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ABSTRACT

LOSSLESS DATA COMPRESSION WITH POLAR
CODES

Semih Çaycı

M.S. in Electrical and Electronics Engineering

Supervisors: Prof. Dr. Orhan Arıkan and Prof. Dr. Erdal Arıkan

August, 2013

In this study, lossless polar compression schemes are proposed for finite source

alphabets in the noiseless setting. In the first part, lossless polar source coding

scheme for binary memoryless sources introduced by Arıkan is extended to gen-

eral prime-size alphabets. In addition to the conventional successive cancellation

decoding (SC-D), successive cancellation list decoding (SCL-D) is utilized for im-

proved performance at practical block-lengths. For code construction, greedy ap-

proximation method for density evolution, proposed by Tal and Vardy, is adapted

to non-binary alphabets. In the second part, a variable-length, zero-error polar

compression scheme for prime-size alphabets based on the work of Cronie and Ko-

rada is developed. It is shown numerically that this scheme provides rates close

to minimum source coding rate at practical block-lengths under SC-D, while

achieving the minimum source coding rate asymptotically in the block-length.

For improved performance at practical block-lengths, a scheme based on SCL-D

is developed. The proposed schemes are generalized to arbitrary finite source

alphabets by using a multi-level approach. For practical applications, robustness

of the zero-error source coding scheme with respect to uncertainty in source dis-

tribution is investigated. Based on this robustness investigation, it is shown that

a class of prebuilt information sets can be used at practical block-lengths instead

of constructing a specific information set for every source distribution. Since the

compression schemes proposed in this thesis are not universal, probability dis-

tribution of a source must be known at the receiver for reconstruction. In the

presence of source uncertainty, this requires the transmitter to inform the receiver

about the source distribution. As a solution to this problem, a sequential quanti-

zation with scaling algorithm is proposed to transmit the probability distribution

of the source together with the compressed word in an efficient way.
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ÖZET

KUTUPSAL KODLARLA YİTİMSİZ VERİ SIKIŞTIRMA

Semih Çaycı

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Orhan Arıkan ve Prof. Dr. Erdal Arıkan

Ağustos, 2013

Bu çalışmada, gürültüsüz ortamda sonlu kaynak alfabeleri için yitimsiz kutup-

sal veri sıkıştırma yöntemleri önerilmektedir. İlk kısımda, Arıkan tarafından

tanıtılan, ikilik kaynaklar için yitimsiz kutupsal kodlama yöntemi genel asal

boyutlu kaynak alfabelerine genişletilmiştir. Konvansiyonel ardışık iptal kod

çözücüsüne ek olarak, pratik blok uzunluklarında iyileştirilmiş performans için

ardışık iptal liste kod çözücüsü kullanılmıştır. Kod yapımı için, Tal ve Vardy

tarafından önerilen yoğunluk evrimi için açgözlü yaklaşıklama algoritması iki-

lik olmayan kaynak alfabelerine uyarlanmıştır. İkinci bölümde Cronie ve Ko-

rada’nın çalışmaları esas alınarak, asal boyutlu alfabeler için değişken uzun-

luklu, sıfır hata kutupsal sıkıştırma şeması geliştirilmiştir. Önerilen kodlama

şemasının ardışık iptal kod çözücüsü ile blok uzunluğuyla asimptotik olarak

minimum kaynak kodlama oranına erişmenin yanı sıra pratik blok uzunluk-

larında minimum kaynak kodlama oranına yakın oranlar sağladığı nümerik

olarak gösterilmektedir. Pratik blok uzunluklarında iyileştirilmiş performans

için ardışık iptal liste kod çözücüsü tabanlı bir şema geliştirilmiştir. Önerilen

yöntemler, çoklu seviye yaklaşımı kullanılarak rastgele sonlu kaynak alfabeler-

ine genelleştirilmiştir. Pratik uygulamalar için, önerilen sıfır hata sıkıştırma

yönteminin kaynak dağılımındaki belirsizliğe karşı gürbüzlüğü araştırılmıştır. Bu

araştırma esas alınarak, pratik blok uzunluklarında her kaynak dağılımı için özel

bir enformasyon kümesi oluşturmak yerine önceden inşa edilmiş enformasyon

kümeleri öbeği kullanılabileceği gösterilmiştir. Bu tezde önerilen sıkıştırma

yöntemleri evrensel olmadığı için bir kaynağın olasılık dağılımı alıcıda bilin-

melidir. Bu durum, kaynak belirsizliği varlığında vericinin alıcıyı kaynak dağılımı

hakkında bilgilendirmesini zorunlu kılar. Bu soruna bir çözüm olarak, kaynak

olasılık dağılımını etkin bir şekilde sıkıştırılmış kelime ile gönderebilmek için bir

ölçeklemeli sırasal basamaklama algoritması önerilmiştir.

Anahtar sözcükler : Kutupsal kodlar, kaynak kutuplaştırma, kaynak kodlama,
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Chapter 1

Introduction

The subject of this thesis is the compression of discrete memoryless sources by us-

ing polar codes in the noiseless setting. In most practical compression problems,

such as discrete cosine transform-based image compression, zero-error compres-

sion of memoryless sources over a non-binary alphabet is required. The objective

in this problem is to develop compression schemes that provide rates close to

minimum source coding rate, the entropy of the source, by using low complex-

ity encoding and decoding algorithms. In this thesis, data compression schemes

based on polarization, introduced in [1], that have low complexity encoding and

decoding algorithms and an efficient deterministic code construction method are

proposed as a solution to the problem.

1.1 Lossless Data Compression: Definitions and

Theoretical Limits

In this thesis, lossless compression of discrete memoryless sources with side in-

formation in the noiseless setting is considered. Let (X, Y ) be a pair of random

variables over X ×Y with a joint probability mass function pX,Y . Throughout the

thesis, unless stated otherwise, X represents the source to be compressed, and

1



Y represents side information. The cardinality of the source alphabet, denoted

as |X |, is a positive integer q < ∞, and Y is a finite set. For a positive inte-

ger block-length N , N independent and identically distributed (iid) realizations

{(Xi, Yi), i = 0, 1, . . . , N − 1} from pX,Y are taken and vectors XN−1
0 and Y N−1

0

are obtained. Side information vector Y N−1
0 is assumed to be known at encoder

and decoder. This scenario is called (0101)-scheme in [2], and conditional source

coding in [3] and [4]. The coding scheme is illustrated in Figure 1.1.

Figure 1.1: Lossless source coding with side information.

An N -length block code with side information is a pair of mappings (f, ϕ),

called encoder and decoder, respectively, such that f : XN × YN 7→ M and

ϕ : M×YN 7→ XN where M = {1, 2, . . . ,M}. The error probability associated

with the code (f, ϕ) is e(f, ϕ) = Pr{ϕ(f(XN , Y N), Y N) 6= XN}, and the code

rate is R = 1
N
logM .

Theorem 1 (The noiseless coding theorem for discrete memoryless sources). For

any ǫ > 0, there exists an N0 such that for all N > N0, there exists a code (f, ϕ)

with error probability e(f, ϕ) ≤ ǫ if R > H(X|Y ) [2, 5].

The noiseless coding theorem for discrete memoryless sources states funda-

mental limit of lossless source coding. The objective is to develop compression

schemes that achieve this limit with low complexity encoding and decoding algo-

rithms.

1.2 Review of the Related Work

Channel polarization achieved a significant breakthrough in coding theory for pro-

viding the first provably capacity achieving coding scheme with low complexity

2



encoding and decoding algorithms [1]. The application of polarization in source

coding is first considered in [6] and [7], which exploit the duality between channel

coding and source coding in the solution of the problem. As a complementary

to channel polarization, source polarization was introduced in [8], and a lossless

source coding scheme based on source polarization, which asymptotically achieves

minimum source coding rate was described. In [9], a zero-error, fixed-to-variable

length source coding scheme is developed for binary memoryless sources without

considering side information, using a similar approach as in [10] for data com-

pression in the noiseless setting. It was shown in [9] that the proposed scheme

provides rates close to minimum source coding rate at practical block-lengths

besides achieving it asymptotically in the block-length under successive cancel-

lation decoder (SC-D). In practice, cardinality of the source alphabet can be

large; thus a generalization to non-binary alphabets is necessary. In addition,

side information, if available, must be exploited for reduced code rates. In this

paper, compression schemes for arbitrary finite source alphabets that exploit side

information are proposed based on the ideas derived from [9].

Polarization concept was extended to arbitrary discrete memoryless channels

in [11], and it is shown that a polarization transform similar to the binary case

leads to polarization for prime-size alphabets. For simplicity and efficiency, po-

larization scheme used in this paper is based on this work.

Successive cancellation decoder (SC-D), proposed in [1], is the first known

decoding algorithm for polar codes that achieves channel capacity asymptoti-

cally in the block-length with a complexity of O(N logN). In order to improve

performance of polar codes at practical block-lengths, Tal and Vardy proposed

successive cancellation list decoder (SCL-D), an adaptation of the list decoding

algorithm for Reed-Muller codes proposed in [12], and they numerically showed

that SCL-D approaches maximum-likelihood (ML) decoding performance. For

improved finite-length performance, SCL-D-based data compression schemes are

introduced in this thesis.

Monte Carlo method was used for polar code construction in [1] to estimate

Bhattacharyya parameters, which are used in the selection of good channels.

3



In [13], Mori and Tanaka showed that density evolution can be utilized as a

method of deterministic code construction. However, due to its high computa-

tional complexity, direct application of their method proved to be impractical for

large block-lengths. Tal and Vardy proposed quantization methods to overcome

this problem, and they described an efficient polar code construction method

for binary discrete memoryless channels in [14]. For efficient code construction,

a greedy density evolution method for non-binary alphabets, based on [14], is

presented in this thesis.

Robustness of polar source codes with respect to source uncertainty is an-

alyzed in [15]. It was shown that the information set constructed for a q-ary

probability distribution p0 is included in another information set that is con-

structed for a q-ary distribution p1 circularly dominated by p0. In this respect, it

was concluded that source coding at rate R = H(p1) ≥ H(p0) can be performed

asymptotically in the block-length. In this thesis, robustness of the proposed

scheme is analyzed from two perspectives including this, and efficient schemes for

practical applications in the presence of source uncertainty is proposed.

1.3 Outline

The outline of the thesis is as follows.

In Chapter 2, source polarization is briefly reviewed, and a fixed-to-fixed

length lossless source coding scheme for non-binary discrete memoryless sources

based on source polarization is described as a generalization of [8]. An efficient

greedy algorithm based on density evolution is proposed for polar code construc-

tion.

In Chapter 3, fixed-to-variable length, zero-error lossless polar compression

scheme introduced by Cronie and Korada is generalized to prime-size alphabets.

In order to reduce code rate at practical block-lengths, a compression scheme

based on SCL-D is proposed. These schemes for prime-size alphabets are gen-

eralized to arbitrary finite source alphabets by using a specific scenario for the

4



compression of correlation sources, and it is shown that minimum source coding

rate can be achieved by this scheme. Robustness of the proposed compression

scheme with respect to source uncertainty is investigated. Based on this investiga-

tion, in order to transmit the source distribution at the expense of extra overhead

in the presence of source uncertainty, a sequential quantization with scaling al-

gorithm is proposed. In order to reduce computational complexity in practical

applications, a method for constructing and using a pre-constructed information

sets is proposed.

