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ABSTRACT

BASES IN BANACH SPACES OF SMOOTH
FUNCTIONS ON CANTOR-TYPE SETS

Necip Özfidan

Ph.D. in Mathematics

Supervisor: Assoc. Prof. Dr. Alexander Goncharov

August, 2013

We construct Schauder bases in the spaces of continuous functions Cp(K) and in

the Whitney spaces Ep(K) where K is a Cantor-type set. Here different Cantor-

type sets are considered. In the construction, local Taylor expansions of functions

are used. Also we show that the Schauder basis which we constructed in the space

Cp(K), is conditional.

Keywords: Schauder bases, Cp−spaces, Whitney spaces, Cantor sets.
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ÖZET

CANTOR TİPİ KÜMELERDE DÜZGÜN
FONKSİYONLARIN BANACH UZAYINDA BAZ

BULUNMASI

Necip Özfidan

Matematik, Doktora

Tez Yöneticisi: Doç. Dr. Alexander Goncharov

Ağustos, 2013

Biz, K bir Cantor-tipi küme olmak üzere, sürekli fonksiyonların uzayı Cp(K)’de

ve Whitney uzayları Ep(K)’de Schauder bazı oluşturduk. Burada farklı Cantor-

tipi kümeler göz önünde bulunduruldu. Baz oluşturulurken fonksiyonların

lokal Taylor açılımları kullanıldı. Ayrıca biz Cp(K) uzayında oluşturduğumuz

Schauder bazının şartlı baz olduğunu gösterdik.

Anahtar sözcükler : Schauder bazları, Cp-uzayları, Whitney uzayları, Cantor

kümeleri.
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Chapter 1

Introduction

In the study of Banach spaces and topological vector spaces, the concept of ba-

sis is a very useful and very important tool. An importance of the concept of

basis lies in the fact that it provides a natural method of approximation of vec-

tors and operators in space. On the other hand, elements of bases of concrete

function spaces rather often play a special role in different problems of analysis.

For example, the Chebyshev polynomials, the Hermite functions, the Faber poly-

nomials and the Franklin sequence have attracted attention of mathematicians

for many years. These systems of functions were well-known in analysis when it

was proven that they form topological bases in the spaces C∞[−1, 1], S-rapidly

decreasing C∞-functions on the line, analytic functions, and H1- Hardy space,

correspodingly.

The notion of a topological basis was introduced by Schauder [1]. But interest

in the theory of basis in topological vector spaces has grown essentially after the

publication of Banach’s book on the theory of linear operators. In his book

Banach asked the question of whether every separable Banach space possesses a

basis or not. This problem was known as the Banach basis problem. Until the

1970’s much of the literature on the theory of basis was devoted to this problem.

In 1972, Enflo [2] constructed the first example of a separable Banach space which

does not have the approximation property and hence does not possess a basis.

Afterwards other such examples were presented. In particular, it was shown that
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for every p, 1 ≤ p ≤ ∞, p 6= 2 the space lp contains a subspace without the

approximation property.

Furthermore, another famous basis problem by Grothendieck [3] (about ex-

istence of basis in each nuclear Fréchet space) was answered in the negative by

Zobin and Mityagin in [4].

In spite of the fact that both fundamental basis problems were solved in the

middle of the 1970’s, many people continue to work in this field. The follow-

ing questions attract their attention: construction of bases in concrete function

spaces, the problem of quasi-equivalence of bases, existence of a nuclear Fréchet

function space without basis (all previous examples were given as artificial con-

structions or non-metrizable function spaces).

In this work we study bases in the spaces of differentiable functions and con-

struct a basis in the space of smooth functions defined on Cantor-type sets.

First we give the definitions of the topological basis and Schauder basis. Then

we start the history of basis in the spaces of differentiable functions.

Definition 1.0.1. A sequence of elements (en)∞n=1 in an infinite-dimensional

normed space X is said to be a topological basis of X if for each x ∈ X there is

a unique sequence of scalars (an)∞n=1 such that

x =
∞∑
n=1

anen.

This means that the sequence (
∑N

n=1 anen)
∞
N=1 converges to x in the norm topol-

ogy of X.

If (en)∞n=1 is a basis of a normed space X, then the maps x 7→ an for n ∈ N are

linear functionals on X. Let us denote these functionals as e∗n, then e∗n(x) = an.

If the linear functionals (e∗n)∞n=1 are continuous, then we call (en)∞n=1 a Schauder

basis. In particular, by Banach Open Mapping Theorem, any topological basis

in a Banach space is a Schauder basis. Thus we have the following definition.

Definition 1.0.2. Let (en)∞n=1 be a sequence in a Banach space X. Suppose

there is a sequence (e∗n)∞n=1 in X∗ (topological dual of X) such that

2



(i) e∗k(ej) = 1 if k = j, and e∗k(ej) = 0 otherwise, for any k and j in N.

(ii) x =
∑∞

n=1 e
∗
n(x)en for each x ∈ X.

Then (en)∞n=1 is called a Schauder basis for X and the functionals (e∗n)∞n=1 are

called the biorthogonal functionals associated with (en)∞n=1.

J. Schauder, first introduced the concept of basis in 1927, and the name

Schauder was given after his works. However, such bases were discussed earlier

by Faber. In 1910, Faber [5] showed that there exists a basis in the space C[0, 1]

consisting of the primitives of the Haar functions. Faber used the diadic system

of points in his construction. In 1927, Schauder [1] rediscovered the more general

form of this result. In our construction we follow the main idea by Schauder to

interpolate given functions step by step at a dense sequence of points. As in [6],

we interpolate functions locally and since we consider smooth functions, we will

use Taylor’s interpolation. Now, we examine the Schauder system in details:

Recall that C[0, 1] is a Banach space with the norm ‖f‖ = sup0≤t≤1 |f(t)|. Let

(sn)∞n=0 be the sequence in the space C[0, 1] defined in the following way. Let

s0(t) = 1 and s1(t) = t. Let m be the least positive integer such that 2m−1 < n ≤
2m. And when n ≥ 2, we define sn as

sn(t) =


2m
(
t− (2n−2

2m
− 1)

)
if 2n−2

2m
− 1 ≤ t < 2n−1

2m
− 1;

1− 2m
(
t− (2n−1

2m
− 1)

)
if 2n−1

2m
− 1 ≤ t < 2n

2m
− 1;

0 otherwise.

(1.1)

Clearly, sn is a continuous piecewise linear function. See Figure 1.1 for the

first 9 terms of (sn)∞n=1.

Suppose that f ∈ C[0, 1]. Define a new sequence (pn)∞n=0 in C[0, 1] in the

following way. Let (an)∞n=0 be the sequnce of points where a0 = 0, a1 = 1 and for

n ≥ 2, an = 2n−1
2m
− 1 where m be the least positive integer such that 2m−1 < n ≤

3



Figure 1.1: The first 9 terms of the classical Schauder basis for C[0, 1].

2m. Then

p0 = f(0)s0,

p1 = p0 + (f(1)− p0(1))s1,

p2 = p1 + (f(1/2)− p1(1/2))s2,

p3 = p2 + (f(1/4)− p2(1/4))s3,

p4 = p3 + (f(3/4)− p3(3/4))s4,

p5 = p4 + (f(1/8)− p4(1/8))s5,

p6 = p5 + (f(3/8)− p5(3/8))s6,

...

pn = pn−1 + (f (an)− pn−1 (an)) sn.

For each nonnegative integer i, let αi be the coefficient of si in the formula for

pn. Then pn =
∑n

i=0 αisi for each n. Here

α0 = f(0), α1 = f(1)− p0(1) = f(1)− f(0), · · · , αn = f(an)−
n−1∑
i=0

αisi(an).

Then since si is piecewise linear for all i, pn is also piecewise linear. Also pn is

interpolating, that is, pn(an) = 1 and pn(aj) = 0 for j = 0, . . . , n − 1. From the
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definition of sn we have sn(an) = 1 and sn(aj) = 0 for j = 0, . . . , n− 1. Then

pn(aj) =
n∑
i=0

αisi(aj)

=

j−1∑
i=0

αisi(aj) + αjsj(aj) +
n∑

i=j+1

αisi(aj)

=

j−1∑
i=0

αisi(aj) + αj

=

j−1∑
i=0

αisi(aj) + f(aj)−
j−1∑
i=0

αisi(aj)

= f(aj).

Thus pn is the polygonal function interpolating the values of f at the points

a0, a1, . . . , an. Then if ai1 , ai2 are any consecutive points of {ai}n−1
i=1 ,

pn(λai1 + (1− λ)ai2)) = λf(ai1) + (1− λ)f(ai2) (0 ≤ λ ≤ 1). (1.2)

Let ε > 0 be arbitrary. Since f is uniformly continuous on [0, 1], there exists

δ = δ(ε) > 0 such that |f(t1) − f(t2)| < ε whenever t1, t2 ∈ [0, 1], |t1 − t2| < δ.

Since {aj} is dense in [0, 1], there exists a positive integer N = N(δ(ε)) such that

for n > N we have max |ai1 − ai2| < δ, where the maximum is taken over all

couples of consecutive points of {ai}n−1
i=1 . Now, let t ∈ [0, 1] be arbitrary. Then

there exists λ with 0 ≤ λ ≤ 1 such that t = λai1 + (1 − λ)ai2 , where ai1 , ai2 are

consecutive points of {ai}n−1
i=1 satisfying t ∈ [ai1 , ai2 ]. Then, by (1.2),

|f(t)− pn(t)| = |f(t)− (λf(ai1) + (1− λ)f(ai2))| (1.3)

= |λ(f(t)− f(ai1)) + (1− λ)(f(t)− f(ai2))|

≤ max
t1,t2∈[ai1 ,ai2 ]

|f(t1)− f(t2)| < ε,

where n > N(δ(ε)). Since N(δ(ε)) is independent of t ∈ [0, 1] for all n > N(δ(ε)),

‖f − pn‖ < ε.

Therefore, f =
∑∞

n=0 αnsn.

Now we prove the uniqueness. Let (βn)∞n=0 be any sequence of scalars such that

f =
∑∞

n=0 βnsn. But then
∑∞

n=0(αn − βn)sn = 0. Also
∑∞

n=0(αn − βn)sn(an) = 0

5



for all n which implies that αn = βn for all n. Therefore there is a unique sequence

of scalars (αn)∞n=0 such that f =
∑∞

n=0 αnsn. So the sequence (sn)∞n=0 is a basis

for C[0, 1].

Using any basis (fn)∞1 of C[0, 1] it is not difficult to find a basis in the space

Cp[0, 1]. Recall that the topology in the space Cp[0, 1] is given by the norm

‖g‖p = max
0≤k≤p

sup
0≤x≤1

|g(k)(x)|.

Indeed, let us consider the operator

T : C[0, 1] −→ Cp
F [0, 1] : f 7→

∫ x

0

∫ x1

0

· · ·
∫ xp−1

0

f(xp) dxp · · · dx1

where Cp
F [0, 1] denotes the subspace of functions that are flat at 0, that is such

that g(k)(0) = 0 for 0 ≤ k ≤ p− 1. Then, by means of the operator T we have an

isomorphism Cp[0, 1] ' Rp ⊕ C[0, 1]. Let us show this for the case p = 1. For all

f ∈ C[0, 1] we have Tf ∈ C1
F [0, 1] since both Tf(x) =

∫ x
0
f(t)dt and (Tf)′(x) =

f(x) are continuous and Tf(0) = 0. Also for all g ∈ C1
F [0, 1], g ∈ C[0, 1], we have

T−1g = g′ ∈ C[0, 1], so T is a linear bijection. Since

‖Tf‖1 = max{‖Tf‖, ‖(Tf)′‖} = max

{
sup

0≤x≤1

∣∣∣∣∫ x

0

f(t)dt

∣∣∣∣ , sup
0≤x≤1

|f(x)|
}

= ‖f‖,

the operator T is an isometry. Thus the spaces C[0, 1] and C1
F [0, 1] are isometric.

At the same time, we have trivially C1[0, 1] ' R⊕C1
F [0, 1], where the correspond-

ing continuous projections are given as

P1 :C1[0, 1] −→ R : g(x) 7→ g(0),

P2 :C1[0, 1] −→ C1
F [0, 1] : g(x) 7→ g(x)− g(0).

Therefore, C1[0, 1] ' R⊕C[0, 1]. By the same method we can show that Cp[0, 1] '
Rp ⊕ C[0, 1]. The elements of basis in Cp[0, 1] are

1, x,
x2

2
. . . ,

xp

p!
,

∫ x1

0

· · ·
∫ xp−1

0

f1(xp) dxp · · · dx1,

∫ x1

0

· · ·
∫ xp−1

0

f2(xp) dxp · · · dx1, . . .

On the other hand the basis problem for the space Cp[0, 1]2 is much more

difficult. In 1932 Banach [7] raised this problem in his book: Let B = C1[0, 1]2
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be the space of all real-valued continuous functions on the unit square 0 ≤ t ≤
1, 0 ≤ s ≤ 1, admitting continuous partial derivatives of order 1, endowed with

the norm

||x|| = max
0≤t≤1, 0≤s≤1

|x(t, s)|+ max
0≤t≤1, 0≤s≤1

|xt(t, s)|+ max
0≤t≤1, 0≤s≤1

|xs(t, s)|;

does B possess a basis? This problem was solved by Ciesielski [8] and Schone-

feld [9] independently only 37 years later in 1969. Ciesielski and Schonefeld

used the Franklin dyadic functions elements for the basis. Generalization of

this system to the case Cp[0, 1]2, p ≥ 2, was rather diffucult and complicated

problem. In 1972, Ciesielski and Schonefeld improved this result independently.

Ciesielski and Domsta [10] showed the existence of basis for Cp[0, 1]q and Schone-

feld [11] constructed a Schauder basis for the space Cp(Tq) where Tq is the

product of q copies of the one-dimensional torus. This basis is also a basis for

C1(Tq), C2(Tq), . . . , Cp−1(Tq) and an interpolating basis for C(Tq). Schonefeld

first proved that Cp(T) has a basis.

Let the partition ∆n be the set of points
{

0, 1
N
, 2
N
, · · · , N−1

N

}
and (2p + 1)-

periodic spline on ∆n where p = 1, 2, . . . be an element of C2p(T) whose restriction

to each interval (i/N, (i+1)/N), i = 0, 1, . . . , N−1 is a (2p+1)-degree polynomial.

Next Schonefeld constructed the basis from the following functions: f1 ≡ 1, fN+q

is the (2p+1)-periodic spline on the partition ∆2N which is zero at every point of

the partition ∆2N except (2q−1)/2N where N = 1, 2, 4, 8, . . . and q = 1, 2, . . . , N

and fNq(
2q−1
2N

) = 1. Then he defined an operator Sn inductively by the following:

a1 = f(r1), Snf =
n∑
i=1

aifi, an+1 = f(rn+1)− Snf(rn+1) n = 1, 2, . . .

where {rn;n = 1, 2, . . .} =
{

0, 1
2
, 1

4
, 3

4
, · · · , 2m−1−1

2m−1 , 1
2m
, 3

2m
, 5

2m
, · · · , 2m−1

2m

}
. There-

fore, Snf interpolates f on ∆N , that is, SNf(i/N) = f(i/N). He then showed

that {fn} is an interpolating basis for C(T ), that is, ||f−Snf || ≤ ε. Furthermore,

he differentiated Sn(f)− f and by using the properties of divided differences he

proved that (fn)∞1 is the desired basis in Cp(T).

At the end of his paper, Schonefeld remarked that the spaces Cp(Tq), Cp(Iq)

(where I = [0, 1]), Cp(M) (where M is a q-dimensional compact Cp-manifold)

7



and Cp(D) (where D is a domain in Rq with the boundary such that there exists a

linear extension operator L : Cp(∂D)→ Cp(D) are isomorphic. Thus, with these

isomorphisms there also exists a Schauder basis in these spaces. Schonefeld stated

this remark according to the theorem of Mitjagin established in [12, Thm 3] that if

M1 and M2 are n-dimensional smooth manifolds with or without boundary, then

the spaces Cp(M1) and Cp(M2) are isomorphic. This result essentially enlarges

the class of compact sets K with a basis in the space Cp(K), but it cannot

be applied to compact sets with infinitely many components, in particular for

nontrivial totally disconnected sets.

In 2004, Jonsson [13] used the method of triangulations to construct an inter-

polating basis for the space Cp(F ) where F is a compact subset of R admitting a

sequence of regular triangulations. Jonsson showed in [13, Thm1] that F admits

a sequence of regular triangulations if and only if F preserves the Local Markov

Inequality. Moreover, a set preserves the Local Markov Inequality if and only if

it is uniformly perfect [14, Sec. 2.2]. On the other hand, in [13, p.52] Jonsson

defined the space Ck(F ) as: “A function f belongs to the space Ck(F ) if for

every ε > 0 there is a δ > 0 such that |Rj(x, y)| < ε|x− y|k−j for 0 ≤ j ≤ k and

|x− y| < δ.” Here Rj(x, y) denotes the Taylor remainder. This means that, actu-

ally Jonsson considered the space of Whitney functions, Ep(F ). However Jonsson

considered this space equipped with the norm of the space Cp(F ). In general,

the space Ep(F ) is not complete in the topology of Cp(F ). As a result, Jonsson

constructed an interpolating basis in the space Ep(F ) with the norm of Cp(F )

where F is a uniformly perfect set on R. For the details see Section 2.4.3.

In this thesis, we construct a Schauder basis in the space Cp(K) of p times

differentiable functions and in the Whitney space Ep(K) on Cantor-type sets K.

Now we shortly describe the content of the thesis.

In Chapter 2, we introduce the spaces of differentiable and Whitney functions

on any compact set, and give some results concerning these spaces. Then we give

some definitions and properties about Taylor polynomials, Cantor-type sets and

interpolation methods. Next, we give more detailed information about Jonsson’s

paper [13] in this chapter, since in Chapter 3 another basis is constructed in the

8



whole space Cp(F ) for the case of Cantor-type set F satisfying restrictions from

Jonsson’s paper.

Chapter 3 contains the result of the master thesis of the author. In this

work we construct a Schauder basis in the Banach space of Cp(K) by using the

method of local Newton interpolations suggested in [15]. Elements of the basis are

polynomials of any preassigned degree and biorthogonal functionals are special

linear combinations of the divided differences of functions. Here we construct

basis in the Banach space of Cp(K) for uniformly perfect K.

We then construct a Schauder basis in the Banach space Cp(K) of p times

differentiable functions and in the Whitney space Ep(K) on a Cantor-type set K

by using the local Taylor expansions of functions. In Chapter 4, we construct a

basis in the space Cp(K2(Λ)) and Ep(K2(Λ)) on a Cantor type set K2(Λ) which we

define in Section 2.3. In Chapter 5, we use the same method and same system of

local Taylor expansions of functions to construct a basis in the spaces Cp(K∞(Λ))

and Ep(K∞(Λ)) where K∞(Λ) is a generalised Cantor-type set defined in Section

2.3. However our system of local Taylor expansions of functions does not work

in the Fréchet spaces E(K) of Whitney functions of infinite order. We give an

explanation for this at the end of Chapter 4. For a basis in the space E(K),

see [6]. It should be noted that in [16] Keşir and Kocatepe used another technique

to prove the existence of a basis in the space E(K) for Cantor-type sets K with

the extension property.

