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İpek Tuvay

September, 2013



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Laurence J. Barker (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Semra Öztürk Kaptanoğlu
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ABSTRACT

FUSION SYSTEMS IN GROUP REPRESENTATION
THEORY

İpek Tuvay

Ph.D. in Mathematics

Supervisor: Assoc. Prof. Dr. Laurence J. Barker

September, 2013

Results on the Mackey category MF corresponding to a fusion system F and

fusion systems defined on p-permutation algebras are our main concern.

In the first part, we give a new proof of semisimplicity ofMF over C by using

a different method than the method used by Boltje and Danz. Following their

work in [8], we construct the ghost algebra corresponding to the quiver algebra

ofMF which is isomorphic to the quiver algebra. We then find a formula for the

centrally primitive mutually orthogonal idempotents of this ghost algebra. Then

we use this formula to give an alternative proof of semisimplicity of the quiver

algebra of MF over the complex numbers.

In the second part, we focus on finding classes of p-permutation algebras which

give rise to a saturated fusion system which has been studied by Kessar-Kunugi-

Mutsihashi in [16]. By specializing to a particular p-permutation algebra and

using a result of [16], the question is reduced to finding Brauer indecomposable

p-permutation modules. We show for some particular cases of fusion systems we

have Brauer indecomposability.

In the last part, we study real representations using the real monomial Burn-

side ring. We deduce a relation on the dimensions of the subgroup-fixed subspaces

of a real representation.

Keywords: fusion system, Mackey category, semisimplicity, p-permutation alge-

bra, Brauer indeomposability, monomial Burnside ring.
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ÖZET

GRUP TEMSİL TEORİSİNDE FÜZYON SİSTEMLERİ

İpek Tuvay

Matematik, Doktora

Tez Yöneticisi: Doç. Dr. Laurence J. Barker

Eylül, 2013

Füzyon sistemleri teorisi grup temsil teorisi alanında önemli bir çalisma alani ha-

line gelmiştir. F bir füzyon sistemi olsun, MF ise bu füzyon sistemine karşılık

gelen Mackey kategorisi olsun. Bu Mackey kategorisi ve p-permütasyon cebir-

lerinin füzyon sistemleri temel ilgi alanımızı oluşturmaktadır.

Tezin ilk bölümünde, MF kategorisinin kompleks sayılar üzerinde yarıbasit

olduğuna dair olan ispatı Boltje-Danz’ın yaptığından farklı bir şekilde yaptık.

[8]’de yapılanları takip ederek, MF ’in quiver cebirine karşılık gelen bir hayalet

cebiri oluşturduk. Daha sonra bu hayalet cebirinin, merkezi, birbirine dik, ilkel

eşgüçlü elemanları için bir formül bulduk. Bu formülü, MF ’in kompleks quiver

cebirinin yarıbasitliğini göstermek için alternatif bir ispat olarak kullandık.

Tezin ikinci bölümünde, doymuş füzyon sistemlerine olanak sağlayan p-

permütasyon cebirlerinin bulunması problemine yoğunlaştık. Bu problem,

Kessar-Kunugi-Mutsihashi tarafından [16]’de çalışılmıştı. Bu makalede, sözünü

ettiğimiz problem Brauer-parçalanamaz özelliğine sahip modüller bulmaya in-

dirgendi. Biz de bazı farklı özel füzyon sistemleri durumunda, Brauer-

parçalanamaz modüller bulunduğunu gösterdik.

Son bölümde, gerçel tek terimli Burnside halkasını kullanarak gerçel temsilleri

çalıştık. Bir gerçel temsilin altgruplar tarafından sabitlenen alt uzaylarıyla ilgili

bir ilişki bulduk.

Anahtar sözcükler : füzyon sistemi, Mackey kategorisi, yarıbasit, p-permütasyon

cebiri, Brauer parçalanamazlığı, tek terimli Burnside halkası.

v



Acknowledgement

I would like to express my deep gratitude to my supervisor Laurence J. Barker

for his encouragement, support and perfect guidance during my Ph.D. study.

I would like to thank also to Robert Boltje for his hospitality during my visit

to University of California Santa Cruz. I am also grateful to Radha Kessar for

her helpful suggestions, encouragement and discussions during my visit to City

University of London.
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Chapter 1

Introduction

The theory of fusion systems became an important topic in the study of represen-

tation theory. The term “fusion” was introduced by Richard Brauer in 1950′s, but

the notion of fusion had been of interest before. For example in 1897, Burnside

published a paper including the proof of the result that if P is an abelian Sylow

p-subgroup of a finite group G, then the normalizer of P in G controls fusion in

P . (A subgroup H of G is said to control fusion in P if for any pair of elements

in P that are conjugate in G are also conjugate in H.)

In 1990s, Lluis Puig introduced the notion of a fusion system defined on a p-

subgroup of G, by discarding G. He gave an axiomatic definition and called them

Frobenius categories. Nowadays, these categories are referred to as “saturated

fusion systems”. Other people have taken up his approach and have extended his

axiomatic definition to fusion systems.

This thesis is mainly based on results related to fusion systems. The first

and third part consist of results related to representation theory in characteristic

zero, whereas the second part contains results related to modular representation

theory.
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1.1 On Mackey category corresponding to a fu-

sion system

The theory of Mackey functors is an important theory in the study of represen-

tations of finite groups. Representation rings, group cohomology, Burnside rings

are some important Mackey functors.

Mackey functors are introduced by Green in early seventies. Then many math-

ematicians including Boltje, Bouc, Dress, Thévenaz and Webb become interested

in this theory. Thévenaz and Webb identified Mackey functors with modules of

a certain algebra in [24]. Later, Bouc gave an alternative definition for Mackey

functors in terms of additive functors from a suitable category which we define

below briefly.

Let P be a set of finite groups closed under taking subgroups up to isomor-

phism. Following Bouc [9], the category MP,4 is defined where

• Obj(MP,4) = P

• Given P,Q ∈ P , HomMP,4(P,Q) = B4(P,Q) where B4(P,Q) is the

Grothendieck group of bifree P -Q-bisets (we call this group the bifree double

Burnside group). For details, see Chapter 2.

A Mackey functor on P is an additive functor from the categoryMP,4 to the

category of left Z-modules. We can extend the coefficients to C in a straightfor-

ward way as explained in Chapter 4. In the case where we have a fusion system

defined on P , the results in [8] imply semisimplicity of the corresponding category

denoted byMP,4F (HomMP,4(P,Q) = B4F (P,Q)) which we denote byMF for

short. Dı́az and Park, in [14], gave a parametrization and an explicit description

for the simple Mackey functors for a fusion system in terms of seeds.

In Chapter 4, Theorem 4.1.1, we show semisimplicity of MF over C and

hence semisimplicity of the quiver algebra by using a different method than the

method used by Boltje and Danz. Following [8], we construct the ghost algebra
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corresponding to the quiver algebra of MF which is isomorphic to the quiver

algebra. We then find a formula for the centrally primitive mutually orthogonal

idempotents of this ghost algebra. Then we use this formula to give an alternative

proof of semisimplicity.

1.2 On fusion systems defined on p-permutation

algebras

Let G be a finite group, p a prime number dividing the order of G and k a field

of characteristic p. In 1930′s, Richard Brauer initiated the systematic study of

the representations of G over k. In contrast to CG, the modular group algebra

is not a direct sum of simple algebras; whereas the indecomposable subalgebras

of kG called blocks has a rich representation theory.

In 1979, Alperin and Broué, in [1], introduced the G-poset of Brauer pairs

corresponding to a block b of kG. This G-poset consists of pairs (Q, e) where Q

is a p-subgroup of G and e is a block of kCG(Q) in Brauer correspondence with b.

They showed that there is a G-conjugation structure on the set of Brauer pairs

which has similar properties with the G-poset of p-subgroups of G. These simi-

larities led Puig to introduce a fusion pattern on an abstractly defined category.

For any maximal b-Brauer pair (P, e), the category F is defined to be a category

whose objects are subgroups of P and whose morphism sets HomF(Q,R) consist

of morphisms induced by conjugations in the G-subposet of Brauer pairs con-

tained in (P, e). Alperin and Broué’s results can be interpreted as a statement

that a fusion system defined on a maximal b-Brauer pair is saturated.

More generally, the theory of Brauer pairs can be extended to to primitive

idempotents of G-fixed subalgebras of p-permutation algebras. As in the group

algebra case, for a p-permutation G-algebra A and a primitive idempotent b of

the subalgebra of fixed points AG, there is associated a fusion system defined on

a maximal (A, b,G)-Brauer pair. These fusion systems are not always saturated.

In [16], a sufficient condition for saturation is given, it is a condition that suggests
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the triple (A, b,G) to be saturated. Hence, having found a saturated triple, we

have a saturated fusion system. For the definition of saturated triples see Chapter

5.

Finding classes of p-permutation algebras which give rise to a saturated fusion

system has been studied by Kessar-Kunugi-Mutsihashi in [16]. They posed the

following question:

Given a saturated fusion system F on a finite p-group P , does there exist

a finite group G, a p-permutation G-algebra A and a primitive idempotent b of

AG such that (A, b,G) is a saturated triple and F = F(P,eP )(A, b,G) for some

maximal (A, b,G)-Brauer pair (P, eP )?

In the same paper, they construct a p-permutation G-algebra A = Endk(M)

where M is an indecomposable p-permutation kG-module, and establish a nec-

essary and sufficient condition for the triple (A, 1A, G) to be saturated. The

condition implies that M is Brauer indecomposable. Moreover, they suggest that

a good candidate for M is a Scott kG-module with vertex P . They prove Brauer

indecomposability of Scott kG-modules with vertex P when P is an abelian p-

group and F is a saturated fusion system on P .

In Chapter 5, Theorems 5.3.2 and 5.3.6, we prove Brauer indecomposability of

Scott modules for some other particular cases where P is not necessarily abelian.

Hence, for some new classes of saturated fusion systems F , we have proved an

affirmative answer to the question above and we have exhibited some saturated

triples for F .

1.3 On real representation spheres and real

monomial Burnside ring

This chapter focuses on real representations, or equivalently finite dimensional

RG-modules. We deduce a relation on the dimensions of the subgroup-fixed sub-

spaces of them using real monomial Burnside rings as well as Lefschetz invariant

4



of spheres of real representations.

For a finite group G, the ordinary Burnside ring B(G) is defined to be the

Z−module having a basis {[G
H

] | H ≤G G} where addition is disjoint union and

multiplication is Cartesian product. The real monomial Burnside ring BR(G) ,

or the monomial Burnside ring with fibre group {±1}, is the Z−module having

a basis set as isomorphism classes of {±1}−subcharacters of G. There exists a

ghost ring β(G) of the Burnside ring such that the algebras QB(G) and Qβ(G)

become isomorphic. For detailed explanation on them, see Section 6.1.

There is a Q-linear map bolG : AR(G) → β×(G) where AR(G) denotes real

representation ring for G. This map happens to be modulo 2 reduction of the

map bol
{±1},R
G : RAR(G) → RBR(G) (see the paragraph before Theorem 6.3.4).

In Theorem 6.1.1, we deduce a relation for the image of restriction of the map

bolG to the subalgebra Z(2)AR(G). We use the theory of Lefschetz invariants

corresponding to an RG-module together with the properties of group of the

units of Burnside ring to prove this theorem.

Let O(G) denote the smallest normal subgroup of G such that G/O(G) is an

elementary abelian 2-group and O2(G) denote the smallest normal subgroup of G

such that G/O2(G) is a 2 group. Using Theorem 6.1.1 and Dress’s characteriza-

tion for the idempotents in QB(G), we deduce the result on modulo 2 equivalence

between the dimensions of O(G) and O2(G)-fixed subspaces of an RG-module.

This is stated in Theorem 6.1.2.

For the particular case when G is a 2-group, using a theorem of Tornehave we

deduce a result which gives a constraint on the units of the Burnside ring B(G).

This is given in Theorem 6.1.3.

Chapter 2 and 3 contain the background that is needed to state the results of

the remaining chapters.
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Chapter 2

Fusion systems and bisets

In this chapter, we introduce fusion systems, the concept of bisets and Burnside

rings. Further, we recall the concept of characteristic bisets which unifies the

theory of bisets and saturated fusion systems. The theory of characteristic bisets

led Park to introduce Park groups in [19]. The last part of this chapter is on Park

groups.

2.1 Fusion systems

Let P be a set of finite groups closed under taking subgroups up to isomorphism.

A fusion system F on P is defined to be a category where

• Obj(F) = P

• Given P,Q ∈ P , HomF(Q,P ) satisfies the following axioms:

A1. Every morphism in HomF(Q,P ) is an injective group homomorphism.

A2. For every ϕ ∈ HomF(Q,P ), we have ϕ ∈ HomF(Q,ϕ(Q)) as well as

ϕ−1 ∈ HomF(ϕ(Q), Q).

A3. For Q ≤ P and u ∈ P, then cu : Q → P such that cu(v) = uv is in
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HomF(Q,P ). The composition of morphisms in F is the usual composition of

functions.

Let P be a finite group. If P is the set of all subgroups of P , then we will say

that F is a fusion system defined on P .

Let F be a fusion system defined on a finite group P . A subgroup Q of

P is called fully F-centralized if for every R ≤ P with R =F Q we have

|CP (R)| ≤ |CP (Q)|. A subgroup Q of P is called fully F-normalized if for

every R ≤ P with R =F Q we have |NP (R)| ≤ |NP (Q)|. For any morphism

ϕ : Q→ P in F , set the subgroup Nϕ as

Nϕ = {u ∈ NP (Q) | ∃y ∈ NP (ϕ(Q)) such that ϕ(uv) =y ϕ(v) for all v ∈ Q}.

Among the fusion systems, there is an interesting class of fusion systems

called saturated fusion systems. Let P be a finite p-group. There are equivalent

definitions for saturated fusion systems. In [11], Definition 1.3, the following

definition is given. A fusion system F on P is called a saturated fusion system,

if the following axioms are satisfied:

(Sylow) AutP (P ) ∈ Sylp(AutF(P )).

(Extension) Every morphism ϕ ∈ HomF(Q,P ) such that ϕ(Q) is fully F -

centralized extends to a morphism ϕ̂ ∈ HomF(Nϕ, P ).

