarının or-

tak olarak tasarlanması problemine çalışılmaktadır. Alıcıdaki her bir sezici için

vericinin işaret yıldız kümesini belirli bir olasılık yoğunluk fonksiyonuna (OYF)

göre ortalama bir güç kısıtı altında rasgeleleştirebildiği varsayılmaktadır. (Yani

verici, stokastik işaretleme uygulayabilmektedir.) Öncelikle, sezicilerde MAP

kuralı kullanıldığında, aynı ortamala güç kısıtı ve gürültü istatistikleri altında

stokastik işaretleme ile ulaşılan ortalama hata olasılığının, sezici rasgeleleştirme

ile ulaşılan ortalama hata olasılığından daha düşük olamayacağı gösterilmektedir.

Devamında, optimal başarıma deterministik işaretlemeyle çalışan en fazla iki

MAP sezicisi arasındaki rasgeleleştirme ile ulaşılacağı kanıtlanmaktadır. Doğru

karar başarımının sezici rasgeleleştirme yöntemi ile artırılıp artırılamayacağına

önceden karar verebilmek maksadıyla yeterli koşullar belirtilmektedir.

Literatürde, stokastik işaretleme ve sezici rasgeleleştirme konusundaki

çalışmalar Bayes kriteriyle sınırlı kalmıştır. Dolayısıyla bu bölümde Neyman-

Pearson (NP) kriteri çerçevesinde, güç kısıtlı bir vericiden gönderilen işaretin

sezimlenmesi probleminin dışbükeylik/içbükeylik özellikleri toplanır Gauss

gürültüsü altında incelenmektedir. İlk olarak, α düzeyli olabilirlik oran

sınamasına (OOS) ait sezim olasılığının ya işaret gücünün içbükey bir fonk-

siyonu ya da işaret gücünün artan değerleri için sırasıyla içbükey, dışbükey

ve son olarak içbükey bir fonksiyonu olduğu kanıtlanmaktadır. Bu sonuç

temelinde, ortalama ve tepe güç kısıtlı vericiler için optimal ve optimale yakın

güç rasgeleleştirme/paylaşım stratejileri önerilmektedir. Benzer bir yöntemle,

sezim olasılığının karıştırıcı gücü cinsinden dışbükeylik/içbükeylik özellikleri in-

celenmektedir. Sonuçlar, sezim olasılığını düşürmek için düşük güçlü Gauss
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karıştırıcıların aç-kapa zaman paylaşım yöntemini kullanması gerektiğini ortaya

koymaktadır.

Ek olarak, bir önceki kısımda değinilen analiz herhangi bir gürültü OYF’sine

sahip kanallar için genelleştirilmektedir. Daha açık bir deyişle, ortalama

yanlış alarm olasılığı ve ortalama verici gücü kısıtları altında sezim olasılığının

enbüyütülmesi amacıyla, işaretleme yöntemi ve sezici kuralının ortak tasarımı

problemi ele alınmaktadır. Alıcıda tek bir sezicinin olduğu durumda, opti-

mal çözüme var simgesi için en fazla iki işaret değeri arasında rasgeleleştirme

yapılarak ve alıcıda buna karşılık gelen NP-türü OOS’nin kullanılmasıyla

ulaşılacağı bildirilmektedir. Alıcıda birden çok sezicinin olduğu durumda ise

optimal çözüm, deterministik işaretlere karşılık gelen en fazla üç NP-türü OOS

arasında rasgeleleştirme uygulanarak elde edilmektedir.

Bu aşamaya kadar, işaret sezimi problemlerine odaklanılmaktadır. Tezin

devamında ise, gürültü altında parametre kestiriminin doğruluğu ve ölçüm

aygıtlarının maliyeti arasındaki ilişkiye değinmektedir. Ilk olarak genel

gözlem ve ölçüm istatistikleri altında, ölçümlere ait ortalama Fisher bilgisinin

enbüyütülmesi maksadıyla, toplam bütçenin ölçüm aygıtlarına en iyi dağıtımının

belirlenmesi amaçlanmaktadır. Yakın zamanda önerilmiş bir ölçüm aygıtı maliyet

modeline dayanılarak, belirli bir sezici yapısı varsayılmadan genel bir eniyileme

problemi sunulmaktadır. Gauss dağılımlı gözlem ve ölçümlerin olduğu durum-

larda çözüm için kapalı formda ifadeler elde edilmektedir.

Son olarak, parametre kestiriminin doğruluğu ve ölçüm aygıtlarının maliyeti

arasındaki ilişkiye yönelik daha detaylı bir analiz sunulmaktadır. Daha açık bir

deyişle, deterministik parametre kestirimi için Gauss gürültüsü altında çalışan

doğrusal bir sistem varsayılarak, çeşitli kestirim doğruluğu kısıtlarına dayanan

yeni dışbükey ölçüm aygıtı maliyeti enküçültme problemleri önerilmektedir.

Toplam maliyetin ölçüm aygıtlarına gürbüz dağıtımı konusu da sistem matrisi
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için belirli bir hata modeli ele alınarak incelenmektedir. Tersi alınabilen sis-

tem matrisleri için iki kestirim doğruluğu kriteri altında kapalı formda çözümler

elde edilmektedir. Sayısal örnekler üzerinden, önerilen eniyileme problemleri

karşılaştırılmaktadır. Ek olarak, kestirilen parametrenin Gauss dağılımlı olduğu

varsayılarak analizler Bayes çerçevesine taşınmaktadır.

Anahtar Kelimeler: Sezim, Stokastik İşaretleme, Sezici Rasgeleleştirme, Hata

Olasılığı, Neyman-Pearson (NP), Dışbükeylik, Gauss Gürültüsü, Çok Doruklu

Gürültü, Güç Kısıtı, Karıştırma, Parametre Kestirimi, Ölçüm Maliyeti, Cramer-

Rao Sınırı (CRS), Telsiz Algılayıcı Ağlar (TAA).
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Introduction

Nature uses only the longest threads to weave her patterns, so that each

small piece of her fabric reveals the organization of the entire tapestry.

– Richard P. Feynman, The Character of Physical Law

The main work in this dissertation has originated from the recent application of

the stochastic resonance (SR) theory to signal detection and estimation problems

[1–18]. The idea is that the detection performance of suboptimal detectors can

be enhanced by intentionally injecting randomized noise samples at the input of

the receiver of a binary communications system. In this dissertation, we have

been able to reflect these ideas into concepts called stochastic signaling and de-

tector randomization, in which we show that correct decision performance over

channels corrupted by multimodal noise distributions can be improved by jointly

randomizing the transmitted signals and decision rules employed at the receiver.

The main building block in our analysis is Carathéodory’s theorem from con-

vex analysis [19], which lets us notice that the optimal signal distributions are

discrete with a certain maximum number of mass points. More interestingly,

we have discovered that it is possible to increase the detection probability by a

similar randomized signaling mechanism for the classical textbook example [20,
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Example II.D.1] of detecting the presence of a signal immersed in Gaussian noise

under the Neyman-Pearson framework whenever the false alarm requirement is

smaller than Q(2) ≈ 0.02275 as is the case in most practical applications (Q(·)

denotes the tail probability of the standard Gaussian random variable). The

second part of the dissertation provides several results on the trade-offs between

measurement device cost and parameter estimation accuracy in the presence of

noise. We consider estimation scenarios based on noise corrupted observations

with arbitrary distribution functions as well as a linear system model with Gaus-

sian observations. The following sections introduce the context, describe the

previous work in the literature, and summarize our contributions for both parts.

1.1 Stochastic Signaling and Detector Random-

ization in Power Constrained Communica-

tions Systems

In coherent detection applications, despite the ubiquitous restrictions on the

transmission power, there is often some flexibility in the choice of signals trans-

mitted over the communications medium [20]. Due to crosstalk limitation be-

tween adjacent wires and frequency blocks, wired systems require that the signal

power should be carefully controlled [21]. A more pronounced example from

wireless systems dictates the signal power to be limited both to conserve bat-

tery power and to meet restrictions by regulatory bodies. Optimal signaling and

detector design in the presence of Gaussian noise has been studied extensively

in the literature [20, 22, 23]. For a binary communications system corrupted

by additive white Gaussian noise (AWGN) as shown in Figure 1.1 with equally

likely priors and subject to individual average power constraints in the form of

E
{
|Si|2

}
≤ A for i ∈ {0, 1}, it is well-known that the average probability of error

is minimized when deterministic antipodal signals (i.e., S1 = −S0) are utilized
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Figure 1.1: Antipodal signaling over AWGN channel for a binary communications
system with equal priors and individual average power constraints.

at the power limit (|S1|2 = |S0|2 = A), and a maximum likelihood (ML) decision

rule (detector) is employed at the receiver [20].

In the case of vector observations immersed in additive zero-mean but col-

ored Gaussian noise, it is shown that selecting the deterministic signals along

the eigenvector of the covariance matrix of the Gaussian noise correspond-

ing to the minimum eigenvalue maximizes the average correct decision prob-

ability of the binary communications system under same individual average

power constraint [20]. Optimal deterministic signaling is investigated in [24]

for nonequal prior probabilities under an average power constraint in the form

of
∑1

i=0 πiE
{
|Si|2

}
≤ A instead of the individual power constraints for a scalar-

valued binary communications system, when the noise is zero-mean Gaussian and

the maximum a posteriori probability (MAP) decision rule is employed at the

receiver. On-off keying is shown to be the optimal signaling strategy for coherent

receivers when the signals have nonnegative correlation, and it is also optimal

for noncoherent receivers employing envelope detection. As for coherent receivers

and allowing for negative correlations, it is proven that the optimal performance

is attained by maximizing the Euclidean distance between the signals under the

given average power constraint. That is, S0 = −
√
A/α and S1 = α

√
A, where

α ,
√

π0/π1, and π0 and π1 denoting the prior probabilities. This is depicted in

Figure 1.2.
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Figure 1.2: Optimal signaling over AWGN channel for a binary communications
system with nonequal priors under an average power constraint.

Further insights are obtained by studying the convexity properties of error

probability in [2] for the optimal detection of binary-valued scalar signals cor-

rupted by additive noise under an average power constraint. It is shown that

the average probability of error is a nonincreasing convex function of the sig-

nal power when the channel noise has a continuously differentiable unimodal

noise probability density function (PDF) with finite variance. This discussion is

extended from binary modulations to arbitrary signal constellations in [18] by

concentrating on the maximum likelihood (ML) detection for AWGN channels.

The symbol error rate (SER) is shown to be always convex in signal-to-noise ra-

tio (SNR) for 1-D and 2-D constellations, but nonconvexity in higher dimensions

at low to intermediate SNRs is possible, while convexity is always guaranteed

at high SNRs with an odd number of inflection points in-between. When the

transmitter is average power constrained, this result suggests the possibility of

improving the error performance in high dimensional constellations through time

sharing/randomization of the signal power, as opposed to the case for low dimen-

sions (1-D and 2-D). This conclusion is illustrated in Figure 1.3 for the BPSK

communications system given in Figure 1.1.

With the advent of the optimization techniques, there has been a renewed in-

terest in designing randomized signaling schemes that improve/degrade (jamming

problem) the error performance of communications systems operating under sig-

nal power constraints. Since performance gains in AWGN channels due to such
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Figure 1.3: Probability of correct detection versus average signal power for the
binary communications system given in Figure 1.1 operating over an AWGN
channel. More generally, unimodal noise PDFs result in concave probability of
correct detection curves.

stochastic approaches are restricted to higher dimensional constellations1, the

attempts to exploit the convexity properties of the error probability have been

diverted towards channels with multimodal noise PDFs [25]. In practice, the

noise can have significantly different probability distribution than the Gaussian

distribution due to effects such as multiuser interference and jamming [26, 27].

In power constrained binary communications systems, stochastic signaling;

that is, modeling signals for transmitted symbols as random variables instead

of deterministic quantities, can provide performance improvements in terms of

average probability of error (c.f., Figure 1.4). This method has proven effective

in reducing the average probability of error for power constrained communica-

tions systems over additive noise channels with multimodal probability density

11-D and 2-D constellations are almost universally employed in practice.
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functions [27]. It is shown in [25] that, for a given detector, an optimal stochas-

tic signal can be represented by a randomization of no more than three different

signal values under second and fourth moment constraints. Sufficient conditions

are presented to determine whether stochastic signaling can help improve the

correct decision performance over deterministic signaling methods. Joint op-

timization of signal structures and detectors in terms of error performance is

investigated under an average power constraint in [17]. It is proven that the op-

timal performance can be achieved when the transmitted signal for each symbol

is randomized between no more than two signal values and the corresponding

MAP detector is employed at the receiver.

Another approach to improve the performance of communications systems

over channels with multimodal noise PDFs is to perform randomization among

multiple detectors [15, 28] as depicted in Figure 1.5. In that case, different detec-

tors are employed at the receiver with certain probabilities. In [15], an average

power constrained binary communications system is studied, and optimal ran-

domization among antipodal signal pairs and the corresponding ML decision

rules is investigated under the assumption that the receiver knows which deter-

ministic pair is transmitted. It is concluded that randomization between at most

two detectors is sufficient to maximize the correct decision probability. This re-

sult is illustrated in Figure 1.6 for the binary communications system given in
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Figure 1.5: Detector randomization for a binary communications system operat-
ing over an additive noise channel with arbitrary noise PDF. Channel can assume
multimodal noise PDF, e.g., Gaussian mixture noise.

Figure 1.5. In a related work, optimal additive noise components are studied

for variable detectors in the context of stochastic resonance, and the optimal

randomization between detector and additive noise pairs is investigated [10].
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Similar theoretical approaches are adopted to tackle various problems in dif-

ferent research subjects. For example, in the context of wireless sensor networks

(WSNs) the problem of pricing and transmission scheduling is examined for an

access point in [29]. It is shown that an appropriate randomization between

two business decisions and price pairs is sufficient to maximize time-average

profit of the access point. In [30], through an information theoretic analysis, the

worst-case noise distribution that maximizes the average probability of error and

minimizes the channel capacity is found out to be a mixture of discrete lattices.

1.1.1 Performance Improvements under Minimum Prob-

ability of Error Criterion

Although the optimal design of stochastic signals and the corresponding MAP

detector is analyzed in [17], and the optimal detector randomization and the cor-

responding MAP detectors are investigated in [15], no studies have considered

the joint optimal design of detectors, stochastic signals, and detector randomiza-

tion. Specifically, the study in [17] did not consider any detector randomization,

and that in [15] assumed deterministic signals (no stochastic signaling). To that

aim, in Chapter 2, both detector randomization and stochastic signaling are

considered in a more generic formulation, and the problem of jointly optimizing

detectors, stochastic signals, and detector randomization is addressed [31]. First,

it is proven that stochastic signaling without detector randomization can never

achieve a lower average probability of error than detector randomization with

deterministic signaling for the same average power constraint and channel statis-

tics. Then, based on this result and some additional analysis, the solution to the

most generic optimization problem is obtained as the randomization between at

most two MAP detectors corresponding to two deterministic signal vectors. Suf-

ficient conditions for improvability and non-improvability of the correct decision

8



performance via detector randomization are derived. Three detection examples

are provided to compare various optimal and suboptimal signaling schemes.

1.1.2 Performance Improvements under Neyman-Pearson

Criterion

Until recently, the discussions on the benefits of stochastic signaling were severely

limited to the Bayesian formulation, specifically to the average probability of er-

ror criterion. Although the prior probabilities of the symbols are assumed to

be equal in many communications systems, they can be unknown and nonequal

in certain cases [24]. Furthermore, it may not be possible to impose cost struc-

tures on the decisions [20]. Under such scenarios, neither Bayesian nor minimax

decision rules are applicable, and the Neyman-Pearson (NP) hypothesis testing

provides a favorable alternative. For example, in WSN applications, a transmit-

ter can send one bit of information (using on-off keying) about the presence of

an event (e.g., fire), in which case the probabilities of detection and false alarm

become the main performance metrics as in the NP approach.

In Chapter 3, we report an interesting and obviously overlooked fact for the

problem of detecting the presence of a signal emitted from a power constrained

transmitter operating over an additive Gaussian noise channel within the NP

framework. Contrary to the average probability of error criterion [18], it is shown

that for false alarm rates smaller than Q(2), remarkable improvements in detec-

tion probability can be attained even in low dimensions by optimally distributing

the fixed average power between two levels (Q(·) denotes the Q−function) [32].

More specifically, we study analytically the convexity/concavity properties of de-

termining the presence of a power-limited signal immersed in additive Gaussian

noise. It is proved that the detection probability corresponding to the α−level

likelihood ratio test (LRT) is either concave for α ≥ Q(2) or has two inflection
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points such that the function is concave, convex and finally concave with respect

to increasing values of the signal power for α < Q(2). Closed form expressions

are provided to determine the regions over which power sharing/randomization

enhances the detection performance over deterministic signaling at the average

power level. In addition, the analysis is extended from scalar observations to

multidimensional colored Gaussian noise corrupted signals. Based on the con-

vexity/concavity results, optimal and near-optimal power sharing/randomization

strategies are proposed for average/peak power constrained transmitters. For al-

most all practical applications, the required false alarm probability values are

much smaller than Q(2) ≈ 0.02275. As a consequence, power sharing can fa-

cilitate improved detection performance whenever the average power limitations

are in the designated regions. Finally, the dual problem is considered from the

perspective of a jammer to decrease the detection probability via power shar-

ing/randomization. It is shown that the optimal strategy results in on-off jam-

ming when the average noise power is below some critical value, a fact previously

noted for spread spectrum communications systems [33].

In Chapter 4, we extend the discussion of the improvability of detection per-

formance to channels with arbitrary noise PDFs under the NP framework. In

the first part, the problem of designing the optimal signal distribution and the

decision rule is addressed to maximize the detection probability without violating

the constraints on the probability of false alarm and the average signal power. It

is shown that the optimal solution can be obtained by randomizing between at

most two signal vectors for the on-signal (symbol 1), and using the corresponding

NP-type LRT at the receiver [34].

In the second part of Chapter 4, we investigate the same problem in the

presence of multiple detectors at the receiver [35]. Specifically, we consider the

joint optimal design of decision rules, stochastic signals, and detector random-

ization factors. Adopting a similar analysis strategy to that in Chapter 2, it

10



is proven that the solution to the most generic optimization problem (i.e., em-

ploying both stochastic signaling and detector randomization) can be obtained

as the randomization among no more than three NP decision rules correspond-

ing to three deterministic signal vectors. As a result, the optimal parameters

can be computed over a significantly reduced set instead of an infinite space of

functions. Unfortunately even in that case, finding the optimal parameter set to

maximize the detection probability may become a computationally cumbersome

task necessitating the use of global optimization techniques.

1.2 Trade-offs between Measurement Device

Cost and Estimation Accuracy

Although the statistical estimation problem in the presence of Gaussian noise

is by far the most widely known and well-studied subject of estimation theory

[20], approaches that consider the estimation performance jointly with system-

resource constraints have become popular in recent years. Distributed detection

and estimation problems took the first step by incorporating bandwidth and

energy constraints due to data processing at the sensor nodes, and data trans-

mission from sensor nodes to a fusion node in the context of WSNs [36]-[37].

Since then, the majority of the related studies have addressed the costs aris-

ing from similar system-level limitations with a relatively weak emphasis on the

measurement costs due to amplitude resolution and dynamic range of the sensing

apparatus. To begin with, we summarize the main aspects of the research that

has been carried out in recent years to unfold the relationship between estimation

capabilities and aforementioned costs of the sensing devices.
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1.2.1 Related Work

In [36], detection problems are examined under a constraint on the expected cost

resulting from measurement and transmission stages. It is found out that opti-

mal detection performance can be achieved by a randomized on-off transmission

scheme of the acquired measurements at a suitable rate. The distributed mean-

location parameter estimation problem is considered in [38] for WSNs based on

quantized observations. It is shown that when the dynamic range of the estimated

parameter is small or comparable with the noise variance, a class of ML estima-

tors exists with performance close to that of the sample mean estimator under

stringent bandwidth constraint of one bit per sensor. When the dynamic range of

the estimated parameter is comparable to or large than the noise variance, an op-

timum value for the quantization step results in the highest estimation accuracy

possible for a given bandwidth constraint. In [39], a power scheduling strategy

that minimizes the total energy consumption subject to a constraint on the worst

mean-squared-error (MSE) distortion is derived for decentralized estimation in a

heterogenous sensing environment. Assuming an uncoded quadrature amplitude

modulation (QAM) transmission scheme and uniform randomized quantization

at the sensor nodes, it is stated that depending on the corresponding channel

quality, a sensor is either on or off completely. When a sensor is active, the op-

timal values for transmission power and quantization level for the sensor can be

determined analytically in terms of the channel path losses and local observation

noise levels.

In [40], distributed estimation of an unknown parameter is discussed for the

case of independent additive observation noises with possibly different variances

at the sensors and over nonideal fading wireless channels between the sensors and

the fusion center. The concepts of estimation outage and estimation diversity are

introduced. It is proven that the MSE distortion can be minimized under sum

12



power constraints by turning off sensors transmitting over bad channels adap-

tively without degrading the diversity gain. In addition, performance decrease is

reported when individual power constraints are also imposed at each sensor. In

[37], the distributed estimation of a deterministic parameter immersed in uncor-

related noise in a WSN is targeted under a total bit rate constraint. The number

of active sensors is determined together with the quantization bit rate of each

active sensor in order to minimize the MSE.

The problem of estimating a spatially distributed, time-varying random field

from noisy measurements collected by a WSN is investigated under bandwidth

and energy constraints on the sensors in [41]. Using graph-theoretic techniques,

it is shown that the energy consumption can be reduced by constructing reduced

order Kalman-Bucy filters from only a subset of the sensors. In order to prevent

degradation in the root-mean-squared (RMS) estimation error performance, effi-

cient methods employing Pareto optimality criterion between the communication

costs and RMS estimation error are presented. A power allocation problem for

distributed parameter estimation is investigated under a total network power

constraint for various topologies in [42]. It is shown that for the basic star topol-

ogy, the optimal solution assumes either of the sensor selection, water-filling,

or channel inversion forms depending on the measurement noise variance, and

the corresponding analytical expressions are obtained. Asymptotically optimal

power allocation strategies are derived for more complex branch, tree, and linear

topologies assuming amplify-and-forward and estimate-and-forward transmission

protocols. The decentralized WSN estimation is extended to incorporate the ef-

fects of imperfect data transmission from sensors to fusion center under stringent

bandwidth constraints in [43].

Important results are also obtained for the sensor selection problem under

various constraints on the system cost and estimation accuracy. The problem of

choosing a set of k sensor measurements from a set of m available measurements
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so that the estimation error is minimized is addressed in [44] under a Gaussian

assumption. It is shown that the combinatorial complexity of the solution can

significantly be reduced without sacrificing much from the estimation accuracy

by employing a heuristic based on convex optimization. In [45], a similar sen-

sor selection problem is analyzed in a target detection framework when several

classes of binary sensors with different discrimination performance and costs are

available. Based on the conditional distributions of the observations at the fusion

center, the performance of the corresponding optimal hypothesis tests is assessed

using the symmetric Kullback-Leibler divergence. The solution of the resulting

constrained maximization problem indicates that the sensor class with the best

performance-to-cost ratio should be selected.

As outlined above, not much work has been performed, to the best of our

knowledge, in the context of jointly designing the measurement stage from a cost-

oriented perspective while performing estimation up to a predetermined level of

accuracy. In other words, the trade-offs between measurement associated costs

and estimation errors remain, to a large extent, undiscovered in the literature.

On the other hand, if adopted, such an approach will inevitably require

• A general and reliable method of assessing the cost of measurements appli-

cable to any real world phenomenon under consideration and

• An appropriate means of evaluating the best achievable estimation perfor-

mance without reference to any specific estimator structure.

For the fulfilment of the first requirement, a novel measurement device model

is proposed, and the problem of designing the optimal linear estimator and noise

levels of measurement devices subject to a limited cost budget is addressed in [46].

Unlike previous studies, the cost of each device is determined with the accuracy

of its measurements and expressed quantitatively in terms of the number of

amplitude levels that can be resolved reliably. Intuitively, as the resolving power
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of a measurement device increases so does its cost. Furthermore, this method

brings greater flexibility by enabling to work with variable precision over the

acquired measurements. Based on this cost assignment scheme, the authors

perform an optimization theoretic analysis to acquire the best measurements out

of the observed quantities so that the estimation error is minimized for a given

total cost constraint.

1.2.2 A Novel Measurement Device Cost Model

Before motivating our contributions to the estimation problem under cost con-

strained measurements, a brief overview of this novel measurement and cost-

budget model is presented based on the discussions stated in [46]. Each mea-

surement device is capable of sensing the value of a scalar physical quantity with

some resolution in amplitude according to the measurement model

y = x+m, (1.1)

where x denotes the observed random variable, m is the measurement noise

associated with the employed measurement device, and y is the measurement

value. Based on the measurement, the aim is to estimate the value of a (possibly

random) parameter θ which is not directly accessible, but only accessible through

the random variable x. It is assumed that m is a zero-mean random variable

independent of x. As mentioned previously, the resolving power, specifically the

number of amplitude levels that can be discriminated by the measurement device,

solely determines the cost of each measurement under the proposed model. The

dynamic range or scaling of the input to the measurement device is assumed to

have no effect on the cost as long as the number of resolvable levels stays the

same. In other words, range of the measurements does not contribute in assessing

the cost of the measurements in this model. Under this scenario, the following

quantitative expression is heuristically proposed in [46] to effectively determine
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the cost of making a single measurement

C , 1

2
log

(
1 +

σ2
x

σ2
m

)
. (1.2)

It is noted that the proposed cost function is stated in terms of the variances of

the observation and measurement noise, which share the same motivations used

by Hartley [47] to define the number of distinguishable signal levels at the receiver

of an additive noise channel, and those of Shannon [48] to express the capacity

of a Gaussian noise channel, where a message x is sent across a communications

channel and is corrupted during transmission with additive Gaussian noise m.

For the sake of generality, it is stated in [46] that mutual information

I(x; y) = h(y) − h(m) can be employed as an alternative for the cost function

proposed in (1.2) since it enables us to deal with non-Gaussian cases and helps

to assess the value of a measurement more reasonably by revealing how many

bits of information is actually conveyed in the measurement about the observed

quantity. However, its computation requires explicit knowledge of the PDF pθ(x)

of the observed variable and may result in more involved formulation depending

on the specific case under consideration (e.g., measurement noise with Gaussian

mixture PDF). Moreover, when the measurement noise is Gaussian distributed

with E[m2] = σ2
m independent of the observed signal distribution and simultane-

ously when there is an average power constraint on the observed signal variance

as E[x2] ≤ σ2
x, the cost score obtained via (1.2) can be interpreted as a worst-

case result. This is due to the fact that the Gaussian distribution maximizes the

entropy over all distributions with the same variance which in turn maximizes

h(y), and finally I(x; y). In other words, (1.2) becomes the solution of min-max

problem min
p(m)

max
p(x)

I(x; y) under the average power constraints mentioned above.2

Therefore, by assuming that the errors introduced by the measurement devices

are Gaussian distributed (an acceptable assumption), it is possible to handle a

multitude of scenarios using the proposed cost function.

2A justification of this model from the viewpoint of economic theory is also presented in

[46].
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A deeper look into (1.2) reveals that it is a nonnegative, monotonically de-

creasing convex function of σ2
m for all σ2

x > 0 and σ2
m > 0 (in accordance with the

properties of a valid rate-distortion function as mentioned below), and satisfies

several properties that any meaningful cost function should possess as discussed

in [46].

When the estimation is carried out using multiple (K) measurements, the

mutual information between the actual random variable and its estimator can be

upper bounded using the data-processing inequality [49] as I(θ, θ̂(y)) ≤ I(x,y).

Assuming that the measurement noises are independent and using the properties

of the joint entropy function, I(x,y) ≤
∑K

i=1 I(xi, yi). Similar to the previous

discussion, in the case of Gaussian measurement noises that are independent

of the observed variables, I(xi, yi)’s are upper bounded with the cost function

(1/2) log(1 + σ2
xi
/σ2

mi
). Therefore, when multiple observations are present, the

total cost of measuring the observation vector x is defined in [46] as follows:

Ctot ,
K∑
i=1

1

2
log

(
1 +

σ2
xi

σ2
mi

)
. (1.3)

As pointed out above and also by the authors of [46], the structure of the cost

function reveals an immediate analogy with the results from the rate-distortion

theory. More explicitly, an upper bound is imposed on the mutual information

between the actual and estimated random variables I(θ, θ̂(y)) due to the data

processing inequality and the total cost constraint Ctot. This constraint can

be interpreted as a rate constraint in the terminology of rate-distortion theory

where the optimization problem can be cast as minimizing the average MSE

distortion in the reconstruction of θ from a representation θ̂(y) subject to the

rate constraint I(θ, θ̂(y)) ≤ Ctot. Then, the results from the rate-distortion

theory manifests that for a given rate constraint Ctot, it is not possible to reduce

the MSE distortion denoted with ∥θ − θ̂(y)∥22 beyond a certain value given by

the corresponding distortion-rate function D(Ctot). Finally, the above discussion

generalizes in a straightforward manner when multiple parameters are estimated
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using multiple measurements without any change on the form of the proposed

cost function in (1.3).