In chapter 6, we give the definition and the properties of unconditional basis.

Then we show that the basis which we constructed in the space Cp(K) in Chapter

4, is a conditional basis.
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Chapter 2

Preliminaries

2.1 Spaces of Differentiable Functions and

Whitney Spaces

LetK be a compact set of R, p ∈ N. We denote by Cp(K) (respectively C(K)) the

algebra of p times continuously differentiable functions in K, with the topology

of uniform convergence of functions and all their partial derivatives on K. This

is the topology defined by the norm

|f |p = sup{|f (k)(x)| : x ∈ K, k = 0, 1. . . . , p}

For every nonisolated point x ∈ K we define f ′(x) as follows:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

If the point x is an isolated point, then f ′(x) can be taken arbitrarly. Thus,

Cp(K) is a subspace of
∏

0≤k≤pC(K).

By Tietze-Uryson Extension Theorem there exists continuous extension of

functions from Cp(K).

Theorem 2.1.1 (Tietze-Uryson Extension Theorem). If X is a normal topolog-

ical space and f : K −→ R is a continuous map from a closed subset of K of X
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into real numbers carrying the standard topology, then there exists a continuous

map

f̃ : X −→ R

with f(x) = f̃(x) for all x in K. The map f̃ is called a continuous extension of

f .

The space Ep(K) of Whitney functions of order p consists of functions from

Cp(K) that are extendable to Cp-functions defined on R. The natural topology

of Ep(K) is given by the norm

‖f‖p = |f |p + sup{|(Rp
yf)(k)(x)| · |x− y|k−p; x, y ∈ K, x 6= y, k = 0, 1, ...p},

where T py f(x) =
∑

0≤k≤p f
(k)(y) (x−y)k

k!
is the formal Taylor polynomial and

Rp
yf(x) = f(x)− T py f(x) is the Taylor remainder.

Due to Whitney [17], f = (f (k))0≤k≤p ∈ Ep(K) if

(Rp
yf)(k)(x) = o(|x− y|p−k) for k ≤ p and x, y ∈ K as |x− y| → 0. (2.1)

The Fréchet spaces C∞(K) and E(K) (E∞(K)) are obtained as the projective

limits of the corresponding sequences of spaces.

Similarly one can define the spaces Cp(K) and Ep(K) for K ⊂ Rd.

2.1.1 The Spaces Cp(K) and Ep(K)

Let K be a compact subset of Rd. For the space of continuous functions C(K) =

E0(K). But we can not say this for p ≥ 1 since in general the spaces Cp(K)

and C∞(K) contain nonextendable functions and the norms ‖ f ‖ p, |f | p are not

equivalent on Ep(K). Then for which sets K, Cp(K) = Ep(K)? In this section

we give a proposition and a corollary about this question.

Definition 2.1.1. Given r > 0 a compact set K ⊂ Rd is called Whitney r-

regular if it is connected by rectifiable arcs, and there exists a constant C such

that σr(x, y) ≤ C |x−y| for all x, y ∈ K where σ denotes the intrinsic (or geodesic)

distance in K.
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The case r = 1 gives the property (P ) of Whitney [18]. Due to Whitney [18,

Thm 1], if K is 1-regular, then Cp(K) = Ep(K). Also r-regularity of K is a

sufficient condition for C∞(K) = E(K) for some r. In this case for an estimation

of ‖ · ‖ p by | · | p, see [19, IV,3.11] and [20].

For one-dimensional compact sets we have the following result:

Proposition 2.1.1. [21, Prop. 1] Cp(K) = Ep(K) for 2 ≤ p ≤ ∞ if and only

if K = ∪Nn=1[an, bn] with an ≤ bn for n ≤ N.

Proof. Assume K is a finite union of closed intervals. Then for any Cp-function

there exist an extension of function with the same smoothness. Furthermore, the

extension which is analytic outside K, can be choosen.(see e.g. in [22, Cor.2.2.3])

For the other side, suppose K cannot be represented as a finite union of

closed segments. Since the complement R\K contains infinitely many disjoint

open intervals , there exists at least one point c ∈ K which is an accumulation

point of these intervals. Let K ⊂ [a, b] with a, b ∈ K and assume without

loss of generality [c, b] contains a sequence of intervals from R\K. Then K ⊂
K0 := [a, c] ∪ ∪∞n=1[an, bn] with (an)∞n=1, (bn)∞n=1 ⊂ K, b1 = b, an+1 ≤ bn+1 <

an, (bn+1, an) ⊂ R\K for all n. Given 1 < p <∞, let us take F = 0 on [a, c] and

F = (an − c)p on [an, bn] if an < bn. In the case an = bn F (an) = (an − c)p and

F (k)(an) = 0 for all k > 1. Thus, F ′ ≡ 0. Then f = F |K belongs to C∞(K), but

not extendable to Cp−functions on R because of violation of (2.1) for y = c, x =

an, k = 0.

This nonextendable function can be easily approximated in | · | p by extendable

functions. Therefore, by the open mapping theorem, the following is obtained:

Corollary 2.1.1. [21, Cor. 1] If 1 < p < ∞ and K is not a finite union of

(may be degenerated) segments, then the space (Ep(K), | · | p) is not complete. The

same result is valid for (E(K), (| · | p)∞p=0).

It is interesting that the case p = 1 is exceptional here. Now we give two

examples about the case p = 1. In the first example C1(K) = E1(K) for K =

{0} ∪ (2−n)∞n=1. In the second example C1(K) 6= E1(K) for K = {0} ∪ (1/n)∞n=1.
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Examples

1. Let K = {0} ∪ (2−n)∞n=1. Then C1(K) = E1(K). Indeed, the function f ∈
C1(K) is defined here by two sequences (fn)∞n=0 and (f ′n)∞n=0 with γn :=

(fn − f0) · 2n − f ′0 → 0 and f ′n → f ′0 as n→∞. The second condition gives

(2.1) with k = 1. The first condition means (2.1) with k = 0, y = 0. For the

remaining case x = 2−n, y = 2−m, we have

fn − fm − f ′m(2−n − 2−m) = γn · 2−n − γm · 2−m + (2−n − 2−m)(f ′0 − f ′m),

which is o(|2−n−2−m|) as m,n→∞, since max{2−n, 2−m} ≤ 2·|2−n−2−m|.
Thus, f ∈ E1(K).

2. Let K = {0} ∪ (1/n)∞n=1, f( 1
2m−1

) = 0, f( 1
2m

) = 1
m
√
m

for m ∈ N, and

f ′ ≡ 0 on K. Then f ∈ C1(K), but by the mean value theorem, there is

no differentiable extension of f to R.

2.2 Taylor Polynomials

The Taylor polynomial is T na f(x) =
∑n

k=0 f
(k)(a) (x−a)k

k!
and the corresponding

Taylor remainder is Rn
af(x) = f(x) − T na f(x). If m ≤ n and a, b ∈ K then we

have the following identities:

T na ◦ Tmb = Tmb , Rn
a ◦Rm

b = Rn
a , Rn

a ◦ Tmb = 0. (2.2)
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First we show T na ◦ Tmb = Tmb :

(T na ◦ Tmb )f(x) =
n∑
k=0

(Tmb f)(k)(x)(a)
(x− a)k

k!

=
m∑
k=0

(x− a)k

k!

m∑
i=k

f (k)(b)
(a− b)i−k

(i− k)!

=
m∑
k=0

f (k)(b)
m∑
i=k

(x− a)k

k!

(a− b)i−k

(i− k)!

=
m∑
i=0

f (i)(b)
∑
i=k+j

(x− a)k

k!

(a− b)j

j!

=
m∑
i=0

f (i)(b)
(x− b)i

i!
= (Tmb f)(x).

Now we prove Rn
a ◦Rm

b = Rn
a :

Rn
a ◦Rm

b = (1− T na ) ◦ (1− Tmb )

= 1− T na − Tmb + T na ◦ Tmb
= 1− T na − Tmb + Tmb = Rn

a .

Lastly we prove Rn
a ◦ Tmb = 0 :

Rn
a ◦ Tmb = (1− T na ) ◦ Tmb

= Tmb − T na ◦ Tmb
= Tmb − Tmb = 0.

2.3 Cantor-type Sets

In this thesis, we consider the following Cantor-type set. Let (Ns)
∞
s=0 be a se-

quence of integers. Let Λ = (ls)
∞
s=0 be a sequence of positive numbers such

that l0 = 1 and 0 < Ns+1ls+1 ≤ ls for s ∈ N0 := {0, 1, . . .}. Let KNs(Λ) be

the Cantor set associated with the sequence Λ that is KNs(Λ) =
⋂∞
s=0 Es, where

E0 = I1,0 = [0, 1], Es is a union of
∏s

i=0Ni closed basic intervals Ij, s = [aj,s, bj,s]

of length ls and Es+1 is obtained by deleting Ns+1−1 open uniformly distributed

subintervals of length hs := ls−Ns+1ls+1

Ns+1−1
from each Ij, s, j = 1, 2, . . . ,

∏s
i=0Ni.
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In Chapter 3 and 4, we consider the Cantor-type set K2(Λ) and for short-

ness we denote K2(Λ) as K(Λ). That is K(Λ) is the Cantor set such that

K(Λ) =
⋂∞
s=0 Es, where E0 = I1,0 = [0, 1], Es is a union of 2s closed basic

intervals Ij, s = [aj,s, bj,s] of length ls and Es+1 is obtained by deleting the open

concentric subinterval of length hs := ls − 2ls+1 from each Ij, s, j = 1, 2, . . . , 2s.

See Figure 2.1.

E0

E1

E2

l0

l1 h0 l1

I1,2 I2,2 I3,2 I4,2

Figure 2.1: First steps of Cantor procedure for K(Λ)

In Chapter 5, we consider the Cantor-type set K∞(Λ) where, (Ns)
∞
s=0 is a

increasing sequence such that Ns → ∞ as s → ∞. In the following Figure 2.2,

Ns = s+ 1.

I1,0

I1,1 I2,1

I1,2 I2,2 I3,2 I4,2 I5,2 I6,2

Figure 2.2: The case Ns = s+ 1
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2.4 Interpolation

Let f be a function whose values at two distinct points, say x0 and x1 are given.

Then we can approximate f by linear function p that satisfies the conditions

p(x0) = f(x0) and p(x1) = f(x1).

Such a polynomial p exists and unique. We call p a linear interpolating poly-

nomial and this process a linear interpolation. We can construct the linear inter-

polating polynomial directly by using the above two conditions. Then we obtain

p(x) =
x1f(x0)− x0f(x1)

x1 − x0

+ x

(
f(x1)− f(x0)

x1 − x0

)
.

This can also be expressed in the Lagrange symmetric form

p(x) =

(
x− x1

x0 − x1

)
f(x0) +

(
x− x0

x1 − x0

)
f(x1),

or in Newton’s divided difference form

p(x) = f(x0) + (x− x0)

(
f(x1)− f(x0)

x1 − x0

)
.

Let us denote the set of all polynomials of degree at most n by Pn. Let f be

a function defined on a set of distinct points x0, x1, . . . , xn. Can we find a unique

polynomial pn ∈ Pn such that p(xj) = f(xj) for j = 0, 1, . . . , n? Since

pn(x) = a0 + a1x+ · · ·+ anxn and p(xj) = f(xj),

f(xj) = a0 + a1xj + · · ·+ anx
n
j .

Then we have n+ 1 unknowns, a0, a1, . . . , an, and we have n+ 1 linear equations.

We can write these equations in the matrix form:
1 x0 x2

0 · · · xn0

1 x1 x2
1 · · · xn1

...
...

...
...

...

1 xn x2
n · · · xnn




a0

a1

...

an

 =


f(x0)

f(x1)
...

f(xn)

 . (2.3)
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This system has a unique solution if the matrix

V =


1 x0 x2

0 · · · xn0

1 x1 x2
1 · · · xn1

...
...

...
...

...

1 xn x2
n · · · xnn

 ,
which is known as Vandermonde matrix, is nonsingular. Since

detV =
∏
i>j

(xi − xj)

where the product is taken over all i and j such that 0 ≤ j < i ≤ n, detV 6= 0,

that is, V is nonsingular. So the linear system (2.3) has a unique solution. This

polynomial is called the interpolating polynomial.

2.4.1 Lagrange Interpolation

Let f be a function defined on a set of distinct points x0, x1, . . . , xn. Instead of

using monomials 1, x, x2, . . . , xn as a basis in the polynomial interpolation, let us

consider the fundamental polynomials L0, L1, . . . , Ln where

Li(x) =
n∏

j=0, j 6=i

x− xj
xi − xj

. (2.4)

It follows from the definition of Li that Li(xi) = 1 and Li(xj) = 0. Then the

polynomial

pn(x) =
n∑
i=0

f(xi)Li(x), (2.5)

is called the Lagrange interpolating polynomial. Since Li(xi) = 1, pn(xi) = f(xi).

2.4.2 Newton Interpolation

Let f be as above. For a basis in the polynomial interpolation, Newton used the

polynomials π0, π1, . . . , πn where

πi(x) =

1, i = 0

(x− x0)(x− x1) · · · (x− xi−1), 1 ≤ i ≤ n.
(2.6)
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Then we can express the interpolating polynomial as pn(x) =
∑n

i=0 aiπi. We can

determine the coefficients aj by using pn(xj) = f(xj) for 0 ≤ j ≤ n. Then we

have a system of linear equations

a0π0(xj) + a1π1(xj) + · · ·+ anπn(xj) = f(xj)

for 0 ≤ j ≤ n. Then we obtain

a0 = f(x0) and a1 =
f(x1)− f(x0)

x1 − x0

.

We will write

aj = [x0, x1, . . . , xj]f

and we say aj j-th divided difference. Thus we may write pn(x) in the form

pn(x) = [x0]f π0(x) + [x0, x1]f π1(x) + · · ·+ [x0, x1, . . . , xn]f πn(x), (2.7)

which is known as the Newton’s divided difference formula for the interpolating

polynomial.

In Chapter 3, we use local Newton interpolation.

Now we give some properties of the divided differences.

Proposition 2.4.1. [23, Thm. 1.1.1] The divided difference [x0, x1, . . . , xn]f

can be expressed as the following symmetric sum of multiples of f(xj),

[x0, x1, . . . , xn]f =
n∑
r=0

f(xr)∏
j 6=r(xr − xj)

, (2.8)

where in the above product of n factors, r remains fixed and j takes all values

from 0 to n, excluding r.

Proposition 2.4.2. [23, Thm. 1.1.2] Let x and the abscissas x0, x1, . . . , xn be

contained in an interval [a, b] on which f and its first n derivatives are continuous,

and let f (n+1) exists in the open interval (a, b). Then there exists ξx ∈ (a, b), which

depends on x, such that

f(x)− pn(x) = (x− x0)(x− x1) · · · (x− xn)
f (n+1)(ξx)

(n+ 1)!
. (2.9)
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Corollary 2.4.1. Let f ∈ Cn[a, b] and let {xi : i = 0, . . . , n} be a set of distinct

points in [a, b]. Then there exists a point θ, in the smallest interval that contains

the points {xi : i = 0, . . . , n} at which the equation

[x0, x1, . . . , xn]f =
f (n)(θ)

n!
(2.10)

is satisfied.

Proposition 2.4.3. Let f be defined on a set of distinct points x0, x1, . . . , xn.

Then for each j, k ∈ N with j + k + 1 ≤ n we have

[xj, . . . , xj+k+1]f =
[xj+1, . . . , xj+k+1]f − [xj, . . . , xj+k]f

xj+k+1 − xj
. (2.11)

The last formula explains the term divided difference. For the proofs of these

propositions see [23].

2.4.3 Interpolating Basis

Definition 2.4.1. Let (fn)∞n=1 be a basis in a function Banach space X with

the corresponding biorthogonal functionals (ξn)∞n=1. Then (fn)∞n=1 is called an

interpolating basis with nodes (xn)∞n=1 if for each f ∈ X and n ∈ N we have

Sm(xm) = f(xm) for m = 1, 2, . . . , n (2.12)

where Sn =
∑n

k=1 ξk(f)fk. Thus, the n-th partial sum Sn interpolates f at n

points x1, . . . , xn.

There are many examples of interpolating bases. The basis of unit vectors

e1, e2, . . . in c0 is interpolating. Also Faber-Schauder system is interpolating. (We

showed this in Chapter 1). Furthermore, Gurari [24], Bochkarev [25], Grober and

Bychkov [26] used interpolating basis in their constructions. Also the basis which

we constructed in Chapter 4 and Chapter 5 are also interpolating basis. But it

should be noted that not all functional spaces possess interpolating bases [27].

In 2004, Jonsson [13] considered triangulations for subsets of Rn. In particular

he constructed an interpolating basis for the space Cp(F ) where F is a compact
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subset of R preserving a special form of Markov inequality. Here we give more

detailed information about this paper, since in Chapter 3 another basis is con-

structed in Cp(F ) for the case of Cantor-type set F satisfying restrictions from

Jonsson’s paper.

Definition 2.4.2. Let F be a compact subset of Rn. A finite set T of n-

dimensional closed, non-degenerated, simplices is called a triangulation of F if

the following conditions hold:

A1. For each pair ∆1,∆2 ∈ T , the intersection ∆1 ∩ ∆2 is empty or a common

face of lower dimension.

A2. Every vertex of a simplex ∆ ∈ T is in F .

A3. F ⊂
⋃

∆∈T .

In his paper, Jonsson considered δ = max∆∈T diam(∆) as the diameter of

the triangulation and denoted the diameter of the sequence of triangulations

{Ti}∞i=0 as δi. The sequence of triangulations {Ti}∞i=0, Jonsson defined, satisfied

the following conditions:

B1. For each i ≥ 0, Ti+1 is a refinement of Ti, i.e., for each ∆ ∈ Ti+1 there is

∆̃ ∈ Ti such that ∆ ⊂ ∆̃.

B2. δi → 0, i→∞.

B3. If Ui is the set of vertices of Ti, the Ui ⊂ Ui+1 for i ≥ 0.

Then Jonsson defined regular sequence of triangulations.

Definition 2.4.3. [13, Def. 1] Let F ∈ R, and let {Ti} be a sequence of

triangulations satisfying B1. Then {Ti} is a regular sequence of triangulations if

the following conditions hold.

T1. There is a constant c2 > 0, independent of i, such that, for all ∆1, ∆2 ∈ Ti,

c−1
2 diam(∆2) ≤ diam(∆1) ≤ c2diam(∆2).

T2. There are constants 0 < c3 < c4 < 1 such that, for all i ≥ 0,

c3δi ≤ δi+1 ≤ c4δi.
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T3. There exists a constant a > 0, independent of i, such that if ∆ ∈ Ti and

∆′ ∈ Ti and the distance between these intervals is less than or equal to aδi, then

the intervals intersect.

Then Jonsson consider the following version of the Markov’s inequality.

Definition 2.4.4. Denote by Pm the set of all polynomials in n variables of total

degree less than or equal to m. A closed set F ⊂ Rn preserves Markov’s inequality

if for every fixed positive integer m there exists a constant c, such that for all

polynomials P ∈ Pm and all closed balls B = B(x0, r), x0 ∈ F, 0 < r < 1, holds

max
F∩B
|∇P | ≤ c

r
max
F∩B
|P |,

where ∇ denotes the gradient.