2.2 Bisets

A P -Q-biset is a set X equipped with a left P -action and a right Q-action such

that

u.(x.v) = (u.x).v

for all elements u ∈ P , v ∈ Q and x ∈ X. A P -Q-biset X is called transitive if

for any elements x, y ∈ X, there exists an element u ∈ P and an element v ∈ Q
such that y = u.x.v. Every P -Q-biset can be regarded as a P ×Q-set via

(u, v).x := u.x.v−1

7



for all u ∈ P, v ∈ Q and x ∈ X. Hence there is a bijective correspondence between

• the set of isomorphism classes of transitive P -Q-bisets, and

• the set of conjugacy classes of the subgroups of P ×Q.

Here the correspondence is given by [X]↔ [L] if and only if the stabilizer of

a point x ∈ X is P ×Q-conjugate to L (Here [X] denotes the isomorphism class

of X and [L] denotes the conjugacy class of L).

Recall that, for a finite group G, the Burnside group B(G) is defined as

the Z-module spanned by the isomorphism classes of transitive G-sets. Similarly,

the double Burnside group B(P,Q) is defined as the Z-module spanned by

the isomorphism classes of transitive P -Q-bisets. By the bijective correspondence

above, we can equivalently define B(P,Q) as a Z-module having a basis{[
P ×Q
L

]
| L ∈ L

}
where L denotes the set of conjugacy classes of the subgroups of P ×Q. This is

a group under disjoint union of bisets.

Let p1 : P × Q → P and p2 : P × Q → Q denote the canonical projections,

for L ≤ P ×Q, set

k1(L) = {u ∈ P | (u, 1) ∈ L} and k2(L) = {v ∈ Q | (1, v) ∈ L}.

Then ki(L) E pi(L) for i = 1, 2.

A P -Q-biset is called left-free if the left P -action is free and right-free if

the right Q-action is free and bifree if both of the actions on either sides are free.

We have the following lemma whose proof is clear from definitions.

Lemma 2.2.1. A P -Q-biset X is left-free if and only if k1(stabP×Q(x)) = 1 for

all x ∈ X, and X is right-free if and only if k2(stabP×Q(x)) = 1 for all x ∈ X.
Thus X is bifree if and only if k1(stabP×Q(x)) = k2(stabP×Q(x)) = 1 for all

x ∈ X.

As a consequence of that lemma, we have a bijective correspondence between

8



• the set of isomorphism classes of bifree and transitive P -Q-bisets, and

• the set of conjugacy classes of the subgroups L of P × Q subject to the

property that k1(L) = k2(L) = 1.

The bifree double Burnside group B4(P,Q) is defined as the Z-module

spanned by the isomorphism classes of transitive bifree P -Q-bisets. By the bijec-

tive correspondence above we can equivalently define B4(P,Q) as the Z-module

having the basis set{[
P ×Q
L

]
| L ∈ L, k1(L) = k2(L) = 1

}
where L denotes the set of conjugacy classes of the subgroups of P ×Q. Observe

that B4(P,Q) ≤ B(P,Q).

Let X be a P -Q-biset, Y be a Q-R-biset. Then we define the Mackey prod-

uct X ×Q Y as the set of Q-orbits of the cartesian product X × Y . Here Q acts

via v.(x, y) := (x.v−1, v.y) and we write (x,Q y) to denote an arbitrary element in

X ×Q Y . The set X ×Q Y is a P -R-biset via

u.(x,Q y).r := (u.x,Q y.r).

This product induces bilinear maps

B(P,Q)×B(Q,R)→ B(P,R) and B4(P,Q)×B4(Q,R)→ B4(P,R).

Observe that B(P, P ) and B4(P, P ) become rings under this product.

2.3 Characteristic bisets

There is a close relationship between saturated fusion systems defined on a p-

group P and special type of bisets called characteristic bisets lying in the bifree

Burnside ring B4(P, P ).

To introduce the theory of characteristic bisets, we need to fix some notation.

For a subgroup Q ≤ P , and a group homomorphism ϕ : Q→ P , let

P ×(Q,ϕ) P = (P × P )/ ∼

9



where (xϕ(u), y) ∼ (x, uy) for x, y ∈ P and u ∈ Q. Let < x, y > denote the

equivalence class of (x, y) under ∼. We can view this set as a P -P -biset via

p < x, y >=< px, y > and < x, y > p =< x, yp >

for x, y, p ∈ P. This set is free on the left and it is free on the right if ϕ is injective.

Furthernore, there is a P -P -biset isomorphism

P ×(Q,ϕ) P ' (P × P )/4(ϕ(Q), ϕ,Q)

where 4(ϕ(Q), ϕ,Q) = {(ϕ(v), v) | v ∈ Q}.

For a P -P -biset X, and a group homomorphism ϕ : Q → P , let QX denote

the Q-P -biset obtained from X by restricting the left P -action to Q and ϕX

denote the Q-P -biset obtained from X where the left Q-action is induced by ϕ.

Broto-Levi-Oliver show every saturated fusion system defined on a p-group has a

characteristic biset.

Theorem 2.3.1 ([11], Proposition 5.5). For any saturated fusion system F on a

finite p-group P , there is a P -P -biset X with the following properties:

(i) Each transitive subbiset of X is of the form P ×(Q,ϕ) P for some Q ≤ P

and ϕ ∈ HomF(Q,P ).

(ii) For each Q ≤ P and ϕ ∈ HomF(Q,P ), QX and ϕX are isomorphic as

Q-P -bisets.

(iii) |X|
|P | 6≡ 0 mod p.

A biset satisfying the three conditions in the theorem above is called a char-

acteristic biset corresponding to F . The properties above were formulated

by Linckelmann and Webb in an unpublished work.

Ragnarsson-Stancu showed that given such a P -P -biset we can recover a sat-

urated fusion system F (see [20]). In fact, it was shown that there is a bijection

between the set of saturated fusion systems defined on a p-group P and the set

of characteristic idempotents in Z(p)B
4(P, P ).

10



2.4 Park groups

In [19], Park constructs a finite group such that a given saturated fusion system

can be realized by that group. He uses the characteristic biset as a tool in the

construction of that group.

Let G be a finite group and P be a p-subgroup of G. We denote by FP (G)

the fusion system on P whose morphism set is

HomFP (G)(Q,R) = {ϕ : Q→ R | ∃g ∈ G s.t. ϕ(q) = gqg−1 ∀q ∈ Q}

for every Q,R ≤ P . It is known that when P ∈ Sylp(G), the fusion system FP (G)

is saturated.

Theorem 2.4.1 ([19], Theorem 3). Let F be a saturated fusion system on a

finite p-group P , X be a characteristic biset corresponding to F . Let Q ≤ P

and let ϕ : Q→ P be an injective group homomorphism. Then the following are

equivalent:

(i) ϕ is a morphism in F .

(ii) The Q-P -bisets QX and ϕX are isomorphic.

(iii) ϕ is a morphism in F%(P )(G), where G = Aut(1X), that is, the group of

bijections preserving the right P -action and P is identified with a subgroup

of G via

P
%−→ Aut(1X)

p 7→ (x 7→ px).

(iv) The fixed point set X4(ϕ(Q),ϕ,Q) 6= ∅.

We call the group G that makes F = F%(P )(G), a Park group of F . Since

Park group depends both on the fusion system and the characteristic biset X

corresponding to it, we will use the notation Park(F , X) to denote this group.

Remark 2.4.2. In the theorem above, since 1X is a right-free P -set, the auto-

morphism group Aut(1X) ∼= P o Sn for n = |X|
|P | , thus G ∼= P o Sn .
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Chapter 3

Scott Modules

In this section, we give the definition of a Scott module and quote results about

basic properties of it. We use [18] as a reference for this chapter.

3.1 Relative trace maps

Let G be a finite group and k be a commutative ring with identity. For a kG-

module M and Q ≤ H ≤ G, the relative trace map is the map

TrHQ : MQ →MH

such that TrHQ (m) =
∑

h∈H/Q hm for m ∈ MQ. We set MH
Q = TrHQ (MQ). The

Brauer quotient is the quotient

M(H) = MH/(
∑
Q<H

MH
Q )

and BrH denotes the canonical homomorphism from MH to M(H). Conjugation

by g ∈ G induces a kG-module isomorphism between M(H) and M(gH). So if

M(H) 6= 0, then M(H) inherits a natural kNG(H)-module-structure. Since H

acts trivially on MH , we can also view M(H) as a kNG(H)/H-module.
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Let M and M ′ be kG-modules. Then, the set Homk(M,M ′) becomes a kG-

module via
gf(m) := gf(g−1m).

Moreover, Homk(M,M ′)H = HomkH(M,M ′) for all H ≤ G. Thus for Q ≤ H ≤
G, the relative trace map becomes

TrHQ : HomkQ(M,M ′)→ HomkH(M,M ′)

TrHQ (f)(m) =
∑

h∈H/Q hf(h−1m).

For a G-algebra A over k, relative trace maps, Brauer homomorphism and

Brauer quotient are defined in a similar way.

3.2 Relative projectivity

From now on, we will study with a p-modular system. Let p be a prime number.

A p-modular system is a triple (K,O, k) where O is a local principal ideal

domain, K is the field of quotients of O and k is the quotient field O/J(O) such

that the following hold:

• O is complete with respect to the natural topology induced by its unique

maximal ideal J(O).

• K has characteristic 0.

• k has characteristic p.

For a finite group G, in order to avoid complications arising from rationality

considerations, we assume that O is such that K contains a primitive |G|th root

of unity and k is algebraically closed. We assume also that all kG-modules that

we are dealing with are finite dimensional.

For H ≤ G, a kG-module M is called relatively H-projective if there is a

kH-module W such that M is a direct summand of IndGHW and write M | IndGHW .
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Observe that, the definition of projectivity for kG-modules coincides with {1}-
projectivity.

The relationship between relative projectivity and trace map is given by Hig-

man as follows:

Theorem 3.2.1 (Higman, [15]). Let M be a kG-module and H ≤ G. Then the

following are equivalent:

(i) M is relatively H-projective.

(ii) M | IndGHResGHM .

(iii) The identity map on M is in the image of TrGH : HomkH(M,M) →
HomkG(M,M).

As a corollary of Higman’s theorem, we have the following remark.

Remark 3.2.2. If (|G : H|, p) = 1, then every kG-module M is relatively H-

projective. In particular, M is relatively P -projective if P ∈ Sylp(G).

Proof. Since |G : H| is a unit in k, we have idM = TrGH(|G : H|−1idM).

Theorem 3.2.3 ([18], Theorem 4.3.3). If M is an indecomposable kG-module,

then there exists a p-subgroup of G determined up to G-conjugacy such that the

following statements hold:

(i) M is relatively P -projective.

(ii) If M is relatively H-projective for some H ≤ G, then P ≤G H.

Any p-subgroup P of G satisfying the two conditions in the theorem above is

called a vertex of M .
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3.3 Scott modules as p-permutation modules

A kG-module M is called a p-permutation module if for every p-subgroup P

of G, there exists a k-basis of M which is stabilized by P .

Lemma 3.3.1 ([12], Theorem 3.1). Let M be a p−permutation kG-module, and

let P be a p-subgroup of G. Then M(P ) is a p-permutation kNG(P )/P -module.

Theorem 3.3.2 ([12], Theorem 3.2). Let G be a finite group. Then the following

statements are true.

1. The vertices of an indecomposable p-permutation kG-module M are the

maximal p-subgroup P such that M(P ) 6= 0.

2. An indecomposable p-permutation kG-module M has vertex P if and only

if M(P ) is a nontrivial projective kNG(P )/P -module.

3. The correspondence M → M(P ) induces a bijection between the isomor-

phism classes of indecomposable p-permutation kG-modules with vertex

P and the isomorphism classes of indecomposable projective kNG(P )/P -

modules.

The definition of a Scott module is given by the following theorem.

Theorem 3.3.3 (Scott-Alperin). For a p-subgroup P of G, there exists an inde-

composable p-permutation kG-module with vertex P denoted by SP (G, k), uniquely

defined up to isomorphism by the following equivalent properties:

(i) kG | soc(SP (G, k))(:= largest semisimple submodule of SP (G, k)).

(ii) kG | hd(SP (G, k))(:= largest semisimple quotient of SP (G, k)).

where kG denotes the trivial kG-module. Moreover, SP (G, k) is isomorphic to

its dual, and is a direct summand of IndGHk if and only if P is G-conjugate to a

Sylow p-subgroup of H.
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As a corollary of the last two theorems we have the following.

Corollary 3.3.4. SP (G, k)(P ) is the projective cover of the trivial kNG(P )/P -

module.

16



Chapter 4

On Mackey category

corresponding to a fusion system

4.1 The category and its quiver algebra

In this chapter, we will present the Mackey category corresponding to a fusion

system. We will introduce the quiver algebra coming out of this category and

prove the semisimplicity of this algebra by finding the set of centrally primitive

mutually orthogonal idempotents of the ghost algebra of the quiver algebra which

is isomorphic to the quiver algebra.

Let F be an arbitrary fusion system defined on P . We define Mackey cate-

gory corresponding to F , which is denoted by MF , to be a category where

• Obj(MF) = P ,

• Given P,Q ∈ P , HomMF (P,Q) = B4F (P,Q) . Here B4F (P,Q) is the Z-

submodule of B4(P,Q) having a basis consisting of elements of the form [ P×Q
4(U,ϕ,V )

]

where V ≤ Q, U ≤ P and ϕ : V → U is an isomorphism in F and

4(U,ϕ, V ) = {(ϕ(v), v) | v ∈ V }.
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• Composition of morphisms in MF is induced by Mackey product of bisets

and composition of incompatible morphisms are defined to be zero.

We define the category CMF where objects are the same as objects of MF

and HomCMF (Q,P ) = C⊗ZMF(P,Q) and composition of morphisms are given

by C-linear extension of the composition of morphisms of MF .

The quiver ring ⊕MF is defined as

⊕MF =
⊕
P,Q∈P

MF(P,Q)

where multiplication is induced from the composition of morphisms in the cate-

goryMF . We will be concerned about the quiver algebra ⊕CMF := C⊗Z
⊕MF .

The main aim of this chapter is to prove the following theorem by a different

method than they use.

Theorem 4.1.1. (Boltje-Danz, [8]) The algebra ⊕CMF is semisimple.

4.2 Parametrization of simple ⊕CMF-modules

In [14], Dı́az and Park gives the parametrization of simple Mackey functors for

fusion systems. They prove that there is a one-to-one correspondence between

the set of simple Mackey functors over C defined for a fusion system F and the

equivalence classes of seeds of F over C.

