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ABSTRACT

BASES IN BANACH SPACES OF SMOOTH
FUNCTIONS ON CANTOR-TYPE SETS

Necip Ozfidan
Ph.D. in Mathematics
Supervisor: Assoc. Prof. Dr. Alexander Goncharov
August, 2013

We construct Schauder bases in the spaces of continuous functions C?(K) and in
the Whitney spaces EP(K) where K is a Cantor-type set. Here different Cantor-
type sets are considered. In the construction, local Taylor expansions of functions
are used. Also we show that the Schauder basis which we constructed in the space
CP(K), is conditional.

Keywords: Schauder bases, C?—spaces, Whitney spaces, Cantor sets.
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OZET

CANTOR TIPI KUMELERDE DUZGUN
FONKSIYONLARIN BANACH UZAYINDA BAZ
BULUNMASI

Necip Ozfidan
Matematik, Doktora
Tez Yoneticisi: Dog. Dr. Alexander Goncharov
Agustos, 2013

Biz, K bir Cantor-tipi kiime olmak {izere, siirekli fonksiyonlarin uzay1 C?(K)’de
ve Whitney uzaylar1 EP(K)’de Schauder bazi olugturduk. Burada farkhih Cantor-
tipi kiimeler goéz oniinde bulunduruldu. Baz olusturulurken fonksiyonlarin
lokal Taylor agilimlar1 kullanildi.  Ayrica biz CP(K) uzayinda olugturdugumuz
Schauder bazinin sarth baz oldugunu gosterdik.

Anahtar sézciikler: Schauder bazlari, CP-uzaylari, Whitney uzaylari, Cantor

kiimeleri.
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Chapter 1

Introduction

In the study of Banach spaces and topological vector spaces, the concept of ba-
sis is a very useful and very important tool. An importance of the concept of
basis lies in the fact that it provides a natural method of approximation of vec-
tors and operators in space. On the other hand, elements of bases of concrete
function spaces rather often play a special role in different problems of analysis.
For example, the Chebyshev polynomials, the Hermite functions, the Faber poly-
nomials and the Franklin sequence have attracted attention of mathematicians
for many years. These systems of functions were well-known in analysis when it
was proven that they form topological bases in the spaces C*°[—1, 1], S-rapidly
decreasing C*°-functions on the line, analytic functions, and H!- Hardy space,

correspodingly.

The notion of a topological basis was introduced by Schauder [1]. But interest
in the theory of basis in topological vector spaces has grown essentially after the
publication of Banach’s book on the theory of linear operators. In his book
Banach asked the question of whether every separable Banach space possesses a
basis or not. This problem was known as the Banach basis problem. Until the
1970’s much of the literature on the theory of basis was devoted to this problem.
In 1972, Enflo [2] constructed the first example of a separable Banach space which
does not have the approximation property and hence does not possess a basis.

Afterwards other such examples were presented. In particular, it was shown that
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for every p, 1 < p < o0, p # 2 the space [, contains a subspace without the

approximation property.

Furthermore, another famous basis problem by Grothendieck [3] (about ex-
istence of basis in each nuclear Fréchet space) was answered in the negative by

Zobin and Mityagin in [4].

In spite of the fact that both fundamental basis problems were solved in the
middle of the 1970’s, many people continue to work in this field. The follow-
ing questions attract their attention: construction of bases in concrete function
spaces, the problem of quasi-equivalence of bases, existence of a nuclear Fréchet
function space without basis (all previous examples were given as artificial con-

structions or non-metrizable function spaces).

In this work we study bases in the spaces of differentiable functions and con-

struct a basis in the space of smooth functions defined on Cantor-type sets.

First we give the definitions of the topological basis and Schauder basis. Then

we start the history of basis in the spaces of differentiable functions.

Definition 1.0.1. A sequence of elements (e,) ", in an infinite-dimensional
normed space X is said to be a topological basis of X if for each x € X there is

a unique sequence of scalars (a,),, such that

o0

T = E QnCn-

n=1

oo .
_, converges to z in the norm topol-

This means that the sequence (320 ane,) N

ogy of X.

If (e,).~, is a basis of a normed space X, then the maps = — a,, for n € N are
linear functionals on X. Let us denote these functionals as e, then €} (z) = a,.
If the linear functionals (e}) -, are continuous, then we call (e,) -, a Schauder
basis. In particular, by Banach Open Mapping Theorem, any topological basis

in a Banach space is a Schauder basis. Thus we have the following definition.

Definition 1.0.2. Let (e,) -, be a sequence in a Banach space X. Suppose

there is a sequence (€:)°” in X* (topological dual of X) such that

n=1
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(i) ef(e;) =11if k= j, and €} (e;) = 0 otherwise, for any & and j in N.

(i) =57 e*(x)e, for each z € X.

n=1"n

o0

Then (e,),~, is called a Schauder basis for X and the functionals (e) ~ , are

[eS)
n=1"

called the biorthogonal functionals associated with (e,,)
J. Schauder, first introduced the concept of basis in 1927, and the name
Schauder was given after his works. However, such bases were discussed earlier
by Faber. In 1910, Faber [5] showed that there exists a basis in the space C[0, 1]
consisting of the primitives of the Haar functions. Faber used the diadic system
of points in his construction. In 1927, Schauder [1] rediscovered the more general
form of this result. In our construction we follow the main idea by Schauder to
interpolate given functions step by step at a dense sequence of points. As in [6],
we interpolate functions locally and since we consider smooth functions, we will
use Taylor’s interpolation. Now, we examine the Schauder system in details:
Recall that C[0, 1] is a Banach space with the norm || f|| = supy<;<; | f(t)[. Let
(8n)y—o be the sequence in the space C[0,1] defined in the following way. Let
so(t) = 1 and s,(t) = t. Let m be the least positive integer such that 2m~! < n <

2™, And when n > 2, we define s,, as

om (t . (2n72 . 1)) if 2n—2 1<t< 2n—1 1’

2m 2m 2m
Sa(t) =9 1T—2m(t— (2L 1)) if 2l 1<i< 27, (1.1)
0 otherwise.

Clearly, s, is a continuous piecewise linear function. See Figure 1.1 for the

first 9 terms of (sy,)

et
Suppose that f € C[0,1]. Define a new sequence (p,),—, in C[0,1] in the
following way. Let (a,),—, be the sequnce of points where ay = 0, a; = 1 and for

n>2 a,= 2721;1 — 1 where m be the least positive integer such that 21 < n <




so(t) s1(t)
1 N II :
t t
SRS P SN,
1 1
82(t) 83(t) | 34(2)
14 1 14
1 L 1
s5(t) se(t) s7(t) , sa(t)
1 1 1 14
t S t | ! S t ’ t S t ! 5 t
h 1

Figure 1.1: The first 9 terms of the classical Schauder basis for C[0, 1].

2™. Then

po = f(0)s0,

p1=po+ (f(1) = po(1))s1,

p2 =p1+ (f(1/2) = p1(1/2))s2,
ps =p2 + (f(1/4) — p2(1/4))ss,
ps=ps+ (f(3/4) — p3(3/4))s4,
ps =ps+ (f(1/8) — pa(1/8))s5,
pe =5 + (f(3/8) — p5(3/8))ss,

For each nonnegative integer 7, let a; be the coefficient of s; in the formula for

Pn. Then p, = >"7  a;s; for each n. Here

ag = f(0), a1 =f(1)—p(1)=/f(1) -

—

(0)7 e, O = f(an) — Zaisi(an).

Then since s; is piecewise linear for all 7, p, is also piecewise linear. Also p, is

interpolating, that is, p,(a,) = 1 and p,(a;) =0 for j =0,...,n — 1. From the



definition of s,, we have s,,(a,) =1 and s,(a;) =0 for j =0,...,n — 1. Then

pa(a;) = Zaisi(aj)

7j—1 n
= ZaiSi(a]’) + ays;(aj) + Z a;s;i(a;)
i=0 i=j+1
j—1
= Z a;si(a;) + o
i=0
j—1 j—1
= ZazSZ(aJ) + f(ay) — Z a;s;i(a;)
=0 1=0
= f(a;)
Thus p, is the polygonal function interpolating the values of f at the points
ap, ai, ..., a,. Then if a;,, a;, are any consecutive points of {ai}?z_ll,
pn(Aay, + (1= Nay,)) = M(ai,) + (1= A) fla,) (0<A<T). (1.2)

Let ¢ > 0 be arbitrary. Since f is uniformly continuous on [0, 1], there exists
d = 0(g) > 0 such that |f(t1) — f(t2)| < € whenever ty, t5 € [0,1], [t — t2] < 0.
Since {a;} is dense in [0, 1], there exists a positive integer N = N(d(¢)) such that
for n > N we have max |a;, — a;,| < 9, where the maximum is taken over all

n
i=

couples of consecutive points of {ai}.__ll. Now, let t € [0,1] be arbitrary. Then
there exists A with 0 < A < 1 such that ¢t = Aa;, + (1 — X)a,,, where a;,, a;, are
consecutive points of {a;}"~}' satisfying ¢ € [a;,, a;,]. Then, by (1.2),

[F(E) = pa(®)] = [f(t) = (Af(ai) + (1= A)f(ai,))] (1.3)

= () = flaw)) + (1= (@) = flas))]
< max ]If(tl)—f(t2)|<€,

t1,t2€a;, ,aiy
where n > N(d(g)). Since N(d(¢)) is independent of ¢ € [0, 1] for all n > N(d(¢)),
If = pall <e.
Therefore, f =", o, Sn.
Now we prove the uniqueness. Let (5,),~, be any sequence of scalars such that

=300 Bnsn. But then > (a, — B,)s, = 0. Also >~ (an — Bn)sn(an) =0

5



for all n which implies that «,, = 3,, for all n. Therefore there is a unique sequence
of scalars ()~ such that f =3 " a,s,. So the sequence (s,) -, is a basis
for C[0, 1].

Using any basis (f,)]" of C[0,1] it is not difficult to find a basis in the space
C?[0,1]. Recall that the topology in the space C?[0, 1] is given by the norm

= Imax su .
lgllp = gmax su 121'9 ()]

Indeed, let us consider the operator

T C[0,1] —s C2[0,1] : fr—>// / F(a,) day - dos

where C%[0, 1] denotes the subspace of functions that are flat at 0, that is such
that g (0) = 0 for 0 < k < p — 1. Then, by means of the operator 7' we have an
isomorphism C?[0,1] ~ RP & C'[0, 1]. Let us show this for the case p = 1. For all
f € C0,1] we have Tf € C%[0,1] since both T'f(z) = [ f(t)dt and (T'f)(x) =
f(z) are continuous and 7'f(0) = 0. Also for all g € C’}[O, 1], g € C[0, 1], we have
T'g =g € C[0,1], so T is a linear bijection. Since

/ oyt

the operator T is an isometry. Thus the spaces C[0, 1] and C%[0, 1] are isometric.
At the same time, we have trivially C'[0, 1] ~ R&CL[0, 1], where the correspond-

1771, = max{IT 1LY} = m{ sup

0<z<1

sup |f<x>|} — 1L
0<z<1

ing continuous projections are given as
Py :CH0,1] — R : g(x) = g(0),
Py :C'0,1] — CZ[0,1] : g(2) = g(z) — 9(0).

Therefore, C'[0, 1] ~ RHC0, 1]. By the same method we can show that C?[0, 1] ~
R? & C[0, 1]. The elements of basis in C?[0, 1] are

1, x ,% / / 1(xp) dxy - - d:vl,/ / o(zp) dy -+ - dq, . ..

On the other hand the basis problem for the space C?[0,1]* is much more
difficult. In 1932 Banach [7] raised this problem in his book: Let B = C''[0,1]”

6



be the space of all real-valued continuous functions on the unit square 0 < ¢ <
1, 0 < s < 1, admitting continuous partial derivatives of order 1, endowed with
the norm

]| = 0<t<rr11,%§s<1 |2(t, 5)] + ogtgnll,%}ésgl 22t 5)] + ogtgnll,%}ésgl |25 (t, 5)l;

does B possess a basis? This problem was solved by Ciesielski [8] and Schone-
feld [9] independently only 37 years later in 1969. Ciesielski and Schonefeld
used the Franklin dyadic functions elements for the basis. Generalization of
this system to the case C?[0, 1]2, p > 2, was rather diffucult and complicated
problem. In 1972 Ciesielski and Schonefeld improved this result independently.
Ciesielski and Domsta [10] showed the existence of basis for C?[0, 1]* and Schone-
feld [11] constructed a Schauder basis for the space CP(T9) where T? is the
product of g copies of the one-dimensional torus. This basis is also a basis for
CY(T9),C?*(T9),...,CP71(TY) and an interpolating basis for C'(T?). Schonefeld
first proved that C?(T) has a basis.

Let the partition A,, be the set of points {0, %, ]%, cee %} and (2p + 1)-
periodic spline on A, where p = 1,2, ... be an element of C*"(T) whose restriction
to each interval (i/N, (i+1)/N),i =0,1,..., N—1is a (2p+1)-degree polynomial.
Next Schonefeld constructed the basis from the following functions: fi =1, fyiq
is the (2p+ 1)-periodic spline on the partition Agx which is zero at every point of
the partition Agy except (2¢—1)/2N where N =1,2,4,8,...and¢=1,2,...,N
and qu(%) = 1. Then he defined an operator 5, inductively by the following:

ay = f<r1>7 Snf = Zaifia Apy1 = f(rnJrl) — Snf(Tn+1) n=12...

where {r,;n =1,2,...} = {0, %, }L, %, e ,27;,:—1,1_1, 2%”, 2%, 2%, cee 22,;1}. There-
fore, S, f interpolates f on Ay, that is, Sy f(i/N) = f(i/N). He then showed
that {f,} is an interpolating basis for C(T"), that is, || f — S, f|| < e. Furthermore,
he differentiated S, (f) — f and by using the properties of divided differences he

proved that (f,,)]" is the desired basis in C?(T).

At the end of his paper, Schonefeld remarked that the spaces CP(T?), C?(19)
(where I = [0,1]), C?(M) (where M is a g-dimensional compact CP-manifold)

7



and C?(D) (where D is a domain in R? with the boundary such that there exists a
linear extension operator L : C?(0D) — CP?(D) are isomorphic. Thus, with these
isomorphisms there also exists a Schauder basis in these spaces. Schonefeld stated
this remark according to the theorem of Mitjagin established in [12, Thm 3| that if
My and M; are n-dimensional smooth manifolds with or without boundary, then
the spaces C?(M;) and CP(Ms;) are isomorphic. This result essentially enlarges
the class of compact sets K with a basis in the space CP(K), but it cannot
be applied to compact sets with infinitely many components, in particular for

nontrivial totally disconnected sets.

In 2004, Jonsson [13] used the method of triangulations to construct an inter-
polating basis for the space CP(F') where F' is a compact subset of R admitting a
sequence of regular triangulations. Jonsson showed in [13, Thm1] that F' admits
a sequence of regular triangulations if and only if F' preserves the Local Markov
Inequality. Moreover, a set preserves the Local Markov Inequality if and only if
it is uniformly perfect [14, Sec. 2.2]. On the other hand, in [13, p.52] Jonsson
defined the space C*(F) as: “A function f belongs to the space C*(F) if for
every £ > 0 there is a d > 0 such that |R;(x,y)| < |z —y|* ™ for 0 < j < k and
|z —y| < 0.” Here R;(x,y) denotes the Taylor remainder. This means that, actu-
ally Jonsson considered the space of Whitney functions, E(F"). However Jonsson
considered this space equipped with the norm of the space CP(F). In general,
the space EP(F’) is not complete in the topology of CP(F'). As a result, Jonsson
constructed an interpolating basis in the space EP(F) with the norm of CP(F)

where F' is a uniformly perfect set on R. For the details see Section 2.4.3.

