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ABSTRACT

INDECOMPOSABLE CYCLES ON A PRODUCT OF
CURVES

İnan Utku Türkmen

P.h.D. in Mathematics

Supervisor: Prof. Dr. Ali Sinan Sertöz

May, 2012

In his pioneering work [3], S.Bloch introduced higher Chow groups, denoted by

CHn(X,m) as a natural generalization of the classical case and generalized the

Grothendieck amended Riemann Roch theorem to these groups, which states that

the higher Chow ring and higher K-theory of a projective algebraic manifold are

isomorphic working over rationals. This brilliant invention of Bloch brought a

new insight to the study of algebraic cycles and K-theory. In this thesis, we study

“interesting cycle classes” , namely indecomposable cycles for products of curves.

In the case m = 1, indecomposable cycles are cycles in CHn(X, 1) which do not

come from the image of the intersection pairing CH1(X, 1) ⊗ CHn−1(X). We

prove that the group of indecomposable cycles, CH2
ind(X, 1;Q), is nontrivial for

a sufficiently general product of two elliptic curves.

Keywords: Algebraic cycles, Rational equivalence, Chow group, Hodge conjec-

ture, Cycle class maps, Higher Chow groups, Deligne cohomology, Regulators,

Hodge-D conjecture, Indecomposable cycles.
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ÖZET

EĞRİLERİN BİR ÇARPIMI ÜZERİNDE
İNDİRGENEMEZ DÖNGÜLER

İnan Utku Türkmen

Matematik, Doktora

Tez Yöneticisi: Prof. Dr. Ali Sinan Sertöz

Mayıs, 2012

Öncü çalışması [3] de, S. Bloch, CHn(X,m) ile gösterilen yüksek Chow

döngülerini klasik durumun doğal bir genellemesi olarak tanımladı ve cebirsel

izdüşümsel bir manifoldun rasyonel katsayılı yüksek Chow halkası ile yüksek

K teorisinin eşyapısal olduğunu ifade eden, Grothendieck Riemann Roch teo-

remini genelledi. Bloch’un bu parlak buluşu cebirsel döngüler ve K teorisi

çalışmalarına yeni bir bakış açısı getirdi. Bu tezde eğrilerin çarpımları için in-

dirgenemez döngüler adı verilen “önemli döngü sınıflarını” çalıştık. İndirgenemez

döngüler, yüksek Chow grubu CHn(X,m) içinde CH1(X, 1)⊗CHn−1(X) kesişim

eşlemesinin görüntüsünden gelmeyen döngülerdir. Yeterince genel iki eliptik

eğrinin çarpımı için indirgenemez döngüler grubu CH2
ind(X, 1;Q)’ nin boş ol-

madığını ispatladık.

Anahtar sözcükler : Cebirsel döngü, Rasyonel denklik, Chow grubu, Hodge

Sanısı, Döngü sınıf gönderimleri, Yüksek Chow grubu, Deligne kohomolojisi,

Düzenleyiciler, Hodge-D sanısı, İndirgenemez döngüler.
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Chapter 1

Introduction

1.0.1 Introduction(for the lay person)

The study of algebraic cycles, is not only a very fundamental and prominent

subject in algebraic geometry but also has connections with different areas of

mathematics.

The main subject of study is subvarieties of compact complex manifolds, un-

der suitable equivalence relations. Algebraic varieties are common solution sets of

a finite set of polynomials over any field in general and in particular over complex

numbers. Polynomials arising from algebra, algebraic varieties owe their funda-

mental loyalty to algebra. On the other hand such an object can represent an

elliptic curve or a complex Riemann surface, or more generally a projective alge-

braic manifold, and hence it is a geometric object in its own right. The techniques

for studying such objects also heavily borrow from different areas of mathematics

such as complex analysis, Hodge theory, number theory, topology.

One particular example of the interplay of geometry, algebra and analysis is

the case of a compact Riemann surface M . Geometrically, M is a projective

algebraic variety, Analytically it is a compact Riemann surface, and from the

point of view of algebra, it has a meromorphic function field whose valuations are

enough to reconstruct M as a geometric object.

1



CHAPTER 1. INTRODUCTION 2

To any such (complex) algebraic variety X, one associates algebraic datum

that is intended to allow one to study X algebraically. In algebraic topology,

this is typically singular (co)homology. Although that works well for topologi-

cal spaces, singular (co)homology is not sensitive enough for algebraic varieties.

One considers in this case an algebraic homology theory called Chow cohomol-

ogy CHr(X), r ≥ 0, which for suitable (nonsingular) X is a ring built out of

subvarieties of X and intersection theory.

The free group generated by codimension k subvarieties of a projective al-

gebraic manifold X, is called the group of codimension k algebraic cycles and

denoted with zk(X). This group is too big to deal with, so one introduces equiv-

alence relations on algebraic cycles. We will be interested in rational equivalence.

Within the group of algebraic k cycles, there exists a special subgroup, the group

of algebraic k cycles rationally equivalent to zero, denoted by zkrat(X). The Chow

group is the quotient CHk(X) := zk(X)/zkrat(X).

The construction above is a natural generalization of divisors on Riemann

surfaces and linear equivalence of divisors. A divisor on a Riemann surface X, is

an element of the group generated freely by points in X. This group is actually

the group zero 0-cycles on X; z1(X), so any divisor γ can be represented as

γ =
∑
nipi where pi ∈ X is a point and ni ∈ Z. Principal divisors, which are

divisors of rational functions on X, form the subgroup of zero cycles rationally

equivalent to zero, z1
rat(X) and the first Chow group of X is the group of divisors

modulo principal divisors, i.e CH1(X) := z1(X)/z1
rat(X).

It turns out however that CHk(X) is hard to compute, and therefore one

has to look at “realization maps” from CHk(X) to more computable homology

theories. Such realizations are called regulators. For example the first Chow

group CH1(X) can be identified with the Picard group of Pic(X), which is the

group of isomorphism classes of holomorphic line bundles on X, through cycle

class map φ1 (i.e; φ1 : CH1(X) → Pic(X) is an isomorphism). In general cycle

class map is far from being an isomorphism.

There is an abundance of eamples of regulators stemming from earlier litera-

ture in this subject. On the number theory side, there are the Dirichlet and more
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generally Borel regulators, which make use of the relation of algebraic K-theory

to the subject of algebraic cycles. From this perspective, a regulator is often seen

as a generalization of the classical logarithm. From a geometric point of view,

one of the first examples of a regulator is the classical elliptic integral

p ∈ X 7→
∫ p

p0

dx

y
∈ C/Z2 ' X

whereX is the (compactification of the) zeros of y2 = x3+bx+c (an elliptic curve).

This is a multivalued integral, when viewed as a “map ” to C. Generalizations of

this to all compact Riemann surfaces led to a crowning achievement in the late

19th century by Abel and Jacobi on their proof of Jacobi inversion. This led to a

complete understanding of these multivalued integrals and their inverses. In the

late 1960’s Phillip Griffiths generalized this construction to a map

φr : CHr
hom(X)→ Jr(X),

where CHr
homX ⊂ CHr(X) is the subgroup of nullhomologous cycles, and Jr(X)

is a certain compact complex torus. A nullhomologous cycle is a cycle that yields

no information from a singular (co)homology point of view. It is a generalization

of this map that forms the central part of this thesis.

Another major development in the 1960’s was A. Grothendieck’s invention of

algebraic K-theory. Like the Chow ring, this is a complicated object, denoted by

K0(X), which have some appealing universal properties (related to the subject

of motives). K-theory is related geometrically to X in terms of vector bundles

over X, and has a natural λ-operation on it, for which one has an isomorphism

induced by λ

K0(X)⊗Q ∼−→ CH•(X)⊗Q

The map is called the Chern character map, and the corresponding isomor-

phism is called the Grothendieck-Riemann-Roch theorem. Grothendieck’s in-

vention would eventually have a far reaching generalization to the higher K-

groups (Km(X)) invented by D. Quillen. These higher K-groups still acquire a

λ-operation, for which a cycle theoretic analogue was missing. It was Spencer

Bloch’s brilliant invention of his higher Chow groups CHr(X,m) in the 1980’s
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which filled in the gap, and which led to Bloch’s version of the Riemann-Roch

theorem:

Km(X)⊗Q ∼−→ CH•(X,m)⊗Q

Bloch (via his CHr(X,m)) and Beilinson (via Km(X)) independently constructed

regulator maps

CHr(X,m)→ H2r−m(X, r),

where H2r−m(X, r) is any“reasonable” cohomology theory. The one major prob-

lem is that these maps are very hard to compute.

S. Bloch’s Riemann-Roch theorem not only connects K-theory to the subject

of algebraic cycles, but enables one to put the Griffiths Abel-Jacobi map, the

Borel and Dirichlet maps under one umbrella, the aforementioned regulators.

In this thesis we will study the cycle class map between Bloch’s higher Chow

groups and appropriate Deligne cohomology groups;

ck,1 := CHk(X, 1 : Q)→ H2k−1
D (X,Q(k))

and the “real” regulator;

rk,1 := CHk(X, 1)⊗Q→ H2k−1
D (X,R(k))

where X is a sufficiently general product of elliptic curves.

Elliptic curves and their products carry a rich geometry making them favorable

objects in the study of indecomposable higher Chow cycles. Works of Lewis ([17],

[6]), Muller-Stach([30]), Spiess ([35]), Mildenhal([28]) are some examples.

We construct interesting cycle classes called indecomposable cycles in higher

Chow groups of a sufficiently general product of two elliptic curves. This result

together with a theorem of Rosenschon and Saito ([33]) implies that the group

of indecomposable cycles CH3(E1×E2×E3, 1)ind is uncountably generated fora

sufficiently general product of three elliptic curves. Another corollary to our result

is that the transcendental regulator is nontrivial for sufficiently general product

of two elliptic curves.
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1.0.2 Precise Results and Organization of the Thesis

The main subject of this thesis is to study higher algebraic cycles on certain

algebraic varieties. Before studying the higher case, we take into consideration

algebraic cycles in the classical sense. The first chapter is devoted to the expla-

nation of basics of algebraic cycles, cycles class maps, classical Chow groups and

the Hodge conjecture.