1.2.3 Average Fisher Information Metric for Scalar Pa-

rameter Estimation under Cost Constrained Mea-

surements

Although the proposed model may lack in capturing the exact relationship be-

tween the cost and inner workings of any specific measurement hardware, it en-

compasses a sufficient amount of generality to remain useful under a multitude

of circumstances. After formulating the measurement device model as outlined

above, the optimal allocation of cost budget to the measurement devices is stud-

ied in [46] in order to minimize the estimation error, or equivalently in order to

obtain the most favorable trade-off between the total cost and estimation accu-

racy. The estimation error is calculated by assuming that the observed variables

are related to the unknown variables through a linear relation and for the esti-

mation part, only linear minimum mean-squared-error (LMMSE) estimators are

considered (as in the case of Wiener filtering problem in signal processing and

channel equalization problem under intersymbol interference in communications

systems). Although the proposed cost function is applicable to a wide variety

of measurement problems with similar budget interpretations, the assumption of

a linear relation between the observed and estimated (unknown) quantities and

the restriction to an LMMSE estimator presents a major limitation against the

generalization of similar analysis to a wider range of scenarios.

In estimation problems, the Cramer-Rao Bound (CRB) provides a lower

bound on the MSEs of unbiased estimators. In addition, when the prior dis-

tribution of the estimated parameter is known, the Bayesian CRB (BCRB) can
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be calculated to obtain a lower bound on the MSE of any estimator [23]. The

CRB and BCRB are quite useful in the analysis of estimation problems since

• They provide lower bounds that can be achieved (asymptotically) by cer-

tain estimators (e.g., MAP estimators),

• They are easier to calculate than the MSE as their formulations do not

depend on the specific estimator structure under consideration.

Therefore, in this study we move beyond just minimizing the linear minimum

mean-squared-error towards a more general performance metric: CRB for non-

random parameter estimation and BCRB for random parameter estimation.

In Chapter 5, we focus on the scalar parameter estimation problem, and con-

sider the problem of minimizing the BCRB (equivalently, maximizing the average

Fisher information) at the outputs of measurement devices under the total cost

constraint introduced in [46]. In other words, we propose a generic formulation

for determining the optimal cost allocation among measurement devices in order

to maximize the average Fisher information [50]. We also obtain a closed form

expression for the Gaussian case, and present numerical examples.

1.2.4 Extension to Vector Parameter Estimation: Mea-

surement Cost versus Estimation Accuracy

Although the optimal cost allocation problem is studied for the single parameter

estimation case in [50] (also discussed in Chapter 5), and the signal recovery

based on LMMSE estimators is investigated under cost constrained measure-

ments using a linear system model in [46], no studies have analyzed the impli-

cations of the proposed measurement device model in a more general setting by

considering both random and non-random parameter estimation under various
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estimation accuracy constraints and uncertainty in the linear system model. In

Chapter 6, we propose novel measurement cost minimization problems under

various constraints on estimation accuracy for a system characterized by a linear

input-output relationship subject to Gaussian noise [51, 52]. For the measure-

ment cost, we employ the recently proposed measurement device model in [46],

and present a detailed treatment of the proposed measurement cost minimiza-

tion problems. Main contributions of our study in Chapter 6 extend far beyond

a multi-variate analysis of the discussion in Chapter 5, and can be summarized

as follows:

• Formulated new convex optimization problems for the minimization of the

total measurement cost by employing constraints on various estimation

accuracy criteria (i.e., different functionals of the eigenvalues of the Fisher

information matrix (FIM)) assuming a linear system model3 in the presence

of Gaussian noise.

• Studied system matrix uncertainty both from a general perspective and by

employing a specific uncertainty model.

• Obtained closed form solutions for two of the proposed convex optimization

problems in the case of invertible system matrix.

• Extended the results to the Bayesian estimation framework by treating the

unknown estimated parameters as Gaussian distributed random variables.

In addition to the items listed above, simulation results are presented to

discuss the theoretical results. Namely, we compare the performance of vari-

ous estimation quality metrics through numerical examples using optimal and

suboptimal cost allocation schemes, and simulate the effects of system matrix

3Such linear models have a multitude of application areas, a few examples of which are

channel equalization, wave propagation, compressed sensing, and Wiener filtering problems

[53, 54].
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uncertainty. We also examine the behavior of the optimal solutions returned by

various estimation accuracy criteria under scaling of the system noise variances,

and identify the most robust criterion to variations in the average system noise

power via numerical examples. The relationship between the number of effective

measurements and the quality of estimation is also investigated under scaling of

the system noise variances.

1.3 Organization of the Dissertation

This dissertation is organized as follows. Chapters 2, 3 and 4 are devoted to the

analysis of how randomized signaling and detection approaches can help improve

the performance of power constrained communications systems under Bayesian

and Neyman-Pearson frameworks. In Chapter 2, optimal stochastic signaling and

detector randomization is studied under an average transmit power constraint for

the detection of vector-valued M -ary signals in arbitrary additive noise channels.

In Chapter 3, the convexity/concavity properties of the detection probability are

studied with respect to the transmitted signal and jammer power in the presence

of additive Gaussian noise under the Neyman-Pearson framework. In Chapter 4,

the analysis in the previous chapter is extended from the Gaussian case to noise

channels with arbitrary distributions in the presence of single or multiple detec-

tors at the receiver. Chapters 5 and 6 are devoted to the analysis of trade-offs

between measurement device cost and estimation accuracy. In Chapter 5, the

aim is to maximize the average Fisher information under a constraint on the

total cost of measurement devices for arbitrary observation and measurement

statistics. In Chapter 6, novel convex measurement cost minimization problems

are proposed based on various estimation accuracy constraints for a linear system

subject to additive Gaussian noise. Finally, Chapter 7 concludes this disserta-

tion by providing an overall summary of the results along with some remarks on

future work.
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2

Detector Randomization and

Stochastic Signaling for

Minimum Probability of Error

Receivers under Power

Constraints

This chapter is organized as follows. Section 2.1 explains the optimal receiver de-

sign problem in the presence of stochastic signaling and detector randomization

for an average power constrained M -ary communications system. The relation

between the optimal error performances attainable by employing only stochas-

tic signaling without detector randomization and only detector randomization

with deterministic signaling is established. Furthermore, the optimal solution is

provided in the form of an optimization problem. In Section 2.2, improvability

and non-improvability of the correct decision performance via the optimal strat-

egy is discussed. In Section 2.3, we present several methods for the numerical
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STOCHASTIC SIGNALING with DETECTOR RANDOMIZATION

Transmitted signals processed by each detector for symbols

{0,1,…,M-1} are modeled as random vectors.

1,2,...,i K=

Figure 2.1: Stochastic signaling with detector randomization for an M-ary com-
munications system operating over an additive noise channel with arbitrary noise
PDF. Channel can assume multimodal noise PDF, e.g., Gaussian mixture noise.

solution of the optimization problem. Finally, numerical examples are given to

corroborate theoretical results in Section 2.4.

2.1 Detector Randomization and Stochastic

Signaling

Consider an M -ary communications system, in which the receiver acquires N -

dimensional observations over an additive noise channel. The receiver is allowed

to randomize or time-share among at most K different detectors (decision rules)

to improve the detection performance, as shown in Figure 2.1. At any given time,

only one of those K detectors can be employed at the receiver for the recogni-

tion of the transmitted symbol. The transmitter and the receiver are assumed

to be synchronized in the sense that the transmitter knows which detector is

currently in use at the receiver.1 Furthermore, a stochastic signaling approach

1In practice, this can be achieved by employing a communications protocol that allocates

the first Ns,1 symbols in the payload for detector 1, . . . , the last Ns,K symbols for detector

K. The information on the numbers of symbols for different detectors can be included in the

header of a communications packet.
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is adopted by treating the transmitted signals for each detector as random vec-

tors. As investigated in [25] and [17] in the absence of detector randomization,

employing stochastic signaling; that is, modeling signals for different symbols as

random variables instead of deterministic quantities, can provide performance

improvements in some scenarios.

Considering both detector randomization and stochastic signaling, the noisy

observation vector Y received by the ith detector can be modeled as follows:

Y = S
(i)
j +N , j ∈ {0, 1, . . . ,M − 1} and i ∈ {1, . . . , K} , (2.1)

where S
(i)
j represents the transmitted signal vector for symbol j that is to be

processed by detector i, and N is the noise component that is independent of

S
(i)
j . It should be emphasized that S

(i)
j is modeled as a random vector to facilitate

stochastic signaling. Also, the prior probabilities of the symbols, represented by

π0, π1, . . . , πM−1, are assumed to be known. In addition, although the signal

model in (2.1) is in the form of a simple additive noise channel, it holds for

flat-fading channels as well assuming perfect channel estimation [25].

At the receiver, K generic detectors (decision rules) are utilized to estimate

the symbol specified in (2.1). That is, for a given observation vector Y = y, the

ith detector ϕ(i)(y) is described as

ϕ(i)(y) = j , if y ∈ Γ
(i)
j , (2.2)

for j ∈ {0, 1, . . . ,M − 1} , where Γ
(i)
0 ,Γ

(i)
1 , . . . ,Γ

(i)
M−1 form a partition of the ob-

servation space RN for the ith detector [20]. The receiver can randomize among

these K detectors in any manner in order to optimize its probability of error per-

formance. Let vi denote the randomization (or time-sharing) factor for detector

ϕ(i), where
∑K

i=1 vi = 1 and vi ≥ 0 for i = 1, . . . , K. Then, out of Ns symbols,

viNs of them are processed by detector ϕ(i) for i = 1, . . . , K.2

2It is assumed that viNs is an integer for i = 1, . . . ,K. If not, the randomization factors

can be achieved approximately. The approximation accuracy improves for larger Ns.
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The aim of this study is to jointly optimize the randomization factors, detec-

tors, and stochastic signals in order to achieve the minimum average probability

of error, or equivalently, the maximum average probability of correct decision.

The average probability of correct decision can be expressed as Pc =
∑K

i=1 vi P
(i)
c ,

where vi is the randomization factor for detector ϕ(i), and P
(i)
c represents the

corresponding probability of correct decision for that detector under M -ary sig-

naling; that is,

P(i)
c =

M−1∑
j=0

πj

∫
Γ
(i)
j

p
(i)
j (y) dy (2.3)

for i = 1, 2, . . . , K, with p
(i)
j (y) denoting the conditional probability density

function (PDF) of the observation when the jth symbol that is to be received

by the ith detector is transmitted. Since stochastic signaling is considered, S
(i)
j

in (2.1) is modeled as a random vector. Recalling that the signals and the noise

are independent, the conditional PDF of the observation can be calculated as

p
(i)
j (y) =

∫
RN p

S
(i)
j
(x) pN(y − x) dx = E

{
pN
(
y − S

(i)
j

)}
, where the expectation

is over the PDF of S
(i)
j . Then, the average probability of correct decision can be

expressed as

Pc =
K∑
i=1

vi

(
M−1∑
j=0

∫
Γ
(i)
j

πj E
{
pN
(
y − S

(i)
j

)}
dy

)
. (2.4)

In practical systems, there is a constraint on the average power emitted from

the transmitter. Under the framework of stochastic signaling and detector ran-

domization (or time-sharing), this constraint on the average power can be ex-

pressed in the following form [20]:

K∑
i=1

vi

(
M−1∑
j=0

πj E
{∥∥S(i)

j

∥∥2
2

})
≤ A , (2.5)

where A denotes the average power limit.

One of the main motivations behind this study is to understand how de-

tector randomization and stochastic signaling can affect the error performance
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of an M -ary communications system. We look into the problem of jointly de-

signing the optimal detectors, their randomization factors, and detector-specific

signal PDFs employed at the transmitter in order to achieve the maximum

(minimum) probability of correct decision (error) under the average power

constraint given in (2.5). Mathematically stated, the optimization space is{
ϕ(i), vi, p

S
(i)
0
, p

S
(i)
1
, . . . , p

S
(i)
M−1

}K

i=1
and the aim is to solve the following prob-

lem:

max{
ϕ(i), vi, p

S
(i)
0

, p
S
(i)
1

, ... , p
S
(i)
M−1

}K

i=1

K∑
i=1

vi

(
M−1∑
j=0

∫
Γ
(i)
j

πj E
{
pN
(
y − S

(i)
j

)}
dy

)

subject to
K∑
i=1

vi

(
M−1∑
j=0

πj E
{∥∥S(i)

j

∥∥2
2

})
≤ A ,

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . , K} . (2.6)

Note that there are also implicit constraints in the optimization problem in

(2.6), since each p
S
(i)
j
(·) represents a PDF. Namely, p

S
(i)
j
(x) ≥ 0 , ∀x ∈ RN , and∫

RN p
S
(i)
j
(x) dx = 1 should also be satisfied ∀ j ∈ {0, 1, . . . ,M − 1} and ∀ i ∈

{1, . . . , K} by the optimal solution.

For a given detector i and the corresponding signal PDFs, p
S
(i)
0
, p

S
(i)
1
, . . . , p

S
(i)
M−1

,

the conditional probability of observation y under hypothesis j (i.e., when sym-

bol j is transmitted) is given by p
(i)
j (y) = E

{
pN
(
y − S

(i)
j

)}
. When deciding

among M symbols based on observation y, the MAP decision rule selects sym-

bol k if k = arg max
j ∈{0, 1, ... ,M−1}

πj p
(i)
j (y) , and it maximizes the average probability

of correct decision [20]. Therefore, it is not necessary to search over all deci-

sion rules in (2.6); only the MAP decision rule should be determined for each

detector and its corresponding average probability of correct decision should be

considered [17]. The average probability of correct decision for a generic deci-

sion rule is given in (2.3). Using the decision region for the MAP detector; i.e.,

Γ
(i)
j = {y ∈ RN | πj p

(i)
j (y) ≥ πl p

(i)
l (y) , ∀l ̸= j}, the average probability of
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correct decision for detector i becomes

P
(i)
c,MAP =

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj p

(i)
j (y)

}
dy

=

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj E

{
pN(y − S

(i)
j )
}}

dy . (2.7)

Then, the optimal design problem in (2.6) can be stated as

max{
vi, p

S
(i)
0

, p
S
(i)
1

, ... , p
S
(i)
M−1

}K

i=1

K∑
i=1

vi

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj E

{
pN
(
y − S

(i)
j

)}}
dy

subject to
K∑
i=1

vi

(
M−1∑
j=0

πj E
{∥∥S(i)

j

∥∥2
2

})
≤ A ,

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . , K} . (2.8)

It is noted that the optimization space is considerably reduced compared to that

in (2.6) since there is no need to search over the detectors in (2.8).

The main idea behind considering only the MAP decision rules in evaluating

the maximum average probability of correct decision in the optimization problem

in (2.6) is that for any given set of stochastic signals and randomization factors,

the maximum average probability of correct decision is achieved when the MAP

rules are employed. Therefore, the optimization problem in (2.6) can be solved

considering only the MAP decision rules which result in (2.8) via (2.7).

Another way to explain this approach can be as follows: Assume

that the solution of the optimization problem in (2.6) is given by{
ϕ̂(i), v̂i, p̂

S
(i)
0
, p̂

S
(i)
1
, . . . , p̂

S
(i)
M−1

}K

i=1
where the decision rules ϕ̂(i)’s are not

MAP rules. Then, one can always achieve an equal or larger average probability

of correct decision if he/she replaces ϕ̂(i)’s with ϕ̂
(i)
MAP’s, where ϕ̂

(i)
MAP denotes the

MAP decision rule corresponding to p̂
S
(i)
0
, p̂

S
(i)
1
, . . . , p̂

S
(i)
M−1

. Hence, the optimal

solution of (2.6) can always be obtained by considering the MAP decision rules

only. Although this approach does not guarantee that the obtained solution is

the unique one, it guarantees that the solution is optimal; that is, the largest

average probability of correct decision is always achieved.
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It is also noted that although the original optimization problem in (2.6),

which performs an optimization over all possible detectors, is not the same as the

simplified optimization problem in (2.8), which considers only the MAP decision

rules, they are guaranteed to achieve the same maximum average probability of

correct decision. Hence, the simplified problem in (2.8) can be considered instead

of (2.6) to obtain the optimal solution.

The formulation in (2.8) generalizes the previous studies in the literature

and covers them as special cases. For example, for K = 1 (i.e., no detector

randomization), it reduces to the problem in [17] (hence, K ≥ 2 is considered

in this study). On the other hand, when deterministic signals are considered;

that is, p
S
(i)
j
(x) = δ(x − s

(i)
j ), ∀i, j, and when M = 2 (binary modulation), the

problem in (2.8) reduces to that in [15].

The optimization problem in (2.8) provides a generic formulation that is valid

for any noise PDF, and it is difficult to solve in general as the optimization needs

to be performed over a space of signal PDFs. Let P†
c denote the maximum av-

erage probability of correct decision obtained as the solution of the optimization

problem in (2.8). To provide a simpler formulation of this problem, an upper

bound on P†
c will be derived first, and then the achievability of that bound will

be investigated. To that aim, the following proposition is presented first.

Proposition 2.1.1 (Stochastic Signaling vs. Detector Randomization). Consid-

ering the same average power constraint and the same statistics for the additive

noise, stochastic signaling (without detector randomization) can never achieve a

larger average probability of correct decision than detector randomization (without

stochastic signaling) when optimal MAP detectors are employed in both cases.

Proof. Consider an M -ary communications system in which the transmitter em-

ploys stochastic signaling and the receiver uses the corresponding MAP rule for
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detection (no detector randomization is performed). Suppose that the trans-

mitted signal for each symbol is characterized with the PDF pXj
(·) , ∀ j ∈

{0, 1, . . . ,M − 1} . From (2.7), the average probability of correct decision for

this system is given by

Pc,MAP =

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj EXj

{pN(y −Xj)}
}
dy , (2.9)

where the subscript of the expectation operator denotes that the expectation

is taken with respect to the PDF of the corresponding random vector. The

transmitted signals for all the M symbols can be expressed as the elements of a

random vector X as follows: X , [X0 X1 · · ·XM−1] ∈ RMN , where Xj’s are N

dimensional row vectors ∀j ∈ {0, 1, . . . ,M − 1} . Then, the following inequality

follows directly from the definitions of the ‘max’ and ‘expectation’ operations:

max
j ∈{0, 1, ... ,M−1}

{
πj EXj

{pN(y −Xj)}
}

≤ EX

{
max

j ∈{0, 1, ... ,M−1}
{πj pN(y −Xj)}

}
. (2.10)

To see this, let k = arg max
j ∈{0, 1, ... ,M−1}

{
πj EXj

{pN(y −Xj)}
}

without loss of gen-

erality. Then,

πk EXk
{pN(y −Xk)} = EX {πk pN(y −Xk)}

≤ EX

{
max

j ∈{0, 1, ... ,M−1}
{πj pN(y −Xj)}

}
. (2.11)

From (2.9) and (2.10), it is observed that∫
RN

max
j ∈{0,1,...,M−1}

{
πj EXj

{pN(y −Xj)}
}
dy

≤ EX

{∫
RN

max
j ∈{0,1,...,M−1}

{πj pN(y −Xj)} dy︸ ︷︷ ︸
, F(X)

}
. (2.12)

Looking more closely at (2.12), it is observed that F(x) represents the average

probability of correct decision when the deterministic signal vector x is used for

the transmission of M symbols over the additive noise channel and the corre-

sponding MAP detector is employed at the receiver. Then, EX{F (X)} can be
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interpreted as a randomization (or time-sharing) among MAP detectors. The

exact number of MAP detectors is determined by the number of distinct values

that the random vector X can take.3 Hence, assuming same average power con-

straint (see (2.8)), average probability of correct decision obtained by stochastic

signaling with PDF pX(·) is always smaller than or equal to that of deterministic

signaling and detector randomization according to the same PDF.

Similarly to the proof of Proposition 2.1.1, we can express the transmitted

signals for all the M symbols that are to be received by detector i as the elements

of a random vector: S(i) ,
[
S
(i)
0 S

(i)
1 . . . S

(i)
M−1

]
∈ RMN , where S

(i)
j ’s are N di-

mensional row vectors ∀j ∈ {0, 1, . . . ,M − 1} . Then, the result in Proposition

2.1.1 can be employed to obtain a new optimization problem that provides an

upper bound on the problem in (2.8). Specifically, instead of stochastic signals,

consider detector randomization among deterministic signal values according to

the joint signal PDF. Then, the inequality in (2.12) can be applied to the objec-

tive function in (2.8), and the following optimization problem can be obtained:

max
{vi, pS(i)}K

i=1

K∑
i=1

vi E
{∫

RN

max
j ∈{0, 1, ... ,M−1}

{
πj pN

(
y − S

(i)
j

)}
dy

}

subject to
K∑
i=1

vi E
{M−1∑

j=0

πj

∥∥S(i)
j

∥∥2
2

}
≤ A

K∑
i=1

vi = 1 , vi ≥ 0 , ∀ i ∈ {1, 2, . . . , K} (2.13)

where the expectations are taken with respect to the PDFs of S(i)’s. Proposition

2.1.1 implies that the solution to this optimization problem provides an upper

bound on P†
c, which denotes the solution to the optimization problem in (2.8).

3In fact, a randomization among two MAP detectors is always sufficient in practice since

optimal stochastic signals can be represented by a randomization of at most two different

signal values under an average power constraint [17]. In other words, for any stochastic signal

PDF, a corresponding discrete probability distribution with at most two mass points can be

obtained, and the corresponding MAP detector randomization can be performed according to

that distribution.
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In order to achieve further simplification of the problem in (2.13), define

pS̃(s̃) ,
∑K

i=1 vi pS(i)(s̃) , where s̃ , [ s̃0 s̃1 · · · s̃M−1] ∈ RMN . Since
∑K

i=1 vi =

1 , vi ≥ 0 , ∀i and pS(i)(·)’s are valid PDFs on RMN , pS̃(s̃) satisfies the conditions

to be a PDF. Then, the optimization problem in (2.13) can be written in the

following equivalent form:

max
pS̃

E
{∫

RN

max
j ∈{0, 1, ... ,M−1}

{
πj pN(y − S̃j)

}
dy︸ ︷︷ ︸

, G(S̃)

}

subject to E
{M−1∑

j=0

πj

∥∥S̃j

∥∥2
2︸ ︷︷ ︸

, H(S̃)

}
≤ A (2.14)

where the expectations are taken with respect to pS̃(·), which denotes the joint

PDF of transmitted signals for symbols {0, 1, . . . ,M − 1} . In (2.14), G(s̃) rep-

resents the average probability of correct decision when the deterministic signal

vector s̃ is used for the transmission of M symbols over the additive noise chan-

nel and the corresponding MAP detector is employed at the receiver. Therefore,

E{G(S̃)} can be interpreted as a randomization (or time-sharing) among possibly

infinitely many MAP detectors.4 A more compact version of the optimization

problem in (2.14) can now be stated as follows:

max
pS̃

E{G(S̃)} subject to E{H(S̃)} ≤ A . (2.15)

where the expectations are taken over S̃ and pS̃(·) denotes the joint PDF of

transmitted signals for symbols {0, 1, . . . ,M − 1} . Let P⋆
c denote the maximum

average probability of correct decision obtained as the solution to the optimiza-

tion problem in (2.15). From Proposition 2.1.1, P⋆
c ≥ P†

c is always satisfied.

Optimization problems in the form of (2.15) have been investigated in var-

ious studies in the literature [9, 15, 17, 25]. Assuming that G(s) in (2.14)

is a continuous function and a ≼ s ≼ b is satisfied for some finite a and

4In the sequel, it will be shown that the optimal solution requires a randomization among

at most two MAP detectors.
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b, the optimal solution of (2.15) can be represented by a randomization of

at most two signal levels as a result of Carathéodory’s theorem [19]; that is,

popt
S̃

(s̃) = λ δ(s̃ − s1) + (1 − λ) δ(s̃ − s2). Therefore, the problem in (2.15) can

be solved over such signal PDFs, which results in the following optimization

problem:

max
{λ, s1, s2}

λG(s1) + (1− λ)G(s2)

subject to λH(s1) + (1− λ)H(s2) ≤ A ,

λ ∈ [0, 1] (2.16)

whereG(sk) =
∫
RN max

j ∈{0, 1, ... ,M−1}
{πj pN(y − sk,j)} dy, H(sk) =

∑M−1
j=0 πj

∥∥sk,j∥∥22,
and sk = [ sk,0 sk,1, · · · sk,M−1] ∈ RMN , with sk,j being an N dimensional row

vector ∀j ∈ {0, 1, . . . ,M − 1} . Therefore, it is observed that the solution of

(2.15) can be obtained by optimizing over a significantly reduced optimization

space via (2.16).

Finally, the following proposition states that the maximum average probabil-

ities of correct decision achieved by the solutions of the optimization problems

in (2.8) and (2.16) are equal.

Proposition 2.1.2. The optimization problems in (2.8) and (2.16) result in the

same maximum value.

Proof. First consider the optimization problem in (2.8) when K = 2 detec-

tors are used and deterministic signaling is employed for each detector, that is,

pS(1)(s(1)) = δ(s(1) − s1) and pS(2)(s(2)) = δ(s(2) − s2) . In that case, (2.8) reduces

to the optimization problem in (2.16); hence, (2.8) covers (2.16) as a special case.

Therefore, the maximum value of the objective function in (2.8) should be larger

than or equal to that of (2.16); namely, P†
c ≥ P⋆

c . On the other hand, Proposition

2.1.1 implies that (2.15) (equivalently (2.16)) provides an upper bound on (2.8);

that is, P†
c ≤ P⋆

c. Therefore, it is concluded that P†
c = P⋆

c.
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Proposition 2.1.2 implies that the solution of the original optimization prob-

lem in (2.8), which considers the joint optimization of detectors, stochastic signals

and detector randomization, can be obtained as the solution of the much simpler

optimization problem specified in (2.16). This also means that when multiple

detectors are available for randomization (i.e., K ≥ 2), it is sufficient to em-

ploy detector randomization for two deterministic signal vectors; i.e., there is

no need to employ stochastic signaling to achieve the optimal solution. On the

other hand, when there is only one detector (i.e., K = 1), the optimal solution

may involve stochastic signaling, as investigated in [17]. All in all, the optimal

solution to the most generic optimization problem in (2.8) results in either detec-

tor randomization for two deterministic signal values (for K ≥ 2), or stochastic

signaling without detector randomization (for K = 1).

2.2 Improvability and Non-improvability Con-

ditions

It should be noted that detector randomization with deterministic signaling

may or may not improve detection performance over the conventional system

(which does not perform any detector randomization or stochastic signaling,

and transmits at the maximum power limit) in certain scenarios depending on

the noise statistics. Before discussing the conditions for improvability and non-

improvability, we need to introduce the objective we would like to improve upon.

Conventional signaling strategies rely on using the available transmitter power

at its limit by employing different signal constellations (e.g., antipodal signaling

for binary communications with equal priors, PAM, QAM, etc.) without ben-

efiting from possible gains of stochastic signaling and detector randomization.

For any specific problem under consideration (any distribution of channel noise

PDF, number of symbols, prior probabilities and average power constraint), the
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optimal deterministic signaling strategy can be investigated or a widely used

signaling scheme can be adopted as the conventional approach.

In order to define improvability and non-improvability, we consider a generic

conventional system as the reference, which is defined as the one that employs

deterministic signaling at the power limit A and a single MAP detector at the

receiver [17, 25]. Then, the system is called improvable if detector random-

ization with deterministic signaling can result in a higher average probability

of correct decision under the average power constraint. Otherwise, it is called

non-improvable. The average probability of correct decision for the conventional

system can be expressed as (cf. (2.9))

Pconv
c =

∫
max

j ∈{0, 1, ... ,M−1}

{
πj pN(y − sconvj )

}
dy , (2.17)

where sconv represents the joint deterministic signal vector transmitted over the

channel for all the M symbols and
∑M−1

j=0 πj

∥∥sconvj

∥∥2
2
= A is satisfied. The

specific choice of sconv is determined by the properties of the problem under

consideration and the aim is to improve upon Pconv
c under the average power

constraint.