In this thesis, we construct a Schauder basis in the space CP(K) of p times
differentiable functions and in the Whitney space E7(K') on Cantor-type sets K.

Now we shortly describe the content of the thesis.

In Chapter 2, we introduce the spaces of differentiable and Whitney functions
on any compact set, and give some results concerning these spaces. Then we give
some definitions and properties about Taylor polynomials, Cantor-type sets and
interpolation methods. Next, we give more detailed information about Jonsson’s

paper [13] in this chapter, since in Chapter 3 another basis is constructed in the



whole space CP(F) for the case of Cantor-type set F' satisfying restrictions from

Jonsson’s paper.

Chapter 3 contains the result of the master thesis of the author. In this
work we construct a Schauder basis in the Banach space of CP(K) by using the
method of local Newton interpolations suggested in [15]. Elements of the basis are
polynomials of any preassigned degree and biorthogonal functionals are special
linear combinations of the divided differences of functions. Here we construct

basis in the Banach space of C?(K) for uniformly perfect K.

We then construct a Schauder basis in the Banach space CP(K) of p times
differentiable functions and in the Whitney space EP(K’) on a Cantor-type set K
by using the local Taylor expansions of functions. In Chapter 4, we construct a
basis in the space CP(K3(A)) and EP(K2(A)) on a Cantor type set Ky(A) which we
define in Section 2.3. In Chapter 5, we use the same method and same system of
local Taylor expansions of functions to construct a basis in the spaces CP( K (A))
and EP(K(A)) where Ko (A) is a generalised Cantor-type set defined in Section
2.3. However our system of local Taylor expansions of functions does not work
in the Fréchet spaces £(K) of Whitney functions of infinite order. We give an
explanation for this at the end of Chapter 4. For a basis in the space E(K),
see [6]. It should be noted that in [16] Kesir and Kocatepe used another technique
to prove the existence of a basis in the space £(K) for Cantor-type sets K with

the extension property.

In chapter 6, we give the definition and the properties of unconditional basis.
Then we show that the basis which we constructed in the space CP(K') in Chapter

4, is a conditional basis.



Chapter 2

Preliminaries

2.1 Spaces of Differentiable Functions and
Whitney Spaces

Let K be a compact set of R, p € N. We denote by C?(K) (respectively C'(K)) the
algebra of p times continuously differentiable functions in K, with the topology
of uniform convergence of functions and all their partial derivatives on K. This

is the topology defined by the norm

|fl, = sup{|f®(2)] 12 € K, k=0,1....,p}

For every nonisolated point € K we define f'(z) as follows:

o) — 1 L) = @)

h—0 h

If the point x is an isolated point, then f’(x) can be taken arbitrarly. Thus,
CP(K) is a subspace of [[j<;, C(K).

By Tietze-Uryson Extension Theorem there exists continuous extension of
functions from C?(K).

Theorem 2.1.1 (Tietze-Uryson Extension Theorem). If X is a normal topolog-

ical space and f : K — R is a continuous map from a closed subset of K of X

10



into real numbers carrying the standard topology, then there exists a continuous
map

f: X —R
with f(z) = f(x) for all x in K. The map f is called a continuous extension of

f.

The space EP(K) of Whitney functions of order p consists of functions from
C?(K) that are extendable to CP-functions defined on R. The natural topology
of £P(K) is given by the norm

1£llp = |flp +sup{|(RY /)® (@)] - |& —y[* 7 2,y € Ko # 9,k =0,1,...p},

where T7f(z) = > oche, f(k)(y)% is the formal Taylor polynomial and
RPf(z) = f(z) = TP f(x) is the Taylor remainder.

Due to Whitney [17], f = (f*))o<i<, € EP(K) if

k —k
(RZf)()(x):o(\x—y\p ) for k<p and z,y€ K as |r—y|— 0. (2.1)

The Fréchet spaces C°(K) and E(K) (€ (K)) are obtained as the projective

limits of the corresponding sequences of spaces.

Similarly one can define the spaces C?(K) and EP(K) for K C R<.

2.1.1 The Spaces C?(K) and &P(K)

Let K be a compact subset of R%. For the space of continuous functions C(K) =
E%K). But we can not say this for p > 1 since in general the spaces CP(K)
and C*°(K) contain nonextendable functions and the norms || f || ,, | f|, are not
equivalent on EP(K). Then for which sets K, C?(K) = EP(K)? In this section

we give a proposition and a corollary about this question.

Definition 2.1.1. Given » > 0 a compact set K C R? is called Whitney r-
regular if it is connected by rectifiable arcs, and there exists a constant C' such
that 0" (z,y) < C'|z—y| for all z,y € K where o denotes the intrinsic (or geodesic)

distance in K.
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The case r = 1 gives the property (P) of Whitney [18]. Due to Whitney [18,
Thm 1], if K is 1l-regular, then CP(K) = EP(K). Also r-regularity of K is a
sufficient condition for C*°(K) = £(K) for some r. In this case for an estimation
of || -], by |- |, see [19, IV,3.11] and [20].

For one-dimensional compact sets we have the following result:

Proposition 2.1.1. /21, Prop. 1] C*(K) = EP(K) for 2 < p < oo if and only
if K =UN_ |ay,,b,] with a, <b, forn < N.

Proof. Assume K is a finite union of closed intervals. Then for any CP-function
there exist an extension of function with the same smoothness. Furthermore, the

extension which is analytic outside K, can be choosen.(see e.g. in [22, Cor.2.2.3])

For the other side, suppose K cannot be represented as a finite union of
closed segments. Since the complement R\ K contains infinitely many disjoint
open intervals , there exists at least one point ¢ € K which is an accumulation
point of these intervals. Let K C [a,b] with a,b € K and assume without
loss of generality [c,b] contains a sequence of intervals from R\K. Then K C
Ky = [a,c] U U [a,, b,] with (a,),~, (bn)ry C K, b1 = b, aps1 < bpyr <
an, (bpy1,a,) C R\K for all n. Given 1 < p < oo, let us take F' =0 on [a, ¢] and
F = (a, — ¢)” on [ay,b,] if a, < b,. In the case a, = b, F(a,) = (a, — ¢)” and
F®(a,) =0 for all k > 1. Thus, F' = 0. Then f = F|x belongs to C=(K), but
not extendable to C?—functions on R because of violation of (2.1) for y = ¢, z =
ay, k= 0. O

This nonextendable function can be easily approximated in |-|, by extendable

functions. Therefore, by the open mapping theorem, the following is obtained:

Corollary 2.1.1. /21, Cor. 1] If 1 < p < oo and K is not a finite union of
(may be degenerated) segments, then the space (EP(K),|-|,) is not complete. The
same result is valid for (E(K), (|- 1],)50)-

p=0

It is interesting that the case p = 1 is exceptional here. Now we give two
examples about the case p = 1. In the first example C'(K) = EY(K) for K =
{0} U (27™)°2,. In the second example C*(K) # EY(K) for K = {0} U (1/n)>,.

12



Examples

1. Let K = {0} U (27™)22,. Then C'(K) = £}(K). Indeed, the function f €
CY(K) is defined here by two sequences (f,)%%, and (f,)%2, with v, :=
(fo—fo)-2" = f§ = 0 and f, — f| as n — oco. The second condition gives
(2.1) with k& = 1. The first condition means (2.1) with £ = 0,y = 0. For the

remaining case x = 27",y = 27, we have

fn - fm - f7ln<2in - 2im) = Yn - 27" — Ym - 27" + (27” - 27m)(f(l) - frln>7

which is o(]27"—27"|) as m,n — oo, since max{2~",27™} < 2.|27"—27"|.

Thus, f € EY(K).

2. Let K = {0} U (1/n)2y, f(5=) = 0,f(5) = m\l/m for m € N, and
f'=0on K. Then f € C'(K), but by the mean value theorem, there is

no differentiable extension of f to R.

2.2 Taylor Polynomials

The Taylor polynomial is T f(z) = Y0, f® (a)% and the corresponding

Taylor remainder is R f(z) = f(x) — T7f(z). If m < n and a,b € K then we

have the following identities:

TroTy" =1, R,oR'=R), R,oT;"=0. (2.2)

13



First we show 1" o T;" = T;™:

(I o ") fz) =

Now we prove R} o R)' = R} :

R o R}

Lastly we prove R} o1} =0 :

R)oT" =

prd k! = (1 —k)!
ki”: FO) f; (z ;'aﬁ (O(Lf_b;):
ZZm; FO®) Py (z ;'a)k (a ;! by
> o0 =

(1-T3) o (1=1}")
1—T" =T + T o T}
1—T" — T + T = R".

(1—T") o Ty
— TP =TTy
— TP —T" =0

2.3 Cantor-type Sets

In this thesis, we consider the following Cantor-type set. Let ()2, be a se-
quence of integers. Let A = (I;)3°, be a sequence of positive numbers such
that [p = 1 and 0 < Ngylsyr < Is for s € Ny := {0,1,...}. Let Ky, (A) be
the Cantor set associated with the sequence A that is Ky, (A) = (oo, Es, where
Ey=TIp =[0,1], E; is a union of [[_, N; closed basic intervals I; ; =
of length I, and E, is obtained by deleting Ny1; — 1 open uniformly distributed
from each [ 5, j=1,2,...,][[_q Ni.

subintervals of length h, :=

_ ls—Ngyils41
Noti—1
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In Chapter 3 and 4, we consider the Cantor-type set K3(A) and for short-
ness we denote K3(A) as K(A). That is K(A) is the Cantor set such that
K(A) = N2, Es, where Ey = Iy = [0,1], E; is a union of 2° closed basic
intervals [; s = [a;s, ;5] of length I, and E.; is obtained by deleting the open
concentric subinterval of length hy := [ — 2l,4; from each I, 5, 7 = 1,2,...,2°

See Figure 2.1.

E
o 0
77777777777777 E
Iy ho R
E
T, Trs Is. Ty, 2

Figure 2.1: First steps of Cantor procedure for K (A)

In Chapter 5, we consider the Cantor-type set K (A) where, (Ng)2, is a
increasing sequence such that Ny — oo as s — oo. In the following Figure 2.2,
Ny,=s+1.

Figure 2.2: The case Ny = s + 1
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2.4 Interpolation

Let f be a function whose values at two distinct points, say xy and x; are given.

Then we can approximate f by linear function p that satisfies the conditions

p(xo) = f(zo) and p(x1) = f(z1).

Such a polynomial p exists and unique. We call p a linear interpolating poly-
nomial and this process a linear interpolation. We can construct the linear inter-
polating polynomial directly by using the above two conditions. Then we obtain

r1f(wo) = zof(21) (f(fﬂl) - f(xo)) .

T1 — Zo X1 — Xy

p(x) =

This can also be expressed in the Lagrange symmetric form

plo) = (222) ) + (222 flow)

To — T1

or in Newton’s divided difference form

fa1) — f($0)> .

1 — Zo

M@zf@w+@—x@(

Let us denote the set of all polynomials of degree at most n by P,. Let f be
a function defined on a set of distinct points xg, x1,...,2,. Can we find a unique

polynomial p,, € P, such that p(x;) = f(z;) for 7 =0,1,...,n7 Since
pn(z) =ap+ax+---+ayx, and p(z;) = f(x;),

f(zj) = a0+ arzj + - + ap7}.

Then we have n + 1 unknowns, ag, a1, ..., a,, and we have n+ 1 linear equations.

We can write these equations in the matrix form:

1 oz xf -+ af ap f(zo)
1 oay af - af ap | f(z1) (2.3)
1 x, 22 - am ap f(zn)
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This system has a unique solution if the matrix

1 zg x3 -+ af
1z 22 - af
V= . ,
2 n
i 1 z, =z Ty |

which is known as Vandermonde matrix, is nonsingular. Since
detV = H(JIZ - ZL’j)

where the product is taken over all ¢ and j such that 0 < j < i < n, detV # 0,
that is, V' is nonsingular. So the linear system (2.3) has a unique solution. This

polynomial is called the interpolating polynomial.

2.4.1 Lagrange Interpolation

Let f be a function defined on a set of distinct points zg, 1, ..., x,. Instead of
using monomials 1, x, 22, ..., 2" as a basis in the polynomial interpolation, let us
consider the fundamental polynomials Lg, L1, ..., L, where
n
T —x;
Li(z) = L, 2.4
i() ‘H‘.xi_xj (2.4)
3=0,571

It follows from the definition of L; that L;(x;) = 1 and L;(x;) = 0. Then the

polynomial
Pa(z) = Z f i) Li(), (2.5)

is called the Lagrange interpolating polynomial. Since L;(z;) = 1, pn(z;) = f(x;).

2.4.2 Newton Interpolation

Let f be as above. For a basis in the polynomial interpolation, Newton used the

polynomials m, 7y, ..., T, where

mi(z) = . (2.6)



Then we can express the interpolating polynomial as p,(z) = >, a;m;. We can
determine the coefficients a; by using p,(z;) = f(z;) for 0 < j < n. Then we

have a system of linear equations
aomo(xj) + armi(z;) + - - - + apma(x)) = f(z5)

for 0 < j7 < n. Then we obtain

flx1) — f(l’o)'

xT1 — To

ap = f(rg) and a; =

We will write
Clj = [(L’(],Il, Ce ,(L’j]f
and we say a; j-th divided difference. Thus we may write p,(x) in the form

po(x) = [xo] f mo(x) + [wo, 1] f M1 () + - - + [T0, X1,y - - o, T f T0(2), (2.7)

which is known as the Newton’s divided difference formula for the interpolating

polynomial.
In Chapter 3, we use local Newton interpolation.

Now we give some properties of the divided differences.

Proposition 2.4.1. [23, Thm. 1.1.1] The divided difference [xqg,x1,...,T,|f

can be expressed as the following symmetric sum of multiples of f(x;),

f(z,)

jr(Tr = 5)

[xo,xl,...,xn]fzz (2.8)
r=0 H
where in the above product of n factors, r remains fixed and j takes all values

from 0 to n, excluding r.

Proposition 2.4.2. [23, Thm. 1.1.2] Let x and the abscissas xg, 1, ..., T, be
contained in an interval [a, b] on which f and its first n derivatives are continuous,
and let {1 exists in the open interval (a,b). Then there exists &, € (a,b), which

depends on x, such that

FrD (&)

J@) = palo) = (& =)l =)+ (o = 1) T

(2.9)
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Corollary 2.4.1. Let f € C"[a,b] and let {z; : i =0,...,n} be a set of distinct
points in |a,b]. Then there exists a point 0, in the smallest interval that contains
the points {x; : 1 =0,...,n} at which the equation

F(0)

n!

[33’0,1’1,...,.’En]f: (210)

18 satisfied.

Proposition 2.4.3. Let f be defined on a set of distinct points xg, 1, ..., Ty,.
Then for each j, k € N with j + k + 1 < n we have

g gl = e Bl 2 o Bdd g gy

Ljt+k+1 — Lj

The last formula explains the term divided difference. For the proofs of these

propositions see [23].