A seed of F over C is defined to be a pair (K,χ) where K ∈ P and

χ ∈ Irr(COutF(K)), for OutF(K) = AutF(K)/Inn(K). There is an equivalence

relation defined on the set of all seeds, namely, two seeds (K,χ) and (K ′, χ′) are

equivalent provided there exists an isomorphism φ : K → K ′ in F such that

χ′(φτφ−1) = χ(τ) for all τ ∈ OutF(K). Let Ω denote the set of equivalence classes

of seeds of F over C.

We define a Mackey functor for a fusion system F over C to be a

C-linear functor from the category CMF to the category C-Mod of C-modules

and refer to it as an MF -functor.
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Remark 4.2.1. MF -functors can be regarded as modules of the quiver algebra
⊕CMF . The correspondence sends an MF -functor F to the ⊕CMF -module

⊕Q∈PF (Q), where the action of a P -Q-biset PXQ on the summand F (Q) is given

by F (PXQ) and zero on the other summands. Conversely, for each Q ∈ P there

is an idempotent Q-Q-biset QQQ and for a ⊕CMF -module A, F defines anMF -

functor for F (Q) :=Q QQA.

From Proposition 3.1 of [14] we deduce a correspondence between

• the set of simple MF -functors, and

• the elements in Ω.

Therefore from Remark 4.2.1, we deduce that there is a bijective correspon-

dence between

• the set of simple ⊕CMF -modules, and

• the elements in Ω.

4.3 The ghost algebra

For the construction of the ghost algebra, we follow Boltje-Danz’s construction

introduced in [8]. The only difference is that they introduce the algebra for more

general categories, we are specializing to fusion systems.

For P,Q ∈ P , and a fusion system on P ,

4F(P,Q) = {(U, α, V ) | U ≤ P, V ≤ Q, α : V → U}

For each triple (U, α, V ) ∈ 4F(P,Q), we introduce the elements eP×Q(U, α, V )

where the group P ×Q acts on them as

(x,y)eP×Q(U, α, V ) := eP×Q(xU, cyαcx−1 ,y V )

for x ∈ P and y ∈ Q. Let us introduce the free Z-module M̂F(P,Q) with a free
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Z-basis {eP×Q(U, α, V ) | (U, α, V ) ∈ 4F(P,Q)}, that is

M̂F(P,Q) =
⊕

(U,α,V )∈4F (P,Q)

Z eP×Q(U, α, V )

The direct sum ⊕M̂F :=
⊕

P,Q∈P M̂F(P,Q) happens to be a ring via the multi-

plication

eP×Q(U, α, V ) eQ′×R(V ′, β,W ) =


|CQ(V )|
|Q| eP×R(U, αβ,W ), if Q = Q′ and V = V ′

0, otherwise.

The ghost ring is defined to be

⊕M̃F :=
⊕
P,Q∈P

M̂F(P,Q)P×Q.

Setting

ẽP×Q(U, α, V ) :=
∑
(x,y)

(x,y)eP×Q(U, α, V )

where the sum runs through the set of equivalence classes of the stabilizers of

the orbits of eP×Q(U, α, V ), then P × Q fixes ẽP×Q(U, α, V ) for each (U, α, V ) ∈
4F(P,Q). Hence, if we let

M̃F(P,Q) :=
⊕

(U,α,V )∈P×Q4F (P,Q)

Z ẽP×Q(U, α, V )

we can interpret the ghost ring as

⊕M̃F =
⊕
P,Q∈P

M̃F(P,Q).

We will be working with the complex algebra ⊕CM̃F := C⊗Z
⊕M̃F .

To relate the ghost algebra ⊕CM̃F and the quiver algebra ⊕CMF , we define

the mark map

ρP,Q : CMF(P,Q)→ CM̃F(P,Q)

to be the linear map defined for a P -Q-biset X, then

ρP,Q[X] =
∑

(U,α,V )∈P×Q4F (P,Q)

|X4(U,α,V )|
|CP (U)|

ẽP×Q(U, α, V ).

Letting P and Q run over all objects of P , we obtain a C-linear map

ρ :⊕ CMF →⊕ CM̃F .
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Theorem 4.3.1 ([8], Theorem 4.7). The map ρ is an isomorphism of C-algebras.

We aim to show semisimplicity of ⊕CMF . The method we will use here is to

compute mutually orthogonal centrally primitive idempotents of the ghost algebra
⊕CM̃F and then using mark isomorphism we can conclude semisimplicity.

4.4 Abelian Case

In this section, we concentrate on the fusion systems F on P where P consists

of abelian groups. In this case, the basis elements of the ghost algebra satisfies

ẽP×Q(U, α, V ) = eP×Q(U, α, V ) for all P,Q ∈ P and all (U, α, V ) ∈ 4F(P,Q).

Hence, the multiplication of the basis elements is easier to deal with in this case

than the non-abelian case.

Notation: Let PFK be a subset of P × P defined by

PFK = {(J, P ) | J, P ∈ P , J =F K, P ≥ J}

where J =F K denotes there is an J and K are F -isomorphic. Note that if

K =F K
′, then PFK = PFK′ . In the following theorem K ∈F P is used to denote

that K is running over F -isomorphism classes of P .

Theorem 4.4.1. Let P be a set of abelian groups closed under taking subgroups

and let F be a fusion system defined on P and

iK =
∑

(J,P )∈PFK

eP×P (J, id, J).

The set {iK | K ∈F P} is the set of mutually orthogonal idempotents of the center

Z(⊕CM̃F) and

e =
∑
K∈FP

iK .

Proof. Since K =F K
′ implies PFK = PFK′ , we get iK = iK′ . For the pair of groups

K,K ′ with K 6=F K ′, we have iK 6= iK′ , because PFK = PFK′ . For that pair of
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groups, we have iK .iK′ = 0 since PFK ∩ PFK′ = ∅, so these elements are mutually

orthogonal.

We claim that iK is central for all K ∈F P . Let m ∈ ⊕CM̃F be an arbitrary

element. Hence, m can be uniquely written as

m =
∑

P,Q∈P,
(U,α,V )∈4F (P,Q)

mP×Q(U, α, V ) eP×Q(U, α, V )

where mP×Q(U, α, V ) are the coefficients in C. We have

iK .m =
∑

(J,P )∈PFK , Q∈P,
(J,α,V )∈4F (P,Q)

mP×Q(J, α, V ) eP×Q(J, α, V )

m.iK =
∑

P,Q∈P, (U,α,J)∈4F (P,Q),
J=FK

mP×Q(U, α, J) eP×Q(U, α, J)

observing that the sets identified under the sum signs above are in fact coincide,

we conclude that iK ∈ Z(⊕CM̃F).

Now, we claim that iK is idempotent for all K ∈ P , because

iK .iK = (
∑

(J,P )∈PFK
eP×P (J, id, J)) . (

∑
(J ′,P ′)∈PFK

eP ′×P ′(J
′, id, J ′))

=
∑

(J,P )∈PFK
eP×P (J, id, J)

= iK .

We observe that the identity of the ghost algebra ⊕CM̃F is

e =
∑

J,P∈P, P≥J

eP×P (J, id, J)

and therefore we have
∑

K∈FP iK = e.

The idempotents given in the theorem above are not necessarily primitive as

can be seen from the following lemma.

Lemma 4.4.2. For any K ∈F P, the algebras ⊕CM̃F .iK and COutF(K) are

Morita equivalent.
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Proof. We recall Theorem 9.9 of [23]. An algebra A and its subalgebra eAe are

Morita equivalent if and only if e is an idempotent of A such that AeA = A. Set

A =⊕ CM̃F .iK and e = eK×K(K, id, K), then we have eAe ' COutF(K) and

AeA = A as claimed.

From this lemma, we get a bijection between Irr(⊕CM̃F .iK) and

Irr(COutF(K)). Hence, it is not surprising to have the following theorem.

Theorem 4.4.3. Let P be a set of abelian groups closed under taking subgroups

and let F be a fusion system defined on P,

iK,χ =
χ(1)

|OutF(K)|
∑

(J,P )∈PFK

∑
β∈OutF (J)

χ(β−1)eP×P (J, β, J).

The set {iK,χ | (K,χ) ∈ Ω} is the set of mutually orthogonal centrally primitive

idempotents of ⊕CM̃F and

1 =
∑

(K,χ)∈Ω

iK,χ.

Remark 4.4.4. In the innermost sum of the formula, χ is regarded as a

COutF(J)-character. Indeed, we do this by transporting the structure as fol-

lows: let φ : K → J be an isomorphism in F , then it induces an isomorphism

φ̄ : OutF(J)→ OutF(K) where φ̄(β) := φ−1βφ. Hence, we set

χ(β) =: χ(φ̄(β)).

Note that, this setting does not depend on our choice of the isomorphism φ,

indeed if φ′ is another F -isomorphism from K to J , then φ̄(β) =φ−1φ′ φ̄′(β) where

φ−1φ′ ∈ OutF(K).

Proof. If (K,χ) and (K ′, χ′) lie in the same equivalence class of seeds, then we

have iK,χ = iK′,χ′ , if they lie in different equivalence classes, then iK,χ 6= iK′,χ′ by

definition of the equivalence of seeds.

We claim that iK,χ is central for all (K,χ) ∈ Ω. Let

m =
∑

P,Q∈P,
(U,α,V )∈4F (P,Q)

mP×Q(U, α, V ) eP×Q(U, α, V )
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be an arbitrary element of ⊕CM̃F , then

iK,χ.m =
χ(1)

|OutF(K)|
∑

(J,P )∈PFK ,
Q∈P

∑
(J,α,V )∈4F (P,Q),

β∈OutF (J)

χ(β−1)mP×Q(J, α, V ) eP×Q(J, βα, V )

m.iK,χ =
χ(1)

|OutF(K)|
∑

P,Q∈P,
(U,α,V )∈4F (P,Q)

∑
(V,Q)∈PFK ,
β∈OutF (V )

χ(β−1)mP×Q(U, α, V ) eP×Q(U, αβ, V ).

The sums above give the same result because the sets which the sums run through

coincide.

Now, we claim that iK,χ is an idempotent element. Let

eχ,J,P :=
χ(1)

|OutF(J)|
∑

β∈OutF (J)

χ(β−1)eP×P (J, β, J),

then

iK,χiK,χ = (
∑

(J,P )∈PFK

eχ,J,P )(
∑

(J ′,P ′)∈PFK

eχ,J ′,P ′)

and since eχ,J,P are primitive idempotents of the group algebra COutF(J) we

have e2
χ,J,P = eχ,J,P and eχ,J,P .eχ,J ′,P ′ = 0 for P 6= P ′ or J 6= J ′. Therefore,

idempotency is clear.

We have∑
χ∈Irr(COutF (K))

iK,χ =
∑

χ∈Irr(COutF (K))

χ(1)

|OutF(K)|
∑

(J,P )∈PFK

∑
β∈OutF (J)

χ(β−1)eP×P (J, β, J)

=
∑

(J,P )∈PFK

∑
β∈OutF (J)

eP×P (J, β, J)

|OutF(J)|
∑

χ∈Irr(COutF (J))

χ(1).χ(β−1)

=
∑

(J,P )∈PFK

eP×P (J, id, J)

= iK

passing from second line to the third line, we use the second orthogonality relation

of the characters. Hence, we have
∑

(K,χ)∈Ω iK,χ =
∑

K∈FP iK = 1.

The primitiveness of iK,χ comes from the classification of simple ⊕CMF -

modules given in the Section 4.2.
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4.5 Non-abelian Case

We continue with the case where P may contain some non-abelian groups. In

this case the basis elements of the ghost algebra has a more complicated multi-

plication. To simplify it, we will change the basis of the ghost algebra as follows:

For P,Q ∈ P and (U, α, V ) ∈ 4F(P,Q), we introduce

e′P×Q(U, α, V ) =

√
|P |.|Q|

|CP (U)|.|CQ(V )|
eP×Q(U, α, V )

so that have the following multiplication

e′P×Q(U, α, V ) e′Q′×R(V ′, β,W ) =

 e′P×R(U, αβ,W ), if Q = Q′ and V = V ′

0, otherwise.

Similar to the previous construction, set

ẽ′P×Q(U, α, V ) :=
∑

(x,y)∈P×Q

e′P×Q(U, α, V )

then P × Q fixes ẽ′P×Q(U, α, V ) for each (U, α, V ) ∈ 4F(P,Q). Thus, the set

{ẽ′P×Q(U, α, V ) | (U, α, V ) ∈P×Q 4F(P,Q)} constitutes a basis for M̃F(P,Q).

Note that,

ẽ′P×Q(U, α, V ) ẽ′Q′×R(V ′, α,W ) = 0

when Q 6= Q′ or when Q = Q′ and V is not Q-conjugate to V ′.

Lemma 4.5.1. The identity element e of ⊕CM̃F is

e =
∑

P∈P,J≤PP

ẽ′P×P (J, id, J)

|NP (J)|.|P |
.

Proof. e is a central element since it is symmetric. Let m be an arbitrary element

of ⊕CM̃F , then m can be uniquely written as

m =
∑

P,Q∈P,
(U,α,V )∈P×Q4F (P,Q)

mP×Q(U, α, V ) ẽ′P×Q(U, α, V ).
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We have

e.m =
∑

P,Q∈P,J≤PP

∑
(J,α,V )∈P×Q4F (P,Q)

mP×Q(J, α, V )
ẽ′P×P (J, id, J) . ẽ′P×Q(J, α, V )

|NP (J)|.|P |

=
∑

P,Q∈P,
(J,α,V )∈P×Q4F (P,Q)

mP×Q(J, α, V ) ẽ′P×Q(J, α, V )

= m

because for C := ẽ′P×P (J, id, J) . ẽ′P×Q(J, α, V ),

C =
∑

(p1,p2)∈P×P
e′P×P (p1J, cp1cp−1

2
,p2 J) .

∑
(p,q)∈P×Q

e′P×Q(pJ, cpαcq−1 ,q V )

=
∑

(p1,q)∈P×Q

∑
p−1
2 p∈NP (J)

e′P×Q(p1J, cp1cp−1
2
cpαcq−1 ,q V )

= |P |
∑

g∈NP (J)

∑
(p1,q)∈P×Q

e′P×Q(p1J, cp1cgαcq−1 ,q V )

= |P |
∑

g∈NP (J)

ẽ′P×Q(J, cgα, V )

= |P |.|NP (J)|ẽ′P×Q(J, cgα, V )

= |P |.|NP (J)|ẽ′P×Q(J, α, V ).