Some authors call it the Local Markov Inequality whereas the Global Markov

Inequality means that

sup
x∈F
|∇Pm(x)| ≤ CmR sup

x∈F
|Pm(x)|

where the constants C and R depend only on F .

Then Jonsson stated that [14, Section 2.2] a set preserves Markov’s inequality

if and only if it is uniformly perfect, that is, there is an ε > 0 such that for any r

with 0 < r ≤ 1 and any x0 ∈ F , the set F ∩ {x : εr ≤ |x− x0| ≤ r} is nonempty.

For Cantor type set K(Λ) which was defined in Section 2.3, the natural trian-

gulations are given by the sequence Fs = {Ii,s, 1 ≤ i ≤ 2s}, s ≥ 0. In our Cantor

set we can take δi = li where (li)
∞
i=0 is a sequence in the Cantor set such that l0 = 1

and 0 < 2ls+1 < ls for s ∈ N. (For details of Cantor set see Section 2.3) Now we

look the regularity conditions. The condition (T1) in the definition 2.4.3 satisfies

for all Cantor type sets. If the condition (T2) satisfies, then c2li ≤ li+1 ≤ c3li.

This means that our Cantor set is uniformly perfect. Also the condition (T3) is

satisfies for Cantor type sets. Then Cantor type sets with regular triangulations

are uniformly perfect. In Chapter 3, our Cantor-type set is uniformly perfect.
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Jonsson showed that F preserves Markov’s inequality if and only if there

exists a regular triangulation of F . This is the main theorem of Jonsson’s article.

[13, Theorem1] After this Jonsson constructed a basis in the space Ck(F ) of k

times differentiable functions on F . But Jonsson defined the space Ck(F ) as: “A

function f belongs to the space Ck(F ) if for every ε > 0 there is a δ > 0 such that

|Rj(x, y)| < ε|x− y|k−j for 0 ≤ j ≤ k and |x − y| < δ.” Here Rj(x, y) denotes

the Taylor remainder. In this definition the condition |Rj(x, y)| < ε|x− y|k−j

is Whitney’s condition (2.1) for the space Ep(F ), that is the Whitney space of

functions on K. Therefore Jonsson considered the space Ep(F ) but equipped with

the norm of the space Cp(F ). Except the case when Ep(F ) = Cp(F ) as sets of

elements (that is all Cp-functions on F are extendable preserving the class), the

space of Whitney functions is not complete in the topology of the space Cp(F ).

The lack of completeness was remarked by the author in [13] on page 54. In

contrast to this we contruct a basis in the whole space Cp(F ).

Elements of basis in [13] are restrictions of special Hermite polynomials. Since

the construction is rather technical, for details we refer the reader to [13].

The Schauder basis which was given in [28] is another interpolating basis in

Banach Besov space on fractals.

2.4.4 Local Interpolation

Let us consider the method of local interpolations suggested in [6] (see also [15]).

Suppose we have a chain of compact sets K0 ⊃ K1 ⊃ · · · ⊃ Ks ⊃ · · · and

finite system of distinct points (x
(s)
k )

Ns

k=1 ⊂ Ks for s ∈ N0. Some part of the

knots on Ks+1 belongs to the previous set (x
(s)
k )

Ns

k=1. Let us enumerate these

points as (x
(s+1)
k )

Ms+1

k=1 . We will interpolate a given function f on Ks up to the

degree Ns. After this we continue the interpolation on the set Ks+1 up to degree

Ns+1, etc. Since we will take diamKs → 0, the approximation properties of

the interpolating polynomials will improve. The points of interpolation will be

chosen independently on functions. This will allow to construct topological bases

in spaces of differentiable functions defined on the set K which is a union of the
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intersections of all chains (Kj).

Suppose we are given a sequence (xn)∞n=1 on a compact set K ⊂ R. Let

e0 ≡ 1 and en(x) =
∏n

k=1(x− xk) for n ∈ N. Let X(K) be any Fréchet space of

continuous functions on K, containing all polynomials. Then, given f ∈ X(K)

and n ∈ N0 we denote by ξn the linear functional ξn(f) = [x1, . . . , xn+1]f. Trivially

we have

Lemma 2.4.1. [6, Lem. 1] If a sequence (xn)∞n=0 of distinct points is dense on

a perfect compact set K ⊂ R; then the system (en; ξn)∞n=0 is biorthogonal and the

sequence of functionals (ξn)∞n=0 is total on X(K); that is whenever ξn(f) = 0 for

all n, it follows that f = 0.

Since below we consider different basic systems, the following convolution

property of coefficients of basic expansions will be useful.

Lemma 2.4.2. [6, Lem. 2] Let (x(s))
∞
k , s = 1, 2, 3, be three sequences such

that for a fixed superscript s all points in the sequence (x(s))
∞
k are different. Let

ens =
∏n

k=1(x− x(s)
k ) and ξns(f) = [x

(s)
1 , x

(s)
2 , . . . , x

(s)
n ]f for n ∈ N0. Then

r∑
p=q

ξp3(eq2)ξq2(er1) = ξp3(er1) for p ≤ r.

Suppose K0 and K1 are infinite compact sets such that K1 ⊂ K0 and K0\K1

is closed. Let natural numbers N0, N1, M1 be given with N0 ≥ 2, M1 ≤
N0, M1 ≤ N1, N0 − M1 ≤ N1. Let for s ∈ {0, 1} we have a finite sys-

tem of points (x
(s)
k )

Ns

k=1 ⊂ Ks. Here we suppose that x
(s)
k 6= x

(s)
l for k 6= l

and (x
(0)
k )

N0−M1

k=1 ⊂ K0\K1, x
(0)
N0−M1+r = x

(1)
r for r = 1, . . . ,M1. Let us set

ẽns(x) =
∏n

k=1(x − x
(s)
k ) for s ∈ {0, 1}, 0 ≤ n ≤ Ns and let ens be the re-

striction of ẽns to Ks, otherwise ens(x) = 0. Also for any function defined on Ks

let ξns(f) = [x
(s)
1 , x

(s)
2 , . . . , x

(s)
n+1]f , where x

(0)
N0+1 := x

(1)
M1+1 and x

(1)
N1+1 ∈ K1 is any

point differing from x
(1)
k , k = 1, . . . , N1.

By means of Lemma 2.4.2 we can construct new biorthogonal systems cor-

responding the local interpolation of functions. For fixed level of s, the system

(ens, ξns)
Ns

n=0 is biorthogonal, that is ξns(ems) = δmn For n = M1 +1, . . . , N1, en1 =
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∏n
k=1(x− x(1)

k ) for x ∈ K1 and en1 = 0 for x ∈ K0\K1. Since K0\K1 is closed en1

is continuous on K0. Then ξn0(em,1) = 0, because the number ξn0(f) is defined

by the values of f at some points on K0\K1 and at some points from (x
(1)
k )

M1

k=1

where the function em,1 is zero. Clearly, ξn,1(em0) = 0 for n > m. But for n < m,

the functional ξn,1, in general, is not biorthogonal to em0. For this reason we use

the functionals

ηn,1 = ξn,1 −
N0∑
k=n

ξn,1(ek0)ξk0.

Now, the functional ηn,1 is biorthogonal to em0 by means of Lemma 2.4.2.

Given f on K0 let us denote by Qn(f, (xk)
n+1
k=1 , ·) the Newton interpolation

polynomial of degree n for f with nodes at x1, . . . , xn+1. Let us denote ΠN(A)

the set of functions coinciding on the set A with some polynomial of degree not

greater than N and also ΠN := ΠN(R).

Let us consider the function Sn(f, x) = Qn(f, (x
(0)
k )

n+1

k=1 , x) for n = 0, . . . , N0

and

SN0+r(f, x) = QN0(f, (x
(0)
k )

N0+1

k=1 , x) +

M1+r∑
k=M1+1

ηk,1(f)ek,1(x) (2.13)

for r = 1, . . . , N1 − M1. Then SN0+r ∈ ΠN0(K0\K1) and SN0+r ∈
Πmax{N0,M1+r}(K1).

Lemma 2.4.3. [15, Lem. 1] Given function f defined on K0 and n =

0, 1, . . . , N0 + N1 − M1, the function Sn(f, ·) interpolates f at the first n + 1

points from the set

{x(0)
1 , . . . , x

(0)
N0
, x

(1)
M1+1, . . . , x

(1)
N1+1}.

In Chapter 3 all our subsequent considerations are related to Cantor-type sets.

Let Λ = (ls)
∞
s=0 be a sequence such that l0 = 1 and 0 < 2ls+1 ≤ ls for s ∈ N0. Let

K(Λ) be the Cantor set associated with the sequence Λ that is K(Λ) = ∩∞s=0Es,

where E0 = I1,0 = [0, 1], Es is a union of 2s closed basic intervals Ij,s of length

ls and Es+1 is obtained by deleting the open concentric subinterval of length

hs := ls − 2ls+1 from each Ij,s, j = 1, 2, . . . , 2s.

Given a nondecreasing sequence of natural numbers (ns)
∞
0 , let Ns =

2ns , M
(l)
s = Ns−1/2 + 1, M

(l)
r = Ns−1/2 for s ≥ 1 and M0 = 1. Here, (l) and
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(r) mean left and right respectively. For any basic interval Ij,s = [aj,s, bj,s] we

choose the sequence of points (xn,j,s)
∞
n=1 using the rule of increase of the type. We

take eN,1,0 =
∏N

n=1(x−xn,1,0) =
∏N

n=1(x−xn) for x ∈ K(Λ), N = 0, 1, . . . , N0. For

s ≥ 1, j ≤ 2s, let eN,j,s =
∏N

n=1(x−xn,j,s) if x ∈ K(Λ)∩Ij,s, and eN,j,s = 0 onK(Λ)

otherwise. Here, N = Ma
s ,M

a
s + 1, . . . , Ns with a = l if j is odd and a = r if j is

even. Given function f on K(Λ) let the functional ξN,j,s(f) = [x1,j,s, . . . , xN+1,j,s]f

for s = 0, 1, . . . ; j = 1, 2, . . . , 2s and N = 0, 1, . . . . Let us set ηN,1,0 = ξN,1,0 for

N ≤ N0. Every basic interval Ij,s, s ≥ 1, is a subinterval of a certain Ii,s−1 with

j = 2i− 1 or j = 2i. Let

ηN,j,s(f) = ξN,j,s(f)−
Ns−1∑
k=N

ξN,j,s(ek,i,s−1)ξk,i,s−1(f)

for N = Ma
s ,M

a
s + 1, . . . , Ns. As before a = l if j = 2i− 1 and a = r if j = 2i.

Now we give an example to local interpolation for N0 = N1 = N2 = 4 and

f ∈ C[0, 1]. Then our points are x1 = 0, x2 = 1, x3 = l1, and x4 = 1− l1. Then

the interpolating polynomial

Q4 = f(x1) + (x− x1) [x1, x2]f + · · ·+ (x− x1) · · · (x− x4) [x1, x2, . . . , x5]f

= f(0) + (f(1)− f(0))x+ · · ·

+x(x− 1)(x− l1)(x− 1 + l1) [0, 1, l1, 1− l1, l2]f.

As seen in the equation we add one more point x5 = l2. For s = 0,

e0,1,0 = 1,

e1,1,0 = x,

e2,1,0 = x(x− 1),

e3,1,0 = x(x− 1)(x− l1),

e4,1,0 = x(x− 1)(x− l1)(x− 1 + l1),
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and

ξ0,1,0 = f(0),

ξ1,1,0 = [0, 1]f,

ξ2,1,0 = [0, 1, l1]f,

ξ3,1,0 = [0, 1, l1, 1− l1]f,

ξ4,1,0 = [0, 1, l1, 1− l1, l2]f.

Now we look this for the intervals I1,1, I2,1 ∈ I1,0 = [0, 1]. I1,1 is the left part and

I2,1 is the right part. Then on I1,1

e1,1,1 = x,

e2,1,1 = x(x− 1),

and on I1,2

e1,2,1 = x− 1,

e2,2,1 = (x− 1)(x− 1 + l1).

Also

ξ0,1,1 = f(0),

ξ1,1,1 = [0, l1]f,

ξ2,1,1 = [0, l1, l2]f,

and

ξ0,2,1 = f(1− l1),

ξ1,2,1 = [1− l1, 1]f,

ξ1,2,1 = [1− l1, 1, 1− l1 + l2]f.

So we add a new point x6 = 1 − l1 + l2 to I2,1. In this way we add new points

to left and right intervals and interpolate f . Let us look this. We know that

S5(f, x) = Q4 by Lemma 2.4.3. Then

S6 = Q4 + η2,2,1(f)e2,2,1,

S7 = Q4 + η2,2,1(f)e2,2,1 + η3,1,1(f)e3,1,1,

S8 = Q4 + η2,2,1(f)e2,2,1 + η3,2,1(f)e3,2,1,
...
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Here

η2,2,1(f) = ξ2,2,1 −
4∑

k=2

ξ2,2,1(ek,1,0)ξk,1,0(f),

η3,1,1(f) = ξ3,1,1 −
4∑

k=3

ξ3,1,1(ek,1,0)ξk,1,0(f).

Then

‖f(x)− S7(f, x)‖ ≤ |η2,2,1(f)e2,2,1 + η3,1,1(f)e3,1,1|

since Q4 is the interpolating polynomial of f(x). In Chapter 3, we find bounds

for η(f) and ξ(f) and we show that ‖f(x)− Sn(f, x)‖p ≤ ε as n→∞.
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Chapter 3

Schauder Bases in the Space

Cp(K(Λ)) Where K(Λ) is

Uniformly Perfect

In this chapter we construct basis in the space Cp(K(Λ)) where K(Λ) is a uni-

formly perfect Cantor-type set. In the construction we use the method of local

Newton interpolations (see Section 2.4.4). Elements of basis are polynomials of

preassigned degree and biorthogonal functionals are special linear combinations

of the divided differences of functions. First we give some estimations, then we

give the main theorem.

3.1 Estimations

Given function f ∈ C(K) on a compact set K ⊂ R, let w(f, ·) be the modulus of

continuity of f , that is, w(f, t) = sup{|f(x)−f(y)| : x, y ∈ K, |x−y| ≤ t}, t > 0.

Let N ≥ 1 and (xk)
N+1
k=1 ∈ K be such that x1 < x2 < · · · < xN+1. Let eN+1(x) =∏N+1

k=1 (x − xk), ξN(f) = [x1, x2, . . . , xN+1]f and t = maxk≤N |xk+1 − xk|. Then

( [15, p 26, (3)])

|ξN(f)| ≤ N2w(f, t)(min
k≤N
|e′N1

(xk)|)−1
. (3.1)
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Let us generalize this inequality to the case f ∈ Cp(K) for p ∈ N0.

Lemma 3.1.1. For N ≥ 1 and x1, . . . , xN+1 ∈ K with x1 < x2 < · · · < xN+1 let

ξN(f) = [x1, x2, . . . , xN+1]f and t = maxk≤N |xk+1 − xk|. Then

|ξN(f)| ≤ N2w(f (q), t)

q!

(
min

k≤N−q, j≤N

∣∣∣∣∣
k∏

s=1, s 6=j

(xj − xs)
N+1∏

s=k+q+1, s 6=j

(xj − xs)

∣∣∣∣∣
)−1

,

(3.2)

for all q with 0 ≤ q ≤ p.

Proof. First we show this for fix p, then we show this for all 0 ≤ q ≤ p. Let

eN+1(x) =
∏N+1

j=1 (x−xj). Then e′N+1(xk) =
∏N+1

j=1, j 6=k(xk−xj). From Proposition

2.4.1 ξN(f) =
∑N+1

k=1
f(xk)

e′N+1(xk)
. We write ξN(f) in terms of divided differences of

p-th order.

|ξN (f)| =

∣∣∣∣∣
N+1∑
k=1

f(xk)

e′N+1(xk)

∣∣∣∣∣
≤

∣∣∣∣∣(x1 − xp+2)[x1, . . . , xp+2]f

∏p+1
j=2(x1 − xj)
e′N+1(x1)

∣∣∣∣∣+∣∣∣∣∣(x2 − xp+3)[x2, . . . , xp+3]f

[∏p+2
j=3(x1 − xj)
e′N+1(x1)

+

∏p+2
j=3(x2 − xj)
e′N+1(x2)

]∣∣∣∣∣+
·

·

·∣∣∣∣∣(xN − xN+p+1)[xN , . . . , xN+p+1]f

[∏N+p
j=N+1(x1 − xj)
e′N+1(x1)

+ . . .+

∏N+p
j=N+1(xN − xj)
e′N+1(xN+p+1)

]∣∣∣∣∣
≤

N∑
k=1

∣∣∣∣∣∣(xk − xk+p+1)[xk, . . . , xk+p+1]f
k∑
j=1

∏k+p
s=k+1(xj − xs)
e′N+1(xj)

∣∣∣∣∣∣ (3.3)

≤
N∑
k=1

N |(xk − xk+p+1)[xk, . . . , xk+p+1]f |

min
j≤N

∣∣∣∣∣∣
k∏

s=1, s 6=j
(xj − xs)

N+1∏
s=k+p+1, s 6=j

(xj − xs)

∣∣∣∣∣∣
−1

From Proposition 2.4.3 we can write [xk, . . . , xk+p+1]f in such a way that

[xk, . . . , xk+p+1]f =
[xk+1, . . . , xk+p+1]f − [xk, . . . , xk+p+1]f

xk+p − xk
.
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By Corollary 2.4.1

[xk, . . . , xk+p+1]f =
f (p)(θ)

p!

where θ ∈ [xk+1, xk+p+1]. Then

(xk − xk+p+1)[xk, . . . , xk+p+1]f =
f (p)(θ1)− f (p)(θ2)

p!
<
w(f (p), t)

p!
(3.4)

where t ∈ [xk, xk+p+1]. By (3.4)

ξN(f) ≤
N∑
k=1

N
w(f (p), t)

p!

(
min
j≤N

∣∣∣∣∣
k∏

s=1, s 6=j

(xj − xs)
N+1∏

s=k+p+1, s 6=j

(xj − xs)

∣∣∣∣∣
)−1

≤ N2w(f (p), t)

p!

(
min
j≤N

∣∣∣∣∣
k∏

s=1, s 6=j

(xj − xs)
N+1∏

s=k+p+1, s 6=j

(xj − xs)

∣∣∣∣∣
)−1

where t ∈ [xk, xk+p+1], which is the desired result for fixed p.

Let us prove this for all q = 0, 1, . . . , p. To prove this we use induction on q.

For q = 0, (3.1) satisfies.

Assume 3.3 is true for q = p− 1, that is,

|ξN(f)| ≤ N2w(f (p−1), t)

(p− 1)!

(
min

k≤N−p+1, j≤N

∣∣∣∣∣
k∏

s=1, s 6=j

(xj − xs)
N+1∏

s=k+p, s 6=j

(xj − xs)

∣∣∣∣∣
)−1

.