2.4.3 Interpolating Basis

Definition 2.4.1. Let (f,),~, be a basis in a function Banach space X with
the corresponding biorthogonal functionals (&,)~,. Then (f,),—, is called an

interpolating basis with nodes (z,,),~, if for each f € X and n € N we have
Sp(zm) = f(zy) for m=1,2.../n (2.12)

where S, = > 7, &(f)fr. Thus, the n-th partial sum S, interpolates f at n

points x1, ..., Ty.

There are many examples of interpolating bases. The basis of unit vectors
€1, ea,...1n ¢ is interpolating. Also Faber-Schauder system is interpolating. (We
showed this in Chapter 1). Furthermore, Gurari [24], Bochkarev [25], Grober and
Bychkov [26] used interpolating basis in their constructions. Also the basis which
we constructed in Chapter 4 and Chapter 5 are also interpolating basis. But it

should be noted that not all functional spaces possess interpolating bases [27].

In 2004, Jonsson [13] considered triangulations for subsets of R™. In particular

he constructed an interpolating basis for the space CP(F') where F is a compact
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subset of R preserving a special form of Markov inequality. Here we give more
detailed information about this paper, since in Chapter 3 another basis is con-
structed in CP(F') for the case of Cantor-type set F' satisfying restrictions from

Jonsson’s paper.

Definition 2.4.2. Let F' be a compact subset of R™. A finite set T of n-
dimensional closed, non-degenerated, simplices is called a triangulation of F' if
the following conditions hold:

Al. For each pair Ay, Ay € T, the intersection A; N A, is empty or a common
face of lower dimension.

A2. Every vertex of a simplex A € T is in F.

A3. F CUper-

In his paper, Jonsson considered § = maxaer diam(A) as the diameter of
the triangulation and denoted the diameter of the sequence of triangulations
{T;}=, as 0;. The sequence of triangulations {T;};-,, Jonsson defined, satisfied
the following conditions:

B1. For each i > 0, T;, is a refinement of T}, i.e., for each A € T, there is
A € T, such that A C A.

B2. 9; —» 0, i — oc.

B3. If U; is the set of vertices of T;, the U; C U;y for ¢ > 0.

Then Jonsson defined regular sequence of triangulations.

Definition 2.4.3. [13, Def. 1] Let F € R, and let {7;} be a sequence of
triangulations satisfying B1. Then {7}} is a regular sequence of triangulations if
the following conditions hold.

T1. There is a constant ¢ > 0, independent of i, such that, for all Ay, A, € Tj,

¢y tdiam(Ay) < diam(A;) < cpdiam(Ay).

T2. There are constants 0 < ¢3 < ¢4 < 1 such that, for all © > 0,

c30; < 01 < c40;.
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T3. There exists a constant a > 0, independent of 7, such that if A € T, and
A’ € T; and the distance between these intervals is less than or equal to ad;, then

the intervals intersect.

Then Jonsson consider the following version of the Markov’s inequality.

Definition 2.4.4. Denote by P, the set of all polynomials in n variables of total
degree less than or equal to m. A closed set F' C R"™ preserves Markov’s inequality
if for every fixed positive integer m there exists a constant ¢, such that for all

polynomials P € P,, and all closed balls B = B(x,7), 29 € F, 0 <r < 1, holds
max |[VP| < Emax|P\,
FNB r FNB

where V denotes the gradient.

Some authors call it the Local Markov Inequality whereas the Global Markov
Inequality means that

sup [V Py (z)| < Cm™ sup | Py, ()]
zeF z€F

where the constants C' and R depend only on F.

Then Jonsson stated that [14, Section 2.2] a set preserves Markov’s inequality
if and only if it is uniformly perfect, that is, there is an £ > 0 such that for any r

with 0 <7 <1 and any z € F, the set FN{x: er < |xr —xo| < r} is nonempty.

For Cantor type set K (A) which was defined in Section 2.3, the natural trian-
gulations are given by the sequence Fs = {[; 5, 1 <i <2°}, s > 0. In our Cantor
set we can take §; = [; where (li)fio is a sequence in the Cantor set such that [p = 1
and 0 < 2[5y < s for s € N. (For details of Cantor set see Section 2.3) Now we
look the regularity conditions. The condition (T1) in the definition 2.4.3 satisfies
for all Cantor type sets. If the condition (T2) satisfies, then col; < l;11 < esl;.
This means that our Cantor set is uniformly perfect. Also the condition (T3) is
satisfies for Cantor type sets. Then Cantor type sets with regular triangulations

are uniformly perfect. In Chapter 3, our Cantor-type set is uniformly perfect.
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Jonsson showed that F' preserves Markov’s inequality if and only if there
exists a regular triangulation of F'. This is the main theorem of Jonsson’s article.
[13, Theorem1] After this Jonsson constructed a basis in the space C*(F) of k
times differentiable functions on F. But Jonsson defined the space C*(F) as: “A
function f belongs to the space C*(F) if for every € > 0 there is a § > 0 such that
IR;(z,y)| < elz—y/*7 for 0 < j <k and |z — y| < 8.7 Here Rj(x,y) denotes
the Taylor remainder. In this definition the condition |R;(z,y)| < e|z —y|*~
is Whitney’s condition (2.1) for the space EP(F), that is the Whitney space of
functions on K. Therefore Jonsson considered the space EP(F') but equipped with
the norm of the space CP(F'). Except the case when EP(F) = CP(F') as sets of
elements (that is all CP-functions on F' are extendable preserving the class), the
space of Whitney functions is not complete in the topology of the space CP(F).
The lack of completeness was remarked by the author in [13] on page 54. In

contrast to this we contruct a basis in the whole space CP(F).

Elements of basis in [13] are restrictions of special Hermite polynomials. Since

the construction is rather technical, for details we refer the reader to [13].

The Schauder basis which was given in [28] is another interpolating basis in

Banach Besov space on fractals.

2.4.4 Local Interpolation

Let us consider the method of local interpolations suggested in [6] (see also [15]).
Suppose we have a chain of compact sets Ko D K; D --- D Ky D --- and
finite system of distinct points (x,gs))ivil C K, for s € Nyp. Some part of the
knots on K1 belongs to the previous set (x,is)),iv;. Let us enumerate these
points as (x,(gsﬂ))kM:lH. We will interpolate a given function f on K, up to the
degree N. After this we continue the interpolation on the set Ky, up to degree
Ngi1, etec. Since we will take diam K; — 0, the approximation properties of
the interpolating polynomials will improve. The points of interpolation will be
chosen independently on functions. This will allow to construct topological bases

in spaces of differentiable functions defined on the set K which is a union of the
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intersections of all chains (K).

Suppose we are given a sequence (z,)°2; on a compact set K C R. Let
eo =1 and e,(x) = [[,_,(x — zy) for n € N. Let X(K) be any Fréchet space of
continuous functions on K, containing all polynomials. Then, given f € X (K)
and n € Ny we denote by &, the linear functional &, (f) = [z1, . .., Tyi1]f. Trivially

we have

Lemma 2.4.1. [6, Lem. 1] If a sequence (z,,),—, of distinct points is dense on
a perfect compact set K C R; then the system (en; &),y is biorthogonal and the
sequence of functionals (&,),—, is total on X (K); that is whenever &,(f) =0 for
all n, it follows that f = 0.

Since below we consider different basic systems, the following convolution

property of coefficients of basic expansions will be useful.

Lemma 2.4.2. [6, Lem. 2] Let (x(s))zo, s = 1,2,3, be three sequences such
that for a fixed superscript s all points in the sequence (:E(S))ZO are different. Let
ens = [[p_ (7 — ZL'S)) and &,5(f) = [:vgs),xés), . ,xq(f)]f forn € Ng. Then

Z Eps(eqa)Sa(er) = Epalen)  for p <.

Suppose K and K7 are infinite compact sets such that Ky C Ky and Ko\ K;
is closed. Let natural numbers Ny, Ny, M; be given with Ny > 2, M; <
No, My < Ny, Ng — My < Nj. Let for s € {0,1} we have a finite sys-
tem of points (x,(:))kN; C K,. Here we suppose that =" # 2\¥ for k # I
and (:L‘,(vo)),ivil_Ml C Ko\Ki, :EES(?_MIM = 2" for r = 1,..., M. Let us set
ns(z) = [[i (2 — a:,(:)) for s € {0,1},0 < n < N, and let e,s be the re-
striction of é,5 to K, otherwise e,s(x) = 0. Also for any function defined on K
let &ns(f) = [239, 28 2% ], where x§33+1 = :1:5\}[)1“ and xg\l,fﬂ € K is any

point differing from x,(:), k=1,..., Ny

By means of Lemma 2.4.2 we can construct new biorthogonal systems cor-
responding the local interpolation of functions. For fixed level of s, the system

(€ns, §ns)iv;0 is biorthogonal, that is &,s(€ms) = Omn Forn = My +1,..., Ny, e, =
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[l (x— :US)) for z € K; and e,; = 0 for z € Ko\ K. Since Ko\ K] is closed e,
is continuous on Ky. Then &,o(em1) = 0, because the number &,o(f) is defined
by the values of f at some points on Ky\K; and at some points from (xggl))iw:ll
where the function e, ; is zero. Clearly, &, 1(€m0) = 0 for n > m. But for n < m,
the functional §,, 1, in general, is not biorthogonal to e,,. For this reason we use

the functionals
No
M1 = §n,1 - Z gml(e.’cO)ka-
k=n

Now, the functional 7, ; is biorthogonal to e,,o by means of Lemma 2.4.2.

Given f on Kj let us denote by Q,(f, (xk)Zii ,-) the Newton interpolation
polynomial of degree n for f with nodes at xq,...,2,41. Let us denote I1y(A)
the set of functions coinciding on the set A with some polynomial of degree not
greater than N and also Iy := Iy (R).

Let us consider the function S, (f,z) = Q,(f, (x,(co))::,x) forn =0,..., Ny
and
(0 Mo+1 e
Snotr (F2) = Quo (f, (@3 )iy @)+ Y ma(fena(®) (2.13)
k=Mi;+1
for r = 1,...,Ny — M;. Then Spy,4r € Iy, (Ko\Ki) and Sny4r €
Hmax{No,Ml—i-'r}(Kl)-

Lemma 2.4.3. [15, Lem. 1] Given function f defined on Ky and n =
0,1,...,No + Ny — My, the function S,(f,-) interpolates f at the first n + 1
points from the set
0 0 (1 1
{xg ), . ,xgvg,xgw)lﬂ, . 7$§V1)+1}'

In Chapter 3 all our subsequent considerations are related to Cantor-type sets.
Let A = (I5).2, be a sequence such that [y = 1 and 0 < 2l,; <[, for s € Ny. Let
K (A) be the Cantor set associated with the sequence A that is K(A) = N2, Es,
where Ey = I = [0,1], E, is a union of 2° closed basic intervals I;; of length
ls and Egyq is obtained by deleting the open concentric subinterval of length

hs = ls — 2ZS+1 from eaCh Ij75, j — 15 27 ct 23‘

Given a nondecreasing sequence of natural numbers (n,),, let N, =
o M = N_y/2+1, MY = N,_y/2 for s > 1 and My = 1. Here, (I) and
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(r) mean left and right respectively. For any basic interval I;; = [a;s,b;s] we
choose the sequence of points (z,, ;). ., using the rule of increase of the type. We
take ex1o = [, (z—2n10) = [[_,(z—2,) forz € K(A), N =0,1,..., N,. For
s>1,7 <2 leten, = [y (r—2n,.) if x € K(A)NI,,, and ey ;. = 0 on K (A)

n=1
otherwise. Here, N = M M¢ +1,..., Ny with a =1if j is odd and a =7 if j is
even. Given function f on K(A) let the functional &n ;i s(f) = [T15ss- - - Tnt1js) f

fors =0,1,...; 7 =1,2,...,2°and N = 0,1,.... Let us set nn10 = v for
N < Ny. Every basic interval [, s > 1, is a subinterval of a certain I; ;_; with
j=2i—1orj=2i Let

Ng_

s (f) = Ens(f) — Z Enjis(€ris—1)Eris—1(f)
k=

=N

for N =M M +1,...,Ns;. Asbeforea=1if j=2t—1and a=rif j =2i.

Now we give an example to local interpolation for Ny = N; = Ny, = 4 and
f € C[0,1]. Then our points are x; = 0, xo = 1, 3 = [1, and x4 = 1 — [3. Then

the interpolating polynomial

Qs = flr)+ (@ —z) [z, m)f+ -+ (@ —21) (T —24) [71, 20, ..., 75 f
f(O) + (f(1) = £(0)x + -
+z(x —1)(x—0L)(x—14+14)[0,1,01,1 — 14,1 f.

As seen in the equation we add one more point x5 = l. For s = 0,

€10 = 1
€110 = T,
ea10 = 1
es10 = x(z—1

( 1

€410 = T
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and

So10 = [f(0),

&0 = [0,1]f,

&0 = [0,1L,4]f,

E10 = [0,1,0,1 = 4L]f,
€110 = [0,1,0,1 =11, 0)f.

Now we look this for the intervals I, 1, Iy € I1 o = [0,1]. I, is the left part and
I, is the right part. Then on I; ;

€111 = 7T,
ex11 = x(r—1),
and on I 5
€121 = T — L,
€01 = (x—1)(z—1+10).
Also
11 = [(0),
61,1,1 = [O, ll]f>
$o11 = (0,01, 1] f,
and

So21 = f(1-1),
Si20 = [1—=1i,1f,
E100 = [1—11, 1,1 =1 +1]f.
So we add a new point g = 1 — {3 + I to I5;. In this way we add new points
to left and right intervals and interpolate f. Let us look this. We know that
S5(f, ) = Q4 by Lemma 2.4.3. Then
Se = Qa+m21(f)eazn,
Sr = Qs+maa(flesar +m311(f)es
Sg = Qa+m21(f)eazr +m321(f)esz21,
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Here

4
me21(f) = &1 - Z52,2,1(€k,1,0)fk,1,0(f)7

k=2

4
msaa(f) = &1 - Z &3.1,1(ek,1,0)8k,1.0(f)-
k=3

Then
[f(z) = Se(fy2)|| < |mo2a(f)ean +m311(f)es il

since )4 is the interpolating polynomial of f(x). In Chapter 3, we find bounds
for n(f) and &(f) and we show that || f(x) — S,.(f,z)||, < e as n — oo.

27



Chapter 3

Schauder Bases in the Space
CP(K(A)) Where K(A) is
Uniformly Perfect

In this chapter we construct basis in the space C?(K(A)) where K(A) is a uni-
formly perfect Cantor-type set. In the construction we use the method of local
Newton interpolations (see Section 2.4.4). Elements of basis are polynomials of
preassigned degree and biorthogonal functionals are special linear combinations
of the divided differences of functions. First we give some estimations, then we

give the main theorem.

3.1 Estimations

Given function f € C'(K) on a compact set K C R, let w(f,-) be the modulus of
continuity of f, that is, w(f,t) = sup{|f(x)—f(y)| : =,y € K, |[x—y| < t}, t > 0.
Let N > 1 and (mk)ff:ll € K be such that 7 < 29 < -+ < xny41. Let exyq(z) =
2V:+11($ — i), En(f) = [x1, 2y ..., n41]f and ¢ = maxg<n [Tri1 — x| Then

([15, p 26, (3)])
[En (£l < N*w(f, t)(min e, ()) (3.1)
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Let us generalize this inequality to the case f € CP(K) for p € Ny.

Lemma 3.1.1. For N > 1 and xq,...,xn11 € K with x1 < x9 < --- < xny1 let
En(f) = [z1, 2y ..., xn]f and t = maxg<py |21 — zk|. Then
-1
NQUJ(f(q),t) k N+1
v (f)] ST k<Nm(11n]<N H i—=) 11 '(xj—ﬂfs) ,
=1,s s=k+q+1, s#j
(3.2)

for all ¢ with 0 < q < p.