Improvability and non-improvability conditions can be derived for the prob-

lem studied above from the previous studies in the literature since the problem

formulations in the form of (2.15) and (2.16) have been investigated in vari-

ous studies such as [9, 17, 25, 55]. Namely, (2.15) is in the same form as the

noise enhanced detection problem in which the aim is to maximize the detection

probability under the false alarm constraint:

max
pN

E{F1(N)} subject to E{F0(N)} ≤ α , (2.18)

where pN(·) is the PDF of the additive noise, and F1(n) and F0(n) are, respec-

tively, the detection and false alarm probabilities for a given additive noise value

of n. Since the signals cannot take infinitely large values in practice, the sig-

nal values can be considered to be in closed finite intervals in (2.15). Hence, the

results for the problem above can be applied to the problem under consideration.
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In order to obtain some sufficient conditions for the improvability and non-

improvability of the average probability of correct decision, a similar approach to

those of [9] and [56] can be pursued. To that aim, we begin by noting the relation

among pS̃, G(S̃) and H(S̃) of the optimization problem in (2.15). G(s̃) represents

the average probability of correct decision when the deterministic signal vector

s̃ is used for the transmission of M symbols over the additive noise channel

and the corresponding MAP detector is employed at the receiver, and H(s̃)

indicates the power of the same deterministic signal vector s̃ averaged over the

prior probabilities. For a given value h of H, we have s̃ = H−1(h), where H−1 is

the inverse function of H. Since H is not a one-to-one mapping function in our

case, we have a set of s̃ values which satisfy H(s̃) = h. A set of values g of G

can be obtained correspondingly by g = G(s̃) = G(H−1(h)). By introducing the

joint PDF pS̃,h(·) for the signal distribution in the h domain, the optimization

problem in (2.15) can be expressed equivalently as

max
pS̃,h

∫ ∞

0

g pS̃,h(h) dh subject to

∫ ∞

0

h pS̃,h(h) dh ≤ A (2.19)

where pS̃,h(·) should satisfy the conditions to be a PDF (in fact, a finite upper

limit can be used in the integrals instead of infinity considering practical scenar-

ios). This approach enables us to continue the analysis in a single dimensional

space instead of RMN . As stated by the authors of [9], even in the cases where

the exact forms of g and h are hard to compute, the relationship between them

can be learned by Monte-Carlo simulation using importance sampling. Simi-

larly to [9], the function J(t) is defined as the maximum value of g given h; i.e.,

J(t) = sup{g : h = t}.

In the following, some of the previous results in the literature, namely those

in [9] and [56], are adapted into our context:
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2.2.1 Sufficient Conditions for Improvability

1) If J
′′
(A) > 0 when J(t) is second-order continuously differentiable around

A, then there exists at least one signaling process S̃ with PDF pS̃(·) that can

improve the correct decision performance from Theorem 1 of [9].

2) If there exists a joint signal vector x such that G(x) > Pconv
c and H(x) ≤ A,

then the average probability of correct decision can be improved by using pS̃(s̃) =

δ(s̃− x) from a generalization of Theorem 1 of [9].

3) The average probability of correct decision can be improved if there exists x̃1

and x̃2 that satisfy

[A−H(x̃2)][G(x̃1)−G(x̃2)]

H(x̃1)−H(x̃2)
> Pconv

c −G(x̃2) (2.20)

from Proposition 2 of [56].

4) Assume that G(x) is second-order continuously differentiable around x =

sconv. Define p(x, z) ,
∑MN

k=1 zk
∂H(x)
∂xk

, r(x, z) ,
∑MN

k=1 zk
∂G(x)
∂xk

, u(x, z) ,∑MN
l=1

∑MN
k=1 zlzk

∂2H(x)
∂xl∂xk

, and w(x, z) ,
∑MN

l=1

∑MN
k=1 zlzk

∂2G(x)
∂xl∂xk

, where xl and zl

represent the lth components of x and z, respectively. Then, the average prob-

ability of correct decision can be improved if there exists an MN -dimensional

vector z such that p(x, z) > 0, r(x, z) > 0 and

w(x, z) p(x, z) > u(x, z) r(x, z) (2.21)

are satisfied at x = sconv from Proposition 3 of [56].

5) The average probability of correct decision can be improved if G(x) and

−H(x) are strictly convex at x = sconv from Proposition 4 of [56].

6) Assume that G(x) is second-order continuously differentiable around x =

sconv. The average probability of correct decision can be improved if there exists

an MN -dimensional vector v such that
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(∑MN
l=1 vl

∂G(x)
∂xl

)(∑MN
l=1 vl

∂H(x)
∂xl

)
< 0 is satisfied at x = sconv , where vl represents

the lth component of v from Proposition 5 of [56].

2.2.2 Sufficient Conditions for Non-improvability

1) If there exists a non-decreasing concave function Ψ(t) that satisfies Ψ(t) ≥ J(t)

∀t and Ψ(A) = J(A) = Pconv
c , then the average probability of correct decision is

non-improvable from Theorem 2 of [9].

2) Assume that H(s̃) ≤ A implies G(s̃) ≤ Pconv
c for all s̃ ∈ C, where C is a convex

set consisting of all possible values of transmitted joint signal vector s̃. If H(s̃)

is a convex function and G(s̃) is a concave function over C, then the average

probability of correct decision is non-improvable from Proposition 1 of [56].

2.3 Details on Optimization

The optimization problems in the form of (2.16) have been investigated in vari-

ous studies in the literature, such as [9, 15–17]. The main approaches in solving

(2.16) include the analytical techniques as in [15] and [9], the convex relaxation

technique to obtain an approximate solution in polynomial time as employed in

[16], and the global optimization algorithms such as differential evolution and

particle swarm optimization [16]. In this study, a global optimization technique

based on multistart and pattern search algorithms from MATLAB’s Global Op-

timization Toolbox [57–59], are used to obtain the solution of (2.16).
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2.3.1 Global Optimization Algorithms

Since the optimization problem in (2.16) may not be a convex problem in general,

global optimization algorithms, such as particle swarm optimization (PSO) and

differential evolution (DE), can be employed. Although these approaches have

a random nature and do not guarantee finding the global optimal, they work

quite efficiently in many practical problems (e.g., [16, 17]). In our study, we have

used the global optimization technique based on multistart and pattern search

algorithms from MATLAB’s Global Optimization Toolbox.

2.3.2 Convex Relaxation Approach

The convex relaxation approach can be employed to obtain an approximate so-

lution in an efficient manner. Specifically, a set of candidate signal values, say

s̃1, . . . , s̃L are considered for S̃ in (2.15), and the weights for those possible signal

values, λ1, . . . , λL, can be searched for. In other words, the optimization problem

in (2.15) is approximated as

max
λ1,...,λL

L∑
i=1

λiG(s̃i) subject to
L∑
i=1

λiH(s̃i) ≤ A ,
L∑
i=1

λi = 1 , λi ≥ 0 ,

(2.22)

which is a linearly constrained linear optimization problem that can be solved

very efficiently in polynomial time.

The accuracy of the approximation increases as more candidate signal values

are considered (as L increases). In fact, for digital systems, since the possible

signal values are discrete, it may be possible to obtain the exact solution via

(2.22) above if all the possible signal values are considered. This convex relax-

ation approach is employed in [16] for a similar problem in the context of noise

enhanced detection.
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2.3.3 Analytical Approach

The third approach in obtaining the solution of (2.16) is the analytical approach

as in [9, 15]. In those studies, noise enhanced detection is studied in the Neyman-

Pearson framework; that is, the optimal probability density function (PDF) of

noise is searched under a constraint on the false alarm probability. This problem

is in the form of (2.18). Assuming that the signals cannot take infinitely large

values (e.g., they are in finite closed intervals), the optimization problem in

(2.15) is in the same form as the problem formulation in (2.18). Therefore, the

analytical approaches in [15] and [9] can be employed to obtain the solution.

Specifically, the approach in Section III.C of [9] (which is also employed in [16])

and the SR noise finding algorithm in Section III of [15] can be adopted for the

problem.

2.4 Simulation Results

In this section, three numerical examples are presented to compare the optimal

solution obtained in the previous section and various signaling techniques in

terms of probability of error performance. A communications system specified

as in (2.1) is considered with scalar observations and equal priors. First two

examples involve a binary communications system. Whereas, the third example

considers a quaternary communications system employing symmetric signaling.

It is assumed that the receiver is able to implement multiple detectors (K ≥ 2)

and to randomize among them. Gaussian mixture models with equal weights

and variances are assumed for the noise in all the examples, the PDF of which

can be expressed as pN(n) =
∑L

i=1 exp{−(n− µi)
2/(2σ2)}/(

√
2π σL) [27]. Note

that the average power of the noise can be calculated from E{N2} = σ2 +

(1/L)
∑L

i=1 µ2
i . Similar to those introduced in [17], three different signaling

schemes are considered:
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Gaussian Solution (Conventional): Lacking any information about the

noise PDF, the transmitter employs antipodal signaling, which is known to be op-

timal in the presence zero-mean Gaussian noise and equal priors [20]. For power

constraint A ,
{
−
√
A,

√
A
}
is selected as signal levels for binary communication.

For quaternary communication (M = 4),
{

−3
√
A√

5
, −

√
A√
5
,
√
A√
5
, 3

√
A√
5

}
is considered

as the conventional signaling scheme. On the other hand, MAP decision rule is

used at the receiver.

Optimal−Stochastic: Goken et al. [17] showed that joint optimization of

signaling structure and detector rule can be performed over a number of param-

eters instead of functions if the transmitter has some means of estimating the

noise PDF at the receiver. It is proved that optimal signal for each symbol can

be characterized by a discrete random variable with at most two mass points.

Under this setting, only a single detector is considered at the receiver (that is,

no detector randomization is employed), and it uses the MAP decision rule cor-

responding to the optimal signals obtained from the solution of the following

optimization problem, as stated in (9) of [17]:

max
{λ, s1, s2}

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj

(
λ pN(y − s1,j) + (1− λ) pN(y − s2,j)

)}
dy

subject to λ

(
M−1∑
j=0

πj

∥∥s1,j∥∥22
)

+ (1− λ)

(
M−1∑
j=0

πj

∥∥s2,j∥∥22
)

≤ A ,

λ ∈ [0, 1] (2.23)

Optimal−Deterministic: A simplified version of the optimal solution in

(2.23) for single detector case can be obtained by assuming that the transmitted

signal for each symbol is deterministic; i.e., it is not a randomization of two

distinct signal levels. The optimization problem in (2.23) reduces to

max
s

∫
RN

max
j ∈{0, 1, ... ,M−1}

{
πj pN(y − sj)

}
dy

subject to
M−1∑
j=0

πj

∥∥sj∥∥22 ≤ A (2.24)
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This scheme does not employ any detector randomization or stochastic signaling,

and obtains the optimal deterministic signal levels and the corresponding MAP

detector [17].

In addition to the approaches described above, the following scheme investi-

gated in the previous section is considered as the overall optimal solution:

Optimal Detector Randomization with Optimal Deterministic Sig-

naling: This case refers to the solution of the most generic optimization problem

in (2.6), which can be obtained from (2.16) as studied in the previous section.

2.4.1 Example 1

The average error probabilities of the schemes described above are plotted versus

A/σ2 for A = 1 in Figure 2.2, where the parameters of the Gaussian mixture

noise are given by L = 6 and µ = [−1.08 −0.81 −0.27 0.27 0.81 1.08] as in [17].

However, unlike [17], symmetric signaling assumption is not employed. From

Figure 2.2, it is observed that the Gaussian solution has the worst performance

as expected since it is optimized for zero-mean Gaussian noise. Optimizing de-

terministic signal levels improves the performance of the Gaussian solution, as

observed from the Optimal–Deterministic curve. Further performance improve-

ments are obtained when optimal stochastic signals are considered instead of

deterministic signals (see Optimal–Stochastic). However, the best probability

of error performance is achieved by the optimal solution of the most generic

optimization problem investigated in the previous section, which performs op-

timal detector randomization among two MAP detectors corresponding to two

deterministic signal pairs (see Optimal–Detector Randomization). In accordance

with Proposition 2.1.1, stochastic signaling without detector randomization can-

not perform better than detector randomization with deterministic signaling.
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Figure 2.2: Average probability of error versus A/σ2 for various approaches. A
symmetric Gaussian mixture noise, which has its mass points at ±[0.27 0.81 1.08]
with equal weights is considered.

In Tables 2.1, 2.2 and 2.3, some optimal signals are presented for the

Optimal–Deterministic, Optimal–Stochastic and Optimal–Detector Randomiza-

tion schemes in Figure 2.2, respectively. For optimal deterministic signaling, s0

and s1 denote the optimal deterministic signal levels for symbol 0 and symbol

1 in Table 2.1. On the other hand, the optimal signal vector for symbols 0 and

1 has the PDF in the form of pS(s) = β δ(s − s1,i) + (1 − β) δ(s − s2,i) for op-

timal stochastic signaling as shown in Table 2.2. Finally, the optimal solution

obtained in the previous section (Optimal–Detector Randomization) employs the

signal pair [s1,0 s1,1] and the corresponding MAP detector with probability λ,

and the signal pair [s2,0 s2,1] and the corresponding MAP detector with proba-

bility 1 − λ as presented in Table 2.3. It is observed that all optimal signaling
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Figure 2.3: Average probability of error versus A/σ2. A symmetric Gaussian
mixture noise, which has its mass points at [-2 2] with equal weights is considered.

schemes get close to deterministic signaling for small A/σ2, which is also veri-

fied from Figure 2.2. However, the signaling schemes become quite different as

A/σ2 increases from 10 dB, which results in differences in probability of error

performance.

2.4.2 Example 2

In this example, the parameters of the Gaussian mixture noise are given by

L = 2 and µ = [−2 2], the average power constraint is A = 5, and the average

error probabilities of the schemes described above are plotted versus 1/σ2 in Fig-

ure 2.3. As before, a binary communications system is assumed and symmetric

signaling is not employed. Compared to Example 1, the worst performance of

the conventional signaling scheme (Gaussian solution) is much more evident in
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Example 2. This is because, the overlaps among the components of the Gaussian

mixture noise is more severe for conventional signaling case in this example. On

the other hand, the superior performance of optimal detector randomization with

optimal deterministic signaling is verified once again. Decrease in the average

probability of error can be explained by the introduction of the second MAP de-

tector and the optimal randomization of signal levels between two detectors for

each symbol. Similarly to the previous example, improvements disappear as σ2

increases. Tables 2.4, 2.5 and 2.6 present the optimal signals for different values

of 1/σ2. The notation is the same as in the previous example.

2.4.3 Example 3

Another example is constructed to investigate the benefits that can be obtained

via detector randomization in M -ary communication systems when M > 2. For

this purpose, a quaternary communications system (M = 4) with symmetric

signaling is considered, that is s2 = −s0 and s3 = −s1. The parameters of

the Gaussian mixture noise are given by L = 6 and µ = [−0.432 − 0.324 −

0.108 0.108 0.324 0.432]. The average error probabilities of the schemes described

previously are plotted versus A/σ2 for A = 1 in Figure 2.4 with the correspond-

ing optimal signals given in Tables 2.7, 2.8 and 2.9. Note that the results for

symbols 0 and 1 are listed in the tables, and the results for symbols 2 and 3 are

the negatives of them respectively since symmetric signaling is considered. It is

evident from the figure that optimal detector randomization with deterministic

signals achieves the best probability of error performance. Performance improve-

ments among different signaling schemes deteriorate as A/σ2 drops below 20 dB.

A final observation is that optimal stochastic signaling approach cannot improve

upon optimal deterministic signaling for this example. This is possibly due to

the fact that signal space is overcrowded with the PDFs of four distinct sym-

bols (each with six Gaussian mixture components) and there is no room left for
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Figure 2.4: Average probability of error versus A/σ2. A symmetric Gaussian
mixture noise, which has its mass points at ±[0.108 0.324 0.432] with equal
weights is considered.

any performance improvement via randomization after the optimal allocation of

deterministic signal values.

2.5 Concluding Remarks

In this chapter, optimal receiver design is studied for a communications system

in which both detector randomization and stochastic signaling can be performed

[31]. First, it is proven that stochastic signaling without detector randomization

cannot achieve a smaller average probability of error than detector randomiza-

tion with deterministic signaling for the same average power constraint and noise

statistics. Then, it is shown that the optimal receiver design results in a random-

ization between at most two MAP detectors corresponding to two deterministic
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signal vectors. In addition, sufficient conditions are derived for improvability

and non-improvability of the correct decision performance via detector random-

ization. Three numerical examples are provided to explain the results.
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Table 2.1: Optimal deterministic signaling for the scenario in Figure 2.2 . A
symmetric Gaussian mixture noise, which has its mass points at ±[0.27 0.81 1.08]
with equal weights is considered.

A/σ2 (dB) S0 S1

10 -0.9992 1.0008
12 -0.9997 1.0003
14 -0.9992 1.0008
15 -0.9997 1.0003
16 -0.9996 1.0004
18 -0.4968 1.1298
20 -1.3302 0.2552
22 -1.0224 0.5274
24 -1.1174 0.4084
25 -0.7622 0.7552
26 -0.9599 0.5509
28 -1.0141 0.4871
30 -0.8191 0.6761
32 -0.6872 0.8042
34 -0.4520 1.2990
35 -0.4886 0.9996
36 -1.3153 0.1723

Table 2.2: Optimal stochastic signaling for the scenario in Figure 2.2 . A sym-
metric Gaussian mixture noise, which has its mass points at ±[0.27 0.81 1.08]
with equal weights is considered.

A/σ2 (dB) λ S1,0 S2,0 S1,1 S2,1

10 1 -0.9993 N/A 1.0007 N/A
12 0.5890 -0.9998 -0.9986 1.0017 0.9997
14 0.9474 -1.0000 -0.9925 1.0000 0.9944
15 0.7212 -1.1417 -0.5766 0.9835 0.9836
16 0.5992 -0.6402 -1.4368 0.9623 0.9634
18 0.6119 -0.6412 -1.4596 0.9600 0.9600
20 0.3927 -1.4543 -0.6388 0.9600 0.9600
22 0.4261 -1.4414 -0.5934 0.9553 0.9553
24 0.4496 -1.4259 -0.5700 0.9523 0.9523
25 0.4594 -1.4135 -0.5590 0.9556 0.9556
26 0.4680 -0.9558 -0.9558 1.4049 0.5528
28 0.5169 -0.9599 -0.9599 0.5403 1.3857
30 0.5099 -0.8934 -0.8934 0.6014 1.4408
32 0.5023 -1.3206 -0.4886 1.0026 1.0026
34 0.4878 -0.5371 -1.3641 0.9519 0.9519
35 0.4892 -1.0150 -1.0150 0.4731 1.2977
36 0.4686 -1.1337 -1.1337 1.1761 0.3538
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Table 2.3: Optimal detector randomization with optimal deterministic signaling
for the scenario in Figure 2.2 . A symmetric Gaussian mixture noise, which has
its mass points at ±[0.27 0.81 1.08] with equal weights is considered.

A/σ2 (dB) λ S1,0 S2,0 S1,1 S2,1

10 0.0386 -0.6439 -1.0119 0.6441 1.0115
12 0.6962 -1.1077 -0.6892 1.1084 0.6936
14 0.4473 -0.7603 -1.1576 0.7613 1.1583
15 0.4878 -0.7712 -1.1755 0.7755 1.1763
16 0.4850 -1.1916 -0.7783 1.1907 0.7780
18 0.4582 -1.2095 -0.7811 1.2086 0.7801
20 0.5417 -0.7746 -1.2127 0.7758 1.2137
22 0.5276 -0.7620 -1.2053 0.7709 1.2120
24 0.4895 -1.1974 -0.7556 1.2042 0.7626
25 0.4980 -1.1930 -0.7606 1.1998 0.7517
26 0.4935 -0.7552 -1.1876 0.7522 1.1964
28 0.5220 -1.1860 -0.7444 1.1810 0.7554
30 0.4644 -0.7348 -1.1724 0.7598 1.1793
32 0.5467 -1.1877 -0.7191 1.1509 0.7721
34 0.4432 -0.7420 -1.1554 0.7470 1.1724
35 0.4399 -0.7406 -1.1272 0.7476 1.1960
36 0.5637 -1.1949 -0.7443 1.1243 0.7433

Table 2.4: Optimal deterministic signaling for the scenario in Figure 2.3 . A
symmetric Gaussian mixture noise, which has its mass points at [-2 2] with equal
weights is considered.

1/σ2 (dB) S0 S1

0 -2.2359 2.2362
1 -1.3463 1.2139
2 -1.8662 0.5732
3 -2.2893 0.0583
4 -2.0515 0.2245
5 -0.3911 1.8281
6 -2.1446 0.0296
7 -0.5547 1.5837
8 -0.0524 2.0574
9 -0.7411 1.3461
10 -1.4442 0.6252
11 -2.0190 0.0360
12 -0.8504 1.1934
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Table 2.5: Optimal stochastic signaling for the scenario in Figure 2.3 . A sym-
metric Gaussian mixture noise, which has its mass points at [-2 2] with equal
weights is considered.

1/σ2 (dB) λ S1,0 S2,0 S1,1 S2,1

0 0.7078 -1.8619 -1.8618 0.7223 4.5932
1 0.2906 -1.8217 -1.8217 4.6888 0.6433
2 0.2940 -4.7150 -0.5793 1.7966 1.7966
3 0.2993 -4.7102 -0.5263 1.7787 1.7788
4 0.6945 -1.7674 -1.7672 0.4798 4.6887
5 0.3120 -4.6580 -0.4399 1.7597 1.7599
6 0.6815 -1.7525 -1.7525 0.4086 4.6255
7 0.6750 -1.7483 -1.7483 0.3813 4.5897
8 0.6689 -1.7469 -1.7468 0.3570 4.5528
9 0.6632 -1.7521 -1.7511 0.3326 4.5126
10 0.6583 -1.7971 -1.7993 0.2699 4.4346
11 0.3473 -1.7618 -1.7618 4.4383 0.2916
12 0.6608 -0.6452 -4.7865 1.3975 1.3974

Table 2.6: Optimal detector randomization with optimal deterministic signaling
for the scenario in Figure 2.3 . A symmetric Gaussian mixture noise, which has
its mass points at [-2 2] with equal weights is considered.

1/σ2 (dB) λ S1,0 S2,0 S1,1 S2,1

0 0.4453 -3.0614 -1.2207 3.0610 1.2216
1 0.5778 -1.1881 -3.1479 1.1908 3.1471
2 0.5889 -1.1602 -3.1981 1.1617 3.1990
3 0.4072 -3.2258 -1.1355 3.2250 1.1351
4 0.5925 -1.1121 -3.2361 1.1131 3.2354
5 0.4106 -3.2342 -1.0934 3.2351 1.0924
6 0.4153 -3.2257 -1.0745 3.2267 1.0776
7 0.5789 -1.0614 -3.2117 1.0624 3.2145
8 0.5726 -1.0537 -3.1966 1.0467 3.1976
9 0.4339 -3.1802 -1.0428 3.1794 1.0380
10 0.5598 -1.0280 -3.1556 1.0409 3.1684
11 0.5549 -1.0278 -3.1336 1.0270 3.1650
12 0.5515 -1.0166 -3.0838 1.0262 3.1971
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Table 2.7: Optimal deterministic signaling for the scenario in Figure 2.4 . A sym-
metric Gaussian mixture noise, which has its mass points at ±[0.108 0.324 0.432]
with equal weights is considered.

A/σ2 (dB) S0 S1

10 0.3658 1.3661
12 0.3762 1.3633
14 0.3869 1.3603
16 0.3977 1.3571
18 1.3553 0.4041
20 0.3066 1.3806
22 0.3152 1.3786
24 1.3780 0.3180
26 1.3778 0.3188
28 0.3154 1.3785
30 0.3097 1.3796
32 1.3809 0.3051
34 1.3816 0.3021
36 0.3002 1.3820
38 1.3675 0.2990
40 0.2983 1.3553

Table 2.8: Optimal stochastic signaling for the scenario in Figure 2.4 . A sym-
metric Gaussian mixture noise, which has its mass points at ±[0.108 0.324 0.432]
with equal weights is considered.

A/σ2 (dB) λ S1,0 S2,0 S1,1 S2,1

10 1 1.3667 N/A 0.3636 N/A
12 1 1.3633 N/A 0.3762 N/A
14 1 1.3603 N/A 0.3868 N/A
16 1 0.3956 N/A 1.3578 N/A
18 1 1.3554 N/A 0.4029 N/A
20 1 1.3806 N/A 0.3066 N/A
22 1 1.3786 N/A 0.3152 N/A
24 1 1.3778 N/A 0.3180 N/A
26 1 1.3778 N/A 0.3188 N/A
28 1 1.3785 N/A 0.3154 N/A
30 1 1.3799 N/A 0.3097 N/A
32 1 1.3809 N/A 0.3051 N/A
34 1 1.3816 N/A 0.3021 N/A
36 1 0.3002 N/A 1.3820 N/A
38 1 0.2990 N/A 1.3626 N/A
40 1 0.3497 N/A 1.3683 N/A
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Table 2.9: Optimal detector randomization with optimal deterministic signaling
for the scenario in Figure 2.4 . A symmetric Gaussian mixture noise, which has
its mass points at ±[0.108 0.324 0.432] with equal weights is considered.

A/σ2 (dB) λ S1,0 S2,0 S1,1 S2,1

10 0.7559 0.3633 1.3682 1.3662 0.3642
12 1 1.3633 N/A 0.3762 N/A
14 1 1.3612 N/A 0.3837 N/A
16 1 1.3581 N/A 0.3940 N/A
18 0.3653 0.2105 1.4295 1.2420 0.4408
20 0.5058 1.2609 0.4659 0.2323 1.4654
22 0.5303 1.2599 0.4764 0.2360 1.4752
24 0.2622 0.4836 1.3224 1.4854 0.3081
26 0.2678 0.4885 0.3104 1.4882 1.3183
28 0.6570 0.4889 0.0720 1.4814 1.0790
30 0.3178 0.0736 0.4866 1.0689 1.4698
32 0.7143 0.4826 1.0553 1.4547 0.0758
34 0.2520 0.0777 1.4404 1.0450 0.4786
36 0.2206 0.0790 0.4745 1.0356 1.4268
38 0.2131 0.0798 0.4712 1.0271 1.4158
40 0.1720 0.0802 0.4684 1.0204 1.4066
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3

Convexity Properties of

Detection Probability under

Additive Gaussian Noise:

Optimal Signaling and Jamming

Strategies

In this chapter, we study the convexity/concavity properties for the problem of

detecting the presence of a signal emitted from a power constrained transmitter

in the presence of additive Gaussian noise under the Neyman-Pearson framework.

Section 3.1 introduces the problem. In Section 3.2, it is proved that the detection

probability corresponding to the α−level likelihood ratio test is either concave

or has two inflection points such that the function is concave, convex and finally

concave with respect to increasing values of the signal power. In addition, the

analysis is extended from scalar observations to multidimensional colored Gaus-

sian noise corrupted signals. Based on the convexity/concavity results, optimal
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and near-optimal power sharing/randomization strategies are proposed for av-

erage/peak power constrained transmitters. In Section 3.3, a similar analysis is

carried out for the case of a power constrained jammer.

3.1 Problem Formulation

Consider the problem of detecting the presence of a target signal, where the

receiver needs to decide between the two hypotheses H0 or H1 based on a real-

valued scalar observation Y acquired over an AWGN channel.

H0 : Y = σN , H1 : Y =
√
S + σN (3.1)

Here, N ∼ N (0, 1) is a standard Gaussian random variable with zero mean

and unit variance, σ > 0 is the noise standard deviation at the receiver,
√
S

represents the transmitted signal for the alternative hypothesis H1, and S > 0 is

the corresponding signal power. The additive noise N is statistically independent

of the signal
√
S. The scalar channel model in (3.1) provides an abstraction for

a continuous-time system that passes the received signal through a correlator

(matched filter) and samples it once per symbol interval, thereby capturing the

effects of modulator, additive noise channel and receiver front-end processing.

In addition, although the above model is in the form of a simple additive noise

channel, it may be sufficient to incorporate various effects such as thermal noise,

multiple-access interference, inter-symbol interference and jamming [2].

It is well-known that the NP detector gives the most powerful α-level test of

H0 versusH1 [20]. In other words, when the aim is to maximize the probability of

detection such that the probability of false alarm does not exceed a predetermined

value α, the NP detector is the optimal choice and takes the following form of
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an LRT for continuous PDFs:

δNP (y) =


1 , if p1(y) ≥ η p0(y)

0 , if p1(y) < η p0(y)

(3.2)

where the threshold η ≥ 0 is chosen such that the probability of false alarm

satisfies PFA = P0 (p1(y) ≥ η p0(y)) = α, with subscript 0 denoting that the

probability is calculated conditioned on the null hypothesis H0. Then, the NP

decision rule is the optimal one among all α-level decision rules, i.e., PD =

P1 (p1(y) ≥ η p0(y)) is maximized, where the probability is calculated under the

condition that the alternative hypothesis H1 is true.