Now we show that it is true for q = p. By (3.3) we have

|ξN(f)| ≤
N∑
k=1

(xk − xk+p+1)[xk, . . . , xk+p+1]f
k∑
j=1

∏k+p
s=k+1(xj − xs)
e′N+1(xj)

By Proposition 2.4.3,

[xk, . . . , xk+p+1]f =
[xk+1, . . . , xk+p+1]f − [xk, . . . , xk+p]f

xk+p+1 − xk
.
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Then

|ξN(f)| ≤
N∑
k=1

([xk, . . . , xk+p]f − [xk+1, . . . , xk+p+1]f)
k∑
j=1

∏k+p
s=k+1(xj − xs)
e′N+1(xj)

≤ ([x1, . . . , xp+1]f − [x2, . . . , xp+2]f)

∏p+1
s=2(x1 − xs)
e′N+1(x1)

+([x2, . . . , xp+2]f − [x3, . . . , xp+3]f)

(∏p+2
s=3(x1 − xs)
e′N+1(x1)

+

∏p+2
s=3(x2 − xs)
e′N+1(x2)

)
·

·

·

+([xN , . . . , xN+p]f − [xN+1, . . . , xN+p+1]f)
N∑
j=1

∏N+p
s=N+1(xj − xs)
e′N+1(xj)

≤ (x1 − x1+p)[x1, . . . , x1+p]f

∏p+1
s=2(x1 − xs)
e′N+1(x1)

+(x2 − x2+p)[x2, . . . , x2+p]f

(∏p+2
s=3(x1 − xs)
e′N+1(x1)

+

∏p+2
s=3(x2 − xs)
e′N+1(x2)

)
·

·

·

+(xN − xN+p)[xN , . . . , xN+p]f
N∑
j=1

∏N+p
s=N+1(xj − xs)
e′N+1(xj)

−(xN+1 − xN+p+1)[xN+1, . . . , xN+p+1]f
N+1∑
j=1

∏N+p+1
s=N+2(xj − xs)
e′N+1(xj)

≤
N∑
k=1

(xk − xk+p)[xk, . . . , xk+p]f
k∑
j=1

∏k+p
s=k+1(xj − xs)
e′N+1(xj)

−(xN+1 − xN+p+1)[xN+1, . . . , xN+p+1]f
N+1∑
j=1

∏N+p+1
s=N+2(xj − xs)
e′N+1(xj)
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and

|ξN (f)| ≤

∣∣∣∣∣∣
N∑
k=1

(xk − xk+p)[xk, . . . , xk+p]f

k∑
j=1

∏k+p
s=k+1(xj − xs)
e′N+1(xj)

∣∣∣∣∣∣
+

∣∣∣∣∣∣(xN+1 − xN+p+1)[xN+1, . . . , xN+p+1]f
N+1∑
j=1

∏N+p+1
s=N+2(xj − xs)
e′N+1(xj)

∣∣∣∣∣∣
≤ N2w(f (p−1), t)

(p− 1)!

 min
k≤N−p+1, j≤N

∣∣∣∣∣∣
k∏

s=1, s 6=j
(xj − xs)

N+1∏
s=k+p, s 6=j

(xj − xs)

∣∣∣∣∣∣
−1

+
Nw(f (p−1), t)

(p− 1)!

 min
k≤N−p+1, j≤N

∣∣∣∣∣∣
k∏

s=1, s 6=j
(xj − xs)

N+1∏
s=k+p, s 6=j

(xj − xs)

∣∣∣∣∣∣
−1

≤ (N + 1)2w(f (p−1), t)

(p− 1)!

 min
k≤N−p+1, j≤N

∣∣∣∣∣∣
k∏

s=1, s 6=j
(xj − xs)

N+1∏
s=k+p, s 6=j

(xj − xs)

∣∣∣∣∣∣
−1

So it satisfies for q = p and the proof complete.

Lemma 3.1.2. Let eN+1(x) =
∏N+1

k=1 (x− xk) and e
(p)
N+1 be the p-th derivative of

eN+1. Then for p ≥ 1

|e(p)
N+1| ≤ Np max

k≤N

∣∣∣∣∣
k∏
s=1

(x− xs)
N+1∏

s=k+p+1

(x− xs)

∣∣∣∣∣ . (3.5)

In our work all our subsequent considerations are related to Cantor-type sets.

Let Λ = (ls)
∞
s=0 be a sequence such that l0 = 1 and 0 < 2ls+1 ≤ ls for s ∈ N0. Let

K(Λ) be the Cantor set associated with the sequence Λ that is K(Λ) =
⋂∞
s=0Es,

where E0 = I1,0 = [0, 1], Es is a union of 2s closed basic intervals Ij,s of length

ls and Es+1 is obtained by deleting the open concentric subinterval of length

hs := ls − 2ls+1 from each Ij,s, j = 1, 2, ..., 2s.

We will consider Cantor-type sets with the restriction

∃A : lk ≤ Ahk, ∀ k. (3.6)

Without loss of generality we suppose A ≥ 2.

Let x be an endpoint of some basic interval. Then there exists the minimal

number s such that x is the endpoint of some Ij,m for every m ≥ s.

32



By Ks we denote K(Λ)∩ ls. Given Ks with s ∈ N0, let us choose the sequence

(xn)∞1 by including all endpoints of basic intervals, using the rule of increase of the

type. For the points of the same type we first take the endpoints of the largest gaps

between the points of this type; here the intervals (∞, x), (x,∞) are considered as

gaps. From points adjacent to the equal gaps, we choose the left one x and then

ls−x. Thus, x1 = 0, x2 = ls, x3 = ls+1, . . . , x7 = ls+1− ls+2, . . . , x2k+1 = ls+k, . . .

Let

µs,N :=
maxx∈Ks |eN(x)|

minj≤N |e′N+1(xj)|
, LN,j =

N∏
k=1, k 6=j

x− xj
xk − xj

,

that is, LN,j denotes the fundamental Lagrange polynomial.

Lemma 3.1.3. [15, Lem. 2] Suppose the Cantor-type set K(Λ) satisfies (3.6)

and for N ≥ 1 the points (xk)
N+1
1 ⊂ Ks are chosen by the rule of increase of the

type. Then

µs,N ≤ AN and max
j≤N, x∈Ks

|LN,j(x)| ≤ AN−1.

Let us set

ϕs,N :=
maxk≤N−p

∣∣∣∏k
s=1(x− xs)

∏N+1
s=k+p+1(x− xs)

∣∣∣
mink≤n−p, j≤N

∣∣∣∏k
s=1, s 6=j(xj − xs)

∏N+1
s=k+p+1, s 6=j(xj − xs)

∣∣∣ .
Suppose the Cantor-type set K(Λ) where K(Λ) is uniformly perfect and satisfies

(3.6). Since K(Λ) is uniformly perfect, there exists B ∈ R such that ls ≤ Bls+1.

Lemma 3.1.4. For N ≥ p + 1 the points (xk)
N+1
1 ⊂ Ks are chosen by the rule

of increase of the type. Then

ϕs,N ≤ AN−pBp log2(N).

Proof. Let N = 2n + ν with 0 ≤ ν < 2n.Then (xk)
N+1
1 consists of all endpoints

basic intervals of the type s+ n− 1 and ν + 1 points of the type s+ n. Fix any

x ∈ Ks and xj, j ≤ N + 1.

By (yk)
N
1 we denote the points (xk)

N
1 arranged in the order of distances |x−xk|,

that is, |x − yk| = |x − xσk | ↑ . Then Y = (yk)
N
1 =

⋃n
m=0 Ys+m where Yr = {yk :

hr ≤ |x− yk| ≤ lr}, r = s, . . . , s+ n.
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Similarly Z = (zk)
N
1 consist of all points (xk)

N
k=1, k 6=j arranged in the order of

distances |xj − xk|, that is, |xj − zk| = |xj − xτk | ↑ . As before, Z =
⋃n
m=0 Zs+m

where Zr = {yk : hr ≤ |xj − zk| ≤ lr}, r = s, . . . , s + n. Let ap = |Yp|, bp =

|Zp| be the cardinalities of the corresponding sets. Since (xk)
N+1
1 are uniformly

distributed on Ks, it follows that the numbers of points xk in two basic intervals

Ii,r, Ij,r of equal length are the same of differ by 1. But the point xj is not

included into the computation of br. Hence for r = s, . . . , s + n we have the

following inequality

as+n + · · ·+ ar ≥ bs+n + · · ·+ br.

Next to find the maximum of the product
∣∣∣∏k

s=1(x− xs)
∏N+1

s=k+p+1(x− xs)
∣∣∣

we choose p points which are very close to x. So the distance between x and

the other Np points, is maximum. We know that as + · · · + as+n = N . Then

as + · · ·+ as+n − p = N − p. Let we choose vp, c1p ∈ N such that

as + · · ·+ as+vp + c1p = N − p, c1p ≤ as+vp+1, vp ≤ n. (3.7)

Hence

max
k≤N

∣∣∣∣∣
k∏
s=1

(x− xs)
N+1∏

s=k+p+1

(x− xs)

∣∣∣∣∣ ≤ lass l
as+1

s+1 · · · l
as+vp

s+vp l
c1p
s+vp+1. (3.8)

Also to find the minimum of the product∣∣∣∏k
s=1, s 6=j(xj − xs)

∏N+1
s=k+p+1, s 6=j(xj − xs)

∣∣∣ , first we fix j = j̃ such that

min
k≤N, j≤N

∣∣∣∣∣
k∏

s=1, s 6=j

(xj − xs)
N+1∏

s=k+p+1, s 6=j

(xj − xs)

∣∣∣∣∣
= min

k≤N

∣∣∣∣∣∣
k∏

s=1, s 6=j̃

(xj̃ − xs)
N+1∏

s=k+p+1, s 6=j̃

(xj̃ − xs)

∣∣∣∣∣∣ .
where j̃ ∈ N and j̃ ≤ N . Then we choose p points which are far away from

xj̃. So the distance between other points and xj̃ is minimum. We know that

bs + · · ·+ bs+n = N . Let we choose up, c2p ∈ N such that

bs + · · ·+ bs+up + c2p = N − p, c2p ≤ bs+up−1, up ≤ n (3.9)
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Then

min
k≤N

∣∣∣∣∣∣
k∏

s=1, s 6=j̃

(xj̃ − xs)
N+1∏

s=k+p+1, s 6=j̃

(xj̃ − xs)

∣∣∣∣∣∣ ≥ l
bs+n

s+n h
bs+n−1

s+n−1 · · ·h
bs+up

s+up h
c2p
s+up−1.

(3.10)

Then by (3.8) and (3.10)

|ϕs,N | ≤
lass l

as+1

s+1 · · · l
as+vp

s+vp l
c1p
s+vp+1

l
bs+n

s+n h
bs+n−1

s+n−1 · · ·h
bs+up

s+up h
c2p
s+up−1

≤
s+N∏
k=s

lak−bkk

s+n−1∏
k=s

(lk/hk)
bk
hbss + · · ·+ h

bs+up−1−c2p
s+up−1

l
as+vp+1−c1p
s+vp+1 + · · ·+ l

as+n

s+n

.

By [15, Lem. 2] we know that

s+N∏
k=s

lak−bkk

s+n−1∏
k=s

(lk/hk)
bk ≤ AN .

Then

|ϕs,N | ≤ AN
s+up−1∏
k=s

(hk/lk)
bk

(
hs+up−1

ls+up−1

)−c2p lbss + · · ·+ l
bs+up−1−c2p
s+up−1

l
as+vp+1−c1p
s+vp+1 + · · ·+ l

as+n

s+n

.

By (3.6), hk/lk ≥ 1/A and by (3.9) bs + · · ·+ bs+up−1 − c2p = p. So

s+up−1∏
k=s

(hk/lk)
bk

(
hs+up−1

ls+up−1

)−c2p
≤ 1

Ap
.

Since ls+n < ls+n−1 and by (3.7) as+vp+1 + · · ·+ as+n − c1p = p,

|ϕs,N | ≤ AN−p
lps
lps+n

.

Since K(Λ) is uniformly perfect, there exists B ∈ R such that ls ≤ Bls+1. So

ls ≤ Bnls+n. Since N ≥ 2n, log2N ≥ n. Then

|ϕs,N | ≤ AN−pBp log2N ,

which is the desired result.
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3.2 Interpolating Bases

Fix s ∈ N. Let natural numbers ns−1, ns be given with ns−1 ≤ ns. Set Ns =

2ns and Ns−1 = 2ns−1 . Given N with 1 ≤ N ≤ Ns−1 we choose the points

(x
(s−1)
k )

Ns−1+1

k=1 on Ks−1 and (xk)
N
k=1 on Ks by the rule of increase of the type.

As above, ξk,s−1(f) = [x
(s−1)
1 , . . . , x

(s−1)
k+1 ]f, ek,s−1(x) =

∏k
j=1(x − x(s−1)

j )|Ks−1 for

k = 1, 2, . . . , Ns−1. Also let eN(y) =
∏N

j=1(y − xj)|Ks .

Lemma 3.2.1. [15, Lem. 3] For fixed f ∈ C(K(Λ)), x ∈ Ks let

ξ̃(f) = [x1, . . . , xN , x]f,

η̃(f) = ξ̃(f)−
Ns−1∑
k=N

ξ̃(ek,s−1)ξk,s−1(f).

Then

|η̃(f)eN(x)| ≤ N4
s−1A

2Ns−1 w(f, ls−1).

In the case K(Λ) = K(α) we have

|η̃(f)eN(x)| ≤ e6N4
s−1w(f, ls−1),

provided the condition Nsl
α−1
s ≤ 1 is fulfilled.

Proof. By ẽ we denote the function ẽ(y) = (y−x)eN(y). Then by (3.1), |ξN(f)| ≤
N2w(f, t)(mink≤N |e′N1

(xk)|)−1. Since eN(x)/ẽ′(xj) = −LN,j(x), Lemma 3.1.3 im-

plies

|ξ̃(f)eN(x)| ≤ N2AN−1w(f, ls). (3.11)

The representation ξ̃(ek,s−1) =
−ek,s−1(x)

eN(x)
+

N∑
j=1

ek,s−1(xj)

ẽ′(xj)
gives

|ξ̃(ek,s−1)ξk,s−1(f)eN(x)| ≤ |ξk,s−1(f)ek,s−1|

+
N∑
j=1

|ek,s−1(xj)|
|ẽ′(xj)|

· |eN(x)|
mini≤k |e′k+1,s−1(xi)|

k2w(f, ls−1).

By (3.1) and Lemma 3.1.3, |ξk,s−1(f)eN(x)| ≤ k2Akw(f, ls−1). By Lemma 3.1.4,
|ek,s−1(xj)|
|ẽ′(xj)|

≤ Ak and
|eN(x)|

mini≤k |e′k+1,s−1(xi)|
≤ AN−1. Then we get

|ξ̃(ek,s−1)ξk,s−1(f)eN(x)| ≤ (1 +NAN−1)k2Akw(f, ls−1),
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and

|η̃(f)eN(x)| =

∣∣∣∣∣ξ̃(f)eN(x)−
Ns−1∑
k=N

ξ̃(ek,s−1)ξk,s−1(f)eN(x)

∣∣∣∣∣
≤ |ξ̃(f)eN(x)|+

Ns−1∑
k=N

|ξ̃(ek,s−1)ξk,s−1(f)eN(x)|

≤ N2AN−1w(f, ls) +

Ns−1∑
k=N

(1 +NAN−1)k2Akw(f, ls−1)

≤ N2AN−1w(f, ls) + (1 +NAN−1)w(f, ls−1)

Ns−1∑
k=N

k2Ak

≤ N2AN−1w(f, ls) + (1 +NAN−1)w(f, ls−1)ANs−1Ns−1
3

≤ N4
s−1A

2Ns−1 w(f, ls−1)

which is the desired result.

In the same manner we obtain the desired bound in the case K(Λ) = K(α).

Lemma 3.2.2. For fixed f ∈ Cp(K(Λ)), x ∈ Ks let ξ̃(f) = [x1, . . . , xN , x]f,

η̃(f) = ξ̃(f)−
∑Ns−1

k=N ξ̃(ek,s−1)ξk,s−1(f). Then

|η̃(f)e
(p)
N (x)| ≤

N2p+3
s−1 A2Ns−1−2pB2p log2Ns−1 w(f (p), ls−1)

p!
.

Proof. By Lemma 3.1.1,

|ξ̃N(f)| ≤ N2w(f (p), ls−1)

p!

(
min

k≤N−p, j≤N

∣∣∣∣∣
k∏

s=1, s 6=j

(xj − xs)
N+1∏

s=k+p+1, s 6=j

(xj − xs)

∣∣∣∣∣
)−1

.

By Lemma 3.1.2,

|e(p)
N+1| ≤ Np max

k≤N

∣∣∣∣∣
k∏
s=1

(x− xs)
N+1∏

s=k+p+1

(x− xs)

∣∣∣∣∣
Then by Lemma 3.1.4, we get

|ξ̃N(f)e
(p)
N+1| ≤

Np+2w(f (p), ls−1)

p!
· |ϕs,N |

minj≤N |x− xj|

≤ AN−pBp log2N Np+2 w(f (p), ls−1)

p!
. (3.12)
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The representation ξ̃k,s−1 = −ek,s−1(x)

eN(x)
+

N∑
j=1

ek,s−1(xj)

ẽ′(xj)
gives

|ξ̃k,s−1ξk,s−1(f)eN(x)| ≤ |ξk,s−1(f)ek,s−1(x)|+
N∑
j=1

|ek,s−1(xj)|
|ẽ′(xj)|

· eN(x)

mini≤k |e′k+1,s−1(xi)|
k2w(f (p), ls−1). (3.13)

Then the first term

|ξk,s−1(f)ek,s−1(x)| ≤ Ak−pBp log2 kkp+2w(f (p), ls−1)

p!

by Lemma 3.1.1, Lemma 3.1.2 and Lemma 3.1.4. The parts of the two fractions

in the second sum will be considered cross-wise. Applying Lemma 3.1.4 twice we

get

|ξ̃k,s−1ξk,s−1(f)eN(x)| ≤ (1 +NpAN−pBp log2N)kp+2Ak−pBp log2Nw(f̃ (p), ls−1).

Clearly,
∑
k = 1nkp+2Ak−p ≤ n2p+3An−p for n ≥ 2. Summing over k we get

the general estimation of |η̃eN(x)|.

The task is now to show that the biorthogonal system suggested in [15] as a

basis for the space C(K(Λ)) forms a topological basis in the space Cp(K(Λ)) as

well, provided a suitable choice of degrees of polynomials.

Given a nondecreasing sequence of natural numbers (ns)
∞
0 , let Ns =

2ns , M
(l)
s = Ns−1/2 + 1, M

(r)
s = Ns−1/2 for s ≥ 1 and M0 = 1. Here, (l) and (r)

mean left and right respectively. For any basic interval Ij,s = [aj,s, bj,s] we choose

the sequence of points (xn,j,s)
∞
n=1 using the rule of increase of the type.

Let eN,1,0 =
∏N

n=1(x−xn,1,0) =
∏N

n=1(x−xn) for x ∈ K(Λ), N = 0, 1, . . . , N0.

For s ≥ 1, j ≤ 2s let en,j,s =
∏N

n=1(x− xn,j,s) if x ∈ K(Λ) ∩ Ij,s and en,j,s = 0 on

K(Λ) otherwise. Here, N = M
(a)
s , M

(a)
s +1, . . . , Ns with a = l for odd j and a = r

if j is even. The functionals are given as follows: for s = 0, 1, . . . ; j = 1, 2, . . . , 2s

and N = 0, 1, . . . , let ξN,j,s(f) = [x1,j,s, . . . , xN+1,j,s]f. Set ηN,1,0 = ξN,1,0 for
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N ≤ N0. Every basic interval Ij,s, s ≥ 1, is a subinterval of a certain Ii,s−1 with

j = 2i− 1 or j = 2i. Let

ηN,j,s(f) = ξN,j,s(f)−
Ns−1∑
k=N

ξN,j,s(ek,i,s−1)ξk,i,s−1(f)

for N = M
(a)
s , M

(a)
s +1, . . . , Ns. As before a = l if j = 2i−1, and a = r if j = 2i.