Proof. First we show this for fix p, then we show this for all 0 < ¢ < p. Let

enti(z) = H;VJEI(:L’ xj) Then €'y (zx) = jvtlj#(xk z;). From Proposition
24.1 Ex(f) = St 5 = xka We write {n(f) in terms of divided differences of
N+1
p-th order.
N+1
f(@k)
‘ =
kzl v (k)
I 2(1‘1 ;)
<|(x1 —xpyo)[r1, ...\ @ +2]fj— +
P P 6N+1($1)
11} 3(961—1’]) [1755 (s — )
(.Z‘Q—{L‘ 4,.3)[%2, e, X +3]f J= +
g ! 6N+1(551) €N+1($2)
N+p N+p
X _ x
(N = TNpr)lan, o ENpp]f U= — 23) oo = 25)
6N+1($1) 6N+1(53N+p+1)
al ’;+£+1(37J Ts)
SZ (T = Thapr) [Thy - s Thgpr1]f Z (3.3)
1 ey (25)
N k N+1 !
<Y N[k = Thapr) [Ths s Thapia]f] min II @ I @-=)
k=1 = |s=1,s#7 s=k+p+1,s#j
From Proposition 2.4.3 we can write [z, ..., Tgip1)f in such a way that
[Tty s T f = [Ty - Tpgpa] f
Lhy « -y Tk 1 f = :
| o] "
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By Corollary 2.4.1

[xka SR xk+p+1]f =

where 6 € [zj11, Tkipt1]. Then

(») _ f(» (»)
(zp — $k+p+1)[$k> cee $k+p+1]f = ! wl)p! G < w(fp! ") (3.4)

where t € [z, Tkipi1]. By (3.4)

N w(f(p),t) k N+1 -1
En(f) < ZNT ?%1]{71 H 4(%‘ ) H _(%’ )
k=1 s=1,s#£j s=k+p+1,s#£j
-1
NQw(f(p),t) ‘ k N+1
< R H ‘(%‘ - T) H .(l"j - )
s=1, s#£j s=k+p+1, s#£j

where ¢ € [z, Tpypt1], Which is the desired result for fixed p.

Let us prove this for all ¢ = 0,1, ..., p. To prove this we use induction on gq.
For ¢ = 0, (3.1) satisfies.
Assume 3.3 is true for ¢ = p — 1, that is,

o Nu(fo.1) H’“ NH“ h
’£N(f>|— (p_1>‘ k<N p+1]<N ‘<xj_'rs) :
s=1,s#j s=k+p, s#£j

Now we show that it is true for ¢ = p. By (3.3) we have

al HHIS 1( — )
En(f)] < Z( T = Thipt1)[Ths -+, Thpin fz =t
1 €n1(7j)
By Proposition 2.4.3,
[Trv1, - Thrprr] f = [Tns - Tagp)f

[‘xk? s 7$k+p+1]f =
Lhtp+1 — Tk
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Then

k k
Hsig—i-l (xj — Z)

N

(Al < D (ko Bl f = [Barts - Trapia [ ) D ; '

1 = e (25)

155 (a1 — )
g1 (T1)

+([w2, s Tpral f — [T35 -+, Tprs]f) (Hf NETE ) HP (T — xs))

IN

([r1, - opal f = 12, mpp2] f)

eN+1(xl) €N+1<x2)

N N+4p
I1 (zj — x5)
+([xns Nl f — [ENt1, - ENpta] f) =Nl -
ey i1 (75)
= N+1\Tj
125, (x1 — )
< — . 3
< (951 371+p)[3717 7961+p]f 6N+1(951)
1255 (2 — ) Hp+2(562 — )
+(zy — To, ..., T e =3
( 2 2+p)[ 2 ) 2+p]f< eN+1(x1) €N+1(SL’2)
N+p (m x)
+(@N — Tnap) TN, - TNl f Z Lot (7 -
P ’ P €N+1(%>
N+1 7 N+4p+1
- Hs —S\I;IQ( IS)
—(@Nn+1 = TNapr) TNt - TN S Z (@)
N+1\Tj
N k k+p
[1 (zj — x5)
< Zxk_xk’-i-p Ty - - $k+pfz A
k=1 evi1(7;)
N+1 1N
- s JE\Zfir;(x] xS)
—(TN1 = TNypr) [TNt1, - TNpral f Z

€N+1(xj)
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and

S ’;+I€+1(953 )
|§N(f)| < Z xk_xk_l,_p I‘k,.. $k+pfz
k=1 6N+1(ffj)
N+1 N+p+1( )
S
+(@N+1 — TN4p+ 1) [ENF15 - ENppt1 ) f Z s N+2
€ni1(T5)
-1
Naw(oO [ é v
—_— min Ti— Ti— 1
— | _ . H ( J S) H ( 7 s)
(p 1)' RENTPELISN s=1,s#j s=k+p, s#£j
-1
Nuw(fe-1 ¢ _ k N+1
+((f_1)|) k<Nm1Ii <N H = Zs) H (xj —xs)
P R PR s=k+p, s

-1
(N 4+ 1)2w(f®=1 1) . k N1
= (p—1)! F<N-pt1j<N II @-=) I @-=

s=1, s#j s=k+p, s#£j
So it satisfies for ¢ = p and the proof complete. m
Lemma 3.1.2. Let eyyq(x) = kN:Jrll(:v — ) and 655)“ be the p-th derivative of

ent1- Then forp>1

k N+1
|eN+1| < Nprkn<a]$[< H(m—xs) H (x —xs)]. (3.5)
s=1 s=k+p+1

In our work all our subsequent considerations are related to Cantor-type sets.
Let A = (I5).—, be a sequence such that [y = 1 and 0 < 2[,; <, for s € Ny. Let
K(A) be the Cantor set associated with the sequence A that is K(A) = (2, Es,
where Ey = I = [0, 1], E is a union of 2° closed basic intervals I; s of length
ls and E,q is obtained by deleting the open concentric subinterval of length
hs =1y — 2ls4q from each [;,,7 =1, 2,...,2°

We will consider Cantor-type sets with the restriction
Without loss of generality we suppose A > 2.

Let x be an endpoint of some basic interval. Then there exists the minimal

number s such that z is the endpoint of some I;,, for every m > s.

32



By K, we denote K(A)Nl,. Given K, with s € Ny, let us choose the sequence
(z,,); by including all endpoints of basic intervals, using the rule of increase of the
type. For the points of the same type we first take the endpoints of the largest gaps
between the points of this type; here the intervals (oo, x), (z, 00) are considered as
gaps. From points adjacent to the equal gaps, we choose the left one x and then

ls—x. Thus, x1 =0, vo =15, 3 = lsy1, ..., X7 = lsi1 —lsio, - -, Topr1 = lsak, - - -

Let

maX{L‘GKs

en()| L ﬁ T -1
) N,j —

MHs N ‘= — 7 ,
min;<y |efy,(7;)] K1 kg TR T T

that is, Ly ; denotes the fundamental Lagrange polynomial.

Lemma 3.1.3. [15, Lem. 2] Suppose the Cantor-type set K(A) satisfies (3.6)
and for N > 1 the points (a:k,)f[+1 C K are chosen by the rule of increase of the

type. Then
< AN (z)] < AN
psn < A and jpax, |Ln;(z)| < A
Let us set
k N+1
maxg<n—p | [ [ (¥ — 25) Hs:—il—c+p+1 ( — )
Ps,N =

. k N+1
MiNg<p—p, j<N ’HSZLS# (27 = 25) Tl hp1, sy (5 — 5)

Suppose the Cantor-type set K (A) where K (A) is uniformly perfect and satisfies
(3.6). Since K (A) is uniformly perfect, there exists B € R such that [y < Bl,y.

Lemma 3.1.4. For N > p + 1 the points (xk)zlv“ C K, are chosen by the rule
of increase of the type. Then

s < AN—p gp loga(N)

Proof. Let N = 2n + v with 0 < v < 2".Then (z;)) " consists of all endpoints
basic intervals of the type s +n — 1 and v + 1 points of the type s + n. Fix any
r € Ksand zj,7 < N+ 1.

By (yx)Y we denote the points (z)) arranged in the order of distances |z —zy],
that is, |z — yx| = |v — 25| T. Then Y = (yk)jlv =U! _y Yepm where Y, = {y; :
he <l —yp| <l },r=s5,...,5+n.
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Similarly Z = ()} consist of all points (xk)kN 1. kz; arranged in the order of
distances |x; — x|, that is, |z; — zx| = |x; — 2, | T . As before, Z = J _; Zsim
where Z, = {yx : hy < |x; — 2| < I}, 7 =5s,...,s+n. Let q, = \YH, b,

|Z,| be the cardinalities of the corresponding sets. Since ()Y '

are uniformly
distributed on K, it follows that the numbers of points x;, in two basic intervals
I, I;, of equal length are the same of differ by 1. But the point z; is not
included into the computation of b.. Hence for r = s,...,s + n we have the

following inequality

as+n+"'+ar2bs+n+"'+br-

Next to find the maximum of the product |[]%_,(z — z) H?Q;rpﬂ(x — Ty)

we choose p points which are very close to . So the distance between x and
the other Np points, is maximum. We know that as + --- + asi, = N. Then
as + -+ asyn —p =N — p. Let we choose vy, c¢;, € N such that

s+ F s, +Cp=N—p,  cip < Qgpo,41, Uy <N (3.7)
Hence
k N—+1
s70s+1 As+vp 11D
%La]%{ H(CL’ - ZE5> H (I - ZL‘S) < la ls+1 o ls—i—vppls}kv +1- (38)
- s=1 s=k+p+1

Also to find the minimum of the product

’H’;:l’s#(xj — ) Hi,v:ipﬂ opj(Tj — x5) |, first we fix j — j such that

k N+1
min H —x H Ti:— X
k<N, j<N ) ( J )
s=1, s#j s=k+p+1, s#j
k N+1
= min H T —x H T — Xg)| .
kSN ~( Vi S) ~( 7 S)
s=1,s#j s=k+p+1, s#j

where j € N and j < N. Then we choose p points which are far away from
z3. So the distance between other points and z; is minimum. We know that
bs 4 -+ bsy, = N. Let we choose u,, ¢, € N such that

bS + ttt + bg—‘,—up + C2p - N - p? CQp S bS“l‘Up—l? up S n (3'9)
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Then

k N+1
. _ 5 bs+n bs+n71 bs+”p c2p
il}l]{]l H (xj - xs) H (xj - «Ts) > ls+n h5+n—1 T hs+up hs+up—1'
o |s=1,s#) s=k+p+1, s#]

(3.10)

Then by (3.8) and (3.10)

jos la.s+1 . laSJrvp lClp
s Vs+1 st+vp “stvp+1
|¢37N| S b b b
l s+nh stn—1 h st+up hCQP
stn "Ys+n—1 stup "Ps+up—1
s+N s+n—1 bs . bstup—1—C2P
ap—bg br hS + + hS-‘rup—l
< [ 11 te/m) 1 '
las+vp+ —Clp _|_ . + las+n
k=s k=s s+vp+1 s+n
By [15, Lem. 2| we know that
s+N s+n—1
ar—bg br N
[Ta" IT (/m)™ <A™,
k=s k=s
Then
S+’U,p*1 —ca bs . bs+up71_c2p
| | < AN H (h /l )bk h5+up_1 ' ZS + +l5+“p—1
@s,N - k/ ok l la5+vp+1_clp la5+n )
k=s stup—1 s+up+1 L

By (3.6), hy/l; > 1/A and by (3.9) by + - - - 4 byjuy—1 — Cop = p. SO

stup—1 _
P h B Cgp 1
by, stup—1 <
g (he/l) <—ls+up1> <

Since lsyn < lsn—1 and by (3.7) Gspp,+1 + - + Qoyn — C1p = D,

ZP
|<,05,N| < AN_pp_s‘
ls+n

Since K (A) is uniformly perfect, there exists B € R such that I, < Blsyq. So
ls < B"ls1y. Since N > 2" log, N > n. Then

o] < ANPBP e,

which is the desired result. O]
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3.2 Interpolating Bases

Fix s € N. Let natural numbers n,_1, ny, be given with n,_; < ng,. Set N, =

2" and Ng,_; = 2"t . Given N with 1 < N < N,_; we choose the points

—1)\Ns—1+1
(x,(: 1))k:11 on K, 1 and (z)r_, on K, by the rule of increase of the type.

As above, & s-1(f) = [‘,1358—1)7 xkill)]f ers1(z) = H;?:l(z _ x§5_1))
k=1,2,...,No1. Also let ex(y) = [T, (y — ;)

K, , for

Lemma 3.2.1. [15, Lem. 3] For fized f € C(K(A)), x € K let

§(f) = [$1,---,$N7$]f,

Ns—1

n(f) = é(f)— 5(%,571)&,571(]6)'

k=
Then
17(fen(z)] < N2, APNva(f, 1, ).
In the case K(A) = K™ we have
[i(Flen(@)| < € Noyw(f L),

provided the condition N2 <1 is fulfilled.

Proof. By € we denote the function é(y) = (y—x)en(y). Then by (3.1), |En(f)| <

2w(f, ) (ming<y |e)y, (zx)])~". Since ex(x)/&(x;) = — Ly j(z), Lemma 3.1.3 im-

plies
(e (@) < N? AN w(f. 1) (3.11)
N

The representation é(ek,s,l) = _6:1’5—(_;)(:6) + JZ:; % gives

|£(€k,sfl)£k,sfl(f)eN(x)‘ < ‘gk sfl(f)ek sfll

|€k,s—1 % len ()] >
Z o) il )

By (3.1) and Lemma 3.1.3, |&.s—1(f)en(z)| < k2 AFw(f,l,_1). By Lemma 3.1.4,

M < AF and e ()] < AV Then we get
€ (z5)]| min;<y (€} 1, (25)]

1€ (ers1)Ers1 (flen(@)] < (1 + NANYE2A w(f,1,_y),
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and

Bl
—
~
N—
)
2
—~
8
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|
Iy
—
%
N—
D
2
—~
8
N—
|
My
—~
D
>
Ky
|
_
N—
Iy
>
Ky
|
—
—
~
N—
D
P
—~
8
N~—

k=N
N

S N2ANT w(f 1) 4+ (L+ NAN Dw(f, 1) Y K2 AF
k=N

< N2 AV hw(f, 1) + (1L + NAY D (f, 1) ANING P

< Ny A2 w(f 1)

which is the desired result. O]

In the same manner we obtain the desired bound in the case K(A) = K@),
Lemma 3.2.2. For fized f € CP(K(A)), © € K, let £(f) = [z1,...,xn, ][,
i(f) = () = 2w Elers—1)Ers1(f). Then

i NSQB-I—?) A2Ns,1f2p BQP10g2 Ns—1 w(f(p), ls—l)
i(f)ed) (z)] < == ol ‘

Proof. By Lemma 3.1.1,

s N2w(f® 1) (

N+1

II @i—=) JI (-2

s=1,5#] s=k+p+1,s#£j

il <

By Lemma 3.1.2,

k N+1

H(l’ - xs) H (I’ - xs)

s=1 s=k+p+1

(p) < Np
0] < V7 s

Then by Lemma 3.1.4, we get

- +2 (») |
w | o NTw(fP ) s, |
[En(fenial < D! minj <y [z — ;]

- AN-=P Bplogz N Np+2 4, () )
< o)

. (3.12)
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N
. p _ Cks—1\T) 1 ( €k 1( .
The representation & .1 = - —I— E - glves

|ék,s—l€k,s—l(f)eN(x)‘ < &k,s—1(f)er,s—1(2) |+
Z |€ks 1 13] €N($) ’k2w(f(p),ls,1). (313)

' miny |€hs1s-1(Ti)

Then the first term

Ak—p Bplog, kkp+2w(f(p), ls—l)

[Ek,s—1(f)er,s—1(z)| < ol

by Lemma 3.1.1, Lemma 3.1.2 and Lemma 3.1.4. The parts of the two fractions
in the second sum will be considered cross-wise. Applying Lemma 3.1.4 twice we

get

[€rsm18rs—1(Flen ()] < (1+ NPANPBrlos N2 AR prioss Ny (F®) 1, _y).