Finally, conclusions and future work are presented in Chapter 4.
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Chapter 2

Lossless Data Compression with

Polar Codes

2.1 Preliminaries

Let (X, Y ) be a pair of random variables over X × Y with a joint distribution

pX,Y (x, y), where X = {0, 1, . . . , q − 1} for a prime number q, and Y is a count-

able set. Following the notation of [8], (X, Y ) is considered as a memoryless

source with X to be compressed, and Y to be utilized as side information in the

compression of X. For a positive integer n and N = 2n, let {(Xi, Yi)}
N−1
i=0 be in-

dependent drawings from the source (X, Y ). By using the following polarization

transformation:

GN =
[
1 0
1 1

]⊗n
BN , (2.1)

where all operations are performed in GF (q), ⊗n is the nth Kronecker power, and

BN is the bit-reversal operation. the random vector XN−1
0 is transformed into

UN−1
0 as:

UN−1
0 = XN−1

0 GN . (2.2)

This transformation can be expressed recursively as in Figure 2.1.
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Figure 2.1: Recursive polar transformation of XN−1
0 .

The input vector XN−1
0 is polarized by this transformation in the following

sense:
|{i : H(Ui|U

i−1
0 , Y N−1

0 ) ∈ [0, δ)}|

2n
= 1−H(X|Y ), (2.3)

and
|{i : H(Ui|U

i−1
0 , Y N−1

0 ) ∈ (1− δ, 1]}|

2n
= H(X|Y ), (2.4)

for any given δ > 0, and n → ∞ [16]. Here the default base of the entropy

function is chosen as q.

For a ternary source with distribution pX = (0.84, 0.09, 0.07) and block-

length N = 214, the set of conditional entropies, {H(Ui|U
i−1
0 )}N−1

i=0 , is given in

Figure 2.2. For the same source distribution, the sorted conditional entropies

with respect to normalized indices together with the entropy of the source is given

in Figure 2.3. As N → ∞, the edge of the sorted conditional entropies coincides

with the line indicating the entropy of the source.
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2.2 Encoding

Based on source polarization, a lossless source coding scheme for binary memory-

less sources is introduced in [8]. The basic idea is to transmit symbols which can

be reconstructed using previous symbols, i.e., those with high H(Ui|U
i−1
0 , Y N−1

0 ).

Let R ∈ (0, 1) be a given rate, and r = ⌈NR⌉. The set of indices corresponding

to the r highest H(Ui|U
i−1
0 , Y N−1

0 ) terms is defined as the information set:

IX|Y (N,R) = {i ∈ {0, 1, . . . , N − 1} : H(Ui|U
i−1
0 , Y N−1

0 ) ≥ δ(r)} (2.5)

where δ(r) corresponds to the rth highest H(Ui|U
i−1
0 , Y N−1

0 ). The information

set is assumed to be known at both encoder and decoder, and shown as IX|Y in

the short form.

In the encoding process, a source realization xN−1
0 is transformed into uN−1

0 by

the polar transformation given in (2.2). Then, the vector consisting of elements of

uN−1
0 corresponding to the information set IX|Y , denoted as uIX|Y

, is transmitted

as the codeword. The complexity of encoding is O(N logN) [1].

2.3 Decoding

In this section, two decoding schemes, namely successive cancellation decoder

(SC-D) and successive cancellation list decoder (SCL-D), will be described. In

both schemes, recursive computation of path probabilities, i.e., Pr{U i−1
0 =

ui−1
0 |Y N−1

0 = yN−1
0 } for all i ∈ Ic

X|Y = {0, 1, . . . , N − 1}\IX|Y , plays a funda-

mental role. Thus, the recursive computation scheme will be derived first.

The probability of observing a sequence uN−1
0 at the output of the polarization

transform is defined as follows:

PN(u
N−1
0 |yN−1

0 ) , Pr{UN−1
0 = uN−1

0 |Y N−1
0 = yN−1

0 }. (2.6)

Lemma 1. The probability of a sequence uN−1
0 at the output of the polarization

9



transform can be calculated in a recursive way as:

PN(u
N−1
0 |yN−1

0 ) = PN/2(u
N−1
0,e ⊖ uN−1

0,o |y
N/2−1
0 )PN/2(u

N−1
0,o |yN−1

N/2 ), (2.7)

where P1(u|y) = Pr{X = u|Y = y}, uN−1
0,e and uN−1

0,o denote the elements of uN−1
0

with even and odd indices, respectively, and ⊖ denotes subtraction in GF (q).

The proof directly follows from the recursive structure of the polarization

transform in Figure 2.1.

The probability of a subsequence ui
0 is denoted and computed as:

P
(i)
N (ui−1

0 , ui|y
N−1
0 ) =

∑

uN−1

i+1
∈XN−i−1

PN(u
N−1
0 |yN−1

0 ). (2.8)

In order to evaluate probability of a decoding path ui
0 in a recursive way,

the recursive computation of joint probability in (2.7) is utilized together with

(2.8) as in the following proposition, which is an extension of recursive channel

transformations in [1] to non-binary case.

Proposition 1. For i ∈ {0, 1, . . . , N/2 − 1} and N ≥ 2, marginal probability in

(2.8) can be computed recursively as:

P
(2i)
N (u2i−1

0 , u2i|y
N−1
0 ) =

∑

u2i+1∈X

P
(i)
N/2(u

2i−1
0,e ⊖ u2i−1

0,e , u2i ⊖ u2i+1|y
N/2−1
0 )

· P
(i)
N/2(u

2i−1
0,e , u2i+1|y

N−1
N/2 ),

P
(2i+1)
N (u2i

0 , u2i+1|y
N−1
0 ) = P

(i)
N/2(u

2i−1
0,e ⊖ u2i−1

0,e , u2i⊖u2i+1|y
N/2−1
0 )

· P
(i)
N/2(u

2i−1
0,e , u2i+1|y

N−1
N/2 ).

Proof. The first equality is proved in the following steps:

P
(2i)
N (u2i−1

0 , u2i|y
N−1
0 )

a
=

∑

uN−1

2i+1

PN/2(u
N−1
0,e ⊖ uN−1

0,o |y
N/2−1
0 )PN/2(u

N−1
0,o |yN−1

N/2 )

b
=

∑

u2i+1

∑

uN−1

2i+2,o

PN/2(u
N−1
0,o |yN−1

N/2 )

·
∑

uN−1

2i+2,e

PN/2(u
N−1
0,e ⊖ uN−1

0,o |y
N/2−1
0 )

10



c
=

∑

u2i+1

∑

uN−1

2i+2,o

P
(i)
N/2(u

2i−1
0,e ⊖ u2i−1

0,o , u2i ⊖ u2i+1|y
N/2−1
0 )

· PN/2(u
N−1
0,o |yN−1

N/2 )

d
=

∑

u2i+1

P
(i)
N/2(u

2i−1
0,e ⊖u2i−1

0,o , u2i ⊖ u2i+1|y
N/2−1
0 )

· P
(i)
N/2(u

2i−1
0,e , u2i+1|y

N−1
N/2 ).

(a) directly follows from Lemma 2.7. From (b) to (c), we devise the fact that

marginalizing inner probability with first input argument uN−1
0,o ⊖uN−1

0,e over uN−1
2i+2,e

for a fixed uN−1
2i+2,o corresponds to marginalization over uN−1

2i+2,e ⊖ uN−1
2i+2,o. In (d), it

is considered that the marginalization over uN−1
2i+2,o does not affect the term with

first input argument u2i−1
0,e ⊖ u2i−1

0,o .

The second part of the proof is identical with the first part and omitted.

2.3.1 Successive Cancellation Decoder

In SC-D, each element ûi is reconstructed by using the most probable symbol

given side information and previous decisions ûi−1
0 successively. Note that the

decoder has the information set IX|Y and correct symbols corresponding to the

information set, uIX|Y
. Hence, if an index i is contained in IX|Y , the decoder

directly assigns the corresponding value ûi = ui. In the other case, the probability

of each symbol is computed using recursive formulas given in Proposition 1, and

the symbol with maximum probability is assigned to ûi. A high-level description

of the SC-D algorithm is given in Algorithm 1.

SC-D can be implemented with space-complexity O(N) and time-complexity

O(N logN) using the algorithms in [17]. Note that in SC-D, if an incorrect de-

cision is made at phase i, it cannot be corrected at further phases. Moreover,

the respective incorrect symbol ûi is used in the decoding of the succeeding sym-

bols, which constitutes error propagation. In order to avoid such situations and

improve performance at practical block-lengths at the expense of increased com-

putational complexity, SCL-D is proposed in [17].
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Algorithm 1: SC D(uIX|Y
, yN−1

0 )

input : uIX|Y
: Codeword, yN−1

0 : Side information

output: x̂N−1
0 : Reconstructed sequence

1 for i = 0, 1, . . . , N − 1 do

2 if i ∈ IX|Y then

3 ûi = ui,
4 else

5 ûi = argmax
ui∈X

P
(i)
N (ûi−1

0 , ui|y
N−1
0 ).

6 Return x̂N−1
0 = ûN−1

0 G−1
N .

2.3.2 Successive Cancellation List Decoder

For a q-ary source code of length N and rate R, the number of decoding paths

in the decision tree is qNR, which makes this ML decoder infeasible. However,

this problem can be solved by selecting L paths with highest probabilities and

terminating the rest at each phase i [17]. This scheme is called successive cancel-

lation list decoding (SCL-D). The parameter L is called the list size and L = 1

corresponds to the conventional SC-D.

The basic idea in list decoding is to make decisions based on the probability

of a whole sequence ûN−1
0 instead of individual decisions at each phase i. This

procedure can be represented by a q-ary decision tree of depth N . An example

of a decision tree for a code with parameters q = 3, N = 23, L = 4, IX|Y =

{0, 3, 5, 7}, uIX|Y
= [2, 1, 0, 1] is illustrated in Figure 2.4.

In a decoding tree, each path from a leaf node to the root node constitutes a

reconstructed sequence ûN−1
0 . In the example, the correct decision path is shown

by red.

At phase i, the path from the parent node to the root node constitutes a

decoded sequence ûi−1
0 . If i is contained in IX|Y , one node is appended to each

leaf node at phase i− 1 with value ûi. If i is not contained in IX|Y , q nodes are

appended to each node at phase i − 1, representing each possible symbol for ûi,

together with the path probability as in (2.8). Continuing this way, the decoded

12



Figure 2.4: An example SCL-D tree for q = 3, L = 4 and N = 23.

sequence ûN−1
0 corresponds to the path with highest probability:

ûN−1
0 = argmax

ũN−1

0
∈XN

P
(N−1)
N (ũN−2

0 , ũN−1) (2.9)

A high-level description of SCL-D is given in Algorithm 2. For the imple-

mentation of low-level functions, refer to [17]. SCL-D can be implemented with

O(LN logN) complexity using the lazy-copy algorithm described in [17].