Hence, e.m = m.

Next, we state a theorem which gives the set of mutually orthogonal idempo-

tents. Similar to the previous case, we fix our notation as follows:

Notation: Let PFK be a subset of P × P which is defined as

PFK = {(J, P ) | J, P ∈ P , J =F K, J ≤P P}.

Observe that this definition coincides with the definition given in the case for

abelian groups; because when P is abelian, the set of P -conjugacy classes of

subgroups of P is exactly the same as the set of subgroups of P .

Theorem 4.5.2. Let P be a set of finite groups closed under taking subgroups

and let F be a fusion system defined on P,

iK =
∑

(J,P )∈PFK

ẽ′P×P (J, id, J)

|NP (J)|.|P |
.
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The set {iK | K ∈F P} is the set of mutually orthogonal idempotents of the center

Z(⊕CM̃F) and

1 =
∑
K∈FP

iK .

Proof. Since K =F K ′ implies PFK = PFK′ , so we get iK = iK′ . For the pair

of groups K,K ′ with K 6=F K ′, we have iK 6= iK′ , similarly. Also, we have

iK .iK′ = 0 since PFK ∩ PFK′ = ∅, so that these elements are mutually orthogonal.

We claim that iK is central for all K ∈F P . Let m ∈ ⊕CM̃F be an arbitrary

element. Hence, m can be uniquely written as

m =
∑

P,Q∈P,
(U,α,V )∈P×Q4F (P,Q)

mP×Q(U, α, V ) ẽ′P×Q(U, α, V )

where mP×Q(U, α, V ) are coefficients in C. We have

iK .m =
∑

(J,P )∈PFK , Q∈P,
(J,α,V )∈P×Q4F (P,Q)

mP×Q(J, α, V ) ẽ′P×Q(J, α, V ) and m.iK =
∑

P,Q∈P, (U,α,J)∈P×Q4F (P,Q),
J=FK

mP×Q(U, α, J) ẽ′P×Q(U, α, J).

Observing that the sets identified under the sum signs above coincide, we conclude

that iK ∈ Z(⊕CM̃F). Now, we claim that iK is an idempotent for all K ∈ P ,

because

iK .iK =

 ∑
(J,P )∈PFK

ẽ′P×P (J, id, J)

|NP (J)|.|P |

 .

 ∑
(J ′,P ′)∈PFK

ẽ′P ′×P ′(J
′, id, J ′)

|NP ′(J ′)|.|P ′|


=

∑
(J,P )∈PFK

∑
(p1,p2),(p3,p4)∈P×P

p2p
−1
3 ∈NP (J)

e′P×P (p1J, cp1cp−1
2
cp3cp−1

4
,p4 J)

|NP (J)|2.|P |2

=
∑

(J,P )∈PFK

1

|P |
∑

(p1,p4)∈P×P
g∈NP (J)

e′P×P (p1J, cp1cgcp−1
4
,p4 J)

|NP (J)|2

=
∑

(J,P )∈PFK

1

|P |
∑

g∈NP (J)

ẽ′P×P (J, cg, J)

|NP (J)|2

=
∑

(J,P )∈PFK

ẽ′P×P (J, id, J)

|NP (J)|.|P |

= iK
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because of the multiplication rule introduced.

It is clear that 1 =
∑

K∈FP iK .

Lemma 4.5.3. For any K ∈F P, the algebras ⊕CM̃F .iK and COutF(K) are

Morita equivalent.

Proof. We recall again [23] Theorem 9.9. An algebra A and its subalgebra eAe

are Morita equivalent if and only if e is an idempotent of A such that AeA = A.

Set A =⊕ CM̃F .iK and e = ẽ′K×K(K, id, K), then we have eAe ∼= COutF(K)

and AeA = A and the result follows.

Now, we can state non-abelian version of Theorem 4.4.3.

Theorem 4.5.4. Let P be a set of finite groups closed under taking subgroups

and let F be a fusion system defined on P, and

iK,χ =
χ(1)

|OutF(K)|
∑

(J,P )∈PFK

∑
β∈OutF (J)

χ(β−1)
ẽ′P×P (J, β, J)

|NP (J)|.|P |
.

The set {iK,χ | (K,χ) ∈ Ω} is the set of mutually orthogonal centrally primitive

idempotents of ⊕CM̃F and

1 =
∑

(K,χ)∈Ω

iK,χ.

Proof. If (K,χ) and (K ′, χ′) lie in the same equivalence class, then we have

iK,χ = iK′,χ′ , if they lie in different equivalence classes, then iK,χ 6= iK′,χ′ by

definition of the equivalence of seeds.

We claim that iK,χ is central for all (K,χ) ∈ Ω. Let

m =
∑

P,Q∈P,
(U,α,V )∈P×Q4F (P,Q)

mP×Q(U, α, V ) ẽ′P×Q(U, α, V )

be an arbitrary element of ⊕CM̃F , then

iK,χ.m =
χ(1)

|OutF(K)|
∑

(J,P )∈PFK ,
Q∈P

∑
(J,α,V )∈P×Q4F (P,Q),

β∈OutF (J)

χ(β−1)mP×Q(J, α, V )

|NP (J)|.|P |
AP,Q,J,V,β,α
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where AP,Q,J,V,β,α = ẽ′P×P (J, β, J) . ẽ′P×Q(J, α, V ). In fact, it is

AP,Q,J,V,β,α =

 ∑
(p1,p2)∈P×P

e′P×P (p1J, cp1βcp−1
2
,p2 J)

 .

 ∑
(p,q)∈P×Q

e′P×Q(pJ, cpαcq−1 ,q V )


=

∑
(p1,p2)∈P×P

(p,q)∈P×Q,pp−1
2 ∈NP (J)

e′P×Q(p1J, cp1βcp−1
2
cpαcq−1 ,q V )

= |P |
∑

(p1,q)∈P×Q,
g∈NP (J)

e′P×Q(p1J, cp1βcgαcq−1 ,q V )

= |P |
∑

g∈NP (J)

ẽ′P×Q(J, βcgα, V )

= |P |.|NP (J)|ẽ′P×Q(J, βα, V ),

here, when the last line is due to the fact that βcg = β for all β ∈ OutF(J) and

g ∈ NP (J). If we multiply with vice versa, we get

m.iK,χ =
χ(1)

|OutF(K)|
∑

P,Q∈P,
(U,α,V )∈P×Q4F (P,Q)

∑
(V,Q)∈PFK ,
β∈OutF (V )

χ(β−1)mP×Q(U, α, V )

|NQ(V )|.|Q|
BP,Q,U,V,β,α

where BP,Q,U,V,β,α = ẽ′P×Q(U, α, V ) . ẽ′Q×Q(V, β, V ). Similarly we have

BP,Q,U,V,β,α = |Q|.|NQ(V )|ẽ′P×Q(U, αβ, V ).

Letting U = J , we conclude that the coefficients of ẽ′P×Q(J, , V ) are all equal.

Therefore, we conclude that iK,χ is central for all (K,χ) ∈ Ω.

Now, we claim that iK,χ is an idempotent element. Similar to the abelian case

let

eχ,J,P :=
χ(1)

|OutF(J)|
∑

β∈OutF (J)

χ(β−1)
ẽ′P×P (J, β, J)

|NP (J)|.|P |
,

then

iK,χiK,χ = (
∑

(J,P )∈PFK

eχ,J,P )(
∑

(J ′,P ′)∈PFK

eχ,J ′,P ′)

and since eχ,J,P are primitive idempotents of the group algebra COutF(J) we

have e2
χ,J,P = eχ,J,P and eχ,J,P .eχ,J ′,P ′ = 0 for P 6= P ′ or J 6= J ′. Therefore,

idempotency is clear.
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We have∑
χ∈Irr(COutF (K))

iK,χ =
∑

χ∈Irr(COutF (K))

χ(1)

|OutF(K)|
∑

(J,P )∈PFK

∑
β∈OutF (J)

χ(β−1)
ẽ′P×P (J, β, J)

|NP (J)|.|P |

=
∑

(J,P )∈PFK

∑
β∈OutF (J)

ẽ′P×P (J, β, J)

|OutF(J)|.|NP (J)|.|P |

 ∑
χ∈Irr(COutF (J))

χ(1).χ(β−1)


=

∑
(J,P )∈PFK

ẽ′P×P (J, id, J)

|NP (J)|.|P |

= iK

passing from second line to the third line, we use the second orthogonality relation

of the characters. Hence, we have
∑

(K,χ)∈Ω iK,χ =
∑

K∈FP iK = 1.

The primitiveness of iK,χ comes from the classification of simple ⊕CMF -

modules given in the Section 4.2.

4.6 Proof of Theorem 4.1.1

Both for the abelian and non-abelian cases, we have the semisimplicity of the

ghost algebra.

Proof. From Theorem 4.5.4, we have ⊕CM̃F = ⊕(K,χ)∈Ω
⊕CM̃F .iK,χ. Moreover,

since we have ⊕
χ∈Irr(COutF (K))

⊕CM̃F .iK,χ = ⊕CM̃F .iK

which is semisimple by Lemma 4.5.3. The result follows.

The mark map induces an isomorphism between the ghost algebra and the

quiver algebra. Since isomorphism of algebras preserves semisimplicity, we deduce

semisimplicity of ⊕CMF hence prove Theorem 4.1.1.
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Chapter 5

On fusion systems defined on

p-permutation algebras

Let p be a prime number, G a finite group, and k an algebraically closed field

of characteristic p. As we mention in the introduction, we are interested in the

following question:

Given a saturated fusion system F on a finite p-group P , does there exist a

finite group G, a p-permutation G-algebra A and a primitive idempotent b of AG

such that F = F(P,eP )(A, b,G) for some maximal (A, b,G)-Brauer pair (P, eP )?

We have the following conjecture:

Conjecture. Let F be a fusion system on a finite p-group P , X be a charac-

teristic biset for F , G = Park(F , X) and SP (G, k) be the Scott kG-module with

vertex P . Then for A = Endk(SP (G, k)) we have

F = F(P,1A(P ))(A, 1A, G).

For some particular saturated fusion systems, we prove this conjecture. In

fact, the question is reduced to finding Brauer indecomposable p-permutation

modules by the work of Kessar-Kunugi-Mitsuhashi. We show in Theorems 5.3.2

and 5.3.6 that the corresponding Scott modules become Brauer indecomposable,
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hence they provide examples that support the conjecture.

5.1 A sufficient condition for saturation

In this section, we define Brauer pairs and fusion systems for primitive idem-

potents of G-fixed subalgebras of p-permutation G-algebras. We shall state a

sufficient condition for such a fusion system to be saturated.

A G-algebra is called p-permutation G-algebra if for any p-subgroup Q of

G, it has a basis which is Q-stable. For a p-permutation G-algebra A, a primitive

idempotent b of AG, we define an (A, b,G)-Brauer pair to be a pair (Q, f) such

that Q is a p-subgroup of G such that A(Q) 6= 0, f is a block (centrally primitive

idempotent) of A(Q) where BrQ(b) 6= 0 and BrQ(b)f 6= 0. We call (A, b,G) a

saturated triple if b is a central idempotent of A, and for each (A, b,G)-Brauer

pair (Q, f), the idempotent f is primitive in A(Q)CG(Q,f). ( Here CG(Q, f) denotes

the subgroup of CG(Q) which stabilizes f).

Broué and Puig defined, in [13], the notion of inclusion on Brauer pairs as

follows. Let (Q, f) and (P, e) be (A, b,G)-Brauer pairs, then (Q, f) ≤ (P, e) if

Q ≤ P and whenever i is a primitive idempotent of AP such that BrP (i)e 6= 0,

then BrQ(i)f 6= 0. For an element x ∈ G, the conjugate of (P, e) by x is the

(A, b,G)-Brauer pair x(P, e) := (xP, xe).

The following theorem gives fundamental properties about the inclusion of

(A, b,G)-Brauer pairs.

Theorem 5.1.1 ([13], Theorem 1.8). Let (P, e) be an (A, b,G)-Brauer pair and

let Q ≤ P .

(i) There exists a unique block f of A(Q) such that (Q, f) is an (A, b,G)-Brauer

pair and (Q, f) ≤ (P, e).

(ii) The set of (A, b,G)-Brauer pairs is a G-poset under the action of G defined

above.
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The properties of maximal (A, b,G)-Brauer pairs are given in the following

theorem.

Theorem 5.1.2 ([13], Theorem 1.14). Let A be a p-permutation G-algebra and

b be a primitive idempotent of AG. Then,

(i) The group G acts transitively on the set of maximal (A, b,G)-Brauer pairs.

(ii) Let (P, e) be an (A, b,G)-Brauer pair. The following are equivalent.

(a) (P, e) is a maximal Brauer pair.

(b) BrP (b) 6= 0 and P is maximal amongst p-subgroups Q of G with the property

that BrQ(b) 6= 0.

(c) b ∈ TrGP (AP ) and P is minimal amongst subgroups H of G such that b ∈
TrGH(AH).

If Q,R are subgroups of G and g ∈ G is such that gQ ≤ R, then cg : Q→ R

denotes the conjugation map which sends an element q of Q to the element
gq = gqg−1 of R.

Now, let (P, eP ) be a maximal (A, b,G)-Brauer pair. For each subgroup Q of

P , let (Q, eQ) be the unique (A, b,G)-Brauer pair such that (Q, eQ) ≤ (P, eP ).

The category F(P,eP )(A, b,G) is the category whose objects are the subgroups of

P , whose morphisms are given by

HomF(P,eP )(A,b,G)(Q,R) := {cg : Q→ R | g ∈ G, g(Q, eQ) ≤ (R, eR)}

for Q,R ≤ P and where composition of morphisms is the usual composition

of functions. This category is in fact a fusion system as the following theorem

implies.

Theorem 5.1.3. Let A be a p-permutation G-algebra and b be a primitive idem-

potent of AG and (P, eP ) a maximal Brauer pair. Then F := F(P,eP )(A, b,G)

satisfies the following.
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(i) HomP (Q,R) ⊆ HomF(Q,R) ⊆ Inj(Q,R) for all Q,R ≤ P where

HomP (Q,R) denotes the set of all group homomorphisms from Q to R which

are induced by conjugation by some element of P .

(ii) For any φ ∈ HomF(Q,R), the induced isomorphism Q ' φ(Q) and its

inverse are morphisms in F .

