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Assoc. Prof. Dr. Süleyman Tosun
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ABSTRACT

BOOSTING PERFORMANCE OF DIRECTORY-BASED
CACHE COHERENCE PROTOCOLS BY DETECTING

PRIVATE MEMORY BLOCKS AT SUBPAGE
GRANULARITY AND USING A LOW COST ON-CHIP

PAGE TABLE

Mohammad Reza Soltaniyeh

M.S. in Computer Engineering

Advisor: Assoc. Prof. Dr. Özcan Öztürk

July, 2015

Chip multiprocessors (CMPs) require effective cache coherence protocols as

well as fast virtual-to-physical address translation mechanisms for high perfor-

mance. Directory-based cache coherence protocols are the state-of-the-art ap-

proaches in many-core CMPs to keep the data blocks coherent at the last level

private caches. However, the area overhead and high associativity requirement

of the directory structures may not scale well with increasingly higher number of

cores.

As shown in some prior studies, a significant percentage of data blocks are

accessed by only one core, therefore, it is not necessary to keep track of these in

the directory structure. In this thesis, we have two major contributions. First,

we showed that compared to the classification of cache blocks at page granular-

ity as done in some previous studies, data block classification at subpage level

helps to detect considerably more private data blocks. Consequently, it reduces

the percentage of blocks required to be tracked in the directory significantly

compared to similar page level classification approaches. This, in turn, enables

smaller directory caches with lower associativity to be used in CMPs without

hurting performance, thereby helping the directory structure to scale gracefully

with the increasing number of cores. Memory block classification at subpage level,

however, may increase the frequency of the operating system’s involvement in up-

dating the maintenance bits belonging to subpages stored in page table entries,

nullifying some portion of performance benefits of subpage level data classifica-

tion. To overcome this, we propose as a second contribution, the distributed

on-chip page table. The proposed on-chip page table stores recently accessed
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pages in the system.

Our simulation results show that, our approach reduces the number of evictions

in directory caches by 58%, on the average. Moreover, system performance is

improved further by avoiding 84% of the references to OS page table through the

on-chip page table.

Keywords: Cache Coherence Protocol, Directory Cache, Many-core Architecture,

Virtual-to-Physical Page Translation, Page Table.



ÖZET

ÖZEL BLOKLARIN ALT SAYFA SEVİYESİNDE
TESPİT EDİLMESİ VE DÜŞÜK MALİYETLİ YONGA
ÜZERİ SAYFA TABLO KULLANILMASIYLA DİZİN

TEMELLİ ÖNBELLEK TUTARLIĞI VERİMLİLİĞİNİN
ARTIRILMASI

Mohammad Reza Soltaniyeh

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Doç. Dr. Özcan Öztürk

Temmuz, 2015

Çok çekirdekli işlemcilerde (CMP) yüksek performans sağlamak için etkili

önbellek tutarlılık protokolleri ve yanı sıra hızlı sanal-fiziksel adres çeviri mekaniz-

maları gerekir. Dizin (Directory) temelli önbellek tutarlılık protokolleri çok

çekirdekli işlemcilerde, veri bloklarının son seviye özel önbelleklerde tutarlı

bir şekilde bulunmasını sağlamak amacıyla yaygın bir şekilde kullanılan bir

yaklaşımdır. Ancak, dizin yapılarının büyük fiziksel alan işgal etmeleri ve

önbellek ilişkilendirmesinin yüksek olması sebebiyle, çekirdek sayısı çoğaldıkça

ölçeklenebilirlik derecesi düşebilir.

Daha önceki çalışmalarda gösterildiği gibi, veri bloklarının önemli bir yüzdesi

sadece tek bir çekirdek tarafından erişilir. Bu nedenle, dizin yapısında bu veri

bloklarını takip etmek gerekli değildir. Bu tez, iki büyük katkıyı sunmaktadır:

ilk olarak, daha önceki çalışmalarda önerilmiş olan sayfa düzeyini göze alarak

sınıflandırmaya göre, alt sayfa düzeyinde veri bloklarını sııflandırmanın önemli

bir ölçüde daha çok özel veri bloklarının tespit edilmesine yardımcı olabileceğini

gösterdik. Sonuç olarak, bu yaklaşım, benzer sayfa düzeyinde sınıflandırma

yaklaşımlarına göre, dizinde takip edilmesi gereken blokların yüzdesini önemli bir

ölçüde düşürür. Bu da, olabildiğince çok çekirdekli işlemcilerde performansa zarar

vermeden daha küçük ve daha az ilişkilerdirmeli olan önbellek dizinlerinin kul-

lanılmasını mümkün kılıp, böylece dizin yapısının çekirdek sayısının çoğalmasıyla

beraber ölçeklenmesine yardım eder. Ancak alt sayfa düzeyinde bellek bloğu

sınıflandırma, işletim sisteminin sayfa tablosu girdilerinde saklanan alt sayfalara

ait bakım bitlerinin güncelleme frekansının yükselmesine neden olabilir. Bu
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yüzden alt sayfa düzeyinde veri sınıflandırma performans avantajlarının bir kısmı

boşa çıkabilir. Bunun üstesinden gelmek için, ikinci bir katkı olarak, bu tezde

dağıtımlı yonga üstü sayfa tablosu kavramı önerilmektedir. Önerilen yonga üstü

sayfa tablosu sistemde en son erişilmiş olan sayfaları saklamaktadır.

Simülasyon sonuçlarımıza göre, önerdiğimiz yöntem ortalama olarak dizin

belleklerinin tahliye sayısı oranını 58% azaltmaktadır. Ayrıca, yonga üstü sayfa

tablosu işletim sistemi sayfa tablosu erişimini 84% azaltıp sistem performansında

artışa yardımcı olmaktadır.

Anahtar sözcükler : Önbellek Tutarlılık Protokolü, Dizin Önbelleği, Çok

Çekirdekli Mimari, Sanal-Fiziksel Sayfa Dönüşümü, Sayfa Tablosu.
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Chapter 1

Introduction

While the technology facilitated the integration of more transistors on a single

chip as predicted by Moore’s Law [2], it is not clear how these excessive number

of transistors are supposed to increase performance. One pervasive approach

for boosting performance with the additional transistor resources is to increase

the number of functional units involved in processing. For achieving this, Chip

Multiprocessors (CMPs) which enable multiple processing units (cores) on a single

chip, have been studied by several works in the recent decade.

A system with many cores inside, however, introduces many complications for

the programmers who are working with that system. Particularly, managing data

movement and data storage in a system with many cores inside can be very hard

for the system. In order to reduce the complexity, shared-memory architectures

are introduced which provide a single view of memory shared by all the processors

in the chip. This relieves programmers and the system from most of the burdens

of managing data accesses across different threads. Although, shared-memory

paradigm is advantageous from a software point of view, it introduces additional

complications at the hardware level.

One of the complication is providing a consistent view of memory with different
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levels of caches, that is keeping the whole on-chip memory system coherent. Al-

though cache coherence is abstracted from the software, it is still a major factor

for consistency and correctness of a CMP with shared-memory paradigm. As

such, cache coherence protocols were introduced to provide a coherent cache sys-

tem for chip multiprocessor systems. Cache coherence management schemes not

only affect the correctness of a shared-memory CMP, but also impact the system

performance. Potentially, ineffective cache coherence management can nullify all

the benefits we gained by running applications in parallel with CMPs. This is

the main reason why cache coherence has been studied by many researches in the

literature.

Cache coherence management is facing new issues as technology continues to

scale. Previous approaches for maintaining coherence do not scale well with higher

number of cores. Broadcast-based snoopy protocols commonly used in bus based

CMPs, can no longer be used as an efficient way of managing cache coherence in

many-core architectures. Excessive bandwidth requirements of these protocols, as

well as the need for an interconnection network that provides ordering globally, are

the two main limitations that broadcast-based cache coherence protocols faced.

