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ABSTRACT
BLOCKS OF QUOTIENTS OF MACKEY ALGEBRAS

Elif Dogan Dar
M.S. in Mathematics
Advisor: Assoc. Prof. Dr. Laurence John Barker
August, 2015

We review a theorem by Boltje and Kiilshammer which states that under certain
circumstances the endomorphism ring Endrg(RX) has only one block. We study
the double Burnside ring, the Burnside ring and the transformations between two
bases of it, namely the transitive (G-set basis and the primitive idempotent basis.
We introduce algebras A, A%f and T which are quotient algebras of the inflation
Mackey algebra, the deflation Mackey algebra and the ordinary Mackey algebra
respectively. We examine the primitive idempotents of Z(Y). We prove that the
algebra A has a unique block and give an example where A%f has two blocks.

Keywords: blocks, double Burnside ring, inflation Mackey algebra, deflation
Mackey algebra, ordinary Mackey algebra.
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OZET

MACKEY CEBIRLERININ BOLUM CEBIRLERININ
BLOKLARI

Elif Dogan Dar
Matematik, Yiiksek Lisans
Tez Danigmani: Assoc. Prof. Dr. Laurence John Barker
Agustos, 2015

Boltje ve Kiilshammer'in bazi 6zel kosullar altinda 6zyapi dontisiim halkast
Endgrg(RX)’in yalmzca bir bloku oldugunu gosteren bir teoremini sunacagiz.
Ikili Burnside halkasim ve Burnside halkasim cahsacagiz ve iki bazi arasmdaki
doniisiimii gosterecegiz. A, A ve T seklinde gosterecegimiz iic cebir
tanimlayacagiz. Bu cebirler sigirme Mackey cebiri, sondiirme Mackey cebiri ve
adi Mackey cebirinin boliim cebirleridir. Ardindan Z(Y)un ilkel idempotentlerini
inceleyecegiz. A cebirinin sadece bir bloku oldugunu gosterdikten sonra, A"’in
iki blokunun oldugu bir 6rnek verecegiz.

Anahtar sézcikler: blok, ikili Burnside halkasi, sisirme Mackey cebiri, sondiirme

Mackey cebiri, adi Mackey cebiri .
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Chapter 1

Introduction

In this thesis we focus on finding the blocks of some specific algebras. Throughout
the thesis, K will denote a field with characteristic zero and R a finite set of finite
groups that is closed under subquotients up to isomorphism. The Burnside ring
B(@G) of a finite group G, introduced by Dress [1], is the Grothendieck group of

the category of finite G-sets with multiplication coming from direct product.

In Chapter 2, we give definition of a block and a theorem of Boltje and
Kiilshammer [2] which states that under certain circumstances Endrg(RX) has

only one block.

In Chapter 3, we give the definition of bisets and the double Burnside ring. Also
we see that the Burnside ring has two bases, namely the transitive G-set basis
and the primitive idempotent basis. In addition, we will give the transformation
between these two bases which is found by Gluck [5] and Yoshida [6], indepen-
dently.

We have the inflation Mackey category, B® = BY, generated by ordinary induc-
tions, ordinary restrictions and inflations. We also consider the deflation Mackey

category , B = By, similarly defined.

Let ®*KB = @ KB(F,G) and define *KB* and # KB similarly. The problem
FGes



of classifying the blocks of YKB® is equivalent to the problem of classifying the
blocks of ®KB<, because these two are opposite algebras of each other up to
isomorphism and therefore they have isomorphic centres. However this problem
is hard. In this thesis we will consider the quotient algebras A and A%f de-

fined below, instead of those two algebras. Now let “KB = @KB (G), which

GeRr
is a module of the quiver algebra ®KB. Let p: *KB — FEndg(“KB) be the

representation associated with this module . We introduce the algebras
A= Aﬁ = p(®KB>)

Adef — A}i{ef — p(éBKBq).

In Chapter 4, we show that A has a unique block. Also, we will give an example

where A% has two blocks.



Chapter 2

Blocks of Endomorphism Rings

2.1 Blocks of Endomorphism Rings

Let R be a unital ring. Recall that an idempotent of R is an element e such that
e? = e. Also we call an idempotent e primitive if it cannot be written as a sum of
two orthogonal idempotents. In other words, e cannot be written as e = e; + €3
such that ejes = 0 = ese; where e; and ey are nonzero idempotents. We define a

block of R to be a primitive idempotent of Z(R).

Remark 2.1. Let A be a finite dimensional algebra over a field. Then 1 = ) e;
i=1
where the e;’s are the primitive idempotents of Z(A). Then

A= é Aei
i=1

as a direct sum of algebras.