In the second chapter, we will define higher Chow groups, Deligne cohomology,

and link them through higher cycle class maps and the real regulator. We will

present the subject by emphasizing how it developed from the classical case.

Our results appear in the third chapter. The results obtained in this thesis,

originate from a research project carried out with Prof. James Lewis from Univer-

sity of Alberta, focused on proving the results in [6]. After its publication, with a

remark of Prof. M.Saito, it was understood that there is a crucial miscalculation

which led to a fundamental error in [17]. Later some of the results stated in this

paper were proved with different techniques ([6]) which supported the idea that

the results and the approach in ([17]) works but needs some alterations.

Our main result is

Theorem 1.0.1. CH2
ind(E1×E2, 1) is non trivial for a sufficiently general product

E1 × E2 of elliptic curves E1 and E2.

The proof is based on a construction which uses the torsion points on elliptic

curves and their properties.

The corollary below, which is also one of the most important results of [17],

follows from our result and a theorem of Rosenschon and Saito ([33][Theorem

0.2])

Corollary 1.0.2. Let X be a sufficiently general product of three elliptic curves,

then CH3
ind(X, 1) is uncountable.

Our last result is a corollary of our main result and Corollary 1.6 of [7]
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Corollary 1.0.3. Let X be a sufficiently general product of two elliptic curves,

then the transcendental regulator φ2,1 is nontrivial.

In the last chapter, first we study the error in [17]. In the second section of

this chapter, we prove our main result. The last section is devoted to corollaries

and consequences of our main result, and further research.



Chapter 2

Algebraic Cycles

(Classical Scenario)

2.1 Preliminaries

Let Pn = {Cn+1/{0}}/C? be the complex projective n space. A projective alge-

braic manifold X is a closed embedded submanifold of Pn. By a theorem of Chow,

X is a smooth algebraic variety; X is the common zero locus of finitely many

polynomials and the tangent space of X at all points has the same rank. Smooth-

ness can also be expressed as the non-vanishing of the determinant of the Hessian

matrix of second derivatives of polynomials defining X. Being projective X can

be embedded in projective space Pn and inherits plenty of subvarieties lying in

Pn. Algebraic cycles are introduced to understand projective complex manifolds

by studying their subvarieties and their geometry by means of intersection theory.

Definition 2.1.1. A codimension r algebraic cycle V on X is a Z formal sum

of codimension r irreducible subvarieties in X. Such a cycle can be written as∑
codimXVi=r

niVi( where ni = 0 except for finitely many Vi)

The free Abeilan froup generated by codimension r irreducible subvarieties of

X is denoted by zr(X). One can consider the dimension instead of codimension.

7
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The free Abelian group generated by algebraic cycles of dimension n is denoted

by zn(X). Notice that zr(X) = zn−r(X). One has to carry out extra indice

n, working with dimension notation so throughout this thesis we will use the

codimension notation.

Example 2.1.2. z0(X) = zn(X) = {
∑
nipi; pi ∈ Xis a point, ni ∈ Z}

z1(X) = zn−1(X) = {
∑
niCi;Ci ⊆ Xis a curve, ni ∈ Z}

Algebraic cycles are formal sums of subvarieties, (like points and curves as

in the example), so we can integrate suitable differential forms on them. Next

we will discuss briefly the differential data associated to a complex projective

manifold X.

Let Ek
X be the vector space of C-valued C∞ k-forms on X. Any complex

valued k form can be decomposed into holomorphic and antiholomorphic parts.

In local coordinates z = (z1, · · · , zn) on X, a complex k-form ω can be expressed

as

ω =
∑

|I|=p,|J |=q

fIJdzI ∧ dzJ where

|I| = {1 ≤ i1 < · · · ip ≤ n}

|J | = {1 ≤ j1 < · · · jq ≤ n},

dzI = dzi1 ∧ · · · ∧ dzip
dzJ = dzj1 ∧ · · · ∧ dzjq .

The decomposition of complex forms into holomorphic and antiholomorphic parts

also carries out to the vector spaces level;

Ek
X =

⊕
p+q=k

Ep,q
X

where Ep,q
X is the vector space of C∞ (p, q) forms, having p holomorphic and q

antiholomorphic differentials. Moreover if ω is a (p, q) form then its complex

conjugate ω is a (q, p) form, so we have an isomorphism of the vector spaces

Ep,q
X ' Eq,p

X .
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There exists the total, holomorphic and antiholomorphic differentiation oper-

ators;

d : Ek
X → Ek+1

X

∂ : Ep,q
X → Ep+1,q

X

∂ : Ep,q
X → Ep,q+1

X

acting on these vector spaces. These operators are boundary operators; d2 = ∂2 =

∂
2

= 0 and satisfy the relations d = ∂ + ∂ and ∂∂ + ∂∂ = 0. The cohomology of

the resulting complexes yield de Rham and Dolbeault cohomologies

Definition 2.1.3. De Rham cohomology is defined to be the homology of the

complex (E•X , d);

Hk
dr(X,C) =

kerd : Ek
X → Ek+1

X

Imd : Ek−1
X → Ek

X

Moreover since we are dealing with projective manifolds X, the boundary operators

∂ and ∂ respect the decomposition of complex forms in to (p, q) forms. Dolbeault

or (p, q)-cohomology can be defined as

Hp,q(X,C) =
{ω ∈ Ep,q

X ; dω = 0}
Im∂∂ : Ep−1,q−1

X → Ep,q
X

.

The de Rham theorem we state below, establishes the link between the differ-

ential/analytic data encoded in de Rham cohomology groups and the topological

data encoded in singular cohomology.

Theorem 2.1.4 (De Rham [18](p. 43)).

Hk
sing(X,Q)⊗Q C ' Hk

dr(X,C)

We will drop the subscript dr to denote de Rham cohomology, unless the

distinction is necessary. The decomposition of complex forms and the symmetry

property of underlying vector spaces also carries out to the cohomology level, and

De Rham cohomology groups split into a sum of Dolbeoult cohomology groups.

Theorem 2.1.5 (Hodge Decomposition Theorem [18](p. 116)).

Hk
dr(X,C) =

⊕
p+q=k

Hp,q(X,C) Hp,q(X,C) ' Hq,p(X,C)
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An immediate consequence of Hodge decomposition theorem is that odd de-

gree cohomology groups of a projective algebraic manifold have even dimension.

For n = 2k + 1,

H2k+1(X,C) =H0,2k+1(X,C)⊕H1,2k(X,C) · · · ⊕Hk,k+1(X,C)⊕

Hk+1,k(X,C)⊕ · · ·H2k,1(X,C)⊕H2k+1,0(X,C)

There are 2k + 2 terms in the decomposition and the complex conjugate of each

vector space in the first half appears in the second half.

A 2n differential form can be integrated on an n dimensional complex projec-

tive algebraic manifold. This provides a non-degenerate pairing between comple-

mentary dimensional de Rham and Dolbeault cohomologies. The pairings;

Hk
dr(X,C)⊗H2n−k

dr (X,C)→ C and

Hp,q
dr (X,C)⊗Hn−p,n−q

dr (X,C)→ C

induced by

(ω1, ω2)→
∫
X

ω1 ∧ ω2

are non-degenerate [18](p. 59). These non-degenerate pairings induce following

isomorphisms between corresponding cohomology groups;

Hk
dr(X,C) ' (H2n−k

dr (X,C))∨

Hp,q
dr (X,C) ' (Hn−p,n−q

dr (X,C))∨

which are known as Poincaré and Serre dualities.

2.2 The Cycle Class Map and the Hodge Con-

jecture

The link between the algebraic data encoded in the group of algebraic cycles

and differential/analytic data encoded in de Rham cohomology groups are maps

called cycle class maps. We will define the first cycle map, denoted by clk, first.
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The first cycle class map, sends algebraic k cycles to 2k dimensional de Rham

cohains.

clk : zk(X)→ H2k
dr (X,C) ' (H2n−2k

dr (X,C))∨

A codimension k algebraic cycle can be represented as
∑

i niVi where ni’s are

integers and Vi’s are codimension k irreducible subvarieties in X. For simplicity,

we will define the cycle class map for an irreducible codimension k subvariety V

and then extend it by linearity. Let {ω} be a cohomology class in H2n−2k
dr (X,C),

then the first cycle class map is defined via the relation

clk(V ){ω} =

∫
V \Vsing

ω

In order to prove that this map is well-defined, we must prove that the result

of the integral is finite, and it does not depend on the representative of the

cohomology class.

Consider a desingularization of V , f : V ∗ → V , such that f−1(Vsing)

is normal crossing divisor. Then the singular locus of V has measure zero;

codimV ∗f−1(Vsing) ≥ 1. The desingularization V ∗ is compact, therefore the inte-

gral ∫
V \Vsing

ω =

∫
V ∗
f ∗(ω)

is finite.

Two different representatives of the same cohomology class {ω} ∈
(H2n−2k

dr (X,C))∨ will differ by a closed form; ω1 − ω2 = dη. The cycle class

image of a closed form dη is;∫
V \Vsing

dη =

∫
V ∗
f ∗(dη) =

∫
∂V ∗

η = 0.

Hence the first cycle class map does not depend on the representative of the

cohomology class.
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By the Hodge decomposition theorem, the de Rham cohomology groups de-

composes into Dolbeault cohomology groups;

Hk
dr(X,C) =

⊕
p+q=k

[Hp,q(X,C) ' Hn−p,n−q(X,C)].

A natural question to consider is the following: Which (p, q) cohomology

classes are contained in the image of the cycle class map? The answer can be

found by matching dimensions of vector spaces of differential forms and algebraic

cycles.

Let {ω} be a cohomology class in (Hn−p,n−q
dr (X,C)) such that clk(V ){ω} 6= 0

for some k cycle V . For simplicity let V be irreducible. Since V has complex

dimension n−k, it can support at most n−k holomorphic and n−k antiholomor-

phic forms. So p ≤ k and q ≤ k, and p+q = 2k. The only solution to this system

of inequalities is p = q = k. Therefor only the middle cohomology Hk,k
dr (X,C) is

hit by the image of the cycle class map; clk(z
k(X)) ⊂ Hk,k

dr (X,C).