As a remark, it must be mentioned that Algorithm 14 in [17] is prone to

numerical unstability at large block-lengths in the case of q-ary source coding.

As a solution to this problem, it is recommended that all probability values are

converted to log domain, and appropriate scaling is performed in Line 14 of

Algorithm 14.
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Algorithm 2: SCL D(uIX|Y
, yN−1

0 , L)

input : uIX|Y
: Codeword, yN−1

0 : Side information, L: List size

output: x̂N−1
0 : Reconstructed sequence

1 // Li: The set of active paths at phase i.

2 for i = 0, 1, . . . , N − 1 do

3 if i ∈ IX|Y then

4 Append ui to each ûi−1
0 [l] ∈ Li−1, and obtain (ûi−1

0 [l], ui)
5 else

6 Append all ûi ∈ X to each ûi−1
0 [l] ∈ Li−1;

7 Calculate P
(i)
N (ûi−1

0 [l], ûi|y
N−1
0 ) for all (ûi−1

0 [l], ûi) ∈ Li;
8 Prune all but L paths with highest probabilities.

9 Return x̂N−1
0 = ( argmax

ûN−1

0
∈LN−1

P
(N−1)
N (ûN−1

0 |yN−1
0 ))G−1

N .

2.4 Code Construction

In polar coding, it is assumed that the information set, IX|Y , is known at both

encoder and decoder. In order to construct IX|Y as in (2.5), the set of condi-

tional entropies {H(Ui|U
i−1
0 , Y N−1

0 )}N−1
i=0 must be available. Except a small class

of examples, e.g., binary erasure channels in channel coding, analytic solutions

do not exist for computing conditional entropy values. As a solution, density evo-

lution is proposed for computing {H(Ui|U
i−1
0 , Y N−1

0 )}N−1
i=0 , and constructing IX|Y

for any generic distribution pX,Y (x, y) [13, 14]. In this section, a greedy approxi-

mation algorithm for computing {H(Ui|U
i−1
0 , Y N−1

0 )}N−1
i=0 using density evolution

is proposed for prime-size alphabets.

2.4.1 Density Evolution

Let p = (p0, p1, . . . , pq−1) ∈ R
q be a q-dimensional probability vector, i.e., pi >

0, ∀i and
q−1∑
i=0

pi = 1. q-ary entropy function is defined as follows:

H(p) =

q−1∑

i=0

pi log
1

pi
(2.10)
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For f : X 7→ R, a function defined on X = {0, 1, . . . q−1}, [f(x)]q−1
x=0 represents

q-dimensional vector formed by the values of f :

[f(x)]q−1
x=0 = [f(0), f(1), . . . , f(q − 1)]

Let (X, Y ) be a pair of random variables over X × Y , X = {0, 1, . . . , q − 1},

with joint distribution pX,Y (x, y). The conditional entropy H(X|Y ) is computed

as follows:

H(X|Y ) =
∑

y∈Y

pY (y)
∑

x∈X

pX|Y (x|y) log
1

pX|Y (x|y)
(2.11)

=
∑

y∈Y

pY (y)H([pX|Y (x|y)]
q−1
x=0)

Hence, for the computation of H(X|Y ), the set of (q + 1)-dimensional vectors

{(pY (y), [pX|Y (x|y)]
q−1
x=0)}y∈Y is needed. In density evolution, the objective is to

obtain {(pU i−1

0
,Y N−1

0

(ui−1
0 , yN−1

0 ), [pUi|U
i−1

0
,Y N−1

0

(u|ui−1
0 , yN−1

0 )]q−1
u=0)}ui−1

0
∈X i,yN−1

0
∈YN

by evolving the distributions of the source through the polar transform so that

H(Ui|U
i−1
0 , Y N−1

0 ) can be computed.

Probability distributions of the pair of random variables (X, Y ) are expressed

in a list as follows:

X|Y ∼
∑

y∈Y

pY (y)Q([pX|Y (x|y)]
q−1
x=0) (2.12)

Remark: Consider a random variable Z that is independent from X and

Y . Then, by notation, X|Y = X|Y, Z since for a fixed y, [pX|Y,Z(x|y, z)]
q−1
x=0 =

[pX|Y (x|y)]
q−1
x=0 for all z ∈ Z, and pY,Z(y, z) = pY (y)pZ(z) for all y, z, which

together imply that Z has no effect in the computation of conditional entropy.

In order to investigate how input distributions are transformed in polar trans-

formation, let us consider the basic transform given in Figure 2.5 first. Assume

that |X | = q is a prime number and (X0, Y0), (X1, Y1) are independently drawn

from pX,Y (x, y), i.e., they can be expressed identically in the form of 2.12.
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X0

X1

U0

U1

Figure 2.5: Basic polar transform.

The first operation is defined as follows:

U0|Y0, Y1 ∼
∑

y0,y1∈Y

pY0,Y1
(y0, y1)Q([pX0⊕X1|Y0,Y1

(x|y0, y1)]
q−1
x=0) (2.13)

,
∑

y0∈Y

pY (y0)Q([pX|Y (x|y0)]
q−1
x=0) �

∑

y1∈Y

pY (y1)Q([pX|Y (x|y1)]
q−1
x=0)

Proposition 2. The expression in (2.13) can be written in the following form:

U0|Y0, Y1 ∼
∑

y0,y1

pY (y0)pY (y1)Q([

q−1∑

z=0

pX|Y (z|y0)pX|Y (x⊖ z|y1)]
q−1
x=0)

Proof. Since (X0, Y0) and (X1, Y1) are independent and identically distributed,

pY0,Y1
(y0, y1) = pY (y0)pY (y1) for all y0, y1 ∈ Y , and the probability distribu-

tion pX0⊕X1|Y0,Y1
(x|y0, y1) can be written as the convolution of pX|Y (x|y0) and

pX|Y (x|y1).

By using the remark, U0|Y0, Y1 can be expressed as (X0|Y0, Y1)⊕(X1|Y0, Y1) =

X0 ⊕X1|Y0, Y1. Note that � is a commutative operation.

The second operation is defined as follows:

U1|U0, Y0, Y1 ∼
∑

z∈X

∑

y0,y1∈Y

pX0⊕X1,Y0,Y1
(z, y0, y1)Q([pX1|X0⊕X1,Y0,Y1

(x|z, y0, y1)]
q−1
x=0)

,
∑

y0∈Y

pY (y0)Q([pX|Y (x|y0)]
q−1
x=0) �

∑

y1∈Y

pY (y1)Q([pX|Y (x|y1)]
q−1
x=0)

Proposition 3. The operation � can be written in the following form:

U1|U0, Y0, Y1 ∼
∑

z

∑

y0,y1

(
[

q−1∑

u=0

pX|Y (u|y0)pX|Y (z ⊖ u|y1)]pY (y0)pY (y1)

)
.

Q(

[
pX|Y (x|y1)pX|Y (z ⊖ x|y0)

[
q−1∑
u=0

pX|Y (u|y0)pX|Y (z ⊖ u|y1)]

]q−1

x=0

)
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The proof is similar to Proposition 2.

Note that polar transform is a successive application of the basic transform

given in Figure 2.5. The following theorem states that {H(Ui|U
i−1
0 , Y N−1

0 )}N−1
i=0

can be computed by using the density evolution operations successively through

the polar transform.

Theorem 2. Let {(Xi, Yi)}
N−1
i=0 be iid pairs of random variables with probability

distribution pX,Y (x, y). Operations � and � applied successively through the polar

transform suffice to obtain {Ui|U
i−1
0 , Y N−1

0 }N−1
i=0 .

Proof. The proof will be based on induction. Proposition 2 and Proposition

3 together prove the initial step, i.e., for n = 1, H(U0|Y
1
0 ) and H(U1|U0, Y

1
0 )

can be computed by using density evolution. For the inductive step, consider

2.6. Assume that the hypothesis is true for n − 1. In this case, the input vari-

ables {Xi|Yi}
N/2−1
i=0 are transformed into {Ri|R

i−1
0 , Y N−1

0 }
N/2−1
i=0 , and, similarly,

{Xi|Yi}
N−1
i=N/2 are transformed into {Si|S

i−1
0 , Y N−1

0 }
N/2−1
i=0 . At the last step of polar

transform, these vectors are combined as in Figure 2.6.

For i = 0, 1, . . . , N/2− 1,

(Ri

∣∣Ri−1
0 Y

N/2−1
0 )⊕ (Si

∣∣Si−1
0 Y N−1

N/2 )=(Ri|R
i−1
0 Si−1

0 Y N−1
0 )⊕ (Si|R

i−1
0 Si−1

0 Y N−1
0 )

= Ri ⊕ Si|R
i−1
0 Si−1

0 Y N−1
0

= U2i|R
i−1
0 ⊕ Si−1

0 , Si−1
0 Y N−1

0

= U2i|U
2i−1
0,e U2i−1

0,o Y N−1
0

= U2i|U
2i−1
0 Y N−1

0

In the first line above, the fact that Ri−1
0 is independent from Si−1

0 and Y N−1
N/2

is used. The operations on the variables are matched to the density evolution

operations similar to the n = 1 case. For odd indices,

Si|S
i−1
0

∣∣∣∣Ri ⊕ Si|R
i−1
0 , Si−1

0 , Y N−1
0 = Si|Ri ⊕ Si, R

i−1
0 , Si−1

0 , Y N−1
0

= Si|U2i, U
2i−1
0 , Y N−1

0

= U2i+1|U
2i
0 , Y N−1

0
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X0|Y0 

X1|Y1

XN/2-1|YN/2-1

XN/2|YN/2

XN/2+1|YN/2+1

XN-1|YN-1

R0|Y0
N/2-1

R1|R0,Y0
N/2-1

RN/2-1|R0
N/2-2,Y0

N/2-1

S0|YN/2
N-1

S1|S0,YN/2
N-1

SN/2-1|S0
N/2-2,YN/2

N-1

U2|U0
1,Y0

N-1

UN-2|U0
N-3,Y0

N-1

U1|U0,Y0
N-1

U3|U0
2,Y0

N-1

UN-1|U0
N-2,Y0

N-1

Figure 2.6: Density evolution at block-length N .

Hence, all conditional entropies can be computed using � and � operations.

Theorem 2 indicates that {Ui|U
i−1
0 , Y N−1

0 }N−1
i=0 can be computed by successive

application of the density evolution operations. Next, the procedure to obtain

Ui|U
i−1
0 , Y N−1

0 will be described. Let the right-hand side of (2.12) be denoted

as χ
(0)
i . In order to compute Ui|U

i−1
0 , Y N−1

0 where the binary expansion of i is

(b0b1 . . . bn−1)2, the following procedure is applied [7]:

χ
(k+1)
i =

{
χ
(k)
i � χ

(k)
i , if bk = 0

χ
(k)
i � χ

(k)
i , if bk = 1

(2.14)

for k = 0, 1, . . . , n − 1. The output of this procedure is χ
(n)
i such that

Ui|U
i−1
0 , Y N−1

0 ∼ χ
(n)
i .