Remark 2.2. Let A be aring and let 1, = e; +e3+ - -+ e, be a decomposition

of 1, into primitive idempotents ey, ..., e, of A. Then every central idempotent

e of A is equal to the subsum e = ) e; where I denotes the set of all elements
iel

i€ {1,2,...n} satisfying e;e = e;.

In fact, for an arbitrary i , ee; and (15 — e)e; are orthogonal idempotents whose

sum is e;. Since e; is primitive, we get ee; = ¢; or ee; = 0. If we multiply both
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sides of the equation 1, = ey +e3+ - - -+ ¢, with e, we get the desired expression

for e.

The next lemma and theorem is from Boltje and Kiilshammer [2].

Lemma 2.3 (Boltje-Kiilshammer). Let G be a finite group, R be an integral
domain and X be a transitive G-set. If no prime divisor of | X| is invertible in

R, then the RG- permutation module RX s indecomposable.

Proof. We may assume that |X| # 1. Assume that RX = M @ N is a direct
sum decomposition into RG-submodules and assume that M # {0}. Then M
and N are finitely generated free R-modules and they have a well defined R-rank.
Let z € X and H := stabg(x) and let p be a prime divisor of |X| = [G : H].
Since pR # R, there exists a maximal ideal P of R such that p € P. Then
F := R/P is a field of characteristic p. Let F denote an algebraic closure of
F. Then FX = (F®r M) @® (F ®z N) where FX, F ®z M and F ®p N are
relatively H-projective FG-modules. By Green’s Indecomposibility Theorem [3],
the p-part [G : H], = |X|, of | X| divides

dimp(F ®@pr M) = dimp(F @r M) = rkg, (R, @ M) = rkp(M)
Since p is arbitrary, we conclude that |X| divides rkr(M). But,
0# rkr(M) < rkr(M) +rkr(N) =rkgr(M & N) = rkr(RX) = | X|,
which implies rkr(M) = | X| and 7kg(N) = 0. Thus, N=0and M = RX. O

Theorem 2.4 (Boltje-Kiilshammer). Let G be a finite group, X be a finite G-set
and R be an integral domain. Assume that, for every x € X and for every prime
divisor p of |G : stabg(x)], one has {0} # pR # R. Then the ring Endrg(RX)

has a unique block.

Proof. Let K denote the field of fractions of R. We decompose X into G-orbits,
X = X1| ] || X,, and obtain decompositions

RX =RX,®...RX, and KX=KX|&®... KX, (1.1)
4



into RG-submodules and K G-submodules, respectively. We decompose K X;, for

each t = 1,2,...,n, into indecomposable K G- submodules:
KX;=V'ae. .oV (1.2)

We may assume that V! & K| the trivial KG-module. In fact, the hypothesis
on R and X implies that |X;| # 0 in K. This implies that + : K — KX;,

1— | Xy Y, zand 7 : KX; — K, 2 — 1 are KG-module homomor-
reX;
phisms with 7 ot = idg, so that K is isomorphic to a direct summand of K X;.

Let e; € Endgg(RX) denote the idempotent which is the projection onto the i-th
component in the first decomposition in 1.1. Then e; is primitive in Endgg(RX)
by Lemma 2.3. We view Endgg(RX) as a subring of End (K X) via the canon-
ical embedding and decompose ¢; in End g (K X) further into primitive idempo-

tents corresponding to the decomposition in 1.2.

e;=eM 4o el

Altogether we have a primitive decomposition
L=(e e+ rel)t eV re@ ey (13)

in Endgg(KX). Now let e be a non-zero central idempotent of Endgs(RX).
Since 1 = e; + -+ + e, is a primitive decomposition of 1 in Endgg(RX), we

have e = > e; for some () # I C {1,2,...n} by Remark 2.2. Since e is also a
il
central idempotent of Endkg(KX), it is also a subsum of the decomposition in

(1.3). Since 0 # I C {1,2,...n}, there exists an element ¢ € I, and we have

(1) )

e;e = e;. This implies that e;’e = ¢;’. For every j € {1,2,...n} there exists

an isomorphism « : KX — KX such that ozegl)ofl = eﬁ»l). The equation

egl)e = egl) implies

wm_ 1) -1 (1)

_ 1 1) -1 (1)
€j —aei e —ozei

ea  =ae; o e =e; €.

This implies that eje # 0 and Remark 2.2 implies that j € I. Thus I =
{1,2,...n} and e = 1. O



Chapter 3

Double Burnside Ring

In this chapter we give the theory of bisets which was initiated by Bouc [4] and
we define the double Burnside ring. Also we exhibit two bases of the Burnside
algebra and give the transformation between them, which was found by Gluck [5]
and Yoshida [6] independently.