On the other hand, directory-based protocols were introduced to eliminate broad-

casts by storing the sharing information in a structure named directory. The di-

rectory requires additional storage area to record the list of sharers together with

the coherence states for each cache block. Using directory effectively prevents

exchanging huge number of snooping messages required by snoopy-based cache

coherence protocols by allowing the coherence messages sent and received only

by the cores involved. The directory also serve as the ordering point for requests,

and thereby, enables using more scalable interconnect designs than bus-based

interconnects.

Although directory-based cache coherence protocols are considered to be the

best solution for a scalable scheme for managing cache coherence in a system

with many cores, the directory can become a limiting factor in implementing a

directory-based coherence scheme for large scale CMPs. This is because of the

fact that the number of blocks as well as the size of each block in the directory,
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increases linearly with the number of cores and the cache capacity. To put this

problem into perspective, a typical full-map directory records a bit vector for each

core in the chip. Furthermore, the cache requirements keep continuously increas-

ing. The state-of-the-art architectures no longer have a single layered caches,

instead, they utilize multiple layers. In such a setting, upper layers have private

caches, whereas lower levels have shared caches. As a result of this, the number

of blocks needed to be kept coherent is also growing dramatically. These two

aforementioned points make directory design in a many-core CMP very tricky as

the directory itself may add significant area and energy cost, thereby affects the

performance of the whole system.

Different directory organizations have been suggested to reduce the overhead and

improve the scalability in coherence protocols relying on directories. The details of

the more commonly used approaches in directory-based cache coherence protocols

are discussed in detail in Chapter 2 .

This work intends to reduce the overhead of coherence management by proposing

a runtime data classification. The aim of the proposed data classification is to

find those data blocks that do not need coherence operations normally applied

for all the cache blocks in state-of-the-art cache coherence management schemes.

The effectiveness of a detection mechanism to override cache coherence relies on

two factors. First, it should detect a considerably large quantity of blocks which

possibly can be discarded for coherence management. Otherwise, the overhead

imposed by the detection mechanism would hide the expected benefits. Sec-

ond, the detection mechanism itself should not be very costly in terms of area,

design complexity, and power consumption. Otherwise, it will not provide the

performance benefits. In other words, the granularity in which we are detecting

blocks that do not need coherence, should be intelligently decided to provide us

an effective coherence management scheme.

Another aspect of a high performance memory system is the support for fast

virtual to physical memory address translation. Translation Look-aside Buffers

(TLBs) are the key elements in supporting for the virtual memory management.

Approaches for designing TLBs are becoming more and more important as they

3



commonly exist in the critical path of memory accesses. The aim of studies in

this area is mainly lowering the address translation latency as much as possible

and keeping it off the critical path of memory accesses.

Several techniques have been proposed to reduce virtual address translation for

the uniprocessor architectures [3] [4] [5] [6]. There are also recent studies on TLB

organization in the context of CMPs [7] [8]. A pervasive approach for organizing

the TLB in many-core architectures is the use of per-core private TLB. However,

it is shown in [9] that such an organization may lead to poor performance and

still keep the TLB in critical path of memory accesses. The proposed approaches

in this domain can be classified in to two categories. The first one suggests a

shared last level TLB [8] [10] to improve sharing capacity among the cores in

the system. In contrast, the approaches in the second category, try to increase

sharing capabilities between the cores by enabling a cooperation between private

TLBs [7]. In other words, each individual core tries to borrow capacity from the

private TLBs of other cores in the system before performing the translation with

a relatively higher cost in Operating System (OS). As will be discussed later, both

of these techniques have its own shortcomings. Using a shared TLB introduces

higher access latency, requires a high bandwidth interconnection network, and of

course, needs a higher associativity, leading to higher power consumption. On

the other hand, the approaches in the second category need inquiring other TLBs

for each missed page translation that happens in each core which can introduce

both design complexity and also higher network traffic.

In this thesis, we propose a technique to decrease the cost of virtual memory ad-

dress translation in CMPs which does not suffer from the shortcomings discussed

earlier.

1.1 Thesis Contributions

We can summarize the contributions of this dissertation as follows:
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• First, we propose a data block classification methodology which works at

subpage level and helps to detect considerably more private data blocks.

Consequently, it reduces the percentage of blocks required to be tracked

in the directory significantly compared to similar page level classification

approaches. This, in turn, enables smaller directory caches with lower asso-

ciativity to be used in CMPs without hurting performance, thereby helping

the directory structure to scale gracefully with the increasing number of

cores.

• Second, we propose a small distributed table referred to as the on-chip page

table, which stores the page table entries for recently accessed pages in the

system. This can be implemented as a portion of the directory controller.

Upon a TLB miss, the operating system gets involved in address translation

only when the translation is not found in the on-chip page table. It also

helps to negate performance degradation that might have occurred due to

the increase in the frequency of the operating system involvement in our

subpage granularity block classification.

1.2 Thesis Organization

Chapter 2 provides the background and discusses the related studies in more

detail. Chapter 3 lists the motivations for this dissertation, whereas Chapter

4 describes our approach to design an effective directory-based cache coherence

scheme for many-core CMPs. We describe the details of both contributions with

the help of examples and figures. Chapter 5 gives the details of our system

configuration, tools, system parameters and benchmarks used. In Chapter 6, we

demonstrate the performance improvement we can get from our proposed ideas.

Finally, Chapter 7 concludes the dissertation and discusses the possible directions

for future research.
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Chapter 2

Background

This chapter gives an overview of cache coherence problem and present a summary

of the important techniques proposed in this subject. Since there are many efforts

in the field, we only focus on the most relevant topics to our proposal. Section 2.1

discusses the role of cache coherence problem in providing memory consistency for

multiprocessors. Section 2.2 explains cache coherence problem with the help of

an example. In Section 2.3, we summarize the efforts made to efficiently address

cache coherence problem for chip multiprocessor systems. Section 2.4, discusses

the directory organization in directory-based cache coherence protocols in more

details. In Section 2.5, we classify existing mechanisms that tried to address the

overhead of managing cache coherence in chip multiprocessors. Finally, we give

an overview of most important studies on fast virtual memory management in

Section 2.6.

2.1 Memory Consistency Problem

In Von Neumann architecture, instructions are executed in the order specified

by the programmer or compiler. The important feature of the model is that, a

program’s load instruction returns the last modified value of a block (as a result
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of the last store operation that corresponds to the memory block). This provides

a simple semantic for uniprocessor architectures.

Multithreaded programs, however, enforce new complexities to the aforemen-

tioned model, since the most recent value for a block might be the result of a

store on a different core. Therefore, memory consistency models [11] have been

suggested to identify how a core running a thread should behave for memory

accesses from other cores in the system.

The most straightforward model to address the ordering problem of the operations

in a multithreaded program is to execute operations inside each single core in

the order specified by the program. This is named as sequential consistency

model [12]. In contrast, there are relaxed consistency models [11] that provide a

more flexible model with space for different optimizations. While, relaxed model

can improve the performance by allowing some of the memory operations to be

executed before they are observed by the other cores, properly synchronizing the

multithreaded program is still needed to be applied either by the programmer or

by the compiler [13].

Regardless of which consistency model is being used, introducing cache memories

to the system affects the implemented consistency model. This problem is known

as cache coherence problem which is part of the memory consistency model. We

will elucidate this problem in next section.

2.2 Cache Coherence Problem

Cache system plays an important role in performance of Chip Multiprocessors

(CMPs) by filling the speed gap between processor and memory. However, im-

plementing cache hierarchy introduces some difficulties in case of a multiprocessor

system. Following example can clarify the cause of the cache coherence problem.

Suppose two cores in a system, C1 and C2, load the same memory block (B1)

into their respective private caches. When C1 updates B1 with a new value. The
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caches in the system (C1 and C2 private caches) can become inconsistent. How-

ever, if C2 never loads B1 again, there would be no such problem. In order to

support a shared-memory programming paradigm for a multiprocessor system,

we need to ensure coherence between all levels of caches located in all the cores

in the system. The mechanism applied to maintain such a coherence between

caches exist in the system is known as cache coherence mechanism.