In the space C(K(Λ)) there is no unconditional basis. Thus we have to enu-

merate the elements (eN,j,s)
∞, 2s, Ns

s=0, j=1, N=Ms
in a reasonable way. We arrange them

by increasing the level s. Elements of the same level are ordered by increasing

the degree, that is with respect to N . For fixed s and N the elements eN,j,s are

ordered by increasing j, that is from left to right. In this way we introduce an

injective function σ : (N, j, s) 7→M ∈ N. At the beginning we have for zero level:

σ(0, 1, 0) = 1, . . . , σ(N0, 1, 0) = N0 + 1. Since the degree of the first element on

I1,1 is greater that on I2,1, we start the first level from eN0/2,2,1 : σ(N0/2, 2, 1) =

N0 + 2, σ(N0/2 + 1, 1, 1) = N0 + 3, σ(N0/2 + 1, 2, 1) = N0 + 4, · · · , σ(N1, 2, 1) =

N0 +1+2(N1−N0/2)+1 = 2(N1 +1) and we finish all elements of the first level.

For s = 2 we have two elements eN1/2,2,2, eN1/2,4,2 of the smaller degree, so they

have a priority: σ(N1/2, 2, 2) = 2(N1 + 1) + 1, σ(N1/2, 4, 2) = 2(N1 + 1) + 2 Then

σ(N1/2+1, 1, 2) = 2(N1+1)+3, σ(N1/2+1, 2, 2) = 2(N1+1)+4, · · · , σ(N2, 4, 2) =

2(N1 + 1) + 4(N2−N1/2) + 2 = 4(N2 + 1). Continuing in this manner after com-

pleting of the s-th level we get the value σ(Ns, 2
s, s) = 2s(Ns + 1).

By injectivity of the function σ there exists the inverse function σ−1. Let

fm = eσ−1(m), m ∈ N.

Theorem 3.2.3. [15, Thm. 1] Let a Cantor-type set K(Λ) satisfy (3.6). Then

for any bounded sequence (Ns)
∞
0 the system (fm)∞1 forms a Schauder basis in the

space C(K(Λ)).

Theorem 3.2.4. Let a Cantor-type set K(Λ) be a uniformly perfect set which

satisfies (3.6). Then for any bounded sequence (Ns)
∞
0 the system (fm)∞1 forms a

Schauder basis in the space Cp(K(Λ)).

Proof. Let SM(f, ) be the M -th partial sum of the expansion of f with respect to

the system (fm)∞1 for given f ∈ C(K(Λ)). Then SM(f, x) =
∑
ηN,j,s(f)eN,j,s(x),
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where the sum is taken over all N, j, s with σ(N, j, s) ≤ M . By Lemma 2.4.3,

SM(f, x) = QM−1(f, (xn,1,0)Mn=1, x) if 1 ≤ M ≤ N0 + 1. But the next function

SN0+2 is not a polynomial on I1,0. The restriction of SN0+2 to the interval I1,1

is QN0 , whereas SN0+2|I2,1 = QN0 + ηN0/2,2,1(f)eN0/2,2,1. In both cases we get the

polynomials of degree N0 that interpolate f at N0/2 + 1 points each. And always

the subscript M gives the total number of points where SM interpolates f .

If we continue this process, we see that the restriction of the function S2s(Ns+1)

to any interval Ij,s, j = 1, . . . , 2s, coincides with QNs(f, (xn,j,s)
Ns+1
n=1 , ·). Then we

add the next terms η.(f)e. to S2s(Ns+1) and we get certain polynomials of de-

gree Ns that interpolate f at some points on the intervals Ij,s+1, j = 1, . . . , 2s+1.

Continuing in this way we get S2s+1Ns+1 that has a degree Ns on I1,s+1 and

interpolates f on this interval at Ns + 1 points; so here it is the usual interpo-

lating polynomial. Then the restriction of S2s+1(Ns+1) to the interval Ij,s+1 gives

QNs(f, (xn,j,s+1)Ns+1
n=1 , ·) and S2s+1(N+1)|Ij,s+1

produces QN(f, (xn,j,s+1)N+1
n=1 , x) for

N ≥ Ns. It will continue up to the value N = Ns+1, after which we do the next

splitting.

Now we show that the expansion f =
∑
ηN,j,s(f)eN,j,s(x) is unique. Sup-

pose ηN,j,s(f) = 0 for all N, j, s. Then, by considering step by step all triples

σ−1(m), m ∈ N, we get ξN,j,s(f) = 0 for all N, j, s. Since the set of nodes of the

corresponding divided differences is dense in K(Λ), f = 0 which means that the

expansion f =
∑
ηN,j,s(f)eN,j,s(x) is unique. Then, it is enough to check only

the convergence of SM(f, ·) to f in the norm of the space Cp(K(Λ)).

Let Ns ≤ D for s ∈ N0. Fix f ∈ Cp(K(Λ)), ε > 0 and sε such that w(f̃ , lsε) ≤
D−2p−3A−2D+2pB−2 log2Dε. For any M ≥ Mε we get 2s−1(Ns−1 + 1) ≤ M ≤
2s(Ns + 1) with s ≥ sε + 1.

Fix x ∈ K(Λ). Without loss of generality let x ∈ K(Λ) ∩ [0, ls]. We have two

cases:

For the first case if 2s−1(Ns−1 + 1) ≤M ≤ 2sNs−1, then

SM(f, x) = QNs−1(f, (xn,1,s−1)Ns−1+1
n=1 , x) +

∑
ηN,1,s(f)eN,1,s(x), (3.14)
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where the sum is taken over allN, j, s with 2s−1(Ns−1+1) < σ(N, j, s) ≤M. Since

the degree Ns−1 will appear for the first time when σ−1(2sNs−1 +1) = (Ns−1, 1, s),

for the values N with (3.14) we have N ≤ Ns−1 − 1.

For the second case 2sNs−1 + 1 ≤M ≤ 2s(Ns + 1) we get

SM(f, x) = QN(f, (xn,1,s)
N+1
n=1 , x)

with some N, Ns−1 ≤ N ≤ Ns.

We prove the convergence of SM(f, ·) to f for these two cases and we start with

the more simple second case. With the notation ξ̃(f) = [x1,1,s, . . . , xN+1,1,s, x]f,

we have the polynomial Q̃N+1(·) = QN(·)+ ξ̃(f)eN+1,1,s(·) that interpolates f also

at the point x. Therefore here

f(x)− SM(f, x) = ξ̃(f)eN+1,1,s(x). (3.15)

Then for k = 0, 1, . . . , p

|f(x)− SM(f, x)|k = sup{|(ξ̃(f)eN+1,1,s(x))
(i)| : x ∈ K(Λ), i = 0, 1, . . . , k}.

(3.16)

By (3.12)

|ξ̃N(f)e
(i)
N+1| ≤

ANs−iBk log2Ns N i+2
s w(f (i), ls−1)

i!

≤ AD−iBi log2DDi+2w(f (i), ls−1)

i!

≤ ε.

Here ξ̃(f) = [x1,1,s, . . . , xN+1,1,s, x]f also depends on x. We know that

ξ̃(f) =
−f(x)

eN(x)
+

N∑
j=1

f(xj)

ẽ′(xj)
.

Then

ξ̃(f)eN+1,1,s(x) =
−f(x)eN+1,1,s(x)

eN(x)
+

N∑
j=1

f(xj)eN+1,1,s(x)

ẽ′(xj)
.

Since we show that the second part, it is enough to show that(
−f(x)eN+1,1,s(x)

eN (x)

)(i)

≤ ε. But ∣∣∣∣f(x)eN+1,1,s(x)

eN(x)

∣∣∣∣(i) ≤ ε,
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since we approximate in terms of the terms ls.

If 2s−1(Ns−1 + 1) ≤M ≤ 2sNs−1, then

|f(x)− SM(f, x)| = |η̃(f)eR+1,1,s(x)|. (3.17)

Then by Lemma 3.2.1

|η̃(f)e
(k)
R+1,1,s(x)| ≤

N2k+3
s−1 A2Ns−1−2k B2k log2Ns−1 w(f (k), ls−1)

k!

≤ D2p+3A2D−2k B2k log2D w(f (k), ls−1)

k!
≤ ε.

In the same way we can find a bound for the differentiation of η̃(f). Therefore

|f(x)− SM(f, x)|k ≤ ε for all k = 1, 2, . . . , p which is the desired conclusion.
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Chapter 4

Schauder Bases in the Spaces

Cp(K(Λ)) and Ep(K(Λ))

In this chapter, we construct a basis in the space of continuous functions and

in Whitney spaces on Cantor type sets. Let K ⊂ R be a compact set, and

let f = (f (k))0≤k≤n ∈ Cp(K). Let K(Λ) be the Cantor set associated with

the sequence Λ which we define in Section 2.3. In this chapter, by using the

local Taylor expansions of functions, we construct a biorthogonal system. Then

we show that this biorthogonal system is a Schauder basis both in the spaces

Cp(K(Λ)) and Ep(K(Λ)).

4.1 Local Taylor Expansions on Cantor-type Set

K(Λ)

We consider the set of all left endpoints of basic intervals of our Cantor set K(Λ).

As we defined in Section 2.3, K(Λ) is the Cantor set such that K(Λ) =
⋂∞
s=0Es,

where E0 = I1,0 = [0, 1], Es is a union of 2s closed basic intervals Ij, s = [aj,s, bj,s]

of length ls and Es+1 is obtained by deleting the open concentric subinterval of

length hs := ls − 2ls+1 from each Ij, s, j = 1, 2, ...2s. Then aj,s = a2j−1,s+1 for
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x1 = a1,0

a1,1

a1,2

x2 = a2,1

a3,2x3 = a2,2 x4 = a4,2

Figure 4.1: First steps of Cantor procedure and the points aj,s

j ≤ 2s. So any such point has infinitely many representations in the form aj,s.

We select the representation with the minimal second subscript and call it the

minimal representation. If j is even, then the representation aj,s is minimal for

the corresponding point. If j is odd, for j = 2q(2m+ 1) + 1 > 1, aj,s = a2m+2,s−q

where m ∈ N and for j = 1, a1,s = a1,0 for all s. As seen in the Figure 4.1

a1,0 = a1,1 = a1,2 and a2,1 = a3,2. Therefore we have a bijection between the set

of all left endpoints of basic intervals and the set A = a1,0 ∪ (a2j,s)
2s−1, ∞
j=1,s=1.

Let us enumerate the set A by first increasing s, then j. Then x1 = a1,0 =

0, x2 = a2,1 = 1 − l1, x3 = a2,2 = l1 − l2, x4 = a4,2 = 1 − l2, . . . and, in general,

x2s+k = a2k,s+1 for k = 1, 2, . . . , 2s.

Let us fix p ∈ N. For s ∈ N0, j ≤ 2s and 0 ≤ k ≤ p let ek,j,s(x) = (x−aj,s)k/k!

if x ∈ K(Λ) ∩ Ij,s and ek,j, s = 0 on K(Λ) otherwise. Given f = (f (k))0≤k≤p ∈∏
0≤k≤pC(K(Λ)), let ξk,j, s(f) = f (k)(aj,s) stand for the same values of s, j, and

k as above. For the fixed level s, the system (ek,j, s, ξk,j, s) is biorthogonal, that is

ξk,j, s(en,i, s) = δkn·δij. For example, for fixed s, ξ2,4, s(f) = f (2)(a4,s) and e3,4,s(x) =

(x − a4,s)
3/3! if x ∈ K(Λ) ∩ I4,s and e3,4, s = 0 on K(Λ) otherwise. Then clearly

ξ2,4, s(e3,4, s) = 0. Also ξ2,4, s(f) = f (2)(a4,s) and e2,2,s(x) = (x − a2,s)
2/2! if x ∈

K(Λ)∩I2,s and e2,2, s = 0 on K(Λ) otherwise, then ξ2,4, s(e2,2, s) = 0. Furthermore,

ξk,j, s takes zero value at all elements (ek,i, n)pk=0 with n ≥ s, except ek,j, s, where

it equals 1. But when n < s, the system (ek,j, n, ξk,j, s) is not biorthogonal. For

example, ξ2,4, 3(f) = f (2)(a4,3) and e2,2,2(x) = (x− a2,2)2/2! if x ∈ K(Λ)∩ I2,2 and

e2,2, 2 = 0 on K(Λ) otherwise, then ξ2,4, 3(e2,2, 2) = 1.

In order to obtain biorthogonality as well with regard to s, we will use the
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following convolution property of the values of functionals on the basis elements

(see Section 2.4.4). Let Ii, n ⊃ Ij, s−1. Then

p∑
m=k

ξk,2j, s(em,j, s−1) · ξm,j, s−1(eq,i, n) = ξk,2j, s(eq,i, n) for all q ≤ p.

Indeed, (ek,i, n)pk=0, (ek,j, s−1)pk=0, (ek,2j, s)
p
k=0 are three bases in the space

Pp(I2j,s) of polynomials of degree not greater than p on the interval I2j,s. If Mr←t

denotes the transition matrix from the t−th basis to the r−th basis, then the

identity above means M3←2M2←1 = M3←1.

On the other hand, in our case, this identity is the corresponding binomial

expansion:

q∑
m=k

(a2j,s − aj,s−1)m−k

(m− k)!
· (aj,s−1 − ai,n)q−m

(q −m)!
=

(a2j,s − ai,n)q−k

(q − k)!
. (4.1)

Here we consider summation until q since for q < m ≤ p, the terms ξm,j, s−1(eq,i, n)

vanish. We obtain (4.1) by the binomial expression

(x+ y)n =
n∑

m=0

n!

(n−m)!m!
xmyn−m

where we take x = a2j,s − aj,s−1, y = aj,s−1 − ai,n, n = q − k and we change the

index.

We restrict our attention only to the functions (ek,1,0)pk=0 and (ek,2j,s)
p, 2s−1, ∞
k=0,j=1,s=1

corresponding to the set A. Let us enumerate this family in the lexicographical

order with respect to the triple (s, j, k) : fn = en−1,1, 0 = 1
(n−1)!

(x − x1)n−1 · χ1,0

for n = 1, 2, · · · , p + 1. Here and in what follows, χj,s denotes the characteristic

function of the interval Ij,s. After this, fn = en−p−2,2, 1 = 1
(n−p−2)!

(x−x2)n−p−2 ·χ2,1

for n = p+2, p+3, · · · , 2(p+1) and in general, if (m−1)(p+1)+1 ≤ n ≤ m(p+1),

then fn = 1
k!

(x − xm)k · χ2i,s+1 = ek,2i, s+1. Here m = 2s + i with 1 ≤ i ≤ 2s and

k = n−(m−1)(p+1)−1. We see that all functions of the type 1
k!

(x−xm)k ·χ2i,s+1

with 0 ≤ k ≤ p and m = 2s + i ∈ N are included into the sequence (fn)∞n=1.

For the same values of parameters as above, we define the functionals ηk,1, 0 =
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ξk,1, 0 for k = 0, 1, · · · , p and

ηk,2j, s = ξk,2j, s −
p∑

m=k

ξk,2j, s(em,j, s−1) · ξm,j, s−1

for s ∈ N, j = 1, 2, · · · , 2s−1, and k = 0, 1, · · · , p. In what follows, we will use

the minimal representations of the points aj,s and the corresponding functionals

ξm,j, s. For example, ηk,2, s = ξk,2, s −
∑p

m=k ξk,2, s(em,1, 0) · ξm,1, 0. This agreement

is justified by the fact that the value ξm,j, s(f) = f (m)(aj,s) does not depend on

the representation of the point aj,s and the functions em,j, s−1, em,r, s−q coincide

on the interval I2j,s if aj,s−1 = ar,s−q.

The crucial point of the construction is that the functionals ηk,2j, s are biorthog-

onal, not only to all elements (ek,2j, s−1)pk=0, but also, by the convolution property,

to all (ek,2i, n)pk=0 with n = 0, 1, · · · , s− 2 and i = 1, 2, · · · , 2n−1. For example,

η2,4, 3 = ξ2,4, 3 −
p∑

m=2

ξ2,4, 3(em,2, 2) · ξm,2, 2 and e2,2, 2 =
(x− a2,2)2 · χ2,2

2!
.

Then

η2,4, 3(e2,2, 2) = ξ2,4, 3(e2,2, 2)−
p∑

m=2

ξ2,4, 3(em,2, 2) · ξm,2, 2(e2,2, 2)

= 1−
p∑

m=2

d

dx2

(
(x− a2,2)m

m!

)
x=a4,3

d

dxm

(
(x− a2,2)2

2!

)
x=a4,3

= 1− d

dx2

(
(x− a2,2)2

2!

)
x=a4,3

d

dx2

(
(x− a2,2)2

2!

)
x=a4,3

= 1− 1 = 0

Also

η2,4, 3(e3,1, 0) = ξ2,4, 3(e3,1, 0)−
p∑

m=2

ξ2,4, 3(em,2, 2) · ξm,2, 2(e3,1, 0)

= ξ2,4, 3(e3,1, 0)− ξ2,4, 3(e2,2, 2) · ξ2,2, 2(e3,1, 0)− ξ2,4, 3(e3,2, 2) · ξ3,2, 2(e3,1, 0)

= ξ2,4, 3(e3,1, 0)− ξ2,2, 2(e3,1, 0)− ξ2,4, 3(e3,2, 2)

= 6(a4,3 − a1,0)− 6(a2,2 − a1,0)− 6(a4,3 − a2,2) = 0.

In addition, the functional ηk,2j, s takes zero value at all elements (ek,2i, n)pk=0 with

n ≥ s, except ek,2j, s, where it equals 1.
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In the same lexicographical order as above, we arrange all functionals

(ηk,1,0)pk=0 and (ηk,2j,s)
p, 2s−1, ∞
k=0,j=1,s=1 into the sequence (ηn)∞n=1. That is, ηn(f) =

ξn−1,1, 0 for n = 1, 2, · · · , p + 1 and in general, ηn(f) = ηk,2i, s+1 where k =

n− (m− 1)(p+ 1)− 1 and m = 2s + i with 1 ≤ i ≤ 2s.

Our next goal is to express the sum SN(f) :=
∑N

n=1 ηn(f) · fn in terms of the

Taylor polynomials of the function f . For 1 ≤ N ≤ p+ 1,

SN(f) =
N∑
n=1

ηn(f) · fn =
N∑
n=1

f (n−1)(x1) · (x− x1)n−1

(n− 1)!
= TN−1

0 f.

Suppose p + 2 ≤ N ≤ 2(p + 1). Then SN(f) = T p0 f on I1,1. On the interval

I2,1, we obtain

SN(f) = T p0 f +
N∑

n=p+2

ηn−p−2,2, 1(f) · en−p−2,2, 1

= T p0 f +

N−p−2∑
k=0

[
ξk,2,1(f)−

p∑
m=k

ξk,2,1(em,1,0) · ξm,1,0(f)

]
1

k!
(x− a2,1)k

= T p0 f +

N−p−2∑
k=0

[
f (k)(a2,1)−

p∑
m=k

1

(m− k)!
am−k2,1 · f (m)(0)

]
1

k!
(x− a2,1)k

= T p0 f +

N−p−2∑
k=0

(Rp
0f)(k)(a2,1)

1

k!
(x− a2,1)k = T p0 f + TN−p−2

a2,1
(Rp

0f).