3.1 Bisets and the Double Burnside Ring

In this section, we explain how general notions of induction and restriction can

be expressed using bisets.

Definition 3.1. Let G and H be groups. An (G, H)-biset U is a set with a left

G-action and a right H-action such that these actions commute, i.e.,
Vg € G,Vu € U, Vh € H, (g.u).h = g.(u.h).

Definition 3.2. Let G and H be finite groups. The double Burnside ring
B(G, H) consists of the formal differences of isomorphism classes of finite (G, H)-
bisets. The addition is defined to be disjoint union of (G, H)-bisets, and multi-

plication is as follows

Definition 3.3 (Product of two bisets). Let G, H and K be groups. The product
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of (G, H)-biset U and (H, K )-biset V is defined as the set of H orbits of the carte-
sian product U x V where the action of H is defined by (u,v).h := (u.h, h='.v).
It is denoted by U x gy V and the H-orbit of (u,v) is denoted by (u,y v). The set
U xyVisa (G, K)-biset with the actions g.(u,gv).k = (g.u,z v.k).

Definition 3.4. Let U be a (G, H)-biset. Then for u € U we define the orbit of

u as the set of elements whose form is guh where g € G and h € H.

So we can write U as a disjoint union of its orbits:

U= |_| GuH

ueG\U/H

where u runs through the representatives of (G, H) orbits.

Definition 3.5. Let U be (G, H)-biset. U is called transitive if it has only one
orbit.

We can see every (G, H)-biset as a (G x H)-set by defining the action as
(g,h).u = guh™*.
When (G, H)-biset U has only one orbit, i.e., U is transitive, it is isomorphic to
(G x H)/L,] where L, is the stabilizer of any element v of U in G x H, i.e.,
L.,= (G H),={(g9,h) e Gx H|gu=uh, uweU}.
The isomorphism is

(9, h) Ly € [(G x H)/L,] = guh™" € U.

Since every (G, H)-biset is a disjoint union of transitive (G, H)-bisets, the double
Burnside ring is the free Z module whose generators are the set of isomorphism

classes of transitive (G, H)-bisets, ie,

B(G.H) = @ ZlGXH}.




Given a group homomorphism « : H < G, we define transitive morphisms in-

duction as an (H, G)-biset such that,
nindg = [H x G/{(a(g),9) : g € G}]

and restriction as a (G, H)-biset such that

cresy =[G x H/{(g,a(g)) : g € G}].

When « is injective, following [7], we call gindg, an ordinary induction and gres$,
an ordinary restriction. When « is surjective we write ydefy; = yindg, which we
call deflation and we write inf}, = gres$; which we call inflation. When « is an
. . . . . -1 . . .

isomorphism we write gisog = gyindg = gresy;, and call it isogation. When «
is an inclusion we omit the symbol a from the notation, just writing gindg and

Gresy.
Following the notation of Bouc [§], let
ki(L) :={h € H|(h,1) € L}
kao(L) == {g € G|(1,9) € L}
pi(L) :={h € H|3g € G, (h,9) € L}
po(L) :={g9 € G|3h € H,(h,g) € L} .

Definition 3.6. (Star Product) The star product * of two subgroups L < G x H
and M < H x K is defined as

L«M=1{(g,k):(g9,h) € Land (h,k) € M forsome h € H}.

Due to Bouc [8], we have a formula for the product of two bisets.

Theorem 3.7 (Mackey Product Formula, [8]). Let G, H, K be finite groups and
let L<GxH and M < H x K. Then

Gx H Hx K B Gx K
L |7\ T | T 2 LD M|
help2(L)\H/p1(M)]




Also again by Bouc [8], we know that every transitive (G, H)-biset can be written

as the composition of the five elementary bisets defined above.

Theorem 3.8 ([8]). Let H and G be groups and L < H X G.

[HXG

I :| =H indDinfD/Cisog/AdefBresG
where D = py(L), C = ki(L), B =py(L), A= ko(L) and ¢ : B/A — D/C is an

1somorphism.

3.2 Two Bases of the Burnside Algebra

In this section, we will describe two bases of the Burnside algebra and the trans-
formation between these two bases found by Gluck [5] and independently by
Yoshida [6].

A finite G-set X is a finite set on which G acts associatively. A G-set X is
transitive when there is only one G-orbit in X. In that case, let z € X and let
H be the stabilizer of x. Then there is an isomorphism between [X] and [G/H]
(the left cosets of H in G). The isomorphism is

gr € X - gH € G/H forg €G.