In order to estimate the complexity of density evolution, the growth in

the alphabet sizes of the conditioned terms is used. In Figure 2.5, the al-

phabet sizes of the conditioned terms of U0|Y0, Y1 and U1|U0, Y0, Y1 are |Y|2
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and |Y|2q, respectively. Note that if two different y, say y1 and y2, in the

RHS of (2.12) have the same [pX|Y (x|y)]
q−1
x=0, then they can be unified as

[pY (y1) + pY (y2)]Q([pX|Y (x|y1)]
q−1
x=0), which implies that the alphabet sizes are

upper bounds. At block-length N , the alphabet size becomes O(qN−1). Thus,

the direct application of density evolution in polar code construction infeasible.

Approximation methods are proposed to solve this problem [14]. In the following

subsection, approximation methods for q-ary code construction based on [14] will

be proposed.

2.4.2 Greedy Approximation Algorithm for Code Con-

struction

The basic idea in the approximation algorithm is to unify symbols y, ȳ ∈ Y ,

whose unification changes the entropy of X|Y minimally, successively until the

alphabet size becomes lower than a given parameter µ. By such an approximation,

the growth in the number of (pY (y), [pX|Y (x|y)]
q−1
x=0) through the polar transform

can be controlled, hence efficient code construction can be performed.

Assume that we have X|Y ∼
∑
y∈Y

pY (y)Q([pX|Y (x|y)]
q−1
x=0) where |Y| > µ for a

given positive integer µ. Denote the conditional probability of X given a realiza-

tion y by pX|y, i.e., pX|y = [pX|Y (x|y)]
q−1
x=0. For y, ȳ ∈ Y , the following operation

is performed to reduce the alphabet size of the side information:

pY (y)Q(pX|y) + pY (ȳ)Q(pX|ȳ) 7→ (pY (y) + pY (ȳ))Q(p) (2.15)

for a valid probability vector p. The new alphabet, Ŷ = Y\{y, ȳ} ∪ {ŷ}, has

cardinality |Y| − 1. In greedy approximation algorithm, symbol pairs y, ȳ and

unified distribution p are chosen in an intelligent way at each step, and the

alphabet size is reduced by one. By successively applying the operation in (2.15),

the alphabet size is reduced below the given parameter, i.e., |Ŷ| < µ.

A different approximation algorithm is proposed for non-binary polar code

construction in [18]. The main difference is that [18] involves parametrized quan-

tization levels, whereas the method presented here is based on a greedy algorithm
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as in [14] and [19]. The algorithm that will be proposed here can be considered

as a modification of the mass merging algorithm in [19]. For detailed description

and analysis of mass merging and mass transportation algorithms, we refer to

[19].

Let X|Y ∼ χ be a source as defined in (2.12) with χ =
∑
y∈Y

pY (y)Q(pX|Y (x|y)),

y, ȳ ∈ Y be given symbols for merging, and γ ∈ [0, 1]. Merging of these masses

with weight γ is the following transformation:

pY (y)Q(pX|y) + pY (ȳ)Q(pX|ȳ) 7→ (pY (y) + pY (ȳ))Q(γpX|y + (1− γ)pX|ȳ) (2.16)

This transformation corresponds to mass transportation if γ = 0 and γ = 1, and

degrading approximation (and mass merging as defined in [19]) if γ = pY (y)
pY (y)+pY (ȳ)

.

In order to define the approximation error due to (2.16), consider the following

function:

fy,ȳ(γ) = (pY (y) + pY (ȳ))H(γpX|y+(1− γ)pX|ȳ) (2.17)

− pY (y)H(pX|y)− pY (ȳ)H(pX|ȳ).

The approximation error is defined as the change in the conditional entropy due

to the mass merging transformation:

ǫy,ȳ(γ) = |fy,ȳ(γ)|. (2.18)

For any y, ȳ ∈ Y , the following proposition holds:

Proposition 4. fy,ȳ(γ) = 0 has exactly one root in the interval (0, 1].

Proof. The case H(pX|y) = H(pX|ȳ) is trivial: γ = 1 satisfy the claim. In order

to prove that the proposition holds for the non-trivial case, first, it is proved that

fy,ȳ is a concave function of γ ∈ [0, 1]. For 0 ≤ λ, γ1, γ2 ≤ 1 and λ = 1− λ,

fy,ȳ(λγ1 + λγ2) = [pY (y) + pY (ȳ)]H(p̃)−
∑

y′∈{y,ȳ}

pY (y
′)H(pX|y′)

≥ λfy,ȳ(γ1) + λfy,ȳ(γ2)

where p̃ = λ(γ1pX|y + γ1pX|ȳ) + λ(γ2pX|y + γ2pX|ȳ). The inequality follows from

the concavity of H.
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In the non-trivial case, fy,ȳ(γ) has different signs at the boundary points,

γ = 0 and γ = 1. Since fy,ȳ is a concave and continuous function of γ ∈ [0, 1],

this property implies that fy,ȳ has only one zero crossing on [0, 1].

Proposition 4 implies that for any y, ȳ ∈ Y , the approximation error ǫy,ȳ(γ) can

attain its minimum value 0 by solving the logarithmic equation fy,ȳ(γ) = 0 that

has a unique solution on [0, 1]. Fast-converging bisection method can be used to

solve this problem [20]. Since this method is based on a greedy algorithm, the

error in H(Ui|U
i−1
0 , Y N−1

0 ) due to the approximation cannot be analyzed easily.

However, the approximation error ǫy,ȳ(γ) has a close relation to the error in the

computation of H(Ui|U
i−1
0 , Y N−1

0 ) as numerical examples will indicate.

For a given source X|Y ∼ χ and pair of symbols y, ȳ, mass merging operation

is summarized in Algorithm 3.

Algorithm 3: merge(y, ȳ)

input : y, ȳ: Symbols to be merged

1 Find γ∗ such that fy,ȳ(γ
∗) = 0;

2 Set pX|y′ = γ∗pX|y + (1− γ∗)pX|ȳ;

3 Set χ =
∑

y′′∈Y\{y,ȳ}

pY (y
′′)Q(pX|y′′) + [pY (y) + pY (ȳ)]Q(pX|y′).

Algorithm 3 provides the basic tool to reduce the alphabet size of the side

information Y by one without changing the entropy of the source for any y, ȳ.

Thereafter, the question of how to choose the symbols y1, y2 to be merged comes

up. At this point, our consideration is to deviate a source as little as possible

so that the effect of mass merging on H(Ui|U
i−1
0 , Y N−1

0 ) is kept small. For any

y, ȳ ∈ Y , the following error function is defined:

ǫ̂y,ȳ = max(|pY (ȳ)[H(pX|y)−H(pX|ȳ)]|, |pY (y)[H(pX|ȳ)−H(pX|y)]|) (2.19)

ǫ̂y,ȳ corresponds to the maximum of the approximation errors if y and ȳ are unified

using mass transportation algorithm. The pair y, ȳ that has the minimum error

(2.19) is chosen as the input to the mass merging algorithm since their unification
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is likely to affect H(Ui|U
i−1
0 , Y N−1

0 ) minimally. Therefore, for each y ∈ Y , the

pair is defined as follows:

π(y) = argmin
ŷ∈Y\{y}

ǫ̂y,ŷ (2.20)

Given X|Y ∼ χ, the following symbol y is chosen for merging together with its

pair π(y):

y = argmin
y∈Y

ǫ̂y,π(y) (2.21)

Since the greedy approximation method calls the mass merging function succes-

sively, the above procedure for finding the most appropriate pair of symbols for

merging is inefficient. In order to improve efficiency at the expense of a slight

performance degradation, the following procedure, an extension of the approach

in [14], can be applied:

• Sort (pY (yi),pX|yi
) such that H(pX|yi

) ≤ H(pX|yi+1
) for all i ∈

{0, 1, . . . , |Y| − 1},

• Compute ǫ̂yi,yi+1
for all i,

• Choose yi, yi+1 that has minimum ǫ̂yi,yi+1
for mass merging.

In this approach, ǫ̂yi,yi+1
values can be computed once, and after each application

of the merge(y, yi+1) function, ǫ̂yi−1,yi and ǫ̂yi,yi+1
are updated. In Algorithm 4, the

greedy mass merging function that follows the second approach is summarized.

Combining the mass merging algorithm with the code construction scheme

(2.14), the efficient polar code construction algorithm is implemented as in Algo-

rithm 5.

Using mass merging algorithm with parameter µ on χ
(k)
i , the size of χ

(k+1)
i

is bounded above by µ2q, which follows from (2.14). Therefore, complexity is

controlled through the polar transform. Since the size of χ
(k)
i , k = 1, . . . , n

changes through polar transform and mass merging, a modified doubly linked list

data structure is proposed in [14], and computational complexity of the algorithm

is found as O(µ2 log µ). Similar data structures can be utilized to implement the

greedy code construction algorithm proposed in this subsection.
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Algorithm 4: mass merging(χ, µ)

input : χ: Source distribution, µ: Maximum allowed cardinality for Y

1 if |Y| < µ then

2 Exit.
3 else

4 Sort (pY (yi),pX|yi
) such that H(pX|yi

) ≤ H(pX|yi+1
);

5 Compute ǫ̂yi,yi+1
for all i = 0, 1, . . . , |Y| − 2;

6 while |Y| > µ do

7 Find yi = argmin
yj :j=0,1,...,|Y|−2

ǫ̂yj ,yj+1
;

8 merge(yi, yi+1);
9 Update ǫ̂yi−1,yi , ǫ̂yi,yi+1

;

Algorithm 5: code construction(χ,N, µ)

input : X|Y ∼ χ : Input source, N : Block-length, µ: Maximum allowed
alphabet size for side information

output: {H(Ui|U
i−1
0 , Y N−1

0 )}N−1
i=0

1 for i = 0, 1, . . . , N − 1 do

2 (b0b1 . . . bn−1)2 = i;

3 χ
(0)
i = χ;

4 for k=0,1,. . . ,n-1 do

5 if bk = 0 then

6 χ
(k+1)
i = χ

(k)
i � χ

(k)
i ;

7 else

8 χ
(k+1)
i = χ

(k)
i � χ

(k)
i ;

9 mass merging(χ
(k+1)
i , µ);

10 H(Ui|U
i−1
0 , Y N−1

0 ) = H(χ
(n)
i );

11 Return {H(Ui|U
i−1
0 , Y N−1

0 )}N−1
i=0 .
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2.5 Numerical Results

In this section, the performance of the proposed data compression scheme is

investigated. The figures of merit in this investigation are the block error rate

Pb and symbol error rate Ps for a fixed code rate R. Code constructions in all

examples are performed with mass merging algorithm with parameter µ = 16.

In Figure 2.7, the performance of polar codes for compressing a ternary source

with probability distribution pX = (0.84, 0.09, 0.07) at block-length N = 210

under SC-D and SCL-D with list sizes L = 2, 4, 8, 32 is illustrated. It must be

noted that SCL-D outperforms SC-D, and increasing L beyond L = 8 at large

code rates does not make significant improvement in Pb.