Interpreting the first cycle class map as compositon of fundemantal class map

in integral homology and Poincare duality it is esasy to conclude that the image

of the first cycle class map lies in the integral cohomology H2k
dr (X,Z).

These two observations on the image of the first cycle class map rises the

following the question: How far is this map from being an isomorphism? Hodge’s

original version of the conjecture is stated as above;

Conjecture 2.2.1. The cycle class map

clk : zk(X) 7→ H2k(X,Z) ∩Hk,k
dr (X,C)

is surjective.

The term H2k(X,Z) ∩Hk,k
dr (X,C) is called the group of Hodge cycles and is

denoted by Hgk,k(X,Z). The conjecture says that Hodge classes are algebraic.

In this form, Hodge conjecture is known to be false. A first counterexample

was constructed by Atiyah and Hirzebruch [1]. They constructed a nonanalytic



CHAPTER 2. ALGEBRAIC CYCLES (CLASSICAL SCENARIO) 13

torsion class in H2k(X,Z) ∩ Hk,k
dr (X,C). The Integral Hodge Conjecture mod-

ulo torsion is also proven to be false by Kollar [25]. He constructed a class in

H2k(X,Z) ∩ Hk,k
dr (X,C) which is not algebraic but an integral multiple is alge-

braic. The natural amendment is considering rational cohomology classes which

gives us the celebrated Hodge Conjecture;

Conjecture 2.2.2 (Hodge Conjecture). The cycle class map

clk : zk(X)⊗Q 7→ H2k(X,Q) ∩Hk,k
dr (X,C)

is surjective for all k.

Even the statement of the classical Hodge conjecture reveals its beauty and im-

portance. The object on the left hand side, the group zk(X) of codimension k cy-

cles on X, is constructed out of subvarieties of a projective algebraic manifold X,

and encodes the algebraic data attached to X. On the right hand side H2k(X,Q)

is the image of singular cohomology, which is a topological construction, in de

Rham cohomology and carries topological data. Hk,k
dr (X,C) is constructed out of

differentials on X, and captures differential/analytic data. In some sense, Hodge

conjecture relates algebraic, topological and differential/analytic data associated

to a projective algebraic manifold X.

The Hodge conjecture has a natural generalization, stated in terms of Hodge

structures and filtrations on cohomology groups. We will not use these notions

later in our work, so we will not discuss them here, (for a detailed discussion of

the Hodge Conjecture, see [27]), but we state this generalization of the Hodge

conjecture.

Conjecture 2.2.3 (Grothendieck amended General Hodge Conjecture).

GHC(p, l,X) : F p
aH

l(X,Q) = F p
hH

l(X,Q)

where F p
hH

l(X,Q) is the largest Hodge structure in {F pH l(X,Q) ∩ H l(X,Q)}
and F p

aH
l(X,Q) is the Gysin images of σ? : H l−2q(Ỹ ,Q) → H l(X,Q) with Y

having pure codimension in q ≥ p in X, and Ỹ is a desingularization of Y
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F p
h and F p

a can be considered as ‘ rational ’ and ‘ arithmetic filtrations ’ on

rational coefficient cohomology. Also note that p = k and l = 2k is the classical

Hodge Conjecture we have stated earlier.

2.2.1 Cases Where Hodge Conjecture Holds

We list some of the cases where the classical Hodge conjecture is known to be

true in this section. For a detailed discussion of a more complete list, one may

refer to [34] and [27].

A first result on the Hodge Conjecture is the Lefschetz theorem on 1-1 classes

[26], which predates the Hodge Conjecture. This theorem states that any element

in Hg1,1(X,Z) is the cohomology class of a divisor on X, (i.e; cycle class map is

surjective for k = 1, Hodge conjecture holds for k=1). The group of Hodge cycles

Hgk,k(X,Z) is defined as Hgk,k(X) := i−1(Hk,k(X,C)) where for Z(k) = (2πi)kZ

i : H2k(X,Z(k))→ H2k(X,C)).

Lefschetz’s proof uses normal functions. Unfortunately the method of normal

functions can not be generalized, because Jacobi inversion fails in general [19]. A

different proof employs sheaf cohomology and the exponential exact sequence.

Due to the Hard Lefschetz theorem, if Hodge Conjecture holds for Hgp,p(X,Q)

then it holds for Hgn−p,n−p(X,Q).

These two results together imply that Hodge Conjecture holds for surfaces

and threefolds.

For projective space all the cohomology is generated by the class of a hy-

perplane. For Grassmanians, the cohomology is generated by Schubert cycles.

Similar to these examples, for quadrics and flag varieties all of the cohomology

comes from algebraic cycles. For such varieties, the Hodge conjecture clearly

holds.

For a smooth hypersurface X ⊂ Pn+1 of degree d, using the weak Lefschetz
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theorem applied to its inclusion into projective space, together with hard Lef-

schetz theorem, it can be shown that Hodge Conjecture holds except the middle

cohomology. For the middle cohomology Hgn,n(X,Q), there are various results

under restrictions on the dimension and degree of the hypersurface.

When X is a uniruled or a unirational fourfold, or a Fano complete intersection

of degree 4, Conte and Murre proved that Hodge Conjecture holds for Hg2,2(X,Q)

[10], [11].

For some classes of Abelian varieties, the Hodge conjecture is verified. In

many of these cases, the cohomology ring of Hodge cycles Hg?,?(X,Q) is gen-

erated by level one, by elements in Hg1,1(X,Q), and Hodge conjecture holds

for Hg1,1(X,Q) by Lefschetz (1, 1) theorem. Examples of Abelian varieties for

which Hodge conjecture holds are self product elliptic curves, ‘sufficiently general’

abelian varieties and simple abelian varieties of prime dimension.

2.2.2 The Abel Jacobi Map: The Second Cycle Class Map

The group of algebraic cycles is in general very large; even the set of elements

mapped to zero by the first cycle class map is very big. While studying the group

of algebraic cycles via the first cycle class map, it is important to consider the

cycles mapped to zero. We call the cycles mapped to zero by first cycle class map,

as cycles homologically equivalent to zero, or “ cycles homologous to zero” for

short. We denote the group of cycle homologically equivalent to zero by zkhom(X);

zkhom(X) := ker(clk : zk(X)→ Hgk,k(X,Z)).

We will construct a map from this group to a certain complex torus, called

the Griffiths Jacobian, following Griffith’s prescription [20]. First we define the

Hodge filtration on de Rham cohomology groups;

F rHk(X,C) = ⊕p+q=k,p≥rHp,q(X).
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Notice that odd indexed cohomology groups are even dimensional;

H2k−1(X,C) = F kH2k−1(X,C)⊕ F kH2k−1(X,C).

The Griffiths Jacobian is defined as;

Jk(X) :=
H2k−1(X,C)

F kH2k−1(X,C)⊕H2k−1(X,Z)
.

By Serre duality;

Jk(X) ' F n−k+1H2n−2k+1(X,C)∨

H2n−2k+1(X,Z)

where the denominator H2n−2k+1(X,Z) is called group of periods and identified

with its image in F n−k+1H2n−2k+1(X,Z)∨;

H2n−2k+1(X,C) 7→ F n−k+1H2n−2k+1(X,C)∨

{ξ} 7→

(
{ω} ∈ F n−k+1H2n−2k+1(X,C) 7→

∫
ξ

ω

)
.

Griffiths’ generalization of the Abel-Jacobi map Φk is defined as follows: Let

ξ ∈ zkhom(X), then clk(ξ)({ω}) = 0 for all ω ∈ H2n−2k(X,C), so ξ bounds a

2n− 2k+ 1 real dimensional chain ξ in X. Let {ω} ∈ F n−k+1H2n−2k+1(X,C), we

define;

Φk(ξ)({ω}) =

∫
ξ

ω

modulo periods. Similar to the first cycle class map this map, one can show that

Abel Jacobi is well-defined.

2.3 Classical Chow Groups

It is natural to consider certain equivalence relations when studying algebraic

cycles. There are several reasons for that. The group of algebraic cycles is

generated freely by all subvarieties of a fixed dimension, so this group is ‘too big’.

Even though the group zk(X) encodes the information about subvarieties, it

does not reflect the geometry of X. The intersection properties, mutual positions
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of subvarieties is not captured by this group. To study this group, cycle class

maps are introduced. The image of zk(X) lies in the cohomology ring of X,

H•(X) := ⊕Hk(X,C). Let z•(X) := ⊕zk(X), then the first cycle class maps

clk for k = 1, 2, · · · , n maps z•(X) to H•(X). The collection of algebraic cycle

groups z•(X) does not have a multiplicative structure whereas the image H•(X)

is a ring and has a multiplication. Defining appropriate equivalence relations

on algebraic cycles helps to deal with these problems. We will be interested in

rational equivalence;

Definition 2.3.1. Two algebraic cycles ξ1, ξ2 ∈ zk(X) are called rationally equiv-

alent (denoted by ξ1 ∼rat ξ2), if there exists a cycle ω ∈ zk(P1 ×X) in “ general

position” such that ω(0)− ω(∞) = ξ1 − ξ2. A cycle ω ∈ zk(P1 ×X) is in general

position if the cycle Pr2,?(ω.(t×X)) ∈ zk(X) is defined for each fiber.

Notice that in the case of divisors, rational and linear equivalences coincide, so

rational equivalence is a natural generalization of linear equivalence for divisors.

If P1 is replaced with a smooth connected curve Γ in the definition above, and 0

and∞ are replaced by any two points P,Q ∈ Γ one gets the definition of algebraic

equivalence. We consider the equivalence class of algebraic cycles with respect to

these equivalence relations.

We denote the group of algebraic cycles rationally equivalent to zero as

zkrat(X) := {ξ ∈ zk(X)|ξ ∼rat 0}

and the group of algebraic cycles algebraically equivalent to zero as

zkalg(X) := {ξ ∈ zk(X)|ξ ∼alg 0}.

We also have homological equivalence introduced in the previous section. It is

clear that;

zkrat(X) ⊂ zkalg(X) ⊂ zkhom(X).

This last inclusion also implies that clk(z
k
rat(X)) = 0.