We can call a system, cache coherent; if it keeps a valid order of reads and writes

to a memory location. In other words, each read operation should return the

value written by the last write to that location. It can be either on the same

core, or any other core in the system.

Although, cache coherency is a vital component of a multiprocessor consistency

model discussed earlier, it is not enough to ensure consistency. Nonetheless, it is

coherence protocol’s job to indicate completion of load and store operations which

is required to be known by consistency model to enforce ordering requirements.

A common approach to maintain all blocks located in a cache system coherent is

by assigning each block in the cache an access permission value. For instance, in

a single writer-multiple reader model, only one of the cores can acquire a cache

block with write permission. Other cores store the same block in their caches with

only read permission. These permission values can be considered as a coherence

state stored for each block in the cache. The coherence protocol ensures a right

state would be assigned to each cache block with respect to the state of each

block currently present in all the cores in the system. For example, a core may

have an exclusive write permission to a certain block if all other copies of that

block in other caches are all in invalid state.

Different cache coherence protocols may define different set of coherence states.

A very basic and minimum set of states for a cache coherence protocol to include,

consists of three basic states named as M, S, and I. State (M) denotes a single

processor holding a block with a write permission. State (S) allow multiple cores

to keep the same block simultaneously, whereas state (I) means that the cores do

not own the block.
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Although, above set of states might be enough to ensure cache coherence, for

the sake of optimization, state-of-the-art cache coherence protocols usually use

more states than the basic three states to ensure coherence in caches. Table 2.1

provides a list of common states utilized in cache coherence protocols with their

definition. Most of the existing cache coherence protocols use a subset of these

states.

A core in the system may issue different type of requests to obtain a block with a

certain state (permission). For instance, a core can issue a GETS (GET Shared)

to get data only with a read permission. Or, it may need to acquire a block

with a write permission with GETM (GET Modified ) request. Cache coherence

protocol is responsible for managing all the cache states and responding to the

requests coming from the cores. Cache coherence protocol enforces sending and

receiving requests between the cores to keep the block states in a proper way.

These messages are known as coherence messages. This implies a traffic overhead

(known as coherence traffic) between the cache controllers in the system.

Table 2.1: Cache coherence states

States Permission Definition
Modified (M) read,write other caches in I or NP
Owned (O) read other caches in S, I, or NP
Exclusive (E) read,write other caches in I or NP
Shared (S) read no other cache in M or E
Invalid (I) none none
Not Present (NP) none none

2.3 Cache Coherence Techniques

As discussed previously, cache coherence protocol is needed to maintain caches in

the system coherent. There are two main types of cache coherence protocols in

the literature; Snoopy-based cache coherence protocols and directory-based cache

coherence protocols. We will discuss these in detail in the following section.
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2.3.1 Snoopy-based Cache Coherence

In a snoopy-based cache coherence protocol, to ensure that there is only a single

copy of a cache block with write permission, each core broadcasts coherence mes-

sages to all other cores (regardless of the state of the block in those cores). Each

core snoops to see if it has a copy of that cache block and responds accordingly.

Obviously, this approach needs to keep track of the order of the requests. Thus,

it is usually used in a bus-based system in which ordering is ensured by the net-

work. Implementing snoopy-based cache coherence protocol on a network that

does not preserve ordering, introduces so many difficulties. There are works that

use snoopy based protocol on ring topology [14] and other arbitrary topologies

[15] [16] [17].

Snoopy-based protocols are pervasive approaches in a system with few number of

cores in a chip. However, bandwidth requirements, and limitations on the topolo-

gies that support snoopy-based cache coherence protocols, cause some serious

scalability problems, especially with higher core counts. As a result, directory-

based cache coherence protocols were proposed to address these scalability prob-

lems.

2.3.2 Directory-based Cache Coherence

To address high bandwidth requirements of broadcast-based cache coherence pro-

tocols (snoopy) and also enable coherence on interconnect networks that do not

necessarily preserve ordering, the directory-based mechanism was first suggested

by Censier [18] and Tang [19] and soon, commercial machines [20] [21] used

directory-based protocols to maintain cache coherence.

A directory-based cache coherence protocol contains a directory that stores the

sharing status of a certain block. Typically, a directory consists of a list of sharers

for each block, in which, the current owner is also identified. There are different

proposals how this information can be kept efficiently in the directory [22] [23].
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In a directory-based cache coherence protocol, each core refers to the directory

to inquire the sharing status, as well as the sharer information, before sending

required messages to other cores. The information kept in the directory enables

the core to unicast the right message to the cores really have the corresponding

data block. So, it avoids high bandwidth requirements forced by snoopy-based

protocols. Moreover, with a level of indirection, the directory-based cache co-

herence protocols are able to work on top of any interconnect network without

introducing any additional complexity [21] [24].

Although, the directory-based cache coherence protocols are state-of-the-art ap-

proaches to maintain cache coherence in many-core chip multiprocessors, direc-

tory organization can still become a bottleneck when scaled. In the next section.

we review the important proposals on organization of directories.

2.4 Directory Organization

In directory organization for coherence, for each data block there must be a single

entry in the directory. Directory structure have been studied from many angles.

while some studies tried to find how the sharing information for each block (direc-

tory width) can be squeezed to enable a more scalable directory organization [22]

[23] [25], some others aimed at decreasing the size of the directory structure by

only keeping track of a subset of all memory blocks available [26] [27]. Moreover,

the location of the directory and how directory accesses should be managed have

also been the topic for a set of studies [21] [28] [29]. In this section, we summarize

the most important proposals that particularly studied directory organization.

Some proposals tried to reduce the size of each entry in the directory by com-

pressing the sharing information instead of a full map approach. Some examples

of a compressed sharing codes are tristate [23], gray-tristate [25] and binary tree

with subtrees [22]. A different approach is the coarse vector method which is

based on keeping a bit of sharing code for a set of K processors. In other studies,

authors suggested a limited number of pointers for each single entry, that do not
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cover all the sharers [30] [31]. This implies that some cases must be handled by

broadcasting messages or eliminating one of the existing copies.

Reducing the height of the directory is as important as previous proposals on

decreasing the width of the directory. Thus, many studies studied the method

to decrease the total number of entries in the directory. In [32], authors do

this by combining several entries into a single one. One other approach does the

reduction by organizing the directory structure as sparse directory [33]. Some

proposals limited the directory entries to the blocks cached in the private caches

[34]. These techniques result in extra coherence messages needed to be exchanged.

For a distributed shared-memory chip multiprocessor, a common approach is

having multiple duplicate tags. For instance, in Everest [35], each distributed

directory keeps the state information for the blocks belonging to the local home

but cached in the remote nodes as well. Using this kind of directory organization,

the number of entries in the distributed directories grows linearly with the number

of cores in the system. Other techniques studied interleaving the entries into the

distributed directories in order to reduce the size of the distributed directory [36].

Unfortunately, this approach also suffers from extra latency due to accessing the

full list of pointers required for interleaving.

The directory structure can be centralized as it is in Piranha [37], or distributed

like Sun UltraSPARC T2 architecture [?]. In a centralized directory structure, all

cache misses must access the same directory which causes a bottleneck for many-

core CMPs. On the contrary, a distributed directory is a more scalable solution

for many-core CMPs, where each directory is responsible for keeping track of

memory blocks in its home tile. A distributed directory is considered scalable if

the size of each directory slice does not necessarily vary with the number of tiles

in the system. A popular way of organizing distributed directory in tiled CMPs

is the use of directory caches [29].

A directory cache provides faster accesses to a subset of a complete directory. Di-

rectories keep track of coherent states and exhibit the same locality as data and
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instruction caches. Introducing directory caches does not influence the cache co-

herence protocol functionality. In a state-of-the-art many-core architecture where

the cost of accesses to other cores is not very high, the latency of a costly off-chip

directory access can become the bottleneck. Therefore, for those architectures,

there is a motivation for a fast directory access via on-chip directory cache to

avoid off-chip accesses. The different strategies for designing directory caches

have been summarized in the following section.