Clearly, S" k = 1"kPT2 AP < p2PH3 AP for n > 2. Summing over k we get

the general estimation of |ney(z)]. O

The task is now to show that the biorthogonal system suggested in [15] as a
basis for the space C'(K(A)) forms a topological basis in the space C?(K(A)) as

well, provided a suitable choice of degrees of polynomials.

Given a nondecreasing sequence of natural numbers (n,),, let N, =
ons MY = Ns_1/241, M = Ns_1/2 for s > 1 and M, = 1. Here, (1) and (r)
mean left and right respectively. For any basic interval I; = [a; s, b; s] we choose

the sequence of points (z,,js), -, using the rule of increase of the type.

Let enio =[]y (x—2n10) = [[0,(x—x,) forz € K(A), N=0,1,..., N,.
For s > 1,5 <2%let e,;, = HNf (x — 1y s) if € K(A)N ;s and e, ;s =0 on

n=1
K(A) otherwise. Here, N = MY MM 41, N, witha = forodd j and a = r
if j is even. The functionals are given as follows: fors =0, 1,...;7=1,2,..., 2°

and N = 0,1,..., let &En;is(f) = @145 TN115s)f- Set ny10 = Enapo for
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N < Ny. Every basic interval I;,, s > 1, is a subinterval of a certain /; ;_; with

j=21—1orj=2i Let

Ns_1
s (f) = Ens(f) — Z Enjis(€ris—1)Eris—1(f)

k=N

forN:M§a), Ms(a)—i—l,..., N,. As beforea=1if j =2i—1,and a =r if j = 2i.

In the space C(K(A)) there is no unconditional basis. Thus we have to enu-

oo, 2% N

merate the elements (ey ;). i1 N
W =V, )=1, IN=1Ms

in a reasonable way. We arrange them
by increasing the level s. Elements of the same level are ordered by increasing
the degree, that is with respect to N. For fixed s and N the elements ey ; are
ordered by increasing 7, that is from left to right. In this way we introduce an
injective function o : (N, j,s) = M € N. At the beginning we have for zero level:
0(0,1,0) = 1,...,0(Np, 1,0) = Ny + 1. Since the degree of the first element on
I, is greater that on I5;, we start the first level from ey, /221 : 0(No/2,2,1) =
No+2,0(Ng/2+1,1,1) = Ng+3, o(No/2+1,2,1) = Ng+4,---, 0(N,2,1) =
No+1+2(Ny — No/2)+1 = 2(N; +1) and we finish all elements of the first level.
For s = 2 we have two elements ey, /222, €n,/24,2 Of the smaller degree, so they
have a priority: o(N1/2,2,2) = 2(N1+1)+1, 0(N1/2,4,2) = 2(N; 4+ 1) +2 Then
o(N1/241,1,2) = 2(N1+1)+3, 0(N1/24+1,2,2) = 2(N1+1)+4, - - -, 0(Ny,4,2) =
2(Ny+1)+4(Ny — Ny /2) 4+ 2 = 4(Ny+ 1). Continuing in this manner after com-
pleting of the s-th level we get the value o (N, 2°,s) = 2°(Ng + 1).

By injectivity of the function o there exists the inverse function o=!. Let

fm = €5-1(m), M e N.

Theorem 3.2.3. [15, Thm. 1] Let a Cantor-type set K(A) satisfy (3.6). Then
for any bounded sequence (Ny),~ the system (fn)° forms a Schauder basis in the
space C(K(A)).

Theorem 3.2.4. Let a Cantor-type set K(A) be a uniformly perfect set which
satisfies (3.6). Then for any bounded sequence (Ns)o the system (fm)3° forms a
Schauder basis in the space CP(K(A)).

Proof. Let Sp(f,) be the M-th partial sum of the expansion of f with respect to
the system (f,,)]" for given f € C(K(A)). Then Sy (f,z) =3 nnjs(fenjs(x),
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where the sum is taken over all N, j, s with o(N,j,s) < M. By Lemma 2.4.3,
Su(f,x) = Qu-1(f, (l‘n7170)i4:1,$) if 1 < M < Ny+ 1. But the next function
SNo+2 is not a polynomial on I 9. The restriction of Sy,12 to the interval I ;
is Qny, whereas Syotaln,, = Qny + NMno/2,2,1(f)eny/2,2,1- In both cases we get the
polynomials of degree Ny that interpolate f at Ny/2+ 1 points each. And always

the subscript M gives the total number of points where Sy, interpolates f.

If we continue this process, we see that the restriction of the function Sas(n,41)
to any interval ;,, j = 1,...,2°, coincides with Qn,(f, (xn,j,s)nN:fl, -). Then we
add the next terms 7 (f)e. to Sas(n,+1) and we get certain polynomials of de-
gree N; that interpolate f at some points on the intervals I; 41, 7 = 1,...,25"%
Continuing in this way we get Sis+1y,41 that has a degree Ny on I,y and
interpolates f on this interval at N, + 1 points; so here it is the usual interpo-
lating polynomial. Then the restriction of Sys+1(y,41) to the interval I, gives
Qn.(f, (xnjsﬂ)gﬁl,-) and Sys+1(n41)|1;.,, produces Qn(f, ($n7j75+1)7]1v:11,$) for
N > N;. It will continue up to the value N = Ny, after which we do the next

splitting.

Now we show that the expansion f = ) nn;s(f)en,s(z) is unique. Sup-
pose nn,js(f) = 0 for all N,j,s. Then, by considering step by step all triples
o~t(m), m € N, we get {n;5(f) = 0 for all N, j,s. Since the set of nodes of the
corresponding divided differences is dense in K (A), f = 0 which means that the
expansion f = Y nn;s(f)en,s(z) is unique. Then, it is enough to check only

the convergence of Sy/(f,+) to f in the norm of the space CP(K(A)).

Let N, < D for s € Ny. Fix f € CP(K(A)), e > 0 and s, such that w(f,1;.)
D23 2D+ p=2le: Do For any M > M, we get 25°Y(N,_; +1) < M
2°(Ns + 1) with s > s, + 1.

IA A

Fix x € K(A). Without loss of generality let z € K(A) N [0,ls]. We have two

cases:

For the first case if 2°71(N,_; + 1) < M < 2°N,_4, then

Su(fr2) = Qo y (f, (Enaam)n 7 2) + > vas(fens(@), (3.14)
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where the sum is taken over all N, j, s with 2°71(N,_1+1) < (N, j, s) < M. Since
the degree N,_; will appear for the first time when o= (2N, ;1 +1) = (N,_1, 1, s),
for the values N with (3.14) we have N < N,_; — 1.

For the second case 2°Ng;_1 +1 < M < 2°(Ng + 1) we get

N+1
Su(f,z) = Qn(f, (mn,l,s)n; )
with some N, Ny,_; < N < N,.
We prove the convergence of Sy (f, ) to f for these two cases and we start with
the more simple second case. With the notation é(f) = [T118 - TN+11s T] ],

we have the polynomial Qny1(-) = Qn(-) +£(f)ent1.1.(-) that interpolates f also

at the point x. Therefore here
f(flf) —SM(f,l') :é(f)eN-l-l,Ls(x)- (315)
Then for £ =0,1,...,p

1£(2) = Su(f, 2) ]k = sup{|(€(Fen11.5(x)"

(3.16)
By (3.12)
. ANs—i Bklogy N N;'+2 w f'(z)7 ls_
\fN(f)egv)+1| < ] ( 1)
AD=i pilogs D Dyit2 y(£() ] )
= i!
<e
Here £(f) = [#114,- .-, TNns11.6, %] f also depends on z. We know that
N
~ —f(x) f(z))
=t e
en() ; e'(x;)
Then

E(fentiis(r) = AC) eNH s + Z S 37] 6N+1 1 s( )

€N

Since we show that the second part, it is enough to show that
<f<x>eN+1,1,s<m))(’) < . But

en(x)




since we approximate in terms of the terms /.
If 2571(]\/'5_1 + ].) <M< 25N5—1, then

[f(2) = Su(f, )| = [n(f)eriras(z)l. (3.17)

Then by Lemma 3.2.1

N2FFS APNs-1=2k p2klogy Noovqpy(fR) 7))
k!
D2+3 A2D=2k p2klogy Dy (£(8) ]
k!

(el (@)

IA
™

In the same way we can find a bound for the differentiation of 77(f). Therefore
|f(z) = Su(f, )| <eforall k=1,2,...,p which is the desired conclusion. [J
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Chapter 4

Schauder Bases in the Spaces

CP(K(M)) and EP(K(N))

In this chapter, we construct a basis in the space of continuous functions and
in Whitney spaces on Cantor type sets. Let K C R be a compact set, and
let f = (f%))ochen € CP(K). Let K(A) be the Cantor set associated with
the sequence A which we define in Section 2.3. In this chapter, by using the
local Taylor expansions of functions, we construct a biorthogonal system. Then
we show that this biorthogonal system is a Schauder basis both in the spaces

CP(K(A)) and EP(K(A)).

4.1 Local Taylor Expansions on Cantor-type Set
K(A)

We consider the set of all left endpoints of basic intervals of our Cantor set K (A).
As we defined in Section 2.3, K(A) is the Cantor set such that K(A) = (2, Es.
where Ey = I, = [0, 1], E; is a union of 2° closed basic intervals I, ; = [a; s, b; ]
of length [, and E,,; is obtained by deleting the open concentric subinterval of

length hy := g — 2[5y from each I, 5, j = 1,2,..2°. Then a;s = agj_1,41 for
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Ty =0aipo

11 To = Q21

1,2 T3 = G229 as 2 Ty = Q49

Figure 4.1: First steps of Cantor procedure and the points a;

J < 2% So any such point has infinitely many representations in the form a; .
We select the representation with the minimal second subscript and call it the
minimal representation. If j is even, then the representation a; is minimal for
the corresponding point. If j is odd, for j =292m + 1) +1 > 1, a5 = Gamt2.5—¢
where m € N and for j = 1, a;5 = a1 for all s. As seen in the Figure 4.1

a10 = @11 = a1 and as; = agz. Therefore we have a bijection between the set

23—1’ 0o

of all left endpoints of basic intervals and the set A = a1, U (a2j,6)j-1 121-

Let us enumerate the set A by first increasing s, then j. Then z; = a1 =
0, Ty = Q21 = 1— ll, T3 = Q22 = ll — lg, Ty = Q2 = 1— lg, Ce and, in general,

x23+k — a/2k73+1 fOI‘ k — 1, 2, ey 25.

Let us fix p € N. For s € Ny, j < 2% and 0 < k < plet g 5(v) = (x—a;s)*/k!
if z € K(A)N I, and ex; s = 0 on K(A) otherwise. Given f = (f#)ocp<, €
[To<re, CUK(A)), let &5 s(f) = f®)(a;,) stand for the same values of s, j, and
k as above. For the fixed level s, the system (ey ; s, &k j,s) is biorthogonal, that is
€k.j s(€ni,s) = Opn-0;;. For example, for fixed s, &4, 5(f) = f(2)(a475) and e 4 () =
(x — ay4)?/3if v € K(A)N Iy, and e34 s = 0 on K(A) otherwise. Then clearly
Eoas(ezas) = 0. Also &4 5(f) = fP(aas) and egns(7) = (z — ag,)?/2! if @ €
K(A)NIys and eg5 s = 0 on K (A) otherwise, then & 4 (e22,s) = 0. Furthermore,
&k,j, s takes zero value at all elements (ek,i,n)izo with n > s, except ey ; s, where
it equals 1. But when n < s, the system (e j n, &k, s) is not biorthogonal. For
example, &4 3(f) = [P (as3) and egg9(z) = (v — ag)?/2! if v € K(A)N Iy and
€222 =0 on K(A) otherwise, then &5 4 3(€22 2) = 1.

In order to obtain biorthogonality as well with regard to s, we will use the
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following convolution property of the values of functionals on the basis elements
(see Section 2.4.4). Let I; ,, D I s—1. Then

P
D Gajs(emjia1) - Emia1(Cqin) = Erajislegin) forall g <p.
m=k

Indeed, (€kin)hegs (€kj s—1)r—0s (€k2j.s)heo are three bases in the space
P,(15;s) of polynomials of degree not greater than p on the interval Iy;¢. If M, .,
denotes the transition matrix from the ¢t—th basis to the r—th basis, then the

identity above means Mz, o My, 1 = M3, 1.

On the other hand, in our case, this identity is the corresponding binomial

expansion:

d <a2j,s — aj,sfl>m_k (aj,sfl — ai,n)q_m . (a2j,s — ai,n)q_k

(m=kl  g=m! gk

(4.1)
m=k
Here we consider summation until ¢ since for ¢ < m < p, the terms &, ; s—1(€g.n)

vanish. We obtain (4.1) by the binomial expression

n

(x+9) :Z(n—m)!m!x Y
m=0

where we take x = agj s — ajs—1, ¥ = ajs—1 — Ain, n = g — k and we change the

index.

251 o

We restrict our attention only to the functions (e, 1,03 and (ex,2j.s) 0 1 s1

corresponding to the set A. Let us enumerate this family in the lexicographical
order with respect to the triple (s, 7, k) : f, = en_11,0 = ﬁ(x —x1)" ' xa0
form =1,2,--- ,p+ 1. Here and in what follows, ;. denotes the characteristic
function of the interval I; ;. After this, f,, = €,_p 221 = m<$_52)n_p_2')<2,1
forn = p+2,p+3,---,2(p+1) and in general, if (m—1)(p+1)+1 < n < m(p+1),
then f, = %(m — Zp)F  X2is41 = €h2i s41. Here m = 2° + ¢ with 1 < i < 2% and
k=n—(m—1)(p+1)—1. We see that all functions of the type (2 —zm )" X2i 541
with 0 < k < pand m = 2°+i € N are included into the sequence (f,,)3 ;.