The hypothesis pair in (3.1) can be restated in terms of the distributions on

the observation space as

H0 : Y ∼ N (0, σ2) , H1 : Y ∼ N (
√
S, σ2) . (3.3)

The likelihood ratio for (3.1) is then given by

L(y) =
p1(y)

p0(y)
= exp

{√
S

σ2

(
y −

√
S

2

)}
. (3.4)

Since S > 0, the likelihood ratio L(y) is a strictly increasing function of the

observation y. Therefore, comparing L(y) to the threshold η is equivalent to

comparing y to another threshold η′ = L−1(η), where L−1 is the inverse function

of L. Then, the probability of false alarm is expressed as

PFA = E0{δNP (Y )} = P0 (L(Y ) ≥ η) = P0 (Y ≥ η′) (3.5)

= Q

(
η′

σ

)
, (3.6)

where Q−function is the tail probability of the standard Gaussian distribution,

i.e., Q(x) = (1/
√
2π )

∫∞
x

e−t2/2dt. It is noted that any value of false alarm

probability α can be attained by choosing the threshold η′ = σQ−1(α), where

Q−1 is the inverse Q−function. Then, for fixed S, the optimal α−level NP
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decision rule employed at the receiver is given by

δNP (y) =


1 , if y ≥ σQ−1(α)

0 , if y < σQ−1(α)

(3.7)

which also possesses the constant false alarm rate (CFAR) property. Let γ ,

S/σ2 denote the normalized signal power at the receiver. Then, the detection

probability achieved by δNP is obtained as

PD(γ) = P1

(
Y ≥ σQ−1(α)

)
= Q

(
Q−1(α)−√

γ
)
. (3.8)

For fixed α, the relationship between the detection probability and γ is known

as the power function of the test in radar terminology.

We will first discuss the convexity/concavity properties of the detection prob-

ability with respect to the signal power for the NP test given in (3.7). This is

motivated by the possibility of enhancing the detection performance via time

sharing/randomizing between two signal power levels while satisfying an average

power constraint. In the absence of fading, the received power is a deterministi-

cally scaled version of the transmitted power for non-varying AWGN channels.

Hence, any constraint on the transmitted power can be related to one on the

received power and consecutively to one in the normalized form, and vice versa.

In addition to the average power constraint, a hard limit on the peak transmitted

power can be imposed as well in accordance with practical considerations.

3.2 Convexity Properties in Signal Power

3.2.1 Convexity/Concavity Results

In the following analysis, the endpoints are excluded from the set of feasible false

alarm probabilities. Specifically, α is confined in the interval (0, 1) excluding the
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trivial cases of α ∈ {0, 1}. We first note the limits of the detection probability,

i.e., limγ→0 PD(γ) = α and limγ→∞ PD(γ) = 1. Differentiating with respect to γ

yields

P
′

D(γ) =
1

2
√
2πγ

exp

{
−
(
Q−1(α)−√

γ
)2

2

}
(3.9)

which is positive ∀ γ > 0 indicating that PD(γ) is a strictly increasing function

of γ. Similarly, the limits for the first derivative is given as limγ→0 P
′
D(γ) = ∞

and limγ→∞ P
′
D(γ) = 0.

Proposition 3.2.1. For α ∈ [Q(2), 1), PD(γ) is a monotonically increasing

concave function of γ ∈ (0,∞). For α ∈ (0, Q(2)), PD(γ) is a monotonically

increasing function with two inflection points such that the function is concave,

convex and finally concave with respect to increasing values of γ.

Proof. It suffices to consider the second derivative of the detection probability

with respect to γ, i.e.,

P
′′

D(γ) =
1

4
√
2π γ

exp

{
−
(
Q−1(α)−√

γ
)2

2

}(
Q−1(α)−√

γ − 1
√
γ

)
. (3.10)

Since the first two terms in (3.10) are positive ∀ γ > 0, the sign of the second

derivative is determined by the third term, i.e., (Q−1(α)−√
γ−1/

√
γ ). First, it

is noted that for α ≥ Q(0) = 0.5, we have Q−1(α) ≤ 0 which implies P
′′
D(γ) < 0

for all γ > 0 and the detection probability is concave. Next, let x , √
γ . The

third term in (3.10) has the reversed sign of f(x) = x2 −Q−1(α)x+ 1 for x > 0.

The discriminant of the quadratic polynomial is given by ∆ = (Q−1(α))2 − 4.

When α ∈ [Q(2), Q(−2)], the discriminant is nonpositive ∆ ≤ 0, and we have

f(x) ≥ 0 ∀x implying that P
′′
D(γ) ≤ 0. Together with the previous result

α ≥ Q(0), it is concluded that PD(γ) is concave for α ≥ Q(2) ≈ 0.02275013.

For α < Q(2), f(x) has two distinct roots corresponding to the inflection points

of PD(γ), which are given as

γ1,2 = 0.25
(
Q−1(α)∓

√
(Q−1(α))2 − 4

)2
(3.11)
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Figure 3.1: Detection probability of the NP decision rule in (3.7) is plotted versus
normalized signal power γ for various values of the false alarm probability α. As
an example, when α = 10−4, the inflection points are located at γ1 ≈ 0.0851 and
γ2 ≈ 11.7459 with PD(γ1) ≈ 0.0003 and PD(γ2) ≈ 0.3852.

suggesting that PD(γ) is concave for γ ∈ (0, γ1) ∪ (γ2,∞) and convex for γ ∈

[γ1, γ2].

Figure 3.1 depicts the detection probability of the NP decision rule in (3.7)

versus γ for various values of the false alarm probability α. As expected, PD(γ)

is concave for α ∈ [Q(2), 1), and consists of concave, convex and finally concave

intervals for α ∈ (0, Q(2)). For the latter case, even though its existence is

guaranteed, the effect of the first inflection point is far less obvious than the

second inflection point. This can be attributed to the fact that for small values

of α, γ1 ≈ 0 and PD(γ1) ≈ α whereas γ2 ≈ (Q−1(α))2 and PD(γ2) ≈ 0.5, where

the approximations are obtained using the first order Taylor series expansion.
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3.2.2 Optimal Signaling

The concavity for α ∈ [Q(2), 1) stated in Proposition 3.2.1 indicates that the

detection performance of an average power-limited transmitter cannot be im-

proved by time sharing/randomizing between different power levels. Fortunately,

the range of false alarm probabilities facilitating improved detection performance

have higher practical significance. In order to obtain the optimal power sharing

strategy, we first present the following lemma.

Lemma 3.2.1. Let α < Q(2), and γ1 and γ2 be the inflection points of PD(γ) as

given in (3.11). There exist unique points γC1 ∈ (0, γ1] and γC2 ≥ γ2 such that

the tangent to PD(γ) at γC1 is also tangent at γC2 and this tangent lies above

PD(γ) for all γ > 0.

Proof. In Proposition 3.2.1, it is proved that PD(γ) is strictly convex and in-

creasing over the interval (γ1, γ2), which implies that P
′
D(γ1) < P

′
D(γ2). On the

contrary, P
′
D(γ) is monotonically decreasing over the intervals (0, γ1) and (γ2,∞).

Furthermore, P
′
D(γ) is continuous ∀γ > 0. Since limγ→0 P

′
D(γ) = ∞, there exists

a unique point γ1x ∈ (0, γ1] such that P
′
D(γ1x) = P

′
D(γ2). Similarly, there exists a

unique point γ2x ∈ [γ2,∞) such that P
′
D(γ2x) = P

′
D(γ1) since limγ→∞ P

′
D(γ) = 0.

As a result, for every γ̂1 ∈ [γ1x, γ1] there exists a unique point γ̂2 ∈ [γ2, γ2x] such

that P
′
D(γ̂1) = P

′
D(γ̂2). In other words, we can define a one-to-one continuous

function as γ̂2(γ̂1) = (P
′
D)

−1
(
P

′
D(γ̂1)

)
. Now, consider the function f(γ, γ̂1) =

PD(γ) −
(
P

′
D(γ̂1)(γ − γ̂1) + PD(γ̂1)

)
, which gives the vertical difference between

PD(γ) and the tangent to PD(γ) at γ̂1. Recall that ∂f/∂γ = P
′
D(γ) − P

′
D(γ̂1)

has a zero at some point γ̂2 ∈ [γ2, γ2x]. We can define the following continu-

ous function: h(γ̂1) , f(γ̂2 (γ̂1) , γ̂1) = PD(γ̂2) − PD(γ̂1) − P
′
D(γ̂1)(γ̂2 − γ̂1). By

differentiation, it is observed that h(·) is an increasing function: ∂h(γ̂1)/∂γ̂1 =

P
′
D(γ̂2)γ̂

′
2 − P

′
D(γ̂1)− P

′′
D(γ̂1)(γ̂2 − γ̂1)− P

′
D(γ̂1)(γ̂

′
2 − 1) = −P

′′
D(γ̂1)(γ̂2 − γ̂1) > 0

where the last equality follows from P
′
D(γ̂1) = P

′
D(γ̂2) and the inequality is due

to the strict concavity of PD(γ̂1) over γ̂1 ∈ [γ1x, γ1] and γ̂2 > γ̂1. By substituting
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γ̂1 = γ1x, we have γ̂2 = γ2 and h(γ1x) = PD(γ2)−PD(γ1x)−P
′
D(γ1x)(γ2−γ1x) ≤ 0.

The last inequality follows by noting that P
′
D(γ) ≤ P

′
D(γ1x) for γ ∈ [γ1x, γ2]

and PD(γ2) = PD(γ1x) +
∫ γ2
γ1x

P
′
D(γ)dγ. On the other extreme, when γ̂1 = γ1,

we have γ̂2 = γ2x and h(γ1) = PD(γ2x) − PD(γ1) − P
′
D(γ1)(γ2x − γ1) ≥ 0.

Again, the inequality follows from P
′
D(γ) ≥ P

′
D(γ1) for γ ∈ [γ1, γ2x] and

PD(γ2x) = PD(γ1) +
∫ γ2x
γ1

P
′
D(γ)dγ. Since h(·) is a continuous increasing func-

tion, it must have a unique root γC1 ∈ [γ1x, γ1]. Consequently, tangent to PD(γ)

at γC1 is also tangent at some point γC2 = (P
′
D)

−1
(
P

′
D(γC1)

)
∈ [γ2, γ2x].

Next, we prove that the tangent lies above PD(γ) for all γ > 0. Since PD(γ)

is strictly concave for (0, γ1), the tangent at γC1 lies above PD(γ) for γ ∈ (0, γ1).

Recall that the same line is also tangent to PD(γ) at γC2 and as a result, it lies

above PD(γ) for γ > γ2. Subsequently, the line connecting the points (γ1,PD(γ1))

and (γ2,PD(γ2)) lies above PD(γ) for γ ∈ [γ1, γ2] since PD(γ) is convex over this

interval. Since the inflection points (γ1,PD(γ1)) and (γ2,PD(γ2)) are below the

tangent line, the line connecting them also lies below the tangent line. This

proves that the tangent line is above PD(γ) for all γ > 0.

Using a similar analysis to that in the proof of Lemma 3.2.1, we can also

obtain the following lemma.

Lemma 3.2.2. Let α < Q(2), and γ1 and γ2 be the inflection points of PD(γ).

Suppose also that γC1 and γC2 are the contact points of the tangent line as

described in Lemma 1. Given a point γ̂ ∈ [γ1, γC2], there exists a unique

point γC(γ̂) ∈ [γC1, γ1] such that the tangent at γC(γ̂) passes through the point

(γ̂,PD(γ̂)) and lies above PD(γ) for all γ ∈ (0, γ̂).1

1The dependence of tangent point γC to γ̂ is explicitly emphasized by writing it as a function,

i.e., γC(γ̂).
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Based on Lemma 3.2.1 and Lemma 3.2.2, we state the optimal signaling

strategy for the communications system in (3.1) operating under peak power

constraint Γpeak and average power constraint Γavg (Γavg ≤ Γpeak).

Proposition 3.2.2. Let α < Q(2). For Γavg ≤ γC1 or Γavg ≥ γC2 or Γpeak ≤ γ1,

the best strategy is to exclusively transmit at the average power Γavg, i.e., power

sharing/randomization does not help. When Γavg ∈ (γC1, γC2) and γC2 ≤ Γpeak,

the optimal strategy is to time share/randomize between powers γC1 and γC2 with

the fraction of time (γC2 − Γavg)/(γC2 − γC1) allocated to the power γC1. On the

contrary if Γavg ∈ [γC(Γpeak),Γpeak] while Γpeak ∈ (γ1, γC2), the optimal strategy

is to time share/randomize between powers γC(Γpeak) and the peak power Γpeak

with the fraction of time (Γpeak−Γavg)/(Γpeak−γC(Γpeak)) allocated to the power

γC(Γpeak). Consequently, if Γavg < γC(Γpeak) while Γpeak ∈ (γ1, γC2), transmitting

continuously at Γavg is the optimal strategy.

The proof can be established in a straightforward manner by showing that

the proposed strategy results in the smallest concave function that is larger than

PD(γ) for γ ∈ (0,Γpeak] which corresponds to the upper boundary of the convex

hull of PD(γ) within the same interval [19]. If we do not pay attention to the

peak power constraint for a second, these results indicate that very weak and

strong transmitters should operate continuously at their average power while

transmitters with moderate power can benefit significantly from power sharing

strategies.

The critical points γC1 and γC2 can be obtained as the unique pair that

satisfies P
′
D(γC1) = P

′
D(γC2) = (PD(γC2)− PD(γC1)) / (γC2 − γC1), which can

be solved numerically by plugging in the corresponding expressions. Since the

simultaneous solution of these equality constraints can be difficult due to terms

involving exponentials and Q−functions, we propose the following problem to
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construct the optimal signaling strategy:

max
λ,γC1,γC2

λQ
(
Q−1(α)−√

γC1

)
+ (1− λ)Q

(
Q−1(α)−√

γC2

)
s.t. λ γC1 + (1− λ)γC2 ≤ Γavg (3.12)

where γC1 ∈ (0, γ1], γC2 ∈ [γ2,Γpeak], and λ ∈ [0, 1] denotes the fraction of time

power γC1 is used assuming Γpeak ≥ γC2 and Γavg ∈ [γC1, γC2]. The employed

solver can be initialized with γC1 = γ1, γC2 = γ2, and λ = (γ2 − Γavg)/(γ2 −

γ1). As an example, for α = 10−4, Γavg = 5, and Γpeak = 20, the optimal

strategy can achieve a detection probability of 0.1946 by employing power γC1 =

2.69 × 10−5 with probability 0.7307 and power γC2 = 18.5664 with probability

0.2693, whereas by exclusively transmitting at the average power, the detection

probability remains at 0.0690. 2 If the peak power constraint is lowered to

Γpeak = 10, the optimal strategy can still increase the detection probability to

0.1445 by randomizing between γC = 4.99 × 10−5 and peak power Γpeak = 10

with approximately equal probabilities as suggested by the solution of P
′
D(γC) =

(PD(Γpeak)− PD(γC)) / (Γpeak − γC). Finally, it should be emphasized that the

detection probability can be improved even further by designing the optimal

signaling scheme jointly with the detector employed at the receiver, which will

be discussed in the next chapter. However, in that case we need to sacrifice from

the simplistic structure of the threshold detector which is also easier to update

if the channel statistics change slowly over time.

3.2.3 Near-optimal Strategy

We recall from the previous discussion that for small values of the false alarm

probability, the first inflection point γ1 gets close to zero. It is also stated above

that the value of PD(γ1) equals approximately to α in that case. Since the critical

2Numerical results are obtained using MATLAB’s multistart method and sqp algorithm

together with the local solver fmincon.
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points γC and γC1 are located inside the interval (0, γ1], they get close to zero

as well while the corresponding detection probabilities approach α. Also evident

from the example above, this observation gives clues of a suboptimal approach.

We make a simplifying assumption and suppose that PD(γ) is convex over the

interval (0, γ2). Using arguments similar to those in the Appendix, it is then

possible to show that there exists a unique point γon ≥ γ2 such that the tangent

to PD(γ) at γon passes through the point (0, α). Then, γon can be obtained from

PD(γon)− γonP
′
D(γon) = α. More explicitly, we need to solve for x̂ such that

x̂ = Q−1

(
Q−1(α)− x̂

2
√
2π

exp

{
− x̂2

2

}
+ α

)
(3.13)

and the contact point can be obtained by substituting γon = (Q−1(α)− x̂)
2
.

The form of the equation in (3.13) suggests that a fixed point iteration can be

employed to obtain the solution [60]. This observation leads to the following

near-optimal strategy in the case of strict false alarm requirements.

Near-optimal strategy: Let α < Q(2). A suboptimal strategy with reasonable

performance is to switch between powers 0 and γon with the fraction of on-power

time Γavg/γon when Γavg < γon < Γpeak. For γon ≥ Γpeak, the proposed suboptimal

strategy randomizes between powers 0 and Γpeak with the fraction of on-power

time Γavg/Γpeak. For Γavg > γon, the transmission is conducted exclusively at the

average power.

Figure 3.2 provides more insight about the near-optimal performance of the

proposed approach. For various values of the false alarm probability α, we have

computed the inflection points γ1 and γ2 from (3.11), evaluated the corresponding

detection probabilities PD(γ1) and PD(γ2), respectively, and plotted the resulting

detection performance curves with respect to α. As the false alarm constraint

is tightened (smaller values), it is observed that the vertical gap between the

detection performances calculated at the respective inflection points becomes

much more pronounced. Since PD(γ) is monotonically increasing and γC1 ≤ γ1

is assured from Lemma 3.2.1, PD(γC1) always takes values smaller than PD(γ1),
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Figure 3.2: Detection probability of the NP decision rule in (3.7) is evaluated at
the inflection points γ1 and γ2.

which is denoted with the red curve. On the contrary, the detection probability

corresponding to the larger contact point γC2 results in PD(γC2) ≥ PD(γ2), which

is represented by the blue curve. For a given α, the optimal strategy stated in

Proposition 3.2.2 randomizes between γC1 and γC2, whose contributions to the

detection performance should therefore lie below the red curve and above the

blue curve, respectively. As a result, the contribution from the smaller contact

point γC1 can safely be ignored over a large set of false alarm probabilities without

sacrificing from the detection performance claimed by the optimal strategy stated

in Proposition 3.2.2.

3.2.4 Extension to Multidimensional Case

As mentioned earlier in the Introduction, when the observations acquired by

the receiver are corrupted with colored Gaussian noise, the detection probability
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can be maximized by transmitting along the eigenvector corresponding to the

minimum eigenvalue of the noise covariance matrix [20]. More specifically, we

consider the following hypothesis-testing problem where, given anM dimensional

data vector, we have to decide between H0 : Y = N and H1 : Y =
√
Svmin+N,

where N ∼ N (0,Σ) is a Gaussian random vector with zero mean and covariance

matrix Σ, and vmin is the normalized eigenvector corresponding to the minimum

eigenvalue of Σ with |vmin|2 = 1. It should be pointed out that a feedback

mechanism is required from the receiver to the transmitter in order to facilitate

signaling along the least noisy direction. In the absence of such a mechanism,

the following analysis provides an upper bound on the detection performance.

At the receiver, the optimal correlation detector employs the decision statis-

tics T (y) = vT
min · y, which is a linear combination of jointly Gaussian random

variables. Hence, the hypotheses can be rewritten as H0 : T (Y) ∼ N (0, λmin)

and H1 : T (Y) ∼ N (
√
S, λmin), where λmin denotes the minimum eigenvalue of

Σ [20]. From the false alarm constraint, the detector threshold can be obtained

as PFA = P0 (T (Y) ≥ η) = Q
(
η/

√
λmin

)
= α and η =

√
λminQ

−1(α). The

corresponding optimal NP decision rule is given as

δNP (Y) =


1 if vT

min · y ≥
√
λminQ

−1(α)

0 if vT
min · y <

√
λminQ

−1(α)

(3.14)

By defining γ , S/λmin, the detection probability attained by δNP is computed

from PD(γ) = P1(T (Y) ≥
√
λminQ

−1(α)) = Q
(
Q−1(α)−√

γ
)
. Notice that this

expression is exactly in the same form as (3.8) after replacing σ2 with λmin and

similar results to those in Section 3.2 can be obtained in this multidimensional

setting.
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3.3 Convexity Properties in Noise Power

In this section, we investigate the binary hypothesis testing problem stated in

(3.1) from the perspective of a power constrained jammer. By assuming signal

power S to be fixed, we aim to determine the optimal power allocation strategy

for a Gaussian jammer in order to minimize the detection probability at the

receiver. The power of the jammer is controlled over time through the variable σ.

Considering a smart receiver, it is assumed that the value of σ is learned instantly

and the detection threshold in (3.7) is updated to maintain a constant false alarm

probability α. It should be pointed out that the receiver can improve its detection

performance by employing the optimal NP decision rule corresponding to the

power distribution of the stochastic Gaussian jammer. However, in this study

we assume that the receiver keeps the threshold detector to exploit reduced costs

and ease of adaptability. On the other hand, jamming would be performed more

effectively if the receiver could not adapt to varying noise power instantaneously.

Under constant transmit power S, the detection probability as a function

of the normalized jammer power, β , σ2/S, can be expressed as PD(β) =

Q
(
Q−1(α)− β−1/2

)
. The limits can be computed as limβ→0 PD(β) = 1

and limβ→∞ PD(β) = α. Differentiating with respect to β yields P
′
D(β) =

−(2
√
2π)−1β−3/2 exp

{
− 0.5

(
Q−1(α)− β−1/2

)2}
, which is negative ∀ β > 0. The

limits for the first derivative are limβ→0 P
′
D(β) = 0 and limβ→∞ P

′
D(β) = 0.

Proposition 3.3.1. PD(β) is a monotonically decreasing function of β ∈ (0,∞)

with a single inflection point at

β∗ =

(√
(Q−1(α))2 + 12−Q−1(α)

6

)2

. (3.15)

Proof. The second derivative of the detection probability is P
′′
D(β) =

(4
√
2π)−1β−7/2 exp

{
− 0.5

(
Q−1(α)− β−1/2

)2}(
3β +Q−1(α)

√
β − 1

)
. As before,

the sign of the second derivative is determined by the left most expression in
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Figure 3.3: Detection probability of the NP decision rule in (3.7) is plotted versus
normalized jammer power β for various values of the false alarm probability α.
As an example, when α = 10−4, the inflection point is located at β∗ ≈ 0.05164
with PD(β

∗) ≈ 0.7523.

parentheses. By substituting x ,
√
β, the roots of the resulting quadratic poly-

nomial are obtained as
(
− Q−1(α) ±

√
(Q−1(α))2 + 12

)
/6. Since x =

√
β > 0,

the positive root results in the inflection point given in (3.15) indicating that

PD(β) is strictly concave for β < β∗ and strictly convex for β > β∗.

The detection performance of the NP detector given by (3.7) is depicted in

Figure 3.3 versus β for various values of the false alarm probability α, which

point out the possibility of decreasing the detection probability via time-sharing

of the jammer noise power. In order to obtain the optimal power sharing strategy

for the jammer, we first present the following lemma which can be proved using

a similar approach to that of Lemma 3.2.1.
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Lemma 3.3.1. Let β∗ be the inflection point of PD(β) as given in (3.15). There

exists a unique point βC ≥ β∗ such that the tangent to PD(β) at βC lies below

PD(β) and passes through the point (0, 1).

The contact point βC can be obtained from PD(βC) − βCP
′
D(βC) = 1, or

equivalently solving for x̂ in

x̂ = Q−1

(
1− Q−1(α)− x̂

2
√
2π

exp

{
− x̂2

2

})
(3.16)

and then substituting into βC = (Q−1(α)−x̂)−2. In addition to the fixed point it-

eration approach, fzero function provided in MATLAB which implements Brent’s

method can successfully return βC [61, Chapter 4].

Next, we present the optimal strategy for a Gaussian jammer operating under

peak power constraint Jpeak and average power constraint Javg (Javg ≤ Jpeak)

towards a smart receiver employing the adaptable threshold detector given in

(3.7).

Proposition 3.3.2. The jammer’s optimal strategy is to switch between powers

0 and βC with the fraction of on-power time Javg/βC when Javg < βC < Jpeak.

For βC ≥ Jpeak, the optimal strategy randomizes between powers 0 and Jpeak with

the fraction of on-power time Javg/Jpeak. For Javg > βC, jamming is performed

continuously at the average power.

Again the proof follows by noting that the stated strategy results in the

largest convex function that is smaller than PD(β) for β ∈ [0, Jpeak]. Finally

as an example, for α = 10−4, Javg = 0.04, and Jpeak = 0.1, on-off Gaussian

jamming can reduce the detection probability from 0.8999 down to 0.7109 by

transmitting with power βC = 0.08779 for approximately 45.56 percent of the

time and aborting jamming for 54.44 percent of the time. If the peak power

constraint is lowered to Jpeak = 0.06, the optimal strategy can still decrease

the detection probability to 0.7612 by randomizing between 0 and peak power

Jpeak = 0.06 with two-thirds of on-power time fraction.
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3.4 Concluding Remarks

In this chapter, we have examined the convexity/concavity properties of the de-

tection probability for the problem of determining the presence of a target signal

immersed in additive Gaussian noise. Unnoticed in the previous literature, we

have found out that the detection performance of a power constrained transmit-

ter can be increased via time-sharing between different levels whenever the false

alarm requirement is smaller than Q(2) ≈ 0.02275. Although the optimal strat-

egy indicates a randomization between two nonzero power levels for moderate

values of the power constraint, it is shown that the on-off signaling strategy can

well approximate the optimal performance. Next, we have considered the dual

problem for a power constrained jammer and proved the existence of a critical

power level up to which on-off jamming can be employed to degrade the detection

performance of a smart receiver.
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4

Optimal Stochastic Signal Design

and Detector Randomization for

Power Constrained On-Off

Keying Systems in

Neyman-Pearson Framework

In this chapter, we extend the work conducted in the previous chapter to

Neyman-Pearson detection over channels with arbitrary noise PDFs. Section 4.1

discusses the joint optimal design of the signaling scheme and the decision rule

for the case of a single detector at the receiver. Section 4.2 considers the case of

multiple detectors at the receiver and states the solution to to the most generic

problem which requires the joint optimal design of decision rules, stochastic sig-

nals, and detector randomization factors. A detection example is presented to

justify the performance improvements due to stochastic signaling and detector

randomization in Section 4.3.
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4.1 Case 1: Single Detector at the Receiver

Consider an on-off keying communications system, in which the receiver acquires

M -dimensional observations over an additive noise channel and decides between

the two hypotheses H0 or H1, which are modeled as

H0 : Y = N , H1 : Y = S+N (4.1)

where Y is the noisy observation vector, S represents the transmitted signal for

the alternative hypothesis (H1), and N is the noise component that is indepen-

dent of S. Instead of using a constant level for S as in the conventional case,

one can consider a more generic scenario in which the signal S can be stochastic.

Then, the aim is to find the optimal PDF for S in (4.1) and the corresponding

decision rule that maximize the probability of detection under the constraints on

the probability of false alarm and average transmit power. A feedback mechanism

from the receiver to the transmitter is assumed to facilitate the joint optimization

of the signaling structure and the decision rule, which is a reasonable assumption,

for example, for cognitive radio (CR) systems.

Note that the probability distribution of the noise component in (4.1) is not

necessarily Gaussian. Due to interference, such as multiple-access interference,

the noise component can have a significantly different probability distribution

from the Gaussian distribution [62].

At the receiver, the structure of a randomized test is assumed to choose

between the two hypotheses. Such a test is completely characterized by a decision

rule ϕ. For a given observation vector y, this test accepts hypothesis H1 with

probability ϕ(y), and rejects it with probability 1−ϕ(y) where 0 ≤ ϕ(y) ≤ 1 for

all y. If ϕ takes on only the values 0 and 1, the test reduces to a nonrandomized

one, and ϕ simply becomes the indicator function of the decision region [28].
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In the NP framework, for a given value of α ∈ (0, 1), the aim is to maximize

the probability of detection such that the probability of false alarm does not

exceed α. In other words, the tradeoff between type-I and type-II errors is taken

into account in the NP approach [20]. Given the decision rule (detector) ϕ, the

two probabilities of interest, the probability of detection PD and the probability

of false alarm PFA, can be calculated as follows:

PD = E1 {ϕ(Y)} =

∫
RM

ϕ(y) p1(y) dy

PFA = E0 {ϕ(Y)} =

∫
RM

ϕ(y) p0(y) dy (4.2)

where pi(y) denotes the conditional PDF of the observation when hypothesis

Hi is assumed to be true for i ∈ {0, 1}, and the subscripts on the expectation

operators indicate the corresponding hypotheses. Since stochastic signaling is

considered, S in (4.1) is modeled as a random vector. Recalling that the signal

and the noise are independent, the conditional PDF of the observation under the

alternative hypothesis H1 can be calculated as p1(y) =
∫
RM pS(x) pN(y−x) dx =

E {pN (y − S)} , where the expectation is taken over the PDF of S. On the other

hand, the conditional PDF of the observation under the null hypothesis H0 is

given simply by p0(y) = pN(y). Then, using the linearity of the expectation

operator, the probability of detection can be expressed as

PD =

∫
RM

ϕ(y)E {pN (y − S)} dy

= E
{∫

RM

ϕ(y) pN (y − S) dy

}
, E {h(ϕ;S)} (4.3)

and the probability of false alarm PFA is given by

PFA =

∫
RM

ϕ(y) pN(y) dy . (4.4)

In practical systems, there is a constraint on the average power emitted from

the transmitter. Under the framework of stochastic signaling, this constraint on

the average power can be expressed in the following form [20]:

E
{
∥S∥22

}
≤ A (4.5)
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where A denotes the average power limit.