Let H and K be subgroups of G. Call H and K as G-conjugate, denoted by
H=¢ K, if gHg~! = K for some g € G. Also, if gHg~! C K for some ¢ € G,
we write H <g K, and say that H is subconjugate to K.

Given arbitrary G-sets X and Y , we form their disjoint union X ITY and cartesian
product X x Y, both of which are GG-sets. The action of G on X X Y is defined
by

g.(z,y) = (gx,g9y) forg € G, v € X and y € Y.

Definition 3.9. The Burnside ring of a finite group G, denoted by B(G), is the
abelian group generated by the isomorphism classes [X] of finite G-sets X with

9



addition [X] + [Y] = [X W Y], the disjoint union of the G-sets X and Y. We
define the multiplication for G-sets X and Y by [X][Y] = [X x Y], the direct

product, which makes B(G) a unital commutative ring.

Every G-set can be written as a disjoint union of transitive G-sets. Therefore,

{[G/H] : H <¢ G} is a basis for B(G), ie, B(G) = €D Z[G/H].
H<gG

Note that, as Z-modules, we can identify B(G, H) = B(G x H), but the product
in the previous section is different from the ring multiplication defined in this

section.

We define the Burnside algebra over C to be

CB(G)=Cw®; B(G)= P C[G/H].

H<aG

Let {€7 : I <¢ G} be the set of algebra maps CB(G) — C where § [X] = | X
and | X?| is the number of elements fixed by I for a G-set X . The set of primitive
idempotents of CB(G) can be written as {ef : I <¢ G} where €7 (e§)) = 0(1,11.
Here §(7,1y is 1 if I =¢ I’ and 0 otherwise. The next well known theorem can be

found in, for instance, Ayse Yaman’s thesis [10].

Theorem 3.10. {¢f : I <q G} gives another basis for CB(G).

The table of marks, which we now define, is the transformation matrix from co-
ordinates with respect to the basis {[G/U] : U < G} to coordinates with respect
to the basis {e? I <G } Detailed information about it can be found in Ayse
Yaman’s thesis [10].

Definition 3.11 (the table of marks). The matrix Mg = (mg(I,U))rv<,c with
rows and columns indexed by representatives of the conjugacy classes of the

subgroups of G, is called the Table of Marks where

ma(1,U) = €7 [G/Ul = [{gU C G : IgU = gU}| = |{g € G : I <* U}|/|U].

We write the inverse of the table of marks as M5' = (mz" (U, I))1v<qc-

10



We will use the transformation between these two bases in the next chapter, the

transformations are

G/UT =Y ma(L,U)e§  and  ef = > mg"(U.I)[G/U].

1<cG U<gG

Remark 3.12. Let x be in CB(G), then x can be written as,

11



Chapter 4

The Blocks of A and A

In this chapter we will introduce algebras A, A% and Y. We will show that A
has a unique block after classifying the blocks of T. Also we will give an example
where A% has two blocks. Our account is influenced by Barker and draws some

parts from his unpublished notes.

4.1 Fundementals

In the previous chapter we defined the double Burnside ring. In this section
we introduce algebras A, A% and Y. Let K be a field with characteristic zero
and K be a finite set of finite groups that is closed under subquotients up to
isomorphism, i.e., if K < H < G € K then an isomorphic copy of H/K belongs
to R.

Definition 4.1. Bg is the full subcategory of the biset category such that
Obj(Bg) = R and the Z-module of morphisms F' <— G in Bg is B(F,G) =
B(F x G) where the composition operation B(F,G) x B(G, H) — B(F, H) given
by taking G-orbits of direct products. This category is generated by ordinary re-
strictions, ordinary inductions, deflations, inflations and isogations by Theorem
3.8.

12



Definition 4.2. (the inflation Mackey category) B® = BY is the subcategory of
Bg such that the morphisms are generated by inflations, ordinary inductions and
ordinary restrictions. The category B” is called the inflation Mackey category
for 8. Here, the transitive morphisms [(F' x G)/I] are such that ko(I) = 1. By

Theorems 3.7 and 3.8, we have, for some epimorphism 77 : p1(I) — po(I),
[(F x G)/1] = pind,, ;yinf]] resc.
These transitive morphisms comprise a basis for B¥ (F, G).

Definition 4.3. (the deflation Mackey category) B< = By is the subcategory of
Bg such that the morphisms are generated by deflations,ordinary inductions and
ordinary restrictions. The category B is called the deflation Mackey category
for R. Here, the transitive morphisms [(F' x G)/I| are such that k(1) = 1. We

have, for some epimorphism 7; : p1(I) < p2(1),
[(F' x G)/I] = pind,, jdef] jresc.
These transitive morphisms comprise a basis for BY(F, G).