2.4.1 Directory Cache Organization

One way of organizing the directory is keeping a complete directory in DRAM,

and then use a separate directory cache to reduce the average access latency.

Directory caches in this approach is decoupled from the Last Level Cache (LLC),

therefore, it is possible to experience a costly DRAM access due to a miss in

the directory cache, even if the block is available in the LLC. Further, any di-

rectory replacement must write back to DRAM, causing high latency and power

overheads.

A more efficient way of organizing directory cache is based on the fact that we

only need to keep track of blocks that are being stored in one of the caches on

the chip. This type of directories are referred to as inclusive directory cache. An

inclusive directory only caches blocks that are located somewhere on the chip.

This implies that a miss in an inclusive directory puts the block in state I. So,

there is no need for a complete directory in DRAM to back the directory cache.

The simplest directory cache design relies on LLC inclusion. Cache inclusion

implies that if a block exists in upper-level caches, it also must be present in

lower-level caches. In an inclusive directory cache may benefit from this property

by keeping the coherence states for each block in the same place as the data kept

in the LLC. In the case of a miss in the LLC, the directory controllers know that

the requested block is not cached in any other core on the chip.
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Adding extra bits to each block in LLC can lead to a non-trivial overhead depend-

ing on the size of the system in terms of number of cores and the format in which

directory states are presented. Moreover, LLC inclusion has serious drawbacks.

Maintaining inclusion for a shared level cache, requires sending special requests

to invalidate blocks from the private caches when a block is replaced in the LLC.

More importantly, LLC inclusion needs to keep redundant copies of cache blocks

that are in upper-level caches. The situation may be more dramatic in many-core

CMPs where the collective capacity of the upper-level caches may be a significant

portion of the capacity of the LLC.

An inclusive directory cache design which is not supported by an inclusion be-

tween different levels of caches, must contain directory entries for the union of

blocks in all the private caches. This is because, a block in the LLC but not in

any private caches must be in state I. This enforces directory to cache duplicate

copies of the tags in all private caches. It is a more flexible design in the sense

that the directory cache does not rely on LLC inclusion. However, it suffers from

extra storage costs needed for caching duplicate tags.

The inclusive directory caches introduces other significant implementation costs

as well. They require a highly associative directory cache. For example, consider a

directory cache for a chip with C cores, each of which has a K-way set-associative

L1 cache. For this specific example, directory cache must be C*K-way associative

to hold L1 cache tags. To put it into perspective, for this directory organization

to work, we need a directory cache where its associativity grows linearly with the

core counts. Therefore, this approach suffers from high power consumption and

high design complexity due to high associativity.

To overcome the scalability problem of the previously discussed directory cache

organization, we must limit the associativity to a certain level. So using a lower

associativity in directory caches rather than using upper case associativity level

(C*K), forces some additional overheads. For example, in the case of full direc-

tory, we need to evict an entry before adding the new entry to directory cache.

Any eviction in the directory cache requires invalidation messages to be sent to

all the caches that hold the evicted block in a valid state.
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With the assist of invalidation messages (recall requests), we can overcome the

need for a high associative directory cache. But, if the number of evictions in the

directory cache passes a certain rate, then it may lead to poor performance. To

avoid intolerable recall requests and get reasonable performance, we should keep

the directory evictions of as low as possible. This is one of the main contributions

of this thesis.

2.5 Low-Overhead Cache Coherence

Several techniques have been proposed to reduce the overhead of managing co-

herence specially for large scale CMPs. Most of the optimizations proposed by

these studies are based on a some sort of data classification. The suggested classi-

fication mechanisms, however are different from various points of view. First, the

level in which the classification performed, varies in different studies. Some of the

works do the classification at compiler level, other utilize Operating System (OS)

to classify the data, and some introduce extra hardware components to classify

blocks. Second, the granularity of the classification is also different. Some clas-

sify data in a fine-grained block granularity. Whereas, others use a coarse-grained

classification methods to avoid the possible overhead of a fine granularity.

Apart from the differences exist in the classification techniques, different studies

utilized the classified data for various reasons. In this section, we will review the

important proposals on each of the aforementioned topics.

Some prior studies exploited private/shared data detection to enable high per-

formance for many-core architecture by mitigating the overhead of managing

coherence. Private data refers to the data that is only accessed by a single core.

While, shared data, is the data that is accessed by more than one core in the

system. The classification can be performed by either hardware, compiler, or

software, or a combination of those.

POPS [38] optimized the coherence protocol by intelligently placing private
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and shared data at different levels of caches in Non-Uniform Cache Architec-

ture (NUCA). They introduce extra hardware to decouple the private and shared

data which enables utilizing LLC capacity more effectively. They also change the

coherence protocol actions to exploit the observed sharing patterns.

In SPTAL [39], authors use a tagless directory [40] together with bloom filters

to summarize the tags in a cache set. They observed that majority of bloom

filters replicate the same sharing pattern, while suggest to decouple the sharing

pattern and eliminate the redundant copies of these sharing patterns. SPTAL

can work with both inclusive and non-inclusive shared caches and provides up to

34 % storage savings over other tagless directory approaches.

Cantin et al. [41], perform a coarse-grained tracking to reduce the unnecessary

traffic due to broadcast-based protocols. For doing so, they suggest Region Co-

herence Arrays to identify shared regions and then, filter unnecessary broadcast

traffic based on the detected shared regions. In turn, RegionTracker [42] intro-

duces a framework that reduces the storage overhead and improves the precision

of the two previous studies.

Furthermore, there are studies that are assisted by compiler or OS to classify data

and apply further optimizations. As an example, Li at el. [43] proposes a novel

compiler-assisted data classification technique to speculatively detect a class of

data termed as practically private. They demonstrated that their classification

provides efficient solutions to mitigate access latency and coherence overhead in

many-core architectures. Another relevant effort by Jin and Cho offer a Software

Oriented Shared (SOS) cache management [44]. They classify data accesses to a

range of memory locations. Their profile method classifies the memory locations

returned by malloc() into several categories such as Owner, Dominant, Partition,

Scattered, and etc. They further use this profiling information as a hint to place

the blocks of memory in an optimized way in cache tiles.

Compiler has been specially used to extract the communication pattern of ap-

plication in Sha’s work [45]. In this work, they extracted the communication

pattern of message passing applications statically to minimize runtime circuit
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establishment overhead of an optical circuit switching interconnect. They fur-

ther utilize this pattern extraction to improve TLB structure for fast virtual to

physical address translation [46].

Beside these proposals that utilize compiler to statically classify data, there are

some runtime mechanisms which are mostly supported by OS to classify data

and improve performance based on the result of the classification. One of the

most important proposal in this area is Reactive-NUCA (R-NUCA) [47]. In

R-NUCA, data accesses are classified as private, shared and read-only at the

page granularity. Every page considered as private by default until a second core

accesses the data. In R-NUCA, they utilized the classification results by placing

private pages locally to improve access latency while shared pages are cached in

S-NUCA style [48].

In a different OS-assisted data classification work, Kim et al [49] employs a

complex method to detect shared data as well as their sharing degree to reduce

the snoops take place in a token-based cache coherence protocol. Their proposal

requires extra hardware support as well as OS modification.

Similarly to R-NUCA, but with different motivation, Cuesta et al [50] presented

an efficient directory organization based on an OS-based runtime data classifi-

cation similar to R-NUCA. They modified TLB entries and page table entries

to apply their classification. Their proposed method classifies data in a coarse-

grained page granularity. In other words, existence of single block of memory

accessed by more than one core is enough to consider the whole page as shared.

This may penalize the proposed idea particularly, for those architectures that use

larger pages for improving performance.