One of the main motivations behind this study is to understand how stochas-

tic signaling can help improve the detection performance of an on-off keying

system without violating the constraint on the false alarm probability. Under

the NP decision criterion, the optimal signaling and detector design problem can

then be stated as

max
{ϕ, pS}

E {h(ϕ;S)}

subject to PFA ≤ α and E
{
∥S∥22

}
≤ A (4.6)

where the expectations are taken over the PDF of S, α ∈ (0, 1), and h(ϕ;S)

and PFA are as in (4.3) and (4.4), respectively. Note that there are also implicit

constraints in the optimization problem in (4.6), since pS(·) represents a PDF.

Namely, pS(x) ≥ 0 , ∀x ∈ RM , and
∫
RM pS(x) dx = 1 should also be satisfied by

the optimal solution.

Based on (4.3) and (4.4), a more explicit version of (4.6) can be expressed as

max
{ϕ, pS}

E
{∫

RM

ϕ(y) pN (y − S) dy

}
subject to

∫
RM

ϕ(y) pN(y) dy ≤ α

E
{
∥S∥22

}
≤ A (4.7)

where α ∈ (0, 1), and similarly to (4.6) the expectations are taken over the PDF

of S.

Although the optimization problem in (4.6) provides a generic formulation

that is valid for any noise PDF, it is difficult to solve in general as the optimization

needs to be performed over a space of signal PDFs and decision rules. In the

following analysis, it is proven that optimizing over a set of variables (instead of

functions) is sufficient to obtain the optimal signal PDF and the decision rule.

To that aim, the following lemma is presented first.

72



Lemma 4.1.1. Given a decision rule ϕ that satisfies the false alarm constraint;

if h(ϕ; s) in (4.3) is a continuous function of s defined on a compact subset of

RM , then an optimal solution to (4.6) can be expressed in the form of

poptS (x) = λ δ(x− s1) + (1− λ) δ(x− s2) , (4.8)

where λ ∈ [0, 1].

Proof. Suppose that a decision rule ϕ̃ is given such that the constraint on

the probability of false alarm is satisfied, i.e.,
∫
RM ϕ̃(y) pN(y) dy ≤ α. Then,

h(ϕ̃; s) =
∫
RM ϕ̃(y) pN (y − s) dy in (4.3) becomes a function of s only. Formally,

PD in (4.3) can be represented as PD = E {h(S)} and the optimization problem

in (4.6) can be stated as

max
pS

E {h(S)} subject to E
{
∥S∥22

}
≤ A . (4.9)

Similar optimization problems have been studied extensively in the literature

under various frameworks [9, 15, 17, 25]. Given the conditions in the lemma,

Carathéodory’s theorem from convex analysis [19] implies that the optimal solu-

tion of (4.9) can be expressed by a randomization of at most two signal vectors.

Therefore, for any decision rule ϕ̃ satisfying the false alarm constraint, the opti-

mal signal PDF can be represented as in (4.8).

At this point, it should be emphasized that the above lemma points out

to a significant reduction on the complexity of the optimization problem under

certain conditions. Namely, the optimal signal design no longer involves a search

over all possible signal PDFs; but instead a randomization between at most two

different signal vectors suffices. Hence, the problem in (4.6) can be solved over

the signal PDFs that are in the form of (4.8). Led by this observation, a further

simplification of the optimization problem is presented.
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Proposition 4.1.1. Under the conditions in Lemma 4.1.1, the optimization

problem in (4.6) can be expressed as follows:

max
{λ, s1, s2, η}

∫
Γ(λ,s1,s2,η)

{λ pN (y − s1) + (1− λ) pN (y − s2)} dy

subject to

∫
Γ(λ,s1,s2,η)

pN(y) dy = α

λ ∥s1∥22 + (1− λ) ∥s2∥22 ≤ A

λ ∈ [0, 1] and η ≥ 0 (4.10)

where Γ (λ, s1, s2, η) = {y ∈ RM : λ pN (y − s1)+ (1−λ) pN (y − s2) > η pN(y)},

and α ∈ (0, 1) .

Proof. It is known that the NP detector gives the most powerful α-level test of

H0 versus H1 [20]. In other words, when the aim is to maximize the probability of

detection such that the probability of false alarm does not exceed a predetermined

value α, the NP detector is the optimal choice. When deciding between two

simple hypotheses H0 versus H1 based on observation y, the NP decision rule

takes the following form of an LRT:

ϕ̃NP (y) =


1 , if p1(y) > η p0(y)

γ(y) , if p1(y) = η p0(y)

0 , if p1(y) < η p0(y)

(4.11)

where η ≥ 0 and 0 ≤ γ(y) ≤ 1 are chosen such that the probability of false

alarm satisfies PFA = E0{ϕ̃NP (Y)} = α, where the expectation is taken with

respect to the null hypothesis H0. Then, the NP decision rule is the optimal one

among all α-level decision rules, i.e. PD = E1{ϕ̃NP (Y)} is maximized, where the

expectation is taken with respect to the alternative hypothesis H1. It can be

proven that such a rule always exists for all α ∈ (0, 1) and is unique [20]. Let

L(Y) = p1(Y)/p0(Y) be the likelihood function. For continuous L(Y), γ(Y)

can be chosen arbitrarily since the probability of the event {p1(Y) = η p0(Y)} is

equal to 0 under both H0 and H1 [20, 28].
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To keep the formulation simpler, the PDF of the channel noise is assumed

to be continuous which gives rise to a continuous likelihood function. An ex-

tension for the discrete case is straightforward by incorporating the parameter

γ(y) into the calculations for the detection and false alarm probabilities. Un-

der the continuity assumption, while deciding between two simple hypotheses

based on observation y, the NP decision rule, which selects hypothesis H1 if

p1(y) > η p0(y) and selects hypothesis H0 otherwise, maximizes the probability

of detection under the false alarm constraint. Therefore, when the signal PDF

pS(·) is specified, it is sufficient to consider only the detection probability of the

NP rule instead of a search over all the decision rules.

As the NP decision rule assigns observation y to hypothesis H1 if p1(y) >

η p0(y) and decides hypothesis H0 otherwise, the probability of detection and

false alarm expressions in (4.2) can be expressed for an NP decision rule as

PD = E1

[
ϕ̃NP (Y)

]
=

∫
Γ

p1(y) dy

PFA = E0

[
ϕ̃NP (Y)

]
=

∫
Γ

p0(y) dy (4.12)

where Γ =
{
y ∈ RM : p1(y) > η p0(y)

}
.

In Lemma 4.1.1, it is shown that an optimal signal PDF is in the form of (4.8).

As a result, the conditional PDF of the observation under hypothesis H1 can be

written as p1(y) = E{pN (y − S)} =
∫
RM pS(x) pN(y − x) dx = λ pN (y − s1) +

(1 − λ) pN (y − s2). Similarly, the average power constraint in (4.6) becomes

λ ∥s1∥22 + (1 − λ) ∥s2∥22 ≤ A . Therefore, the expressions for PD and PFA at the

end of the previous paragraph imply that the optimization problems in (4.6) and

(4.10) are equivalent as stated in the proposition.

Proposition 4.1.1 implies that the solution of the original optimization prob-

lem in (4.6), which considers the joint optimization of the stochastic signal PDF

and the detector, can be obtained as the solution of the much simpler optimiza-

tion problem specified in (4.10).
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Comparing the formulations in (4.6) and (4.10), it is noted that a signifi-

cant complexity reduction is obtained in the representation of the problem by

optimizing over a set of variables instead of a set of functions. The solution

of the optimization problem in (4.10) can be obtained via global optimization

techniques (since it is not a convex problem in general), or a convex relaxation ap-

proach as in [16] can be employed to obtain approximate solutions in polynomial

time. In this study, the multistart and patternsearch methods from MATLAB’s

Global Optimization Toolbox are used to obtain the solution of (4.10).

Assuming that the selected optimization algorithm successfully returns the

parameters
{
λopt, sopt1 , sopt2 , ηopt

}
for the problem in (4.10), the optimal signal

PDF can be constructed as poptS (x) = λoptδ(x−sopt1 )+(1−λopt)δ(x−sopt2 ), and the

optimal decision rule assumes the form of the corresponding NP decision rule that

decides hypothesis H1 if λ
optpN

(
y − sopt1

)
+(1−λopt)pN

(
y − sopt2

)
> ηopt pN(y)

and decides hypothesis H0 otherwise.

4.2 Case 2: Multiple Detectors at the Receiver

We consider an average power constrained on-off keying communications system

operating over an additive noise channel. The receiver can randomize among at

most K different detectors (decision rules) in any manner to improve the aver-

age detection performance, as shown in Figure 4.1. At any given time, only a

single detector is employed at the receiver to conclude the presence/absence of a

signal level embedded in noise. Via a communications protocol, the transmitter

is informed of the detector currently active at the receiver. As pointed out in

Section 4.1, in the absence of detector randomization, employing stochastic sig-

naling; that is, modeling the on-signal as a random variable instead of assuming

a constant level, can help improve the detection performance without violating

the constraints on the false alarm probability and average signal power.
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Figure 4.1: On-off keying communications system model for joint stochastic sig-
naling and detector randomization.

Given an N -dimensional observation vector, the receiver has to decide be-

tween two hypotheses H0 or H1 specified as

H0 : Y = N , H1 : Y = S(i) +N , i ∈ {1, . . . , K} (4.13)

where Y is the noisy observation vector, S(i) represents the transmitted signal

vector for the on-signal destined for detector i, and N is the noise component

that is independent of S(i). Furthermore, S(i) is modeled as a random vector to

facilitate stochastic signaling.

Let vi denote the randomization factor for detector i, where
∑K

i=1 vi = 1 and

vi ≥ 0 for i = 1, . . . , K. The two probabilities of interest in the NP framework,

the average probability of detection PD and the average probability of false alarm

PFA, can be calculated as PD =
∑K

i=1 vi P
(i)
D and PFA =

∑K
i=1 vi P

(i)
FA . P

(i)
D and P

(i)
FA

represent the detection and false alarm probabilities for detector i, respectively;

and are specified by

P
(i)
D =

∫
RN

ϕ(i)(y) p
(i)
1 (y) dy (4.14)

P
(i)
FA =

∫
RN

ϕ(i)(y) pN(y) dy (4.15)

where ϕ(i) is the decision rule for detector i, and p
(i)
1 (y) denotes the condi-

tional PDF of the observation received by detector i under the alternative
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hypothesis H1. Recalling that signal and noise are independent, p
(i)
1 (y) =∫

RN pS(i)(s) pN(y − s) ds = E{pN
(
y − S(i)

)
}, where the expectation is taken

over the PDF of S(i). Similarly, under the framework of stochastic signaling

and detector randomization, the constraint on the average signal power can be

expressed as [20]:
∑K

i=1 vi E{∥S(i)∥22} ≤ A , where A denotes the average power

limit.

For a given detector i and the corresponding signal PDFs, the probability of

detection is maximized under the false alarm constraint using the NP decision

rule [20, 23], which takes the form of an LRT

ϕ
(i)
NP(y) =


1 , if p

(i)
1 (y) ≥ η(i) pN(y)

0 , if p
(i)
1 (y) < η(i) pN(y)

, (4.16)

where the decision threshold η(i) ≥ 0 is chosen such that the probability of false

alarm satisfies P
(i)
FA =

∫
RN ϕ

(i)
NP(y)pN(y)dy = αi for some value αi ∈ (0, 1). Then,

the NP rule is the optimal one among all αi-level decision rules for detector

i, i.e., P
(i)
D =

∫
RN ϕ

(i)
NP(y)p

(i)
1 (y)dy is maximized [20, 23]. Therefore, it is not

necessary to search over all decision rules; only the NP decision rule should be

determined for each detector and the corresponding average detection and false

alarm probabilities should be considered. Using the decision region for the NP

detector, Γ
(i)
NP(pS(i) , η(i)) = {y ∈ RN : E{pN(y − S(i))} ≥ η(i) pN(y)}, detection

and false alarm probabilities for detector i can be expressed as

P
(i)
D,NP =

∫
Γ
(i)
NP

E
{
pN(y − S(i))

}
dy (4.17)

P
(i)
FA,NP =

∫
Γ
(i)
NP

pN(y) dy . (4.18)

By adapting stochastic signaling and detector randomization into the NP

framework, we aim to jointly optimize the randomization factors, decision thresh-

olds and signal PDFs in order to maximize the average probability of detection

under the constraints on the average probability of false alarm and average sig-

nal power (Joint optimization can be facilitated via a feedback mechanism from
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the receiver to the transmitter, such as those in cognitive radio (CR) systems).

Then, by denoting the optimization space as S , {vi, η(i), pS(i)}Ki=1, the optimal

design problem can be solved from

max
S

K∑
i=1

vi

∫
Γ
(i)
NP

E
{
pN(y − S(i))

}
dy

subject to
K∑
i=1

vi

∫
Γ
(i)
NP

pN(y) dy ≤ α (4.19)

K∑
i=1

vi E
{∥∥S(i)

∥∥2
2

}
≤ A ,

K∑
i=1

vi = 1 , v ≽ 0

where α ∈ (0, 1) is the average false alarm constraint, v ≽ 0 means that vi ≥

0 ∀ i ∈ {1, 2, . . . , K}, and expectations are taken over the signal PDFs pS(i) .

Implicit constraints are also present in (4.19) due to each pS(i) representing a

PDF.

A direct evaluation of (4.19) requires an exhaustive search over the space of

randomization factors, decision thresholds and signal PDFs, which is inherently a

difficult procedure. Let P†
c denote the maximum average probability of detection

obtained from the solution of (4.19). In the sequel, an upper bound on this

problem with a simpler solution is derived, and then the achievability of this

bound is demonstrated. To this end, the following observations are stated first.

Suppose that the decision rule ϕ̃NP (i.e., threshold η̃) and the signal PDF p̃S(·)

are specified for one of the detectors employed at the receiver. The corresponding

detection probability can be written as P̃D =
∫
RN ϕ̃NP(y)E{pN(y − S)} dy =

E{
∫
RN ϕ̃NP(y) pN(y − S) dy}, where the linearity of the expectation operator

is imposed over the fixed decision rule ϕ̃NP. Recall that the expression inside

the expectation operator is the probability of detection when the deterministic

signal vector s is used for the transmission of on-symbol over the additive noise

channel and decision rule ϕ̃NP is employed at the receiver. Although the detector

ϕ̃NP is in the optimal form for the signal distribution E{pN(y − S)}, it can be

suboptimal for each component pN(y− s). By applying the NP criterion to each
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signal component pN(y− s) that make up the received signal distribution for the

on-symbol, the probability of detection can be increased even further without

violating the false alarm constraint. More specifically,

ϕ̂NP(y, s) =


1, if pN(y − s) ≥ η(s) pN(y)

0, if pN(y − s) < η(s) pN(y)

(4.20)

where η(s) ≥ 0 is determined as a function of s from the false alarm constraint

via
∫
RN ϕ̂NP(y, s)pN(y)dy =

∫
RN ϕ̃NP(y) pN(y) dy. As a result, the decision rule

ϕ̃NP for the given detector can be replaced with a set of decision rules ϕ̂NP indexed

by parameter s such that

E
{∫

RN

ϕ̂NP(y,S)pN(y − S)dy

}
≥
∫
RN

ϕ̃NP(y)E {pN(y − S)} dy (4.21)

is always satisfied while guaranteeing the false alarm constraint due to the in-

creased number of optimal NP decision rules in the new formulation (in contrast

with the limited number of detectors in the original problem).

In accordance with the terminology in Chapter 2 and Section 4.1 , the left

side of the inequality in (4.21) can be interpreted as a randomization among NP

detectors corresponding to deterministic signal vectors, while the right hand side

can be understood as stochastic signaling using a single detector. Hence, assum-

ing the same average power and false alarm constraints, the average probability

of detection obtained by stochastic signaling with PDF p̃S(·) is always smaller

than or equal to that of deterministic signaling and detector randomization ac-

cording to the same PDF when optimal NP detectors are employed in both cases

under the same statistics for the additive noise.

Notice that a new decision rule is added for each s in the support of p̃S(i)

to obtain the upper bound for a given detector i in the previous analysis. This

procedure can be extended safely across multiple detectors by assuming that the

supports of p̃S(i) , i = 1, 2, . . . , K are non-overlapping. If there were overlapping

supports, then ∃ s̃ ∈ RN such that p̃S(i)(s̃) ̸= 0 and p̃S(j)(s̃) ̸= 0 for i ̸= j. After
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applying the procedure described above, there would be contributions in the over-

all average false alarm probability as ṽip̃S(i)(s̃)
∫
RN ϕ̂

(i)
NP(y, s̃) pN(y) dy + ṽj p̃S(j)(s̃)∫

RN ϕ̂
(j)
NP(y, s̃)pN(y) dy , αij. Similarly, the contributions from these terms to

the average detection probability would be ṽip̃S(i)(s̃)
∫
RN ϕ̂

(i)
NP(y, s̃) pN(y− s̃) dy +

ṽj p̃S(j)(s̃)
∫
RN ϕ̂

(j)
NP(y, s̃) pN(y − s̃) dy. Then, the contributions from detectors i

and j can be replaced in the respective expressions with a single term cor-

responding to the NP decision rule ϕ̂NP(y, s̃) with the false alarm probability

αij/(ṽip̃S(i)(s̃) + ṽj p̃S(j)(s̃)) and the corresponding weight coefficient would be-

come ṽip̃S(i)(s̃) + ṽj p̃S(j)(s̃). Since the receiver operating characteristics (ROC)

curve corresponding to an NP decision rule is concave for any given s̃, the re-

sulting system would have an even higher average detection probability while

possessing the same average false alarm probability and average signal power as

the former case [23].

In the light of these observations and the inequality in (4.21), an upper bound

on the problem in (4.19) can be obtained as

max
pS,η

E {D(S, η)}

subject to E {F (S, η)} ≤ α and E
{
∥S∥22

}
≤ A (4.22)

with D(S, η) ,
∫
Γ(S,η)

pN(y − S) dy , and F (S, η) ,
∫
Γ(S,η)

pN(y) dy, where

Γ(s, η) =
{
y ∈ RN : pN(y − s) ≥ η pN(y)} and the expectations are taken with

respect to the joint PDF pS,η(s, η) by treating both S and η as random variables.

Let P⋆
c denote the maximum average probability of detection obtained as the

solution to the optimization problem in (4.22). Since this is an upper bound,

P⋆
c ≥ P†

c is always satisfied.

Assuming that D(s, η) and F (s, η) are continuous functions defined on a

compact subset of RN+1, then an optimal solution to (4.22) can be expressed by

a convex combination among at most three components due to Carathéodory’s

theorem [19]; that is, poptS,η(s, η) = λ1 δ(s−s1, η−η1)+λ2 δ(s−s2, η−η2)+λ3 δ(s−

s3, η − η3). Motivated by this observation, we state the following proposition.
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Proposition 4.2.1. The solution of the optimization problem in (4.19) can be

obtained as follows:

max
{λi, si, ηi}3i=1

3∑
i=1

λi

∫
Γ(si, ηi)

pN(y − si) dy

subject to
3∑

i=1

λi

∫
Γ(si, ηi)

pN(y) dy ≤ α

3∑
i=1

λi ∥si∥22 ≤ A ,

3∑
i=1

λi = 1

λi ≥ 0 and ηi ≥ 0 ∀i ∈ {1, 2, 3} (4.23)

where Γ(si, ηi) =
{
y ∈ RN : pN(y − si) ≥ ηi pN(y)

}
∀ i ∈ {1, 2, 3}, and α ∈

(0, 1) .

Proof. The optimization problem in (4.23) is obtained by substituting the form

of the optimal PDF poptS,η(s, η) into the optimization problem in (4.22). Now,

we show that the optimization problems in (4.19) and (4.23) result in the same

maximum value. Since (4.22) and equivalently (4.23), provide an upper bound on

(4.19), P†
c ≤ P⋆

c. Next, consider the optimization problem in (4.19) when K = 3

detectors are used and deterministic signaling is employed for each detector, that

is, pS(i)(s) = δ(s− si), i = 1, 2, 3. In that case, (4.19) reduces to the optimization

problem in (4.23). As a result, the maximum value of the objective function

in (4.19) should be larger than or equal to that of (4.23); namely, P†
c ≥ P⋆

c .

Therefore, P†
c = P⋆

c must be satisfied.

A few conclusions can be drawn from Proposition 4.2.1. Firstly, when multiple

detectors are available for randomization (K ≥ 3), it is sufficient to employ

detector randomization among three deterministic signal vectors; i.e., there is no

need to employ stochastic signaling to achieve the optimal solution. Secondly,

the solution of (4.19) can be obtained by optimizing over a significantly reduced

optimization space via (4.23).
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4.3 Simulation Results

In this section, a numerical example is presented to compare the detection

performances of the optimal solutions obtained in Section 4.1 and Section 4.2

against various suboptimal signalling techniques. A binary hypotheses-testing

problem specified as in (4.13) is considered with scalar observations. Such a

scenario is well suited for binary communications systems that transmit no

signal for bit 0 and a signal (or a randomization of two signal values as dis-

cussed above) for bit 1 (i.e., on-off keying). It is assumed that the receiver is

capable of randomizing among multiple detectors (K ≥ 3). The noise N in

(4.13) is assumed to have a symmetric Gaussian mixture distribution with equal

variances as follows: pN(n) =
∑L

i=1 li exp{−(n− µi)
2/(2σ2)}/(

√
2π σ) , where

l = [0.1492 0.1088 0.2420 0.2420 0.1088 0.1492], and µ = [−1.211 − 0.755 −

0.3 0.3 0.755 1.211]. It is noted that the average power of the noise can be cal-

culated from E{N2} = σ2 +
∑L

i=1 li µ
2
i . The average signal power and average

false alarm constraints are selected as A = 1 and α = 0.05, respectively.

The following signaling schemes, which employ a single detector at the re-

ceiver, will be considered:

Gaussian Solution: Lacking any information about the noise PDF in the

channel, the transmitter employs signaling at the maximum permitted power

level, and the receiver employs the corresponding NP detector as if the noise

present in the channel were Gaussian distributed. We assume that the receiver

has a limited capability in the sense that it can only measure first and second

order statistics of the channel noise but cannot extract higher order statistics, e.g.

the form of the PDF with complete knowledge of its parameters is unavailable.

Before moving forward, let us demonstrate the optimal NP detector structure

for Gaussian channel noise.
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Assuming arbitrary values µ0 and σ2 respectively for the mean and variance

of the noise and S > 0 , α-level NP test at the receiver results in the following

one sample optimal detection scheme

ϕ̃NP (y) =


1 , if y ≥ σQ−1(α) + µ0

0 , if y < σQ−1(α) + µ0

(4.24)

where Q(x) = (
∫∞
x

e−t2/2 dt)/
√
2π is the tail probability of the standard normal

distribution. The corresponding probability of detection is expressed as PD(ϕ̃) =

Q(Q−1(α) − (S − µ0)/σ). Since the peak power that can be emitted from the

transmitter is limited with A, probability of detection is maximized when all the

available power is utilized, that is S =
√
A. To prevent any bias due to average

noise power, a zero mean Gaussian noise with variance σ̂2 = σ2 +
∑L

i=1 li · µ2
i

is assumed in the following analysis for the conventional case. Here, σ2 and µi’s

are the same as those given in the Gaussian mixture PDF, which is assumed to

be the actual channel noise.

Conventional Solution: In this case, the transmitter employs deterministic

signaling at the maximum permitted power level, which is known to be optimal

if the noise present in the channel were Gaussian distributed. Unlike the previ-

ous case, to mitigate the effects of non-Gaussian channel noise, the receiver is

assumed to know the channel statistics and allowed to design the optimal NP de-

cision rule corresponding to the deterministic signaling at the power limit. This

optimization problem can be expressed as follows:

max
η

∫
Γ

pN(y −
√
A) dy s.t.

∫
Γ

pN(y) dy = α , η ≥ 0 (4.25)

where Γ = {y ∈ R : pN(y −
√
A) > η pN(y)} and α ∈ (0, 1).

Optimal−Stochastic: This approach refers to the joint design of the sig-

naling structure and the decision rule formulated in (4.6), which can also be

obtained from (4.10) as studied in the previous section.
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Optimal−Deterministic: A simplified version of the optimal solution in

(4.10) can be obtained by assuming that the transmitted signal is deterministic;

i.e., it is not a randomization of two distinct signal levels. The optimization

problem in (4.10) reduces to

max
{s, η}

∫
Γ

pN(y − s) dy

subject to

∫
Γ

pN(y) dy = α , |s|2 ≤ A , η ≥ 0 (4.26)

where Γ = {y ∈ R : pN(y − s) > η pN(y)} and α ∈ (0, 1).

Finally, the following scheme is considered as the overall optimal solution

when detector randomization is allowed at the receiver as well:

Optimal Detector Randomization with Deterministic Signaling:

This case refers to the solution of the most generic optimization problem in

(4.19), which can be obtained from (4.23) as studied in the previous section.

In obtaining the optimal solutions for the global optimization problems stated

above, MATLAB’s multistart method is employed with 500 random start points

and sqp algorithm is used together with the local solver fmincon. The extrema

returned by the method are cross-checked with the results from the patternsearch

method. This procedure is repeated for all values of σ in the set {0.01 : 0.005 :

0.30}.

In Figure 4.2, the detection probabilities of the schemes described above are

plotted versus σ for A = 1 and α = 0.05. From the figure, it is observed that the

Gaussian solution has the worst performance as expected since neither the sig-

naling scheme nor the detector is optimized according to the channel noise PDF.

Respectively, conventional solution presents a poor performance as well since no

optimization is performed for the signaling scheme employed at the transmitter

even though the detector is optimized by taking into account the actual noise

PDF. As mentioned above, signaling at the maximum permitted power level

is not necessarily optimal for non-Gaussian cases. Having a multimodal PDF,
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Figure 4.2: Probability of detection PD as a function of σ for different approaches
when A = 1 and α = 0.05. A symmetric Gaussian mixture noise, which has its
mass points at ±[0.3 0.755 1.211] with respective weights [0.2420 0.1088 0.1492]
is considered.

channel noise degrades the performance of the communications system when the

on-signal (symbol 1) is transmitted at the power limit. Optimizing determinis-

tic signal levels improves over the performance of the conventional solution for

0.01 ≤ σ ≤ 0.115 as observed from the Optimal–Deterministic curve by avoiding

the overlaps among the components of the Gaussian mixture noise more effec-

tively. Further performance improvements are obtained over a larger interval

0.01 ≤ σ ≤ 0.20 when optimal stochastic signals are considered instead of con-

ventional signaling (see Optimal–Stochastic). The superior performance of opti-

mal stochastic signaling over optimal deterministic signaling is also evident from

the values assumed by the probability of detection curves for 0.04 ≤ σ ≤ 0.20.
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In contrast to finding the single signal value that best avoids the overlaps

among mixture components, stochastic signaling scheme allots the available

power in such a way that a large portion of the power is allocated to the signal

component that results in less overlap between the original and the shifted noise

PDF on average. Optimal–Stochastic strategy performs a randomization be-

tween two signal values for symbol 1, and employs the corresponding α-level NP

decision rule at the receiver. For example, at σ = 0.1, the optimal stochastic sig-

nal is a randomization of s1 = 0.2732 and s2 = 1.2460 with λ = 0.3739, achieving

a detection probability of 0.6494. On the other hand, the optimal deterministic

solution sets s = 0.7684, resulting in a detection probability of 0.5345.

However, the highest detection performance is achieved by the solution of

the most generic joint optimization problem given in (4.23), which performs

randomization among NP detectors corresponding to three or fewer determinis-

tic signal values for the on-symbol (see Optimal–Detector Randomization). For

example, at σ = 0.1, a detection probability of 0.671 can be achieved by trans-

mitting s1 = 1.211 with probability λ1 = 0.665 and s2 = 0.265 with probability

λ2 = 0.335, and employing the corresponding NP detectors with false alarm

probabilities α1 = 0.0368 and α2 = 0.0763 (see Table 4.2 for more results). It is

seen in Table 4.2 that randomization between two NP decision rules achieves the

highest detection performance for most values of σ. Since Proposition 4.2.1 states

that at most three detectors are sufficient to obtain the optimal solution via ran-

domization, one can find examples where optimal performance can be achieved

using fewer detectors as in this case. On the contrary, there may be cases where

randomization among three detectors becomes a necessity for optimality (e.g.,

some multivariate noise PDFs, N > 1).

As σ is increased beyond 0.20, it is observed that both optimal signaling

schemes converge to conventional signaling which in turn converges to Gaussian

solution for increasing values of σ. This is mainly due to the fact that the overlap
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among mixture components of the noise PDF becomes significant for large values

of σ, and there is not enough freedom left for the randomization to become effec-

tive over transmitting at the power limit. It is also concluded from the results of

the previous section that the performance figure achieved via detector random-

ization is the global optimum; that is, it cannot be beaten by the combination

of any different signaling schemes with a single detector as long as the problem

formulation stays the same. In order to explain the results depicted in Fig-

ure 4.2, Table 4.1 presents the solutions of the optimization problems in (4.25),

(4.26), and (4.10) for the Conventional, Optimal–Deterministic and Optimal–

Stochastic approaches, respectively. Additionally, Table 4.2 presents the solution

of the optimization problem in (4.23) for the Optimal–Detector Randomization

scheme. The optimal solution for detector randomization employs signal Si and

the corresponding NP detector characterized with the threshold parameter ηi

with probability λi for i = 1, 2, 3.