Definition 4.4. (the ordinary Mackey category) B2 = BZ is the subcategory of
Bg such that the morphisms are generated by ordinary inductions and ordinary
restrictions. The category B* is called the ordinary Mackey category for .
Here, transitive morphisms [(F' x G)/I| are such that ki (I) = 1 = ko(I). We

have, for some isomorphism 77 : p1 (1) — pa(1),
[(F x G)/1] = pind,, ;yiso,, presc.

These transitive morphisms comprise a basis for B2(F, Q).

Now we consider the problem of classifying the blocks of the category KB" for
given K and R, we mean, the blocks of the algebra
®KB” = P KB"(F,G).
FGeR
This is equivalent to the problem of classifying the blocks of PKB< because
these two are opposite algebras of each other up to isomorphism and there-
fore they have isomorphic centres. However this problem is hard. In this the-

sis we will consider quotients of these instead of these two algebras. Now let
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°KB =% KBz = @KB(G). We make KB a ®KB-module, via the evident
Geg
isomorphism KB = @KB(G, 1).
GeR

Let p: ®KB — Endg(°KB) be the representation associated with this module.
We introduce the algebras

A = Agz = p(*KB")

A% = A% = p(®KB)  and

T ="T4:= p(°KB?).

4.2 The Blocks of T

In this section we will investigate the blocks of T which will be used in the next
section to find the blocks of A.

For a finite-dimensional algebra A, the Jacobson radical J(A) is the unique maxi-
mal nilpotent ideal of A, i.e., it is the unique maximal ideal such that there exists
a natural number k satisfying (J(A))¥ = 0. Also, it is well known that J(A) is

the unique minimal ideal such that A/J(A) is semisimple.

Theorem 4.5. We have ®KB”> = ®*KB2 @ J(?KB*) and ®*KB< = ®*KB~ @
J(®KB). In particular ®KB* is semisimple.

Proof. Proof of this theorem can be found in the paper of Barker [9, Theorem
5.3]. [

Now we will give an alternative proof to a lemma which can be found in a paper
of Boltje-Kiilshammer [2, Theorem 5.2].

Lemma 4.6. Let A be a unital ring and suppose that A = B & N where B is a
unital subring with 14 = 1 and N s a nilpotent ideal. Then every idempotent
of Z(A) belongs to Z(B).

14



Proof. Let a be an idempotent of Z(A). Since a is an idempotent we have a® = a
and therefore a = a' for every positive integer i. We write a = b + n for some

b€ B and n € N. Again since a is an idempotent we have
b+n=(b+n)*=0b>+nb+bn+n’

b € B since B is a subring and nb + bn +n? € N since N is an ideal. Since we
have a direct sum, these give b> = b and therefore b* = b for every positive integer
1.

Since N is nilpotent n* = (a — b)¥ = 0 for some positive integer k. This with
al=afori=1,2,..., k gives

0=(a—0b)"=d"+ ( g )akl(—b) + ( g )a’“Q(—b)2 et (=b)F
E—1 k—2

=a+ (k: ﬁ 1)a(—b) + <k ﬁ 2>a(—b)2 + o (D)

If we multiply both sides with a and reduce the powers of a again, we get

0=a(a—0b)"=d"*" + (k f 1)a’“(—b) + (k f 1)ak_2(—b)2 + -+ a(=b)F

=a+ (k ﬁ 1) a(—b) + (k f 2>a(—b)2 + -+ 4 a(=b)".

This gives us a(—b)* = (—b)* which implies with the fact that ' = b , ab = b.
We have ab = b which gives (b + n)b = b*> +nb = b. Since b* = b, we get nb = 0.

Now since b +n = a is in Z(A), we have
bn+n®= (b+n)n=an =na=nb+n) =nb+n?

which implies bn = nb.
Since a = b+n is an idempotent, we have (b+n)? = b+n. Since bn = nb = 0 we

2

have b? +n? = b+ n which gives n? = n. Therefore n' = n for all positive integer

i. Therefore we have n = n* = 0 which means a = b+ n = b. O]

Definition 4.7. Let G and H be groups. If U is an (H,G)-biset, then the
opposite biset U is the (G, H)-biset equal to U as a set, with actions defined by

Vg € G,Yu € U,Yh € H, guh(in U?) = h™ ug™*(in U).
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Definition 4.8. If G and H are groups, and L is a subgroup of H x G, then the
opposite subgroup L° is the subgroup of G x H defined by

L°={(g,h) e Gx H | (h,g) € L}.