On the other hand, Zeffer’s work [51] employed a combination of hardware and

software to support cache coherence. They propose a trap-based architecture

(TMA), which detects fine-grained coherence violations in hardware, and causes

a trap in case of violation. Software, further, maintains coherence with coherence

trap handlers. Again, like Cuesta’s work, the TLB and OS are exploited to

catch pages that move from a private state to a shared one. TMA requires
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extra hardware to speed up the coherence trap handlers. Finally, they propose

a straightforward hardware mechanism that implements an inter-node coherence

protocol in software.

Fensch et al. [52] propose a coherence protocol that does not need any hardware

support. They rather avoid any incoherence in caches by not allowing multiple

writable shared copies of pages. Pages are mapped to each processor’s cache under

control of OS and remote cache accesses enabled by the hardware and are very

costly. Their proposal requires release consistency, and introduces unacceptable

overhead in hardwired systems.

2.6 Virtual Memory Management Techniques

Different techniques such as various TLB organizations, multilevel TLB organiza-

tions, prefetching, and etc, have been suggested for virtual memory management

in uniprocessor architectures [3] [4] [6]. Since our focus is on CMPs, we review

important studies on virtual memory management for CMPs. The pervasive

approach for organizing the TLBs in many-core architectures is using per-core

private TLB. However, it is shown in [4] that such an organization may lead to

poor performance and still keep the TLB in the critical path of memory accesses.

To overcome this, different techniques were suggested, which are broadly classi-

fied into two categories. The approaches in the first category suggest a shared

last level TLB [8] [10] to improve sharing capacity among the cores in the system.

In contrast, the approaches in the second category try to increase sharing capa-

bilities between the cores by enabling a cooperation between the private TLBs

[1]. In other words, each individual core tries to borrow capacity from private

TLBs of other cores in the system before finding the translation with relatively

higher cost in OS. We review the advantages and disadvantages of each of these

categories in this section.

In a study by Bhattacharjee et al. [10], authors suggest a shared last level TLB

inspired by cache organization in modern CMPs. Their proposed shared last level
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TLB improves sharing capacity among different cores and the collective number

of TLB misses is reduced in their implementation. However, their shared TLB or-

ganization has some disadvantageous. First, shared TLBs would introduce higher

access latency when compared to private per core TLBs. This excessive latency

adversely affects the latency of every memory access. Second, for connecting

the shared TLB with all cores, we require a high bandwidth interconnect. This

problem becomes more dramatic with higher number of cores on the chip. Third,

a shared TLB organization needs a high associativity to avoid high miss ratio

leading to design complexity and higher power consumption. Beside these disad-

vantages, there are additional issues regarding the placement of the shared TLB

in a large-scale system to avoid high wire delays.

By characterizing parallel workloads on CMPs, Bhattacharjee and Martonosi [9]

showed significant similarities in TLB miss pattern among multiple cores. Based

on their observation, the same authors proposed Inter-Core Cooperative (ICC)

TLB prefetchers [8]. They were able to avoid 19% to 90% of data TLB (D-

TLB) misses with their proposal. Although, their proposal showed a considerable

improvement in the context of parallel multithreaded workloads, however, there

are some drawbacks in their proposal. First, as they also reported in their work,

the percentage of a bad prefetcher can be as high as 60%. To avoid performance

loss due to a bad prefetcher, their prefetching mechanism needs to add extra

hardware which can be costly. Second, for generic multiprogrammed workload

on CMPs where different applications do not share any address translation among

each other, the proposed scheme is not very helpful.

To exploit all the benefits of a private TLB organization and, at the same time,

improve the performance of virtual memory management by providing a fast

address translation, Srikantaiah and Kandemir proposed Synergistic TLBs [7]

for CMPs. Their proposal relies on minor hardware changes to increase sharing

capacity among the private TLBs by borrowing capacity from private TLBs of

other cores. The proposed Synergistic TLB has three characteristics. First, it

differs private TLB organization by providing capacity sharing of TLBs. Second,

it supports translation migration to maximize TLB capacity utilization. Third,
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it enables translation replication to prevent high latency for remote TLB ac-

cesses. While the cooprating TLB prefetecher proposal discussed earlier, which

was not using capacity sharing, Synergistic TLBs reduce misses by adopting ca-

pacity sharing. The Synergistic TLB outperforms ICC prefetching in most of the

multithreaded applications. Despite their important contribution to the area of

designing high performance TLB organization, their proposal may fail to scale

with large core counts. Their approach is based on inquiring other TLBs in the

case of a miss in private TLBs. Snooping other TLBs in the system for finding

the page translation is not scalable with higher core counts due to traffic overhead

and excessive energy consumption required by snooping.
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Chapter 3

Motivation

In this chapter, we first discuss the approaches given earlier in Chapter 2 and

explain their shortcomings which motivated us to work on the topic. Then, we

explain the areas where there is still room for improvement in TLB organizations

and in general fast virtual memory management. This chapter, in a way, prepares

the ground for our proposal.

3.1 Low-Overhead Cache Coherence

As discussed in Chapter 2, directory-based cache-coherence protocols are the

common approach for managing the coherence in systems with many cores in a

single chip because of their scalability in power consumption and area compared

to traditional broadcast-based protocols. However, the latency and power re-

quirements of today’s many-core architectures with their large last level caches

(LLCs) brought new challenges. A common approach is to cache a subset of

directory entries (directory cache) due to high latency and power overheads with

directory accesses. A directory cache must provide an efficient way to keep the

copies of data blocks stored in different private caches coherent since its structure

can have momentous influence on overall system performance.
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One simple way of designing directory, as explained before, is to maintain an

inclusive cache. But, such a design have some drawbacks. First, it is very costly

to maintain inclusion as it needs interchanging lots of message requests between

the cache controllers. Second, inclusion requires maintaining redundant copies of

cache blocks that exist in upper-layer caches. This is the motivation for some

of the previously proposed approaches (including ours) to investigate techniques

that do not rely on upper layer inclusion. Duplicate-tag-based directories are

common scheme for doing so in CMPs. Compared to other directory structures,

this type of directory caches are more flexible as they do not force any inclusion

among the cache levels. However, directories based on duplicate-tag come with

overheads as mentioned in Chapter 2. Storage cost for duplicate tags, and more

notably, high associativity requirement that grows with the number of cores in

the system, are two main overheads. Therefore, this approach suffers from high

power consumption and high design complexity due to high associative caches.

In this dissertation, we avoid poor performance of low associative directory caches

(as a result of high invalidation counts in directory cache) with our proposed

directory organization which will be presented in detail in Chapter 4.

Similar to prior studies exploited private data detection to implement high per-

formance and scalable cache coherence management for many-core architectures

[47] [50], we also try to utilize a data classification mechanism motivated by

our first observation. This way, we aim to achieve a low-overhead and efficient

directory-based cache coherence management scheme.

Observation 1. The granularity at which we detect private accesses can play a

vital role in performance benefits we can obtain.

We observed that, by inspecting private data at a finer granularity than page

granularity, chances for finding private data and further improvements will be

considerably higher. Figure 3.1 shows the amount of private accesses detected

with a subpage granularity (4 subpages per page) compared to a page granularity

approach for ten different multithreaded applications in systems with 4, 8, and

16 cores. The reason for such a huge difference is that existence of a single shared
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block within a page is enough to change the page status from private to shared.

In our example, the page size is 8KB. The difference would be more dramatic for

those architectures that use larger pages for improving performance.

According to Figure 3.1, chances of detecting private accesses in subpage granu-

larity is about two times more than doing so in page granularity. We will discuss

later in this thesis how we can perform the detection in subpage level with the

assistance of page tables and TLB entries.

3.2 Fast Virtual Address Translation

TLBs are the key components for supporting fast translation from virtual to

physical addresses. However, in many cases, they are in the critical path of

memory accesses. This is the main motivation for many studies mentioned earlier

which focus on the techniques for fast and efficient virtual to physical address

translation through TLBs.