4.4 Concluding Remarks

In this chapter, power constrained on-off keying communications systems are

investigated in the presence of stochastic signaling and detector randomization

under the Neyman-Pearson framework. First, the case with a single detector at

the receiver is investigated [34]. The problem of jointly designing the signaling

scheme and the decision rule is addressed in order to maximize the probability of

detection without violating the constraints on the probability of false alarm and

the average transmit power. Based on a theoretical analysis, it is shown that

the optimal solution can be obtained by employing randomization between at

most two signal values for the on-signal (symbol 1) and using the corresponding

NP-type likelihood ratio test at the receiver. As a result, the optimal parameters

can be computed over a significantly reduced optimization space instead of an

infinite set of functions using global optimization techniques. Next, the case with
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multiple detectors at the receiver is analyzed [35]. The joint optimal design of de-

cision rules, stochastic signals, and detector randomization factors is performed.

It is shown that the solution to the most generic optimization problem that em-

ploys both stochastic signaling and detector randomization can be obtained as

the randomization among no more than three NP decision rules corresponding

to three deterministic signal vectors. Finally, a detection example is provided to

illustrate how stochastic signaling and detector randomization can help improve

detection performance over various optimal and suboptimal signaling schemes.
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Table 4.1: Conventional, Optimal-Deterministic and Optimal-Stochastic signal-
ing parameters for the scenario in Figure 4.2 . A symmetric Gaussian mixture
noise, which has its mass points at ±[0.3 0.755 1.211] with respective weights
[0.2420 0.1088 0.1492] is considered.

Conventional Deterministic Stochastic
σ η S η λ S1 S2 η

0.0100 0.0001 0.2905 2.3945 1 0.2939 N/A 3.9357
0.0150 0.0636 0.2253 0 0.0819 2.7722 0.2244 0.0001
0.0200 0.5013 0.2295 0 0 N/A 0.2311 0
0.0250 1.2181 0.2307 0 0.1123 2.9136 0.2285 0
0.0300 1.8979 0.2333 0 0.6002 1.2771 0.2295 0
0.0350 2.4083 0.2375 0.0001 0.3161 1.7452 0.2332 0.0001
0.0400 2.6936 0.2390 0.0033 0 N/A 0.2407 0.0035
0.0450 2.9353 0.2395 0.0317 0.5999 1.2766 0.2359 0.0239
0.0500 3.0207 0.2404 0.1336 0.3133 1.7505 0.2408 0.1121
0.0550 3.0596 0.2425 0.3816 0.3937 0.2390 1.2697 0.2850
0.0600 3.1017 0.2440 0.8064 0.6071 1.2688 0.2424 0.5813
0.0650 3.0847 0.2437 1.3624 0.6081 1.2672 0.2451 0.9688
0.0700 3.0653 0.2499 2.0143 0.6029 1.2662 0.2469 1.4271
0.0750 3.0335 0.2512 2.7082 0.3863 0.2505 1.2607 1.8904
0.0800 3.0124 0.2566 3.3672 0.3837 0.2559 1.2577 2.3098
0.0850 2.9840 0.2540 3.9014 0.6190 1.2548 0.2575 2.6797
0.0900 2.9514 0.7536 3.6711 0.6203 1.2524 0.2675 2.7853
0.0950 2.9290 0.7527 3.7640 0.3780 0.2718 1.2501 3.0160
0.1000 2.8703 0.7684 3.6386 0.3739 0.2732 1.2460 3.0092
0.1050 2.8200 0.7826 3.4175 0.6307 1.2411 0.2780 3.1266
0.1100 2.7471 0.7831 3.3962 0.3704 0.2908 1.2404 3.0855
0.1150 2.6453 0.9998 2.6473 0.3642 0.2933 1.2343 2.9496
0.1200 2.5919 1 2.5922 0.4622 0.6651 1.2162 2.8010
0.1250 2.5379 1 2.5404 0.5177 1.2269 0.6765 2.7790
0.1300 2.4731 1 2.4715 0.4772 0.6704 1.2258 2.7375
0.1350 2.4119 1 2.4117 0.5255 1.2269 0.6637 2.6332
0.1400 2.3517 1 2.3506 0.5309 1.2277 0.6526 2.4677
0.1450 2.2923 1 2.2925 0.5385 1.2253 0.6441 2.3372
0.1500 2.2350 1 2.2358 0.4552 0.6395 1.2222 2.3147
0.1550 2.1818 1 2.1817 0.5640 1.2136 0.6231 2.2941
0.1600 2.1298 1 2.1290 0.4238 0.6165 1.2066 2.2580
0.1650 2.0807 1 2.0807 0.5747 1.2068 0.6190 2.2029
0.1700 2.0350 1 2.0348 0.5857 1.2006 0.6130 2.1547
0.1750 1.9888 1 1.9885 0.3896 0.6008 1.1866 2.1124
0.1800 1.9439 1 1.9439 0.6222 1.1803 0.5940 2.0610
0.1850 1.9008 1 1.9007 0.3516 0.5844 1.1649 2.0133
0.1900 1.8588 1 1.8588 0.3270 0.5703 1.1523 1.9692
0.1950 1.8182 1 1.8182 0 N/A 1 1.8182
0.2000 1.8243 1 1.8222 0.3330 1.0009 0.9996 1.8222
0.2250 1.8735 1 1.8735 0 N/A 1 1.8764
0.2500 1.9319 1 1.9308 0 N/A 1 1.9314
0.2750 1.9999 1 2.0028 0 N/A 1 2.0028
0.3000 2.0707 1 2.0704 1 1 N/A 2.0715
0.3250 2.1397 1 2.1406 0 N/A 1 2.1401
0.3500 2.2160 1 2.2155 1 1 N/A 2.2150
0.3750 2.2811 1 2.2817 1 1 N/A 2.2815
0.4000 2.3491 1 2.3477 1 1 N/A 2.3477
0.4250 2.4161 1 2.4148 1 1 N/A 2.4148
0.4500 2.4744 1 2.4725 1 1 N/A 2.4726
0.4750 2.5256 1 2.5259 1 1 N/A 2.5271
0.5000 2.5693 1 2.5686 1 1 N/A 2.5688
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Table 4.2: Optimal-Detector Randomization parameters for the scenario in Fig-
ure 4.2 . A symmetric Gaussian mixture noise, which has its mass points at
±[0.3 0.755 1.211] with respective weights [0.2420 0.1088 0.1492] is considered.

Detector I Detector II Detector III
σ λ1 S1 η1 λ2 S2 η2 λ3 S3 η3

0.010 0.609 1.216 2.556 0.389 0.201 3.433 0.002 0.169 1.931
0.0450 0 N/A N/A 0.8743 0.2363 0.0231 0.1257 2.7492 0.0015
0.050 0.609 1.267 0.021 0.391 0.237 0.328 0 N/A N/A
0.0550 0 N/A N/A 0.6098 1.2661 0.1523 0.3902 0.2400 0.2527
0.0600 0.3945 0.2453 0.4878 0.6055 1.2693 0.3902 0 1.9733 2.3581
0.0650 0.6126 1.2625 0.6475 0 N/A N/A 0.3874 0.2467 0.9437
0.0700 0.3866 0.2489 1.3807 0 N/A N/A 0.6134 1.2615 1.0801
0.075 0.617 1.258 2.511 0.383 0.251 1.274 0 N/A N/A
0.0800 0 N/A N/A 0.3840 0.2545 1.9900 0.6160 1.2582 2.4770
0.0850 0.2149 0.2593 3.4355 0.1652 0.2571 2.3744 0.6199 1.2539 2.4075
0.0900 0.6145 1.2586 2.9294 0 N/A N/A 0.3855 0.2628 3.1239
0.0950 0.1892 1.2502 3.8253 0.4352 1.2479 3.1038 0.3756 0.2666 3.2774
0.100 0.665 1.211 3.380 0.335 0.265 3.014 0 N/A N/A
0.1050 0.0009 1.9957 0.5287 0.3583 0.2739 3.2265 0.6408 1.2300 3.1442
0.1100 0.6187 1.2392 3.7124 0.0129 1.2352 1.8192 0.3684 0.2869 2.9296
0.1150 0.6370 1.2340 3.0692 0 N/A N/A 0.3630 0.2879 3.3199
0.1200 0.3474 0.3005 2.7437 0.6392 1.2300 3.6973 0.0134 0.3396 3.4611
0.125 0.639 1.228 2.972 0.218 0.319 3.254 0.143 0.315 2.879
0.1300 0.6404 1.2189 2.7439 0.3530 0.3302 3.2656 0.0066 1.2319 0.9840
0.1350 0.3587 0.3253 2.6340 0.5848 1.2245 2.9967 0.0565 1.2277 3.4942
0.1400 0.3618 0.3557 2.8739 0 N/A N/A 0.6382 1.2228 2.4916
0.1450 0.3550 0.3618 2.7743 0.1275 1.2257 3.1870 0.5175 1.2134 2.2397
0.150 0.551 1.212 2.362 0.449 0.651 2.226 0 N/A N/A
0.1550 0.6523 1.2060 2.4224 0.3423 0.3591 2.2676 0.0054 1.1399 1.0528
0.1600 0.4208 0.6664 2.0964 0.0851 1.1833 2.5406 0.4941 1.1851 2.2690
0.1650 0.5520 1.1807 2.3030 0.0584 1.1902 3.4638 0.3896 0.6158 1.9163
0.1700 0.0001 1.2001 0.1978 0.4260 0.6376 2.1375 0.5739 1.2002 2.1428
0.175 0.686 1.153 1.993 0.314 0.530 2.552 0 N/A N/A
0.1800 0 N/A N/A 0.7098 1.1363 1.9788 0.2902 0.5362 2.6315
0.1850 0.4966 1.1902 1.7432 0.5034 0.7675 2.5772 0 N/A N/A
0.1900 0.5563 1.1769 1.8276 0 N/A N/A 0.4437 0.7190 2.1363
0.1950 0.3430 0.6293 2.2603 0.6570 1.1469 1.8653 0 N/A N/A
0.200 0.724 1.101 1.863 0.247 0.594 2.644 0.029 1.118 1.194
0.2250 0.9013 1.0338 1.7973 0 N/A N/A 0.0987 0.6104 1.7969
0.250 0.979 1.007 1.917 0.021 0.636 3.482 0 N/A N/A
0.300 0.751 1.005 2.033 0.249 0.984 2.190 0 N/A N/A
0.3500 0.3509 1.0194 2.0869 0.6491 0.9894 2.2912 0 N/A N/A
0.400 0.9994 1 2.3509 0.0006 1.0541 0.8901 0 N/A N/A
0.4500 0.0184 0 2.9887 0.9816 1.0093 2.4560 0 N/A N/A
0.500 0.9243 1.0401 2.5001 0.0757 0 1.5707 0 N/A N/A
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5

Average Fisher Information

Maximization in the Presence of

Cost Constrained Measurements

From this chapter on, we begin to investigate the trade-offs between measure-

ment device cost and estimation accuracy. This chapter is organized as follows.

In Section 5.1, we state the average Fisher information maximization problem

under a constraint on the total cost of measurement devices, which are assumed

to introduce additive random measurement noises to observations with arbitrary

statistics. In Section 5.2, closed form solutions are obtained for the case of inde-

pendent Gaussian observations and measurement noises. Section 5.3 considers

the case of Gaussian observations with arbitrary covariance matrix when the cost

budget is not stringent. Section 5.4 addresses the dual problem for the Gaus-

sian case, in which the total measurement cost is minimized to attain a target

minimum average Fisher information score.

92



x y=x+mMeasurement

Devices
Estimator q̂

Figure 5.1: Observation vector x is measured by K measurement devices, and
the measurements x + m are used by an estimator to estimate the value of an
unknown parameter θ.

5.1 Problem Statement and Optimal Solution

Consider a scenario as in Figure 5.1 in which noisy measurements of an obser-

vation vector x are acquired by K measurement devices, and then the measured

values in vector y are processed to estimate the value of parameter θ. The mea-

surement devices are modeled to introduce additive random measurement noises

denoted by m. In other words, the PDF of x is indexed by parameter θ, and the

aim is to estimate that parameter based on the outputs of measurement devices.

Various motivations for a similar system model can be found in [20, 23, 53]. It

should be emphasized that the model in Figure 5.1 presents a generic estimation

framework in which measurements are processed by an estimator in order to de-

termine the value of an unknown parameter. For example, in a wireless sensor

network application, measurement devices correspond to sensors, which are used

to estimate a parameter in the system, such as the temperature.

Given a fixed budget, it is not possible to employ measurement devices that

operate with arbitrarily high precision. Due to the ubiquitous trade-off between

device cost and measurement accuracy in practical scenarios, we assume that

there is a constraint on the total cost of measurement devices, and express it

using the cost function proposed in [46]. Specifically, for a given overall cost

budget C, this constraint translates into

K∑
i=1

1

2
log

(
1 +

σ2
xi

σ2
mi

)
≤ C , (5.1)

where σ2
xi
denotes the variance of the ith component of observation vector x (i.e.,

variance of the input to the ith measurement device), and σ2
mi

is the variance of the
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ith component of m (i.e., variance of the noise introduced by the ith measurement

device). A careful inspection of (5.1) reveals that a measurement device has a

higher cost if it can perform measurements with a lower measurement variance

(i.e., with higher accuracy).

In order to maximize the estimation accuracy, we consider the maximization

of average Fisher information, or equivalently the minimization of the BCRB at

the output of the measurement devices. The main motivation for the suggested

approach is that an optimal cost assignment strategy can be obtained by solving

the corresponding optimization problem without assuming any specific estima-

tor structure. In addition, it is known that certain estimators, such as the MAP

estimator, can (asymptotically) achieve the BCRB; hence, the minimization of

the BCRB corresponds to the (approximate) minimization of the MSE for some

estimators. Specifically, a necessary and sufficient condition for the MAP estima-

tor to be efficient (i.e., achieve the BCRB with equality) is that the a-posteriori

probability density of the parameter θ, i.e., p(θ|y) must be Gaussian for all y.

In the case of nonrandom parameter estimation, similar conditions exist for the

efficiency (i.e., achieve the CRB with equality) of the ML estimator within regu-

larity conditions [20, Page 173], [23, Page 67]. In the special case of nonrandom

estimation for one-parameter exponential family of PDFs, CRB is achieved if and

only if θ̂(y) = T (y) where T (y) denotes the corresponding complete sufficient

statistics for θ.

For an arbitrary estimator θ̂, the BCRB on the MSE is expressed as [23]

MSE
{
θ̂
}
= E

{(
θ̂(Y)− θ

)2}
≥ (JD + JP)

−1 , (5.2)

where JD and JP denote the information obtained from the observations and the

prior knowledge, respectively, which are stated as

JD = EY,θ

{(
∂ log pθY(Y)

∂θ

)2
}

= Eθ {JS} , JP = Eθ

{(
∂ logw(θ)

∂θ

)2
}

(5.3)
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where JS = EY|θ

{(
∂ log pθY(Y)

∂θ

)2}
is the standard Fisher information with pθY(y)

and w(θ) representing the PDF of measurement vector Y and the prior PDF

of parameter θ, respectively. As JP depends only on the prior distribution, it is

independent of the cost of the measurement devices. Therefore, the aim is to

maximize JD, which is defined as the average Fisher information, under the cost

constraint in (5.1). Then, based on (5.1) and (5.3), the optimal cost assignment

problem can be formulated as

max
{σ2

mi}
K

i=1

∫ ∞

−∞
w(θ)

∫
RK

1

pθY(y)

(
∂pθY(y)

∂θ

)2

dy

subject to
K∑
i=1

1

2
log

(
1 +

σ2
xi

σ2
mi

)
≤ C . (5.4)

It is noted that the expectation operation for the calculation of JD in (5.3) is

taken over both random variables θ and Y; resulting in the objective function in

(5.4).

In order to specify this optimization problem, it is assumed that the obser-

vations are independent from the measurement noises; hence, pθY(y) in (5.3) can

be expressed more explicitly as a convolution between the PDFs of x and m;

that is, pθY(y) =
∫
RK pθX(y −m) pM(m) dm. In addition, it is reasonable to as-

sume that the noises introduced by the measurement devices are independent,

in which case pM(m) becomes pM(m) = pM1(m1) · · · pMK
(mK). As discussed

in [46], it is well-justified to express the cost of a measurement device as a

function of its measurement noise variance (see (5.1)). Therefore, each mea-

surement noise component can be modeled as mi = σmi
m̃i, where m̃i denotes

a zero-mean, unit-variance random variable with a known PDF pM̃i
, and σ2

mi

represents the variance of the measurement device, which determines its cost

as defined in (5.1). Hence, the PDF of the ith measurement noise can be ex-

pressed as pMi
(mi) = σ−1

mi
pM̃i

(mi/σmi
). From the preceding, pθY(y) is given by
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pθY(y) =
∫
RK pθX(y −m)

∏K
i=1 σ

−1
mi
pM̃i

(mi/σmi
)dmi , which becomes

pθY(y) =
K∏
i=1

σ−1
mi

∫ ∞

−∞
pθXi

(yi −mi)pM̃i
(mi/σmi

)dmi

=
K∏
i=1

∫ ∞

−∞
pθXi

(yi − σmi
mi)pM̃i

(mi)dmi , (5.5)

in the case of independent observations. In fact, the objective function in (5.4)

can be written as the sum of K components in that case (see (5.3)) as

K∑
i=1

∫ ∞

−∞
w(θ)

∫ ∞

−∞

1

pθYi
(y)

(
∂pθYi

(y)

∂θ

)2

dy , (5.6)

where pθYi
(y) =

∫∞
−∞ pθXi

(y−σmi
m)pM̃i

(m)dm. Since the optimization problem in

(5.4) provides a generic formulation that is valid for any observation PDF, the

problem can be non-concave in general. Hence, global optimization tools such as

particle swarm optimization and differential evolution can be used to obtain the

solution [63].

5.2 Special Case 1: Independent Gaussian Ob-

servations and Measurement Noises

In the case of independent Gaussian observations and measurement noises, it

is possible to obtain closed-form solutions of the optimization problem stated

in (5.4). To that aim, let the observation vector X has independent Gaussian

components distributed with X ∼ N
(
θ · 1, diag{σ2

x1
, . . . , σ2

xK
}
)
, and let the mea-

surement noise vector M has zero-mean Gaussian distribution with independent

components as M ∼ N
(
0, diag{σ2

m1
, . . . , σ2

mK
}
)
, where 1 and 0 denote the all-

ones and all-zeros vector of length K, respectively. In that case, the average

Fisher information JD can be calculated as
∑K

i=1

(
σ2
mi

+ σ2
xi

)−1
irrespective of

the prior distribution of θ, i.e., JD = JS. Hence, the aim reduces to the max-

imization of
∑K

i=1

(
σ2
mi

+ σ2
xi

)−1
over

{
σ2
m1

, . . . , σ2
mK

}
under the constraint in
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(5.1) and we have the following optimization problem:

max
{σ2

mi}
K

i=1

K∑
i=1

1

σ2
mi

+ σ2
xi

subject to
K∑
i=1

1

2
log

(
1 +

σ2
xi

σ2
mi

)
≤ C. (5.7)

From (5.7), it is noted that both the objective function and the constraint are

convex. Since the maximum of convex functions over convex sets has to occur at

the boundary [19], we can take the cost constraint as equality in (5.7). This is

a standard optimization problem that can be solved using Lagrange multipliers.

Hence, we can write the Lagrange functional as

J(σ2
m1

, . . . , σ2
mK

) =
K∑
i=1

1

σ2
mi

+ σ2
xi

+ λ

(
K∑
i=1

1

2
log

(
1 +

σ2
xi

σ2
mi

)
− C

)
(5.8)

and differentiating with respect to σ2
mi
, we have

σ2
mi

=
σ4
xi

γ − σ2
xi

. (5.9)

However, σ2
mi
’s are positive ∀i ∈ {1, 2, . . . , K} and it may not always be possible

to find a solution of this form. In this case, we use the Karush-Kuhn-Tucker

(KKT) conditions to verify that the optimal cost allocation strategy can be

achieved via the following assignment of the noise variances to the measurement

devices:

σ2
mi

=


σ4
xi

γ−σ2
xi

if σ2
xi
< γ

∞ if σ2
xi
≥ γ

with γ =

(
22C

∏
i∈SK

σ2
xi

)1/|SK |

(5.10)

where SK =
{
i ∈ {1, . . . , K} : σ2

mi
̸= ∞

}
and |SK | denotes the number of ele-

ments in the set SK .
1 We choose a constant γ and only measure those obser-

vations with variances smaller than γ. No bits are used to measure the random

variables with variances greater than γ. In other words, if the variance of the

1Notice that the formulation in (5.10) is closely related to the “water-filling” solutions

common in information theory [49, Page 276 and 314].
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observed variable is greater than a threshold γ, a measurement device with infi-

nite variance; that is, with zero cost, is considered; namely, that observation is

not measured at all. On the other hand, for observations with variances smaller

than γ, noise variance of the corresponding measurement device is determined

from the formulation in (5.10), which assigns low measurement variances (high

costs) to observations with low variances. Below we comment on some properties

of the obtained solution:

• The assignment function in (5.10) is smooth and the derivatives of all orders

with respect to σ2
xi

exist and are positive for 0 < σ2
xi

< γ. Therefore, as

σ2
xi

increases towards γ, σ2
mi

increases much much faster.

• For a fixed value of K (available number of observations), relaxing the cost

constraint (increasing the value of C) results in higher Fisher information

scores with a limiting value of
∑K

i=1 1/σ
2
xi
, which is the unconstrained Fisher

information of the observations about the parameter θ.

5.2.1 Alternative Strategies

Instead of the optimal cost assignment strategy specified in (5.10), one can also

consider the following simple alternatives:

Strategy-1 (Equal measurement device variances): In this strategy, it is as-

sumed that identical measurement device variances are employed for all the

observations; that is, σ2
mi

= σ2
m, i = 1, . . . , K . Then, the cost constraint in

(5.4) can be solved for equality, and σ2
m can simply be obtained as the small-

est positive real root of the Kth degree polynomial described with the equa-

tion
∏K

i=1

(
1 + σ2

xi
/σ2

m

)
= 22C. If the observation variances are equal; that is,

σ2
xi

= σ2
x, i = 1, . . . , K , this strategy becomes equal to the optimal solution

given in (5.10) where σ2
m are calculated from σ2

m = σ2
x/
(
22C/K − 1

)
, and the cor-

responding Fisher information score is expressed as K
(
1− 2−2C/K

)
/σ2

x, which
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Figure 5.2: Independent Gaussian observations with variances σ2
x = 0.1 and

independent Gaussian measurement noises are considered. Strategy-1, assigning
equal measurement variances to all measurement devices is the optimal strategy.
The total Fisher information score under cost constrained measurements with
C = 1 is depicted with respect to the number of available measurements. Under
this scenario, Fisher information increases with each additional measurement to
a limiting value of 20 ln 2 where as the unconstrained Fisher information goes to
infinity.

is an increasing function of K for fixed C with a steep ascent (on the order of

K ∼ 10C measurements, see Figure 5.2) to its limiting value of

lim
K→∞

K
(
1− 2−2C/K

)
σ2
x

=
2C ln 2

σ2
x

, (5.11)

and similarly an increasing function of C for fixed K with a limiting value of

K/σ2
x, which denotes the unconstrained Fisher information in the case of obser-

vations with equal variances.

Strategy-2 (All cost to the best observation): In this case, the total budget

C is spent on the best observation, which has the smallest variance. If the
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kth observation is the best one, the cost constraint in (5.4) can be used to cal-

culate the variance of the measurement noise for that observation alone from

σ2
mk

= σ2
xk
/
(
22C − 1

)
. For all the other observations, the corresponding mea-

surement variances are set to infinity (i.e., no measurements are taken from

those observations). In this case, the corresponding Fisher information score is(
1− 2−2C

)
/σ2

xk
, which is an increasing function of C with a limiting value of

1/σ2
xk
.

5.2.2 Numerical Results for Special Case 1

In order to provide numerical examples of the results derived in Section 5.2,

consider a scenario with 4 pairs of independent Gaussian observations and mea-

surement noises. Let σ2
x1

= 0.1, σ2
x2

= 0.5, σ2
x3

= 0.9 and σ2
x4

= 1.3. The

variances of the measurement devices are calculated using the proposed optimal

strategy stated in (5.10), Strategy 1, and Strategy 2. These variances and the

corresponding Fisher information values are presented for different values of C

in Table 5.1 . It is observed that the optimal strategy assigns smaller variances

(larger costs) to observations with smaller variances, and achieves the maximum

Fisher information score as expected. For further investigations, Figure 5.3 illus-

trates the Fisher information versus the total budget C for different strategies.

It is observed that the Fisher information in Strategy 2, which assigns all the

cost to the best observation, converges to 1/σ2
x1

as expected (since σ2
m1

converges

to zero as C increases). On the other hand, Strategy 2 and the optimal strategy

converge for small values of C since the optimal strategy involves assigning all

the cost to the best observation if C is small. Regarding Strategy 1, it converges

to the optimal strategy for large C, where both reach to the unconstrained Fisher

information score of
∑K

i=1 1/σ
2
xi
, even though significant deviations are observed

for intermediate values of C. Overall, the optimal cost assignment strategy yields
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Figure 5.3: Independent Gaussian observations with variances σ2
x1

= 0.1, σ2
x2

=
0.5, σ2

x3
= 0.9, σ2

x4
= 1.3 and independent Gaussian measurement noises are

considered. The performance of the optimal cost allocation strategy is depicted
together with the results from Strategies 1 and 2.

the highest Fisher information in all the cases, and indicates the opportunity to

achieve high estimation accuracy.

5.3 Special Case 2: Gaussian Observations with

Arbitrary Covariance Matrix and Indepen-

dent Gaussian Measurement Noises - High

Budget Case

It is also possible to obtain a closed-form solution of the optimization problem

stated in (5.4) in the case of colored Gaussian observations and independent
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Gaussian measurement noises when the cost-budget is not very stringent. To

that aim, let the observation vector X has Gaussian components distributed with

X ∼ N (θ · 1,Σx) with {σ2
x1
, . . . , σ2

xK
} constituting the diagonal components, and

let the measurement noise vector M has zero-mean Gaussian distribution with

independent components as M ∼ N (0,Dm) with Dm = diag{σ2
m1

, . . . , σ2
mK

},

where 1 and 0 denote the all-ones and all-zeros vector of length K, respectively.

Under these assumptions, Y ∼ N (θ · 1,Σx +Dm) and the average Fisher infor-

mation JD can once again be calculated irrespective of the prior distribution of

θ, i.e., JD = JS = 1T (Σx +Dm)
−1 1 which is the sum of all matrix elements in

(Σx +Dm)
−1. Let EleSum{·} denote the operator whose output is the sum of

all the elements of its input argument. It is easy to see that EleSum{·} is a linear

operator. In high-budget scenarios, we can safely assume that the perturbations

caused by the measurements are small compared to the range of x. By employing

the first order Taylor series approximation for the inverse of a positive definite

Table 5.1: The measurement variances and the corresponding Fisher information
scores for the Optimal Strategy (5.7), Strategy 1 (Equal measurement variances
for all devices), and Strategy 2 (All cost to the best observation) corresponding
to scenario in Figure 5.3 .

σ2
m1

σ2
m2

σ2
m3

σ2
m4

Fisher Info.