Corollary 4.9. Fvery idempotent of Z(*KB") and Z(®KBT) belongs to
Z(®KB).

Proof. By using Theorem 4.5, and Lemma 4.6 we get the result for ®KB*. Now

GxG
take an idempotent e = Z AL { i ] from Z(®*KB<) where G € K and
L<(GX@G)
Ar € K. Define ¢ : ° KB — ®KB” ., # — z° to be the linear map such that

{G >L< G} 5 [G;OG]_ Then ¢(e)¢(e) = d(e?) = ¢(e).

Alsoif A\j, # 0 then ki (L) = 1, and ko(L°) = 1 which implies ¢(e) is an idempotent
which belongs to Z(®KB>). Then by the first part ¢(e) belongs to Z(®KB2).
Therefore, e = ¢(4(e)) also belongs to Z(®KBA) because opposite of the ordinary
Mackey category is itself. m

Corollary 4.10. The algebra Y is semisimple and every idempotent of Z(A) and
Z(A%) belongs to Z(T).

Proof. By Theorem 4.5, we have p(® KB"”) = p(®KB2) + p(J(°KB?)).
p(J(®KB")) is a nilpotent ideal by being the image of a nilpotent ideal un-
der p. Since T is semisimple, the intersection of T with any nilpotent ideal must
be zero. Therefore T N p(J(®KB*)) = 0. The result now follows from Lemma
4.6. O

Lemma 4.11, 4.14 and 4.17 can be found in the paper by Yoshida [6].

Lemma 4.11. Given finite groups H < G > I , then

presg(ef) = Z ek,

I'<pH:TI'=¢I
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Proof. Since gresg(e¥) € CB(H) by Remark 3.12 we have,
aresg(ef) = Z el (gresg(ef))el.
r<pH

Note that for J < H < G and for any G-set X, we have
e (gresq [X]) = €5 [X].
By using these, we get,

mesa(ef) = Y ep(mresa(ef))e = Y eflef)en = Y ep.

I'<yH I'<pH I'<pH:I'=¢I

]

Lemma 4.12 (Mackey Formula, [8]). Let H and K be subgroups of G. Then
KresGindH = Z KiIldegHCOH%-gmHI‘eSH
gE[K\G/H]

where [K\ G/H] is a set of representatives of (K, H)-double cosets in G and con®

18 the group isomorphism induced by conjugation by g.

Proof. By Theorem 3.7, we have

k/g Xk:Ge K}} [{(h,i(j) XhHe H}]

xresgindy = [
{(

. Z i Kx H ]
- . (g,1) .
oo e k) sk € Ky 0D {(n, 1) +h e HY

K x H
= 2 _{(gh,h):hngmH}}

ge[K\G/H]
_ [ K x (KNYH) (KN H) x (K9N H) (KINH) x H
B ge[Kz\(:;/H] [{(9h,2h) : 9h € K (9 H}} {{(gh, h):he€K9n H}} {{(h, h):he KinHY}

_ : g
= E Kind gne FCONyeg - yTESH .
9€[K\G/H]

Lemma 4.13. For H < G,
GindH(eg) = |Ng(H) : H|eg.
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Proof. Take any K < GG, we have
eg(gindH(eg)) = eﬁ(KresGindH(eg)).

By using Lemma 4.12,

= ek ( > xindgnsmconfenresy(ef)).

KgHCG

By the Lemma 4.11 we know that restriction of e to any proper subset of H is
zero. Therefore K9NH =H and K = KNYH,so K9=H and K = 9H.

— Y Elucony(el).

KgHCG:K=9H

Here we have, €% (sgcon?; (elh)) = ;5 (eyi) = 1. Therefore,

‘Ng(H) : H|, lszgﬂ

eic(cindp(efy)) =
0, otherwise
Therefore we have;
cindg(eff) = > fleindu(ef)ed = > |No(H): Hle§ = [Ng(H) : Hle.
K<g@G K<gG:K=gH
O
Lemma 4.14. Given finite groups J < H < G, then
aindg () = |Ng(J) : Ng(J)|e§.
Proof. Let J < H, we have
|Ng(J) . J|€§ = Gil’ldJ(ei) = GindHindJ(ej) = ’NH<J) . JlglndH(G?)
which implies;
GindH(eIf) = |Ng(<]) : .]VH((])|65TY
O
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For K € R, let Sk be the subspace of the KB spanned by the elements el such
that K 2 I < F € K. As a direct sum of T-modules,

°KB = P Sk

KE*R

where K runs over representatives of the isomorphism classes of groups in K.