0.5 0.525 0.55 0.575 0.6 0.625 0.65
10

−3

10
−2

10
−1

10
0

R

P
b

 

 

L = 1 (SC-D)

L = 2

L = 4

L = 8

L = 32

Figure 2.7: Block error rates in the compression of a source with distribution pX =
(0.84, 0.09, 0.07) at block-length N = 210 under SCL-D with L = 1, 2, 4, 8, 32.

For the same source, symbol error rates, Ps, are given in Figure 2.8.

In order to investigate the effect of increasing N on Pb and Ps for a fixed

source distribution, performance of lossless polar compression scheme for source

distribution pX = (0.84, 0.09, 0.07) at block-lengthN = 212 is given in Figure 2.9.

This example indicates that block error rates decrease at rates above the minimum

source coding rate as N increases as expected. At a fixed rate R > H(X) = 0.5,
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Figure 2.8: Symbol error rates in the compression of a source with distribu-
tion pX = (0.84, 0.09, 0.07) at block-length N = 210 under SCL-D with
L = 1, 2, 4, 8, 32.

an arbitrary Pb can be obtained at a sufficiently large N .

For the same source, symbol error rates, Ps, are given in Figure 2.10.

For analyzing the performance of the coding scheme at a larger alphabet

size, block error rate performance of a quinary source with distribution pX =

(0.05, 0.05, 0.055, 0.055, 0.79) at block-length N = 210 is given in Figure 2.12.

For the same quinary source, symbol error rate performance is shown in Figure

2.12. The last example indicates that at a fixed block-length and base-q source

entropy, similar performance can be obtained at an increased alphabet size.
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Figure 2.9: Block error rates in the compression of a source with distribution pX =
(0.84, 0.09, 0.07) at block-length N = 212 under SCL-D with L = 1, 2, 4, 8, 32.
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Figure 2.10: Symbol error rates in the compression of a source with distri-
bution pX = (0.84, 0.09, 0.07) at block-length N = 212 under SCL-D with
L = 1, 2, 4, 8, 32.
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Figure 2.11: Block error rates in the compression of a source with distribution
pX = (0.05, 0.05, 0.055, 0.055, 0.79) at block-length N = 210 under SCL-D with
L = 1, 2, 4, 8, 32.
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Figure 2.12: Symbol error rates in the compression of a source with distribution
pX = (0.05, 0.05, 0.055, 0.055, 0.79) at block-length N = 212 under SCL-D with
L = 1, 2, 4, 8, 32.
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Chapter 3

Oracle-Based Lossless Polar

Compression

3.1 Introduction

In Chapter 2, in order to compress a sequence {(Xi, Yi)}
N−1
i=0 , an informa-

tion set IX|Y (N,R) consisting of indices i that correspond to NR highest

H(Ui|U
i−1
0 , Y N−1

0 ) terms is constructed. Then, a given realization xN−1
0 is trans-

formed into uN−1
0 by (2.2) and the compressed word uIX|Y

is formed. For suffi-

ciently large N , this scheme is proved to achieve arbitrarily small probability of

error under conventional SC-D with codeword length NH(X|Y ) [8]. In [9], for

binary sources, an oracle-based polar compression method that has an improved

performance at finite block-lengths is introduced. Here, a similar approach is

taken in the design of fixed-to-variable length, zero-error compression methods

for q-ary discrete memoryless sources. The methods are based on appending a

block, namely oracle set T , to the compressed word uIX|Y
indicating the loca-

tions of the errors that will be encountered in decoding, and correcting them.

This block enables zero-error coding at any block-length. Moreover, it is shown

that this extra block has a diminishing fraction in the transmitted word, which

means that the minimum source coding rate is still achievable asymptotically in
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the block-length. The discussion in this chapter is partly presented in [21].

3.2 Preliminaries

For finite-length analysis and code construction, the minimal error probability,

analyzed in [22], provides a more convenient measure than conditional entropy

[9]. The minimal error probability, denoted by π(X|Y = y), is the probability of

error in the maximum a posteriori estimation of X given an observation Y = y:

π(X|Y = y) = Pr[X 6= argmax
x∈X

pX|Y (x|y)|Y = y],

= 1−max
x∈X

pX|Y (x|y).

Therefore, the average minimal probability of error is as follows:

π(X|Y ) =
∑

y∈Y

pY (y)π(X|Y = y). (3.1)

π(X|Y ) has a range [0, q−1
q
] and is a concave function of pX|Y (x|y).

3.3 Encoding

In noiseless source coding, the encoder has a copy of the codeword received by

the decoder. This specific property enables the encoder to run the decoder at the

transmitter side and check if a decoding error occurs. In polar compression, this

capability can be utilized to prevent any errors by appending a variable length

block of error positions and their correct symbols to the codeword; thus fixed-

to-variable length, zero-error coding schemes can be designed. The oracle-based

lossless polar compression scheme with successive cancellation type decoders is

illustrated in Figure 3.1.

The encoding is specific to the type of decoder. Therefore, we will consider

schemes with SC-D and SCL-D separately. First, let us consider the encoding in

the case of SC-D, which is a straightforward extension of [9].
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Figure 3.1: Oracle-based lossless polar compression scheme.

3.3.1 Encoding with Successive Cancellation Decoder

For a given source realization xN−1
0 , the encoder forms the codeword uIX|Y

and

conveys it to the mirror SC-D at the transmitter side. If an error occurs at phase

i, the encoder interferes, records the error location (i, ui), corrects the error and

resumes the decoding process. Following this routine, the encoder records the set

of all error locations together with their respective correct symbols:

TSC = {(i, ui) : ui 6= ûi|u
i−1
0 , yN−1

0 }. (3.2)

Then, the encoder appends TSC to the codeword uIX|Y
and transmits (uIX|Y

, TSC)

to the receiver side. Having the error locations and their respective correct sym-

bols, the decoder at the receiver side performs decompression with no error. Note

that if q = 2, there is no need to record the symbol ui since knowing the location

of an error is sufficient to correct it through inversion. In the rest of the discus-

sion, a general q will be considered, and the correct symbol value will be included

in TSC . The encoder with SC-D is summarized in Algorithm 6.

Given a correctly decoded subsequence ûi−1
0 and observation yN−1

0 , the prob-

ability of error at phase i of SC-D is π(Ui|û
i−1
0 , yN−1

0 ). Thus, the average prob-

ability of error at phase i is π(Ui|U
i−1
0 , Y N−1

0 ). If an error occurs at phase i,

it costs an additional overhead of (logN + 1) symbols. Therefore, the aver-

age cost of not including i in the information set in terms of extra overhead is

π(Ui|U
i−1
0 , Y N−1

0 )[logN + 1] symbols. The cost of including i in the information
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Algorithm 6: SC Encoder(uN−1
0 , yN−1

0 )

input : uN−1
0 : Output of the polar transform, yN−1

0 : Side information
output: uIX|Y

: Codeword, TSC : Oracle set

1 for i = 0, 1, . . . , N − 1 do

2 if i ∈ IX|Y then

3 ûi = ui;
4 Record ui → uIX|Y

;

5 else

6 ûi = argmax
ui∈X

P
(i)
N (ui|û

i−1
0 , yN−1

0 );

7 if ûi 6= ui then

8 Record (i, ui) → TSC ;
9 Correct the symbol: ûi = ui;

10 Return (uIX|Y
, TSC).

set is 1 symbol. Combining these results, the expected code rate R is as follows:

E[R] =
1

N
{|IX|Y |+

∑

i∈Ic
X|Y

π(Ui|U
i−1
0 , Y N−1

0 ).[logN + 1]}. (3.3)

This analysis can be used in the construction of IX|Y as well [9]. The objective

is to minimize the expected code rate over all information sets. If the average

cost of including an index i in Ic
X|Y is higher than including it in IX|Y , then the

symbol is transmitted in uIX|Y
. Thus, in this approach, the information set is

formed as follows:

IX|Y = {i : π(Ui|U
i−1
0 , Y N−1

0 )[logN + 1] > 1}. (3.4)

For sufficiently large N , IX|Y consists of indices such that π(Ui|U
i−1
0 , Y N−1

0 ) ∈

( q−1
q

−ǫ, q−1
q
]. By source polarization theorem, the cardinality of IX|Y approaches

NH(X|Y ). Therefore, the expected rate goes to the minimum source coding rate

as n → ∞:

E[R] → H(X|Y ).
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Hence, this zero-error compression scheme designed for finite block-lengths

achieves the theoretical bound asymptotically as well.

The following question arises: How to compute {π(Ui|U
i−1
0 , Y N−1

0 )}N−1
i=0 to

construct IX|Y using (3.4)? By (3.1), the set of (q + 1)-dimensional vectors

{(pY (y), [pX|Y (x|y)]
q−1
x=0)}y∈Y is required for this computation, which implies that

Ui|U
i−1
0 , Y N−1

0 is required to compute π(Ui|U
i−1
0 , Y N−1

0 ) similar to the case of

conditional entropy. Therefore, a slight modification in the code construction

method proposed in Section 2.4 suffices for code construction in this case. One

alternative for this modification is to replace H by π in (2.17) and perform mass

merging using average minimal error probability. Since π is a concave function

of p, this alternative works. The other alternative is to perform code construc-

tion in the same way as Chapter 2 until Line 10 of Algorithm 5 and computing

π(Ui|U
i−1
0 , Y N−1

0 ) from χ
(n)
i .

3.3.2 Encoding with Successive Cancellation List Decoder

The SC-D flags a block error once an incorrect decision is made and causes ad-

ditional overhead because of oracle employment. Successive cancellation list de-

coder is likely to correct an incorrect decision at succeeding phases in the expense

of increased complexity. In noiseless source coding, this property of SCL-D can

be utilized to reduce the expected codeword length. Consider an SCL-D of list

size L at phase i /∈ IX|Y . Assume that the correct decoding path ûi−1
0 = ui−1

0 is

contained among the active paths. At phase i, all symbols in X is appended to

each active path, and all paths are pruned keeping L of the highest probability

values. Denoting the set of all active paths at phase i by Li, an error is flagged

if the correct subsequence ui
0 is not in Li. If such an event occurs, the encoder

interferes, takes a record of (i, ui) and appends ui to each active path as if i is

contained in the information set. Eventually, the oracle set is formed as follows:

TSCL = {(i, ui) : u
i
0 /∈ Li|u

i−1
0 ∈ Li−1, y

N−1
0 }. (3.5)

The employment of this oracle set guarantees the correct decoding path uN−1
0
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to survive until the end. In the last phase, SCL-D returns the sequence among

LN−1 with highest probability. An incorrect sequence is returned if there is a

path ũN−1
0 ∈ LN−1 with higher probability than uN−1

0 . In order to prevent this

error, the list index l of the correct sequence can be annexed to the codeword.

This increases the codeword length by logL symbols. On the other hand, since

the probability of error event, Pr{ui
0 /∈ Li|y

N−1
0 }, is smaller than the probability

of error event in SC-D, Pr{ûi 6= ui|û
i−1
0 = ui−1

0 , yN−1
0 }, and hence the use of

the oracle becomes less frequent, the overall overhead decreases compared to the

oracle-based compression scheme with SC-D.