C = 1
Optimal 0.0333 ∞ ∞ ∞ 7.5000
Strategy 1 1.5817 1.5817 1.5817 1.5817 1.8250
Strategy 2 0.0333 ∞ ∞ ∞ 7.5000

C = 2
Optimal 0.0126 0.6338 ∞ ∞ 9.7639
Strategy 1 0.6185 0.6185 0.6185 0.6185 3.4657
Strategy 2 0.0067 ∞ ∞ ∞ 9.3750

C = 2.5
Optimal 0.0097 0.3973 3.5334 ∞ 10.4545
Strategy 1 0.4373 0.4373 0.4373 0.4373 4.2516
Strategy 2 0.0032 ∞ ∞ ∞ 9.6875

C = 5
Optimal 0.0037 0.1096 0.4304 1.1403 12.4425
Strategy 1 0.1172 0.1172 0.1172 0.1172 7.9127
Strategy 2 9.775e-4 ∞ ∞ ∞ 9.9902

C = 10
Optimal 0.0006 0.0164 0.0546 0.1171 13.6262
Strategy 1 0.0162 0.0162 0.0162 0.0162 12.3938
Strategy 2 9.537e-8 ∞ ∞ ∞ 10.0000

C = 15
Optimal 0.0001 0.0028 0.0092 0.0193 13.8354
Strategy 1 0.0027 0.0027 0.0027 0.0027 13.5975
Strategy 2 9.31e-11 ∞ ∞ ∞ 10.0000
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symmetric matrix, we can write (Σx +Dm)
−1 ≈ Σ−1

x −Σ−1
x DmΣ

−1
x . Hence, the

aim reduces to the minimization of EleSum {Σ−1
x DmΣ

−1
x } over

{
σ2
m1

, . . . , σ2
mK

}
under the constraint in (5.1). It is possible to simplify the objective function

further by defining Σ−1
x = [e1 e2 · · · eK ] where ei denotes the ith column of the

inverse of the observation covariance matrix. Let ci denote the square of the

sum of the elements in ei, that is ci = (Elesum{ei})2. Then the optimization

problem can be expressed as follows:

min
{σ2

mi}
K

i=1

K∑
i=1

ci σ
2
mi

subject to
K∑
i=1

1

2
log

(
1 +

σ2
xi

σ2
mi

)
≤ C ,

σ2
mi

≥ 0 ∀i ∈ {1, 2, . . . , K} . (5.12)

From (5.12), it is noted that the objective function is linear, the constraint is

convex, and both functions are continuously differentiable which indicate that

Slater’s condition holds. Therefore, KKT conditions are necessary and sufficient

for optimality. Then, the optimal measurement noise variances can be calculated

from

σ2
mi

= −
σ2
xi

2
+

√
σ4
xi

4
+ γ

σ2
xi

ci
(5.13)

where γ > 0 is obtained by substituting (5.13) into the cost constraint∑K
i=1

1
2
log
(
1 + σ2

xi
/σ2

mi

)
= C.

5.4 Converse to Special Case 1

In some scenarios, it may be more desirable to minimize the cost of the measure-

ment devices while the average Fisher information stays above a certain value.

By putting a lower bound on the average Fisher information, we are effectively

restricting the BCRB to stay below a predetermined value. Assuming indepen-

dent Gaussian observations and measurement noises, the converse problem can
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be formulated as

min
{σ2

mi}
K

i=1

K∑
i=1

1

2
log

(
1 +

σ2
xi

σ2
mi

)

subject to
K∑
i=1

1

σ2
mi

+ σ2
xi

≥ IF. (5.14)

Notice that although the objective function is convex, the constraint is not a

convex set. In fact, the constraint set is what is left after the convex set C ={
σ2
m ≽ 0 :

∑K
i=1

1
σ2
mi

+σ2
xi

< IF

}
is subtracted from {σ2

m ≽ 0}. Since the global

minimum of the unconstrained objective function is achieved for σ2
m = ∞ which

is contained in the set C and the objective function is convex, it is concluded

that the minimum of the objective function has to occur at the boundary, i.e.,∑K
i=1

1
σ2
mi

+σ2
xi

= IF must be satisfied. Then, by similar arguments to those in

Section 5.2, optimal values of the measurement noise variances can be obtained

from

σ2
mi

=


σ4
xi

γ−σ2
xi

if σ2
xi
< γ

∞ if σ2
xi
≥ γ

with γ =
|SK |(∑

i∈SK

1
σ2
xi

− IF

) (5.15)

where SK =
{
i ∈ {1, . . . , K} : σ2

mi
̸= ∞

}
and |SK | denotes the number of ele-

ments in the set SK . Notice that the average Fisher information constraint should

be assigned a quantity that is smaller than the unconstrained Fisher information∑K
i=1 1/σ

2
xi

(total Fisher information at the input to the measurement devices)

since additional processing cannot increase the Fisher information content.

When the observation variances are equal σ2
xi
= σ2

x ∀ i, the optimal measure-

ment variances are also equal and can be calculated from σ2
mi

= σ2
m = K

IF
− σ2

x.

The corresponding minimized measurement cost is given by C = K
2
log
(

K
K−IFσ2

x

)
which is a decreasing function of K (See Figure 5.4) with a limiting value of

lim
K→∞

K

2
log

(
K

K − IFσ2
x

)
=

IFσ
2
x

2 ln 2
. (5.16)
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Figure 5.4: Independent Gaussian observations with variances σ2
x = 0.1 and in-

dependent Gaussian measurement noises are considered. The total measurement
cost under Fisher information constraint with IF = 20 ln 2 is depicted with re-
spect to the number of available measurements. Under this scenario, total cost
decreases with each additional measurement to a limiting value of C = 1. Notice
that it is not possible to achieve the Fisher information constraint using a single
observation.

5.5 Concluding Remarks

In this chapter, an optimal estimation framework is considered in the presence of

cost constrained measurements [50]. The aim is to maximize the average Fisher

information under a constraint on the total cost of measurement devices. An

optimization problem is formulated to calculate the optimal costs of measurement

devices that maximize the average Fisher information for arbitrary observation

and measurement statistics. In addition, closed form expressions are obtained in

the case of Gaussian observations and measurement noises. The converse problem

is also addressed for the Gaussian case where we consider minimizing the cost of
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the measurements such that the average Fisher information is not smaller than

a predetermined value. Numerical examples are presented to explain the results.
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6

Cost Minimization of

Measurement Devices under

Estimation Accuracy Constraints

in the Presence of Gaussian

Noise

This chapter is organized as follows. In Section 6.1, novel convex measurement

cost minimization problems are proposed based on various estimation accuracy

constraints for a linear system subject to additive Gaussian noise. In Section 6.2,

we modify the proposed optimization problems to handle the worst-case scenar-

ios under system matrix uncertainty. Next, we take a specific but nevertheless

practical uncertainty model, and discuss how the optimization problems are al-

tered while preserving convexity. In Section 6.3, we focus on two optimization

problems proposed in Section 6.1, and simplify them to obtain closed form solu-

tions in the case of invertible system matrix. In Section 6.4, we provide several
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Figure 6.1: Measurement and estimation systems model block diagram for a
linear system with additive noise.

numerical examples to illustrate the results presented in this chapter. Extensions

to Bayesian estimation with Gaussian priors are discussed in Section 6.5.

6.1 Optimal Cost Allocation under Estimation

Accuracy Constraints

Consider a discrete-time system model as in Figure 6.1 in which noisy measure-

ments are obtained at the output of a linear system, and then the measure-

ments are processed to estimate the value of a non-random parameter vector

θ. The observation vector X at the output of the linear system can be rep-

resented by X = HTθ + N, where θ ∈ RL denotes a vector of parameters

to estimate, N ∈ RK is the inherent random system noise, and X ∈ RK is

the observation vector at the output of the linear system. The system noise N

is assumed to be a Gaussian distributed random vector with zero-mean, inde-

pendent but not necessarily identical components, i.e., N ∼ N (0,DN), where

DN = diag{σ2
n1
, σ2

n2
, . . . , σ2

nK
} is a diagonal covariance matrix, and 0 denotes the

all-zeros vector of length K. We also assume that the number of observations

is at least equal to the number of estimated parameters (i.e., K ≥ L) and the

system matrix H is an L ×K matrix with full row rank L so that the columns

of H span RL.

Noisy measurements of the observation vector X are made by K measure-

ment devices at the output of the linear system, and then the measured values
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in vector Y ∈ RK are processed to estimate the parameter vector θ. It is as-

sumed that each measurement device is capable of sensing the value of a scalar

physical quantity with some resolution in amplitude according to the measure-

ment model yi = xi + mi, where mi denotes the measurement noise associated

with the i th measurement device. In other words, measurement devices are mod-

eled to introduce additive random measurement noise which can be expressed as

Y = X+M. It is also reasonable to assume that measurement noise vector M is

independent of the inherent system noise N. In addition, the noise components

introduced by the measurement devices (the elements of M) are assumed to be

zero-mean independent Gaussian random variables with possibly distinct vari-

ances1, i.e., M ∼ N (0,DM), where DM is a diagonal covariance matrix given

by DM = diag{σ2
m1

, σ2
n2
, . . . , σ2

mK
}. Based on the outputs of the measurements

devices, unknown parameter vector θ is estimated.

In practical scenarios, a major issue is the cost of performing measurements.

The cost of a measurement device is primarily assessed with its resolution, more

specifically with the number of amplitude levels that the device can reliably

discriminate. Intuitively, as the accuracy of a measurement device increases so

does its cost. Therefore, it may not always be possible to make high resolution

measurements with a limited budget. In a recent work [46], a novel measurement

device model is proposed where the cost of each device is expressed quantitatively

in terms of the number of amplitude levels that can be resolved reliably. In this

model, the amplitude resolution of the measurement devices solely determines

the cost of each measurement. The dynamic range or scaling of the input to

the measurement device is assumed to have no effect on the cost as long as

the number of resolvable levels stays the same. More explicitly, in [46], the

cost associated with measuring the i th component of the observation vector x

1Since Gaussian distribution maximizes the differential entropy over all distributions with

the same variance, the assumption that the errors introduced by the measurement devices are

Gaussian distributed handles the worst-case scenario.
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is given by Ci = 0.5 log2
(
1 + σ2

xi
/σ2

mi

)
, where σ2

xi
denotes the variance of the

i th component of observation vector x (i.e., the variance of the input to the i th

measurement device), and σ2
mi

is the variance of the i th component of m (i.e.,

the variance of the noise introduced by the i th measurement device)2. Notice

that σ2
xi

= σ2
ni
, ∀ i ∈ {1, 2, . . . , K}, since θ is a deterministic parameter vector.

Then, the overall cost of measuring all the components of the observation vector

x is expressed as

C =
K∑
i=1

Ci =
K∑
i=1

1

2
log2

(
1 +

σ2
ni

σ2
mi

)
. (6.1)

A closer look into (6.1) reveals that it is a nonnegative, monotonically decreas-

ing and convex function of σ2
mi

, ∀ σ2
ni

> 0 and ∀ σ2
mi

> 0. It is also noted

that a measurement device has a higher cost if it can perform measurements

with a lower measurement variance (i.e., with higher accuracy). Such an ap-

proach brings great flexibility by enabling to work with variable precision over

the acquired measurements. After formulating the measurement device model

as outlined above, our objective is to minimize the total cost of the measure-

ment devices under a constraint on estimation accuracy. In other words, we are

allowed to design the noise levels of the measurement devices such that the over-

all cost is minimized under a constraint on the minimum acceptable estimation

performance.

In non-random parameter estimation problems, the Cramer-Rao bound

(CRB) provides a lower bound on the mean-squared-errors (MSEs) of unbiased

estimators under some regularity conditions [23]. Specifically, the CRB on the

estimation error for an arbitrary unbiased estimator θ̂(y) is expressed as

E
{(

θ̂ − θ
)(

θ̂ − θ
)T}

≽ J−1(Y,θ) , CRB , (6.2)

2For an in-depth discussion on the plausibility of this measurement device model and its

relation to the number of distinguishable amplitude levels, we refer the reader to [46].
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where J(Y,θ) is the Fisher information matrix (FIM) of the measurement Y

relative to the parameter vector θ, which is defined as

J(Y,θ) ,
∫

1

pθY(y)

(
∂pθY(y)

∂θ

)(
∂pθY(y)

∂θ

)T

dy , (6.3)

where ∂/∂θ denotes the gradient (i.e., a column vector of partial derivatives)

with respect to parameters θ1, . . . , θK . Or, equivalently, the elements of the FIM

can be calculated from [23]

Jij = −EY|θ

{
∂2 log pθY(Y)

∂θi∂θj

}
. (6.4)

The symbol ≽ between nonnegative definite matrices in (6.2) represents the

inequality with respect to the positive semidefinite matrix cone. Specifically,

it indicates that the difference matrix obtained by subtracting the right hand

side of the inequality from the left hand side is nonnegative definite. Assuming

independent Gaussian distributions for N and M, it can be shown that the CRB

is given as follows [64]

CRB = J−1(Y,θ) =
(
HCov−1(N+M)HT

)−1
, (6.5)

where Cov(·) denotes the covariance matrix of the random vector N + M and

Cov(N +M) = DN +DM = diag{σ2
n1

+ σ2
m1

, σ2
n2

+ σ2
m2

, . . . , σ2
nK

+ σ2
mK

} due

to independence. Then, D , Cov−1(N+M) =

diag
{
1/
(
σ2
n1

+ σ2
m1

)
, 1/

(
σ2
n2

+ σ2
m2

)
, . . . , 1/

(
σ2
nK

+ σ2
mK

)}
, where Cov−1(·)

represents the inverse of the covariance matrix. Notice that the CRB can ac-

tually be attained in this case by employing the maximum likelihood (ML) es-

timator (also the best linear unbiased estimator (BLUE) in this case), θ̂(y) =(
HDHT

)−1
HDy, where the efficiency of the estimator follows from linearity of

the system and due to the assumption of Gaussian distributions [23]. Specifi-

cally, the covariance matrix of the estimator equals the inverse of the FIM, i.e.,

Cov
(
θ̂(y)

)
=
(
HDHT

)−1
.

Remark: When non-Gaussian distributions are assumed, we can utilize the

preceding observation to obtain an upper bound on the CRB. To see this, a few

111



preliminaries are needed. First, the FIM of a random vector Z with respect to a

translation parameter is defined as follows [64]

J(Z) , J(θ + Z,θ) =

∫
1

pZ(z)

(
∂pZ(z)

∂z

)(
∂pZ(z)

∂z

)T

dz , (6.6)

where pZ(z) is the probability density function of Z that is independent of θ.

A well-known property of the FIM under translation is J(Z) ≽ Cov−1(Z) with

equality if and only if Z is Gaussian [64].

Based on these preliminaries, for linear models in the form of Figure 6.1

but with arbitrary probability distributions for N and M, it can be shown that

J(Y,θ) = HJ(N+M)HT , where J(N+M) indicates the FIM under a translation

parameter of random vector N +M [64]. In order to upper bound the CRB, it

is first observed that J(N + M) ≽ Cov−1(N + M). Using the properties of

nonnegative definite matrices, we have

CRB = J−1(Y,θ) =
(
HJ(N+M)HT

)−1 ≼
(
HCov−1(N+M)HT

)−1
, (6.7)

which naturally indicates that the difference matrix obtained by subtracting the

CRB from the covariance matrix of the linear estimator θ̂(y) must be nonnegative

definite. Correspondingly, it is also possible to lower bound the CRB for inde-

pendent random vectors N and M. To that aim, we can revert to the Fisher In-

formation Inequality (FII) [65]. FII states that J−1(N+M) ≽ J−1(N)+J−1(M)

with equality if and only if N and M are Gaussian. Therefore,

CRB = J−1(Y,θ) ≽
(
H
(
J−1(N) + J−1(M)

)−1
HT
)−1

. (6.8)

As a result, a lower bound on the CRB can also be obtained in terms of the FIMs

under translation parameters (6.6) of random vectors N and M with arbitrary

probability distributions. �

Returning to our case of independent Gaussian system noise and measure-

ment noise, the CRB is equal to the covariance matrix (i.e., estimation error

covariance) of the ML estimator θ̂(y) =
(
HDHT

)−1
HDy as mentioned in the
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paragraph following (6.5). Furthermore, when the system and measurement noise

distributions are not restricted to Gaussian, the covariance matrix of the linear

estimator θ̂(y) can also be used as an upper bound to the CRB as shown in (6.7).

For this reason, in the following analysis we employ several performance metrics

based on the CRB given in (6.5) in order to assess the quality of estimation.

In other words, we propose measurement cost minimization formulations under

various estimation accuracy constraints based on the CRB expression in (6.5).

However, before that analysis, we first express the CRB in a more familiar form

in the optimization theoretic sense

CRB = J−1(Y,θ) =

(
K∑
i=1

1

σ2
ni
+ σ2

mi

hih
T
i

)−1

, (6.9)

and the corresponding ML estimator that achieves this bound becomes

θ̂(y) =
(
HDHT

)−1
HDy =

(
K∑
i=1

1

σ2
ni
+ σ2

mi

hih
T
i

)−1 K∑
i=1

yi
σ2
ni
+ σ2

mi

hi .

(6.10)

6.1.1 Average Mean-Squared-Error

The diagonal components of the CRB provide a lower bound on the MSE while

estimating the components of parameter θ. Specifically,

EY|θ

{∥∥∥θ̂(Y)− θ
∥∥∥2
2

}
≥ tr

{
J−1(Y,θ)

}
where tr{·} denotes the trace operator [23]. In other words, the harmonic average

of the eigenvalues of the FIM is taken as the performance metric. Based on this

metric, the following measurement cost minimization problem is proposed:

min
{σ2

mi}
K

i=1

1

2

K∑
i=1

log2

(
1 +

σ2
ni

σ2
mi

)

subject to tr


(

K∑
i=1

1

σ2
ni
+ σ2

mi

hih
T
i

)−1
 ≤ E , (6.11)
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where E denotes a constraint on the maximum allowable average estimation

error. Due to the inevitable intrinsic system noise, the design criterion E must

satisfy E > tr
{(

HD−1
N HT

)−1
}

= tr

{(∑K
i=1

hih
T
i

σ2
ni

)−1
}
. Substituting µi =

1/
(
σ2
ni
+ σ2

mi

)
, (6.11) becomes

max
{µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to tr


(

K∑
i=1

µi hih
T
i

)−1
 ≤ E . (6.12)

It is noted that the objective function is smooth and concave for ∀µi ∈ [0, 1/σ2
ni
).

Since the constraint is also a convex function of µi’s for ∀µi ≥ 0, this is a convex

optimization problem [66, Sec. 7.5.2]. Consequently, it can be efficiently solved

in polynomial time using interior point methods and the numerical convergence

is assured. It is also possible to express this optimization problem using linear

matrix inequalities (LMIs) as follows:

max
{zi}Li=1, {µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to

 ∑K
i=1 µi hih

T
i ej

eTj zi

 ≽ 0, j = 1, . . . , L

K∑
i=1

zi ≤ E , (6.13)

where ej denotes the column vector of length L with a 1 in the j th coordinate

and 0’s elsewhere. Or equivalently,

max
Z∈SL, {µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to

 Z I

I
∑K

i=1 µi hih
T
i

 ≽ 0 ,

tr(Z) ≤ E , (6.14)

where SL denotes the set of symmetric L× L matrices.
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6.1.2 Shannon Information

An alternative measure of the estimation accuracy considers the Shannon (mu-

tual) information content between the unknown parameter vector θ and the

measurement vector Y. More explicitly, the interest is to place a constraint on

the log volume of the η-confidence ellipsoid which is defined as the minimum

ellipsoid that contains the estimation error with probability η [66, Sec. 7.5.2]. As

shown in [44], the η-confidence ellipsoid is given by

εα =
{
z | zTJ(Y,θ)z ≤ α

}
, (6.15)

where α = F−1
χ2
K
(η) is obtained from the cumulative distribution function of a

chi-squared random variable with K degrees of freedom. Then, the log volume

of the η-confidence ellipsoid is obtained as3

log vol(εα) = β − 1

2
log det

(
K∑
i=1

1

σ2
ni
+ σ2

mi

hih
T
i

)
, (6.16)

where β = n
2
log(απ) − log

(
Γ
(
n
2
+ 1
))

, with Γ denoting the Gamma function.

Notice that the design criterion is related to the geometric mean of the eigenvalues

of the FIM. Based on this metric, the following measurement cost optimization

problem can be obtained:

max
{µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to log det

(
K∑
i=1

µi hih
T
i

)
≥ 2(β − S) , (6.17)

where µi is as defined in (6.12) and S is a constraint on the log volume

of η-confidence ellipsoid satisfying S > β − 0.5 log det
(
HD−1

N HT
)

= β −

0.5 log det
(∑K

i=1
hih

T
i

σ2
ni

)
. Since log det

(∑K
i=1 µi hih

T
i

)
is a smooth concave func-

tion of µi for µi ≥ 0, the resulting optimization problem is convex [66, Sec. 3.1.5].

The smoothness property of the problem is also very helpful for obtaining the

solution via numerical methods.

3We use ‘log’ without a subscript to denote the natural logarithm.
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By introducing a lower triangular non-singular matrix L and utilizing

Cholesky decomposition of positive definite matrices, it is possible to rewrite

the constraint in terms of a lower bound. To that aim, let
∑K

i=1 µi hih
T
i ≽ LLT .

Then, the optimization problem can be expressed equivalently as

max
L∈UL, {µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to

 I LT

L
∑K

i=1 µi hih
T
i

 ≽ 0 ,

L∑
i=1

log Li, i ≥ (β − S) , (6.18)

where UL denotes the set of lower triangular non-singular L×L square matrices,

Li, i represents the i th diagonal coefficient of L, and L is the dimension of L.

6.1.3 Worst-Case Error Variance

When the primary concern shifts from accuracy requirements towards robust be-

havior, it may be more desirable to have a constraint on the worst-case variance

of the estimation error, which is associated with the maximum (minimum) eigen-

value of the CRB (FIM) [44, 67–69]. The corresponding optimization problem is

stated as follows:

max
{µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to λmin

{
K∑
i=1

µi hih
T
i

}
≥ Λ , (6.19)

where λmin{·} represents the minimum eigenvalue of its argument, and Λ is a

predetermined lower bound on the minimum eigenvalue of the FIM satisfying Λ <

λmin

{
HD−1

N HT
}
= λmin

{∑K
i=1

hih
T
i

σ2
ni

}
. Since the constraint can be represented

in the form of an LMI, this problem can equivalently be expressed as

max
{µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to

K∑
i=1

µi hih
T
i ≽ ΛI , (6.20)

where I is the L × L identity matrix. The resulting problem is also convex [66,

Sec. 7.5.2].
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6.1.4 Worst-Case Coordinate Error Variance

Another variation of the worst-case error criteria can be obtained by placing a

constraint on the maximum error variance among all the individual estimator

components, i.e., restricting the largest diagonal entry of the CRB. Using this

performance criterion, we have the following optimization problem

max
{µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to max

j=1,...,K

( K∑
i=1

µi hih
T
i

)−1


j,j

≤ ϱ , (6.21)

where ϱ is a constraint on the maximum allowable diagonal entry of the CRB

(estimation error covariance matrix) satisfying ϱ > max
j=1,...,K

((
HD−1

N HT
)−1
)
j,j

=

max
j=1,...,K

((∑K
i=1

hih
T
i

σ2
ni

)−1
)

j,j

. This problem can equivalently be expressed as

max
{µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to

 ϱ eTj

ej
∑K

i=1 µi hih
T
i

 ≽ 0, j = 1, . . . , L (6.22)

where ej denotes the column vector of length L with a 1 in the j th coordinate

and 0’s elsewhere. This is also a convex optimization problem [66, Sec. 7.5.2].

6.2 Extensions to Cases with System Matrix

Uncertainty - Robust Measurement

It may also be the case that there exists some uncertainty concerning the el-

ements in the system matrix H [44]. Suppose that the system matrix H can

take values from a given finite set H. In the robust measurement problem, we

consider the optimization over the worst-case scenario. Specifically, we choose
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the matrix from the family of system matrices H resulting in the worst estima-

tion accuracy constraint, and perform the optimization accordingly. Recalling

that the infimum (supremum) preserves concavity (convexity), it is possible to

restate the measurement cost optimization problems given in Section 6.1, and

still maintain convex optimization problems. Then, the resulting optimization

problems with respect to each criterion are expressed as follows

6.2.1 Average Mean-Squared-Error

max
{µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to sup

H∈H
tr

{
K∑
i=1

µi hih
T
i

}−1

≤ E , (6.23)

or equivalently,

max
Z∈SL, {µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to

 Z I

I
∑K

i=1 µi hih
T
i

 ≽ 0 for all H ∈ H

tr(Z) ≤ E . (6.24)

6.2.2 Shannon Information

max
{µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to inf

H∈H
log det

{
K∑
i=1

µi hih
T
i

}
≥ 2(β − S) , (6.25)
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or equivalently,

max
L∈UL, {µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to

 I LT

L
∑K

i=1 µi hih
T
i

 ≽ 0 for all H ∈ H ,

L∑
i=1

log Li, i ≥ (β − S) . (6.26)

6.2.3 Worst-Case Error Variance

max
{µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to

K∑
i=1

µi hih
T
i ≽ ΛI for all H ∈ H . (6.27)

6.2.4 Worst-Case Coordinate Error Variance

max
{µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to sup

H∈H
max

j=1,...,K

{ K∑
i=1

µi hih
T
i

}−1


j,j

≤ ϱ . (6.28)

When the set H is finite, the problem can be solved using standard arguments

from convex optimization. However, the set H is in general not finite, and the

solutions of the above optimization problems require general techniques from

semi-infinite convex optimization such as those explained in [70, 71]. In the

following, a specific uncertainty model is considered where it is possible to further

simplify the optimization problems given in (6.26) and (6.27) by expressing the

constraints as LMIs. To that aim, let H ∈ H =
{
H̄+∆ :

∥∥∆T
∥∥
2
≤ ϵ
}
, where

∥ · ∥2 denotes the spectral norm (i.e., the square root of the largest eigenvalue of

the positive semidefinite matrix ∆∆T ). It is possible to express this constraint
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as an LMI, ∆∆T ≼ ϵ2I. Suppose also that µ is defined as the following diagonal

matrix µ , diag {µ1 , µ2 , . . . , µK}, and W , LLT is a symmetric positive

definite matrix. Then, the constraint in (6.26) can be expressed in terms of H̄

and ∆ as

W ≼ H̄µH̄T + H̄µ∆T +∆µH̄T +∆µ∆T , for all ∆∆T ≼ ϵ2I . (6.29)

Similarly, the constraint in (6.27) is given by

ΛI ≼ H̄µH̄T + H̄µ∆T +∆µH̄T +∆µ∆T , for all ∆∆T ≼ ϵ2I . (6.30)

In [72, Theorem 3.3], a necessary and sufficient condition is derived for quadratic

matrix inequalities in the form of (6.29) and (6.30) to be true. In the light of

this theorem, (6.29) holds if and only if there exists t ≥ 0 such that H̄µH̄T −W − tI H̄µ

µH̄T µ+ t
ϵ2
I

 ≽ 0 , (6.31)

and (6.30) holds if and only if there exists t ≥ 0 such that H̄µH̄T − (Λ + t)I H̄µ

µH̄T µ+ t
ϵ2
I

 ≽ 0 . (6.32)

Notice that (6.31) and (6.32) are both linear in µ, W and t. Hence, under this

specific uncertainty model, we can express the optimization problem in (6.26) as

max
t,W∈SL

++ , {µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to

 H̄µH̄T −W − tI H̄µ

µH̄T µ+ t
ϵ2
I

 ≽ 0 ,

log det(W) ≥ 2(β − S) ,

t ≥ 0 , (6.33)

where SL
++ denotes symmetric positive-definite L × L matrices. Similarly, it is

possible to write the optimization problem in (6.27) as

max
t, {µi}Ki=1

1

2

K∑
i=1

log2
(
1− σ2

ni
µi

)
subject to

 H̄µH̄T − (Λ + t)I H̄µ

µH̄T µ+ t
ϵ2
I

 ≽ 0 ,

t ≥ 0 . (6.34)
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6.3 Special Case - Invertible System Matrix H

When the system matrix H is a K×K invertible matrix meaning that the num-

ber of unknown parameters is equal to the number of observations, it is possible

to obtain closed-form solutions of the optimization problems stated in (6.11) and

(6.17). Moreover, for the solution of (6.11), it is not necessary to assume that the

components of the system noise N are independent; it is sufficient to have N as

a Gaussian distributed random vector with zero-mean and arbitrary covariance

matrix (possibly colored), i.e., N ∼ N (0,ΣN) with {σ2
n1
, σ2

n2
, . . . , σ2

nK
} consti-

tuting the diagonal components of ΣN, and 0 denoting the all-zeros vector of

length K as before. To that aim, assuming independent Gaussian distributions

for N and M, and square H with full-rank (invertible), it is observed that

CRB = J−1(Y,θ) =
(
HCov−1(N+M)HT

)−1
=
(
H−1

)T
Cov(N+M)H−1

=
(
H−1

)T
ΣNH

−1 +
(
H−1

)T
DMH−1 , (6.35)

where the first part of the CRB, (H−1)
T
ΣNH

−1 is a known quantity, and the

second part (H−1)
T
DMH−1 will be subject to design while assessing the quality

of the estimation. Similar to the previous discussion, CRB can be achieved in

this case by employing the corresponding linear unbiased estimator which turns

out simply to be a multiplication of the measurement vector with the inverse

of the system matrix, i.e., θ̂(y) = (H−1)Ty. Returning to two commonly used

performance metrics introduced in Section 6.1, we next examine the closed-form

solutions of the corresponding cost minimization problems.
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6.3.1 Average Mean-Squared-Error

Due to the CRB, it is known that the average MSE while estimating the com-

ponents of the parameter θ is bounded from below as

EY|θ

{∥∥∥θ̂(Y)− θ
∥∥∥2
2

}
≥ tr

{
J−1(Y,θ)

}
(6.36)

= tr
{(

H−1
)T

ΣNH
−1
}
+ tr

{(
H−1

)T
DMH−1

}
,

where the last equality follows from the linearity of the trace operator and the

invertibility of H. Since (H−1)
T
ΣNH

−1 is known, let t = tr
{
(H−1)

T
ΣNH

−1
}
.