We will be interested in rational equivalence, so we give another defini-

tion/characterization of it.
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An algebraic cycle ξ ∈ zk(X) is rationally equivalent to zero if and only if ξ

can be written as a sum of divisors of rational functions fi ∈ C(Yi)
×, where Yi

is a k − 1 codimensional subvariety in X( ξ ∼rat 0 ⇔ ξ =
∑n

i=1 divYi(fi) where

fi ∈ C(Yi)
× and codimX(Yi) = k − 1) [21]

We define the Chow group as algebraic cycles modulo rational equivalence;

CHk(X) := zk(X)/zk(X)rat,

and the Chow ring as the graded ring

CH•(X) :=
n⊕
k=1

CHk(X).

Similarly, we define the Chow group of cycles algebraically and homologically

equivalent to zero as

CHk
alg(X) := zkalg(X)/zk(X)rat; CHk

hom(X) := zkhom(X)/zk(X)rat.

The product in the Chow ring comes from the intersection pairing. Moving

elements in their equivalence class allows one to define a well-defined intersection

pairing. For a detailed discussion of intersection theory see [15]. The Chow

ring is a cohomology theory constructed out of subvarieties and their intersection

properties for a projective algebraic manifold.

In general, it is quite complicated to compute the Chow ring of a projective

algebraic manifold by studying its subvarieties. So the Chow ring is studied by the

help of maps from the Chow groups to “ more computable” cohomology theories.

An example of such a situation is obtained when cycle class maps are extended

to Chow groups. We get the following commutative diagram;

0 CHk
hom(X) CHkX CHk(X)

CHk
homX

0

0 Jk(X) H2k
D (X,Z(k)) Hgk(X) 0

φk ϕk clk



CHAPTER 2. ALGEBRAIC CYCLES (CLASSICAL SCENARIO) 19

The group H2k
D (X,Z(k)) is the Deligne cohomology and will be defined in the

next chapter.

This diagram is commutative, and in the case k = 1, the map ϕ1 is an

isomorphism. In general the picture is quite complicated and ϕk is far from

being an isomorphism.

One can define higher cycle class maps on CHk(X) each defined on the kernel

of the previous ones into higher intermediate Jacobians, which leads to a filtration

on classical Chow groups. Describing the Chow groups in terms filtrations, (as a

realization of the conjectural motivic filtration) is a subject of central interest in

this field.



Chapter 3

The Higher Case

In mid 50’s Alexander Grothendieck introduced the K-groups which can be con-

sidered as the starting point of algebraic K-theory. He established the isomor-

phism between the Grothendieck group K0 and the classical Chow ring, via the

Chern character map, which is known as Grothendieck’s version of the Riemann-

Roch Theorem [5].

K0(X)⊗Q ∼−→ CH•(X)⊗Q

Later, D. Quillen introduced the higher K-groups Km(X) [32].

On the other hand, in the 1980’s Spencer Bloch invented the higher Chow

groups and established the relation with Quillen’s higher K-theory [3]. Bloch’s

work completed the whole picture. This result is called Bloch’s version of the

Riemann-Roch Theorem;

Km(X)⊗Q ∼−→ CH•(X,m)⊗Q.

Both of the objects, higher K-theory and higher Chow groups are complicated

to compute. Beilinson (via his Km(X)) [2] and Bloch [3] (via his CH•(X,m))

constructed maps into computable cohomology theories. Such maps are called

regulators. In this chapter, we will describe the real regulator from the higher

Chow group CHk(X,m;Q) into real Deligne cohomology H2k−m
D (X,R(k)) While

20
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presenting the subject, we will try to emphasize the similarities with the classical

Chow groups and the cycle class maps.

3.1 Higher Chow Groups

Let X be a quasiprojective variety defined over a ground field k. For n ∈ N we

define standard n-simplex by

∆n = Spec(k[t0, · · · , tn]/(
∑

ti − 1)).

Observe that ∆n is a hyperplane in An+1
k defined by the equation t0+· · ·+tn =

1, so is isomorphic to An
k . We define the codimension one faces of the standard

n-simplex ∆n by setting the coordinates ti = 0.

By intersecting the codimension one faces we get other faces with codimension

greater than one. For example a codimension n − k face is obtained by taking

intersection of k codimension one faces (i.e: setting ti = 0 for i ∈ I ⊂ {1, · · · , n}
with |I| = k) and it is isomorphic to ∆n−k.

The Abelian group generated by codimension k subvarieties of X is denoted

by zk(X). A codimension k-cycle Z of X ×∆n meets X ×∆n properly if every

component of Z meets all faces of X ×∆n in codimension greater or equal to k

for all m < n. We set

zk(X,n) = {Z ∈ zk(X ×∆n)|Z meets X×∆nproperly}

Note that zk(X, 0) = zk(X). One can define an ”algebraic” version of singular

homology. Let ∂i : zk(X,m) → zk(X,m − 1) be the restriction to the i-th face

operator (Remember that i-th face is given by setting ti = 0). Then the operator

δ =
∑n

i=0(−1)n∂i : zk(X,m) → zk(X,m − 1) satisfies the boundary condition

δ2 = 0.

The homology of the complex zk(X, •), δ yields the higher Chow groups of X:
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Definition.[Bloch] The nth homology group of the complex

· · · −→ zk(X,n+ 1) −→ zk(X,n) −→ zk(X,n− 1) −→ · · ·

is called the nth higher Chow group of X in codimension k and is denoted by

CHk(X,n).

Alternatively one can define higher Chow groups using cubes instead of sim-

plices which makes calculations easier in certain cases. Let �n
k := (P1

k\{1})n be

the standard n-cube with coordinates zi. The codimension one faces are obtained

by setting the coordinates zi = 0,∞. Let ∂0
i and ∂∞i denote the restriction maps

to the faces zi = 0 and zi = ∞ respectively, then the boundary maps are given

by;

∂ =
∑

(−1)i−1(∂0
i − ∂∞i ).

Let Cp(X,n) denote the free Abelian group generated by subvarieties of X ×
�n
k of codimension p meeting X ×�n

k properly. Analogous to the simplicial case,

we say a k-cycle of X × �n
k meets X × �n

k properly if every component of the

cycle meets all faces X ×�m
k of X ×�n

k in codimension k for all m < n.

We have so called degenerate or decomposable cycles in the cubical version

which we do not have in simplicial version. Notice that we have an isomorphism

of varieties;

�n−1
k ×�1

k
∼= �n

k

.

Let Dp(X,n) be the group (of degenerate cycles) generated by cycles which

are pull backs of some cycles on X ×�n−1
k coming from the standard projection

of the n cube to the n − 1 cube given by (z1, · · · , zn) 7→ (z1, · · · , ẑi, · · · , zn) for

some i ∈ {1, · · · , n}.

Let Zp(X, •)cub := Cp(X, •)/Dp(X, •), then the higher Chow groups are de-

fined to be the homology of the complex (Zp(X, •)cub, ∂).
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It can be shown that the cubical and simplex versions of definitions of higher

Chow groups coincide, because the complexes Zp(X, •) and Zp(X, •)cub are known

to be quasi-isomorphic.

There is also a characterization of elements in higher Chow groups, which is

especially useful for writing the elements lying in CHn(X, 1) in explicit form,

which comes from the Gerstein-Milnor resolution of a sheaf of Milnor K-groups.

For a field F, the first two Milnor K-groups ([29]) are easy to characterize,

namely K0(F) = Z, K1(F) = F× and K2(F) = {(F×⊗Z F×)/ Steinberg relations}
where Steinberg relations are given as follows:

For a, b ∈ F×,

{a1a2, b} = {a1, b}{a2, b}

{a, b} = {b, a}−1

{a, 1− a} = {a,−a} = 1

We are interested in studying the higher Chow groups CHk(X, 1) so we are

not going to define higher Chow groups CHk(X,n), n ≥ 2, but similar argument

we are going to provide works for them also.

One has a Gersten-Milnor resolution of a sheaf of Milnor K-groups on X

([16](p. 199)), whose last three terms are:

· · · −→
⊕

cdXZ=n−2

KM
2 (C(Z))

T−→
⊕

cdXZ=n−1

C(Z)×
div−→

⊕
cdXZ=n

Z

where div is the classical divisor map (zeros minus poles of a rational function)

and T is the Tame symbol map.

The Tame symbol map is defined as follows:

Remember that

KM
2 (C(Z)) = {(C(Z)× ⊗Z C(Z)×)/Steinberg relations and

T :
⊕

cdXZ=n−2

KM
2 (C(Z)) −→

⊕
cdXZ=n−1

C(Z)×
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Let {f, g} ∈ C(Z)× ⊗Z C(Z)×

T ({f, g}) =
∑
D

(−1)νD(f)νD(g)(
f νD(g)

gνD(f)
)D

where (· · · )D means restriction to the generic point of D and νD(f) is the order

of vanishing of a rational function f along D.

The homology of the Gersten-Milnor resolution gives us the higher Chow

groups CHr(X,m) in the case m = 0, 1, 2 From this identification, the higher

Chow groups can be characterized as;

• CHn(X, 0) is the free Abelian group generated by codimension n subva-

rieties in X modulo the divisors of rational functions on subvarieties of

codimension n − 1 in X. This is exactly the definition of classical Chow

group CHn(X), so CHn(X) := CHn(X, 0).

• CHn(X, 1) is represented by cycles of the form ζ =
∑

j(fj, Dj) where

codimX(Dj) = n− 1, fj ∈ C(Dj)
× and

∑
div(fj)Dj = 0 modulo the image

of the Tame symbol.

• CHn(X, 2) is represented by classes in the kernel of the Tame map, modulo

the image of a higher Tame symbol map.

3.1.1 Properties of Higher Chow Groups [31]

• The higher Chow groups CH•(X, •) are covariant for proper maps and

contravariant for flat maps. ([3])

• For X smooth,we get a product structure using composition with pull back

along the diagonal X → X ×X([3]):

CHp(X,n)⊗ CHq(X,m) −→ CHp+n(X,n+m).

• Let X be a k−scheme, then

CH•(X,n) ' CH(X × A1
k, n).