Therefore, SN(f) = T p0 f on I1,1 and SN(f) = T p0 f + TN−p−2
a2,1

(Rp
0f) on I2,1.

Particularly, S2p+2(f) = T p0 f + T pa2,1(R
p
0f) = T p0 f + T pa2,1(f − T p0 f) = T p0 f +

T pa2,1(f) − T p0 f = T pa2,1f, by (2.2). In addition, S
(k)
N (f, a2,1) = f (k)(a2,1) for 0 ≤

k ≤ N − p− 2, as is easy to check.

Continuing in this way, the values 2p + 3 ≤ N ≤ 3(p + 1) correspond to

the passage on the interval I2,2. On I1,2, SN(f) = T p0 f . On I2,2, SN(f) =

T p0 f + TN−2p−3
a2,2

(Rp
0f). On I3,2 and I4,2, SN(f) = T pa2,1f .

As seen in the Figure 4.2, we have three different sets.

For example, the values 5(p + 1) + 1 ≤ N ≤ 6(p + 1) (since a4,3 = x6)

correspond the passage on the interval I4,3. On the interval I4,3, SN(f) = T pa2,2f +
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x1 = a1,0 I1,0

a1,1 I1,1 I2,1

a1,2

x2 = a2,1

a3,2x3 = a2,2 x4 = a4,2

I1,3 I2,3 I3,3 I4,3 I3,2 I4,2

Figure 4.2: Decomposition of K(Λ) into three different sets

TN−5p−6
a4,3

(Rp
a2,2
f). On the intervals Ik,3 where k = 1, 2, 3, SN(f) = T pak,3f , that is,

on I1,3, SN(f) = T pa1,3f = T pa1,0f ; on I2,3, SN(f) = T pa2,3f and on I3,3, SN(f) =

T pa3,3f = T pa2,2f . On the interval I3,2, SN(f) = T pa3,2f = T pa2,1f and on I4,2,

SN(f) = T pa4,2f .

Combining all considerations of this section yields the following result:

Lemma 4.1.1. [21, Lem. 1] The system (fn, ηn)∞n=1 is biorthogonal. Given

f = (f (k))0≤k≤p ∈
∏

0≤k≤pC(K(Λ)) and N = 2s(p + 1) + j(p + 1) + m + 1 with

s ∈ N0, 0 ≤ j < 2s, and 0 ≤ m ≤ p we have SN(f) = T pak,s+1
f on Ik,s+1 with

k = 1, 2, · · · , 2j + 1, SN(f) = T pak,sf on Ik,s with k = j + 2, j + 3, · · · , 2s, and

SN(f) = T paj+1,s
f + Tma2j+2,s+1

(Rp
aj+1,s

f) on I2j+2,s+1.

4.2 Schauder Bases in the Spaces Cp(K(Λ)) and

Ep(K(Λ))

In this section we show that the biorthogonal system suggested in Section 4.1 is a

Schauder basis in both spaces Cp(K(Λ)) and Ep(K(Λ)). Here, as before, p ∈ N.
Given g on K(Λ), let ω(g, ·) be the modulus of continuity of g, that is

ω(g, t) = sup{ | g(x)− g(y) | : x, y ∈ K(Λ), |x− y| ≤ t}, t > 0.
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If x ∈ I = [a, a+ ls], then for any i ≤ p we have

|(Rp
af)(i)(x)| =

∣∣∣∣∣f (i)(x)− f (i)(a)−
p−i∑
k=1

f (i+k)(a)
(x− a)k

k!

∣∣∣∣∣ < ω(f (i), ls) + ls · 2 |f |p

(4.2)

and

|(Rp
af)(i)(x)| < 4 |f |p. (4.3)

Lemma 4.2.1. [21, Lem. 2] The system (fn, ηn)∞n=1 is a Schauder basis in the

space Cp(K(Λ)).

Proof. Given f ∈ Cp(K(Λ)) and ε > 0, we want to find Nε with |f −SN(f)|p ≤ ε

for N ≥ Nε. Let us take S such that for all i ≤ p we have

3 · ω(f (i), lS) + 14 · lS · |f |p < ε. (4.4)

Set Nε = 2S(p + 1). Then any N ≥ Nε has a representation in the form N =

2s(p + 1) + j(p + 1) + m + 1 with s ≥ S, 0 ≤ j < 2s, and 0 ≤ m ≤ p. Let us fix

i ≤ p and apply Lemma 4.1.1 to R := (f − SN(f))(i)(x) for x ∈ K(Λ).

If x ∈ Ik,s+1 with k = 1, · · · , 2j + 1, then |R| = |(f − T pak,s+1
f)(i)(x)| =

|(Rp
ak,s+1

f)(i)(x)| < ε, by (4.2) and (4.4).

If x ∈ Ik,s with k = j + 2, j + 3, · · · , 2s, then |R| = |(f − T pak,sf)(i)(x)| =

|(Rp
ak,s

f)(i)(x)| < ε, by (4.2) and (4.4).

Suppose x ∈ I2j+2,s+1. Then

|R| = |(f − T paj+1,s
f − Tma2j+2,s+1

(Rp
aj+1,s

f))(i)(x)|

≤ |(Rp
aj+1,s

f)(i)(x)|+ |(Tma2j+2,s+1
(Rp

aj+1,s
f))(i)(x)|.

For the first term we use (4.2). Second term vanishes if m < i. Otherwise, it is∣∣∣∣∣(Rpaj+1,s
f)(i)(x)− (Rpaj+1,s

f)(i)(a2j+2,s+1)−
m∑

k=i+1

(Rpaj+1,s
f)(k)(a2j+2,s+1)

(x− a2j+2,s+1)
k−i

(k − i)!

∣∣∣∣∣ .
Here, we estimate the terms (Rp

aj+1,s
f)(i)(x), (Rp

aj+1,s
f)(i)(a2j+2,s+1) by means of

(4.2). For the remaining sum, we use (4.3):∣∣∣∣∣
m∑

k=i+1

(Rp
aj+1,s

f)(k)(a2j+2,s+1)
(x− a2j+2,s+1)k−i

(k − i)!

∣∣∣∣∣ ≤ 4 |f |p
m∑

k=i+1

lk−is+1

(k − i)!
< ls+1 · 8 |f |p.
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Combining these we conclude that |R| ≤ 3(ω(f (i), ls) + ls · 2 |f |p) + ls+1 · 8 |f |p.
This does not exceed ε due to the choice of S. Therefore, |f − SN(f)|p ≤ ε for

N ≥ Nε.

The main result is given for Cantor-type sets under mild restriction:

∃ C0 : ls ≤ C0 · hs, for s ∈ N0. (4.5)

Theorem 4.2.2. [21, Thm 3] Let K(Λ) satisfy (4.5). Then the system

(fn, ηn)∞n=1 is a Schauder basis in the space Ep(K(Λ)).

Proof. Given f ∈ Ep(K(Λ)), we show that the sequence (SN(f)) converges to f

as well in the norm

‖ f ‖ p = |f | p + sup
{
|(Rp

yf)(k)(x)| · |x− y|k−p; x, y ∈ K, x 6= y, k = 0, 1, ...p
}
.

Because of Lemma 4.2.1, we only have to check that the second term of the norm

|(Rp
y(f − SN(f)))(i)(x)| · |x − y|i−p is uniformly small (with respect to x, y ∈ K

with x 6= y and i ≤ p) for large enough N . Fix ε > 0. Due to Whitney Theorem

(condition (2.1)), we can take S such that

|(Rp
yf)(k)(x)| < ε |x− y|p−k for k ≤ p and x, y ∈ K(Λ) with |x− y| ≤ lS.

(4.6)

As above, let Nε = 2S(p + 1) and N = 2s(p + 1) + j(p + 1) + m + 1 with

s ≥ S, 0 ≤ j < 2s, and 0 ≤ m ≤ p.

For simplicity, we take the value i = 0 since the general case can be analyzed

in the same manner. We will consider different positions of x and y on K(Λ) in

order to show

|Rp
y(f − SN(f))(x)| < C ε |x− y|p,

where the constant C does not depend on x and y. As seen in the following figure

we have three different sets on K(Λ) and we will consider the positions of x and

y according to these sets. In all cases, we use the representation of

SN(f) =


T pak,s+1

f x ∈ Ik,s+1 and k = 1, 2, · · · , 2j + 1

T pak,sf x ∈ Ik,s and k = j + 2, · · · , 2s

T paj+1,s
f + Tma2j+2,s+1

(Rp
aj+1,s

f) x ∈ I2j+2,s+1
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given in Lemma 4.1.1.

I II III

Suppose first that x, y belong to the same interval Ik,s+1 with some k =

1, . . . , 2j + 1. Then (f − SN(f))(x) = Rp
ak,s+1

f(x). From (2.2) it follows that

Rp
y(f − SN(f))(x) = Rp

y(R
p
ak,s+1

f(x))(x) = Rp
yf(x). Then since |x− y| ≤ ls+1, by

(4.6)

|Rp
y(f − SN(f))(x)| = |Rp

yf(x)| ≤ ε |x− y|p

which is the desired bound.

Also for the case x, y ∈ Ik,s with k = j + 2, j + 3, · · · , 2s, (f − SN(f))(x) =

Rp
ak,s

f(x) and Rp
y(f−SN(f))(x) = Rp

y(R
p
ak,s

f(x))(x) = Rp
yf(x). Here, |x−y| ≤ ls,

so as before (4.6) can be applied.

If x, y ∈ I2j+2,s+1, then (f−SN(f))(x) = (Rp
aj+1,s

f)(x)−Tma2j+2,s+1
(Rp

aj+1,s
f)(x)

for m < p and (f − SN(f))(x) = (Rp
a2j+2,s+1

f)(x) for m = p. Since Rp(Tm) = 0

for m < p, in both cases we get Rp
y(f − SN(f))(x) = Rp

yf(x) with |x − y| ≤ ls

and (4.6) can be applied once again.

We now turn to the cases when x and y lie on different intervals. Let x ∈
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Ik,s+1, y ∈ Im,s+1 with distinct k,m = 1, · · · , 2j + 1. Then

Rp
y(f − SN(f))(x) = Rp

y(f − T pak,s+1
f)(x)

= Rp
y(R

p
ak,s+1

)(x)

= Rp
ak,s+1

f(x)−
p∑
i=0

(Rp
am,s+1

f)(i)(y)
(x− y)i

i!

≤ ε · lps+1 + ε ·
p∑
i=0

lp−is+1

|x− y|i

i!

≤ ε · (Co|x− y|)p + ε ·
p∑
i=0

(Co|x− y|)p−i |x− y|i

i!

< Cp
0 (e+ 1) · ε · |x− y|p.

Here, |x−ak,s+1| ≤ ls+1, |y−am,s+1| ≤ ls+1 and by hypothesis |x−y| ≥ hs ≥ C−1
0 ls.

Also by (4.6),

|Rp
ak,s+1

f(x)| < ε |x− ak,s+1|p < ε lps+1

and

|(Rp
am,s+1

f)(i)(y)| < ε |y − am,s+1|p−i < ε lp−is+1.

As a result, |Rp
y(f − SN(f))(x)| < Cp

0 (e + 1) · ε · |x − y|p, which establishes the

desired result. Clearly, the same conclusion can be drawn for x ∈ Ik,s, y ∈ Im,s
with distinct k,m = j + 2, · · · , 2s, as well for the case when one of the points

x, y belongs to Ik,s+1 with k ≤ 2j + 1 whereas another lies on Im,s with m =

j + 2, · · · , 2s.

Ij+1

y ∈ I2j+1 x ∈ I2j+2

Figure 4.3: The case x ∈ I2j+2,s+1 and y ∈ I2j+1,s+1.

It remains to consider the most difficult cases: just one of the points x, y

belongs to I2j+2,s+1. Suppose x ∈ I2j+2,s+1. We can assume that y ∈ I2j+1,s+1
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since other positions of y only enlarge |x− y|. Let g = f − SN(f). Then

g(x) = (f−T paj+1,s
f−Tma2j+2,s+1

(Rp
aj+1,s

f))(x) = (Rp
aj+1,s

f−Tma2j+2,s+1
(Rp

aj+1,s
f))(x),

since x ∈ I2j+2,s+1. Also since y ∈ I2j+1,s+1 and aj+1 = a2j+1,

g(y) = (f − T paj+1,s
)(y) = (Rp

a2j+1,s
f))(y).

Then,

Rp
y(f − SN(f))(x) = Rp

y g(x)

= g(x)−
p∑
i=0

g(i)(y)(x− y)i

i!

= Rp
aj+1,s

f(x)− Tma2j+2,s+1
(Rp

aj+1,s
f)(x)

−
p∑
i=0

(Rp
a2j+1,s+1

f)(i)(y)(x− y)i

i!

We only need to estimate the intermediate Tm since other terms can be handled

in the same way as above. Now,

|Tma2j+2,s+1
(Rp

aj+1,s
f)(x)| ≤

m∑
i=0

|(Rp
aj+1,s

f)(i)(a2j+2,s+1)| |x− a2j+2,s+1|i

i!

≤
m∑
i=0

ε |a2j+2,s+1 − aj+1,s|p−i |x− a2j+2,s+1|i

i!

≤
m∑
i=0

εCp−i
0 |x− y|

p−i Ci
0|x− y|i

i!

≤ Cp
0 e ε |x− y|p.

Since by (4.6), |(Rp
aj+1,s

f)(i)(a2j+2,s+1)| ≤ ε |a2j+2,s+1 − aj+1,s|p−i. In addition,

|a2j+2,s+1 − aj+1,s| and |x − a2j+2,s+1| do not exceed C0 |x − y|. As a result we

obtain |Tma2j+2,s+1
(Rp

aj+1,s
f)(x)| ≤ Cp

0 e ε |x− y|p which is the desired result.

In the last case x ∈ I2j+1,s+1, y ∈ I2j+2,s+1. Then since x ∈ I2j+1,s+1,

g(x) = (f − T pa2j+1,s
f)(x) = Rp

a2j+1,s
f(x) and since y ∈ I2j+2,s+1,

g(y) = (f −T paj+1,s
−Tma2j+2,s+1

(Rp
aj+1,s

f))(y) = (Rp
a2j+1,s

f −Tma2j+2,s+1
(Rp

aj+1,s
f))(y).
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Ij+1

x ∈ I2j+1 y ∈ I2j+2

Figure 4.4: The case y ∈ I2j+2,s+1 and x ∈ I2j+1,s+1.

Then we have,

Rp
y(f − SN(f))(x) = Rp

y g(x)

= g(x)−
p∑
i=0

g(i)(y)(x− y)i

i!

= Rp
aj+1,s

f(x)−
p∑
i=0

(Rp
aj+1,s

f − Tma2j+2,s+1
(Rp

aj+1,s
f))(i)(y)(x− y)i

i!

As above, it is sufficient to consider only
∑p

i=0[Tma2j+2,s+1
(Rp

aj+1,s
f)](i)(y)(x− y)i/i!

since for other terms we have the desired bound. Since Tm term vanishes when

i > m, the genuine summation here is until i = m. Then

m∑
i=0

[Tma2j+2,s+1
(Rp

aj+1,s
f)](i)(y)(x− y)i

i!

≤
m∑
i=0

|x− y|i

i!
·
m∑
k=i

|Rp
aj+1,s

f(y)|(k) |y − a2j+2,s+1|k−i

(k − i)!

≤
m∑
i=0

|x− y|i

i!
·
m∑
k=i

ε |y − aj+1,s|p−k |ls+1|k−i

(k − i)!

≤
m∑
i=0

|x− y|i

i!
·
m∑
k=i

ε lp−ks lk−is+1

(k − i)!

≤
m∑
i=0

|x− y|i ε lp−is e

i!

≤ Cp
0 e

2 ε |x− y|p.

Since by (4.6), |(Rp
aj+1,s

f)(k)(y)| ≤ ε |y − aj+1,s|p−k. In addition, |y − a2j+2,s+1| ≤
ls+1 and ls do not exceed C0 |x−y|. As a result we obtain the desired result. Then

the proof is complete.
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Now we give two remarks. One is about whether our construction works in

the space E(K(Λ)). The other remark about the restriction in our theorem.

Remark 1. This biorthogonal system will not have the basis property in the

space E(K(Λ)). Let us enumerate all functions from (ek,1,0)∞k=0∪(ek,2j,s)
∞, 2s−1, ∞
k=0,j=1,s=1

and the corresponding functionals η into a biorthogonal sequence (fn, ηn)∞n=1 in

such way that for some increasing sequences (Np)
∞
p=0, (qp)

∞
p=0 the sum SNp(f) =∑Np

n=1 ηn(f) · fn coincides with T
qp
aj,pf on Ij,p for 1 ≤ j ≤ 2p. The sequence

(fn, ηn)∞n=1 will not have the basis property in the space E(K(Λ)). Let F ∈
C∞[0, 1] solve the Borel problem for the sequence (n! l−nn )∞n=0, that is F (n)(0) =

n! l−nn for n ∈ N0. Let f = F |K(Λ). Since SNp(f) =
∑Np

n=1 ηn(f) · fn coincides with

T
qp
aj,pf on Ij,p for 1 ≤ j ≤ 2p, (f −SNp(f))(x) = (f −T qpaj,pf)(x) = R

qp
aj,pf(x). Then

|f − SNp(f)|0 = |Rqp
aj,p
f |0 ≥ |Rqp

0 f(lp)| ≥

∣∣∣∣∣f(lp)−
qp∑
k=0

f (k)(0)
lkp
k!

∣∣∣∣∣
≥

∣∣∣∣∣f(lp)− f(0)−
qp∑
k=1

k!l−kk
lkp
k!

∣∣∣∣∣ since f (k)(0) = k!l−kk

> 1− |f(lp)− f(0)|

The last expression has a limit 1 as p→∞, so SN(f) does not converge to f in

| · |0.

For a basis in the space E(K(Λ)), see [6].

Remark 2. As we notice in Section 2.4.3, the natural triangulations in

Jonsson’s paper [13] are given by the sequence Fs = {Ii,s, 1 ≤ i ≤ 2s}, s ≥ 0

for Cantor set K(Λ). The regularity conditions in Jonsson’s paper [13] satisfied

when c2li ≤ li+1 ≤ c3li, that is,

lim inf
s→∞

ls+1

ls
> 0. (4.7)

Thus, [13, Prop. 2], for the Cantor set K(Λ) provided these conditions, the

expansion of f ∈ Ep(K(Λ)) with respect to Jonsson’s interpolating system con-

verges, at least in |·|p, to f. It is interesting to check the corresponding convergence

in topology given by the norm ‖ · ‖p. Our construction can be applied to any
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small Cantor set with arbitrary fast decrease of the sequence (ls)
∞
s=0. The basis

problem for the space Ep(K(Λ)) in the case of large Cantor set with ls/hs → ∞
is open.
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Chapter 5

Schauder Bases in the Spaces

Cp(K∞(Λ)) and Ep(K∞(Λ))

Let K ⊂ R be a compact set, and let f = (f (k))0≤k≤n ∈ Cp(K) be defined as

in Section 2.1. In this chapter, we construct a basis in the space of continuous

functions and in the Whitney space and also on K∞(Λ), the Cantor set associated

with the sequence Λ which we defined in Section 2.3. We use the same method as

in Chapter 4. In the same way, by using the local Taylor expansions of functions,

we construct a biorthogonal system. Then we show that this biorthogonal system

is a Schauder basis both in the space Cp(K∞(Λ)) and Ep(K∞(Λ)).