A pervasive approach for organizing the TLBs in many-core architectures is per-

core private TLBs. However, it is shown [4] that such an organization may lead to

poor performance and still keep the TLB in critical path for memory accesses. To

overcome this, different techniques were suggested, which are broadly classified

into two categories. The approaches in the first category suggest a shared last

level TLB [2][4] to improve sharing capacity among the cores in the system. In

contrast, the approaches in the second category try to increase sharing capabilities

between the cores by enabling a cooperation between the private TLBs [1]. In

other words, each individual core tries to borrow capacity from private TLBs of

other cores in the system before finding the translation with relatively higher cost

in the OS.

The approaches using a shared TLB introduce higher access latency, require inter-

connection network with higher bandwidth, and of course, need a higher associa-

tivity, leading to higher power consumption. On the other hand, the approaches
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Figure 3.1: Percentage of data detected as private in a page granularity detection
versus subpage granularity detection mechanisms.
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in the second category need inquiring other TLBs for each missed page translation

that happen in each core which can introduce both design complexity and also

higher network traffic. For example, the work in [7] suggests snooping the other

TLBs in the system for finding the page entry in other TLBs. This approach is

not scalable with higher core counts due to traffic overhead and excessive energy

consumption required by snooping.

This motivates us to propose a new method to boost virtual address translation

that doesn’t suffer from the shortcomings listed above. Our second observation

motivates us to propose a technique to enhance the performance of virtual mem-

ory management.

Observation 2. We can utilize the detected private data not only to mitigate

the overhead of managing coherence in cache system, but also to improve the

performance of the whole memory.

Private data does not necessarily have all the requirements for shared data ac-

cesses. The most obvious example is the need to keep track of private data in

directory caches. As will be shown, we can boost the performance of virtual to

physical translation by introducing extra components that work in conjunction

with private TLBs.
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Chapter 4

Our Approach

In this chapter, we explain the details of our memory management scheme that

employs a runtime subpage granularity private data detection motivated by our

observations in Chapter 3. The two main mechanisms of our approach are i) the

mechanism for detecting private memory blocks in subpage granularity and ii)

the approaches that enable us to exploit the results of the data classification to

improve the performance of the system.

4.1 Private Block Detection

A common approach to differentiate between private and shared data blocks is

to utilize OS capabilities [50][47][49]. The prior work [50] extends TLB and

page table entries with some additional fields to distinguish between private and

shared pages. To do so, two new fields are introduced in TLB entries: while the

private bit (P) indicates whether the page is private or shared, the locked bit

(L) is employed to prevent race conditions when a private page becomes shared

and in turn the coherence status of cache blocks belonging this particular page

are restored. To distinguish between private and shared pages, three new fields

are also attached to page table entries: the private bit (P) marks whether the
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page is private or shared; if P is set, the keeper field indicates the identity of the

unique core storing the page table entry in its TLB; cached-in-TLB bit (C) shows

whether the keeper field is valid or not.

In our proposal, we extend the technique exploited in a previous by proposed

work [50] to detect private data at subpage granularity. Like the prior work, we

try to detect private data blocks at runtime, but unlike it, we intend to detect

private data at subpage granularity. To accomplish this, we use most significant

bits of page offset for subpage ID and clone V, P, C, L and keeper fields in TLB

and page table entries so that each subpage has its own such fields, as depicted in

Figure 4.1. In this work, we divide each page into a number of subpages. The size

of the keeper field grows according to the number of cores in the system. In other

words, the size of the keeper is log2(N) where N is number of cores in the system.

We should note that these extra storage requirements in page table entries are

part of OS storage and does not force any additional storage requirement to the

underlying hardware except the three bits required to identify the status of each

subpage in TLB entry.
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Figure 4.1: TLB and page table entry formats.

We, next, give the three main operations that should be performed to update the

fields properly and enable detection of private data at subpage granularity. We

also depict the operations in Figure 4.2.

• First (red): When a page is loaded into main memory for the first time,
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Figure 4.2: The subpage granularity private data detection mechanism.

the operating system allocates a new page table entry with the virtual to

physical address translation. Besides storing the virtual to physical ad-

dress translation in the page table entry, all subpages within that page are

considered as private and thereby, the corresponding (P) bits are set. All

subpages’ bits (C) are also cleared, showing that the entry has not been

cached in any TLB yet.

• Second (blue): Core1 faces a miss in its TLB for an address translation or

there is a hit in the TLB but the (V) bit of the subpage which was tried to

be accessed, is cleared (means it is not cached in TLB yet). In either cases,

core1 will inquire the operating system page table for the translation of the

subpage. It finds the (C) bit of the subpage cleared, which means that the

subpage is not accessed by any other core yet. Thus, the (C) bit is set and

the identity of the requester core (core 1) is recorded in the keeper field.

• Third (brown): Core2 experiences a miss in its TLB for the same subpage

like the previous case. After looking up the page table for the specific sub-

page, it turns out both (C) and (P) bits of the subpage are set. Therefore,

the keeper field should be compared against the identity of the requester

28



core. If there is a match, it means that the keeper core has already expe-

rienced a TLB miss and the page table entry is brought into the requester

core’s TLB, considering the subpage as privately accessed only by the re-

quester core. If the keeper field does not match the identity of the core

requesting the page table entry (like in this example), it means that two

different cores are attempting to access the data within the same subpage

(core 1 and core 2 in this example). In this situation, the operating system

decides to turn the status of corresponding subpage to shared by clearing

the (P) bit. Moreover, the operating system triggers the coherence recov-

ery mechanism by informing the keeper core to restore the coherence status

of cache blocks belonging to the subpage. We will explain the coherence

recovery mechanism with more detail in the next section.

4.1.1 Coherence Recovery Mechanism

As will be seen in the coming sections, the performance improvement we expect to

gain by our approach is based on the fact that we avoid applying some coherence

operations for private data. In fact, some of the private data does not necessarily

need many of the messages interchanged between the cache controllers. Similarly,

the directory cache does not need to track private blocks like shared blocks.

Therefore, if at a certain point, we realize that our assumption about the private

status of a block is no longer valid, then we need to recover from this situa-

tion. Otherwise, the caches might not remain coherent. In this work, we use a

similar recovery mechanism proposed by a previous study [50]. In this work, au-

thors propose two strategies, namely, flushing-based recovery and updating-based

recovery mechanisms. Their results show that these two strategies are slightly dif-

ferent in terms of performance. Therefore, our recovery mechanism uses a similar

flushing-based mechanism and performs following operations in order to ensure

safe recovery from changing status of a subpage from private to shared. Figure

4.3 depicts the coherence recovery mechanism being applied in our proposal.
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• First, the initiator core issues a recovery message (after trying to access

a subpage in its TLB that is already being kept by another core in the

system) to be sent to the keeper core. Before, completing the recovery, the

initiator core should also lock that subpage in its TLB.

• Second, on the arrival of recovery request, the keeper core first should pre-

vent accesses to the blocks of that subpage by setting the subpage’s (L)

bit.

• Third, the keeper should invalidate all the blocks corresponding to that

subpage in its private cache. The keeper also should take care of the pend-

ing blocks in its Miss Status Holding Register (MSHR). If there are any

blocks within that subpage in MSHR, they should be evicted right after the

operation completes.

• Forth, once the mentioned operations finish, the keeper sends back an ac-

knowledgment to announce the completion of the recovery. At this point,

the core which initiated the recovery, change the subpage status of that

specific subpage to shared and continue its operation.

4.2 Directory Cache Organization

In this section, we present our approach to address two most important drawbacks

of directory-based cache coherence protocols. The first drawback is the need for

a highly associative cache, which introduces high power consumption and high

complexity in the design. Second, the high storage cost for keeping track of all

the blocks that exist in the last level private caches. Unfortunately, both of these

drawbacks threaten the scalability of the system. Moreover, the former linearly

gets worse with the number of cores in the system as depicted in Chapter 2.