This property is called homotopy invariance property.
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• As in the case of classical Chow groups, we have a localization sequence: Let

W ⊂ X be a closed subvariety of pure codimension r, then the localization

sequence is ([3]):

· · · → CH•−r(W,n) −→ CH•(X,n) −→ CH•(X −W,n) −→ · · ·

• A very important property of higher Chow groups is the Riemann-Roch

theorem for higher Chow groups proved by S. Bloch [3]. Let X be a

smooth quasi-projective variety defined over k. Then there exists Chern

maps cChown,p : Kn(X)→ CHp(X,n) and these maps induce an isomorphism

called the Chern character map:

chn : Kn(X)⊗Q '
⊕
p≥0

CHp(X,n)⊗Q,

3.2 Deligne Cohomology

In the previous section, we have defined higher Chow groups as a natural gen-

eralization of classical Chow groups. The higher Chow ring
⊕

CHp(X,n) ⊗
Q is isomorphic to the higher K-theory, Kn(X) ⊗ Q by Bloch’s version

of the Grothendieck-Riemann-Roch theorem. Both the higher Chow ring,⊕
CHp(X,n) ⊗ Q, and the higher K-theory of X,Kn(X) ⊗ Q, are complicated

and it is difficult to compute these rings. We aim to construct a map to a “more

computable” cohomology theory to study these complicated objects. For this

purpose we will provide the definition of Deligne cohomology over rationals and

real numbers. For a detailed discussion of Deligne cohomology see [14].

Let A ⊂ R be a subring. For r a an integer, we put A(r) = (2πi)rA. (A(r) is

a pure Hodge structure of weight −2r and type (−r,−r)). The Deligne complex

is defined as:

AD(r) := A(r)→ OX → ΩX → · · · → Ωr−1
X .

For simplicity we will use the notation;

Ω•≤r−1
X := OX → ΩX → · · · → Ωr−1

X
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which is De Rham complex cut at level r − 1.

Definition 3.2.1. Deligne cohomology is defined as the hypercohomology of the

Deligne complex;

H i
D(X,A(r)) = Hi(AD(r))

Let us also recall what hypercohomology is. For a bounded sheaf complex

(F•, d) on X and an open cover U of X, one has a C̆ech double complex;

(C•(U ,F•), d, δ).

One can construct an associated single complex;

S :=
⊕
i+j=•

Ci(U ,F j) D = d± δ.

The k-th hypercohomology is defined to be the k-th total cohomology of this

associated single complex;

Hk(F•) := lim−→
U
Hk(S•).

There are two filtered subcomplexes of the associated single complex (S, D);

whose Grothendieck spectral sequences converges to Hk(F•). For p+ q = k;

′Ep,q
2 := Hp

δ (X,Hq
d(F

•)

′′Ep,q
2 := Hp

d(Hq
δ(X,F

•)

The first spectral sequence reveals that complexes having same cohomology,

i.e quasiisomorphic complexes, yield the same hypercohomology. This property

allows us to give an alternative definition for Deligne cohomology.

Let f : (A•, d) −→ (B•, d) be a morphism of complexes. The the cone complex

Cone(A•
f−→ B•)

is defined as follows.
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The q-th object is defined as

[Cone(A•
f−→ B•)]q = Aq+1

⊕
Bq

and the differential is given by

δ(a, b) := (−da, fa+ db)

Consider the cone

Cone(A(r)
⊕

F rΩ•X)
ε−l−→ Ω•[−1]

where [−1] means shifting all the terms in complex one position to the left. By

definition, this cone complex is given by

A(r) −→ OX
d−→ ΩX

d−→ · · · d−→ Ωr−2
X

(0,d)−→ (Ωr
X

⊕
Ωr−1
X )

δ−→ (Ωr+1
X

⊕
Ωr
X)

δ−→ · · · δ−→ (Ωd
X

⊕
Ωd−1
X ) −→ Ωd

X

By holomorphic Poincare lemma, the natural map;

AD(r)→ Cone(A(r)
⊕

F rΩ•X)
ε−l−→ Ω•[−1]

is a quasiisomorphism, hence both complexes yield the isomorphic Deligne coho-

mologies;

H i
D(X,A(r)) ' Hr(Cone(A(r)

⊕
F rΩ•X)

ε−l−→ Ω•[−1]).

We will work with real Deligne cohomology, so let us explore some frequently

used sheaf complexes in Hodge theory, and their relations with Deligne cohomol-

ogy.

Let A(r) be the constant sheaf, identified with the complex;

A(r)→ 0→ · · · → 0,
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D•X be the sheaf of currents on C∞(2d − •) forms and C•X(A(r)) be the sheaf of

Borel-Moore chains of real codimension •. Among these sheaves some yield the

same cohomology, we have the following quasiisomorphisms;

A(r)
'−→ C•X(A(r))

Ω•
'−→ E•X

E•X
'−→ D•X

Note that the sheaves C•X(A(r)), E•X and D•X are acyclic. Moreover the last two

quasiisomorphisms are Hodge filtered. Using the quasiisomorphism above, we

can rewrite the isomorphism

H i
D(X,A(r)) ' Hr(Cone(A(r)

⊕
F rΩ•X)

ε−l−→ Ω•[−1])

as

H i
D(X,A(r)) ' Hr(Cone(C•X(A(r)

⊕
F r D•X)

ε−l−→ D•X [−1]).

The Hodge filter on these sheaf complexes allows us to express hypercohomol-

ogy of these complexes in terms of filtered De Rham cohomology

Hk(F pΩ•X) ' Hk(F pE•X) ' F pHk
dr(X).

The hypercohomology of the De Rham complex cut out at level p can also be

expressed in terms of the pieces of the De Rham complex;

H(Ω•<pX ) ' Hk
dr(X)

F pHk
dr(X)

The short exact sequence :

0→ Ω•<kX → AD(k)→ A(k)→ 0

induces the long exact sequence:

· · · → H2k−2(X,Q(k))→ H2k−2(X,C)/F kH2k−2(X,C)→ H2k−1
D (X,Q(k))

α−→ H2k−1(X,Q(k))
β−→ H2k−1(X,C)/F kH2k−1(X,C)→ · · ·(3.2.1)
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There are no rational 2k − 1 classes in F kH2k−1(X,Q(k)) so ker(β) = 0 and in

general we get a short exact sequence

0→ H i−1(X,C)

H i−1(X,A(r)) + F rH i−1(X,C)
→ H i

D(X,A(r))

→ H i(X,A(r)) ∩ F rH i(X,C)→ 0.

When A = Q and i = 2k − 1, then we get the isomorphism

H2k−1
D (X,Q(k)) ' H2k−2(X,C)

F kH2k−2(X,C) +H2k−2(X,Q)

' (F d−k+1H2d−2k+2(X,C)∨)

H2d−2k+2(X,Q(d− k))
(3.2.2)

Next if we choose A = R, set C = R(k)⊕R(k− 1) and let πk−1 be the projection

of C onto R(k − 1). Then the isomorphism (3.2.2) decomposes through the map

πk−1 and we get;

H2k−1
D (X,R(k)) ' H2k−2(X,C)

F kH2k−2(X,C) +H2k−2(X,R)
πk−1−−−→
'

Hk−1,k−1(X,R)⊗ R(k − 1) =: Hk−1,k−1(X,R(k − 1))

' {Hn−k+1,n−k+1(X,R(n− k + 1)}∨ (3.2.3)

3.3 The Real Regulator and Indecomposable

Higher Chow Cycles.

We have defined Deligne cohomology and the higher Chow groups in the two

previous sections. Higher Chow groups are a natural generalization of classical

Chow groups, and working over reals or rationals Deligne cohomology can be

expressed in terms of the de Rham cohomology up to a twist. We are ready to

define the link between these objects. As in the classical case one can define a

cycle class map. In the classical case the relation between algebraic cycles and De

Rham cohomology was defined in terms of integration of differential forms which

represents cohomology classes over the smooth parts of the algebraic varieties
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which constitutes the algebraic cycles. Although the cycle class and Abel Jacobi

maps for higher Chow groups can be defined in general, we will discuss cycle class

map only for the case of rational K1(X). For this special case the cycle class map

has a simpler form which can be seen as a generalization of the classical case. We

will deal with the real regulator for the rest of this study, so we will cook up the

formulas and relations only in this case. For detailed presentation of cycle class

and Abel-Jacobi maps for higher Chow groups, one can consult [23] and [24].

Let us define the cycle class map, or Chern class map, for the higher Chow

groups

ck,1 := CHk(X, 1 : Q)→ H2k−1
D (X,Q(k))

For a given higher Chow cycle ζ =
∑

i(Zi, fi) ∈ CHk(X, 1 : Q), let γi =

f−1
i [0,∞] then div(fi) = ∂γi and let γ =

∑
i γi. Since ζ ∈ CHk(X, 1 : Q),∑

i div(fi) = 0 which implies that ∂γ = 0. Hence γ defines a class in H2k−1(X,Q).

Consider the long exact sequence (3.2.1). Up to a twist γ lies in the kernel of β,

so γ bounds a (2d− 2k+ 2) chain ξ. Choosing the branch of logarithm along the

[0,∞],one can define the current:

ck,1(ξ) : ω → 1

(2π
√
−1)d−k+1

(∑
i

∫
Zi\γi

ωlog(fi) + 2π
√
−1

∫
ξ

ω

)

Considering the isomorphism (3.2.2), the current ck,1(ξ) defines the class of ξ in

H2k−1
D (X,Q(k))

If we consider the real coefficient Deligne cohomology, under the isomorphism

(3.2.3) we get a current:

rk,1(ξ) =
1

(2π
√
−1)d−k+1

(∑
i

∫
Zi\Zsingi

ωlog|fi|

)

We will refer to rk,1(ξ) as the real regulator.

The image of the intersection product CH1(X, 1) ⊗ CHk−1(X) lies in

CHk(X, 1). It is well known that for a field F, CH1(X, 1) ' F×, so CHk(X, 1) '
C×. This image of the intersection product can be considered as the image of
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the classical Chow group CHk−1(X), up to a constant, in the higher Chow group

CHk(X, 1) and it is called group of decomposable cycles, denoted by CHk
dec(X, 1).