The fusion system F(P,e)(A, b,G) is not always saturated. The following the-

orem gives a sufficient condition for saturation.

Theorem 5.1.4 ([16], Theorem 1.6). Let A be a p-permutation G-algebra and b

be a primitive idempotent of AG and (P, eP ) a maximal Brauer pair. Suppose that

(A, b,G) is a saturated triple, then for any maximal (A, b,G)-Brauer pair (P, e),

F(P,e)(A, b,G) is a saturated fusion system.

Hence, the theorem implies that in order to have a saturated fusion system,

we should have a saturated triple.

5.2 Relation to Brauer indecomposability

We give a criterion for a particular triple to be saturated following the work of

Kessar-Kunugi-Mitsuhashi in [16].

For a finite dimensional kG-module M and a p-subgroup Q of G, the Brauer

quotient M(Q) with respect to Q, is naturally a kNG(Q)/Q-module (see Section

3.1), hence by restriction is a kCG(Q)/Q-module. We say that M is Brauer

indecomposable if for any p-subgroup Q of G, M(Q) is indecomposable or zero

as a kQCG(Q)/Q-module.

Now, let M be an indecomposable p-permutation kG-module with vertex P

and set A = Endk(M). Then A is a G-algebra via

G× A→ A

(g, φ) 7→ gφ
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where gφ(m) := gφ(g−1m) for m ∈M . Since M is a p-permutation module, A is

a p-permutation algebra and since M is indecomposable, 1A = idM is primitive.

Thus, we can introduce (A, 1A, G)-Brauer pairs in this setting. The following

theorem gives a necessary and sufficient condition for the triple (A, 1A, G) to be

saturated.

Theorem 5.2.1 ([16], Proposition 4.1). With the notation above, the (A, 1A, G)-

Brauer pairs are the pairs (Q, 1A(Q)) such that M(Q) 6= 0 and (P, 1A(P )) is a

maximal (A, 1A, G)-Brauer pair. Further,

(i) F(P,1A(P ))(A, 1A, G) = FP (G).

(ii) The triple (A, 1A, G) is saturated if and only if M is Brauer indecomposable.

Here, the fusion system FP (G) is the category whose objects are the subgroups

of P and whose morphism set from Q to R is HomG(Q,R). This theorem suggests

us to find Brauer indecomposable p-permutation modules in order for (A, 1A, G)

to be a saturated triple.

5.3 Brauer indecomposability of Scott modules

for some Park groups

Kessar-Kunugi-Mitsuhashi showed for the special case when M = SP (G, k), the

triple (A, 1A, G) is saturated for A = Endk(M) for the case when P is an abelian

p-group as in the following:

Theorem 5.3.1 ([16], Theorem 1.2). Let P be abelian p-subgroup of a finite

group G. If FP (G) is saturated then SP (G, k) is Brauer indecomposable and

hence (A, 1A, G) is a saturated triple for A = Endk(SP (G, k)).

We extend this result to some different fusion systems F defined on P where

P is not necessarily abelian. Our first theorem is the following:
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Theorem 5.3.2. Let P be a finite p-group. For n ∈ Z+, let G = P o Sn and

ι be the diagonal embedding of P into G. The kG-module Sι(P )(G, k) is Brauer

indecomposable.

Remark 5.3.3. In this theorem, since Sn acts trivially on ι(P ), Fι(P )(G) =

Fι(P )(ι(P )). Hence, the fusion system Fι(P )(G) is saturated. Here, the group G

is not a Park group, but is closely related to Park group, because of this we will

call it as Park type group.

We use couple of lemmas in order to prove the theorem.

Lemma 5.3.4. Let G be a finite p-group and P ≤ G. If FP (G) is saturated, then

SP (G, k) is Brauer indecomposable.

Proof. Let Q be a fully F -normalized subgroup of P , then by Theorem 5.2 of [21]

we have AutP (Q) ∈ Sylp(AutG(Q)). Thus, we have AutP (Q) = AutG(Q) and

NG(Q) = NP (Q)CG(Q) since G is a p-group. Consequently, by Alperin’s Fusion

Theorem (see Theorem A.10 in [11] for example), we have FP (G) = FP (P ).

Since G is a p-group, IndGPk is an indecomposable kG-module by Green’s

Indecomposability Theorem, soM := SP (G, k) = IndGPk. By the Mackey formula,

ResGNG(Q)M =
⊕

g∈NG(Q)\G/P

Ind
NG(Q)
NG(Q)∩gPk.

Taking Brauer quotient gives,

M(Q) =
⊕

g∈NG(Q)\G/P, Q≤gP

Ind
NG(Q)
NgP (Q)k.

We claim that there is only one coset in the direct sum above. Indeed, if g ∈ G
is such that Q ≤g P , then cg−1 : Q → g−1

Q is in FP (G), so is in FP (P ). Thus

g ∈ PCG(Q), which establishes our claim. Therefore, M(Q) = Ind
NG(Q)
NP (Q)k is an

indecomposable kNG(Q)-module by Green’s Indecomposability Theorem. As a

kQCG(Q)-module,

Res
NG(Q)
QCG(Q)M(Q) =

⊕
g∈QCG(Q)\NG(Q)/NP (Q)

Ind
QCG(Q)
QCG(Q)∩gNP (Q)k
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by the Mackey formula. Since we have NG(Q) = NP (Q)CG(Q), there exists

only one coset. Therefore, M(Q) = Ind
QCG(Q)
QCP (Q)k is an indecomposable kQCG(Q)-

module again by Green’s Indecomposability Theorem and hence an indecompos-

able kQCG(Q)/Q-module. Moreover, since any subgroup is F -conjugate (hence

G-conjugate) to a fully F -normalized subgroup, the result holds for all subgroups

of P .

Lemma 5.3.5. We have

Sι(P )(G, k) = IndGι(P )oSnk ⊗k InfGSnPIM(Sn)

where PIM(Sn) is the projective cover of the trivial kSn-module. Here, G acts

diagonally on the tensor product.

Proof. Set T = IndGι(P )oSnk and U = InfGSnPIM(Sn). It is enough to show that

T ⊗k U is a an indecomposable p-permutation kG-module whose vertex is ι(P )

and whose socle contains the trivial module.

Let D := P × . . .× P , we have

ResGDIndGι(P )oSnk = IndDD∩(ι(P )oSn)k = IndDι(P )k (5.1)

by the Mackey formula and G = DoSn. Since D is a p-group, the module on the

right is an indecomposable kD-module by Green’s Indecomposability Theorem.

Therefore, from Proposition 2.1 of [17], we deduce that T ⊗kU is an indecompos-

able kG-module. We note also that, both T and U are p-permutation modules.

Hence, T ⊗k U is also a p-permutation module.

By Theorem 3.2.1 T is ι(P )oSn-projective and U is D-projective since D acts

trivially on U . Hence, T⊗kU is both ι(P )oSn and D-projective (see [18], Chapter

4, Lemma 2.1 (iii)). Hence, a vertex of T ⊗k U lies inside (ι(P )oSn)∩D = ι(P ).

On the other hand,

T ⊗k U(ι(P )) ' T (ι(P ))⊗k U 6= 0.

So, ι(P ) is contained in a vertex of T ⊗k U . Therefore, T ⊗k U has vertex ι(P ).

Finally, since both socle(T ) and socle(U) contains k as a kG-submodule, the

socle of the product T ⊗k U contains k as a kG-submodule.

37



Proof of Theorem 5.3.2. By the previous lemma, it remains to show that for T⊗k
U(ι(Q)) is k[ι(Q)CG(ι(Q))] -indecomposable for all Q ≤ P . We have

T ⊗k U(ι(Q)) ' T (ι(Q))⊗k Inf
ι(Q)CG(ι(Q))
Sn

PIM(Sn)

as ι(Q)CG(ι(Q))- modules since ι(Q) acts trivially on PIM(Sn).

From the identity 5.1, we get ResGDT = Sι(P )(D, k) because D is a

p-group. Hence, Lemma 5.3.4 implies that T (ι(Q)) is k[ι(Q)CD(ι(Q))]-

indecomposable. Therefore, by Proposition 2.1 of [17], we conclude that

T (ι(Q))⊗k Inf
ι(Q)CG(ι(Q))
Sn

PIM(Sn) is k[ι(Q)CG(ι(Q))]-indecomposable.

Our second result is the following theorem.

Theorem 5.3.6. Let P be a finite p-group, E ≤ Aut(P ), and n = |E| such that

(n, p) = 1. For %(P ) = {(e1(p), . . . , en(p); id) | p ∈ P} ≤ G := P o Sn where

ei ∈ E for i = 1, . . . , n. The kG-module S%(P )(G, k) is Brauer indecomposable.

Remark 5.3.7. Since P is a Sylow p-subgroup of P o E, the fusion system

FP (P o E) is saturated and P o E is a characteristic biset corresponding to

FP (P oE). We observe also that the subgroup %(P ) is Park’s embedding. Hence

by Theorem 2.4.1, for G = Park(FP (P oE), P oE), we have F%(P )(G) = FP (P o
E), thus the fusion system F%(P )(G) is saturated.

Proof. Let H = P oE, D = P × . . .× P . Since H acts on itself by left multipli-

cation, the embedding % can be extended to H, so that %(H) = %(P )o%(E) ≤ G,

where %(E) ∩ D = 1. Hence, F%(P )(%(H)) = F%(P )(G). Moreover, since E acts

faithfully on P , is CG(%(P )) = {(p1, . . . , pn; id) | pi ∈ Z(P )}. Together with this

and the relation AutG(%(P )) ' AutH(P ), we get |NG(%(P ))| = n|Z(P )|n−1|P |.

We claim that S%(P )(G, k) = IndG%(H)k. Since %(P ) ∈ Sylp(%(H)), we get

S%(P )(G, k) = S%(H)(G, k) ([18], Chapter 4, Corollary 8.5). Thus, we deduce that

S%(P )(G, k) | IndG%(H)k . Now, suppose

IndG%(H)k = S%(P )(G, k)⊕ Y
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for some kG-module Y . By Corollary 3.3.4, S%(P )(G, k)(%(P )) is the projective

cover of the trivial kNG(%(P ))/%(P )- module. Thus |NG(%(P ))
%(P )

|p = |Z(P )|n−1 di-

vides the dimension of S%(P )(G, k)(%(P )). We have

dim IndG%(H)k(%(P )) = |{g%(H) | g ∈ G, g%(P ) ≤ %(H)}|.

The condition g%(P ) ≤ %(H) implies that g%(P ) ≤ D ∩ %(H) = %(P ), thus

dim IndG%(H)k(%(P )) =

∣∣∣∣NG(%(P ))

%(H)

∣∣∣∣ = |Z(P )|n−1

which gives Y (%(P )) = 0. On the other hand, since Y | IndG%(H)k, by the Mackey

formula ResGDY | ResGDIndG%(H)k = ⊕g∈D\G/HIndDD∩g%(H)k. Thus D∩g%(H) =g %(P )

forces Y (g%(P )) 6= 0. This is a contradiction. Therefore, Y = 0 and the claim is

established.

It remains to show that S%(P )(G, k) is Brauer indecomposable. For M :=

S%(P )(G, k) = IndG%(H)k, let us first find what M(%(Q)) is as a kNG(%(Q))-module.

We have

dimM(%(Q)) = |{g%(H) | g ∈ G, g%(Q) ≤ %(H)}|

and since any conjugate of %(Q) lies in D, the set above counts, in fact, the cosets

for which g%(Q) ≤ %(H)∩D = %(P ). Or, equivalently it counts the elements g ∈ G
which induces a conjugation map cg : %(Q)→g %(Q) in F%(P )(G) = F%(P )(%(H)),

this forces g to be in %(H)CG(%(Q)). Hence

dimM(%(Q)) =
|%(H)CG(%(Q))|

|%(H)|
=
|CG(%(Q))|
|C%(H)(%(Q))|

. (5.2)

On the other hand, by Mackey formula,

ResGNG(%(Q))M =
⊕

g∈NG(%(Q))\G/%(H)

Ind
NG(%(Q))
NG(%(Q))∩g%(H)k.

Besides, for all Q ≤ P , we have AutG(%(Q)) = Aut%(H)(%(Q)), thus

|NG(%(Q))|
|CG(%(Q))|

=
|N%(H)(%(Q))|
|C%(H)(%(Q))|

. (5.3)

Hence by Equations 5.2 and 5.3, we conclude that

M(%(Q)) = Ind
NG(%(Q))
N%(H)(%(Q))k.
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When viewed as k%(Q)CG(%(Q))-module, we claim that M(%(Q)) is in fact a

k%(Q)CG(%(Q))-Scott module with vertex %(Q)C%(P )(%(Q)) and this will auto-

matically give the indecomposability of M(%(Q)) as a k%(Q)CG(%(Q))-module.

The restricted module is

Res
NG(%(Q))
%(Q)CG(%(Q))M(%(Q)) = Ind

%(Q)CG(%(Q))
%(Q)CG(%(Q))∩N%(H)(%(Q))k = Ind

%(Q)CG(%(Q))
%(Q)C%(H)(%(Q))k

by the Mackey formula and by %(Q)CG(%(Q))N%(H)(%(Q)) = NG(%(Q)).

Set A = %(Q)C%(P )(%(Q)) and B = %(Q)CG(%(Q)) and let S := SA(B, k).

Since A ∈ Sylp(%(Q)C%(H)(%(Q))) and by the equation above, S is a direct sum-

mand of M(%(Q)) ([18], Chapter 4, Corollary 8.5). Let

M(%(Q)) = S ⊕X

for some k%(Q)CG(%(Q))- module X. We will show that X = 0. Observe that

NB(A) = %(Q)(NG(%(P )) ∩ CG(%(Q))), thus

|NB(A)|
|A|

=
|NG(%(P )) ∩ CG(%(Q))|

|C%(P )(%(Q)|
.