5.1 Local Taylor Expansions on K∞(Λ)

Let (Ns)
∞
s=0 be an increasing sequence such that Ns → ∞ as s → ∞. Let

Λ = (ls)
∞
s=0 be a sequence such that l0 = 1 and 0 < Ns+1ls+1 ≤ ls for s ∈ N0 :=

{0, 1, · · · }. Let K∞(Λ) be the Cantor set associated with the sequence Λ that is

K∞(Λ) =
⋂∞
s=0 Es, where E0 = I1,0 = [0, 1], Es is a union of

∏s
i=0 Ni closed basic

intervals Ij, s = [aj,s, bj,s] of length ls and Es+1 is obtained by deleting Ns+1 −
1 open concentric subintervals of length hs := ls−Ns+1ls+1

Ns+1−1
from each Ij, s, j =

1, 2, . . . ,
∏s

i=0Ni.
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Let φs =
∏s

i=0Ni and τs(x) = [[ x
Ns

]] where [[·]] denote the greatest integer

function. We use these expressions many times in our work.

Let us consider the set of all left endpoints of basic intervals. Since aj,s =

aNs+1(j−1)+1,s+1 for j ≤ φs, any such point has infinitely many representations in

the form aj,s. We select the representation with the minimal second subscript and

call it the minimal representation. Let Bs = {j : 1 ≤ j ≤ φs, j 6= Nst+1, 0 ≤ t <

φs−1, j, t ∈ N}. For s ≥ 1 the representation aj,s where j ∈ Bs, is minimal for the

corresponding point. For example, as seen in the following figure for Ns = s + 1

the points a1,0, a2,1, a2,2, a3,2, a5,2, a6,2, a2,3, a3,3, · · · are minimal. Therefore we

have a bijection between the set of all left endpoints of basic intervals and the set

A = a1,0

⋃
(aj,s)

∞, φs
s=1,j=1,j∈Bs

.

a1,0

x1

I1,0

a1,1 I1,1 I2,1

a1,2

a2,1

x2

a4,2a2,2 a3,2

x3 x4

a5,2

x5

a6,2

x6

Figure 5.1: First two steps of Cantor procedure with Ns = s+ 1

Let us enumerate the set A by first increasing s, then j: x1 = a1,0 = 0, x2 =

a2,1, and, in general, xφs−1+k = aτs(k+τs(k))+k+1,s for k = 1, 2, · · · , φs − φs−1. As

seen in the figure above, for Ns = s+ 1, x1 = a1,0 = 0, x2 = a2,1, x3 = a2,2, x4 =

a3,2, x5 = a5,2, x6 = a6,2, . . ..

Let us fix p ∈ N. For s ∈ N0, j ≤ φs and 0 ≤ k ≤ p let ek,j,s(x) = (x−aj,s)k/k!

if x ∈ K(Λ) ∩ Ij,s and ek,j, s = 0 on K(Λ) otherwise. Given f = (f (k))0≤k≤p ∈
Cp(K(Λ)), let ξk,j, s(f) = f (k)(aj,s) stand for the same values of s, j, and k as

above. For the fixed level s, the system (ek,j, s, ξk,j, s) is biorthogonal, that is

ξk,j, s(en,i, s) = δkn · δij. For example, for Ns = s + 1, ξ3,5, 2(f) = f (3)(a5,2) and

e3,3,2(x) = (x − a3,2)3/3! if x ∈ K(Λ) ∩ I3,2 and e3,2, 2 = 0 on K(Λ) otherwise,

then clearly ξ3,5, 2(e3,3, 2) = 0. Also ξ3,5, 2(f) = f (3)(a5,2) and e4,5,2(x) = (x −

58



a5,2)4/4! if x ∈ K(Λ)∩ I5,2 and e4,5, 2 = 0 on K(Λ) otherwise, then ξ3,5, 2(e4,5, 2) =

0. Furthermore, ξk,j, s takes zero value at all elements (ek,i, n)pk=0 with n ≥ s,

except ek,j, s, where it equals 1. But when n < s, the system (ek,j, n, ξk,j, s) is not

biorthogonal. For example, forNs = s+1 ξ3,5, 2(f) = f (3)(a5,2) and e3,2,1(x) = (x−
a2,1)3/3! if x ∈ K(Λ)∩I2,1 and e3,2, 1 = 0 on K(Λ) otherwise, then ξ3,5, 2(e3,2, 1) = 1.

In order to obtain biorthogonality as well with regard to s, we will use the

convolution property of the values of functionals on the basis elements as in

Section 4.1. Let Ii, n ⊃ Ij, s−1. Then
p∑

m=k

ξk,j, s(em,τs(j)+1, s−1) · ξm,τs(j)+1, s−1(eq,i, n) = ξk,j, s(eq,i, n) for all q ≤ p.

We define the functionals

ηk,j, s = ξk,j, s −
p∑

m=k

ξk,j, s(em,τs(j)+1, s−1) · ξm,τs(j)+1, s−1

for s ∈ N, j = 1, 2, · · · , φs, j ∈ Bs, and k = 0, 1, · · · , p. Now the functionals ηk,j,s

are biorthogonal, not only to all elements (ek,j,s−1)pk=0 but also, by the convolution

property (see Section 2.4.4), to all (ek,j,n)pk=0 with n = 0, 1, · · · , s − 2 and j =

1, 2, · · · , φn, j ∈ Bs. In addition, the functionals ηk,j,s takes zero value at all

elements (ek,j,n)pk=0 with n ≥ s, except ek,j,s where it equals 1. For example, for

Ns = s+ 1,

η3,5, 2(e3,2, 1) = ξ3,5, 2(e3,2, 1)−
p∑

m=3

ξ3,5, 2(em,2, 1) · ξm,2, 1(e3,2, 1)

= 1− ξ3,5, 2(e3,2, 1) · ξ3,2, 1(e3,2, 1) = 1− 1 = 0.

Also

η3,5, 2(e5,1, 0) = ξ3,5, 2(e5,1, 0)−
p∑

m=3

ξ3,5, 2(em,2, 1) · ξm,2, 1(e5,1, 0)

=
(a5,2 − a1,0)2

2
− ξ3,5, 2(e3,2, 1) · ξ3,2, 1(e5,1, 0)

−ξ3,5, 2(e4,2, 1) · ξ4,2, 1(e5,1, 0)− ξ3,5, 2(e5,2, 1) · ξ5,2, 1(e5,1, 0)

=
(a5,2 − a1,0)2

2
− (a2,1 − a1,0)2

2
− (a5,2 − a2,1)(a2,1 − a1,0)

−(a5,2 − a2,1)2

2
= 0
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Here, we will use the minimal representations of the points aj,s and the corre-

sponding functionals ξm,j, s.

We restrict our attention only to the functions (ek,1,0)pk=0 and (ek,2j,s)
p, 2s−1, ∞
k=0,j=1,s=1

corresponding to the set A. As in Chapter 4 we enumerate this family in

the lexicographical order with respect to the triple (s, j, k) : fn = en−1,1, 0 =
1

(n−1)!
(x− x1)n−1 · χ1,0 for n = 1, 2, · · · , p + 1. Here and in what follows, χj,s de-

notes the characteristic function of the interval Ij,s. After this, fn = en−p−2,2, 1 =
1

(n−p−2)!
(x − x2)n−p−2 · χ2,1 for n = p + 2, p + 3, · · · , 2(p + 1) and in general, if

(m − 1)(p + 1) + 1 ≤ n ≤ m(p + 1), then fn = 1
k!

(x − xm)k · χτs(i+τs(i))+i+1,s =

ek,τs(i+τs(i))+i+1, s. Here m = φs−1+i with 1 ≤ i ≤ φs and k = n−(m−1)(p+1)−1.

We see that all functions of the type 1
k!

(x− xm)k ·χτs(i+τs(i))+i+1,s with 0 ≤ k ≤ p

and m = φs−1 + i ∈ N are included into the sequence (fn)∞n=1.

In the same lexicographical order as above, we arrange all functionals

(ηk,j,s)
p, ∞, φs

k=0,s=1,j=1,j∈Bs
into the sequence (ηn)∞n=1.

Our next goal is to express the sum SN(f) :=
∑N

n=1 ηn(f) · fn in terms of the

Taylor polynomials of the function f . Clearly, SN(f) = TN−1
0 f for 1 ≤ N ≤ p+1.

Suppose p + 2 ≤ N ≤ 2(p + 1). Then SN(f) = T p0 f on I1,1. On the interval I2,1,

we obtain

SN(f) = T p0 f +
N∑

n=p+2

ηn−p−2,2, 1(f) · en−p−2,2, 1

= T p0 f +

N−p−2∑
k=0

[
ξk,2,1(f)−

p∑
m=k

ξk,2,1(em,1,0) · ξm,1,0(f)

]
1

k!
(x− a2,1)k

= T p0 f +

N−p−2∑
k=0

[
f (k)(a2,1)−

p∑
m=k

1

(m− k)!
am−k2,1 · f (m)(0)

]
1

k!
(x− a2,1)k

= T p0 f +

N−p−2∑
k=0

(Rp
0f)(k)(a2,1)

1

k!
(x− a2,1)k = T p0 f + TN−p−2

a2,1
(Rp

0f).

Therefore, SN(f) = T p0 f on I1,1 and SN(f) = T p0 f + TN−p−2
a2,1

(Rp
0f) on I2,1.

Particularly, S2p+2(f) = T p0 f + T pa2,1(R
p
0f) = T p0 f + T pa2,1(f − T p0 f) = T p0 f +

T pa2,1(f) − T p0 f = T pa2,1f, by (2.2). In addition, S
(k)
N (f, a2,1) = f (k)(a2,1) for 0 ≤

k ≤ N − p− 2, as is easy to check.
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Continuing in this way, the values 2p + 3 ≤ N ≤ 3(p + 1) correspond to the

passage on the interval I3,1 or I2,2 from the polynomial T p0 f to the polynomial

T pa3,1f or T pa2,2f . As seen in the following figure, here we have four different sets.

We explain this by an example. Let Ns = s+ 1. The values 12(p+ 1) + 1 ≤ N ≤
13(p + 1) correspond to the passage on the interval I10,3. On the interval I10,3

(set 2 in the Figure 5.2) SN(f) = T pa3,2f + TN−12p−13
a10,3

(Rp
a3,2
f). On the intervals

Ik,3 with k = 1, ..., 9 (set 1 in the Figure 5.2), we have SN(f) = T pak,3f . On the

intervals I11,3 and I12,3 (set 3 in the Figure 5.2), we have SN(f) = T pa3,2f . On the

intervals Ik,2 with k = 4, 5, 6 (set 4 in the Figure 5.2), we have SN(f) = T pak,2f .

I1,0

I1,1 I2,1

I1,2 I2,2 I3,2 I4,2 I5,2 I6,2

21 3 4

Figure 5.2: Decomposition of Cantor procedure into four different sets with Ns =
s+ 1

Combining all considerations of this section yields the following result:

Lemma 5.1.1. [29] The system (fn, ηn)∞n=1 is biorthogonal. Let t = τs+1(j) + 1.

Given f = (f (k))0≤k≤p ∈
∏

0≤k≤pC(K∞(Λ)) and N = φs(p+ 1) + j(p+ 1) +m+ 1

with s ∈ N0, 0 ≤ j < φs, and 0 ≤ m ≤ p we have

SN(f) =


T pak,s+1

f x ∈ Ik,s+1 and k = 1, 2, · · · , j − 1

T pak,sf x ∈ Ik,s and k = t+ 1, · · · , φs
T pat,sf + Tmaj,s+1

(Rp
at,sf) x ∈ Ij,s+1 and j ∈ Bs

T pat,sf x ∈ Ik,s+1 and k = j + 1, · · · , tNs+1

(5.1)
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5.2 Schauder Bases in the Spaces Cp(K∞(Λ)) and

Ep(K∞(Λ))

In this section we show that the biorthogonal system suggested in Section 5.1 is

a Schauder basis in both spaces Cp(K∞(Λ)) and Ep(K∞(Λ)). Here, as before,

p ∈ N. Given g on K(Λ), let ω(g, ·) be the modulus of continuity of g, that is

ω(g, t) = sup{ | g(x)− g(y) | : x, y ∈ K(Λ), |x− y| ≤ t}, t > 0.

If x ∈ I = [a, a+ ls], then for any i ≤ p we have

|(Rp
af)(i)(x)| < ω(f (i), ls) + ls 2 |f |p (5.2)

and

|(Rp
af)(i)(x)| < 4 |f |p. (5.3)

Lemma 5.2.1. [29] The system (fn, ηn)∞n=1 is a Schauder basis in the space

Cp(K(Λ)).

Proof. Given f ∈ Cp(K(Λ)) and ε > 0, we want to find Nε with |f −SN(f)|p ≤ ε

for N ≥ Nε. Let us take S such that for all i ≤ p we have

3ω(f (i), lS) + 14 lS |f |p < ε. (5.4)

Set Nε = φS(p + 1). Then any N ≥ Nε has a representation in the form N =

φs(p + 1) + j(p + 1) + m + 1 with s ≥ S, 0 ≤ j < φs, and 0 ≤ m ≤ p. Let us fix

i ≤ p and apply Lemma 5.1.1 to R := (f − SN(f))(i)(x) for x ∈ K(Λ).

If x ∈ Ik,s+1 with k = 1, · · · , j − 1, then |R| = |(f − T pak,s+1
f)(i)(x)| =

|(Rp
ak,s+1

f)(i)(x)| < ε, by (5.2) and (5.4).

If x ∈ Ik,s with k = t + 1, t + 2, · · · , φs, then |R| = |(f − T pak,sf)(i)(x)| =

|(Rp
ak,s

f)(i)(x)| and the same arguments can be used.

If x ∈ Ik,s+1 with k = j+1, j+2, · · · , tNs+1, then |R| = |(f−T pak,s+1
f)(i)(x)| =

|(Rp
ak,s+1

f)(i)(x)| and the same arguments can be used.
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Suppose x ∈ Ij,s+1, j ∈ Bs. Then

|R| = |(f − T pat,sf − T
m
aj,s+1

(Rp
at,sf))(i)(x)|

≤ |(Rp
at,sf)(i)(x)|+ |(Tmaj,s+1

(Rp
at,sf))(i)(x)|.

For the first term we use (5.2). The second term vanishes if m < i. Otherwise, it

is∣∣∣∣∣(Rp
at,sf)(i)(x)− (Rp

at,sf)(i)(a2j+2,s+1)−
m∑

k=i+1

(Rp
at,sf)(k)(aj,s+1)

(x− aj,s+1)k−i

(k − i)!

∣∣∣∣∣ .
Here, we estimate the first and the second terms by means of (5.2). For the

remaining sum, we use (5.3):∣∣∣∣∣
m∑

k=i+1

(Rp
at,sf)(k)(aj,s+1)

(x− aj,s+1)k−i

(k − i)!

∣∣∣∣∣ ≤ 4 |f |p
m∑

k=i+1

lk−is+1

(k − i)!
< ls+1 · 8 |f |p.

Combining these we conclude that |R| ≤ 3(ω(f (i), ls) + ls · 2 |f |p) + ls+1 · 8 |f |p.
This does not exceed ε due to the choice of S. Therefore, |f − SN(f)|p ≤ ε for

N ≥ Nε.

Also for this problem the main result is given for Cantor-type sets under

restriction:

∃ C0 : ls ≤ C0 · hs, for s ∈ N0. (5.5)

Theorem 5.2.2. [29] Let K(Λ) satisfy (5.5). Then the system (fn, ηn)∞n=1 is a

Schauder basis in the space Ep(K∞(Λ)).

Proof. Given f ∈ Ep(K(Λ)), we show that the sequence (SN(f)) converges to f

as well in the norm

‖ f ‖ p = |f | p + sup
{
|(Rp

yf)(k)(x)| · |x− y|k−p; x, y ∈ K, x 6= y, k = 0, 1, ...p
}
.

Because of Lemma 5.2.1, we only have to check that the second term of the norm

|(Rp
y(f − SN(f)))(i)(x)| · |x − y|i−p is uniformly small (with respect to x, y ∈ K

with x 6= y and i ≤ p) for large enough N . Fix ε > 0. Due to Whitney Theorem

(condition (2.1)), we can take S such that

|(Rp
yf)(k)(x)| < ε |x− y|p−k for k ≤ p and x, y ∈ K∞(Λ) with |x− y| ≤ lS.

(5.6)
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As above, let Nε = φS(p + 1) and N = φs(p + 1) + j(p + 1) + m + 1 with

s ≥ S, 0 ≤ j < φs, and 0 ≤ m ≤ p.

For simplicity, we take the value i = 0 since the general case can be analyzed

in the same manner. We will consider different positions of x and y on K∞(Λ) in

order to show

|Rp
y(f − SN(f))(x)| < C ε |x− y|p,

where the constant C does not depend on x and y. As seen in the following figure

we have four different sets on K∞(Λ) and we will consider the positions of x and

y according to these sets. In all cases, we use the representation of

SN(f) =


T pak,s+1

f x ∈ Ik,s+1 and k = 1, 2, · · · , j − 1

T pak,sf x ∈ Ik,s and k = t+ 1, · · · , φs
T pat,sf + Tmaj,s+1

(Rp
at,sf) x ∈ Ij,s+1 and j ∈ Bs

T pat,sf x ∈ Ik,s+1 and k = j + 1, · · · , tNs+1

given in Lemma 5.1.1.

I1,0

I1,1 I2,1

I1,2 I2,2 I3,2 I4,2 I5,2 I6,2

21 3 4

Figure 5.3: Decomposition of Cantor procedure into four different sets with Ns =
s+ 1

Suppose first that x, y belong to the same interval Ik,s+1 with some k =

1, · · · , j − 1. Then (f − SN(f))(x) = Rp
ak,s+1

f(x). From (2.2) it follows that

Rp
y(f − SN(f))(x) = Rp

y(R
p
ak,s+1

f(x))(x) = Rp
yf(x). Here, |x − y| ≤ ls+1, so we

have the desired bound by (5.6).
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Also for the case x, y ∈ Ik,s with k = t + 1, j + 3, · · · , φs, (f − SN(f))(x) =

Rp
ak,s

f(x) and Rp
y(f−SN(f))(x) = Rp

y(R
p
ak,s

f(x))(x) = Rp
yf(x). Here, |x−y| ≤ ls,

so (5.6) can be applied.

For the case x, y ∈ Ik,s+1 with k = j + 1, j + 3, · · · , tNs+1, (f − SN(f))(x) =

Rp
ak,s+1

f(x) and Rp
y(f−SN(f))(x) = Rp

y(R
p
ak,s+1

f(x))(x) = Rp
yf(x). Here, |x−y| ≤

ls+1, so (5.6) can be applied.

If x, y ∈ Ij,s+1, then

(f − SN(f))(x) =

{
(Rp

aj+1,s
f)(x)− Tma2j+2,s+1

(Rp
aj+1,s

f)(x) for m < p

(Rp
a2j+2,s+1

f)(x) for m = p

Since Rp(Tm) = 0 for m < p, in both cases we get Rp
y(f − SN(f))(x) = Rp

yf(x)

with |x− y| ≤ ls and (5.6) can be applied once again.