Considering the Gersten-Milnor resolution, the higher Chow cycle γ ∈ CHk(X, 1)

is represented as a formal sum γ =
∑

(gj, Zj) of nonzero rational functions gj

defined on irreducible subvarieties Zj of codimension k − 1 in X, such that∑
div(gj) = 0. With this definition, decomposable cycles correspond to those

with constant functions gj ∈ C×. The group of indecomposable cycles, denoted

by CHk
ind(X, 1), is defined to be the corresponding quotient

CHk
ind(X, 1) :=

CHk(X, 1)

CHk
dec(X, 1)

Can we use regulator maps to detect indecomposable higher Chow cycles?

The answer to this question is positive and such a method formulated in terms

of regulator indecomposable cycles is introduced in [17].

A higher Chow cycle ζ =
∑

(gj, Zj) is called regulator indecomposable if the

current defined by its real regulator

r(ζ)(ω) =
1

(2π
√
−1)d−k+1

∑(∫
Zj−Zsingj

ω log |f |

)

is nonzero for some test form ω ∈ (Hg1(E1 × E2 ⊗ R))⊥.

Let ξ be a decomposable higher Chow cycle, hence it is represented as∑
i(Yi, fi) with Yi ∈ CHk−1(X) and fi ∈ C×. For any test form ω ∈

(Hg1(E1 × E2 ⊗ R))⊥, the regulator image;

r(ξ)(ω) =
1

(2π
√
−1)d−k+1

∑(∫
Zj−Zsingj

ω log |f |

)
(3.3.1)

=
1

(2π
√
−1)d−k+1

∑
ci

(∫
X

ck−1(Z) ∧ ω

)
= 0 (3.3.2)

Hence a regulator indecomposable higher Chow cycle is indecomposable.
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In next chapter, we are going to employ this method to prove that the group

of indecomposable cycles is nontrivial for a sufficiently general product of two

elliptic curves.



Chapter 4

An Indecomposable Higher Chow

Cycle on a Product of Two

Elliptic Curves

In the literature there are a number of results centered around proving that the

group of indecomposable higher Chow cycles is nontrivial for certain algebraic

varieties and constructing indecomposable cycles if possible. Some examples are

[4, 8, 9, 12, 13, 27, 28, 30, 35]. Another subject of interest in this field is the

structure of the group of indecomposable cycles; whether it is countably generated

or not, whenever it is non-trivial. C. Voisin, [37] conjectured that the group

of indecomposable cycles CH2
ind(X, 1) ⊗ Q is countable for a smooth projective

surface X. Actually there are no Hodge theoretic obstructions to countability of

CH2
ind(X, 1) for such varieties. An example of a countably infinitely generated

group of indecomposable cycles is given by A.Collino. In [9], he proves that the

group of indecomposable cycles CH3
ind(X, 1)⊗Q is countably infinitely generated

for a general cubic fourfold X.

Geometrically rich and well understood varieties are natural candidates in

which one can construct indecomposable higher Chow cycles. Families of products

of curves, K3 and Kummer surfaces and their deformations have widely been

33
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studied. One such result in this direction is the following theorem presented in

[17];

Theorem 4.0.1 (Theorem 1). When X = E1×E2 is a sufficiently general product

of two elliptic curves, then CH2
ind(X, 1) ⊗ Q 6= 0,i.e there exists a nontrivial

indecomposable higher Chow cycle ξ on X.

The prove this statement, a regulator indecomposable higher Chow cycle is

constructed using the geometry of the elliptic curves and considering the defor-

mations of families of such varieties X. Together with the results in [27], this

theorem provides stronger results on the nature of indecomposables [17];

Theorem 4.0.2 (Theorem 2). When X = E1 ×E2 ×E3 is a sufficiently general

product of three elliptic curves, then the level of CH3
ind(X, 1)⊗Q, is at least 1.

As a corollary of this theorem it follows that

Corollary 4.0.3. [17][Corollary 1] When X = E1 × E2 × E3 is a sufficiently

general product of three elliptic curves, then CH3
ind(X, 1)⊗Q, is uncountable.

It is shown by M. Saito that the cycle constructed in [17] is in fact decompos-

able contrary to the claim. However the results presented in [17] are valid and

were proved by totally different techniques later. In [6] the Hodge-D conjecture

for surfaces of the form E1×E2, where E1 and E2 are general elliptic curves and

for general Abelian varieties is proved. Theorem 1 of [17] follows from that result.

The motivation and starting point of this thesis was to recover the results

presented in [17] following its spirit. We have been able to prove Theorem 1,

constructing a regulator indecomposable higher Chow cycle [36].

In the first section we will discuss the error in [17]. In the second section, we

will explain the construction of the regulator indecomposable higher Chow cycle

given in [36]. The consequences of this result and further possible research is

discussed in the last section of this chapter.
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4.1 The Setting and the Error

Before we start discussing the ideas presented in [17] we want to fix some nota-

tion and conventions. For a subring A ⊂ R, put A(k) = A(2π
√
−1)k. For the

higher Chow groups CHkX,m and for A as above, we denote CHk(X,m)⊗A by

CHk(X,m;A). Methods presented here factor through rational and real Deligne

cohomology which is blind to torsion, it is convenient to work with CHk(X,m;Q).

Finally, “sufficiently general X” means, X = Xt with t outside a suitable count-

able union of Zariski closed subsets. Our notation will be compatible with [17].

We will start with describing the setting of [17]. We will be working on a

product of two elliptic curves E1×E2, so we begin with defining the coordinates

on the ambient space P2 × P2. Let [s0, s1, s2] be the homogeneous coordinates

on the first copy and [t0, t1, t2] on the second copy of P2 and correspondingly

(x1, y1) = (s1/s0, s2/s0) and (x2, y2) = (t1/t0, t2/t0) be the affine coordinates.

We can define elliptic curves in terms of non-singular cubic polynomials. Let

Ej = V (Fj) ⊂ P2 where Fj is the homogenization of the Weierstrass equation

Fj = y2
j − x3

j + bjxj + cj with nonzero discriminant ∆j = 4b3
j + 27c2

j 6= 0 for

j = 1, 2. In terms of the corresponding homogeneous coordinates, Ej’s are given

by the equations;

F1 := s0s
2
2 − s3

1 − b1s
2
0s1 − c1s

3
0

F2 := t0t
2
2 − t31 − b2t

2
0t1 − c2t

3
0

We define X to be product of two elliptic curves X := V (F1, F2) ' E1 × E2

Now, let F0 = s1t1+s2t2 and let D := V (F0, F1, F2); be the intersection of E1×E2

with the hyperplane defined by V (F0), hence D can be thought of as a curve lying

in E1 × E2.

Observe that given t = (b1, c1, b2, c2) ∈ C4 determines X. Hence we can

consider the family given by

X := V (F1, F2) ⊂ C4 × P2 × P2 → C4

A “Sufficiently general product of two elliptic curves X” means, X = Xt with
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t outside a suitable countable union of Zariski closed subset of the base space C4.

For sufficiently general X, D is smooth and irreducible (see [17],[Lemma 2.2]).

The first step is to construct an indecomposable higher Chow cycle is to start

with a tuple (f,D), where D is defined above and f = x1 +
√
−1. Since f is

a linear function defined only on E1 ,graph of f intersects E1 at three points,

(one of them is the point at the infinity). Using the additive structure of elliptic

curves and Abel’s theorem, the tuple (f,D) is completed to a higher Chow cycle

ξ = (f,D) +
∑

(Ci, gi) where Ci’s are curves supported in either E1 or E2 and

gi ∈ C×(Ci) are functions such that divE1(fi) +
∑
divCi(gi) = 0.

To prove that this higher Chow cycle ξ is indecomposable, the authors claim

that the regulator image of ξ; r(ξ)(ω) is nonzero for a test form ω. The form

ω := −2π
√
−1(dx1

y1
∧ dx2

y2
+ dx1

y1
∧ dx2

y2
) in affine coordinates is considered. Then for

general X, ω ∈ (Hg1(X)wehave⊕ R)⊥ (see Lemma 2.5 [17]).

Note that

r2,1(ξ)(ω) =
1

(2π
√
−1)

(∫
D

ωlog|f |+
∑
i

∫
Ci\Csingi

ωlog|gi|

)
.

Since the curves Ci are supported in either in E1 or E2, they can not support

the real two form ω given above. Hence∫
Ci\Csingi

ωlog|gi| = 0 ∀i

So these terms which are introduced to complete the tuple (f,D) to a higher

Chow cycle, and do not contribute to the real regulator are called “degenerate

terms”.

The only contribution to the real regulator comes from the tuple (f,D);

r2,1(ξ)(ω) =
1

(2π
√
−1)

∫
D

ωlog|f |.

It is claimed that this integral is non zero for sufficiently general X. This claim

is proved by means of two deformation arguments. First, deforming Dt from the
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generic point t = (b1, c1, b2, c2) to t = (b1, 0, b2, 0) and then considering the limit

case as (b1, b2) 7→ (0, 0). However there is an error in the second deformation

argument of ,[17]. We would like to discuss this error briefly before we alter this

problem in next section.

The following proposition describes how the curve Dt changes under the de-

formations, we will consider.

Proposition 4.1.1. [17][Proposition 2.7]

(1) If t = (b1, 0, b2, 0), i.e; hj(xj) = x3
j + bjxj for j = 1, 2, then

D = (E1 × [1, 0, 0]) + ([1, 0, 0]× E2) + D̀

and x1 is a local coordinate on nonempty Zariski-open subset of each irreducible

component of D̀

(ii) If t = (0, 0, 0, 0), i.e; hj(xj) = x3
j for j = 1, 2, then

D = (E1 × [1, 0, 0]) + ([1, 0, 0]× E2) + D̋

where locally D̋ is described by

D̋ = V (y2
1 − x3

1, y
2
2 − x3

2, x1x2 + y1y2, x1x2 − 1)

In particular, D̋ is irreducible and x1 is a local coordinate on a nonempty Zariski-

open subset of D̋.