The primary solution for solving the discussed scalability problem inherited in

the duplicate-tag directory based cache coherence protocols is adjusting the as-

sociativity value of directory cache to some low values similar to the ones in the
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Figure 4.3: An example recovery mechanism shown for two cores, C1 and C2.
Operations need to be proposed according to the order given in circles.
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associativity of private caches. However, with this approach, the number of evic-

tions in directory caches caused by adding a new entry to the directory cache

might increase dramatically. Since any eviction in directory cache requires invali-

dation of all the copies of that block in the whole private caches in the system, this

might jeopardize the performance of the system. Thus, the directory cache has

the potential to become a limiting factor in performance of large-scale many-core

architectures.
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Figure 4.4: Directory cache organization in our proposal.
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In this work, we try to utilize our private data detection to address the afore-

mentioned scalability problem as follows. We avoid polluting the directory cache

with private data by holding the states for the shared data but not for the private

ones. Figure 4.4 shows directory organization applied in our proposal and how

private data must avoid accessing the home directory cache while shared data

need a directory access before issuing further coherence requests. The decision

about private and shared status of a block is made based on the status of the

subpage (P bit) that a block belongs to. As we will show in the evaluation section,

we can dramatically decrease the directory cache eviction rate and mitigate the

inevitable performance degradation due to high directory eviction counts. The

invalidation of the blocks related to the evicted directory entries is performed as

normal. In the sensitivity analysis, we show that our idea works with different

associativity values and we get acceptable performance results even for directory

caches with low associativity.

4.3 On-chip Page Table

Memory classification at subpage level may increase the frequency of the operating

system’s involvement in updating the maintenance bits belonging to subpages

stored in page table entries, nullifying some portion of performance benefits of

subpage level data classification. For this reason, as our second contribution, we

show how we can negate the possible performance degradation by introducing

on-chip page table. Moreover, the proposed method also enables us to boost the

performance of the virtual memory management in many-core systems. Based

on the drawbacks of previous studies on TLB organization (see Chapter 2), we

propose our on-chip page table as follows.

1- We increase the probability of accessing a page translation within the chip by

introducing excessive capacity rather than the private TLBs for keeping the page

translation in the chip. In our implementation, each core’s private TLB includes

64 entries, thereby using the same size on-chip page table per core. We reserve

this space for our on-chip page table by not keeping the private data status in
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directory cache. In the experimental results, we show how devoting even a small

portion of the directory cache to the page translation can make the translation

faster without adversely affecting the performance of other components.

2- In contrast to the discussed approaches, we avoid snooping by distributing the

pages based on their tags into the on-chip page tables located in the directory

controller. Distribution is done by interleaving the page entries according to the

least significant bits of virtual page numbers (for example, with 16 cores, we use

4 least significant bits). This way, for each miss in the private TLBs, the core

sends the request for the page address translation only to one of the cores’ on-chip

page table. This makes our methods more scalable compared to other proposed

cooperative TLBs based on snooping.

Figure 4.5 depicts the structure of our on-chip page table and how a miss in one

of the private TLBs can be resolved by one of the on-chip page tables. After a

TLB miss occurs in core 0 for an address translation of page ’a’, the request for

finding the page information for page ’a’ is sent directly to the core which may

have the entries for that page (in this example core N-1). Then, the translation is

forwarded back to the requested core in case it is found in the on-chip page table

(red line). However, in the second case, the search for finding the translation for

page ’b’ was not successful. Therefore, with OS involvement, the entries will be

written to one of the on-chip page tables after interleaving (core 1) and also to

the TLB of the requested core (core 0).

In our experiments, we show how much can be avoided referring to OS thanks to

exploiting the on-chip page table. We also show the effectiveness of our approach

with varying TLB sizes.
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Chapter 5

Methodology

5.1 System Setup

We evaluate our proposal with Gem5 full-system simulator [53] running Linux

version 2.6. Gem5 uses RUBY which implements a detailed model for the mem-

ory subsystem and specifically cache coherence protocol. For modeling the inter-

connection network, we use GARNET [54], a detailed interconnection simulator

also included in gem5. We apply our idea to MOESI-CMP-Directory which is

a directory-based cache coherence protocol implemented in gem5. We present

results with a system consisting of 16 cores with level one private data and in-

struction caches, and a shared level two cache. Table 5.1 provides more details

on our simulation environment. In the rest of this thesis, this configuration is

considered as the base setup, where our approach based on private/shared data

classification is not applied.
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Table 5.1: Default simulation parameters used in our experiments.

Processor 16 Alpha cores, 2GHz, 64 entries TLB
Private L1D 32 KB (=512 entries), 4-way associative,

64B cache-block size
Private L1I 32 KB, 2-way associative
Shared L2 32MB (2MB per core) , 8-way associative
Directory cache 512 entries, 4-16 way associative
Network Torus , Fixed Garnet interconnection model
Cache coherence protocol MOESI CMP Directory
Page size 8KB

5.2 Benchmarks

We evaluate our proposal with ten different parallel workloads from two com-

monly used suites (SPLASH-2 [55] and PARSEC 2.1 [56]). SPLASH and PAR-

SEC are two commonly used benchmark suits in research. They have been par-

allelized to take advantage of multiprocessors. The applications within these two

suits include a wide range of application domains as indicated in Table 5.2. As

indicated in the Table 5.3, we simulated the applications mostly with small size

data sets since we executed a large set of simulations to provide a comprehensive

sensitivity analysis, and each simulation takes a considerable amount of time to

run in our full-system simulator.

For our experimental results, we only consider the parallel phase of benchmarks

or Region of Interest (ROI); and the number of threads used by each application

is set based on the number of cores in the system, which is 16 by default.

5.3 Evaluation Metrics

We compare our approach with a state-of-the-art directory-based cache coher-

ence protocol. The specific metrics we tested are the number of evictions in the

directory cache, cache miss ratio, cache miss latency, the network traffic, and the
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Table 5.2: Benchmarks and respective input files.

Benchmarks Application Domain
Parsec 2.1

Blacksholes Financial Analysis
Bodytrack Computer vision
Canneal Engineering
Fluidaniate Animation
Swaptions Financial Analysis

Splash 2
Cholesky High-Performance Computing (matrix factorization)
Raytrace Graphics
Waternsq High-Performance Computing (molecular dynamics)
Radix General (sort technique)
Ocean Scientific Computation (Oceanography)

execution time.

These metrics help us evaluate the scalability of our approach against the base

setup. We observe how much of the evictions can be avoided in directory cache

and the respective effects on other metrics. For instance, fewer evictions in direc-

tory cache results with less number of cache block invalidations. Therefore, miss

ratio is expected to change in our proposal.

Another metric, we used to demonstrate the performance of our proposal is cache

miss latency. Our proposal not only affects the cache miss ratio, but it is also

able to reduce the average cache miss latency, due to the fact that a directory

cache lookup for private blocks is avoided in our proposal. In the next chapter,

we explain how much our proposal can boost the performance in terms of cache

miss latency.

Moreover, we examine the network coherence traffic as another important metric

in evaluation of cache coherence management. The reduction in cache misses and

directory eviction directly affect the network traffic as will be shown in the next

chapter.

Finally, we evaluate the overall performance of our proposal against the base
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Table 5.3: Benchmarks and respective input files.

Benchmarks Input
Parsec 2.1

Blacksholes
Bodytrack
Canneal simsmall
Fluidaniate
Swaptions

Splash 2
Cholesky tk15.O
Raytrace Teapot environment
Waternsq 512 molecules, 3 time steps
Radix 1048576 keys
Ocean 258*258 ocean

setup, but by comparing the execution latencies for all set of the benchmarks.

As explained earlier, for a directory cache based on duplicate-tag, the associativ-

ity of directory cache and its size are the limiting factors for scalability. Since

scalability is a major concern in this thesis, we test our approach against the

state-of-the-art directory cache coherence protocol by performing a sensitivity

analysis.
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Chapter 6

Evaluation

In this chapter we show how our proposal is able to improve the performance

of directory-based cache coherence protocol through reducing cache miss ratio,

network traffic, and latency of resolving cache misses. Therefore, we first show

the reduction in terms of evictions in the directory cache. Then, we show the

effects in cache miss ratio as well as the number of messages interchanged in the

network as a result of better directory cache eviction rate. We also study the

performance of our proposal in reducing the latency of resolving a cache miss.