Since S(A) is the projective cover of the trivial NB(A)/A- module,
∣∣NB(A)/A

∣∣
p

divides the dimension of S(A), hence |NG(%(P ))∩CG(%(Q))|p
|C%(P )(%(Q)| divides the dimension of

S(A). On the other hand,

dimM(%(Q))(A) = |{ g %(Q)C%(H)(%(Q)) | g ∈ B, gA ≤ %(Q)C%(H)(%(Q)) }|

=
|%(Q)(NG(%(P )) ∩ CG(%(Q))|

|%(Q)C%(H)(%(Q))|

=
|(NG(%(P )) ∩ CG(%(Q))|

|C%(H)(%(Q))|

where the first equality comes from the fact that %(P ) E %(H). We claim that

the two numbers
|NG(%(P )) ∩ CG(%(Q))|p

|C%(P )(%(Q)|
and
|(NG(%(P )) ∩ CG(%(Q))|

|C%(H)(%(Q))|
are equal

and this will in turn imply S(A) = M(%(Q))(A). Let g ∈ NG(%(P )) ∩ CG(%(Q)),

then cg : %(P ) → %(P ) is in F%(P )(G) = F%(P )(%(H)), thus g ∈ %(H)CG(%(P ))

and so g ∈ C%(H)CG(%(P ))(%(Q)). Conversely, let g ∈ C%(H)CG(%(P ))(%(Q)), then

since %(H) ≤ NG(%(P )), g ∈ NG(%(P )). Hence, NG(%(P )) ∩ CG(%(Q)) =

C%(H)CG(%(P ))(%(Q)). This yields

|NG(%(P )) ∩ CG(%(Q))|p′ = |C%(H)CG(%(P ))(%(Q))|p′ =
|C%(H)|(%(Q))|
|C%(P )|(%(Q))|
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since CG(%(P )) ≤ D and D is a p-group. This establishes the claim and that

X(A) = 0.

Let D′ := %(Q)CD(%(Q)). Since X | IndB%(Q)C%(H)(%(Q))k,

ResBD′X |
⊕

g∈D′\B/%(Q)C%(H)(%(Q))

IndD
′

D′∩g(%(Q)C%(H)(%(Q)))k.

Moreover,

D′ ∩g (%(Q)C%(H)(%(Q))) = %(Q)CD∩g%(H)(%(Q)) = %(Q)Cg%(P )(%(Q)) =g A

since gD = D for all g ∈ B. Thus, X(gA) 6= 0, which contradicts with the result

in the previous paragraph. Therefore, we conclude that X = 0 and

M(%(Q)) = S%(Q)C%(P )(%(Q))(%(Q)CG(%(Q)), k)

is an indecomposable k%(Q)CG(%(Q))-module.
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Chapter 6

On real representation spheres

and real monomial Burnside ring

This chapter contains the presentation of the paper [5]. We introduce a restric-

tion morphism, called the Boltje morphism, from a given ordinary representation

functor to a given monomial Burnside functor. In the case of a sufficiently large

fibre group, this is Robert Boltje’s splitting of the linearization morphism. By

considering a monomial Lefschetz invariant associated with real representation

spheres, we show that, in the case of the real representation ring and the fibre

group {±1}, the image of a modulo 2 reduction of the Boltje morphism is con-

tained in a group of units associated with the idempotents of the 2-local Burnside

ring. We deduce a relation on the dimensions of the subgroup-fixed subspaces of

a real representation.

6.1 Results

We shall be making a study of some restriction morphisms which, at one extreme,

express Boltje’s canonical induction formula [7] while, at the other extreme, they

generalize a construction initiated by tom Dieck [25, 5.5.9], namely, the tom

Dieck morphism associated with spheres of real representations. A connection
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between canonical induction and the tom Dieck morphism has appeared before, in

Symonds [22], where the integrality property of Boltje’s restriction morphism was

proved by using the natural fibration of complex projective space as a monomial

analogue of the sphere.

Generally, our concern will be with finite-dimensional representations of a

finite group G over a field K of characteristic zero. A little more specifically,

our concern will be with the old idea of trying to synthesize information about

KG-modules from information about certain 1-dimensional KI-modules where I

runs over some or all of the subgroups of G. Throughout, we let C be a torsion

subgroup of the unit group K× = K − {0}. The 1-dimensional KI-modules to

which we shall be paying especial attention will be those upon which each element

of I acts as multiplication by an element of C. Some of the results below are

specific to the case where K = R and C = {±1}, and some of them are also

specific to the case where G is a 2-group.

Fixing C, we write OC(G), or just O(G), to denote the smallest normal sub-

group of G such that the quotient group G/O(G) is abelian and every element

of G/O(G) has the same order as some element of C. In other words, O(G) is

intersection of the kernels of the group homomorphisms G→ C.

Consider a KG-module M , finite-dimensional as we deem all KG-modules to

be. Given a subgroup I ≤ G, then the O(I)-fixed subspace MO(I) of M is the

sum of those 1-dimensional KI-submodules of M that are inflated from I/O(I).

For elements c ∈ C and i ∈ I, we write M I,i
c to denote the c-eigenspace of the

action of i on MO(I). By Maschke’s Theorem,

MO(I) =
⊕
c∈C

M I,i
c , dim(MO(I)) =

∑
c∈C

dim(M I,i
c ) .

We shall introduce a restriction morphism, denoted dimc, whereby the isomor-

phism class [M ] of M is associated with the function

(I, i) 7→ dim(M I,i
c ) .

We shall define the Boltje morphism to be the restriction morphism

bolK,C =
∑
c∈C

c dimc .
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This morphism is usually considered only in the case where C is sufficiently large

in the sense that each element of G has the same order as some element of C. In

that case, the field K splits for G, the Boltje morphism is a splitting for lineariza-

tion and we have a canonical induction formula. At the other extreme though,

when C = {1}, the monomial dimension morphism dim1 is closely related to the

tom Dieck morphism die(), both of those morphisms associating the isomorphism

class [M ] with the function

I 7→ dimR(M I) .

The vague comments that we have just made are intended merely to convey

an impression of the constructions. In Section 2, we shall give details and, in

particular, we shall be elucidating those two extremal cases.

For the rest of this introductory section, let us confine our discussion to the

case where we have the most to say, the case K = R. Here, the only possibil-

ities for C are C = {1} and C = {±1}. We shall be examining the modulo 2

reductions of the morphisms dimc and bolR,C . We shall be making use of the

following topological construction. Given an RG-module M , we let S(M) denote

the unit sphere of M with respect to any G-invariant inner product on M . Up to

homotopy, S(M) can be regarded as the homotopy G-sphere obtained from M

by removing the zero vector.

Let us make some brief comments concerning the case C = {1}. The reduced

tom Dieck morphism die is so-called because it can be regarded as a modulo 2

reduction of the tom Dieck morphism die(). Via die, the isomorphism class [M ]

is associated with the function

I 7→ par(dim(M I))

where par(n) = (−1)n for n ∈ Z. We can view die as a morphism of biset functors

die : AR → β×

where the coordinate module AR(G) is the real representation ring of G and the

coordinate module β×(G) is the unit group of the ghost ring β(G) associated with

the Burnside ring B(G) of G. But we shall be changing the codomain. A result of

tom Dieck asserts that the image of the coordinate map dieG : AR(G) → β×(G)
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is contained in the unit group B×(G) of B(G). His proof makes use of the fact

that the function I 7→ par(dim(M I)) is determined by the Lefchetz invariant of

S(M). Hence, we can regard the reduced tom Dieck morphism as a morphism of

biset functors

die : AR → B× .

The main substance of this chapter concerns the case C = {±1}, still with

K = R. We now replace the ordinary Burnside ring B(G) with the real Burnside

ring BR(G) = B{±1}(G), we mean to say, the monomial Burnside ring with fibre

group {±1}. For the rest of this section, we assume that C = {±1}. Thus, the

group O(G) = OC(G) is the smallest normal subgroup of G such that G/O(G)

is an elementary abelian 2-group. We write O2(G) to denote the smallest normal

subgroup of G such that G/O2(G) is a 2-group.

In a moment, we shall define a restriction morphism bol, called the reduced

Boltje morphism, whereby [M ] is associated with the function

I 7→ par(dim(MO(I))) .

Some more notation is needed. Recall that the algebra maps QB(G)→ Q are the

maps εGI : QB(G)→ Q, indexed by representatives I of the conjugacy classes of

subgroups of G, where εGI [Ω] = |ΩI |, the notation indicating that the isomorphism

class [Ω] of a G-set Ω is sent to the number of I-fixed elements of Ω. Also recall

that any element x of QB(G) has coordinate decomposition

x =
∑
I

εGI (x) eGI

where each eGI is the unique primitive idempotent of QB(G) such that εGI (eGI ) 6= 0.

The ghost ring β(G) is defined to be the set consisting of those elements x such

that each εGI (x) ∈ Z. Evidently, the unit group β×(G) of β(G) consists of those

elements x such that each εGI (x) ∈ {±1}. In particular, β×(G) is an elementary

abelian 2-group, and it can be regarded as a vector space over the field of order

2. Our notation follows [4, Section 3], where fuller details of these well-known

constructions are given. We define bolG : AR(G) → β×(G) to be the Q-linear

map such that

bolG[M ] =
∑
I

par(dim(MO(I))) eGI .
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Evidently, we can view bol as a morphism of restriction functors AR → β×.

Extending to the ring Z(2) of 2-local integers, we can view bol as a morphism of

restriction functors Z(2)AR → β×.

Let β×(2) denote the restriction subfunctor of β× such that β×(2)(G) consists of

those units in β×(G) which can be written in the form 1 − 2y, where y is an

idempotent of Z(2)B(G). In analogy with the above result of tom Dieck, we shall

prove the following result in Section 6.3.

Theorem 6.1.1. The image of the map bolG : Z(2)AR(G)→ β×(G) is contained

in β×(2)(G). Hence, bol can be regarded as a restriction morphism bol : Z(2)AR →
β×(2).

In Section 6.4, using Theorem 6.1.1 together with a characterization of idem-

potents due to Dress, we shall obtain the following result. We write ≡2 to denote

congruence modulo 2.

Theorem 6.1.2. Given an RG-module M , then dim(MO(I)) ≡2 dim(MO2(I)) for

all I ≤ G.

Specializing to the case of a finite 2-group, and using a theorem of Tornehave,

we shall deduce the next result, which expresses a constraint on the units of the

Burnside ring of a finite 2-group. We shall also give a more direct alternative

proof, using the same theorem of Tornehave and also using an extension in [3] of

Bouc’s theory [9, Chapter 9] of genetic sections.

Theorem 6.1.3. Suppose that G is a 2-group. Then, for all I ≤ G and all units

x ∈ B×(G), we have εGO(I)(x) = εG1 (x).

6.2 Boltje morphisms

For an arbitrary field K with characteristic zero, an arbitrary torsion subgroup C

of the unit group K× and an arbitrary element c ∈ C, we shall define a restriction

morphism dimc, called the monomial dimension morphism for eigenvalue c, and
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we shall define a restriction morphism bolC,K, called the Boltje morphism for C

and K. In this section, we shall explain how, in one extremal case, bolC,K is

associated with canonical induction while, in another extremal case, bolC,K is

associated with dimension functions on real representation spheres.

We shall be considering three kinds of group functors, namely, restriction func-

tors, Mackey functors, biset functors. All of our group functors are understood

to be defined on the class of all finite groups, except when we confine attention

to the class of all finite 2-groups. For any group functor L, we write L(G) for

the coordinate module at G. For any morphism of group functors θ : L → L′,

we write θG : L(G) → L′(G) for the coordinate map at G. Any group isomor-

phism G → G′, gives rise to an isogation map (sometimes awkwardly called an

isomorphism map) L(G) → L(G′), which is to be interpreted as transport of

structure. Restriction functors are equipped with isogation maps and restriction

maps. Mackey functors are further equipped with induction maps, biset functors

are yet further equipped with inflation and deflation maps. A good starting-point

for a study of these briefly indicated notions is Bouc [9].

Recall that the representation ring of the group algebra KG coincides with the

character ring of KG. Denoted AK(G), it is a free Z-module with basis Irr(KG),

the set of isomorphism classes of simple KG-modules, which we identify with the

set of irreducible KG-characters. The sum and product on AK(G) are given by

direct sum and tensor product. We can understand AK to be a biset functor

for the class of all finite groups, equipped with isogation, restriction, induction,

inflation, deflation maps. Actually, the inflation and deflation maps will be of no

concern to us in this chapter, and we can just as well regard AK(G) as a Mackey

functor, equipped only with isogation, restriction and induction maps.

The monomial Burnside ring of G with fibre group C, denoted BC(G), is

defined similarly, but with C-fibred G-sets in place of KG-modules. Recall that

a C-fibred G-set is a permutation set Ω for the group CG = C × G such that

C acts freely and the number of C-orbits is finite. A C-orbit of Ω is called a

fibre of Ω. It is well-known that BC can be regarded as a biset functor. For our

purposes, we can just as well regard it as a Mackey functor.
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Let us briefly indicate two coordinate decompositions that were reviewed in

more detail in [2, Equations 1, 2]. Defining a C-subcharacter of G to be a pair

(U, µ) where U ≤ G and µ ∈ Hom(U,C), then we have a coordinate decomposi-

tion

BC(G) =
⊕
(U,µ)

Z dGU,µ

where (U, µ) runs over representatives of the G-conjugacy classes of C-

subcharacters, and dGU,µ is the isomorphism class of a transitive C-fibred G-set

such that U is the stabilizer of a fibre and U acts via µ on that fibre. The other

coordinate decomposition concerns the algebra KBC(G) = K⊗BC(G). We define

a C-subelement of G to be a pair (I, iOC(I)), where i ∈ I ≤ G. As an abuse of

notation, we write (I, i) instead of (I, iOC(I)). For each C-subelement (I, i), let

εGI,i be the algebra map KBC(G) → K associated with (I, i). Recall that, given

a C-fibred G-set Ω, then εGI,i[Ω] =
∑

ω φω, where ω runs over the fibres stabilized

by I and i acts on ω as multiplication by φω. Let eGI,i be the unique primitive

idempotent of KBC(G) such that εGI,i(e
G
I,i) = 1. Note that we have G-conjugacy

(I, i) =G (J, j) if and only if εGI,i = εGJ,j, which is equivalent to the condition

eGI,i = eGJ,j. We have

KBC(G) =
⊕
(I,i)

K eGI,i

where (I, i) runs over representatives of theG-conjugacy classes of C-subelements.

Thus, given an element x ∈ KBC(G), then

x =
∑
(I,i)

εGI,i(x) eGI,i .

Recall that there is an embedding B(G) ↪→ BC(G) such that [f] 7→ [Cf],

where each element ω of a given G-set f corresponds to a fibre {cω : c ∈ C}
of the C-fibred G-set Cf = C × f. The embedding is characterized by an easy

remark [2, 7.2], which says that, given x ∈ BC(G), then x ∈ B(G) if and only if

εGI,i(x) = εGI,i′(x) for all i, i′ ∈ I, in which case, εGI (x) = εGI,i(x) for all i ∈ I. We

shall be needing the following remark in the next section.