When t = (b1, 0, b2, 0), we have X = E1×E2 where Ej is given by the equation

y2
j = x3

j + bjxj and Dt = X ∩ V (x1x2 + y1y2 = 0). Notice that on Dt we have

x2
1x

2
2 = y2

1y
2
2 = x1x2(x2

1 + b1)(x2
2 + b2)

and we can decompose

Dt = (E1 × [1, 0, 0]) + ([1, 0, 0]× E2) + D̀t

where x1x2 = (x2
1 + b1)(x2

2 + b2) on D̀t. We can cancel a factor of x1x2 which

corresponds to the curve (E1× [1, 0, 0]) + ([1, 0, 0]×E2) since the pull back of the

real 2-form ω to this component is zero. Hence we have∫
Dt

ω log |f | =
∫
D̀t

ω log |f |
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and we are left with the family
∑

:=
⋃
t∈U D̀t for some neighbourhood U of t.

In the second degeneration argument; (b1, b2) 7→ (0, 0), we have X = E1 ×
E2, where the elliptic curves Ej themselves degenerate to y2

j = x3
j and we can

decompose D̀t into three pieces D̋, (E1 × [1, 0, 0]) and ([1, 0, 0]× E2) where D̋ =

D ∩ V (x1x2 − 1). Moreover, we have x1x2 = x2
1x

2
2 on D̋, but this time we can

not cancel the factor x1x2, since the real 2-form ω acquires singularities and

contributions to the real regulator from different parts cancel each other.

We will keep track of this deformation and show that the contributions to

real regulator from the parts D̋ and (E1 × [1, 0, 0]) cancel each other by direct

calculation of integrands in the limit case. To see this, and for notational sim-

plicity, let us take b1 = b2 = ε. On D̀, we have x1x2 = (x2
1 + ε)(x2

2 + ε) and x1 is

a local coordinate on a Zariski open subset of each irreducible component of D̀,

(provided we discard the component [1, 0, 0]×E2 when b1 = b2 = 0, which we can

do, as this amounts to the observation that log |f | = log |x1 −
√
−1| = 0 there).

We now apply some first order approximations. For small values of |ε|, we have

x1x2 ≈ x2
1x

2
2 and if x1x2 6= 0, then x1x2 = 1, and x2 ≈ x−1

1 is a solution. On the

other hand regarding E1 × [1, 0, 0], we look at small values of |x2|, and we get

x1x2 ≈ ε(x2
1 + ε) ≈ εx2

1, and x2 ≈ εx1 is a solution. Clearly, the former one limits

to D̋ and the latter to E1 × [1, 0, 0]. Reiterating, we can discard the other com-

ponent [1, 0, 0]×E2. So we will compute the limiting integral of log |x1−
√
−1|ω

for these two approximate solutions.

Consider

ω =

(
dx1√
x3

1 + εx1

)
∧

(
dx2√
x3

2 + εx2

)
+

(
dx1√
x3

1 + εx1

)
∧

(
dx2√
x3

2 + εx2

)
. (4.1.1)

For x2 = x−1
1 , dx2 = −x−2

1 dx1. Plugging this into the equation above,

ω =

(
dx1

(x3
1 + εx1)

1
2

)
∧

(
−x−2

1 dx1

(x−3
1 + εx−1

1 )
1
2

)
+

(
dx1

(x3
1 + εx1)

1
2

)
∧

(
−x−2

1 dx1

(x−3
1 + εx−1

1 )
1
2

)
.
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Arranging the terms, we get;

ω = − dx1

x
1
2
1 (x2

1 + ε)
1
2

∧ dx1

x1
1
2 (1 + εx2

1)
1
2

− dx1

x1
1
2 (x2

1 + ε)
1
2

∧ dx1

x
1
2
1 (1 + εx2

1)
1
2

=

(
−1

x
1
2
1 (x2

1 + ε)
1
2x1

1
2 (1 + εx2

1)
1
2

+
1

x1
1
2 (x2

1 + ε)
1
2x

1
2
1 (1 + εx2

1)
1
2

)
dx1 ∧ dx1

=

(
x

1
2
1 (x2

1 + ε)
1
2x1

1
2 (1 + εx2

1)
1
2 − x1

1
2 (1 + εx2

1)
1
2x

1
2
1 (1 + εx2

1)
1
2

|x1||1 + εx2
1||x2

1 + ε||x1|

)
dx1 ∧ dx1.

Taking the limit as ε→ 0,

ω =

(
x

3
2
1 x1

1
2 − x

1
2
1 x1

3
2

|x1|4

)
dx1 ∧ dx1 =

(
x1 − x1

|x1|3

)
dx1 ∧ dx1 on D̋.

In the limit as ε→ 0, x2 = x−1
1 has limit D̋ and

log |f |ω → log |x1 −
√
−1|

(
x1 − x1

|x1|3

)
dx1 ∧ dx1.

Let us consider the latter approximation x2 = εx1. When x2 = εx1; dx2 =

εdx1, plugging these relations in Equation (4.1.1), we get;

ω =

(
dx1

(x3
1 + εx1)

1
2

)
∧

(
εdx1

(ε3x3
1 + ε2x1)

1
2

)
+

(
dx1

(x3
1 + εx1)

1
2

)
∧

(
εdx1

(ε3x3
1 + ε2x1)

1
2

)

=

(
dx1

(x3
1 + εx1)

1
2

)
∧ εdx1

(ε3x3
1 + ε2x1)

1
2

+
dx1

(x3
1 + εx1)

1
2

∧

(
εdx1

(ε3x3
1 + ε2x1)

1
2

)

=

(
ε

(x3
1 + εx1)

1
2 (ε3x3

1 + ε2x1)
1
2

− ε

(x3
1 + εx1)

1
2 (ε3x3

1 + ε2x1)
1
2

)
dx1 ∧ dx1.

Taking the limit as ε→ 0, we get,

ω =

(
1

x
3
2
1 x1

1
2

− 1

x1
3
2x

1
2
1

)
dx1 ∧ dx1 =

(
x1 − x1

|x1|3

)
dx1 ∧ dx1 on E1 × [1, 0, 0].



CHAPTER 4. INDECOMPOSABLES ON A PRODUCTOF ELLIPTIC CURVES40

In the limit as ε→ 0, x2 = εx1 has limit E1 × [1, 0, 0] and

log |f |ω → log |x1 −
√
−1|

(
x1 − x1

|x1|3

)
dx1 ∧ dx1.

(As a reminder, when b1 = b2 = 0, E1 = E2 are (singular) rational curves.) In

the limit, the contributions of these parts to the real regulator cancel.

4.2 Constructing a Higher Chow Cycle

Remember that the error in [17] was due to the fact that the real 2-form acquired

singularities in the degenerate case and the contributions to the real regulator

from different parts canceled each other, resulting in a regulator decomposable

cycle on the contrary to the claim. Even though the resulting cycle turns out to be

decomposable, the method used is very natural and can be restored. The problem

of acquiring singularities in the degenerate case can be altered by considering a

slightly different function instead of the original one.

In order to solve this problem, we consider the function f = x2
1x2 −

√
−1

and the same form ω. Note that for the solution x2 = εx1, which limits to the

component E1× [1, 0, 0], log |x2
1x2−

√
−1| = log |εx3

1−
√
−1| goes to zero as ε→ 0,

so in the limit log |f |ω vanishes. However for the second solution x2 = x−1
1 , we

have log |x2
1x2 −

√
−1| = log |x1 −

√
−1|. In the limit we get the component D̋

and recover the function log |x1 −
√
−1| introduced in [17], which contributes to

the real regulator nontrivially.

Even though the solution to the error in [17] seems like a simple alteration,

the real price of alteration is paid when the tuple (f,D) is completed to a higher

Chow cycle. In [17], the function f = x1 +
√
−1 is linear hence, the group law

on elliptic curves and Abel’s theorem enables one to easily find curves Ci and

functions gi on those curves such that ξ = (f,D) +
∑

(Ci, gi) is a higher Chow

cycle, i.e; divE1(f) +
∑
divCigi = 0. The function we consider f = x2

1x2−
√
−1 is

not linear and it requires more complicated considerations to complete the tuple

(f,D) to a higher Chow cycle.
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Consider the Segre embedding s : P2 × P2 ↪→ P8, given by

s : [s0, s1, s2; t0, t1, t2] 7→ [s0t0, s1t0, s2t0, s0t1, s1t1, s2t1, s0t2, s1t2, s2t2]

Under the Segre embedding, the curve D corresponds to a P7 ⊂ P8 intersecting

with X. In projective coordinates the function f is given by

f = x2
1x2 +

√
−1 =

s2
1t1t0 + s2

0t
2
0

√
−1

s2
0t

2
0

.

Under the Segre embedding f is a quotient of two quadrics

Q1,0 = s2
1t1t0 + s2

0t
2
0

√
−1 = (s1t1)(s1t0) + (s0t0)2

√
−1

and

Q2,0 = s2
0t

2
0 = (s0t0)2.

Counted with multiplicities the divisor of f along D in P8 is given by

div(f)D = V (Q1,0) ∩D − V (Q2,0) ∩D.

Now let Ej,tor denote the set of torsion points on Ej. We define Dtor :=

{E1,tor × E2} ∩ D. For sufficiently general X, D is a smooth, irreducible curve.

Moreover E1,tor is dense in E1 and D ⊂ X = E1 × E2 projects onto the first

factor, so Dtor is dense in D.

A quadric Q ∈ P8 intersects D in 36 points up to multiplicity; deg (Q∩D) =

36. Consider the family of quadrics lying in a P7 ⊂ P8 cutting out D ∈ E1 × E2

under the Segre embedding. This family is a projective space of dimension 35, so

the family of quadrics passing through 35 general points of D is zero dimensional.

If we set Q∩D = {p1+· · ·+p36}, and suppose {p1 · · · p35} ∈ Dtor, then p36 ∈ Dtor.

Let qi1 · · · qi36 ∈ divD(Qi,0). Since Dtor is dense in D, for any given collec-

tion of neighborhoods {Ui} around qi for i = 1 · · · 36, we can find 36 points

pi1, · · · , pi36 ∈ Dtor in general position such that pij ∈ Ui. By the argument above

these points define quadratic functions Qi,n for i = 1, 2 and f̃n = Q1,n/Q2,n such

that pi1, · · · , pi36 ∈ divD(f̃i) ⊂ Dtor, moreover limn→∞ f̃n = f .
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We have started with a function f defined on D and shown that this function

f can be continuously deformed to another function f̃ such that divD(f̃) ∈ Dtor.