Moreover, we evaluate our on-chip page table by showing the amount of misses in

private TLBs that can be resolved by introducing our on-chip page table. Finally,

we discuss the effects of using directory caches with low associativity.

6.1 Directory Cache Eviction

As discussed earlier in this thesis, a considerable amount of accessed memory

blocks are private; and therefore, we do not keep track of those blocks in directory

caches. By not polluting the directory cache with status of private blocks that

do not need coherence maintenance, we aim to have less evictions in directory

cache even for caches with lower associativity. Figure 6.1 shows directory cache
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eviction rate for our proposal normalized with respect to the base configuration.

As can be seen from this Figure, on average, we have 58% less evictions in the

directory cache compared to the base setup without any data classification.

The reduction in directory cache eviction ratio can be the result of two factors.

First, the percentage of detected private data blocks, and second, the access pat-

tern in which shared blocks are accessed. Arguably, if we can detect more private

data, we can avoid more evictions in the directory caches. For instance, number of

directory evictions has been reduced for Waternsq more than Cholesky, since, we

were able to detect higher number of private data blocks for Waternsq compared

to Cholesky (70% for Waternsq and 17% for Cholesky). However, it is not the

only factor which affects reduction in the directory eviction. The sharing pattern

of an application can also play an important role in the number of evictions that

happen in the directory. For instance, for Canneal, we were able to detect a high

percentage of private data blocks (86%) compared to Bodytrack (34%). But,

because of the difference in sharing pattern of these two applications, we observe

rather same normalized eviction rates. The reason is due to the temporal com-

munication behavior of these two applications. Previous research [1] observed

that, in Canneal, the communication between the cores take place throughout

the execution of the application, whereas, in Bodytrack, for the majority of the

parallel phase, there is limited communication between cores as shown in Figure

6.2. Therefore, in Canneal, the chances for a possible conflict will be higher than

Bodytrack.

Another observation in Figure 6.1 is the dramatic improvement in directory evic-

tion ratio for Waternsq application. Based on the results reported in [1], Water-

nsq and Waterspa that involve all cores actively in a producer-consumer pattern.

Furthermore, based on these observation, they conclude that a broadcast-based

technique is likely to benefit from this in Waternsq and Waterspa. Therefore, we

also observe that Waternsq benefits the most.
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Figure 6.1: Normalized directory cache eviction rate.

Communication

Figure 6.2: Normalized communication changes over time for Bodytrack and
Canneal applications [1].
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6.2 Private Cache Misses

One of the primary advantages of reducing directory cache eviction is the reduced

invalidations at the last level private caches (in our system, the L1 cache). This is

due to the fact that any eviction of a block in directory cache implies invalidation

of all the blocks in any of the L1 caches that correspond to that block. Figure

6.3 shows the L1 cache miss ratio for 10 different multi-threaded applications

normalized with respect to the base case. As can be seen from this figure, our

approach reduces the private L1 cache miss ratio by 15%, on average.

Moreover, we generate better results for those applications with fewer misclassi-

fied blocks. In other words, the higher the number of private blocks detected out

of all actual private data blocks exist, the higher the reduction is in the number

of cache misses.
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Figure 6.3: Normalized L1 cache miss rate.

6.3 Network Traffic

The number of messages exchanged in the system is also reduced by our proposal.

This is because evictions in directory caches and processor cache misses impact the
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network message counts. For instance, for resolving a miss in the first level private

cache, different controllers in the system need to exchange request, forward, and

response messages with one another. In Figure 6.4, we compare the message

counts of our proposal normalized with respect to the base system. Our approach

reduces the message traffic between 9% and 21% with an average reduction of

12%.
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Figure 6.4: Normalized network traffic message count.

6.4 Cache Miss Latency

With our proposal, we are also able to reduce the average latency for resolving

cache misses. Normally, in a CMP, when a core experiences a miss in its cache,

it tries to find the data block with right permission in other cores’ caches. For

inquiring those permission information, a directory lookup is required. However,

for the case of private block, particularly, it is known that no other core cached

that block of data. So, we may avoid referring to directory cache for those requests

associated to private blocks. Therefore, some portion of the requests experience

less latency with a cache miss, lowering the overall average latency of a cache

miss. Figure 6.5 depicts the average cache miss latency normalized to the base
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case for our applications. As can be seen, on average, we resolve cache misses 8%

faster than the base system.
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Figure 6.5: Normalized cache miss latency.

6.5 Coherence Recovery Overhead

To demonstrate that the coherence recovery has negligible effect on the perfor-

mance of our proposal, Figure 6.6 shows the times that recovery mechanism has

been triggered in proportion to total TLB accesses, throughout the execution of

each application. As it can be seen, on average, 1.34% of accesses to TLB caused

a coherence recovery to be triggered.

6.6 Execution Time and Sensitivity Analysis

The reduction in the number of cache misses, the reduced latency in resolving

them, and a decline in the number of messages exchanged in the network; all

result in a reduction in the latency of executing the application as it is shown

in Figure 6.7. This figure also illustrates the sensitivity of our approach to the
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Figure 6.6: Percentage of TLB accesses that triggered the coherence recovery.

associativity of directory cache. The three bars labeled as DS-Assoc-4, DS-Assoc-

8, DS-Assoc-16 represent three configurations with directory cache associativity

equal to 4, 8, and 16, respectively. On average, we generate 4%, 6%, and 7%

improvement in execution time for directory caches with associativity equal to 4,

8, and 16, respectively. As it was discussed in early chapters, high-associativity

requirement for directory caches is a major problem for scalability, especially with

high core counts. The key observation in Figure 10 is that our approach enables

quite similar results even for directory caches with lower associativity.
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Figure 6.7: Execution time normalized with respect to the base system. DC-
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tivity equal to 4, 8, and 16, respectively.
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6.7 Performance of On-Chip Page Table

We, next, show the improvements of virtual memory management by introducing

the on-chip page table. Figure 6.8 shows the percentage of TLB misses that also

experience a miss in on-chip page tables. In other words, it shows how much

we can avoid accessing the costly OS page table by finding the required page

translation in the distributed page table. As an example, for Canneal benchmark,

only 8% of page translations which causes a miss in private TLBs, can not be

found in the on-chip page table. Therefore, the remaining 92% of accesses find

the right translation in the on-chip page table after they experienced a miss in

private TLBs. On average, our approach prevents 84% of accesses to operating

system by introducing the on-chip page table.
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Figure 6.8: Normalized miss rate of finding page translation in a core.

We also compared our on-chip page table with a modified version of the base

system, where the TLB is double the original size. As can be seen in Figure

6.8, by doubling the TLB size, we can only eliminate the 39% of the accesses

to OS page table. So, we can conclude that increasing the cache capacity for

page translation can not solely improve the performance. Moreover, exploiting

an effective technique which enables sharing page translation between the cores
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is also very crucial for providing a fast virtual page translation. As it can be

seen, in most of the benchmarks, there is a big difference between the miss rate

for on-chip page table and double-size TLB which proves the former statement.
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Chapter 7

Conclusion and Future Work

In this thesis, we propose a subpage granularity data management scheme which

improves the performance of directory-based cache coherence protocols by de-

creasing the number of evictions taking place in directory caches. This is done

by applying a subpage granularity data classification which helps us not to keep

track of significant percentage of data blocks in directory caches. We also accel-

erate virtual to physical address translation by introducing on-chip page table.

Specifically, we avoid 84% of accesses to the OS page table. Overall, we observe

up to 7% improvements in execution time even for directory caches with lower

associativities, which ensures the scalability of our approach.

We may extend the proposal in this thesis by applying new private data detection

mechanisms to detect more of the private data. One way of doing so is by applying

a compiler optimization pass which detects some of the private data statically at

compile time. The compiler-assisted detection mechanism can cooperate with

our runtime subpage granularity detection approach to enable detection of more

private data without introducing any additional overheads to the hardware.
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