For the same values of parameters as above, we define the functionals 7,1 o =
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&ka0 for k=0,1,---,pand

p
M2, s = Sk,2j,s — Z Ek.2j,s(€mj,s—1) * Emjs—1
m=k
for s € N,j =1,2,---,2°t and k = 0,1,--- ,p. In what follows, we will use
the minimal representations of the points a;, and the corresponding functionals
Em,j,s- For example, nro s = ko s — an:k: k2 s(€m1,0) - Em1,0. This agreement
is justified by the fact that the value &, o(f) = f™(a;s) does not depend on
the representation of the point a;, and the functions e, ; s—1, €m,r s—q coincide

on the interval Iy,  if a1 = a, g

The crucial point of the construction is that the functionals 7, o5 s are biorthog-

onal, not only to all elements (ej2; s—1)h_o, but also, by the convolution property,

to all (egain)h_g withn=10,1,---,s —2 and i = 1,2,---,2""'. For example,
S (x - a2,2)2 " X2,2
24,3 = 52’4’3 o Z 527473(6"1,2,2) '5m,2,2 and €222 = o1 .
m=2
Then

p
772,4,3(62,2,2) = 52,4,3(62,2,2) - Z 52,4,3(€m,2,2) 'fm,2,2(62,2,2)
m=2

p
d [(x—ags)™ d (r — ags)?
g 1 —_ —_ B S A 5
Z_: dz? < m)! e—as dxm 21 v—ay s

. d (lL‘ — (l272)2 d (CC — a2’2)2 . .
= 1—@<—zl = G TR M
r=a4,3 r=a4,3

Also

P
M2a3(€31,0) = &aa3(es10) — Z §o.4,3(€m2,2) “ Em2,2(€31,0)

m=2

= 52,4,3(63,1,0) - 52,4,3(62,2,2) '52,2,2(63,1,0) - 52,4,3(63,2,2) : 53,2,2(63,1,0)
= 52,4,3(63,1,0) - 52,2,2(63,1,0) - 52,4,3(63,2,2)

= 6(as3 —ai) —6(az2 —aip) —6(ass — aszs) =0.

In addition, the functional 7y, s takes zero value at all elements (ek,%,n)i:o with

n > s, except e s, where it equals 1.
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In the same lexicographical order as above, we arrange all functionals
s—1 00 . 00 .

(o)l and (i) e’y into the sequence (7). That is, nu(f) —

€n—11,0 for n = 1,2,--- /p+ 1 and in general, n,(f) = Mg 2 s+1 where k =

n—(m-—1)(p+1)—1and m =2°+i with 1 <7 < 25
Our next goal is to express the sum Sy(f) := ZnN:1 N (f) - fn in terms of the
Taylor polynomials of the function f. For 1 < N <p+1,

T — x1>n—1

S () = o mf) = 30 ey I Ty

Suppose p+2 < N < 2(p+1). Then Sy(f) = I{f on I 1. On the interval

I5 1, we obtain

N
Sn(f) = Tof+ Z Mn-p-22,1(f) " €n—p-221

n=p+2
N—p—-27T p 1
= I5f+ Z &2 (f) — Z Er2,1(€m,10) - fm,l,o(f)] Tl (x —ag)"
NS 1
= Té)f -+ Z f(k)(all) — Z m ag?l—k . f(m)((])] E (.Z‘ — a2’1)k
= T+ Y (BN M (az1) 7 (0 — aon)" = TYf + T 77 *(RES).
k=0 '

Therefore, Sy (f) = Tgf on Iy and Sy(f) = Tgf + TN P7*(Rof) on Iy
Particularly, Spio(f) = T0f + 1%, (Rof) = T0f + 18, (f = T5f) = T5f +
o, (f) = T8 f = T2, f, by (2.2). In addition, Sy (f,az1) = f® (az,) for 0 <

a1

k< N —p—2, as is easy to check.

Continuing in this way, the values 2p +3 < N < 3(p + 1) correspond to
the passage on the interval lys. On I, Sy(f) = T{f. On Ly, Sy(f) =
T(I))f + TN72p73(Rgf). On [372 and [472, SN(f) =17TP f

az,2 az;1

As seen in the Figure 4.2, we have three different sets.

For example, the values 5(p + 1) +1 < N < 6(p + 1) (since as3 = w¢)
correspond the passage on the interval I, 3. On the interval I3, Sn(f) =17  f+

az 2
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Ty = aipo Lo

ai I To = Q2,1 Iy,
T3 = G222 as2 Ty = Q4,2
Lis Iy Iss Iy3 Is, Iy

Figure 4.2: Decomposition of K(A) into three different sets

Tﬁgf’p 6(Rg”f). On the intervals [} 3 where k = 1,2,3, Sx(f) = T? . f, that is,
on Tis, Sn(f) = T2 f = T8 f; on Ips, Sn(f) = T2, f and on I3, Sy(f) =
Té’wf = anf On the interval I3,, Sn(f) = Té’“f = amf and on Iy,

Sn(f) =12, T

Combining all considerations of this section yields the following result:

Lemma 4.1.1. /21, Lem. 1] The system (fn,nn)5>, is biorthogonal. Given
f= (f(k))ogkgp € Hogkgp C(K(A)) and N =2°(p+1) +j(p+ 1) +m + 1 with
s € Ng,0 < j < 2% and 0 < m < p we have Sy(f) = 15 +1f on Iy s11 with

k=1,2,---,274+1, Sy(f) =T f on s withk =j+2,j+3,---,2° and
SN(f) a+1 f+ a2J+2 >+1(R5j+l,sf) on 12j+2,8+1'

4.2 Schauder Bases in the Spaces C?(K(A)) and
EP(K(N))

In this section we show that the biorthogonal system suggested in Section 4.1 is a
Schauder basis in both spaces C?(K(A)) and EP(K(A)). Here, as before, p € N.
Given g on K(A), let w(g,-) be the modulus of continuity of g, that is

w(g,t) = sup{|g(z) —g(y)|: 2,y € K(A), [z —y[ <1}, 1>0.
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If x € I =[a,a+ ], then for any i < p we have

(A9 = [1O@) ~ @)~ 3 9 T <w(r.1) 41,217,
o (4.2)

and
(RENP @) < 41f], (4.3)

Lemma 4.2.1. [21, Lem. 2] The system (fn,nn)5>, is a Schauder basis in the
space CP(K(A)).

Proof. Given f € CP(K(A)) and € > 0, we want to find N, with |f —Sny(f)|, <¢
for N > N.. Let us take .S such that for all 2 < p we have
3-w(fO1g) +14-1g - |f], < e. (4.4)

Set N. = 29(p+ 1). Then any N > N, has a representation in the form N =
2(p+1)+jp+1)+m+1withs>50<7<2% and 0 <m < p. Let us fix
i < p and apply Lemma 4.1.1 to R := (f — Sx(f))@(z) for € K(A).

If © € Iy with k = 1,-+,2j + 1, then [R| = |(f =T /)(2)] =
(RE £YD(z)] < e, by (4.2) and (4.4).

Ok s+1
If 2 € Iy with k = j+2,5+3,---,2° then |R| = |(f_T£k,sf)(i)(x)| _
(B2, )P(2)] < &, by (4.2) and (4.4).

Suppose x € Iyj19s1+1. Then

Rl =|(f=TF  f=Tm . (R )
<|(Ry D@+ 1(Tm . (B ) ().

For the first term we use (4.2). Second term vanishes if m < i. Otherwise, it is

m k—

. ; T — agj42.s
(joJrLsf)( )(z) - (Rﬁjﬂ,sf)( Nazji2,541) — Z <jo+1,sf>(k) (a2j+2,s+1)< (th2Z)T1)

k=i+1 '
Here, we estimate the terms (R% )@ (x), (Rf . f)?(ag;42,611) by means of
(4.2). For the remaining sum, we use (4.3):
m ki m o ki
P k) (, (z — agj12,541) L1 .

k§1(Raj+l,sf) <a2j+2,8+1) (k’ _ Z)‘ < 4 |f|p k;1 (k’ _ Z)' < l8+1 8 |f|P
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Combining these we conclude that |R| < 3(w(f©, 1) + Iy - 2|f]p) + lss1 - 8|f]p-
This does not exceed e due to the choice of S. Therefore, |f — Sy(f)|, < ¢ for
N > N.. O

The main result is given for Cantor-type sets under mild restriction:
3 C[) . ls S C() . hs, for se N(). (45)

Theorem 4.2.2. [21, Thm 3] Let K(A) satisfy (4.5). Then the system
(fry Mn )y is a Schauder basis in the space EP(K(A)).

Proof. Given f € EP(K(A)), we show that the sequence (Sy(f)) converges to f

as well in the norm

1F Nl = £l +sup {{(RY )P (@)] - [& —y[* P 2,y € Koo # 9,k =0,1,...p} .

Because of Lemma 4.2.1, we only have to check that the second term of the norm
[(RE(f — Sn(f))@(x)| - |# — y"? is uniformly small (with respect to z,y € K
with z # y and ¢ < p) for large enough N. Fix ¢ > 0. Due to Whitney Theorem
(condition (2.1)), we can take S such that

|(R§f)(k)(a:)] <elr—yP™* fork<p and z,y € K(A) with |z —y| <ls.
(4.6)
As above, let N. = 2%5(p+ 1) and N = 2°(p+ 1) + j(p + 1) + m + 1 with
s>50<j57<2% and 0 <m < p.

For simplicity, we take the value ¢ = 0 since the general case can be analyzed
in the same manner. We will consider different positions of  and y on K(A) in

order to show
[RY(f = Sn(M)(@)] < Celz—yl,
where the constant C' does not depend on x and y. As seen in the following figure

we have three different sets on K (A) and we will consider the positions of z and

y according to these sets. In all cases, we use the representation of

TkaHf € Ilps1 and k=1,2,---,25+1
SN(f): Tfkysf x€lps and k=7+2,---,2°
T£j+1,s'f + T$j+2,s+1 (jojqﬁgf) YRS [2j+2,s+1
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given in Lemma 4.1.1.

== =0 == -—-=

117

Suppose first that z,y belong to the same interval Ij 4, with some k£ =
1,...,2j+ 1. Then (f — Sy(f))(x) = R, f(z). From (2.2) it follows that
RY(f — Sw(D)(x) = Ry(Ry, . f(2))(x) = R f (). Then since [z — y| < L1, by
(4.6)

|By(f = Sv())(@)| = |Ryf(x)] < e |z -yl

which is the desired bound.

Also for the case x,y € I, with k = 74+2,7+3,---,2° (f — Sn(f))(z) =
Rp f(z) and RY(f —Sn(f))(x) = RE(RE, _f(x))(z) = REf(x). Here, [z —y| <,

A, s

so as before (4.6) can be applied.

Ifz,y € Iyjyas41, then (f =Sy (f))(x) = (R, )(e)=T5, ., (R, [)(z)
for m < pand (f — Sv(f))(z) = (R}, ,, ., f)(z) for m = p. Since RP(T™) = 0

for m < p, in both cases we get RP(f — Sn(f))(x) = Rpf(z) with |z —y| <

and (4.6) can be applied once again.

We now turn to the cases when x and y lie on different intervals. Let z €
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I s+1,Y € Iy s+1 with distinet k,m =1,---,25 + 1. Then

RIS = Sv(f)@) = R(f T8, D)
= (R, (@)

Ak 541
b i
= R, @) - SO0
=0
p - p—i |(L’ _y|i
< 6'l3+1+€';ls+1 i
< e (Colz—y))P +¢- ~ (Colz — pr—i [z —y/’

7!
i=0

< Chle+1)-e-|z—yl.

Here, |z—apsi1] < lsi1, [Y—@msi1]| < lsy1 and by hypothesis [z —y| > hy > Cy ',
Also by (4.6),

|R1a)k7s+1f(x)| <€ |:B - ak75+1|p < 5l§+1

and
(R HPW) <ely—amsn| " <elliy.

As a result, |RE(f — Sn(f))(z)| < Cf(e+1) - €|z — y|?, which establishes the
desired result. Clearly, the same conclusion can be drawn for x € I 5,y € Iy s
with distinct k,m = j + 2,--- ;2% as well for the case when one of the points
x,y belongs to Iy s41 with & < 2j 4+ 1 whereas another lies on I,,, s with m =

42,20

It

AN

Y € Iy T € Iyji0

Figure 4.3: The case x € Iyji241 and y € Ioji1 11

It remains to consider the most difficult cases: just one of the points z,y

belongs to Ij12s41. Suppose & € Isjio,11. We can assume that y € Iyjiq 541
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since other positions of y only enlarge |x — y|. Let g = f — Sy(f). Then

gle) = (f =T3 , f=Toy o (RE D) = (RE,, f=T0, ., (R )(),

since © € Ij19411. Also since y € Ioji1 541 and aj11 = agjyi,

9(y) = (f =13, )W) = (Be,,. . F))(Y).

Then,

RY(f = Sn(f))(z) = Ryg(z)
p (%) T — i
_ g@)_z g (y)(! y)

7
= B, @)~ T0 (R (@)
g e =)

2!

=0
We only need to estimate the intermediate 7™ since other terms can be handled

in the same way as above. Now,

m . '
(RE /)P (agjso,541)] |2 — azjyasril’
T L LB ) < Y e i
=0 !
lm

77" |z — agjyo,541 )

IN

Z g |a2j+2,s+1 — Qjt1s
7!
i=0
" 6Cp_i|x — y|p_i Cilz — y|*
< Z 0 . 0 Y

7!

=0
< Cheelx—yl.

Since by (46), |(Rg 1Sf>(i)((12j+275+1)| S €|a2j+2,3+1 — aj+17$|p_i. In addition,
Jj+1,
lagjias+1 — aji1,s] and |z — agjio 41| do not exceed Cy|z — y|. As a result we

obtain |17 R f)(x)] < C¥ee |r—ylP which is the desired result.

a2j+2,s+1( aj41,s

In the last case @ € Iyjq1,641, Y € Ioj42,641- Then since x € Iojiq 41,
g(x) = (f =15, [)x) =R, f(z)and since y € Ipjyot1,
g(y) - (f - Tg;'+1,s - T£j+275+1 (jo+1,sf))(y) - (Rggj_‘_l’sf - T£j+2’s+1 (jo-‘—l,sf))(y).
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i

N

x € Iy Y € Iy

Figure 4.4: The case y € Iyj12541 and @ € Ioji1 o611

Then we have,

Ry(f = Sn())(x) = Rjg(x)

1=0
— R§j+1’sf(x) o i (R£j+l,sf - Ta2j+2,5+1 <§gj+1’5f)) (y) (:U - y)
1=0 )
As above, it is sufficient to consider only ZfZO[T:;‘HQ’S“(Rgﬁl’sf)](i) (y)(xz—y)'/i!

since for other terms we have the desired bound. Since 7™ term vanishes when

1 > m, the genuine summation here is until ¢ = m. Then

N | I O [CE
i

1=0

Tz =yl = RE L S P |y — agjiaeaFT
= ZZ; z‘!y| kz:: = (k —14)!
. Xm: ely - ajzr]i,s p@')kl s [
=0 k=1
) m €l§_k lkfi

' Z (k — ;;1

IA

[
=

= |
<

IA
NE

=3
e

i=0 ) k=i
m i~ Ip—i

Z 7!

1=0

< Chetelr—yl.

Since by (4.6), [(Rh ., /)P (y) <ely - aj1s/""". In addition, |y — agji9,.1] <
ls+1 and [ do not exceed Cy |x —y|. As a result we obtain the desired result. Then

the proof is complete. n
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Now we give two remarks. One is about whether our construction works in

the space E(K(A)). The other remark about the restriction in our theorem.

Remark 1. This biorthogonal system will not have the basis property in the
space (K (A)). Let us enumerate all functions from (ey 1,0)52 U (ek,Zj,s)zioi:fjsiol
and the corresponding functionals 7 into a biorthogonal sequence (f,,7,)32; in
such way that for some increasing sequences (N,)>%, (¢p)52, the sum Sy, (f) =
nglnn( f) - fu coincides with T3 f on [;, for 1 < j < 2P. The sequence
(fr, n)5 will not have the basis property in the space £(K(A)). Let F €
C*°[0,1] solve the Borel problem for the sequence (n!l;")%,, that is F(™(0) =
n!l,;" for n € No. Let f = F|k(). Since Sy, (f) = SN a(f) - fu coincides with

T, fon I, for 1 < j <20, (f—Sn,(f))(x) = (f—Tar, f)(x) = R, f(x). Then

f = Sn,(Nlo = [RE flo > R f(L,) Zf’“)
>\f Zp /{:‘lkklg since  f®(0) = k! *
k=1
>1—[f(l) = f(0)]

The last expression has a limit 1 as p — oo, so Sy(f) does not converge to f in

|- fo-
For a basis in the space E(K(A)), see [6].