We need such a deformation to complete the tuple (f̃ , D) to a higher Chow cycle,

using the geometry of torsion points. Before we describe how this tuple can be

completed to o higher Chow cycle, we want to note a property of the deformation

we have considered which is very crucial for our construction. We claim that the

integral ∫
D

log f̃ω 6= 0.

In other words we can deform f to f̃ preserving the non triviality of the contri-

bution to the real regulator.

Let ∆j be an open polydisk in the space of quadratic polynomials in

C[z0, · · · z7] centered at 0 for j = 1, 2. Then for t ∈ ∆ := ∆1 × ∆2, one has

a corresponding function ft = Q1,t/Q2,t with f0 = f .

Note that the set ⋃
t∈∆

|divft|

has real codimension ≥ 2 in ∆×D. Considering tubular neighborhoods in ∆×D
and shrinking them if necessary we conclude that the integral∫

D

log |ft|ω

varies continuously with t ∈ ∆.

We may assume that ∫
D

log |ft|ω 6= 0, ∀t ∈ ∆

for some polydisk ∆. Note that if h1, h2 ∈ C× with div(h1) = div(h2) then

h1 = c.h2 for some c ∈ C×. By perturbing t ∈ ∆, we can assume that up to a

constant Q1,0 and Q2,0 are unique quadratics defining f . Since ∆ parametrizes

all quadratic quotients in a neighborhood of (0, 0) ∈ ∆, for large enough n we

will have f̃n = ft for some t ∈ ∆. The integral varies continuously in the disk ∆,

therefore we have ∣∣∣∣∣
∫
D

log |f |ω −
∫
D

log |f̃n|ω

∣∣∣∣∣ < ε
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for some large enough n.

Now we are ready to complete the tuple (f̃ , D) to a higher Chow cycle. Note

that the integral ∫
D

log |f̃n|ω 6= 0.

First observe that the divisor of f̃ along D can be written as;

div(f̃)D =
∑
j

nj(pj × qj) ∈ Dtor where
∑
j

nj = 0.

Let ej denote the identity element on Ej. By our construction, the pj’s are

torsion points so mjpj ∼rat mje1 for some mj (there exist rational functions

h′js ∈ C(E1)× such that divE1(hj) = mje1 −mjpj). Then for m = gcd({mj}, we

have mpj ∼rat me1 for all j. So we can find rational functions h′js ∈ C(E1× qj)×

such that divE1×qj(hj) = m(e1×qj)−m(pj×qj). Consider the precycle (f̃m, D)+

{hnjj , E1 × qj}j;

divD(f̃m) +
∑
j

divE1×qj(h
nj
j ) =

∑
j

mnj(pj × qj) +
∑
j

(mnj(e1 × qj)−mnj(pj × qj))

=
∑
j

mnj(e1 × qj) := ξ

The remaining term ξ is the divisors of the functions f̃ and {(hj)}j, hence it is

rationally equivalent to zero on E1 × E2. The projection of ξ to second factor,

Pr2,∗(ξ), is rationally equivalent to zero on E2. So there exists a rational function

g defined on e×E2 such that dive×E2(g) = −
∑

jmnj(e× qj). Let γ = (f̃m, D) +

{(hnjj , E1 × qj)}j + (g, e1 × E2). Then

divD(f̃m) +
∑
j

divE1×qj(h
nj
j ) + dive1×E2(g) = 0.

Hence γ ∈ CH2(X, 1;Q) is a higher Chow cycle. Note that the curves E1 × qj
and pj × E2 can not support the real 2-form ω. Therefore the contributions of

the terms {(hnjj , E1 × qj)}j + (g, e× E2) to the real regulator are zero∫
E1×qj

log |hj|ω = 0 =

∫
e×E2

log |g|ω.
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The only contribution to the real regulator comes from the tuple (f̃m), D;

r(γ)(ω) =

∫
D

ω log |f̃m| 6= 0

i.e; γ ∈ CH2(X, 1;Q) is regulator indecomposable so it is indecomposable.

Theorem 4.2.1. CH2
ind(E1×E2, 1) is nontrivial for a sufficiently general product

E1 × E2 of elliptic curves E1 and E2.

4.3 Consequences, Implications and Possible

Further Research

The proof of 4.2.1 we have provided in this thesis is in the same spirit as the

paper it is first purposed [17]. This result follows from the main result of [6],

which is proved by means of a totally different set of techniques.

In [6], Hodge-D conjecture is proved for general K3 surfaces and Abelian

surfaces. Beilinson’s Hodge-D conjecture for real varieties implies that the real

regulator;

rk,1 ⊗ R : CHk(X, 1)⊗ R→ H2k−1
D (X,R(k)) is surjective ([22]).

For the case of sufficiently general product of two elliptic curves X = E1×E2

this implies that the reduced regulator;

CH2
ind(X, 1)⊗ R −→ H3

D(X,R(2)) −→ H1,1(X,R(1))

is surjective.

The proof provided in [6] considers the degeneration of a general K3 surface

to a K3 surface with maximum Picard number and uses rational curves to show

the existence of indecomposable cycles.
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The proof of 4.2.1 we give in this thesis, can also be used to provide a alter-

native proof for the Hodge-D conjecture for a sufficiently general product of two

elliptic curves.

For a sufficiently general product of two elliptic curves, Beilinson’s Hodge-D
conjecture can be stated as

r2,1 ⊗ R : CH2(E1 × E2, 1)⊗ R→ H3
D(X,R(2)) is surjective.

The Classical Hodge Conjecture holds for sufficiently general product of two el-

liptic curves, so real regulator is surjective on this part. It is enough to prove

that the reduced regulator

CH2
ind(X, 1)⊗ R −→ H1,1(X,R(1))

is surjective.

The image has rank two and is generated by the forms

ω1 := 2π
√
−1(

dx1

y1

∧ dx2

y2

+
dx1

y1

∧ dx2

y2

)

ω2 := 2π
√
−1(i

dx1

y1

∧ dx2

y2

− idx1

y1

∧ dx2

y2

)

Notice that ω1 is the test form we have used to prove that the higher Chow

cycle γ is regulator indecomposable and r(γ)(ω1) 6= 0. If we can find a function g

such that r(γ)(ω2) 6= 0 we will prove that the reduced real regulator is surjective.

The function g = x1x
2
2 + 1 satisfies this criterion. Currently I am working on the

details of proof of this statement.

Once we construct a higher Chow cycle on a sufficiently general product two

elliptic curves, the natural question is whether we can generalize this construction

for product of more than two curves. Even though the idea of using geometry

of elliptic curves and torsion points does not work in the case of three elliptic

curves, our result 4.2.1 together with theorem of Rosenschon and Saito given

below, provides a stronger statement about the group structure of indecomposable

cycles for this case.
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Theorem 4.3.1. [33] Let X1 and X2 be smooth projective varieties and X =

X1 ×X2. Assume that H1,0(X1) 6= 0 and the reduced regulator

CHr−1(X2, 1)→ H2r−3
D (X2,Q(r − 1))→

H2r−4(X2,C)

F r−1H2r−4(X2,C) +H2r−4(X2,Q(r − 1)) +Hr−2,r−2(X2,Q(r − 1))⊗ C
is non-trivial. Then the image of the composite

Pic0(X1)⊗ CHr−1(X2, 1)→ CHr(X, 1)→ CHr
ind(X, 1)

is uncountable.

Consider a sufficiently general product of three elliptic curves X = E1×E2×
E3. Let X1 = E1 and X2 = E2 × E3 in the setting of the theorem above. The

Picard group is non trivial for an elliptic curve; H1,0(E1) 6= 0 and our result

implies that the reduced regulator is nontrivial for a sufficiently general product

of two elliptic curves. Hence we get

Corollary 4.3.2. Let X be a sufficiently general product of three elliptic curves,

then CH3
ind(X, 1) is uncountable.

The same method to construct an indecomposable higher Chow cycle on a

sufficiently general product of two elliptic curves is adopted to construct an in-

decomposable cycle for a product of four elliptic curves in [17]. However we

have proved that such a cycle constructed using torsion points is decomposable.

Torsion points are instrumental in constructing indecomposable cycles on elliptic

curves. The analogy between rational curves on surfaces of the form E1×E2 and

K3 surfaces and torsion points on elliptic curves, motivates us that indecompos-

able cycles can be constructed on the fourfold case, applying the philosophy of

our construction. A higher Chow cycle can be constructed on the central fiber of

the base space, but when we deform it to generic fiber it is no more a cycle. This

approach is promising and work in progress.

Lastly we would like to present a result which follows from our main result

and a corollary proved in a very recent paper. In [7], following corollary is proved;



CHAPTER 4. INDECOMPOSABLES ON A PRODUCTOF ELLIPTIC CURVES47

Corollary 4.3.3 ([7][Corollary 1.1). ] Let X/C be a very general member of a

family of surfaces for which H1
alg(X,ΘX) ⊗H2,0

υ (X) → H1,1
υ (X) is surjective. If

the real regulator r2,1 : CH2(X, 1) → H1,1
υ (X,R(1)) is nontrivial, then so is the

transcendental regulator φ2,1.

Let us describe the setting of this result briefly. It is assumed that X is

a very general member of a family λ : χ → S where χ and S are smooth

quasiprojective varieties, λ is a smooth proper morphism and X corresponds

to the central fiber. Then H1
alg(X,ΘX) is the image of the Kodaira-Spencer map

κ : T0(S)→ H1(X,ΘX), where Θ is the sheaf of holomorphic vector fields on X

and Hn
υ (X) is the orthogonal complement of the fixed part of the monodromy

group action of π1(S) on Hn(X). This result is a corollary of [7][Theorem 1.1]

which states that for a very general algebraic complex K3 surface, the transcen-

dental regulator φ2,1 is nontrivial.

By our main result the real regulator r2,1 : CH2(X, 1) → H1,1
υ (X,R(1)) is

nontrivial for X a sufficiently general product of two elliptic curves. Also the

surjectivity of the map H1
alg(X,ΘX) ⊗ H2,0

υ (X) → H1,1
υ (X) can be proved in a

similar way to K3 surfaces given in [7].

So we get the following corollary;

Corollary 4.3.4. Let X be a sufficiently general product of two elliptic curves,

then the transcendental regulator φ2,1 is nontrivial.
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