3.4 Decoding

In this section, oracle decoders that reconstruct x̂N−1
0 from uIX|Y

and oracle set

T will be proposed. The decoders are basically similar to the ones discussed in

Chapter 2 with the difference that oracle sets are also exploited for zero-error

reconstruction.

3.4.1 Successive Cancellation Decoder for Oracle-Based

Compression

For a given source (X, Y ) and observation yN−1
0 , the probability of observing uN−1

0

at the output of the polarization transform is denoted as PN(u
N−1
0 |yN−1

0 ), where

P1(x|y) = pX(x|y). Similarly, the probability of a subsequence ui
0 is denoted as

P
(i)
N (ui|u

i−1
0 , yN−1

0 ). SC-D algorithm is summarized in Algorithm 7.

SC-D can be implemented with O(N) memory and O(N logN) run-time com-

plexity [17].
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Algorithm 7: SC Decoder(uIX|Y
, yN−1

0 , TSC)

input : uIX|Y
: Codeword, yN−1

0 : Side information, TSC : Oracle set

output: x̂N−1
0 : Reconstructed sequence

1 for i = 0, 1, . . . , N − 1 do

2 if i ∈ IX|Y or (i, ui) ∈ TSC then

3 ûi = ui

4 else

5 ûi = argmax
ui∈X

P
(i)
N (ui|û

i−1
0 , yN−1

0 );

6 Return x̂N−1
0 = ûN−1

0 G−1
N .

3.4.2 Successive Cancellation List Decoder for Oracle-

Based Compression

The high-level description of the SCL-D is given in Algorithm 8. SCL-D algorithm

has O(LN logN) run-time complexity [17]. Note that SCL-D with list size L = 1

corresponds to the SC-D.

Algorithm 8: SCL Decoder(uIX|Y
, yN−1

0 , TSCL, l0, L)

input : uIX|Y
: Codeword, yN−1

0 : Side information, TSCL: Oracle set, l0:
Index of the correct decision path, L: List size

output: x̂N−1
0 : Reconstructed sequence

1 for i = 0, 1, . . . , N − 1 do

2 if i ∈ IX|Y or (i, ui) ∈ TSCL then

3 Append ui to each l ∈ Li−1, i.e., û
i−1
0 [l], and obtain (ûi−1

0 [l], ui)
4 else

5 Append all ûi ∈ X to each l ∈ Li−1;

6 Calculate PN(ûi|û
i−1
0 [l], yN−1

0 ) for all l ∈ Li;
7 Prune all but L paths with highest probabilities.

8 ûN−1
0 = P

(N−1)
N (ûN−1[l0]|û

N−2
0 [l0], y

N−1
0 )

9 Return x̂N−1
0 = ûN−1

0 G−1
N .
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3.5 Compression of Sources over Arbitrary Fi-

nite Alphabets

In this section, we generalize the oracle-based compression schemes to sources

over any arbitrary finite alphabets. In order to realize this, we first consider

a specific configuration for the noiseless compression of two correlated sources

(X, Y ). In this scenario, the source output Y N−1
0 is available to the X-encoder,

the decompressed word Ŷ N−1
0 is available to the X-decoder, and neither XN−1

0

nor X̂N−1
0 is used in the compression of Y . The scheme is illustrated in Figure

3.2.

Figure 3.2: (0101)-configuration for the compression of (X, Y ).

This configuration is analyzed in [2], where it is called (0101)-configuration.

It is possible to achieve a compression rate H(X, Y ) for (X, Y ) at rates RY =

H(Y ) + ǫ and RX = H(X|Y ) + ǫ for Y and X, respectively, which is referred to

as the corner point of the admissible region.

Lemma 2. The oracle-based polar compression scheme achieves the corner point

of the admissible region for (0101)-configuration.

Proof. In order to compress Y , the oracle-based scheme is used with no side

information. The compression rate RY asymptotically approaches toH(Y ). Since
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this is a zero-error coding scheme, the Y -source output is reconstructed faithfully

at the receiver side. In order to compress X, the oracle-based compression scheme

is used with the side information Y . Note that Y -source output is available at

both transmitter and receiver sides with no error. Thus, X can be compressed

at rate RX = H(X|Y ) with the oracle described in (3.2), and the corner point of

(0101)-configuration is achieved asymptotically.

An extension of this configuration is the noiseless source coding over arbitrary

finite alphabets, using a similar approach as in [16]. Let Z be a random variable

over a finite alphabet Z. Z can be decomposed into K symbols using the Chinese

remainder theorem as:

Z = (ZK−1, ZK−2, . . . , Z0),

where Zk is over Zk, provided that |Zk| = qk and all qk are pairwise coprime.

Note that qk can be an integer power of a prime, in which a further expansion

can be carried out to obtain prime alphabet sizes for compression, and the result

can be used to uniquely reconstruct Z. Hence, without loss of generality, it can

be assumed in further discussions that all qk are prime.

At the first step of compressing Z, Z0 is compressed with no side informa-

tion, analogous to Y in the previous case, at rate approximately equal to H(Z0).

Then, Z1 is compressed with side information Z0 at rate approximately equal to

H(Z1|Z0). Now that the source outputs of (Z1, Z0) are transmitted, they are

utilized as side information and the compression of Z2 is performed at rate ap-

proximately equal to H(Z2|Z1, Z0). Following this routine, Zk can be compressed

at rate H(Zk|Zk−1, . . . , Z0) for any k = 0, 1, . . . , K − 1. After the decompression

of ZK−1, Z can be reconstructed faithfully. The total compression in this scheme

has the following asymptotical rate:

RZ =
K−1∑

k=0

RZk

→
K−1∑

k=0

H(Zk|Zk−1, . . . , Z0)

= H(ZK−1, ZK−2, . . . , Z0) = H(Z),

36



which shows that the entropy bound can be achieved asymptotically by the pro-

posed q-ary polar compression scheme.

In the general case, assume that the alphabet size is q =
K−1∏
k=0

qtkk for pairwise

coprimes qk and positive integers tk for all k = 0, 1, . . . , K − 1. In this case, for

a list size L and block-length N , the complexity of the multi-level compression

scheme is O(
K−1∑
k=0

tkqkLN logN). Therefore, it is possible to perform data com-

pression for large source alphabets at low complexity by the multi-level scheme.

3.6 Source Distribution Uncertainty at the Re-

ceiver

In the previous sections, it was assumed that the exact probability distribution of

the source, denoted as pX in the q-dimensional vector form, is available at the re-

ceiver, and the information set, denoted as IX(pX , N), is constructed specifically

for pX . In practice, however, these assumptions are unrealistic since the receiver

does not have pX unless it is informed by the transmitter side. Moreover, even

if the exact knowledge of pX is available at the transmitter, it is infeasible to

construct IX specifically for every given pX . In this section, we propose methods

to address these issues by exploiting robustness of the oracle-based polar com-

pression scheme with respect to the inaccuracies in the source distribution and

information set. We consider only data compression in the absence of side infor-

mation in this section, and the alphabet size is q for a prime integer q. We note

that it is straightforward to extend the presented results to the case with side

information and non-prime alphabet sizes.

Throughout the section, following the notation in [15], M(q) denotes the set

of all probability distributions on a q-ary alphabet:

M(q) = {p ∈ R
q : pi > 0 for all i ∈ {0, 1, . . . , q − 1},

q−1∑
i=0

pi = 1}.
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For given pX ,pY ∈ M(q), if there exists pZ ∈ M(q) such that pY = pX ∗ pZ

where ∗ denotes circular convolution [23], pY is said to be circularly dominated

by pX , and this relation is represented as pY ≺c pX .

First, we propose a method to inform the receiver about the probability dis-

tribution of the source pX efficiently in the oracle-based framework. In order to

inform the receiver side about pX , our approach is to quantize q − 1 elements of

pX by using β symbols, and append the quantized probability distribution p̂X to

the compressed word.

3.6.1 Sequential Quantization with Scaling Algorithm for

Probability Mass Functions

For the quantization of a probility distribution pX , sequential quantization with

scaling provides an efficient solution. In this quantization approach, the original

probability distribution is sorted in the descending order, i.e., a permutation

transformation φ : M(q) 7→ M(q) must be applied such that p = φ(pX) where

p0 ≥ p1 ≥ . . . ≥ pq−1 holds between the elements of p. Note that the permutation

φ can be transmitted to the receiver by q − 1 symbols, which implies that the

original ordering of the elements of pX can be restored at the receiver with no

loss of fidelity.

For a probability distribution function p, the sorted order implies the following

bounds for the value of pi:

pi ∈ [

1−
i−1∑
k=0

pk

q − i
, 1−

i−1∑

k=0

pk]. (3.6)

The sequential quantization with scaling algorithm starts with the quantization

of p0, and then the bounds in (3.6) are found for each pi, i = 0, 1, . . . , q − 1 by

using the previously quantized elements p̂i−1
0 , and the interval in (3.6) is divided

into qβ uniform levels. The level di ∈ {0, 1, . . . , qβ − 1} that provides the best

approximation to pi is chosen for the compressed word in its q-ary expansion.
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The sequential quantization with scaling algorithm is summarized in Algorithm

9.

Algorithm 9: pmf quantizer(pX , β)

input : pX : Source distribution, β: Symbols per pmf element
output: (d0, d1, . . . , dq−2): Quantization levels, φ: Sorting permutation

1 Sort pX and obtain p: p = φ(pX);

2 Compute d0 = argmin
d=0,1,...,qβ−1

|1
q
[1 + d. q−1

qβ−1
]− p0|;

3 Compute p̂0 =
1
q
[1 + d0.

q−1
qβ−1

];

4 for i = 1, . . . , q − 2 do

5 Compute p̂i,max = 1−
i−1∑
k=0

p̂k;

6 Compute di = argmin
d=0,1,...,qβ−1

|
p̂i,max

q−i
[1 + d. q−i−1

qβ−1
]− pi|;

7 Compute p̂i =
p̂i,max

q−i
[1 + di.

q−i−1
qβ−1

];

8 Return (dq−2
0 , φ).

The receiver can reconstruct the first q − 1 elements of p̂ successively from

dq−2
0 using Line 7 of Algorithm 9. The complete pmf in the descending order is

obtained by using the relation p̂q−1 = 1 −
q−2∑
i=0

p̂i. Using the permutation φ, the

quantized version p̂X(d
q−2
0 , φ) of pX is obtained.

The overall increase in the codeword length by transmitting the quantized

probability distribution in the form of (dq−2
0 , φ) is (q − 1)(β + 1) symbols if β

symbols are used to represent each di.

To sustain the zero-error compression property of the oracle-based scheme,

the mirror decoder in the oracle encoder must use the quantized probability dis-

tribution p̂X(d
q−2
0 , φ) to foresee errors and include them in the oracle set. Also,

the information set IX should be constructed for the quantized pmf both at the

transmitter and receiver.
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3.6.2 Information Sets under Source Uncertainty and the

Concept of Class of Information Sets

The computation of {π(Ui|U
i−1
0 )}N−1

i=0 using density evolution algorithm with the

q-ary extension of the approximation methods proposed in [14] has run-time com-

plexity of O(N). However, for accurate approximations, the approximation pa-

rameter of the greedy algorithm µ must be chosen sufficiently large as the al-

phabet size q increases. Considering that the algorithmic complexity of the code

construction algorithm O(µ2 log µ), constructing the information set IX by using

density evolution technique for every given source is infeasible in practice. To

overcome this problem, we propose using a class of pre-built information sets.