When the aim is to minimize the measurement cost subject to a constraint on

the lower bound for the average MSE (achievable in the case of Gaussian dis-

tributions), the optimization problem can be expressed similarly to (6.11) as

follows:

min
{σ2

mi}
K

i=1

1

2

K∑
i=1

log2

(
1 +

σ2
ni

σ2
mi

)
subject to tr

{(
H−1

)T
DMH−1

}
≤ E− t , (6.37)

where E denotes a constraint for the overall average estimation error suggested by

the CRB (achievable in this case), and t represents the unavoidable estimation

error due to intrinsic system noise N. Notice that for consistency, the design

parameter E should be selected as E > t.

From the independence of the measurement noise components, DM =

diag{σ2
m1

, σ2
m2

, . . . , σ2
mK

} is a diagonal covariance matrix with σ2
mi

> 0, ∀ i ∈

{1, 2, . . . , K}. In the view of this observation, it is possible to simplify the objec-

tive function further by defining F , (H−1)
T
= [f1 f2 . . . fK ], where fi represents

the i th row of the inverse of the system matrix H. Let fi , ∥fi∥22 denote the

square of the Euclidean norm of the vector fi, that is, the sum of squares of

the elements in fi. It is noted that fi is always positive for invertible H, and is

constant for fixed H. Then the optimization problem in (6.37) can be expressed
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as follows:

min
{σ2

mi}
K

i=1

1

2

K∑
i=1

log2

(
1 +

σ2
ni

σ2
mi

)

subject to
K∑
i=1

fi σ
2
mi

≤ E− t ,

σ2
mi

≥ 0 ∀ i ∈ {1, 2, . . . , K} . (6.38)

From (6.38), it is noted that the constraint function is linear in σ2
mi
’s, the ob-

jective function is convex, and both functions are continuously differentiable

which altogether indicate that Slater’s condition holds. Therefore, Karush-Kuhn-

Tucker (KKT) conditions are necessary and sufficient for optimality. Then, the

optimal measurement noise variances can be calculated from

σ2
mi

= −
σ2
ni

2
+

√
σ4
ni

4
+ γ

σ2
ni

fi
, (6.39)

where γ > 0 is obtained by substituting (6.39) into the average MSE constraint,

that is
∑K

i=1 fi σ
2
mi

= E− t.

Special Case: When the inverse of the system matrix has normalized rows,

i.e., fi = 1, and the components of the system noise are independent zero-

mean Gaussian random variables, the optimal measurement noise variances

should satisfy
∑K

i=1 σ2
mi

= E −
∑K

i=1 σ2
ni
. If identical system noise compo-

nents are assumed as well, i.e., σ2
ni

= σ2
n, i = 1, . . . , K , then the optimal so-

lution results in σ2
mi

= σ2
m, i = 1, . . . , K , where σ2

m = E/K − σ2
n is obtained

from the average MSE constraint. The corresponding optimal cost is given by

(K/2) log2 (E/(E−Kσ2
n)). This is an increasing function of K for fixed E. Fur-

thermore, the derivatives of all orders with respect to K exist, and are positive

for K < E/σ2
n. Therefore, estimating more parameters under an average error

constraint based on the CRB requires even more accurate measurement devices

with higher costs as long as K < E/σ2
n is satisfied.
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6.3.2 Shannon Information

Another measure of estimation accuracy that results in a closed form solution

in the case of invertible system matrix H is the Shannon information criterion.

Using this metric as the constraint function, we are effectively restricting the

log volume of the η-confidence ellipsoid to stay below a predetermined value S.

Using similar arguments to Section 6.1.2 and the invertibility of H,

log det
(
HCov−1(N+M)HT

)
= log

(
detH · det

(
Cov−1(N+M)

)
· detHT

)
= 2 log |detH| −

K∑
i=1

log
(
σ2
ni
+ σ2

mi

)
, (6.40)

where the second equality follows the properties of the determinant and loga-

rithm, i.e., detH = detHT , det
(
Cov−1(N+M)

)
= 1

/
det (Cov(N+M)), and

Cov(N +M) = DN +DM = diag{σ2
n1

+ σ2
m1

, σ2
n2

+ σ2
n2
, . . . , σ2

nK
+ σ2

mK
} due

to Gaussian distributed independent system and measurement noises with inde-

pendent components. Since the system matrix H is known, let α , log |detH|.

Under these conditions, the optimization problem in (6.17) can be stated as

min
{σ2

mi}
K

i=1

1

2

K∑
i=1

log2

(
1 +

σ2
ni

σ2
mi

)

subject to
K∑
i=1

log
(
σ2
ni
+ σ2

mi

)
≤ 2(S + α− β) , (6.41)

where S and β are as defined in (6.17).

Notice that although the objective in (6.41) is a convex function of σ2
mi
’s, the

constraint is not a convex set. In fact, the constraint set is what is left after the

convex set

C =

{
σ2

m ≽ 0 :
K∑
i=1

log
(
σ2
ni
+ σ2

mi

)
> 2(S + α− β)

}

is subtracted from
{
σ2

m ≽ 0
}
. Since the global minimum of the unconstrained

objective function is achieved for σ2
m = ∞ which is contained in set C and the

objective function is convex, it is concluded that the minimum of the objective
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function has to occur at the boundary, i.e.,
∑K

i=1 log
(
σ2
ni
+ σ2

mi

)
= 2(S + α −

β) must be satisfied [19]. Therefore, we can take the constraint as equality

in (6.41). This is a standard optimization problem that can be solved using

Lagrange multipliers. Hence, by defining ϱ , 2(S + α − β), we can write the

Lagrange functional as

J(σ2
m1

, . . . , σ2
mK

) =
1

2

K∑
i=1

log2

(
1 +

σ2
ni

σ2
mi

)
+ λ

(
K∑
i=1

log
(
σ2
ni
+ σ2

mi

)
− ϱ

)
,

(6.42)

and differentiating with respect to σ2
mi
, we have the following assignment of the

noise variances to the measurement devices

σ2
mi

= (γ1/K − 1)σ2
ni
, where γ =

2ϱ∏K
j=1 σ

2
nj

. (6.43)

For consistency, the design parameter S should be selected as ϱ = 2(S + α −

β) >
∑K

i=1 log
(
σ2
ni

)
since the intrinsic system noise puts a lower bound on the

minimum attainable volume of the confidence ellipsoid. Some properties of the

obtained solution can be summarized as follows

• For given ϱ, K and σ2
ni
’s, the minimum achievable cost is (K/2) log2

(
γ1/K

γ1/K−1

)
,

where γ is computed as in (6.43).

• For a fixed value of K (available number of observations), relaxing the

constraint on the volume of the η-confidence ellipsoid (increasing the value

of ϱ) results in smaller measurement device costs with a limiting value of

0, as expected.

• If the observation variances are equal; that is, σ2
ni

= σ2
n , i = 1, . . . , K,

employing identical measurement devices for all the observations; that is,

σ2
mi

= σ2
m , i = 1, . . . , K, is the optimal strategy. From (6.43), the optimal

value of the measurement noise variances is calculated as σ2
m,opt = eϱ/K −

σ2
n, and the corresponding minimum total measurement cost is given as

ϱ/(2 log 2) − (K/2) log2
(
eϱ/K − σ2

n

)
which is an increasing function of K
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for ϱ > K log σ2
n. Intuitively, this result as well indicates that estimating

more parameters under a fixed constraint on the volume of the ellipsoid

containing the estimation errors requires a higher total measurement device

cost.

6.4 Numerical Results

In this section, we present an example that illustrates several theoretical results

developed in the previous section. To that aim, a discrete-time linear system as

depicted in Figure 6.1 is considered

Y = HTθ +N+M , (6.44)

where θ is a length-20 vector containing the unknown parameters to be estimated,

H is a 20×100 system matrix with full row rank, the intrinsic system noiseN and

the measurement noise M are length-100 Gaussian distributed random vectors

with independent components. The entries of the system matrix H are gener-

ated from a process of i.i.d. uniform random variables in the interval [−0.1, 0.1].

Also, the components of the system noise vector N are independently Gaussian

distributed with zero mean, and it is assumed that their variances come from

a uniform distribution defined in the interval [0.05, 1]. The implication of this

assumption is that the observations at the output of the linear system possess

uniformly varying degrees of accuracy. In other words, it is assured that ob-

servations corrupted by weak, moderate and strong levels of Gaussian noise are

available with similar proportions for the estimation stage. In the following, we

look into the problem of optimally assigning costs to measurement devices under

various estimation accuracy constraints when the variances of the intrinsic system

noise components are uniformly distributed as explained above. Note that our

results obtained in the previous section are still valid for Gaussian system noise
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processes with arbitrary diagonal covariance matrices (i.e., the non-zero compo-

nents of the diagonal covariance matrix need not be uniformly distributed as in

this example). In obtaining the optimal solutions for the convex optimization

problems stated above, fmincon method from MATLAB’s Optimization Toolbox

and the CVX software [73] are used.

6.4.1 Performance of Various Estimation Quality Metrics

under Perfect System State Information

First, we investigate the cost assignment problem under perfect information on

the system matrix and intrinsic noise variances. Recall that four different perfor-

mance constraints are proposed for that purpose in Section 6.1. In the following

four experiments, we analyze the behavior of the total measurement cost while

each constraint metric is varied between its extreme values. The total cost is

measured in bits by taking logarithms with respect to base 2. The constraint

metric is expressed as the ratio of its current value to the value it attains for

the limiting case when zero measurement noise variances are assumed. As an

example, for average mean-squared-error criterion, the total measurement cost

C will be tabulated versus E/tr
{(

HD−1
N HT

)−1
}
.

In addition to the optimal cost allocation scheme proposed in this study, we

also consider two suboptimal cost allocation strategies:

Equal cost to all measurement devices: In this strategy, it is assumed that

a single set of measurement devices with identical costs is employed for all ob-

servations so that Ci = C, i = 1, 2, . . . , K. This, in turn, implies that the

ratio of the measurement noise variance to the intrinsic system noise variance,

x , σ2
mi
/σ2

ni
, is constant for all measurement devices. Then, the total cost

can be expressed in terms of x as C = 0.5K log2 (1 + 1/x), and similarly the

FIM becomes J(Y,θ) =
HD−1

N HT

x+1
= 1

x+1

∑K
i=1

hih
T
i

σ2
ni

. Using this observation, the
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constraint functions provided for different performance metrics in the optimiza-

tion problems (6.11), (6.17), (6.19), and (6.21) can be algebraically solved for

equality to determine the value of x without applying any convex optimization

techniques, and the corresponding measurement variances and cost assignments

can be obtained.

Equal measurement noise variances: In this case, measurement devices are

assumed to introduce random errors with equal noise variances, that is, σ2
mi

=

σ2
m, i = 1, 2, . . . , K. In other words, all observations are assumed to be corrupted

with identical noise processes, and the best measurement noise variance value

that minimizes the overall measurement cost while satisfying the estimation ac-

curacy constraint is selected. Accordingly, the objective function in the proposed

optimization problems simplifies to C = 0.5
∑K

i=1 log2
(
1 + σ2

ni
/σ2

m

)
and the FIM

employed in the constraint functions takes the form J(Y,θ) =
∑K

i=1
hih

T
i

σ2
ni

+σ2
m
. By

substituting these expressions into the various optimization approaches provided

in Section 6.1, these problems can be solved rapidly over a single parameter

σ2
m using the tools of convex analysis, and the optimal cost allocations can be

obtained for the case of equal measurement noise variances.

Average Mean-Squared-Error Criterion

In this experiment, we study the effects of the average MSE constraint on the

total measurement device cost. Starting from the minimum achievable value

for the average MSE due to intrinsic system noise (i.e., tr{(HD−1
N HT )−1}), we

increase the constraint up to 100 times this minimal value, as depicted in Fig-

ure 6.2. Three curves are presented corresponding to the optimal cost allocation

strategy and two suboptimal strategies, one employing equal cost and the other

employing equal noise variance among the measurement devices. It is noted that

the optimal strategy results in the minimum cost for all values of the MSE con-

straint as expected. Its performance is followed by the equal cost assignment
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Figure 6.2: Total cost versus normalized average MSE constraint.

scheme, and the worst performing strategy is the one that assigns equal mea-

surement noise variances to all the devices. When the average MSE criterion is

stringent (for smaller values of E), all the strategies require increasingly more

accurate measurements (hence higher costs) to satisfy the constraint. As the

MSE constraint is relaxed (i.e., for larger values of E), the measurement costs of

three different strategies start to drop down to zero but become less responsive

as they move along.

Shannon Information Criterion

This experiment aims to discover the relationship between Shannon information

constraint and total measurement device cost. Since the constraint is expressed

as a ‘greater than’ inequality, we begin with the maximum attainable value of

log det(HD−1
N HT ) and loosen the constraint by decreasing towards the negative
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Figure 6.3: Total cost versus normalized Shannon information constraint.

multiples of this quantity as shown in Figure 6.3. When the constraint is very

restrictive (corresponding to high values of 2(β − S)), the differences among the

performances of optimal and suboptimal strategies disappear. As the constraint

is relaxed away from the maximum attainable value, it is observed that the

decrease in the total cost is less responsive with respect to the average MSE.

However, as the relaxation continues we see that the drop in the total cost for

the Shannon information criterion maintains its pace for a longer time while

the drop in the average MSE criterion seems to saturate. Again similar to the

previous case, the performance of the optimal strategy is superior to the equal

measurement device cost strategy, and the worst performance belongs to the

equal measurement variance scheme.
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Figure 6.4: Total cost versus normalized worst-case error variance constraint.

Worst-Case Error Variance

In this experiment, we investigate the effects of the worst-case error variance

criterion on the total measurement device cost under different cost allocation

strategies. Similar conclusions to the previous experiments can be drawn by

examining Figure 6.4.

Worst-Case Coordinate Error Variance

This experiment focuses on the relationship between the constraint on the largest

diagonal entry of the CRB and the total measurement device costs achievable via

different cost allocation strategies. The results are illustrated in Figure 6.5. It is

noted that the plots depicted in Figure 6.2 embody a large degree of resemblance

to those given in Figure 6.5. This similarity is anticipated and can be attributed
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Figure 6.5: Total cost versus normalized worst-case coordinate error variance
constraint.

to the fact that the former criterion puts a constraint on the average of the

diagonal entries of the CRB whereas the latter places a similar constraint on

their maximum.

Finally, we can stress a few more points. It is necessary that the intrinsic

system noise variances and the system matrix are jointly evaluated to compute

the optimal measurement noise variances and the corresponding cost allocations.

In other words, in order to assign more cost to a specific observation, it is not

sufficient to just know that the particular observation is reliable (i.e., has smaller

variance) but we also need to know its intrinsic combinations with the other

observations due to linear system matrix. Furthermore, the performance figures

are quite useful in the sense that they provide the minimum cost necessary to

obtain a desired level of estimation accuracy.
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6.4.2 Performance Comparison of Estimation Quality

Metrics under Scaling of the System Noise Vari-

ances

In this section, we devise a new experiment in order to jointly assess the perfor-

mance of the proposed optimal cost assignment strategies under different esti-

mation quality metrics. Using the same set of system noise variances employed

in the previous experiments, we scale them with a factor c that varies inside the

interval [0.1, 1] with 0.01 increments. Specifically, σ̂2
ni

= c σ2
ni
, i = 1, . . . , K,

where c ∈ {0.1 : 0.01 : 1}. For such a comparison to make sense, the constraints

on the estimation quality metrics are selected so that the optimal total measure-

ment costs returned by the various approaches are equal for a certain value of

the scale parameter c. Then, using the same value as the constraint, we evaluate

the performance of each optimal cost allocation strategy for the rest of the scale

parameter values. To that aim, we construct two examples. In the first one, the

performances of the optimal schemes under four different performance metrics are

equated for c = 0.5, producing an optimal total cost of 40.11. The correspond-

ing constraint function values are E = 23.1371 for the average MSE criterion,

2(β − S) = 1.9389 for Shannon Information criterion, Λ = 0.4364 for the worst-

case error variance criterion and ϱ = 1.3646 for the worst-case coordinate error

variance criterion. The results are illustrated in Figure 6.6. Intuitively, as the in-

trinsic system noise variances are increased, more reliable measurements (higher

costs) are required to satisfy the same level of accuracy. Comparing the perfor-

mances in Figure 6.6, where all the costs are equated for c = 0.5, we observe that

the average MSE criterion results in the least (i.e., the best) optimal cost score

for increasing values of the scale parameter c. Its performance is followed by the

Shannon information criterion, next by the worst-case coordinate error variance

criterion, and finally by the worst-case error variance criterion. In other words,

the effects of increasing system noise variances are much more pronounced for the
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Figure 6.6: The performance of various optimal cost allocation strategies under
scaling of the system noise variances. All costs are equal for c = 0.5.

worst-case error variance criterion, which operates by setting a constraint on the

minimum eigenvalue of the FIM, than the remaining criteria. If the noise scale

parameter c is decreased below 0.5, it is observed that the Shannon information

criterion produces the lowest measurement cost followed by the worst-case co-

ordinate error variance criterion, worst-case error variance criterion, and finally

average MSE criterion in the order of increasing costs. It is noted that, except

for the average MSE criterion, the performance of the remaining three metrics

stays in the same order for values of c above and below 0.5. Another important

observation is that among the four estimation quality metrics, the performance

of the MSE criterion is the one that is least susceptible to changes in the system

noise variance. That is, as c is increased beyond 0.5 and decreased below 0.5,

the least varying performance metric corresponds to the average MSE criterion.

Therefore, in applications where the level of the system noise variance are likely

to fluctuate around a nominal value and a predetermined value of the estimation
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accuracy has to be satisfied, the average MSE criterion provides the most robust

alternative in terms of the measurement device selection. However, even in this

case, a small change of order 0.01 in the value of the scale parameter disturbs

the total cost by more than 1 bit for the average MSE metric.

In the second example, the performances of the estimation quality metrics

are equated for c = 1, resulting in a total cost score of 320.8. We employ the

same constraint value (E = 23.1371) for the average MSE criterion, and the

adjustments are applied to the remaining metrics. The corresponding constraint

function values are calculated as 2(β − S) = 0.66 for the Shannon Information

criterion, Λ = 0.3664 for the worst-case error variance criterion, and ϱ = 1.5519

for the worst-case coordinate error variance criterion. The results are illustrated

in Figure 6.7. In accordance with the observations for high values of c in the

previous example, the worst-case error variance metric quickly responds to the

drop in the level of the system noise variance values. Hence, the lowest cost is

provided by the worst-case error variance criterion for c < 1. On the other hand,

the optimal cost value for the average MSE criterion exhibits the slowest descent

for decreasing values of c. Also noted from the figure is that the performance

curve for the Shannon information criterion down-crosses the curve corresponding

to the worst-case coordinate error variance criterion at around c = 0.21.

6.4.3 The Relationship between the Number of Effective

Measurements and the Quality of Estimation under

Scaling of the System Noise Variances

In this experiment we discuss the relationship between the number of effective

measurements Keff and various estimation quality metrics under scaling of the

system noise variances. A measurement is assessed as effective whenever the

cost of that measurement exceeds a certain fraction of the optimal value of the
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Figure 6.7: The performance of various optimal cost allocation strategies under
scaling of the system noise variances. All costs are equal for c = 1.

total measurement cost. More specifically, we require that Ci > p (C/K) where

K represents the total number of measurements. With this construction, it is

assured that the total cost of the effective measurements is greater than (1−p)C,

from which a suitable value for p can be determined [46]. For small values of p,

we can safely assume that the remaining measurements do not cause a significant

change on the total cost or provide any significant contribution to the estimation

accuracy. Similar to the study in [46], p = 0.125 is selected. The same constraint

values as in Figure 6.7 are employed for the estimation accuracy metrics. Since

the performances of all four estimation accuracy criteria are fixed to a high cost

score of 320.8 for c = 1, it is noted from Figure 6.8 that most of the observations

are utilized at this value of the scale parameter in order to satisfy the strict con-

straints. As the average system noise power is reduced by assigning smaller values

to the system noise variance multiplier c, the number of effective measurements

decreases for all the four cases in accordance with decreasing measurement costs.
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Figure 6.8: Number of effective measurements under scaling of the system noise
variances for various estimation accuracy metrics.

In other words, lower noise variances result in looser constraints which can be

achieved by using fewer number of high resolution (costly) measurements. For

small values of c, the worst-case error variance requires the largest number of

measurements followed by the average MSE criterion, the worst-case coordinate

error variance criterion, and finally the Shannon information criterion. For higher

values of c, the situation is reversed apart from the average MSE criterion which

requires the largest number of effective measurements. When c ≤ 0.56, a rela-

tively small number of accurate measurements is sufficient to conduct a reliable

estimation using the Shannon information criterion with respect to the remaining

criteria.
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Figure 6.9: Effects of system matrix uncertainty on the total measurement cost
for Shannon information criterion.

6.4.4 Effects of System Matrix Uncertainty

So far, we have assumed that the system matrix is known perfectly at the mea-

surement stage. In this experiment, we consider the case in which the measure-

ment system can only have partial knowledge about the system matrix according

to the specific uncertainty model introduced in Section 6.2. That is, the system

matrix is represented as the sum of a known matrix plus a random disturbance

matrixH ∈ H =
{
H̄+∆ :

∥∥∆T
∥∥
2
≤ ϵ
}
, where the degree of uncertainty is con-

trolled with the spectral norm of the disturbance matrix ∆. Below, we present

the results concerning the effects of system uncertainty on the optimal cost al-

location problem for the Shannon information and the worst-case error variance

criteria in Figure 6.9 and Figure 6.10, respectively. For both cases, it is observed

that the total cost increases as the amount of uncertainty in the system matrix

increases for a given value of the constraint. The increase in the system matrix
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Figure 6.10: Effects of system matrix uncertainty on the total measurement cost
for worst-case error variance criterion.

uncertainty also leads to smaller values of the maximum attainable estimation

accuracy measures (the asymptotes where the total cost increases unboundedly).

6.5 Extensions to Bayesian Framework

In Section 6.1, parameter θ is modeled as a deterministic unknown parameter.

Whenever prior information is available about the distribution of the unknown

parameter, this additional information can be utilized at the estimation stage.

As a result, a more refined metric to assess the quality of the estimator perfor-

mance is employed which is commonly known as the Bayesian CRB (BCRB) and
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expressed as follows:

E
{(

θ̂ − θ
)(

θ̂ − θ
)T}

≥ (JD + JP)
−1 , BCRB , (6.45)

where JD represents data information matrix and JP represents prior information

matrix, whose elements are [23]

JDij
= −EY,θ

{
∂2 log pθY(Y)

∂θi∂θj

}
= Eθ {J(Y,θ)} and

JPij
= −Eθ

{
∂2 logw(θ)

∂θi∂θj

}
, (6.46)

where J(Y,θ) is the standard Fisher information matrix defined in (6.3).

When the prior probability of the parameter is Gaussian with θ ∼ N (0,Σθ),

under the same assumptions regarding the independence of N ∼ N (0,DN) and

M ∼ N (0,DM), the BCRB for the linear system given in Figure 6.1 can be

obtained as

BCRB =

(
K∑
i=1

1

σ2
ni
+ σ2

mi

hih
T
i +Σ−1

θ

)−1

. (6.47)

Correspondingly, the total cost function should be restated to incorporate the

change in the variance of the input to each measurement noise device as follows:

C =
K∑
i=1

Ci =
K∑
i=1

1

2
log2

(
1 +

σ2
xi

σ2
mi

)
, (6.48)

where σ2
xi
is the ith diagonal entry of the observation covariance matrix Cov(X) =

HTΣθH+DN.

Based on these expressions, all the proposed cost minimization formulations

in Section 6.1 can be modified accordingly to obtain the optimal cost assignment

strategies in the presence of prior information. Specifically, the CRB is replaced

with the BCRB, and the cost function stated in (6.48) is substituted as the

objective function inside the optimization problems given in (6.14), (6.18), (6.20),

and (6.22). However, the modified optimization problems are not necessarily

convex. It is also noted that the problem formulation constructed by employing
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the LMMSE estimator in [46] is equivalent to the dual of the Bayesian estimation

case under the average MSE criterion given in (6.11) when Gaussian priors are

assumed.

6.6 Concluding Remarks

In this chapter, we have studied the measurement cost minimization problem

for a linear system in the presence of Gaussian noise based on the measurement

device model introduced in [46]. By considering the non-random parameter esti-

mation case, novel convex optimization problems have been obtained under var-

ious estimation accuracy constraints [51, 52]. Uncertainty in the system matrix

has been modeled both under general terms and by using a specific uncertainty

model. It has been indicated that the convexity properties of the proposed op-

timization problems are preserved under uncertainty. When the system matrix

is invertible, closed form expressions have been presented for two different esti-

mation accuracy metrics which enable a quick assessment of the corresponding

cost allocation strategies analytically or via simpler numerical techniques. It has

been shown that the prior information can be incorporated into the optimiza-

tion problems but the resulting problems need no longer be convex. Through

numerical examples, the relationships among various criteria have been analyzed

in depth.
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7

Conclusions and Future Work

In this dissertation, we have derived optimal stochastic procedures for signal de-

tection and estimation problems under certain inequality constraints that arise

from practical considerations. More specifically, in the first three chapters the

emphasis has been on enhancing the performance of average power constrained

communications systems by employing stochastic signaling at the transmitter

and/or detector randomization at the receiver. In the first chapter, we have

shown that for M -ary communications the average probability of error is min-

imized by randomizing between at most two MAP detectors corresponding to

two deterministic signal vectors. The performance improvements are much more

evident for multimodal noise distributions as suggested by various numerical ex-

amples. In the second chapter, we have switched to the Neyman-Pearson frame-

work and considered the well-known problem of detecting the presence of a target

signal immersed in additive Gaussian noise. Through a rigorous treatment, we

have proved that the probability of detection is a concave function of the trans-

mit signal power when the false alarm probability is larger than Q(2) ≈ 0.02275.

Evidently, this condition renders a performance improvement via stochastic sig-

naling impossible under an average transmit power constraint. However, for false
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alarm probabilities smaller than Q(2) as is usually the case in practice, the de-

tection probability is concave, convex and finally concave for increasing values of

the transmit power. By additional analysis, we have determined the conditions

on peak and average power constraints so that the detection probability can be

increased via time-sharing between two non-zero power levels. Furthermore, the

optimal transmit signal power distribution is stated, and a more practical power

allocation scheme that employs on-off signaling is demonstrated to produce near-

optimal performance. Next, the dual problem for a power constrained Gaussian

jammer attacking a smart receiver that can adapt its decision threshold based

on the received jamming power is considered. Even in this case, it is shown that

there exists a critical power level up to which on-off jamming can be employed to

degrade the detection performance beyond that can be achieved by the constant

power jamming scenario. Motivated by the results, we have studied stochas-

tic signaling and detector randomization for the Neyman-Pearson detection over

channels with arbitrary noise distributions. For the case of a single detector at the

receiver, the detection probability under an average transmit power constraint is

maximized by randomizing between at most two signal values for the on-signal

and using the corresponding NP-type likelihood ratio test at the receiver. When

multiple detectors are available at the receiver, randomization among no more

than three NP decision rules corresponding to three deterministic signal vectors is

sufficient to attain the optimal performance. It is imperative to notice that in all

the cases discussed so far, optimization over an infinite set of functions is reduced

down to that over a few variables involving randomization factors, signal/power

values, and additionally decision thresholds in the case of NP detectors.

In the last two chapters, we have analyzed the relationship between estima-

tion accuracy and measurement cost based on a recently proposed measurement

device cost model. In order to provide a generic framework that is independent

of any specific estimator structure, average Fisher information is utilized as the

estimation accuracy metric. In the fourth chapter, an optimization problem is
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formulated to calculate the optimal costs of measurement devices that maxi-

mize the average Fisher information for arbitrary observation and measurement

statistics. Closed form solutions are given in the case of Gaussian observations

and measurement noises. In the fifth chapter, the subject is treated in more de-

tail for the non-random parameter estimation case by assuming a linear system

model subject to additive Gaussian noise. Novel convex optimization problems

are obtained under various estimation accuracy constraints that depend on dif-

ferent manipulations of the Fisher information matrix. Closed form solutions

are provided for two of these problems when the system matrix is invertible. It

is shown that a certain form of uncertainty in the system matrix also leads to

convex optimization problems. When extended to the Bayesian estimation the-

ory by assuming Gaussian priors, it is observed that the resulting optimization

problems are no longer convex.

For the first part of the dissertation, a future work is to investigate how

the optimal strategy of the transmitter-receiver pair changes with the jammer’s

power randomization/sharing. Equilibrium conditions can be sought in a game-

theoretic setting by allowing both parties to transmit stochastically while the

receiver can randomize among multiple detectors. In addition, the convexity

properties of the outage probability and outage capacity with respect to the

transmit power can be studied for fading channels to determine whether practical

improvements can be obtained via power randomization. Another direction is

to assess the effects of stochastic signaling in decreasing the error probability for

communications systems with relays.
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