We now turn to the cases when x and y lie on different intervals. Let x ∈
Ik,s+1, y ∈ Im,s+1 with distinct k,m = 1, · · · , j − 1. Then

Rp
y(f − SN(f))(x) = Rp

y(f − T pak,s+1
f)(x)

= Rp
y(R

p
ak,s+1

)(x)

= Rp
ak,s+1

f(x)−
p∑
i=0

(Rp
am,s+1

f)(i)(y)
(x− y)i

i!

≤ ε lps+1 + ε

p∑
i=0

lp−is+1

|x− y|i

i!

≤ ε (Co|x− y|)p + ε

p∑
i=0

(Co|x− y|)p−i |x− y|i

i!

< Cp
0 (e+ 1) ε |x− y|p.

Here, |x−ak,s+1| ≤ ls+1, |y−am,s+1| ≤ ls+1 and by hypothesis |x−y| ≥ hs ≥ C−1
0 ls.

Also by (5.6),

|Rp
ak,s+1

f(x)| < ε |x− ak,s+1|p < ε lps+1

and

|(Rp
am,s+1

f)(i)(y)| < ε |y − am,s+1|p−i < ε lp−is+1.

As a result, |Rp
y(f − SN(f))(x)| < Cp

0 (e + 1) · ε · |x − y|p, which establishes the

desired result.
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Also, for the cases x ∈ Ik,s, y ∈ Im,s with distinct k,m = t + 1, · · · , φs and

x ∈ Ik,s+1, y ∈ Im,s+1 with distinct k,m = j + 1, · · · , tNs+1, same conclusion

can be drawn. Since for the cases Rp
y(f − SN(f))(x) = Rp

y(R
p
ak,s

)(x) and Rp
y(f −

SN(f))(x) = Rp
y(R

p
ak,s+1

)(x), respectively and we can apply same procedure.

It remains to consider the most difficult cases. Let g = f − SN(f).

Case 1: Suppose x ∈ Ij,s+1 where j ∈ Bs and y ∈ Ij−1,s+1.

y ∈ Ij−1,s+1 x ∈ Ij,s+1

Figure 5.4: The case x ∈ Ij,s+1, y ∈ Ij−1,s+1

Then, since x ∈ Ij,s+1,

g(x) = (f − T pat,sf − T
m
aj,s+1

(Rp
at,sf))(x) = (Rp

at,sf − T
m
aj,s+1

(Rp
at,sf))(x)

and since y ∈ Ij−1,s+1,

g(y) = (f − T paj−1,s
)(y) = (Rp

aj−1,s
f))(y).

Then we have

Rp
y(f − SN(f))(x) = Rp

y g(x)

= g(x)−
p∑
i=0

g(i)(y)(x− y)i

i!

= Rp
at,sf(x)− Tmaj,s+1

(Rp
at,sf)(x)

−
p∑
i=0

(Rp
aj−1,s+1

f)(i)(y)(x− y)i

i!

We only need to estimate the intermediate Tm since other terms can be handled
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in the same way as above. Now,

|Tmaj,s+1
(Rp

at,sf)(x)| ≤
m∑
i=0

|(Rp
at,sf)(i)(aj,s+1)| |x− aj,s+1|i

i!

≤
m∑
i=0

ε |aj,s+1 − at,s|p−i |x− aj,s+1|i

i!

≤
m∑
i=0

εCp−i
0 |x− y|

p−i Ci
0|x− y|i

i!

≤ Cp
0 e ε |x− y|p.

Since by (5.6), |(Rp
at,sf)(i)(aj,s+1)| ≤ ε |aj,s+1 − at,s|p−i. In addition, |aj,s+1 − at,s|

and |x−aj,s+1| do not exceed C0 |x−y|. As a result we obtain |Tmaj,s+1
(Rp

at,sf)(x)| ≤
Cp

0 e ε |x− y|p which is the desired result.

Case 2: Suppose y ∈ Ij,s+1 where j ∈ Bs and x ∈ Ij−1,s+1.

x ∈ Ij−1,s+1 y ∈ Ij,s+1

Figure 5.5: The case x ∈ Ij−1,s+1, y ∈ Ij,s+1

Then, since y ∈ Ij,s+1,

g(y) = (f − T pat,sf − T
m
aj,s+1

(Rp
at,sf))(y) = (Rp

at,sf − T
m
aj,s+1

(Rp
at,sf))(y)

and since x ∈ Ij−1,s+1,

g(x) = (f − T paj−1,s
)(x) = (Rp

aj−1,s
f))(x).
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Then we have

Rp
y(f − SN(f))(x) = Rp

y g(x)

= g(x)−
p∑
i=0

g(i)(y)(x− y)i

i!

= Rp
aj−1,s

f(x)−
p∑
i=0

(Rp
at,sf − T

m
aj,s+1

(Rp
at,sf))(i)(y)(x− y)i

i!

As above, it is sufficient to consider only
∑p

i=0[Tmaj,s+1
(Rp

at,sf)](i)(y)(x− y)i/i!

since for other terms we have the desired bound. Since Tm term vanishes when

i > m, the genuine summation here is until i = m. Then

m∑
i=0

[Tmaj,s+1
(Rp

at,sf)](i)(y)(x− y)i

i!
≤

m∑
i=0

|x− y|i

i!

m∑
k=i

|Rp
at,sf(y)|(k) |y − aj,s+1|k−i

(k − i)!

≤
m∑
i=0

|x− y|i

i!

m∑
k=i

ε |y − at,s|p−k |ls+1|k−i

(k − i)!

≤
m∑
i=0

|x− y|i

i!

m∑
k=i

ε lp−ks lk−is+1

(k − i)!

≤
m∑
i=0

|x− y|i ε lp−is e

i!

≤ Cp
0 e

2 ε |x− y|p.

Since by (5.6), |(Rp
at,sf)(k)(y)| ≤ ε |y − at,s|p−k. In addition, |y − aj,s+1| ≤ ls+1

and ls do not exceed C0 |x− y|. As a result we obtain the desired result.

Case 3: Suppose x ∈ Ij,s+1 where j ∈ Bs and y ∈ Ij+1,s+1.

Then, since x ∈ Ij,s+1,

g(x) = (f − T pat,sf − T
m
aj,s+1

(Rp
at,sf))(x) = (Rp

at,sf − T
m
aj,s+1

(Rp
at,sf))(x)

and since y ∈ Ij+1,s+1,

g(y) = (f − T pat,s)(y) = (Rp
at,sf))(y).
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x ∈ Ij,s+1 y ∈ Ij+1,s+1

Figure 5.6: The case x ∈ Ij,s+1, y ∈ Ij+1,s+1

Then we have

Rp
y(f − SN(f))(x) = Rp

y g(x)

= g(x)−
p∑
i=0

g(i)(y)(x− y)i

i!

= Rp
at,sf(x)− Tmaj,s+1

(Rp
at,sf)(x)−

p∑
i=0

(Rp
at,s+1

f)(i)(y)(x− y)i

i!

We only need to estimate the intermediate Tm since other terms can be handled

in the same way as above. Now,

|Tmaj,s+1
(Rp

at,sf)(x)| ≤
m∑
i=0

|(Rp
at,sf)(i)(aj,s+1)| |x− aj,s+1|i

i!

≤
m∑
i=0

ε |aj,s+1 − at,s|p−i |x− aj,s+1|i

i!

≤
m∑
i=0

εCp−i
0 |x− y|

p−i Ci
0|x− y|i

i!

≤ Cp
0 e ε |x− y|p.

Since by (5.6), |(Rp
at,sf)(i)(aj,s+1)| ≤ ε |aj,s+1 − at,s|p−i. In addition, |aj,s+1 − at,s|

and |x−aj,s+1| do not exceed C0 |x−y|. As a result we obtain |Tmaj,s+1
(Rp

at,sf)(x)| ≤
Cp

0 e ε |x− y|p which is the desired result.

Case 4: Suppose y ∈ Ij,s+1 where j ∈ Bs and x ∈ Ij+1,s+1.

Then, since y ∈ Ij,s+1,

g(y) = (f − T pat,sf − T
m
aj,s+1

(Rp
at,sf))(y) = (Rp

at,sf − T
m
aj,s+1

(Rp
at,sf))(y)
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y ∈ Ij,s+1 x ∈ Ij+1,s+1

Figure 5.7: The case x ∈ Ij+1,s+1, y ∈ Ij,s+1

and since x ∈ Ij+1,s+1,

g(x) = (f − T pat,s)(x) = (Rp
at,sf)(x).

Then we have

Rp
y(f − SN(f))(x) = Rp

y g(x)

= g(x)−
p∑
i=0

g(i)(y)(x− y)i

i!

= Rp
at,sf(x)−

p∑
i=0

(Rp
at,sf − T

m
aj,s+1

(Rp
at,sf))(i)(y)(x− y)i

i!
.

As above, it is sufficient to consider only
∑p

i=0[Tmaj,s+1
(Rp

at,sf)](i)(y)(x− y)i/i!

since for other terms we have the desired bound. Since Tm term vanishes when

i > m, the genuine summation here is until i = m. Then

m∑
i=0

[Tmaj,s+1
(Rp

at,sf)](i)(y)(x− y)i

i!
≤

m∑
i=0

|x− y|i

i!

m∑
k=i

|Rp
at,sf(y)|(k) |y − aj,s+1|k−i

(k − i)!

≤
m∑
i=0

|x− y|i

i!

m∑
k=i

ε |y − at,s|p−k |ls+1|k−i

(k − i)!

≤
m∑
i=0

|x− y|i

i!

m∑
k=i

ε lp−ks lk−is+1

(k − i)!

≤
m∑
i=0

|x− y|i ε lp−is e

i!

≤ Cp
0 e

2 ε |x− y|p.
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Since by (5.6), |(Rp
at,sf)(k)(y)| ≤ ε |y − at,s|p−k. In addition, |y − aj,s+1| ≤ ls+1

and ls do not exceed C0 |x− y|. As a result we obtain the desired result.

Since other positions of y when x ∈ Ij,s+1, j ∈ Bs, only enlarge |x − y| this

cases are enough. So the proof is complete.
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Chapter 6

Some Properties of Bases

6.1 Unconditional Bases

Definition 6.1.1. Let (xn)∞n=1 be a sequence in a Banach space X. A (for-

mal) series
∑∞

n=1 xn in X is said to be unconditionally convergent if
∑∞

n=1 xπ(n)

converges for every permutation π of N.

Lemma 6.1.1. [30, Lem. 2.4.2] Given a series
∑∞

n=1 xn in a Banach space X,

the following are equivalent:

(a)
∑∞

n=1 xn is unconditionally convergent;

(b) The series
∑∞

n=1 xnk
converges for every increasing sequence of integers

(nk)
∞
k=1;

(c) The series
∑∞

n=1 εnxn converges for every choice of signs (εn);

(d) For every ε > 0 there exists an n so that if F is any finite subset of {n +

1, n+ 2, . . .} then ∥∥∥∑
j∈F

xj

∥∥∥ < ε.

72



Proposition 6.1.1. [30, Prop. 2.4.9] A series
∑∞

n=1 xn in a Banach space X is

unconditionally convergent if and only if
∑∞

n=1 tnxn converges (unconditionally)

for all (tn) ∈ l∞.

Definition 6.1.2. A basis (en)∞n=1 of a Banach space X is called unconditional

if for each x ∈ X the series
∑∞

n=1 e
∗
n(x)en converges uncontionally. A basis for a

Banach space is conditional if it is not unconditional.

We can easily say by this definition that; (en)∞n=1 is an unconditional basis of

X if and only if (eπ(n))
∞
n=1

is a basis of X for all permutations π : N→ N.

The term ‘unconditional basis’ due to R.C. James [31]. But such bases was

studied before James and was named different names. For example, Karlin [32]

called such bases ‘absolute’ in his study before James. It should be noted that

the term ‘absolute basis’ is used now for a more strong condition.

An example of an unconditional basis is the standard unit vector basis for the

spaces c0 and lp. The summing basis of c0, defined as

fn = e1 + · · ·+ en, n ∈ N,

is a conditional basis.

Proposition 6.1.2. [30, Prop. 3.1.3] A basis (en)∞n=1 of a Banach space X is

unconditional if and only if there is a constant K ≥ 1 such that for all N ∈ N,

whenever a1, . . . , aN , b1, . . . , bN are scalars satisfying |an| ≤ |bn| for n = 1, . . . , N,

then the following inequality holds:∥∥∥ N∑
n=1

anen

∥∥∥ ≤ K
∥∥∥ N∑
n=1

bnen

∥∥∥. (6.1)

Definition 6.1.3. Let (en)∞n=1 be an unconditional basis of a Banach space X.

The unconditional basis constant, Ku, of (en) is the least constant K so that

the inequality (6.1) holds. We then say that (en) is K-unconditional whenever

K ≥ Ku.

Theorem 6.1.2. [33, Thm. 4.2.35] The classical Schauder basis for C[0, 1] is a

conditional basis.
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Let us consider the proof of this theorem, since its arguments will be used

below.

Proof. Let (sn)∞n=0 be the classical Schauder basis for C[0, 1] defined in (1.1).

(Also you can look Figure 1.1) Let we define a subsequence (tn) of (sn) as follows.

Let

t1 = s2, the member of the basis that is nonzero precisely on (0, 1),

t2 = s3, the member of the basis that is nonzero precisely on (0, 1/2),

t3 = s6, the member of the basis that is nonzero precisely on (1/4, 1/2),

t4 = s11, the member of the basis that is nonzero precisely on (1/4, 3/8),

and tn be nonzero on an interval half as long as is the case for tn−1 and the

corresponding interval for tn−1 to share left endpoints if n is even and right

endpoints if n is odd.

For each positive integer n, let vn be the midpoint of the interval on which

tn is nonzero, and let an = (
∑n

j=1 tj)(vn). Then (v1, a1) = (1/2, 1), (v2, a2) =

(1/4, 3/2). Then a1 = 1, a2 = 3/2 and for n ≥ 3

an = 1 +
an−1 + an−2

2
.

Since

an − an−1 = 1− an−1 − an−2

2

when n ≥ 3, by induction 1/2 ≤ an − an−1 ≤ 3/4 when n ≥ 2. This shows that

(an) is strictly increasing and unbounded. Also ‖
∑n

j=1 tj‖∞ = an for each n.

Let bn = (
∑n

j=1 (−1)j+1tj)(vn). Then (v1, b1) = (1/2, 1), (v2, b2) =

(1/4,−1/2). Then b1 = 1, b2 = −1/2 and for n ≥ 3

bn =

1
2
(bn−1 + bn−2) + 1, if n is odd

1
2
(bn−1 + bn−2)− 1, if n is even

Then by induction 1 ≤ bn ≤ 2 when n is odd and −1 ≤ bn ≤ 0 when n is even.

So ∥∥∥∥ n∑
j=1

(−1)j+1tj

∥∥∥∥
∞

= max{|bj| : 1 ≤ j ≤ n} ≤ 2
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for each n.

Assume (sn) is unconditional. Then Ku is its unconditional constant. Then

it have to be true that

an =

∥∥∥∥ n∑
j=1

tj

∥∥∥∥
∞
≤ Ku

∥∥∥∥ n∑
j=1

(−1)j+1tj

∥∥∥∥
∞
≤ 2Ku

for each n. But this contradicts the fact that (an) is an unbounded sequence of

positive numbers. So the basis (sn) is conditional.

Later, it was shown by Karlin [32] (by using another technique) that there is

no unconditional basis in the space C[0, 1].

Theorem 6.1.3. The system (fn, ηn)∞n=1 which is Schauder basis in the space

Cp(K(Λ)) given in Lemma 4.2.1, is a conditional basis.

Proof. Let (fn) be the Schauder basis in the space Cp(K(Λ)) where we defined

in Section 4.1. Let we define a subsequence of (fn) and call it (gn). Let g1 = f1 =

χ1,0, g2 = f3p+4 = χ2,2, g3 = f6p+7 = χ4,3 and in general gn = f(2n−1+2n−2)(p+1)+1 =

χ2n−1,n. In general we take the function fn which is equal to the characteristic

function of the interval whose right end point is b1,1. See the following figure.

x1 = a1,0 I1,0

a1,1 b1,1I1,1 I2,1

a1,2

x2 = a2,1

a3,2x3 = a2,2 x4 = a4,2

I1,3 I2,3 I3,3 I4,3 I3,2 I4,2

Figure 6.1: Cantor procedure with new subsequence gn
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Then

n∑
j=1

gj =
n∑
j=1

χ2j−1,j =



1, on I1,0/I2,2,

2, on I2,2/I4,3,

3, on I4,3/I8,4,
...

n, on I2n−1,n/I2n−2,n−1.

(6.2)

Then the sequence an = |
∑n

j=1 gj|k where k = 0, 1, . . . , p is an unbounded se-

quence.

Also

n∑
j=1

(−1)j+1gj =
n∑
j=1

(−1)j+1χ2j−1,j =



1, on I1,0/I2,2,

0, on I2,2/I4,3,

1, on I4,3/I8,4,
...

1, on I2n−1,n/I2n−2,n−1 if n is odd,

0, on I2n−1,n/I2n−2,n−1 if n is even.

(6.3)

Assume (fn) were unconditional. Then Ku were its unconditional constant.

Then it would have to be true that

an =

∣∣∣∣ n∑
j=1

gj

∣∣∣∣
k

≤ Ku

∣∣∣∣ n∑
j=1

(−1)j+1gj

∣∣∣∣
k

≤ Ku,

where k = 0, 1, ..., p, for each n. But this contradicts the fact that (an) is an

unbounded sequence of positive numbers. So the basis (fn) is conditional.

This method does not work for the space Ep(K(Λ)) since ‖
∑n

j=1 (−1)j+1gj‖k
is not bounded in the space Ep(K(Λ)). Therefore, the question regarding the

unconditional property of the basis remains open. Of course, any basis in E(K)

is unconditional, since this space is nuclear and, by the Dynin-Mityagin theorem,

the basis is absolute.
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Verlag, 1992.

78



[23] G. M. Phillips, Interpolation and Approximation by Polynomials, pp. 1–48.

New York: Springer-Verlag, 2003.

[24] V.I.Gurarii, “Bases in spaces of continuous functions on compacta and cer-

tain geometric questions,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 30, pp. 289–

306, 1966, (Russian).

[25] S. Bochkarev, “Construction of an interpolation dyadic basis in the space of

continuous functions on the basis of Fejer kernels,” Trudy Mat. Inst. Steklov,

vol. 172, pp. 29–59, 1985, (Russian).

[26] V. Grober and B. Bychkov, “A Schauder basis in the space C0
α,” Izv. Vyssh.

Uchebn. Zaved. Severo-Kavkaz. Reg. Estestv. Nauk., vol. 4, pp. 10–13, 1995,

(Russian).

[27] I. V. Ivanov and B. Shekhtman, “Linear discrete operators on the disk alge-

bra,” Proc. Amer. Math. Soc., vol. 129, no. 7, pp. 1987–1993, 2001.

[28] A. Jonsson, “Piecewise linear bases and Besov spaces on fractal sets,” Anal.

Math., vol. 27, no. 2, pp. 77 – 117, 2001.
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