In the following, the concept of class of information sets (CIS) will be defined

first, and then a CIS construction technique for the source polarization will be

proposed by investigating robustness of the compression scheme with respect to

the perturbations in the information set.

Definition 1. For a given block-length N = 2n, a positive integer C, and a set of

probability distributions pi ∈ M(q) for i = 0, 1, . . . , C−1, the class of information

set (CIS)

C = {IX(pi, N), i = 0, 1, . . . , C − 1}

is a pre-built class of index sets which is known at both the transmitter and the

receiver, together with the corresponding probability distributions pi.

For a given realization xN−1
0 drawn from a probability distribution pX whose

β-symbol quantized version is p̂X , the CIS C is used as follows:

1. The transmitter finds pi such that using IX(pi, N) ∈ C minimizes the code

rate, and uses this information set to form the codeword (uIX , T , dq−2
0 , φ).

2. After the receiver reconstructs p̂X , it finds pi in the same way as the trans-

mitter, and uses the corresponding information set in the recontruction of

xN−1
0 .
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In order to measure the robustness of the lossless polar compression scheme

with respect to inaccuracies in the information set, we consider the average in-

crease in the length of the compressed word if an information set constructed

for a different probability distribution than the source distribution is used. Let

pX ∈ M(q) be the probability distribution of the source XN−1
0 and p be an

arbitrary distribution over M(q). The average cost of using IX(p, N) in the

compression of XN−1
0 is defined as follows:

JN(pX ,p) = E[R(IX(p, N))|pX ]− E[R(IX(pX , N))|pX ], (3.7)

where E[R(IX)|pX ] is the average code rate if the source distribution is pX and

information set IX is used in the compression.

Proposition 5. For a given source XN−1
0 ∼ pX ∈ M(q) and p ∈ M(q), the cost

function in (3.7) can be computed as follows:

JN(pX ,p) =
N−1∑

i=0

π(Ui|U
i−1
0 )[logN + 1]− 1

N
.ωi, (3.8)

where {π(Ui|U
i−1
0 )}N−1

i=0 } is the set of average minimal error probabilities for

XN−1
0 , and

ωi =





1 i ∈ IX(pX , N) ∩ IX(p, N)c,

−1 i ∈ IX(pX , N)c ∩ IX(p, N),

0 otherwise.

The proof simply follows from (3.3). Since only IX(p̂X , N) can be used at the

receiver side, replacement of JN(pX ,p) by JN(p̂X ,p) provides a more appropriate

analysis given that β is large enough for accurate β-symbol quantization.

3.6.2.1 A CIS Construction Scheme

Proposition 5 provides a useful tool for investigating robustness of polar com-

pression scheme and constructing CIS. Spike probability distributions defined in

[15] are of particular interest for constructing CIS because of the design simplicity

they provide and numerical stability considerations. For constructing information
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sets to build a CIS, we propose using spike probability distributions. Note that

in code construction, the order of the elements of the probability distribution is

not important. Therefore, we consider the spike probability distributions in the

following form:

ϕq(p) = (1− p,
p

q − 1
, . . . ,

p

q − 1︸ ︷︷ ︸
q−1

), (3.9)

for p ∈ [0, 1 − 1/q] and prime q. The set of all spike distributions is denoted as

M̂(q):

M̂(q) = {ϕq(p) : p ∈ [0, 1− 1/q]}. (3.10)

To investigate the robustness of the polar compression scheme with respect to

information sets constructed for spike measures, the cost function JN(pX ,ϕq(pi))

can be evaluated for given distributions pX and various pi ∈ [0, 1 − 1/q], i =

0, 1, . . . , C−1. For a given pX ∈ M(q), we are interested in finding the minimum

value of JN(pX ,ϕq(pi)) together with the index i such that JN(pX ,ϕq(pi)) is

minimized. As an example, consider pX = (0.75, 0.21, 0.04), and C constructed

such that H(ϕq(pi+1))−H(ϕq(pi)) = 0.02 for all i. In Figure 3.3, JN(pX ,ϕq(pi))

is plotted. Note thatH(pX) = 0.61191, and the cost function attains its minimum

value if pi is in the vicinity of points such that |H(ϕq(pi))−H(p̂X)| is minimum,

and the cost function attains a considerably small value for that distribution.
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Figure 3.3: The cost function JN(p̂X ,ϕq(pi)) with respect to H(ϕq(pi)) for pX =
(0.75, 0.21, 0.04), β = 6, and N = 210.
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As a framework for investigating the proposed coding scheme under source

uncertainty, the following approach is adopted: For a given q, source distribution

pX is modelled as a random probability mass function drawn from the Dirichlet

distribution with parameter α = (α0, α1, . . . , αq−1), αi > 0 for all i = 0, 1, . . . , q−

1: pX ∼ Dir(α) [24]. Using the methodology in [24], the probability distribution

of pX ∼ Dir((3, 4, 5)) is shown in Figure 3.4. If pX ∼ Dir((1, 1, . . . , 1)), the

random pmf is distributed uniformly over M(q), which is considered primarily

for the analysis in this thesis. There exist efficient methods to generate uniformly

Figure 3.4: Probability distribution of pX ∼ Dir((3, 4, 5)).

distributed vectors over a unit simplex, i.e., pX ∼ Dir((1, 1, . . . , 1)) [25], [26],

[27].

In the investigation, independent and identically distributed probability mass

functions are drawn: pX
iid
∼ Dir(α). Given a realization pX , JN(pX ,ϕ(pi)) is

computed for each i = 0, 1, . . . , C−1. Through this, the robustness of the coding

scheme can be investigated in terms of cost function J , and a method for choosing

the most appropriate ϕq(pi) for a given pmf realization pX can be obtained. The

index i such that JN(pX ,ϕq(pi)) is minimized is denoted as i∗ throughout the

thesis:

i∗ = argmin
i=0,1,...,C−1

JN(pX ,ϕq(pi)). (3.11)
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If there is no prior information about the probability distribution of the source

for constructing CIS, then it can be assumed that pX is distributed uniformly

over M(q). 1000 independent drawings from pX
iid
∼ Dir((1, 1, 1)) are generated.

A CIS of size C = 32 is constructed such that H(ϕq(p0)) = 1/C, pC−1 = 1− 1/q

and H(ϕq(pi+1)) − H(ϕq(pi)) constant for all i. The set {pi}
C−1
i=0 is shown in

Figure 3.5 together with the entropy of probability distributions over M(3).

Figure 3.5: Construction of C with C = 32 over M(3). pi is spotted for all
i = 0, 1, . . . , C − 1, and entropy is shown as a density plot.

Using this C, for each realization of pX , JN(pX ,ϕq(pi∗)) is computed. In order to

find a rule to determine i∗ for a given pX , H(pX)−H(ϕq(pi∗)) is also computed.

For N = 210, the probability distributions are given in Figure 3.6, and corre-

sponding minimum costs together with H(pX)−H(ϕq(pi∗)) are given in Figure

3.7. The probability distributions such that JN(pX ,ϕq(pi∗)) ≥ 0.025 are marked

with green circles in both Figure 3.6 and Figure 3.7.

In this investigation, it is observed that the cost can be reduced to acceptable

values if |H(p̂X) − H(ϕq(pi))| is in the vicinity of its minimum value. There-

fore, as a straightforward solution to the problem of determining i∗, minimizer of

|H(p̂X) − H(ϕq(pi))| among all i can be proposed. For improved performance,

machine learning tools can be employed in this problem. The probability distri-

butions marked with green circles correspond to regions that circularly dominate
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Figure 3.6: Independent and identically distributed realizations from pX ∼
Dir((1, 1, 1)) for cost analysis at block-length N = 210.
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Figure 3.7: JN(pX ,ϕq(pi∗)) and H(pX)−H(ϕq(pi∗)) values at block-length N =
210 for uniformly distributed pX .
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spike measures with only high entropy values. Non-spike probability measures

can be employed in the construction of CIS to reduce the cost J in those regions.

The procedure in the first experiment with 1000 randomly chosen probability

distributions is performed for N = 212 and C of size C = 64. In Figure 3.8

and Figure 3.9, the probability mass functions and corresponding minimum cost

functions are given. The results indicate that the proposed CIS construction

scheme provides similar performance at N = 212.

3.6.2.2 An Alternative CIS Construction Scheme

In [15], robustness of polar source codes (without oracles) with respect to the

uncertainty in the probability distribution of the source is investigated. An al-

ternative CIS construction scheme based on this work can be proposed. For

D ⊂ M(q), let

p̂(D) = argmin
p̂∈M̂(q):p̂≺cD

H(p̂),

where p̂ ≺c D implies that p̂ ≺c pX for all pX ∈ D. For any pX ∈ D, it

is shown in [15] that IX(pX , N) ⊂ IX(p̂(D), N). Therefore, it is possible to

achieve code rate H(p̂(D)) for any pX ∈ D asymptotically in the block-length

by using the information set IX(p̂(D), N). Therefore, a method for constructing

CIS is to partition probability simplex into C disjoint and exhaustive regions,

denoted by {Di}
C−1
i=0 , depending on source uncertainty, and to choose the spike

measure p̂(Di) for code construction that will be used in the compression of

probability measures in Di for all i = 0, 1, . . . , C − 1. In this scheme, if pX ∈ Di,

the minimum achievable rate is H(p̂(Di)), which implies that JN(pX , p̂(Di)) ≥

H(p̂(Di))− E[R(IX(pX , N))]. For pX ∈ M(q), let

p̂(pX) = argmin
p̂∈M̂(q):p̂≺cpX

H(p̂). (3.12)

For any partitioning {Di}
C−1
i=0 and for any pX ∈ Di, the following inequality holds:

H(p̂(pX)) ≤ H(p̂(Di)). (3.13)
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Figure 3.8: Independent and identically distributed realizations from pX ∼
Dir((1, 1, 1)) for cost analysis at block-length N = 212.
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Figure 3.9: JN(pX ,ϕq(pi∗)) and H(pX)−H(ϕq(pi∗)) values at block-length N =
212 for uniformly distributed pX .
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Let J̃N(pX , p̂(pX)) , H(p̂(pX)) − E[R(IX(pX , N))|pX ]. Then, the following

inequalities are obtained:

J̃N(pX , p̂(pX)) ≤ JN(pX , p̂(pX)) (3.14)

≤ JN(pX , p̂(Di)).

In order to compare CIS construction schemes, we consider the difference between

J̃N(pX , p̂(pX)) and JN(pX ,ϕq(pi∗)). For the randomly generated probability dis-

tributions in Figure 3.6, the performance comparison of the two proposed schemes

is given in Figure 3.10. Note that the lower bound on the cost JN(pX , p̂(Di)) is
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Figure 3.10: Performance comparison of CIS construction techniques for ternary
sources of length N = 210.

used in the analysis. From this investigation, it can be concluded that at practi-

cal block-lengths, the performance of the alternative CIS construction scheme is

degraded with respect to the first scheme even if its performance is maximized.