Remark 6.2.1. Let R be a unital subring of K. Then KB(G) ∩ RBC(G) =

RB(G).
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Proof. Let πC : BC(G)→ B(G) be the projection such that [Ω] 7→ [C\Ω], where

C\Ω denotes the G-set of fibres of a given C-fibred G-set Ω. Extending linearly,

we obtain projections πC : RBC(G) → RB(G) and πC : KBC(G) → KB(G).

Given x ∈ KB(G)∩RBC(G), then x = πC(x) ∈ RB(G). So KB(G)∩RBC(G) ⊆
RB(G). The reverse inclusion is obvious.

We mention that the projection πC : KBC(G) → KB(G) is an algebra map

and, since εGI [C\Ω] = εGI,1[Ω], we have πC(eGI,i) = eGI if i ∈ O(I) while πC(eGI,i) = 0

otherwise.

We shall also be making use of the primitive idempotents of KAK(G). Re-

garding KAK(G) as the K-vector space of G-invariant functions G→ K, then the

algebra maps KAK(G)→ K are the maps εGg , indexed by representatives g of the

conjugacy classes of G, where εGg (χ) = χ(g) for χ ∈ KAK(G). Letting eGg be the

primitive idempotent such that εGg (eGg ) = 1, then

χ =
∑
g

εGg (χ) eGg =
∑
g

χ(g) eGg

where g runs over representatives of the conjugacy classes of G. The linearization

morphism

linC,K : KBC → KAK

has coordinate morphisms linC,KG : KBC(G)→ KAK(G) such that

linC,KG [dGU,µ] = indG,U(µ) .

Letting Ω be a C-fibred G-set, and letting KΩ = K⊗C Ω be the evident extension

of Ω to a KG-module, then linC,KG [Ω] = [KΩ].

Remark 6.2.2. Given a primitive idempotent eGI,i of KBC(G), then linC,KG (eGI,i) 6=
0 if and only if I is cyclic with generator i, in which case linC,KG (eGI,i) = eGi .

Proof. It suffices to show that εG〈i〉,i[Ω] = εGi [KΩ]. Letting x run over representa-

tives of the fibres of Ω, then x runs over the elements of a basis for the KG-module

KΩ. With respect to that basis, the action of i on KΩ is represented by a ma-

trix which has exactly one entry in each row and likewise for each column. The
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two sides of the required equation are plainly both equal to the trace of that

matrix.

Given c ∈ C, we define a K-linear map

dimc
G : KAK(G)→ KBC(G)

such that εGI,i(dimc
G[M ]) = dim(M I,i

c ) for a KG-module M . In other words,

dimc
G[M ] =

∑
(I,i)

dim(M I,i
c ) eGI,i .

Since εHI,i(resH,G(x)) = εGI,i(x) for all intermediate subgroups I ≤ H ≤ G, the

maps dimc
G commute with restriction. Plainly, the maps dimc

G also commute

with isogation. Thus, the maps dimc
G combine to form a restriction morphism

dimc : KAK → KBC .

Let us define the Boltje morphism to be the restriction morphism

bolC,K =
∑
c∈C

c dimc : KAK → KBC .

The sum makes sense because, for each G, the sum bolC,KG =
∑

c∈C c dimc
G is

finite, indeed, dimc
G vanishes for all c whose order does not divide |G|. When C

is sufficiently large, the Boltje morphism is a splitting for linearization. We mean

to say, if every element of G has the same order as an element of C, then

linC,KG ◦ bolC,KG = idKAK(G) .

To see this, first note that, for arbitrary C and K, we have

bolC,KG [M ] =
∑
(I,i)

χI(i)e
G
I,i

where χI is the KI-character of the KI-module MO(I). Using Remark 6.2.2,

linC,KG (bolC,KG [M ]) =
∑
(I,i)

χI(i) linC,KG (eI,i) =
∑
i

χ(i) ei

50



where χ is the KG-character of M and, in the final sum, i runs over representa-

tives of those conjugacy classes of elements of G such that the order of i divides

|G|. When C is sufficiently large in the sense specified above, i runs over repre-

sentatives of all the conjugacy classes, and
∑

i χ(i) ei = [M ], as required.

Let us confirm that the assertion we have just made is just a reformulation

of the splitting result in Boltje [7]. Suppose, again, that C is sufficiently large.

Then, in particular, K is a splitting field for G. We must now resolve two different

notations. Where we write BC(G) and AK(G) and linC,KG and dGU,µ, Boltje [7]

writes R+(G) and R(G) and bG and (U, µ)
G

, respectively. Note that, because of

the hypothesis on C, the scenario is essentially independent of C and K. In [7,

2.1], he shows that there exists a unique restriction morphism a : AK → BC such

that aG(φ) = dGG,φ for all φ ∈ Hom(G,C). Since

εGI,i(bolC,KG (φ)) = φ(i) = εGI,i(d
G
G,φ) = εGI,i(aG(φ))

we have bolC,KG = aG and bolC,K = a. But the splitting property that we have

been discussing is just a preliminary to a deeper result about integrality. Having

resolved the two different notations, we can now interpret Boltje [7, 2.1(b)] as the

following theorem, which expresses the integrality property too.

Theorem 6.2.3. (Boltje) Suppose that every element of G has the same order

as an element of C. Then the restriction morphism bolC,K : KAK → KBC is the

K-linear extension of the unique restriction morphism bolC,K : AK → BC such

that linC,K ◦ bolC,K = id.

When the hypothesis on C is relaxed, the splitting property and the integrality

property in the conclusion of the theorem can fail. Nevertheless, as we shall see

in the next section, the Boltje morphism bolC,K does appear to be of interest even

in the two smallest cases, where C = {1} or C = {±1}. Let us comment on a

connection between the tom Dieck morphism die() and the Boltje morphism in

the case C = {1}. Our notation die() is taken from a presentation in [4, 4.1] of a

result of Bouc–Yalçın [10, page 828]. Letting B∗ denote the dual of the Burnside

functor B, then the tom Dieck morphism die : AK → B∗ is given by

dieG[M ] =
∑
I

dim(M I) δGI
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where I runs over representatives of the G-conjugacy classes of subgroups of G,

and the elements δGI comprise a Z-basis for B∗(G) that is dual to the Z-basis of

B(G) consisting of the isomorphism classes of transitive G-sets dGI = [G/I]. On

the other hand, the morphism bol{1},K = dim1 : AK → B is given by

bol
{1},K
G [M ] = dim1

G[M ] =
∑
I

dim(M I) eGI .

Thus, although die() and bol{1},K have different codomains, their defining formu-

las are similar. A closer connection will transpire, however, when we pass to the

reduced versions of those two morphisms in the special case K = R.

6.3 The reduced Boltje morphism

Still allowing the finite group G to be arbitrary, we now confine our attention

to the case K = R. The only torsion units of R are 1 and −1, so the only

possibilities for C are C = {1} and C = {±1}. We shall be discussing modulo 2

reductions of the tom Dieck morphism die() and the Boltje morphisms bol{1},R and

bol{±1},R, realizing the reductions as morphisms by understanding their images to

be contained in the unit groups B×(G) and β×(G), respectively. Although those

unit groups are abelian, it will be convenient to write their group operations

multiplicatively.

In preparation for a study of the case C = {±1}, we first review the case

C = {1}, drawing material from [4] and Bouc–Yalçın [10]. The parity function

par : n 7→ (−1)n is, of course, modulo 2 reduction of rational integers written

multiplicatively (with the codomain C2, the cyclic group with order 2, taken to

be {±1} instead of Z/2Z). Thus, fixing an RG-module M , and letting I run over

representatives of the conjugacy classes of subgroups of G, the function die : I 7→
par(dim(M I)) is the modulo 2 reduction of the function die : I 7→ dim(M I). In

Section 2, we realized die() as a morphism with codomain B∗. But we shall be

realizing die as a morphism with codomain B×. Let us explain the relationship

between those two codomains. Recall that the ghost ring associated with B(G)

is defined to be the Z-span of the primitive idempotents β(G) =
⊕

I Z eGI . We
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have B(G) ≤ β(G) < QB(G), and an element x ∈ QB(G) belongs to β(G) if

and only if εGI (x) ∈ Z for each I ≤ G. We also have an inclusion of unit groups

B×(G) ≤ β×(G), and x ∈ β×(G) if and only if each εGI (x) ∈ {±1}. We shall

be making use of Yoshida’s characterization [28, 6.5] of B×(G) as a subgroup of

β×(G).

Theorem 6.3.1. (Yoshida’s Criterion) Given an element x ∈ β×(G), then

x ∈ B×(G) if and only if, for all I ≤ G, the function NG(I)/I 3 gI 7→
εG〈I,g〉(x)/εGI (x) ∈ {±1} is a group homomorphism.

As discussed in [4, Section 10], the modulo 2 reduction of the biset functor

B∗ can be identified with the biset functor β×, and the modulo 2 reduction of

the morphism of biset functors die() from AR to B∗ can be identified with the

morphism of biset functors die from AR to β× given by

dieG[M ] =
∑
I

par(dim(M I)) eGI .

A well-known result of tom Dieck asserts that the image dieG(AR(G)) is contained

in B×(G). Since B× is a biset subfunctor of β×, we can regard die as a morphism

of biset functors

die : AR → B× .

We call die the reduced tom Dieck morphism. (In [4], the tom Dieck mor-

phism die() was called the “lifted tom Dieck morphism” for the sake of clear

contradistinction.)

Below, our strategy for proving Theorem 6.1.1 will be to treat it as a monomial

analogue of tom Dieck’s inclusion die(AR) ≤ B×. Just as an interesting aside,

let us show how Yoshida’s Criterion yields a quick direct proof of tom Dieck’s

inclusion. Consider an RG-module M and an element g ∈ G. Let m+(g) and

m−(g) be the multiplicities of 1 and −1, respectively, as eigenvalues of the action

of g on M . Let m(g) be the sum of the multiplicities of the non-real eigenvalues.

Then dim(M) = m+(g) +m−(g) +m(g). Since the non-real eigenvalues occur in

complex conjugate pairs, m(g) is even and the determinant of the action of g is

det(g : M) = par(m−(g)) = par(m+(g)− dim(M)) =
par(dim(M 〈g〉))

par(dim(M))
.
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Let x = dieG[M ]. Consider a subgroup I ≤ G and an element gI ∈ NG(I)/I.

Replacing the RG-module M with the RNG(I)/I-module M I , we have

det(gI : M I) =
par(dim(M 〈I,g〉))

par(dim(M I))
=
εG〈I,g〉(x)

εGI (x)
.

By the multiplicative property of determinants, x satisfies the criterion in The-

orem 3.1, hence x ∈ B×(G). The direct proof of the inclusion die(AR) ≤ B× is

complete.

However, lacking an analogue of Theorem 6.3.1 for the case C = {±1}, we

shall be unable to adapt the argument that we have just given. Tom Dieck’s

original proof of the inclusion die(AR) ≤ B× is well-known, but let us briefly

present it. Let K be an admissible G-equivariant triangulation of the G-sphere

S(M). Thus, K is a G-simplicial complex, admissible in the sense that the

stabilizer of any simplex fixes the simplex, and the geometric realization of K is

G-homeomorphic to S(M). Recall that the Lefschetz invariant of S(M) is

ΛG(S(M)) =
∑
σ∈GK

par(`(σ)) [OrbG(σ)]

as an element of B(G), summed over representatives σ of the G-orbits of simplexes

in K, where OrbG(σ) denotes the G-orbit of σ as a transitive G-set and `(σ)

denotes the dimension of σ. Here, we are not including any (−1)-simplex. For

I ≤ G, the subcomplex KI consisting of the I-fixed simplexes is a triangulation

of the I-fixed sphere S(M)I = S(M I). Summing over all the simplexes σ in KI ,

we have

εGI (ΛG(S(M))) =
∑
σ∈KI

par(`(σ)) = χ(S(M)I) = 1−par(dim(M I)) = εGI (1−dieG[M ])

where χ denotes the Euler characteristic, equal to 2 or 0 for even-dimensional or

odd-dimensional spheres, respectively. Therefore dieG[M ] = 1− ΛG(S(M)) and,

perforce, dieG[M ] ∈ B(G). But dieG[M ] ∈ β×(G), hence dieG[M ] ∈ B×(G). We

have again established the inclusion die(AR) ≤ B×.

For the rest of this section, we put C = {±1}. Thus, given a subgroup I ≤ G,

then I/O(I) is the largest quotient group of I such that I/O(I) is an elementary
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abelian 2-group. We shall prove Theorem 6.1.1 by adapting the above topological

proof of the inclusion die(AR) ≤ B×.

Let M be an RG-module. Allowing C to act multiplicatively on M and on

S(M), let K be an admissible CG-equivariant triangulation of S(M). Thus, the

hypothesis on K is stronger than before, the extra condition being that, when we

identify the vertices of K with their corresponding points of S(M), the vertices

occur in pairs, z and −z. More generally, identifying the simplexes of K with

their corresponding subsets of S(M), the simplexes occur in pairs, σ and −σ, the

points of any simplex being the negations of the points of its paired partner. As

an element of BC(G), we define the C-monomial Lefschetz invariant of M to

be

ΛCG(M) =
∑
σ

par(`(σ)) [OrbCG(σ)]

where σ now runs over representatives of the CG-orbits of simplexes in K, and

[OrbCG(σ)] denotes the isomorphism class of the CG-orbit OrbCG(σ) as a C-fibred

G-set. A similar monomial Lefchetz invariant, in the context of a sufficiently large

fibre group, was considered by Symonds in [22, Section 2]. To see that ΛCG(M) is

an invariant of the CG-homotopy class of S(M), observe that, regarding M as a

CG-module and regarding S(M) as a CG-space, then ΛCG(M) is determined by

the usual Lefschetz invariant ΛCG(S(M)) ∈ B(CG), which is given by the same

formula, but with [OrbCG(σ)] reinterpreted as the isomorphism class of OrbCG(σ)

as a transitive CG-set.

Theorem 6.3.2. Still assuming that C = {±1} and that M is an RG-module

then, for any C-subelement (I, i) of G, we have

εGI,i(ΛCG(M)) =
∑

ψ∈IrrM (RI)

ψ(i)

where IrrM(RI) denotes the subset of Irr(RI) consisting of those irreducible RI-

characters that have odd multiplicity in the RI-module MO(I). In particular,

εGI,i(ΛCG(M)) ≡2 dimR(MO(I)).