Proposition 4.15. For each K € R, the Y-submodule Sk of °KB is simple.

Proof. Let S be a non zero Y-submodule of Sg. Take a non zero element s € S.

We have s = Za?e? where G runs over the groups in £ and .J runs over the
G,J
G-conjugacy classes of subgroups of G such that J = K. There exists at least

one pair (G,J) such that a§ # 0. Let ¢ : G < K be a group monomorphism
such that J = ¢(K). By Lemma 4.11, we have

kresa(eGs)/(a§) = ek € 8.

Also let I and F' be such that K =2 [ < F € R Let ¢ : F < G be a group
monomorphism such that I = ¢ (K). By Lemma 4.14, we have

F1ndﬁ(e§)/|Np(I)| = Gf e S.
O
For every K € R, let dg be the K-endomorphism of “KB projecting to Sk and
annihilating all the other simple modules, i.e., dg(e¥) = | K = I |§.
Proposition 4.16. The set {dx : K €4 R} is the set of primitive idempotents

of Z(T).

Proof. Since T acts faithfully on “°KB = @ Sk, we have
KeyxR

Also, since T is semisimple, we have
k
T = @ Mat,, (K).
i=1
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Without loss of generality, one can say Mat,, (K) = Endg(S;). Now Z(T) =

k

P KI; where I; is the identity matrix for Mat,, (K). So primitive idempotents
i=1

are (+--,0,1;,0,--+) for i = 1,--- , k which corresponds to dj’s.

4.3 The Blocks of A

We will show that A has a unique block by using the blocks of T which were

found in the previous section.

Lemma 4.17. Given finite groups N I G and N < H < G, then

. G/Ny _ G
cinfe/n (e y) = > er-
I<GG:IN=gH

Proof. Regarding a G/N-set X as a G-set by inflation, we have X' = XN/V e,

¥(X) = G%Z/VN[X]. So we have,
: G/N : G/N G/N [ G/N
GlnfG/N(eH//N> = Z 6?(GlnfG/N(€H§N))e? = Z €]J<I/N(€H§N)€? = Z e
<G <G [<GG:IN=gH
[l

Theorem 4.18. The algebra A has a unique block.

Proof. By Corollary 4.10 and Proposition 4.16, every idempotent of Z(A) is a
sum of idempotents having the form dx where K € K. Given an idempotent d

of Z(A) and K € R, we have ddx = dg or ddx = 0. We define an equivalence
relation = such that, given K, K’ € K, K = K’ provided, for all idempotents d
of Z(A), we have ddy = di if and only if ddy = dg .

Let 0k be the unique block of A such that 0xdyx = dg. So we have 0 = > dg
K/

where K’ runs over representatives of the isomorphism classes of groups in £ such
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that K = K’. Now using Lemma 4.17,

(kinfi.0x)(efer) = (0k.kinf;)(eler) = dx(eX) Z Srelek
HSKK
= (Odi)(ef) + > (6xdn)efef
HSkK

= di(ey) = ex # 0.

Therefore 0 # dx(elek) = dx.di(efek). In particular, dx.d; # 0. Therefore
K =1 for arbitrary K € K. The equivalence relation = has a unique equivalence

class. O

4.4 The Case 8 ={1,C,,V,}

In this section we shall show that A has only one block and A%f has two blocks
for R = {1,C5,V4}. Let Vy ={1,a,b,c}, A={1,a}, B={1,b} and C = {1,c}.
For R = {1,C5, V4}, we have the basis {el,el ,egs,e}/“,e%‘,eg‘*,ec,ew} for the
Burnside algebra. We will write inductions, restrictions, isogations, inflations and

deflations below. All basis elements goes to zero unless stated otherwise.

c,ind; = {6} —2e52,  y,ind; = {e% — dey*

. e = 2 , et — 2 : e~ 2e)’
vyinda = c v v,indg = c v v,indc = . "
2 4 2 4 2 4
ec.  — 2ey ec. — 2ep ec. — 2eq
1resg, = { 102 — 6% , 1resy, = { Y‘l - 6%
e}/‘* — efQ eY“ — 6?2 eY“ — efQ
Aresy, = presy, — resy, =
Va Va N Cy ) A\ Va . Cs ) C A\ Va o o
€4 €, €p €o, €c €cs,
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1is01 = {e} — e, iS00, =

crinfy = {e!