This investigation indicates that it is possible to build a class of information

sets C by using spike probability distributions which results acceptable increase

in the code rate. Since the cost increases as the distance |H(pX) − H(ϕq(p))|

becomes larger, it is appropriate to use an information set constructed for ϕq(pi)

whose entropy is close to that of the source distribution. Prior information on the

source probability distribution can be modelled as a probability distribution over
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M(q). Given this probabilistic model for the source distribution, the optimum C

that minimizes EpX
[EXN−1

0

[R(IX(ϕq(pi∗), N))|pX ]] can be constructed where the

first expectation is over the source distributions, and the latter is over the source

vectors drawn from a sample of these distributions.

3.7 Numerical Results

In the first part of performance evaluations, the expected code rates are com-

puted via Monte Carlo simulations with 10000 trials. The code construction is

performed with the method described in Algorithm 5 with µ = 20.

In Figure 3.11, the average compression rates for ternary sources with prob-

ability mass functions p1 = (0.1, 0.275, 0.625), p2 = (0.07, 0.09, 0.84)

and p3 = (0.9214, 0.0393, 0.0393) under SC-D are presented at block-lengths

N = 28, 29, . . . , 215. Base-3 entropy values are marked by lines. The coding

scheme provides rates close to the minimum source coding rate at practical block-

lengths, and the backoff from the minimum source coding rate diminishes as N

increases.
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Figure 3.11: Average compression rates for ternary sources under SC-D at block-
lengths N = 28, 29, . . . , 215.
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In Figure 3.12, the improvement in the code rate by using SCL-D is inves-

tigated for a source with distribution p2 = (0.07, 0.09, 0.84) at various block-

lengths. It is observed that SCL-D provides significant improvement at practical

block-lengths, and also the improvement due to increasing L becomes less signif-

icant as N increases.
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Figure 3.12: The improvement in the expected code rate by SCL-D for a ternary
source with distribution p2 = (0.07, 0.09, 0.84) at various block-lengths.

Next, the performance of multi-level oracle-based lossless polar compression

scheme for composite alphabet sizes is analyzed. For a 6-ary source with prob-

ability distribution pZ = (0.0077, 0.7476, 0.0675, 0.0623, 0.0924, 0.0225), the

expected code rates under SC-D is given in Figure 3.13. The source Z is com-

pressed in two layers: Z = (X, Y ), where Y is a ternary and X is a binary random

variable. This example indicates that the extension of the proposed oracle-based

polar compression scheme developed for prime-size alphabets to arbitrary finite

alphabets provides similar performance.

In Figure 3.14 and Figure 3.15, the probability distribution and expected code

rates in the compression of a source Z with alphabet size q = 256 and block-

length N = 214 are given, respectively. The source is expanded into binary form

for multi-level compression: Z = (Z7, Z6, . . . , Z0)2. The blue bars indicate the
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Figure 3.13: Expected code rates for a 6-ary source Z = (X, Y ) with probabil-
ity distribution pZ = (0.0077, 0.7476, 0.0675, 0.0623, 0.0924, 0.0225). Base-2
entropy values are marked by dotted lines.

expected code rates for each level, and the red bars indicate the minimum source

coding rate for the corresponding level.

For each level, the code rate provided by the oracle-based lossless polar compres-

sion is close to the theoretical limit.

In the second part of performance evaluations, the proposed sequential quan-

tization with scaling algorithm for probability distributions and the CIS con-

struction method are analyzed together under source uncertainty. The approach

is based on Monte Carlo simulations by random vector sampling over the unit

simplex, which is introduced in Section 3.6. In this approach, pX is modelled

as a random vector over the unit simplex M(q). Each probability distribution

is compressed by using β symbols, and a CIS C of size C is constructed using

the scheme introduced in Subsection 3.6.2.1. In the construction of C, the set

{pi}
C−1
i=0 is chosen such that H(ϕ(pi+1)) − H(ϕ(pi)) is constant for all i. For a

given realization pX , mc = 10000 source realizations are drawn from pX , i.e.,

XN−1
0

iid
∼ pX , and the expected rate EXN−1

0

[R|pX ] is computed.
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Figure 3.14: The probability distribution of a source Z = (Z7, Z6, . . . , Z0)2 with
alphabet size q = 256.

7 6 5 4 3 2 1 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

 

 

H(Zk|Zk−1

0
)

E[Rk]

Figure 3.15: E[Rk] and H(Zk|Zk−1
0 ) values for each k at block-length N = 214.
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In the first set of experiments, pX [i] is sampled such that pX [i] ∈ M(3) and

H(pX) is uniformly distributed on the interval [Hmin, Hmax] for two constants

0 ≤ Hmin < Hmax ≤ 1 for i = 0, 1, . . . ,ms−1, wherems is the number of randomly

sampled probability distributions. C is constructed such thatH(ϕq(p0)) = Hmin+

1/C, H(ϕq(pC−1)) = Hmax and with equal entropy difference between successive

pi.

For N = 212, C = 8, Hmin = 0.2 and Hmax = 0.7, expected code rates E[Ri|pX [i]]

sorted such that H(pX [i]) ≤ H(pX [i + 1]) for i = 0, 1, . . . ,ms − 1 are given

in Figure 3.16 for ms = 1000. The source distribution is quantized by using

Algorithm 9 with β = 3 symbols per element.
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Figure 3.16: The average code rate E[R|pX ] values if pX is chosen randomly such
that H(pX) ∼ U [0.2, 0.7], C = 8, N = 212, and β = 3

Two parameters are considered for performance measurement: Mean and max-

imum backoff from the minimum source coding rate over all pX [i], i =

0, 1, . . . ,ms − 1. In Figure 3.16, the following values are obtained:

1

ms

ms−1∑

i=0

{E[Ri|pX [i]]−H(pX [i])} = 0.0610,

and

max
i=0,...,ms−1

{E[Ri|pX [i]]−H(pX [i])} = 0.0888.

If the difference |H(ϕq(pi∗))−H(pX)| is large for a source distribution pX , then

the backoff from the minimum source coding rate becomes large. The ripples in
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Figure 3.16 correspond to such probability distributions. In order to decrease the

rate backoff at such distributions, increasing C is a solution. In Figure 3.17, the

same procedure is repeated with C = 16.
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Figure 3.17: The average code rate E[R|pX ] values if pX is chosen randomly such
that H(pX) ∼ U [0.2, 0.7], C = 16, N = 212, and β = 3

In this case,

1

ms

ms−1∑

i=0

{E[Ri|pX [i]]−H(pX [i])} = 0.0559,

and

max
i=0,...,ms−1

{E[Ri|pX [i]]−H(pX [i])} = 0.0624.

values are obtained, i.e., ripple magnitude is decreased.

In order to analyze the effect of increasing block-length on the code rate perfor-

mance, the procedure is followed with parameters N = 214 and C = 8. In Figure

3.18, the performance of the coding scheme is analyzed.

From the ripple magnitude, it is observed that robustness to source uncertainty

decreases as N increases due to the polarization effect. Mean and maximum

backoff from the minimum source coding rate in Figure 3.18 are as follows:

1

ms

ms−1∑

i=0

{E[Ri|pX [i]]−H(pX [i])} = 0.0474,
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Figure 3.18: The average code rate E[R|pX ] values if pX is chosen randomly such
that H(pX) ∼ U [0.2, 0.7], C = 8, N = 214, and β = 3

and

max
i=0,...,ms−1

{E[Ri|pX [i]]−H(pX [i])} = 0.0815.

Hence, at large block-lengths, the size of the CIS must be chosen sufficiently large.

Finally, it is assumed that the probability distributions pX is distributed

uniformly over the following subset of M(3):

D = {p ∈ M(3) : pi ≥ 0.05, i = 0, 1, 2}.

D ⊂ M(3) is illustrated in Figure 3.19. The procedure in the first set of experi-

ments is performed for N = 212, β = 6 and C = 16 with ms = 1000 probability

vectors sampled from D. The resulting code rates are given in Figure 3.20. Mean

and maximum backoff from the minimum source coding rate are as follows:

1

ms

ms−1∑

i=0

{E[Ri|pX [i]]−H(pX [i])} = 0.0529,

and

max
i=0,...,ms−1

{E[Ri|pX [i]]−H(pX [i])} = 0.0793.

The increase in the backoff at probability vectors with high entropy stems from the

CIS construction scheme, which causes high J at regions indicated in Subsection

3.6.2.1.
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Figure 3.19: The region D over which pX is distributed uniformly.
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Figure 3.20: The average code rate E[R|pX ] values for C = 8, N = 212, and β = 6
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Chapter 4

Conclusions

In this thesis, a fixed-to-variable length, zero-error lossless data compression

scheme with polar codes is proposed. The coding scheme achieves the funda-

mental limit, minimum source coding rate, asymptotically in the block-length,

and provides acceptable backoff from this fundamental limit at practical block-

lengths by low-complexity encoding and decoding algorithms. In order to improve

performance at small to moderate block-lengths at the expense of increased com-

plexity, a scheme based on successive cancellation list decoding is proposed. By

using conditional source coding, a multi-level approach is adopted for extending

the compression scheme from prime-size alphabets to arbitrary finite alphabets.

The main advantage of the multi-level scheme is that zero error probability and

small backoff from minimum source coding rate are inherited at any block-length

with low-complexity encoding and decoding algorithms. Therefore, the scheme

can be used in the compression of discrete memoryless sources over large alpha-

bets, which is the case in most data compression applications such as image and

speech compression. Since polar codes are structured codes, the receiver needs

the exact information of source distribution and information set for non-binary

alphabets [15]. The consequences of this property in the presence of source dis-

tribution uncertainty are two-fold: The source distribution must be known at

the receiver, and the information set must be constructed for every given source

distribution, which implies infeasibility in practical applications. In order to
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solve these problems, a probability mass function quantization algorithm and a

scheme for constructing and using pre-built information sets are proposed. For

analyzing the robustness of the proposed schemes to source uncertainty, a Monte

Carlo-based method is developed.

In [28] and [29], bounds are introduced for lossless data compression rate at

finite block-lengths. For performance evaluation, the performance of the proposed

compression scheme at non-asymptotic regime can be compared to these bounds.

As a first application of the proposed zero-error compression framework, DCT-

based JPEG image compression using polar compression is proposed. For im-

proved performance, polar JPEG compression schemes with Burrows-Wheeler

Transform [30, 31] and second generation wavelets [32] can be implemented. In

these schemes, a mixed multi-level approach with lossless and lossy polar com-

pression methods can be utilized for performance improvement. Together with a

method for exploiting the memory information, the proposed compression method

can be used in the compression of any signal efficiently.
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source coding with the burrows wheeler transform,” IEEE Transactions on

Information Theory, vol. 48, no. 5, pp. 1061–1081, 2002.

[32] W. Sweldens, “The lifting scheme: A construction of second generation

wavelets,” SIAM Journal on Mathematical Analysis, vol. 29, no. 2, pp. 511–

546, 1998.

62