Proof. We have dimR(MO(I)) =
∑

ψmψ where, for the moment, ψ runs over all

the irreducible RI-characters and mψ is the multiplicity of ψ in the RI-character
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of MO(I). If mψ 6= 0 then ψ is the inflation of an irreducible RI/O(I)-character

and, in particular, ψ(i) = ±1. Therefore, dimR(MO(I)) ≡2

∑
ψ ψ(i), where ψ now

runs over those irreducible RI-characters such that mψ is odd. So the rider will

follow from the main equality.

Put Λ = ΛCG(M). Since εGI,i(Λ) = εII,i(resI,G(Λ)) = εII,i(ΛCI(resI,G(M))), we

can replace M with resI,G(M). In other words, we may assume that I = G. Let

K be an admissible CG-equivariant triangulation of the sphere S(M). We have

εGG,i(Λ) =
∑
σ

par(`(σ)) εGG,i[OrbCG(σ)]

where σ runs over representatives of the CG-orbits of simplexes of K. By the

definition of εGG,i, contributions to the sum come from only those representatives

σ such that the fibre {σ,−σ} is stabilized by G, in other words, {σ,−σ} =

OrbCG(σ). Let A be the set of simplexes ρ of K whose fibre is stablized by

G. Let G = G/O(G), and regard the irreducible RG-characters as irreducible

RG-characters by inflation. For all ρ ∈ A, we have

εGG,i[OrbCG(ρ)] = εGG,i[{ρ,−ρ}] = ψρ(i)

where ψρ is the irreducible RG-character such that iρ = ψρ(i)ρ. Since each CG-

orbit in A owns exactly two simplexes,

2εGG,i(Λ) =
∑
ρ∈A

ψρ(i) par(`(ρ)) .

Defining Aψ = {ρ ∈ A : ψρ = ψ}, we have a disjoint union A =
⋃
ψ Aψ where ψ

runs over the irreducible RG-characters. So

2εGG,i(Λ) =
∑

ψ∈Irr(RG)

ψ(i)
∑
ρ∈Aψ

par(`(ρ)) .

Meanwhile, we have a direct sum of RG-modules MO(G) =
⊕

ψMψ, where

Mψ is the sum of the RG-modules with character ψ. We claim that Aψ is a

triangulation of S(Mψ). To demonstrate the claim, we shall make use of the

admissibility of K as a CG-complex. We have Mψ = MGψ , where Gψ be the

index 2 subgroup of CG such that if ψ(i) = 1 then i ∈ Gψ 63 −i, otherwise
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i 6∈ Gψ 3 −i. But Aψ is precisely the set of simplexes in K that are fixed by Gψ.

By the admissibility of K as a CG-complex, Aψ is a triangulation of S(MGψ).

The claim is established. Therefore∑
ρ∈Aψ

par(`(ρ)) = χ(S(Mψ)) = 1− par(dimR(Mψ)) .

We have shown that εG,iG (Λ) =
∑

ψ∈IrrM (RG) ψ(i), as required.

We need to introduce a suitable ghost ring. As a subring of QBR(G), we

define

βR(G) =
⊕
(I,i)

Z eGI,i

where, as usual, (I, i) runs over representatives of the G-conjugacy classes of C-

subelements of G. To distinguish βR(G) from other ghost rings that are sometimes

considered in other contexts, let us call βR(G) the full ghost ring associated

with BR(G). We have BR(G) ≤ βR(G) < QBR(G), and an element x ∈ QBR(G)

belongs to βR(G) if and only if each εGI,i(x) ∈ Z. Let us mention that βR(G) can be

characterized in various other ways: as the Z-span of the primitive idempotents

of QBR(G); as the integral closure of BR(G) in QBR(G); as the unique maximal

subring of QBR(G) that is finitely generated as a Z-module.

Since εHI,i(resH,G(x)) = εGI,i(x) for all I ≤ H ≤ G, the rings βR(G) combine to

form a restriction functor βR. Let us mention that, by [2, 5.4, 5.5], βR commutes

with induction as well as restriction and isogation, so we can regard βR as a

Mackey functor defined on the class of all finite groups. In fact, some unpublished

results of Boltje and Olcay Coşkun imply that βR is a biset functor. Let β×R (G)

denote the unit group of βR(G). We have B×R (G) ≤ β×R (G), and x ∈ β×R (G) if

and only if each εGI,i(x) ∈ C. For the same reason as before, β×R is a restriction

functor. Actually, part of [2, 9.6] says that β×R is a Mackey functor.

Lemma 6.3.3. Let x be an element of Z(2)BR(G) such that εGI,i(x) ≡2 ε
G
I,j(x) for

all I ≤ G and i, j ∈ I. Write lim(x) to denote the idempotent of β(G) such that

εGI (lim(x)) ≡2 ε
G
I,i(x). Then lim(x) ∈ Z(2)B(G).
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Proof. For any sufficiently large positive integer m, we have 2mZ(2)βR(G) ⊆
Z(2)BR(G). Choose and fix such m. Let z be the element of Z(2)βR(G) such

that lim(x) = x+ 2z. Then

lim(x) = lim(x)2n = x2n +
2n∑
j=1

(
2n

j

)
2jzjx2n−j

for all positive integers n. When n is sufficiently large, 2m divides all the binomial

coefficients indexed by integers j in the range 1 ≤ j ≤ m − 1. Choose and fix

such n. Then lim(x) − x2n belongs to the subset 2mZ(2)βR(G) of Z(2)BR(G).

Therefore lim(x) ∈ Z(2)BR(G). But lim(x) also belongs to RB(G), and the

required conclusion now follows from Remark 6.2.1.

The rationale for the notation lim(x) is that, under the 2-adic topology,

lim(x) = limn x
2n .

We now turn to the reduced Boltje morphism bol, which we defined in Section

1. Note that bol can be regarded as the modulo 2 reduction of bol{±1},R because

εGI,i(bol
{±1},R
G [M ]) = χI(i) ≡2 dim(MO(I))

where χI is the RI-character of MO(I).

Theorem 6.3.4. Still putting C = {±1} and letting M be an RG-module, then

bolG[M ] = 1− 2 lim(ΛCG(M)) .

Furthermore, lim(ΛCG(M)) ∈ Z(2)B(G) and bolG[M ] ∈ β×(2)(G).

Proof. By Theorem 6.3.2, εGI,i(ΛCG(M)) ≡2 dimR(MO(I)) for any C-subelement

(I, i). So the expression lim(ΛCG(M)) makes sense and the asserted equality

holds. The rider follows from Lemma 6.3.3.

The proof of Theorem 6.1.1 is complete. As an aside, it is worth recording

the following description of dieG[M ] in terms of monomial Lefschetz invariants of

M and M ⊕ R, where R denotes the trivial RG-module.
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Corollary 6.3.5. Still putting C = {±1} and letting M be an RG-module, then

dieG[M ] = ΛCG(M ⊕ R)− ΛCG(M) .

Proof. Let Λ = ΛCG(M) and Γ = ΛCG(M ⊕ R). In the notation of Theorem

6.3.2,

εGI,i(Γ−Λ) =

{
1 if the trivial RI-module has odd multiplicity in (M ⊕ R)O(I),

−1 if the trivial RI-module has odd multiplicity in MO(I),

=

{
1 if the trivial RI-module has odd multiplicity in M ⊕ R,

−1 if the trivial RI-module has odd multiplicity in M ,

= par(dimR(M I)) = εGI (die[M ]) .

Since this is independent of i, we have Γ−Λ ∈ B(G) and εGI (Γ−Λ) = εGI (die[M ]).

6.4 Dimensions of subspaces fixed by subgroups

We shall prove Theorem 6.1.2, we shall show that Theorem 6.1.2 implies Theorem

6.1.3 and we shall also give a more direct proof of Theorem 6.1.3.

Let us begin with a direct proof of a special case of Theorem 6.1.2.

Theorem 6.4.1. If G is a 2-group, then dim(MO(I)) ≡2 dim(M) for any RG-

module M and any subgroup I ≤ G.

Proof. First assume that G has a cyclic subgroup A such that |G : A| ≤ 2.

Letting x = dieG[M ], then εGI (x) = par(dim(M I)), and we are to show that

εGO(I)(x) = εG1 (x). Our assumption implies that one of the following holds: G

is trivial; O(I) = A < G and G is cyclic; O(I) < A. By dealing with each

of those three possibilities separately, it is easy to see that O(I) is cyclic with

generator t2 for some t ∈ G. A special case of Theorem 3.1 asserts that the

function G 3 g 7→ εG〈g〉(x)/εG1 (x) ∈ {±1} is a group homomorphism. Therefore
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εGO(I)(x)/εG1 (x) = (εG〈t〉(x)/εG1 (x))2 = 1. The assertion is now established in the

special case of the assumption.

For the general case, we shall argue by induction on |G|. We may assume

that M is simple. Let us recall some material from [3], restating only those

conclusions that we need, and only in the special cases that we need. A finite

2-group is called a Roquette 2-group provided every normal abelian subgroup

is cyclic. A well-known result of Peter Roquette asserts that those 2-groups are

precisely as follows: the cyclic 2-groups, the generalized quaternion 2-groups with

order at least 8, the dihedral 2-groups with order at least 16, the semidihedral

2-groups with order at least 16. Part of the Genotype Theorem [3, 1.1] says that

the simple RG-module M can be written as an induced module M = IndG,H(S),

where S is a simple RH-module and H/Ker(S) is a Roquette 2-group.

If M is not absolutely simple, then the CG-module C⊗RM is the sum of two

conjugate simple CG-modules, hence each dim(MO(I)) is even and the required

conclusion is trivial. So we may assume that M is absolutely simple. Then S

must be absolutely simple too.

Suppose that H = G. If M is not faithful, then the required conclusion follows

from the inductive hypothesis. If M is faithful, then G is a Roquette 2-group.

By Roquette’s classification, every Roquette 2-group has a cyclic subgroup with

index at most 2, and we have already dealt with that case.

So we may assume that H < G. Let J be a maximal subgroup of G containing

H and let T = IndJ,H(S). The RJ-module T is absolutely simple because M =

IndG,J(T ). Let x ∈ G− J .

Suppose that dim(T ) = 1. Then the kernel N = Ker(T ) has index at most

2 in J , so the kernel N ∩ xN = Ker(M) has index at most 2 in N and at most

8 in G. Moreover, if Ker(M) 6= N then G/Ker(M) is non-abelian. Replacing G

with G/Ker(M), we reduce to the case where either |G| = 2 or else |G| = 4 or

else G is non-abelian and |G| = 8. Any such G has a cyclic subgroup with index

at most 2 and, again, the argument is complete in this case.
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So we may assume that dim(T ) ≥ 2. We shall deduce that dim(MO(I)) is even

for all I ≤ G. Identifying T with the subspace 1⊗T of M , we have M = T ⊕xT
as a direct sum of two simple RJ-modules. Noting that O(I) ≤ O(G) ≤ J , we

have

MO(I) = TO(I) ⊕ (xT )O(I)

as a direct sum of real vector spaces. We are to show that

dim(TO(I)) ≡2 dim((xT )O(I)) .

If I ≤ J , then dim(TO(I)) ≡2 dim(T ) = dim(xT ) ≡2 dim((xT )O(I)) because, by

the inductive hypothesis, the assertion holds for J . Finally, suppose that I 6≤ J ,

in other words, IJ = G. The conjugation action of x−1 on J induces a transport

of structure whereby O(I) is sent to x−1O(I)x and the isomorphism class of xT

is sent to the isomorphism class of T . Therefore dim((xT )O(I)) = dim(T x
−1O(I)x).

But the element x ∈ G−J was chosen arbitrarily and, since IJ = G, we may insist

that x ∈ I, whereupon x−1O(I)x = O(I) and dim((xT )O(I)) = dim(TO(I)).

We shall be needing the following result of Tornehave [26]. Another proof of

it was given by Yalçın [27, 1.1].

Theorem 6.4.2. (Tornehave) Supposing that G is a 2-group, then the reduced

tom Dieck map dieG : AR(G)→ B×(G) is surjective.

In view of Theorem 6.4.2, we see that Theorem 6.1.3 is equivalent to Theorem

6.4.1. Our direct proof of Theorem 6.1.3 is complete.

We mention another way of expressing Theorem 6.1.3. Let sgn : B× → β(2) be

the unique restriction morphism such that, for any finite group G, the coordinate

map sgnG has image sgnG(B×) = {±1B(G)}. Thus, εGI (sgn(x)) = εG1 (x) for all

I ≤ G and x ∈ B×(G). Plainly, Theorem 1.3 can be expressed as follows.

Theorem 6.4.3. As restriction functors for the class of finite 2-groups, bol =

sgn ◦ die.

We now turn towards the task of proving Theorem 6.1.2. The following the-

orem of Andreas Dress can be found in, for instance, Benson [6, 5.4.8]. Let p be
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a prime. We write Z(p) for the ring of p-local integers. We write Op(G) for the

largest normal subgroup of G such that G/Op(G) is a p-group. Recall that G is

said to be p-perfect provided G = Op(G).

Theorem 6.4.4. (Dress) Given a prime p and an idempotent y ∈ QB(G), then

y ∈ Z(p)B(G) if and only if εGI (y) = εGOp(I)(y) for all I ≤ G. In particular, the

condition εGH(y) = 1 characterizes a bijective correspondence between the primitive

idempotents y of Z(p)B(G) and the conjugacy classes of p-perfect subgroups H of

G.

The next corollary is worth mentioning, although it yields no constraints on

the units of B(G) and it will not be used below.

Corollary 6.4.5. Given x ∈ Z(2)B(G), then εGI (x) ≡2 ε
G
O2(I)(x) for all I ≤ G.

Proof. The hypothesis on x implies that εGI,i(x) = εGI,j(x) for all I ≤ G and all i, j ∈
I. By Lemma 3.3 and Theorem 4.3, εGI (x) ≡2 ε

G
I (lim(x)) = εGO2(I)(lim(x)) ≡2

εGO2(I)(x).

Putting C = {±1} and letting M be an RG-module, Theorems 6.3.4 and 6.4.3

yield

dim(MO(I)) ≡2 ε
G
I (ΛCG(M)) = εGO2(I)(ΛCG(M)) ≡2 dim(MO(O2(I))) = dim(MO2(I)) .

The proof of Theorem 6.1.2 is complete.
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