S R eyt
\V infv4/A =
4
CQ V4 V4 VZL
ec, e Teo Tey
6102
V41an4/C -
Co
602

e

Ca
1

Co

(& Co

— e¥4 + eg“

— 6102

Y

Ca
— 602

— e +ect, v,inf; = {e%

eY“ — eY“
eZ“ — eZ“
visoy, = S et — el
eg“ — eg“
e“ﬁj — e“fj

Vi Vi Vi Vi LV
— et tey teg teg +ey

Vi Vi
e{” —e” +ep

Vy Vy Vy
— ey teo tTey

Vi \A Vi
— ey, +eég +€V4

There is no short formula for deflations for the primitive idempotent basis. There-

fore, we computed deflations by the transitive GG-set basis and then passed to the

primitive idempotent basis by using the transformation formula by Gluck [5]. For

this, we need the table of marks and the inverse of it.

Mg(1,U)

Vi

1

N

S O O O &~ |+

S O O NN
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C
2
0
0
2
0

—_ = = =



eyt — 1/4el

e? — 1/2¢! et = 1/4el
1def02 = s 1def\/4 =
ez — 1/2e} eyt — 1/4el

e — 1/4e

( (
eyt — 1/2¢82 eyt — 1/2e82
Vy Ca Vi Ca
ey —1/2e ey —1/2e
A 1 A C:
V4/Ader4 = v o 'Va/B defv4 = v 02
4 2 4 2
eg  — 1/2eg’ eg  — 1/2e;
V4 CQ Va CZ

.
eyt — 1/2e52
V. c

ey — 1/2ef

V4/Cdefv4 =
ept = 1/2e?

\eg‘* — 1/2¢¢”
Also we can give them in matrix form. Let a; ; represent the entry in the i’th row

and j’'th column of the corresponding matrix. All entries of the matrices below

are zero unless stated otherwise.

cyind; = {ap =2}, vind; = {au) =4},

vinda = {aue) = a3 =2}, vindg = {aus2) = aes) =2},

vinde = {aug) = a3 =2}, iwesc, = {aq =1},

iresy, = {a(1,4) = 1} ; Al€sy, = {a(274) = a@35) = 1}

presy, = {a(274) = a6 = 1} , cresy, = {a(2,4) =a@mn = 1}
1is0; = {a(m) = 1}, C»180¢, = {G(Q,z) =a@g) = 1}

and v,isoy, = {a(4) = a5 = @) = A = dss) = 1}
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c,infy = {a(271) =a@a = 1}

vinfy = {aw = a0 = ae = ae = aen) = 1}
vinfy,/a = {aug = a2 = aes) = ars) = as) = 1}
vinfy,s = {aug) = ais) = ap = aws) = ags) = 1}
vinfv, o = {a@2) = as) = ae) = ag) = aga) = 1}

1defe, = {a(m) =anz) = 1/2}

idefy, = {aqy = aqs) = aue) = aqn = 1/4}
viadefy, = {apa = a@ps) = ape) = apn = 1/2}
V4/Bder4 = {a(2,4) = a(3,5) = A(2,6) = A(3,7) = 1/2}
viycdefv, = {apy = aps) = ape = aen = 1/2}

By Corollary 4.10, we know that every idempotent of Z(A) belongs to
Z(Y). So every idempotent of Z(A) is a sum of di’s for k£ = 1,2,3.
Here di = diag(1,1,0,1,0,0,0,0) , d» = diag(0,0,1,0,1,1,1,0) , dy =
diag(0,0,0,0,0,0,0,1). We have to find which of those commute with inflations.

Now take an idempotent ¢ from A. Then § has the form 6 = ad; + bdy + cd3 where
a,b € {0,1}. Commutativity with y,inf; gives us a = b = ¢. So only idempotents

are 0 and 1. It has just one block.

However that is not the case for Adef,

Theorem 4.19. A% has two blocks for & = {1,Cy, V}.

Proof. By Corollary 4.10, we know that every idempotent of Z(A%f) belongs to
Z(T). So every idempotent of Z(A%) is a sum of dj as above. We have to find

which of those commute with deflations.

Now take an idempotent ¢ which dd; = d;. Then 0 has the form 6 = d; +ady+bds
where a,b € {0,1}. Commutativity with y, sdefy, gives us a = 1. So every
idempotent that contains d; should also contain dy. However no other deflation

gives any further restriction. Therefore we have 6 = dy + dy or 6 = dy + do + ds.

Now take 0 which dds = ds. So ¢ has the form 0 = ad; + bdy + d3 where
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a,b € {0,1}. If we check commutativity with deflations for this § we get no
restriction except that if it contains d;, it has to contain dy too. Therefore we

have another idempotent ds.

Between 0,1 and these three idempotents, d; + d> and d3 are primitive. O
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