Remark 2. As we notice in Section 2.4.3, the natural triangulations in
Jonsson’s paper [13] are given by the sequence F; = {[;5, 1 < i < 2°},5s >0
for Cantor set K(A). The regularity conditions in Jonsson’s paper [13] satisfied
when col; < ;11 < c3l;, that is,

Iy,

S

liminf =1 > 0. (4.7)
§—00

Thus, [13, Prop. 2|, for the Cantor set K(A) provided these conditions, the
expansion of f € EP(K(A)) with respect to Jonsson’s interpolating system con-
verges, at least in |-|,, to f. It is interesting to check the corresponding convergence

in topology given by the norm || - ||,. Our construction can be applied to any
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small Cantor set with arbitrary fast decrease of the sequence (I5).—,. The basis
problem for the space EP(K(A)) in the case of large Cantor set with I;/h, — 00

is open.
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Chapter 5

Schauder Bases in the Spaces

OP(Koo(A)) and EP(Koo(A))

Let K C R be a compact set, and let f = (f*)o<p<n € CP(K) be defined as
in Section 2.1. In this chapter, we construct a basis in the space of continuous
functions and in the Whitney space and also on K, (A), the Cantor set associated
with the sequence A which we defined in Section 2.3. We use the same method as
in Chapter 4. In the same way, by using the local Taylor expansions of functions,

we construct a biorthogonal system. Then we show that this biorthogonal system
is a Schauder basis both in the space CP(K(A)) and EP(K(A)).

5.1 Local Taylor Expansions on K, (A\)

Let (Ns)22, be an increasing sequence such that Ny — oo as s — oo. Let
A = (15)22, be a sequence such that [p = 1 and 0 < Ngyqlsp1 < g for s € Ny :=
{0,1,---}. Let K(A) be the Cantor set associated with the sequence A that is
Ko (A) =N, Es, where Ey = I, o = [0,1], E is a union of [[}_, N; closed basic
intervals [; s = [a;s,b; 5] of length [, and Esi; is obtained by deleting Ny —

ls*Ns+1ls+1

1 open concentric subintervals of length h, := No o1

1,2, 1T, Ns.

from each I, j =
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Let ¢5 = [[;_o Ni and 74(z) = [+] where [-] denote the greatest integer

function. We use these expressions many times in our work.

Let us consider the set of all left endpoints of basic intervals. Since a;s =
AN, .1 (j—1)+1,s+1 for j < @y, any such point has infinitely many representations in
the form a; ;. We select the representation with the minimal second subscript and
call it the minimal representation. Let By ={j : 1 < j < ¢, j # Nst+1,0 <t <
¢s—1, j,t € N}. For s > 1 the representation a;, where j € By, is minimal for the
corresponding point. For example, as seen in the following figure for Ny, = s 4+ 1
the points ai g, a1, a2, as2, 52, a2, A23, 33, -+ are minimal. Therefore we

have a bijection between the set of all left endpoints of basic intervals and the set

A=aoU (aj,s)sfi,jisl,jeBs'

T
1,0 [170
T2
a1 11,1 2.1 [271
x3 Ty Ts Te
1.2 a2 2 a3 2 7)) Q5.2 Qg2

Figure 5.1: First two steps of Cantor procedure with N, = s+ 1

Let us enumerate the set A by first increasing s, then j: 1 = a10 =0, 22 =
as 1, anda in general, Ty 14k = Qrg(kd7s(k))+k+1,s for k = 1,2, 7¢s - Qbsfl- As
seen in the figure above, for Ny =s+1, v1 =a10 =0, 22 = a1, T3 = ag2, T4 =

as2, Ts = a52, e = 46,2, - - -

Let us fix p € N. For s € Ny, j < ¢s and 0 < k < plet ey s(z) = (x—a; )" /k!
if v € K(A)N I, and e, = 0 on K(A) otherwise. Given f = (f#)ocp<, €
CP(K(A)), let & j.s(f) = f®(a;s) stand for the same values of s,j, and k as
above. For the fixed level s, the system (e s,&k,j,s) is biorthogonal, that is
kj s(€ni,s) = Opn - 0;5. For example, for Ny = s + 1, &5 2(f) = f®(asz) and
e332(x) = (¥ — azg)?/3l'if x € K(A) N I35 and e32 9 = 0 on K(A) otherwise,
then clearly &35 0(e33.2) = 0. Also &50(f) = f®(ass) and egs2(x) = (v —
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aso)*/Alif x € K(A)N1I55 and €452 = 0 on K(A) otherwise, then &35 2(€45 2) =
0. Furthermore, & ; s takes zero value at all elements (ej; »)h_, with n > s,
except ey ; s, where it equals 1. But when n < s, the system (e ; n, k), 5) is not
biorthogonal. For example, for Ny = s+1 &35.2(f) = P (as2) and ez, (7) = (z—
as1)?/3lifx € K(A)NIy; and e35 1 = 0 on K (A) otherwise, then &35 2(e32.1) = 1.

In order to obtain biorthogonality as well with regard to s, we will use the
convolution property of the values of functionals on the basis elements as in
Section 4.1. Let I; , D I s—1. Then

Z £k7j75<€m77—s(j)+178—1> : ’Sm,’rs(j)—i-l,s—l(eq,i,n) = gk,j,s(eq,i,n) for all q < p.

m=k
We define the functionals

p
Mejis = Ekgis = O kgos(@mim()ita-1) - Emm()1,s-1

m=k

forseN, j=1,2,--- ¢, j € Bs,and k =0,1,--- ,p. Now the functionals 7 ; s
are biorthogonal, not only to all elements (ekyjys_l)izo but also, by the convolution
property (see Section 2.4.4), to all (exj,)y_, with n = 0,1,--- ;s —2 and j =
1,2,--+ ,¢n, j € Bs. In addition, the functionals 7 ;, takes zero value at all
elements (ek7j7n)£:0 with n > s, except ey j s where it equals 1. For example, for
Ng=s+1,

773,5,2(63,2,1) = 535 2 63,2,1 253,5,2 €m,2, 1) fm,2,1(€3,2,1)

= 1- 53,5,2(63,2,1) '53,2,1(63,2,1) =1-1=0.
Also

773,5,2(65,1,0) = 53,5,2 €51, 0 Z 535 2 6m,2,1) §m2 1(65 1 o)

2
a —a
— (@52 — a10)” _ §s,5,2(e32,1) - §32,1(€5,1,0)

2
—Es5,2(€a2,1) - €a2,1(€51,0) = 35,2(€5.2,1) - E5.2,1(€5,1,0)
2 2
_ (a5,2 6LLO) _ (a271 al,O) — <a5,2 — CL271)(CL2,1 - al,O)
2 2
2

= 0
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Here, we will use the minimal representations of the points a;, and the corre-

sponding functionals &, ; .

1 ] 3 p b, 28717 o
We restrict our attention only to the functions (ex1,);_, and (ek72j75)k:0’j:1’s:1

corresponding to the set A. As in Chapter 4 we enumerate this family in
the lexicographical order with respect to the triple (s,j,k) : fn = en—11,0 =
ﬁ(m —x)" 1 x10forn=1,2,---  p+ 1. Here and in what follows, x; s de-
notes the characteristic function of the interval I; ;. After this, f,, = €,—p—221 =
1
(n—p—2)! f
(m—1)(p+1)+1<n<m(p+1),then f = (& — )" - Xru(i4r()+it1s =
Chr (i47s (i) +it1,s- Herem = ¢,y +iwith 1 <i < ¢pgand k =n—(m—1)(p+1)—1.

— e

(x —x)" P2 xg1 forn =p+2,p+3,---,2(p+ 1) and in general,

We see that all functions of the type %(SB L Xrs (i47s (i) +it1,s With 0 <k <p

and m = ¢s_1 + ¢ € N are included into the sequence (f,)32 ;.

In the same lexicographical order as above, we arrange all functionals

D, oo, d) 3 0.)
(nk,j,s)kzojszldzije& into the sequence (1,,)%;.

Our next goal is to express the sum Sy(f) := Zf:[:l N (f) - fn in terms of the
Taylor polynomials of the function f. Clearly, Sy (f) = T3' 'f for 1 < N < p+1.
Suppose p+2 < N < 2(p+ 1). Then Sy(f) = T3 f on I ;. On the interval I,

we obtain

N
Sv(f) = Tgf+ Z Mh—p-22,1(f) * €n—p-221

n=p-+2
N—p—-2T p
= T0f+ Z Eroa(f) — Z Er2,1(€m,10) - §m,1,o(f)] % (x —ag)"
S |
= Tgf + kzzg _f(k)(all) — mz::k m agfl_k . f(m)((])] E (I — a271)k
N—p—2 1
= T5f+ Y (RN W (an) 1 (0 = aon) = T0F + TP (RE D).
k=0 ’

Therefore, Sy(f) = Ty f on Iy and Sy(f) = Ty f + TN P"2(Rhf) on Iy;.

a1
Particularly, Sopio(f) = Tof + 18, (Bof) = Tgf + 18, (f —=15f) = T5f +
T2, (f) = T8 f = T2, f, by (2.2). In addition, Sy (f,az1) = f® (az,) for 0 <

k< N —p—2, asis easy to check.
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Continuing in this way, the values 2p +3 < N < 3(p + 1) correspond to the
passage on the interval I3, or Iy from the polynomial 7§ f to the polynomial
1%, f or 17, f. As seen in the following figure, here we have four different sets.
We explain this by an example. Let Ny = s+ 1. The values 12(p+1)+1 < N <
13(p + 1) correspond to the passage on the interval I;p3. On the interval I3
(set 2 in the Figure 5.2) Sx(f) = TP f + TN-12=13(RP _f). On the intervals

as,2 a10,3 as,2
I3 with & = 1,...,9 (set 1 in the Figure 5.2), we have Sy(f) = T? _f. On the
intervals I11 3 and [123 (set 3 in the Figure 5.2), we have Sy (f) = 7%, ,f. On the
intervals I o with k =4,5,6 (set 4 in the Figure 5.2), we have Sy(f) =172, f.
I o
Iiq Iy,
Iz Iy, I35 Iy Iso Ig o

€- ---- A6

1 23 4

Figure 5.2: Decomposition of Cantor procedure into four different sets with Ny =
s+1

Combining all considerations of this section yields the following result:

Lemma 5.1.1. [29] The system (fn,n,)22, is biorthogonal. Lett = 7411(j) + 1.
Given f = (f®)ocr<p € [To<kcp C(Koo(A)) and N = ¢s(p+1) +j(p+1)+m+1
with s € Ng,0 < 7 < ¢, and 0 < m < p we have

T‘fks+1f xEIk,s—‘rl and k:1,2,"',j—1
TP € I, dk=t+1,--- ¢,
sw(f) = 4 Tawd T € Iy an ¢ )
T, f+ T2, (R, S) r€l.y and j € B,
5.7 2 € Iyspr and k=j+ 1, tNep

at.s
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5.2 Schauder Bases in the Spaces C?(K(A)) and
EN(Ko(N))

In this section we show that the biorthogonal system suggested in Section 5.1 is
a Schauder basis in both spaces CP(K(A)) and EP(K(A)). Here, as before,
p € N. Given g on K(A), let w(g,-) be the modulus of continuity of g, that is

w(g,t) =sup{|g(z) —g(y)|:z,y € K(A), |z —y[ <1}, T >0.

If x € I =[a,a+ 4], then for any i < p we have

(R (@)] < w(fP, 1) + 152 fl, (5.2)

and

(R ()] < 4]f],. (5.3)

Lemma 5.2.1. [29] The system (fn,nn)02, is a Schauder basis in the space
CP(K(A)).

Proof. Given f € CP(K(A)) and € > 0, we want to find N, with |f —Sny(f)|, <¢
for N > N.. Let us take S such that for all 2 < p we have

3w(f9 1g) + 1415 |f], < e (5.4)

Set N. = ¢s(p + 1). Then any N > N, has a representation in the form N =
ds(p+1)+jp+1)+m+1withs>S 0<7< ¢, and 0 <m < p. Let us fix
i < p and apply Lemma 5.1.1 to R := (f — Sy (f))? () for € K(A).

If © € Lo with & = 1,---,j — 1, then |R| = |(f = T¢  f)P(x)] =
(RE £YD(z)] < e, by (5.2) and (5.4).

ak,s+1

If v € I, with k =t 4+ 1,t +2,--- ,6,, then |R| = |(f — T2 f)D(z)| =

ak. s

(R f)?(x)| and the same arguments can be used.

If & € Iy oy With k = j+1,542,- -+ ,tNgyy, then |R| = [(f=T2 . )P (2)] =

(1%, Hlf)(i)(:c)] and the same arguments can be used.

62



Suppose x € I;11, j € Bs. Then

Rl =I(f -T2 f =T, (B, ) ()
< (B, NP @]+ T3 (RE )P ()]

For the first term we use (5.2). The second term vanishes if m < i. Otherwise, it

is
‘(Rﬁt’s )(i)@) - (Rat,s )(i)(a2j+2,s+1) o Z (Rgt,s )(k)(aj’sﬂ) - _(kaisz)l')
k=i+1 '

Here, we estimate the first and the second terms by means of (5.2). For the

remaining sum, we use (5.3):

- —i m k—i
p R) (. (x — ajst1) <4 [ -
k;I(RaLS ) (a],s+1> (k} _ 2)' = |f|p k;—’—l (IC _ Z)' < s+1 8 |f|p

Combining these we conclude that |R| < 3(w(fW, 1) + Is - 2|f],) + lsx1 - 8| f]p-
This does not exceed ¢ due to the choice of S. Therefore, |f — Sy(f)|, < ¢ for
N > N.. [l

Also for this problem the main result is given for Cantor-type sets under
restriction:
dCy: I, <Cy- hs, for s € Ng. (55)

Theorem 5.2.2. [29] Let K(A) satisfy (5.5). Then the system (fn,nn)5> S a
Schauder basis in the space EP(K(A)).

Proof. Given f € EP(K(A)), we show that the sequence (Sy(f)) converges to f

as well in the norm

1F 1o = 1f1p +sup {|(Ry )P (@) - Jo =y P 2.y € Koo # y, k= 0,1,..p} .

Because of Lemma 5.2.1, we only have to check that the second term of the norm
[(RE(f — Sn(f))P(x)| - |z — y["? is uniformly small (with respect to z,y € K
with z # y and ¢ < p) for large enough N. Fix £ > 0. Due to Whitney Theorem
(condition (2.1)), we can take S such that

](Rif)(k)(xﬂ <elr—yP™ for k<p and z,y € Kio(A) with |z —y| <ls.
(5.6)
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As above, let N. = ¢g(p+ 1) and N = ¢s(p+ 1)+ jlp+ 1) +m + 1 with
§ 25,057 <¢s,and 0 <m < p.

For simplicity, we take the value ¢ = 0 since the general case can be analyzed
in the same manner. We will consider different positions of z and y on K, (A) in

order to show
|RY(f = Sn(f)(z)| < C ez -y,

where the constant C' does not depend on x and y. As seen in the following figure
we have four different sets on K., (A) and we will consider the positions of x and

y according to these sets. In all cases, we use the representation of

Tg;ks+1f € lps1 and E=1,2,---,7—1
P — .
Sw(f) = Tak,sf x€ly, and k=t+1, ,gz%s
T f+15 (R ) €l and j € By
Y xEIk,s-l—l and k:]+1a 7th+1

at,s

given in Lemma 5.1.1.

Lo

Figure 5.3: Decomposition of Cantor procedure into four different sets with Ny =
s+1

Suppose first that =,y belong to the same interval Iy .1 with some k£ =
1,--+,7—1. Then (f — Sn(f))(x) = Rt f(z). From (2.2) it follows that

Ak s+1

RY(f = Sn(f)(x) = RY(RG, |, f(2))(x) = Ryf(x). Here, |z —y| < lop1, so we

Ak s+1

have the desired bound by (5.6).
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Also for the case z,y € I, with k =t+ 1,7+ 3, , ¢, (f — Sn(f))(x) =
Ry, f(x) and RY(f =S (f))(x) = Ry(RE, f(2))(x) = RYf(x). Here, [z —y| <1,

so (5.6) can be applied.

For the case T,y € [k,erl with k = J+ 17] + 37 T 7th+17 (f - SN(f))(x) =
R f(@) and RY(f=Sn(f))(x) = RY(RG, . f(2))(z) = Ry f(z). Here, [z —y| <

Ak, s+1 Ak s+1

ls+1, so (5.6) can be applied.

If x,y € I 541, then

(Be D@ -T2 . (R @) for m<p
(R§2j+27s+lf)($) for m=p

(f = Sn(f))(x) = {

Since RP(T™) = 0 for m < p, in both cases we get RP(f — Sn(f))(x) = R f(x)
with |z — y| <[ and (5.6) can be applied once again.

We now turn to the cases when x and y lie on different intervals. Let x €

I s+1,Y € Iy s+1 with distinet k,m =1,---,7 — 1. Then

R(f = Sw(/)(x) = Ry(f =15, f)x)
= R(R . )(@)

Af, s+1
D - D () (z — y)i
= Rak7s+1f<x) - Z(Ramys+1f) (y) Z'
=0 ’
P - p—i |I - y|l
< 5l8+1+5215+1 A
=0 ’
p p—1 i
o (Colz —y))" " [z —y
< eCle—ylP e )

< Cfle+1)el|r— y|1‘:.70
Here, |v—ay s11] < lot1, |[Y—@msi1] < lsi1 and by hypothesis |z —y| > b, > Cy ',
Also by (5.6),
RE, L@ <elz—apsal’ <elly,
and
(R DY) <ely = amen [P <l
As a result, |RE(f — Sn(f))(z)| < Cf(e +1) - e- |z — y[P, which establishes the

desired result.
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Also, for the cases x € Ij s,y € I, s with distinct k,m =t +1,---,¢5 and

z € Iyer1,y € Ipsy1 with distinet k,m = j 4+ 1,--- ,tNgyq, same conclusion
can be drawn. Since for the cases Ry(f — Sn(f))(z) = Ry(R, )(x) and Ry(f —

Sn(f))(x) = RE(RE . )(x), respectively and we can apply same procedure.

Ak, s+1

It remains to consider the most difficult cases. Let g = f — Sy(f).

Case 1: Suppose x € [ 41 where j € By and y € [ 441.

o _/__x\; o

(VRS PR §,s+1

Figure 5.4: The case * € [j 541, ¥y € Lj—1,541

Then, since x € [; 441,

gle) = (f =15, . f = T3}, (Re, . ))(x) = (RG, f = To7 . (RE, ) (@)

and since y € ;1 411,

g)=(f =17 )y = (R, . [)Y).
Then we have
Ry(f = Sn(f)(z) = Ryg(z)
— ) — Z 9w —y)
— 7!
= R, flx) =17 (R, f)(2)

P (R D)@ —y)
-2 il

=0

We only need to estimate the intermediate 7™ since other terms can be handled
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in the same way as above. Now,

i [(RE F)D(a51)] & — aj o]

|TC:;L,5+1 (Rgtys )(x)| Z'

AN
™
=
<
o
+
—
£
o _
B}
|
Q
<
o
+
=

o SRl Gl

7!

=0
< Clee|x—y.

Since by (5.6), [(R?. f)D(a;511)| < €lajer1 — arsl’". In addition, |aj .1 — ag

at,s

and [z —aj; 11| do not exceed Cy [z —y|. As aresult we obtain [T7"  (Rf, f)(z)| <

at,s

Cfe e |x — y[P which is the desired result.

Case 2: Suppose y € [ 41 where j € By and x € [j_; 441.

o _/__y\; o

T € i1 01 Lo

Figure 5.5: The case € [;_1 511, Yy € Ij 11

Then, since y € I 41,

g<y> = (f - Tgs,sf - T$s+1 (Rgt,s ))(y) = (Rgt,sf - T$s+1 (Rgt,s ))(y)

and since x € Ij_1 441,

glw) = (f =17, () = (RE,_, f))(@).
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Then we have

RY(f = Sn(M)(x) = Rjg(x)

P —Tm (Rp @ (N — )
- B -y T T (R P )

2!

As above, it is sufficient to consider only Y-F_[T™ (RP £)]D(y)(z — y)'/i!

Aj,s4+1 at,s

since for other terms we have the desired bound. Since T™ term vanishes when

1 > m, the genuine summation here is until ¢ = m. Then

“ T (R D) (@ — ) _ z’": \x —y|’ z’”: [R2, FIW |y — aj o [F
i = (k—i)!

=0 k=i
| —y\ ely — aps|P " |lgga [P
< 9
S e
|z —y|" el Il
<
< 3k Z )

= k=i
m ) iy
< Z|ﬂ7—y|f5l§ ‘e
4 7!
=0

< Chetelr —ylP.

Since by (5.6), |(R?, f)®(y)] < ely — ars/’™". In addition, |y — ;1] < Lo

at,s

and [y do not exceed Cy |z — y|. As a result we obtain the desired result.
Case 3: Suppose x € I, 541 where j € By and y € L1 541.

Then, since x € I; 411,

g(e) = (f =13, . F =15} . (Be, P))(w) = (B, f = To7,, (Rg, . f))(@)

and since y € 11 41,

9(y) = (f =13, )() = (B, .F))(y).
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x € Ijsn Y € Litrst

Figure 5.6: The case @ € [j 11, ¥ € Ljt1,641

Then we have

Ry(f = Sn())(x) = Rjg(z)

(R, N ) —y)

7!

= Rgt gf( ) T$s+l(Rgt,S )(I‘) o

i=0
We only need to estimate the intermediate 7™ since other terms can be handled

in the same way as above. Now,

m (a; T —ajop
| o S+1( b )(I)| S Z 75 8+1)| | ],8+1|
o

ol

< Z |a] s+1 — Qg 8|p_i |$ - aj7s+1|i
T = 7
1=
m p—i p—i i i
< ZC‘CO lz —yl"" Chlz — y
- 7!

=0
< Cleelx—yl.

Since by (5.6), [(RE, f)€ (a] s+1)| <elajsr — at,slpﬂ'. In addition, |a;s+1 — ar

at,s

and [z —a; 11| do not exceed Cy [z —y|. As aresult we obtain |17 (Rf, f)(z)| <

C¥e e |z — yP which is the desired result.
Case 4: Suppose y € [j 41 where j € By and o € 41 541.

Then, since y € I o1,

gly) = (f =15, . f = To, . (R, I)(y) = (Be, . f =107, (B, . ) (w)
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€ Ijsn T € Tjtist1

Figure 5.7: The case @ € [j114641, Y € Lot

and since x € 1 411,

9(x) = (f =13, )(=) = (B, . f)(@).

Then we have

Ry(f = Sn()(x) = Rjg(x)

P RP (@) r— )
- f(ﬁ’f)—z( RS- T e )W) — )

2!

As above, it is sufficient to consider only > 7 [T (1%, f)] D (y)(z — y)'/i!
since for other terms we have the desired bound. Since T™ term vanishes when

1 > m, the genuine summation here is until ¢ = m. Then

“ T L (R DO ) (@ — ) |x— K |(%) |y—a Y L
Z aas+1 ats' < Z ) Z ats 3,8

— i! —1)!

Il’—yl |y—atslp 1 ]*

< 9

> ; o
‘x - y‘ elt bk lf-s—i

<

R

_ p—i
< Z |z y\ ell™e
< Cg’e2 elr— y|p.

70



Since by (5.6), [(R?, /)®)(y)] < ely — ars)’ " In addition, |y — a;e1] < los

at,s

and [y do not exceed Cy |z — y|. As a result we obtain the desired result.

Since other positions of y when x € I; 4.1, j € By, only enlarge |z — y| this

cases are enough. So the proof is complete. O]
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Chapter 6

Some Properties of Bases

6.1 Unconditional Bases

Definition 6.1.1. Let (z,),—, be a sequence in a Banach space X. A (for-
mal) series ) ", x, in X is said to be unconditionally convergent if > | z(n)

converges for every permutation 7 of N.

Lemma 6.1.1. /30, Lem. 2.4.2] Given a series -, x, in a Banach space X,

the following are equivalent:

(a) 377 x, is unconditionally convergent;

(b) The series Y .~ x,, converges for every increasing sequence of integers

(k) e s
(¢) The series Yy~ | €,xy, converges for every choice of signs (€,);

(d) For every € > 0 there exists an n so that if F is any finite subset of {n +

1,m+2,...} then
|

JEF

< €.
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Proposition 6.1.1. /30, Prop. 2.4.9] A series Y -, ©, in a Banach space X s
unconditionally convergent if and only if > | t,x, converges (unconditionally)
for all (t,) € lw.

Definition 6.1.2. A basis (e,),_, of a Banach space X is called unconditional
if for each x € X the series Y~ e’ (x)e, converges uncontionally. A basis for a

Banach space is conditional if it is not unconditional.

We can easily say by this definition that; (e,),-, is an unconditional basis of

oo .

.1 is a basis of X for all permutations 7 : N — N.

X if and only if (ex(n))

The term ‘unconditional basis’ due to R.C. James [31]. But such bases was
studied before James and was named different names. For example, Karlin [32]
called such bases ‘absolute’ in his study before James. It should be noted that

the term ‘absolute basis’ is used now for a more strong condition.

An example of an unconditional basis is the standard unit vector basis for the

spaces ¢y and [,. The summing basis of ¢y, defined as
fn:el+"'+6n7 nGN,
is a conditional basis.

Proposition 6.1.2. /30, Prop. 3.1.3] A basis (ey),., of a Banach space X is
unconditional if and only if there is a constant K > 1 such that for all N € N,
whenever ay, ...,ay, by, ..., by are scalars satisfying |a,| < |b,| forn=1,... N,

then the following inequality holds:

N N
HZanen SKHanen
n=1 n=1

Definition 6.1.3. Let (e,),., be an unconditional basis of a Banach space X.

. (6.1)

The unconditional basis constant, K,, of (e,) is the least constant K so that
the inequality (6.1) holds. We then say that (e,) is K-unconditional whenever
K > K,.

Theorem 6.1.2. [33, Thm. 4.2.35] The classical Schauder basis for C[0,1] is a

conditional basis.
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Let us consider the proof of this theorem, since its arguments will be used

below.

Proof. Let (s,),—, be the classical Schauder basis for C[0,1] defined in (1.1).
(Also you can look Figure 1.1) Let we define a subsequence (t,,) of (s,) as follows.
Let

t1 = $9, the member of the basis that is nonzero precisely on (0, 1),
to = s3, the member of the basis that is nonzero precisely on (0,1/2),
t3 = sg, the member of the basis that is nonzero precisely on (1/4,1/2),

ty = $11, the member of the basis that is nonzero precisely on (1/4,3/8),

and t, be nonzero on an interval half as long as is the case for ¢, _; and the
corresponding interval for ¢, ; to share left endpoints if n is even and right

endpoints if n is odd.

For each positive integer n, let v, be the midpoint of the interval on which
tn is nonzero, and let a, = (3_7_,t;)(vs). Then (vi,a1) = (1/2,1), (v2,a2) =
(1/4,3/2). Then a; =1, ag = 3/2 and for n > 3

Qp—1+ Qp_2
L =14 nt T n2
a + 7

Since
Gp—1 — Ap—2
2
when n > 3, by induction 1/2 < a, — a,—1 < 3/4 when n > 2. This shows that

Ap — Ap—1 = 1 —

(an) is strictly increasing and unbounded. Also [| 327, ¢;]| = an for each n.

Let b, = (00, (=1*"'t)(vn). Then (vi,b)) = (1/2,1), (va,by) =

=1

(1/4,—1/2). Then by =1, by = —1/2 and for n > 3

; (bp—1+byo)+1, ifnisodd

NI—= N

(bp_1+bp_o) — 1, if niseven

Then by induction 1 < b, < 2 when n is odd and —1 < b, < 0 when n is even.
So

n

>

Jj=1

=max{|b;|: 1 <j<n}<2

oo
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for each n.

Assume (s,,) is unconditional. Then K, is its unconditional constant. Then
it have to be true that

n

>,

J=1

< K,

[e.e]

< 2K,

Ay —

Dot
j=1

for each n. But this contradicts the fact that (a,) is an unbounded sequence of

[e.e]

positive numbers. So the basis (s,,) is conditional. O

Later, it was shown by Karlin [32] (by using another technique) that there is

no unconditional basis in the space C[0, 1].

Theorem 6.1.3. The system (fn,n,)5>, which is Schauder basis in the space
CP(K(A)) given in Lemma 4.2.1, is a conditional basis.

Proof. Let (f,) be the Schauder basis in the space C?(K(A)) where we defined
in Section 4.1. Let we define a subsequence of (f,,) and call it (g,). Let g1 = f1 =
X1,0o 92 = [3p+a = X2,2, 93 = fep+7 = Xa,3 and in general g, = f(2"*1+2"*2)(p+1)+1 =
X2n-1,. In general we take the function f,, which is equal to the characteristic

function of the interval whose right end point is b; ;. See the following figure.

T1=aip

Figure 6.1: Cantor procedure with new subsequence g,
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Then
1, on ]1,0/[2,27

2, onlys/lys,
Zgj = ZX%J,J‘ =143, only3/lgy, (6.2)
j=1 J=1 :

n, on -[2"*1,n/-[2"*2,n71‘

Then the sequence a, = |Z?:1 gjlx where k = 0,1,...,p is an unbounded se-

quence.
Also

1, 011]1,0/[2,27
0, on —72,2/—74,37

Z <_1)j+lgj - Z <_1)j+1X2' 1= on Lus/Isa,
J— J .

]., on 127L71’n/_[2n72,n,1 lf n is Od.d7

0, on Ipn-1,/Isn—2, 1 if nis even.

(6.3)

Assume (f,,) were unconditional. Then K, were its unconditional constant.
Then it would have to be true that

where k = 0,1,...,p, for each n. But this contradicts the fact that (a,) is an

unbounded sequence of positive numbers. So the basis (f,,) is conditional. O]

This method does not work for the space E7(K(A)) since || 377, (=1)" " g5l
is not bounded in the space EP(K(A)). Therefore, the question regarding the
unconditional property of the basis remains open. Of course, any basis in £(K)
is unconditional, since this space is nuclear and, by the Dynin-Mityagin theorem,

the basis is absolute.
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